This client driver allows you to use a GPIO pin as a source for PPS
[linux-2.6/next.git] / fs / namei.c
blobe8b5ee05170c3b2196518e699f41220de67ec8ec
1 /*
2 * linux/fs/namei.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 /*
8 * Some corrections by tytso.
9 */
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12 * lookup logic.
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
17 #include <linux/init.h>
18 #include <linux/module.h>
19 #include <linux/slab.h>
20 #include <linux/fs.h>
21 #include <linux/namei.h>
22 #include <linux/pagemap.h>
23 #include <linux/fsnotify.h>
24 #include <linux/personality.h>
25 #include <linux/security.h>
26 #include <linux/ima.h>
27 #include <linux/syscalls.h>
28 #include <linux/mount.h>
29 #include <linux/audit.h>
30 #include <linux/capability.h>
31 #include <linux/file.h>
32 #include <linux/fcntl.h>
33 #include <linux/device_cgroup.h>
34 #include <linux/fs_struct.h>
35 #include <linux/posix_acl.h>
36 #include <asm/uaccess.h>
38 #include "internal.h"
40 /* [Feb-1997 T. Schoebel-Theuer]
41 * Fundamental changes in the pathname lookup mechanisms (namei)
42 * were necessary because of omirr. The reason is that omirr needs
43 * to know the _real_ pathname, not the user-supplied one, in case
44 * of symlinks (and also when transname replacements occur).
46 * The new code replaces the old recursive symlink resolution with
47 * an iterative one (in case of non-nested symlink chains). It does
48 * this with calls to <fs>_follow_link().
49 * As a side effect, dir_namei(), _namei() and follow_link() are now
50 * replaced with a single function lookup_dentry() that can handle all
51 * the special cases of the former code.
53 * With the new dcache, the pathname is stored at each inode, at least as
54 * long as the refcount of the inode is positive. As a side effect, the
55 * size of the dcache depends on the inode cache and thus is dynamic.
57 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
58 * resolution to correspond with current state of the code.
60 * Note that the symlink resolution is not *completely* iterative.
61 * There is still a significant amount of tail- and mid- recursion in
62 * the algorithm. Also, note that <fs>_readlink() is not used in
63 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
64 * may return different results than <fs>_follow_link(). Many virtual
65 * filesystems (including /proc) exhibit this behavior.
68 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
69 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
70 * and the name already exists in form of a symlink, try to create the new
71 * name indicated by the symlink. The old code always complained that the
72 * name already exists, due to not following the symlink even if its target
73 * is nonexistent. The new semantics affects also mknod() and link() when
74 * the name is a symlink pointing to a non-existent name.
76 * I don't know which semantics is the right one, since I have no access
77 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
78 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
79 * "old" one. Personally, I think the new semantics is much more logical.
80 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
81 * file does succeed in both HP-UX and SunOs, but not in Solaris
82 * and in the old Linux semantics.
85 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
86 * semantics. See the comments in "open_namei" and "do_link" below.
88 * [10-Sep-98 Alan Modra] Another symlink change.
91 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
92 * inside the path - always follow.
93 * in the last component in creation/removal/renaming - never follow.
94 * if LOOKUP_FOLLOW passed - follow.
95 * if the pathname has trailing slashes - follow.
96 * otherwise - don't follow.
97 * (applied in that order).
99 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
100 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
101 * During the 2.4 we need to fix the userland stuff depending on it -
102 * hopefully we will be able to get rid of that wart in 2.5. So far only
103 * XEmacs seems to be relying on it...
106 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
107 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
108 * any extra contention...
111 /* In order to reduce some races, while at the same time doing additional
112 * checking and hopefully speeding things up, we copy filenames to the
113 * kernel data space before using them..
115 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
116 * PATH_MAX includes the nul terminator --RR.
118 static int do_getname(const char __user *filename, char *page)
120 int retval;
121 unsigned long len = PATH_MAX;
123 if (!segment_eq(get_fs(), KERNEL_DS)) {
124 if ((unsigned long) filename >= TASK_SIZE)
125 return -EFAULT;
126 if (TASK_SIZE - (unsigned long) filename < PATH_MAX)
127 len = TASK_SIZE - (unsigned long) filename;
130 retval = strncpy_from_user(page, filename, len);
131 if (retval > 0) {
132 if (retval < len)
133 return 0;
134 return -ENAMETOOLONG;
135 } else if (!retval)
136 retval = -ENOENT;
137 return retval;
140 static char *getname_flags_empty(const char __user * filename,
141 int flags, int *empty)
143 char *tmp, *result;
145 result = ERR_PTR(-ENOMEM);
146 tmp = __getname();
147 if (tmp) {
148 int retval = do_getname(filename, tmp);
150 result = tmp;
151 if (retval < 0) {
152 if (retval == -ENOENT && empty)
153 *empty = 1;
154 if (retval != -ENOENT || !(flags & LOOKUP_EMPTY)) {
155 __putname(tmp);
156 result = ERR_PTR(retval);
160 audit_getname(result);
161 return result;
164 char *getname(const char __user * filename)
166 return getname_flags_empty(filename, 0, 0);
169 #ifdef CONFIG_AUDITSYSCALL
170 void putname(const char *name)
172 if (unlikely(!audit_dummy_context()))
173 audit_putname(name);
174 else
175 __putname(name);
177 EXPORT_SYMBOL(putname);
178 #endif
180 static int check_acl(struct inode *inode, int mask)
182 #ifdef CONFIG_FS_POSIX_ACL
183 struct posix_acl *acl;
185 if (mask & MAY_NOT_BLOCK) {
186 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
187 if (!acl)
188 return -EAGAIN;
189 /* no ->get_acl() calls in RCU mode... */
190 if (acl == ACL_NOT_CACHED)
191 return -ECHILD;
192 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
195 acl = get_cached_acl(inode, ACL_TYPE_ACCESS);
198 * A filesystem can force a ACL callback by just never filling the
199 * ACL cache. But normally you'd fill the cache either at inode
200 * instantiation time, or on the first ->get_acl call.
202 * If the filesystem doesn't have a get_acl() function at all, we'll
203 * just create the negative cache entry.
205 if (acl == ACL_NOT_CACHED) {
206 if (inode->i_op->get_acl) {
207 acl = inode->i_op->get_acl(inode, ACL_TYPE_ACCESS);
208 if (IS_ERR(acl))
209 return PTR_ERR(acl);
210 } else {
211 set_cached_acl(inode, ACL_TYPE_ACCESS, NULL);
212 return -EAGAIN;
216 if (acl) {
217 int error = posix_acl_permission(inode, acl, mask);
218 posix_acl_release(acl);
219 return error;
221 #endif
223 return -EAGAIN;
227 * This does basic POSIX ACL permission checking
229 static int acl_permission_check(struct inode *inode, int mask)
231 unsigned int mode = inode->i_mode;
233 mask &= MAY_READ | MAY_WRITE | MAY_EXEC | MAY_NOT_BLOCK;
235 if (current_user_ns() != inode_userns(inode))
236 goto other_perms;
238 if (likely(current_fsuid() == inode->i_uid))
239 mode >>= 6;
240 else {
241 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
242 int error = check_acl(inode, mask);
243 if (error != -EAGAIN)
244 return error;
247 if (in_group_p(inode->i_gid))
248 mode >>= 3;
251 other_perms:
253 * If the DACs are ok we don't need any capability check.
255 if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
256 return 0;
257 return -EACCES;
261 * generic_permission - check for access rights on a Posix-like filesystem
262 * @inode: inode to check access rights for
263 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
265 * Used to check for read/write/execute permissions on a file.
266 * We use "fsuid" for this, letting us set arbitrary permissions
267 * for filesystem access without changing the "normal" uids which
268 * are used for other things.
270 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
271 * request cannot be satisfied (eg. requires blocking or too much complexity).
272 * It would then be called again in ref-walk mode.
274 int generic_permission(struct inode *inode, int mask)
276 int ret;
279 * Do the basic POSIX ACL permission checks.
281 ret = acl_permission_check(inode, mask);
282 if (ret != -EACCES)
283 return ret;
285 if (S_ISDIR(inode->i_mode)) {
286 /* DACs are overridable for directories */
287 if (ns_capable(inode_userns(inode), CAP_DAC_OVERRIDE))
288 return 0;
289 if (!(mask & MAY_WRITE))
290 if (ns_capable(inode_userns(inode), CAP_DAC_READ_SEARCH))
291 return 0;
292 return -EACCES;
295 * Read/write DACs are always overridable.
296 * Executable DACs are overridable when there is
297 * at least one exec bit set.
299 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
300 if (ns_capable(inode_userns(inode), CAP_DAC_OVERRIDE))
301 return 0;
304 * Searching includes executable on directories, else just read.
306 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
307 if (mask == MAY_READ)
308 if (ns_capable(inode_userns(inode), CAP_DAC_READ_SEARCH))
309 return 0;
311 return -EACCES;
315 * We _really_ want to just do "generic_permission()" without
316 * even looking at the inode->i_op values. So we keep a cache
317 * flag in inode->i_opflags, that says "this has not special
318 * permission function, use the fast case".
320 static inline int do_inode_permission(struct inode *inode, int mask)
322 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
323 if (likely(inode->i_op->permission))
324 return inode->i_op->permission(inode, mask);
326 /* This gets set once for the inode lifetime */
327 spin_lock(&inode->i_lock);
328 inode->i_opflags |= IOP_FASTPERM;
329 spin_unlock(&inode->i_lock);
331 return generic_permission(inode, mask);
335 * inode_permission - check for access rights to a given inode
336 * @inode: inode to check permission on
337 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
339 * Used to check for read/write/execute permissions on an inode.
340 * We use "fsuid" for this, letting us set arbitrary permissions
341 * for filesystem access without changing the "normal" uids which
342 * are used for other things.
344 int inode_permission(struct inode *inode, int mask)
346 int retval;
348 if (unlikely(mask & MAY_WRITE)) {
349 umode_t mode = inode->i_mode;
352 * Nobody gets write access to a read-only fs.
354 if (IS_RDONLY(inode) &&
355 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
356 return -EROFS;
359 * Nobody gets write access to an immutable file.
361 if (IS_IMMUTABLE(inode))
362 return -EACCES;
365 retval = do_inode_permission(inode, mask);
366 if (retval)
367 return retval;
369 retval = devcgroup_inode_permission(inode, mask);
370 if (retval)
371 return retval;
373 return security_inode_permission(inode, mask);
377 * path_get - get a reference to a path
378 * @path: path to get the reference to
380 * Given a path increment the reference count to the dentry and the vfsmount.
382 void path_get(struct path *path)
384 mntget(path->mnt);
385 dget(path->dentry);
387 EXPORT_SYMBOL(path_get);
390 * path_put - put a reference to a path
391 * @path: path to put the reference to
393 * Given a path decrement the reference count to the dentry and the vfsmount.
395 void path_put(struct path *path)
397 dput(path->dentry);
398 mntput(path->mnt);
400 EXPORT_SYMBOL(path_put);
403 * Path walking has 2 modes, rcu-walk and ref-walk (see
404 * Documentation/filesystems/path-lookup.txt). In situations when we can't
405 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
406 * normal reference counts on dentries and vfsmounts to transition to rcu-walk
407 * mode. Refcounts are grabbed at the last known good point before rcu-walk
408 * got stuck, so ref-walk may continue from there. If this is not successful
409 * (eg. a seqcount has changed), then failure is returned and it's up to caller
410 * to restart the path walk from the beginning in ref-walk mode.
414 * unlazy_walk - try to switch to ref-walk mode.
415 * @nd: nameidata pathwalk data
416 * @dentry: child of nd->path.dentry or NULL
417 * Returns: 0 on success, -ECHILD on failure
419 * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry
420 * for ref-walk mode. @dentry must be a path found by a do_lookup call on
421 * @nd or NULL. Must be called from rcu-walk context.
423 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry)
425 struct fs_struct *fs = current->fs;
426 struct dentry *parent = nd->path.dentry;
427 int want_root = 0;
429 BUG_ON(!(nd->flags & LOOKUP_RCU));
430 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
431 want_root = 1;
432 spin_lock(&fs->lock);
433 if (nd->root.mnt != fs->root.mnt ||
434 nd->root.dentry != fs->root.dentry)
435 goto err_root;
437 spin_lock(&parent->d_lock);
438 if (!dentry) {
439 if (!__d_rcu_to_refcount(parent, nd->seq))
440 goto err_parent;
441 BUG_ON(nd->inode != parent->d_inode);
442 } else {
443 if (dentry->d_parent != parent)
444 goto err_parent;
445 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
446 if (!__d_rcu_to_refcount(dentry, nd->seq))
447 goto err_child;
449 * If the sequence check on the child dentry passed, then
450 * the child has not been removed from its parent. This
451 * means the parent dentry must be valid and able to take
452 * a reference at this point.
454 BUG_ON(!IS_ROOT(dentry) && dentry->d_parent != parent);
455 BUG_ON(!parent->d_count);
456 parent->d_count++;
457 spin_unlock(&dentry->d_lock);
459 spin_unlock(&parent->d_lock);
460 if (want_root) {
461 path_get(&nd->root);
462 spin_unlock(&fs->lock);
464 mntget(nd->path.mnt);
466 rcu_read_unlock();
467 br_read_unlock(vfsmount_lock);
468 nd->flags &= ~LOOKUP_RCU;
469 return 0;
471 err_child:
472 spin_unlock(&dentry->d_lock);
473 err_parent:
474 spin_unlock(&parent->d_lock);
475 err_root:
476 if (want_root)
477 spin_unlock(&fs->lock);
478 return -ECHILD;
482 * release_open_intent - free up open intent resources
483 * @nd: pointer to nameidata
485 void release_open_intent(struct nameidata *nd)
487 struct file *file = nd->intent.open.file;
489 if (file && !IS_ERR(file)) {
490 if (file->f_path.dentry == NULL)
491 put_filp(file);
492 else
493 fput(file);
497 static inline int d_revalidate(struct dentry *dentry, struct nameidata *nd)
499 return dentry->d_op->d_revalidate(dentry, nd);
503 * complete_walk - successful completion of path walk
504 * @nd: pointer nameidata
506 * If we had been in RCU mode, drop out of it and legitimize nd->path.
507 * Revalidate the final result, unless we'd already done that during
508 * the path walk or the filesystem doesn't ask for it. Return 0 on
509 * success, -error on failure. In case of failure caller does not
510 * need to drop nd->path.
512 static int complete_walk(struct nameidata *nd)
514 struct dentry *dentry = nd->path.dentry;
515 int status;
517 if (nd->flags & LOOKUP_RCU) {
518 nd->flags &= ~LOOKUP_RCU;
519 if (!(nd->flags & LOOKUP_ROOT))
520 nd->root.mnt = NULL;
521 spin_lock(&dentry->d_lock);
522 if (unlikely(!__d_rcu_to_refcount(dentry, nd->seq))) {
523 spin_unlock(&dentry->d_lock);
524 rcu_read_unlock();
525 br_read_unlock(vfsmount_lock);
526 return -ECHILD;
528 BUG_ON(nd->inode != dentry->d_inode);
529 spin_unlock(&dentry->d_lock);
530 mntget(nd->path.mnt);
531 rcu_read_unlock();
532 br_read_unlock(vfsmount_lock);
535 if (likely(!(nd->flags & LOOKUP_JUMPED)))
536 return 0;
538 if (likely(!(dentry->d_flags & DCACHE_OP_REVALIDATE)))
539 return 0;
541 if (likely(!(dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT)))
542 return 0;
544 /* Note: we do not d_invalidate() */
545 status = d_revalidate(dentry, nd);
546 if (status > 0)
547 return 0;
549 if (!status)
550 status = -ESTALE;
552 path_put(&nd->path);
553 return status;
556 static __always_inline void set_root(struct nameidata *nd)
558 if (!nd->root.mnt)
559 get_fs_root(current->fs, &nd->root);
562 static int link_path_walk(const char *, struct nameidata *);
564 static __always_inline void set_root_rcu(struct nameidata *nd)
566 if (!nd->root.mnt) {
567 struct fs_struct *fs = current->fs;
568 unsigned seq;
570 do {
571 seq = read_seqcount_begin(&fs->seq);
572 nd->root = fs->root;
573 nd->seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
574 } while (read_seqcount_retry(&fs->seq, seq));
578 static __always_inline int __vfs_follow_link(struct nameidata *nd, const char *link)
580 int ret;
582 if (IS_ERR(link))
583 goto fail;
585 if (*link == '/') {
586 set_root(nd);
587 path_put(&nd->path);
588 nd->path = nd->root;
589 path_get(&nd->root);
590 nd->flags |= LOOKUP_JUMPED;
592 nd->inode = nd->path.dentry->d_inode;
594 ret = link_path_walk(link, nd);
595 return ret;
596 fail:
597 path_put(&nd->path);
598 return PTR_ERR(link);
601 static void path_put_conditional(struct path *path, struct nameidata *nd)
603 dput(path->dentry);
604 if (path->mnt != nd->path.mnt)
605 mntput(path->mnt);
608 static inline void path_to_nameidata(const struct path *path,
609 struct nameidata *nd)
611 if (!(nd->flags & LOOKUP_RCU)) {
612 dput(nd->path.dentry);
613 if (nd->path.mnt != path->mnt)
614 mntput(nd->path.mnt);
616 nd->path.mnt = path->mnt;
617 nd->path.dentry = path->dentry;
620 static inline void put_link(struct nameidata *nd, struct path *link, void *cookie)
622 struct inode *inode = link->dentry->d_inode;
623 if (!IS_ERR(cookie) && inode->i_op->put_link)
624 inode->i_op->put_link(link->dentry, nd, cookie);
625 path_put(link);
628 static __always_inline int
629 follow_link(struct path *link, struct nameidata *nd, void **p)
631 int error;
632 struct dentry *dentry = link->dentry;
634 BUG_ON(nd->flags & LOOKUP_RCU);
636 if (link->mnt == nd->path.mnt)
637 mntget(link->mnt);
639 if (unlikely(current->total_link_count >= 40)) {
640 *p = ERR_PTR(-ELOOP); /* no ->put_link(), please */
641 path_put(&nd->path);
642 return -ELOOP;
644 cond_resched();
645 current->total_link_count++;
647 touch_atime(link->mnt, dentry);
648 nd_set_link(nd, NULL);
650 error = security_inode_follow_link(link->dentry, nd);
651 if (error) {
652 *p = ERR_PTR(error); /* no ->put_link(), please */
653 path_put(&nd->path);
654 return error;
657 nd->last_type = LAST_BIND;
658 *p = dentry->d_inode->i_op->follow_link(dentry, nd);
659 error = PTR_ERR(*p);
660 if (!IS_ERR(*p)) {
661 char *s = nd_get_link(nd);
662 error = 0;
663 if (s)
664 error = __vfs_follow_link(nd, s);
665 else if (nd->last_type == LAST_BIND) {
666 nd->flags |= LOOKUP_JUMPED;
667 nd->inode = nd->path.dentry->d_inode;
668 if (nd->inode->i_op->follow_link) {
669 /* stepped on a _really_ weird one */
670 path_put(&nd->path);
671 error = -ELOOP;
675 return error;
678 static int follow_up_rcu(struct path *path)
680 struct vfsmount *parent;
681 struct dentry *mountpoint;
683 parent = path->mnt->mnt_parent;
684 if (parent == path->mnt)
685 return 0;
686 mountpoint = path->mnt->mnt_mountpoint;
687 path->dentry = mountpoint;
688 path->mnt = parent;
689 return 1;
692 int follow_up(struct path *path)
694 struct vfsmount *parent;
695 struct dentry *mountpoint;
697 br_read_lock(vfsmount_lock);
698 parent = path->mnt->mnt_parent;
699 if (parent == path->mnt) {
700 br_read_unlock(vfsmount_lock);
701 return 0;
703 mntget(parent);
704 mountpoint = dget(path->mnt->mnt_mountpoint);
705 br_read_unlock(vfsmount_lock);
706 dput(path->dentry);
707 path->dentry = mountpoint;
708 mntput(path->mnt);
709 path->mnt = parent;
710 return 1;
714 * Perform an automount
715 * - return -EISDIR to tell follow_managed() to stop and return the path we
716 * were called with.
718 static int follow_automount(struct path *path, unsigned flags,
719 bool *need_mntput)
721 struct vfsmount *mnt;
722 int err;
724 if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
725 return -EREMOTE;
727 /* We don't want to mount if someone supplied AT_NO_AUTOMOUNT
728 * and this is the terminal part of the path.
730 if ((flags & LOOKUP_NO_AUTOMOUNT) && !(flags & LOOKUP_PARENT))
731 return -EISDIR; /* we actually want to stop here */
734 * We don't want to mount if someone's just doing a stat and they've
735 * set AT_SYMLINK_NOFOLLOW - unless they're stat'ing a directory and
736 * appended a '/' to the name.
738 if (!(flags & LOOKUP_FOLLOW)) {
739 /* We do, however, want to mount if someone wants to open or
740 * create a file of any type under the mountpoint, wants to
741 * traverse through the mountpoint or wants to open the mounted
742 * directory.
743 * Also, autofs may mark negative dentries as being automount
744 * points. These will need the attentions of the daemon to
745 * instantiate them before they can be used.
747 if (!(flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
748 LOOKUP_OPEN | LOOKUP_CREATE)) &&
749 path->dentry->d_inode)
750 return -EISDIR;
752 current->total_link_count++;
753 if (current->total_link_count >= 40)
754 return -ELOOP;
756 mnt = path->dentry->d_op->d_automount(path);
757 if (IS_ERR(mnt)) {
759 * The filesystem is allowed to return -EISDIR here to indicate
760 * it doesn't want to automount. For instance, autofs would do
761 * this so that its userspace daemon can mount on this dentry.
763 * However, we can only permit this if it's a terminal point in
764 * the path being looked up; if it wasn't then the remainder of
765 * the path is inaccessible and we should say so.
767 if (PTR_ERR(mnt) == -EISDIR && (flags & LOOKUP_PARENT))
768 return -EREMOTE;
769 return PTR_ERR(mnt);
772 if (!mnt) /* mount collision */
773 return 0;
775 if (!*need_mntput) {
776 /* lock_mount() may release path->mnt on error */
777 mntget(path->mnt);
778 *need_mntput = true;
780 err = finish_automount(mnt, path);
782 switch (err) {
783 case -EBUSY:
784 /* Someone else made a mount here whilst we were busy */
785 return 0;
786 case 0:
787 path_put(path);
788 path->mnt = mnt;
789 path->dentry = dget(mnt->mnt_root);
790 return 0;
791 default:
792 return err;
798 * Handle a dentry that is managed in some way.
799 * - Flagged for transit management (autofs)
800 * - Flagged as mountpoint
801 * - Flagged as automount point
803 * This may only be called in refwalk mode.
805 * Serialization is taken care of in namespace.c
807 static int follow_managed(struct path *path, unsigned flags)
809 struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
810 unsigned managed;
811 bool need_mntput = false;
812 int ret = 0;
814 /* Given that we're not holding a lock here, we retain the value in a
815 * local variable for each dentry as we look at it so that we don't see
816 * the components of that value change under us */
817 while (managed = ACCESS_ONCE(path->dentry->d_flags),
818 managed &= DCACHE_MANAGED_DENTRY,
819 unlikely(managed != 0)) {
820 /* Allow the filesystem to manage the transit without i_mutex
821 * being held. */
822 if (managed & DCACHE_MANAGE_TRANSIT) {
823 BUG_ON(!path->dentry->d_op);
824 BUG_ON(!path->dentry->d_op->d_manage);
825 ret = path->dentry->d_op->d_manage(path->dentry, false);
826 if (ret < 0)
827 break;
830 /* Transit to a mounted filesystem. */
831 if (managed & DCACHE_MOUNTED) {
832 struct vfsmount *mounted = lookup_mnt(path);
833 if (mounted) {
834 dput(path->dentry);
835 if (need_mntput)
836 mntput(path->mnt);
837 path->mnt = mounted;
838 path->dentry = dget(mounted->mnt_root);
839 need_mntput = true;
840 continue;
843 /* Something is mounted on this dentry in another
844 * namespace and/or whatever was mounted there in this
845 * namespace got unmounted before we managed to get the
846 * vfsmount_lock */
849 /* Handle an automount point */
850 if (managed & DCACHE_NEED_AUTOMOUNT) {
851 ret = follow_automount(path, flags, &need_mntput);
852 if (ret < 0)
853 break;
854 continue;
857 /* We didn't change the current path point */
858 break;
861 if (need_mntput && path->mnt == mnt)
862 mntput(path->mnt);
863 if (ret == -EISDIR)
864 ret = 0;
865 return ret;
868 int follow_down_one(struct path *path)
870 struct vfsmount *mounted;
872 mounted = lookup_mnt(path);
873 if (mounted) {
874 dput(path->dentry);
875 mntput(path->mnt);
876 path->mnt = mounted;
877 path->dentry = dget(mounted->mnt_root);
878 return 1;
880 return 0;
883 static inline bool managed_dentry_might_block(struct dentry *dentry)
885 return (dentry->d_flags & DCACHE_MANAGE_TRANSIT &&
886 dentry->d_op->d_manage(dentry, true) < 0);
890 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if
891 * we meet a managed dentry that would need blocking.
893 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
894 struct inode **inode)
896 for (;;) {
897 struct vfsmount *mounted;
899 * Don't forget we might have a non-mountpoint managed dentry
900 * that wants to block transit.
902 if (unlikely(managed_dentry_might_block(path->dentry)))
903 return false;
905 if (!d_mountpoint(path->dentry))
906 break;
908 mounted = __lookup_mnt(path->mnt, path->dentry, 1);
909 if (!mounted)
910 break;
911 path->mnt = mounted;
912 path->dentry = mounted->mnt_root;
913 nd->seq = read_seqcount_begin(&path->dentry->d_seq);
915 * Update the inode too. We don't need to re-check the
916 * dentry sequence number here after this d_inode read,
917 * because a mount-point is always pinned.
919 *inode = path->dentry->d_inode;
921 return true;
924 static void follow_mount_rcu(struct nameidata *nd)
926 while (d_mountpoint(nd->path.dentry)) {
927 struct vfsmount *mounted;
928 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry, 1);
929 if (!mounted)
930 break;
931 nd->path.mnt = mounted;
932 nd->path.dentry = mounted->mnt_root;
933 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
937 static int follow_dotdot_rcu(struct nameidata *nd)
939 set_root_rcu(nd);
941 while (1) {
942 if (nd->path.dentry == nd->root.dentry &&
943 nd->path.mnt == nd->root.mnt) {
944 break;
946 if (nd->path.dentry != nd->path.mnt->mnt_root) {
947 struct dentry *old = nd->path.dentry;
948 struct dentry *parent = old->d_parent;
949 unsigned seq;
951 seq = read_seqcount_begin(&parent->d_seq);
952 if (read_seqcount_retry(&old->d_seq, nd->seq))
953 goto failed;
954 nd->path.dentry = parent;
955 nd->seq = seq;
956 break;
958 if (!follow_up_rcu(&nd->path))
959 break;
960 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
962 follow_mount_rcu(nd);
963 nd->inode = nd->path.dentry->d_inode;
964 return 0;
966 failed:
967 nd->flags &= ~LOOKUP_RCU;
968 if (!(nd->flags & LOOKUP_ROOT))
969 nd->root.mnt = NULL;
970 rcu_read_unlock();
971 br_read_unlock(vfsmount_lock);
972 return -ECHILD;
976 * Follow down to the covering mount currently visible to userspace. At each
977 * point, the filesystem owning that dentry may be queried as to whether the
978 * caller is permitted to proceed or not.
980 int follow_down(struct path *path)
982 unsigned managed;
983 int ret;
985 while (managed = ACCESS_ONCE(path->dentry->d_flags),
986 unlikely(managed & DCACHE_MANAGED_DENTRY)) {
987 /* Allow the filesystem to manage the transit without i_mutex
988 * being held.
990 * We indicate to the filesystem if someone is trying to mount
991 * something here. This gives autofs the chance to deny anyone
992 * other than its daemon the right to mount on its
993 * superstructure.
995 * The filesystem may sleep at this point.
997 if (managed & DCACHE_MANAGE_TRANSIT) {
998 BUG_ON(!path->dentry->d_op);
999 BUG_ON(!path->dentry->d_op->d_manage);
1000 ret = path->dentry->d_op->d_manage(
1001 path->dentry, false);
1002 if (ret < 0)
1003 return ret == -EISDIR ? 0 : ret;
1006 /* Transit to a mounted filesystem. */
1007 if (managed & DCACHE_MOUNTED) {
1008 struct vfsmount *mounted = lookup_mnt(path);
1009 if (!mounted)
1010 break;
1011 dput(path->dentry);
1012 mntput(path->mnt);
1013 path->mnt = mounted;
1014 path->dentry = dget(mounted->mnt_root);
1015 continue;
1018 /* Don't handle automount points here */
1019 break;
1021 return 0;
1025 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1027 static void follow_mount(struct path *path)
1029 while (d_mountpoint(path->dentry)) {
1030 struct vfsmount *mounted = lookup_mnt(path);
1031 if (!mounted)
1032 break;
1033 dput(path->dentry);
1034 mntput(path->mnt);
1035 path->mnt = mounted;
1036 path->dentry = dget(mounted->mnt_root);
1040 static void follow_dotdot(struct nameidata *nd)
1042 set_root(nd);
1044 while(1) {
1045 struct dentry *old = nd->path.dentry;
1047 if (nd->path.dentry == nd->root.dentry &&
1048 nd->path.mnt == nd->root.mnt) {
1049 break;
1051 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1052 /* rare case of legitimate dget_parent()... */
1053 nd->path.dentry = dget_parent(nd->path.dentry);
1054 dput(old);
1055 break;
1057 if (!follow_up(&nd->path))
1058 break;
1060 follow_mount(&nd->path);
1061 nd->inode = nd->path.dentry->d_inode;
1065 * Allocate a dentry with name and parent, and perform a parent
1066 * directory ->lookup on it. Returns the new dentry, or ERR_PTR
1067 * on error. parent->d_inode->i_mutex must be held. d_lookup must
1068 * have verified that no child exists while under i_mutex.
1070 static struct dentry *d_alloc_and_lookup(struct dentry *parent,
1071 struct qstr *name, struct nameidata *nd)
1073 struct inode *inode = parent->d_inode;
1074 struct dentry *dentry;
1075 struct dentry *old;
1077 /* Don't create child dentry for a dead directory. */
1078 if (unlikely(IS_DEADDIR(inode)))
1079 return ERR_PTR(-ENOENT);
1081 dentry = d_alloc(parent, name);
1082 if (unlikely(!dentry))
1083 return ERR_PTR(-ENOMEM);
1085 old = inode->i_op->lookup(inode, dentry, nd);
1086 if (unlikely(old)) {
1087 dput(dentry);
1088 dentry = old;
1090 return dentry;
1094 * We already have a dentry, but require a lookup to be performed on the parent
1095 * directory to fill in d_inode. Returns the new dentry, or ERR_PTR on error.
1096 * parent->d_inode->i_mutex must be held. d_lookup must have verified that no
1097 * child exists while under i_mutex.
1099 static struct dentry *d_inode_lookup(struct dentry *parent, struct dentry *dentry,
1100 struct nameidata *nd)
1102 struct inode *inode = parent->d_inode;
1103 struct dentry *old;
1105 /* Don't create child dentry for a dead directory. */
1106 if (unlikely(IS_DEADDIR(inode)))
1107 return ERR_PTR(-ENOENT);
1109 old = inode->i_op->lookup(inode, dentry, nd);
1110 if (unlikely(old)) {
1111 dput(dentry);
1112 dentry = old;
1114 return dentry;
1118 * It's more convoluted than I'd like it to be, but... it's still fairly
1119 * small and for now I'd prefer to have fast path as straight as possible.
1120 * It _is_ time-critical.
1122 static int do_lookup(struct nameidata *nd, struct qstr *name,
1123 struct path *path, struct inode **inode)
1125 struct vfsmount *mnt = nd->path.mnt;
1126 struct dentry *dentry, *parent = nd->path.dentry;
1127 int need_reval = 1;
1128 int status = 1;
1129 int err;
1132 * Rename seqlock is not required here because in the off chance
1133 * of a false negative due to a concurrent rename, we're going to
1134 * do the non-racy lookup, below.
1136 if (nd->flags & LOOKUP_RCU) {
1137 unsigned seq;
1138 *inode = nd->inode;
1139 dentry = __d_lookup_rcu(parent, name, &seq, inode);
1140 if (!dentry)
1141 goto unlazy;
1143 /* Memory barrier in read_seqcount_begin of child is enough */
1144 if (__read_seqcount_retry(&parent->d_seq, nd->seq))
1145 return -ECHILD;
1146 nd->seq = seq;
1148 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) {
1149 status = d_revalidate(dentry, nd);
1150 if (unlikely(status <= 0)) {
1151 if (status != -ECHILD)
1152 need_reval = 0;
1153 goto unlazy;
1156 if (unlikely(d_need_lookup(dentry)))
1157 goto unlazy;
1158 path->mnt = mnt;
1159 path->dentry = dentry;
1160 if (unlikely(!__follow_mount_rcu(nd, path, inode)))
1161 goto unlazy;
1162 if (unlikely(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT))
1163 goto unlazy;
1164 return 0;
1165 unlazy:
1166 if (unlazy_walk(nd, dentry))
1167 return -ECHILD;
1168 } else {
1169 dentry = __d_lookup(parent, name);
1172 if (dentry && unlikely(d_need_lookup(dentry))) {
1173 dput(dentry);
1174 dentry = NULL;
1176 retry:
1177 if (unlikely(!dentry)) {
1178 struct inode *dir = parent->d_inode;
1179 BUG_ON(nd->inode != dir);
1181 mutex_lock(&dir->i_mutex);
1182 dentry = d_lookup(parent, name);
1183 if (likely(!dentry)) {
1184 dentry = d_alloc_and_lookup(parent, name, nd);
1185 if (IS_ERR(dentry)) {
1186 mutex_unlock(&dir->i_mutex);
1187 return PTR_ERR(dentry);
1189 /* known good */
1190 need_reval = 0;
1191 status = 1;
1192 } else if (unlikely(d_need_lookup(dentry))) {
1193 dentry = d_inode_lookup(parent, dentry, nd);
1194 if (IS_ERR(dentry)) {
1195 mutex_unlock(&dir->i_mutex);
1196 return PTR_ERR(dentry);
1198 /* known good */
1199 need_reval = 0;
1200 status = 1;
1202 mutex_unlock(&dir->i_mutex);
1204 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE) && need_reval)
1205 status = d_revalidate(dentry, nd);
1206 if (unlikely(status <= 0)) {
1207 if (status < 0) {
1208 dput(dentry);
1209 return status;
1211 if (!d_invalidate(dentry)) {
1212 dput(dentry);
1213 dentry = NULL;
1214 need_reval = 1;
1215 goto retry;
1219 path->mnt = mnt;
1220 path->dentry = dentry;
1221 err = follow_managed(path, nd->flags);
1222 if (unlikely(err < 0)) {
1223 path_put_conditional(path, nd);
1224 return err;
1226 *inode = path->dentry->d_inode;
1227 return 0;
1230 static inline int may_lookup(struct nameidata *nd)
1232 if (nd->flags & LOOKUP_RCU) {
1233 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1234 if (err != -ECHILD)
1235 return err;
1236 if (unlazy_walk(nd, NULL))
1237 return -ECHILD;
1239 return inode_permission(nd->inode, MAY_EXEC);
1242 static inline int handle_dots(struct nameidata *nd, int type)
1244 if (type == LAST_DOTDOT) {
1245 if (nd->flags & LOOKUP_RCU) {
1246 if (follow_dotdot_rcu(nd))
1247 return -ECHILD;
1248 } else
1249 follow_dotdot(nd);
1251 return 0;
1254 static void terminate_walk(struct nameidata *nd)
1256 if (!(nd->flags & LOOKUP_RCU)) {
1257 path_put(&nd->path);
1258 } else {
1259 nd->flags &= ~LOOKUP_RCU;
1260 if (!(nd->flags & LOOKUP_ROOT))
1261 nd->root.mnt = NULL;
1262 rcu_read_unlock();
1263 br_read_unlock(vfsmount_lock);
1268 * Do we need to follow links? We _really_ want to be able
1269 * to do this check without having to look at inode->i_op,
1270 * so we keep a cache of "no, this doesn't need follow_link"
1271 * for the common case.
1273 static inline int should_follow_link(struct inode *inode, int follow)
1275 if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1276 if (likely(inode->i_op->follow_link))
1277 return follow;
1279 /* This gets set once for the inode lifetime */
1280 spin_lock(&inode->i_lock);
1281 inode->i_opflags |= IOP_NOFOLLOW;
1282 spin_unlock(&inode->i_lock);
1284 return 0;
1287 static inline int walk_component(struct nameidata *nd, struct path *path,
1288 struct qstr *name, int type, int follow)
1290 struct inode *inode;
1291 int err;
1293 * "." and ".." are special - ".." especially so because it has
1294 * to be able to know about the current root directory and
1295 * parent relationships.
1297 if (unlikely(type != LAST_NORM))
1298 return handle_dots(nd, type);
1299 err = do_lookup(nd, name, path, &inode);
1300 if (unlikely(err)) {
1301 terminate_walk(nd);
1302 return err;
1304 if (!inode) {
1305 path_to_nameidata(path, nd);
1306 terminate_walk(nd);
1307 return -ENOENT;
1309 if (should_follow_link(inode, follow)) {
1310 if (nd->flags & LOOKUP_RCU) {
1311 if (unlikely(unlazy_walk(nd, path->dentry))) {
1312 terminate_walk(nd);
1313 return -ECHILD;
1316 BUG_ON(inode != path->dentry->d_inode);
1317 return 1;
1319 path_to_nameidata(path, nd);
1320 nd->inode = inode;
1321 return 0;
1325 * This limits recursive symlink follows to 8, while
1326 * limiting consecutive symlinks to 40.
1328 * Without that kind of total limit, nasty chains of consecutive
1329 * symlinks can cause almost arbitrarily long lookups.
1331 static inline int nested_symlink(struct path *path, struct nameidata *nd)
1333 int res;
1335 if (unlikely(current->link_count >= MAX_NESTED_LINKS)) {
1336 path_put_conditional(path, nd);
1337 path_put(&nd->path);
1338 return -ELOOP;
1340 BUG_ON(nd->depth >= MAX_NESTED_LINKS);
1342 nd->depth++;
1343 current->link_count++;
1345 do {
1346 struct path link = *path;
1347 void *cookie;
1349 res = follow_link(&link, nd, &cookie);
1350 if (!res)
1351 res = walk_component(nd, path, &nd->last,
1352 nd->last_type, LOOKUP_FOLLOW);
1353 put_link(nd, &link, cookie);
1354 } while (res > 0);
1356 current->link_count--;
1357 nd->depth--;
1358 return res;
1362 * We really don't want to look at inode->i_op->lookup
1363 * when we don't have to. So we keep a cache bit in
1364 * the inode ->i_opflags field that says "yes, we can
1365 * do lookup on this inode".
1367 static inline int can_lookup(struct inode *inode)
1369 if (likely(inode->i_opflags & IOP_LOOKUP))
1370 return 1;
1371 if (likely(!inode->i_op->lookup))
1372 return 0;
1374 /* We do this once for the lifetime of the inode */
1375 spin_lock(&inode->i_lock);
1376 inode->i_opflags |= IOP_LOOKUP;
1377 spin_unlock(&inode->i_lock);
1378 return 1;
1382 * Name resolution.
1383 * This is the basic name resolution function, turning a pathname into
1384 * the final dentry. We expect 'base' to be positive and a directory.
1386 * Returns 0 and nd will have valid dentry and mnt on success.
1387 * Returns error and drops reference to input namei data on failure.
1389 static int link_path_walk(const char *name, struct nameidata *nd)
1391 struct path next;
1392 int err;
1394 while (*name=='/')
1395 name++;
1396 if (!*name)
1397 return 0;
1399 /* At this point we know we have a real path component. */
1400 for(;;) {
1401 unsigned long hash;
1402 struct qstr this;
1403 unsigned int c;
1404 int type;
1406 err = may_lookup(nd);
1407 if (err)
1408 break;
1410 this.name = name;
1411 c = *(const unsigned char *)name;
1413 hash = init_name_hash();
1414 do {
1415 name++;
1416 hash = partial_name_hash(c, hash);
1417 c = *(const unsigned char *)name;
1418 } while (c && (c != '/'));
1419 this.len = name - (const char *) this.name;
1420 this.hash = end_name_hash(hash);
1422 type = LAST_NORM;
1423 if (this.name[0] == '.') switch (this.len) {
1424 case 2:
1425 if (this.name[1] == '.') {
1426 type = LAST_DOTDOT;
1427 nd->flags |= LOOKUP_JUMPED;
1429 break;
1430 case 1:
1431 type = LAST_DOT;
1433 if (likely(type == LAST_NORM)) {
1434 struct dentry *parent = nd->path.dentry;
1435 nd->flags &= ~LOOKUP_JUMPED;
1436 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
1437 err = parent->d_op->d_hash(parent, nd->inode,
1438 &this);
1439 if (err < 0)
1440 break;
1444 /* remove trailing slashes? */
1445 if (!c)
1446 goto last_component;
1447 while (*++name == '/');
1448 if (!*name)
1449 goto last_component;
1451 err = walk_component(nd, &next, &this, type, LOOKUP_FOLLOW);
1452 if (err < 0)
1453 return err;
1455 if (err) {
1456 err = nested_symlink(&next, nd);
1457 if (err)
1458 return err;
1460 if (can_lookup(nd->inode))
1461 continue;
1462 err = -ENOTDIR;
1463 break;
1464 /* here ends the main loop */
1466 last_component:
1467 nd->last = this;
1468 nd->last_type = type;
1469 return 0;
1471 terminate_walk(nd);
1472 return err;
1475 static int path_init(int dfd, const char *name, unsigned int flags,
1476 struct nameidata *nd, struct file **fp)
1478 int retval = 0;
1479 int fput_needed;
1480 struct file *file;
1482 nd->last_type = LAST_ROOT; /* if there are only slashes... */
1483 nd->flags = flags | LOOKUP_JUMPED;
1484 nd->depth = 0;
1485 if (flags & LOOKUP_ROOT) {
1486 struct inode *inode = nd->root.dentry->d_inode;
1487 if (*name) {
1488 if (!inode->i_op->lookup)
1489 return -ENOTDIR;
1490 retval = inode_permission(inode, MAY_EXEC);
1491 if (retval)
1492 return retval;
1494 nd->path = nd->root;
1495 nd->inode = inode;
1496 if (flags & LOOKUP_RCU) {
1497 br_read_lock(vfsmount_lock);
1498 rcu_read_lock();
1499 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1500 } else {
1501 path_get(&nd->path);
1503 return 0;
1506 nd->root.mnt = NULL;
1508 if (*name=='/') {
1509 if (flags & LOOKUP_RCU) {
1510 br_read_lock(vfsmount_lock);
1511 rcu_read_lock();
1512 set_root_rcu(nd);
1513 } else {
1514 set_root(nd);
1515 path_get(&nd->root);
1517 nd->path = nd->root;
1518 } else if (dfd == AT_FDCWD) {
1519 if (flags & LOOKUP_RCU) {
1520 struct fs_struct *fs = current->fs;
1521 unsigned seq;
1523 br_read_lock(vfsmount_lock);
1524 rcu_read_lock();
1526 do {
1527 seq = read_seqcount_begin(&fs->seq);
1528 nd->path = fs->pwd;
1529 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1530 } while (read_seqcount_retry(&fs->seq, seq));
1531 } else {
1532 get_fs_pwd(current->fs, &nd->path);
1534 } else {
1535 struct dentry *dentry;
1537 file = fget_raw_light(dfd, &fput_needed);
1538 retval = -EBADF;
1539 if (!file)
1540 goto out_fail;
1542 dentry = file->f_path.dentry;
1544 if (*name) {
1545 retval = -ENOTDIR;
1546 if (!S_ISDIR(dentry->d_inode->i_mode))
1547 goto fput_fail;
1549 retval = inode_permission(dentry->d_inode, MAY_EXEC);
1550 if (retval)
1551 goto fput_fail;
1554 nd->path = file->f_path;
1555 if (flags & LOOKUP_RCU) {
1556 if (fput_needed)
1557 *fp = file;
1558 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1559 br_read_lock(vfsmount_lock);
1560 rcu_read_lock();
1561 } else {
1562 path_get(&file->f_path);
1563 fput_light(file, fput_needed);
1567 nd->inode = nd->path.dentry->d_inode;
1568 return 0;
1570 fput_fail:
1571 fput_light(file, fput_needed);
1572 out_fail:
1573 return retval;
1576 static inline int lookup_last(struct nameidata *nd, struct path *path)
1578 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
1579 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
1581 nd->flags &= ~LOOKUP_PARENT;
1582 return walk_component(nd, path, &nd->last, nd->last_type,
1583 nd->flags & LOOKUP_FOLLOW);
1586 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
1587 static int path_lookupat(int dfd, const char *name,
1588 unsigned int flags, struct nameidata *nd)
1590 struct file *base = NULL;
1591 struct path path;
1592 int err;
1595 * Path walking is largely split up into 2 different synchronisation
1596 * schemes, rcu-walk and ref-walk (explained in
1597 * Documentation/filesystems/path-lookup.txt). These share much of the
1598 * path walk code, but some things particularly setup, cleanup, and
1599 * following mounts are sufficiently divergent that functions are
1600 * duplicated. Typically there is a function foo(), and its RCU
1601 * analogue, foo_rcu().
1603 * -ECHILD is the error number of choice (just to avoid clashes) that
1604 * is returned if some aspect of an rcu-walk fails. Such an error must
1605 * be handled by restarting a traditional ref-walk (which will always
1606 * be able to complete).
1608 err = path_init(dfd, name, flags | LOOKUP_PARENT, nd, &base);
1610 if (unlikely(err))
1611 return err;
1613 current->total_link_count = 0;
1614 err = link_path_walk(name, nd);
1616 if (!err && !(flags & LOOKUP_PARENT)) {
1617 err = lookup_last(nd, &path);
1618 while (err > 0) {
1619 void *cookie;
1620 struct path link = path;
1621 nd->flags |= LOOKUP_PARENT;
1622 err = follow_link(&link, nd, &cookie);
1623 if (!err)
1624 err = lookup_last(nd, &path);
1625 put_link(nd, &link, cookie);
1629 if (!err)
1630 err = complete_walk(nd);
1632 if (!err && nd->flags & LOOKUP_DIRECTORY) {
1633 if (!nd->inode->i_op->lookup) {
1634 path_put(&nd->path);
1635 err = -ENOTDIR;
1639 if (base)
1640 fput(base);
1642 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
1643 path_put(&nd->root);
1644 nd->root.mnt = NULL;
1646 return err;
1649 static int do_path_lookup(int dfd, const char *name,
1650 unsigned int flags, struct nameidata *nd)
1652 int retval = path_lookupat(dfd, name, flags | LOOKUP_RCU, nd);
1653 if (unlikely(retval == -ECHILD))
1654 retval = path_lookupat(dfd, name, flags, nd);
1655 if (unlikely(retval == -ESTALE))
1656 retval = path_lookupat(dfd, name, flags | LOOKUP_REVAL, nd);
1658 if (likely(!retval)) {
1659 if (unlikely(!audit_dummy_context())) {
1660 if (nd->path.dentry && nd->inode)
1661 audit_inode(name, nd->path.dentry);
1664 return retval;
1667 int kern_path_parent(const char *name, struct nameidata *nd)
1669 return do_path_lookup(AT_FDCWD, name, LOOKUP_PARENT, nd);
1672 int kern_path(const char *name, unsigned int flags, struct path *path)
1674 struct nameidata nd;
1675 int res = do_path_lookup(AT_FDCWD, name, flags, &nd);
1676 if (!res)
1677 *path = nd.path;
1678 return res;
1682 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
1683 * @dentry: pointer to dentry of the base directory
1684 * @mnt: pointer to vfs mount of the base directory
1685 * @name: pointer to file name
1686 * @flags: lookup flags
1687 * @path: pointer to struct path to fill
1689 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
1690 const char *name, unsigned int flags,
1691 struct path *path)
1693 struct nameidata nd;
1694 int err;
1695 nd.root.dentry = dentry;
1696 nd.root.mnt = mnt;
1697 BUG_ON(flags & LOOKUP_PARENT);
1698 /* the first argument of do_path_lookup() is ignored with LOOKUP_ROOT */
1699 err = do_path_lookup(AT_FDCWD, name, flags | LOOKUP_ROOT, &nd);
1700 if (!err)
1701 *path = nd.path;
1702 return err;
1705 static struct dentry *__lookup_hash(struct qstr *name,
1706 struct dentry *base, struct nameidata *nd)
1708 struct inode *inode = base->d_inode;
1709 struct dentry *dentry;
1710 int err;
1712 err = inode_permission(inode, MAY_EXEC);
1713 if (err)
1714 return ERR_PTR(err);
1717 * Don't bother with __d_lookup: callers are for creat as
1718 * well as unlink, so a lot of the time it would cost
1719 * a double lookup.
1721 dentry = d_lookup(base, name);
1723 if (dentry && d_need_lookup(dentry)) {
1725 * __lookup_hash is called with the parent dir's i_mutex already
1726 * held, so we are good to go here.
1728 dentry = d_inode_lookup(base, dentry, nd);
1729 if (IS_ERR(dentry))
1730 return dentry;
1733 if (dentry && (dentry->d_flags & DCACHE_OP_REVALIDATE)) {
1734 int status = d_revalidate(dentry, nd);
1735 if (unlikely(status <= 0)) {
1737 * The dentry failed validation.
1738 * If d_revalidate returned 0 attempt to invalidate
1739 * the dentry otherwise d_revalidate is asking us
1740 * to return a fail status.
1742 if (status < 0) {
1743 dput(dentry);
1744 return ERR_PTR(status);
1745 } else if (!d_invalidate(dentry)) {
1746 dput(dentry);
1747 dentry = NULL;
1752 if (!dentry)
1753 dentry = d_alloc_and_lookup(base, name, nd);
1755 return dentry;
1759 * Restricted form of lookup. Doesn't follow links, single-component only,
1760 * needs parent already locked. Doesn't follow mounts.
1761 * SMP-safe.
1763 static struct dentry *lookup_hash(struct nameidata *nd)
1765 return __lookup_hash(&nd->last, nd->path.dentry, nd);
1769 * lookup_one_len - filesystem helper to lookup single pathname component
1770 * @name: pathname component to lookup
1771 * @base: base directory to lookup from
1772 * @len: maximum length @len should be interpreted to
1774 * Note that this routine is purely a helper for filesystem usage and should
1775 * not be called by generic code. Also note that by using this function the
1776 * nameidata argument is passed to the filesystem methods and a filesystem
1777 * using this helper needs to be prepared for that.
1779 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
1781 struct qstr this;
1782 unsigned long hash;
1783 unsigned int c;
1785 WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
1787 this.name = name;
1788 this.len = len;
1789 if (!len)
1790 return ERR_PTR(-EACCES);
1792 hash = init_name_hash();
1793 while (len--) {
1794 c = *(const unsigned char *)name++;
1795 if (c == '/' || c == '\0')
1796 return ERR_PTR(-EACCES);
1797 hash = partial_name_hash(c, hash);
1799 this.hash = end_name_hash(hash);
1801 * See if the low-level filesystem might want
1802 * to use its own hash..
1804 if (base->d_flags & DCACHE_OP_HASH) {
1805 int err = base->d_op->d_hash(base, base->d_inode, &this);
1806 if (err < 0)
1807 return ERR_PTR(err);
1810 return __lookup_hash(&this, base, NULL);
1813 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
1814 struct path *path, int *empty)
1816 struct nameidata nd;
1817 char *tmp = getname_flags_empty(name, flags, empty);
1818 int err = PTR_ERR(tmp);
1819 if (!IS_ERR(tmp)) {
1821 BUG_ON(flags & LOOKUP_PARENT);
1823 err = do_path_lookup(dfd, tmp, flags, &nd);
1824 putname(tmp);
1825 if (!err)
1826 *path = nd.path;
1828 return err;
1831 int user_path_at(int dfd, const char __user *name, unsigned flags,
1832 struct path *path)
1834 return user_path_at_empty(dfd, name, flags, path, 0);
1837 static int user_path_parent(int dfd, const char __user *path,
1838 struct nameidata *nd, char **name)
1840 char *s = getname(path);
1841 int error;
1843 if (IS_ERR(s))
1844 return PTR_ERR(s);
1846 error = do_path_lookup(dfd, s, LOOKUP_PARENT, nd);
1847 if (error)
1848 putname(s);
1849 else
1850 *name = s;
1852 return error;
1856 * It's inline, so penalty for filesystems that don't use sticky bit is
1857 * minimal.
1859 static inline int check_sticky(struct inode *dir, struct inode *inode)
1861 uid_t fsuid = current_fsuid();
1863 if (!(dir->i_mode & S_ISVTX))
1864 return 0;
1865 if (current_user_ns() != inode_userns(inode))
1866 goto other_userns;
1867 if (inode->i_uid == fsuid)
1868 return 0;
1869 if (dir->i_uid == fsuid)
1870 return 0;
1872 other_userns:
1873 return !ns_capable(inode_userns(inode), CAP_FOWNER);
1877 * Check whether we can remove a link victim from directory dir, check
1878 * whether the type of victim is right.
1879 * 1. We can't do it if dir is read-only (done in permission())
1880 * 2. We should have write and exec permissions on dir
1881 * 3. We can't remove anything from append-only dir
1882 * 4. We can't do anything with immutable dir (done in permission())
1883 * 5. If the sticky bit on dir is set we should either
1884 * a. be owner of dir, or
1885 * b. be owner of victim, or
1886 * c. have CAP_FOWNER capability
1887 * 6. If the victim is append-only or immutable we can't do antyhing with
1888 * links pointing to it.
1889 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
1890 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
1891 * 9. We can't remove a root or mountpoint.
1892 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
1893 * nfs_async_unlink().
1895 static int may_delete(struct inode *dir,struct dentry *victim,int isdir)
1897 int error;
1899 if (!victim->d_inode)
1900 return -ENOENT;
1902 BUG_ON(victim->d_parent->d_inode != dir);
1903 audit_inode_child(victim, dir);
1905 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
1906 if (error)
1907 return error;
1908 if (IS_APPEND(dir))
1909 return -EPERM;
1910 if (check_sticky(dir, victim->d_inode)||IS_APPEND(victim->d_inode)||
1911 IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode))
1912 return -EPERM;
1913 if (isdir) {
1914 if (!S_ISDIR(victim->d_inode->i_mode))
1915 return -ENOTDIR;
1916 if (IS_ROOT(victim))
1917 return -EBUSY;
1918 } else if (S_ISDIR(victim->d_inode->i_mode))
1919 return -EISDIR;
1920 if (IS_DEADDIR(dir))
1921 return -ENOENT;
1922 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
1923 return -EBUSY;
1924 return 0;
1927 /* Check whether we can create an object with dentry child in directory
1928 * dir.
1929 * 1. We can't do it if child already exists (open has special treatment for
1930 * this case, but since we are inlined it's OK)
1931 * 2. We can't do it if dir is read-only (done in permission())
1932 * 3. We should have write and exec permissions on dir
1933 * 4. We can't do it if dir is immutable (done in permission())
1935 static inline int may_create(struct inode *dir, struct dentry *child)
1937 if (child->d_inode)
1938 return -EEXIST;
1939 if (IS_DEADDIR(dir))
1940 return -ENOENT;
1941 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
1945 * p1 and p2 should be directories on the same fs.
1947 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
1949 struct dentry *p;
1951 if (p1 == p2) {
1952 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1953 return NULL;
1956 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
1958 p = d_ancestor(p2, p1);
1959 if (p) {
1960 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
1961 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
1962 return p;
1965 p = d_ancestor(p1, p2);
1966 if (p) {
1967 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1968 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
1969 return p;
1972 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1973 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
1974 return NULL;
1977 void unlock_rename(struct dentry *p1, struct dentry *p2)
1979 mutex_unlock(&p1->d_inode->i_mutex);
1980 if (p1 != p2) {
1981 mutex_unlock(&p2->d_inode->i_mutex);
1982 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
1986 int vfs_create(struct inode *dir, struct dentry *dentry, int mode,
1987 struct nameidata *nd)
1989 int error = may_create(dir, dentry);
1991 if (error)
1992 return error;
1994 if (!dir->i_op->create)
1995 return -EACCES; /* shouldn't it be ENOSYS? */
1996 mode &= S_IALLUGO;
1997 mode |= S_IFREG;
1998 error = security_inode_create(dir, dentry, mode);
1999 if (error)
2000 return error;
2001 error = dir->i_op->create(dir, dentry, mode, nd);
2002 if (!error)
2003 fsnotify_create(dir, dentry);
2004 return error;
2007 static int may_open(struct path *path, int acc_mode, int flag)
2009 struct dentry *dentry = path->dentry;
2010 struct inode *inode = dentry->d_inode;
2011 int error;
2013 /* O_PATH? */
2014 if (!acc_mode)
2015 return 0;
2017 if (!inode)
2018 return -ENOENT;
2020 switch (inode->i_mode & S_IFMT) {
2021 case S_IFLNK:
2022 return -ELOOP;
2023 case S_IFDIR:
2024 if (acc_mode & MAY_WRITE)
2025 return -EISDIR;
2026 break;
2027 case S_IFBLK:
2028 case S_IFCHR:
2029 if (path->mnt->mnt_flags & MNT_NODEV)
2030 return -EACCES;
2031 /*FALLTHRU*/
2032 case S_IFIFO:
2033 case S_IFSOCK:
2034 flag &= ~O_TRUNC;
2035 break;
2038 error = inode_permission(inode, acc_mode);
2039 if (error)
2040 return error;
2043 * An append-only file must be opened in append mode for writing.
2045 if (IS_APPEND(inode)) {
2046 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2047 return -EPERM;
2048 if (flag & O_TRUNC)
2049 return -EPERM;
2052 /* O_NOATIME can only be set by the owner or superuser */
2053 if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2054 return -EPERM;
2057 * Ensure there are no outstanding leases on the file.
2059 return break_lease(inode, flag);
2062 static int handle_truncate(struct file *filp)
2064 struct path *path = &filp->f_path;
2065 struct inode *inode = path->dentry->d_inode;
2066 int error = get_write_access(inode);
2067 if (error)
2068 return error;
2070 * Refuse to truncate files with mandatory locks held on them.
2072 error = locks_verify_locked(inode);
2073 if (!error)
2074 error = security_path_truncate(path);
2075 if (!error) {
2076 error = do_truncate(path->dentry, 0,
2077 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2078 filp);
2080 put_write_access(inode);
2081 return error;
2084 static inline int open_to_namei_flags(int flag)
2086 if ((flag & O_ACCMODE) == 3)
2087 flag--;
2088 return flag;
2092 * Handle the last step of open()
2094 static struct file *do_last(struct nameidata *nd, struct path *path,
2095 const struct open_flags *op, const char *pathname)
2097 struct dentry *dir = nd->path.dentry;
2098 struct dentry *dentry;
2099 int open_flag = op->open_flag;
2100 int will_truncate = open_flag & O_TRUNC;
2101 int want_write = 0;
2102 int acc_mode = op->acc_mode;
2103 struct file *filp;
2104 int error;
2106 nd->flags &= ~LOOKUP_PARENT;
2107 nd->flags |= op->intent;
2109 switch (nd->last_type) {
2110 case LAST_DOTDOT:
2111 case LAST_DOT:
2112 error = handle_dots(nd, nd->last_type);
2113 if (error)
2114 return ERR_PTR(error);
2115 /* fallthrough */
2116 case LAST_ROOT:
2117 error = complete_walk(nd);
2118 if (error)
2119 return ERR_PTR(error);
2120 audit_inode(pathname, nd->path.dentry);
2121 if (open_flag & O_CREAT) {
2122 error = -EISDIR;
2123 goto exit;
2125 goto ok;
2126 case LAST_BIND:
2127 error = complete_walk(nd);
2128 if (error)
2129 return ERR_PTR(error);
2130 audit_inode(pathname, dir);
2131 goto ok;
2134 if (!(open_flag & O_CREAT)) {
2135 int symlink_ok = 0;
2136 if (nd->last.name[nd->last.len])
2137 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2138 if (open_flag & O_PATH && !(nd->flags & LOOKUP_FOLLOW))
2139 symlink_ok = 1;
2140 /* we _can_ be in RCU mode here */
2141 error = walk_component(nd, path, &nd->last, LAST_NORM,
2142 !symlink_ok);
2143 if (error < 0)
2144 return ERR_PTR(error);
2145 if (error) /* symlink */
2146 return NULL;
2147 /* sayonara */
2148 error = complete_walk(nd);
2149 if (error)
2150 return ERR_PTR(-ECHILD);
2152 error = -ENOTDIR;
2153 if (nd->flags & LOOKUP_DIRECTORY) {
2154 if (!nd->inode->i_op->lookup)
2155 goto exit;
2157 audit_inode(pathname, nd->path.dentry);
2158 goto ok;
2161 /* create side of things */
2162 error = complete_walk(nd);
2163 if (error)
2164 return ERR_PTR(error);
2166 audit_inode(pathname, dir);
2167 error = -EISDIR;
2168 /* trailing slashes? */
2169 if (nd->last.name[nd->last.len])
2170 goto exit;
2172 mutex_lock(&dir->d_inode->i_mutex);
2174 dentry = lookup_hash(nd);
2175 error = PTR_ERR(dentry);
2176 if (IS_ERR(dentry)) {
2177 mutex_unlock(&dir->d_inode->i_mutex);
2178 goto exit;
2181 path->dentry = dentry;
2182 path->mnt = nd->path.mnt;
2184 /* Negative dentry, just create the file */
2185 if (!dentry->d_inode) {
2186 int mode = op->mode;
2187 if (!IS_POSIXACL(dir->d_inode))
2188 mode &= ~current_umask();
2190 * This write is needed to ensure that a
2191 * rw->ro transition does not occur between
2192 * the time when the file is created and when
2193 * a permanent write count is taken through
2194 * the 'struct file' in nameidata_to_filp().
2196 error = mnt_want_write(nd->path.mnt);
2197 if (error)
2198 goto exit_mutex_unlock;
2199 want_write = 1;
2200 /* Don't check for write permission, don't truncate */
2201 open_flag &= ~O_TRUNC;
2202 will_truncate = 0;
2203 acc_mode = MAY_OPEN;
2204 error = security_path_mknod(&nd->path, dentry, mode, 0);
2205 if (error)
2206 goto exit_mutex_unlock;
2207 error = vfs_create(dir->d_inode, dentry, mode, nd);
2208 if (error)
2209 goto exit_mutex_unlock;
2210 mutex_unlock(&dir->d_inode->i_mutex);
2211 dput(nd->path.dentry);
2212 nd->path.dentry = dentry;
2213 goto common;
2217 * It already exists.
2219 mutex_unlock(&dir->d_inode->i_mutex);
2220 audit_inode(pathname, path->dentry);
2222 error = -EEXIST;
2223 if (open_flag & O_EXCL)
2224 goto exit_dput;
2226 error = follow_managed(path, nd->flags);
2227 if (error < 0)
2228 goto exit_dput;
2230 error = -ENOENT;
2231 if (!path->dentry->d_inode)
2232 goto exit_dput;
2234 if (path->dentry->d_inode->i_op->follow_link)
2235 return NULL;
2237 path_to_nameidata(path, nd);
2238 nd->inode = path->dentry->d_inode;
2239 error = -EISDIR;
2240 if (S_ISDIR(nd->inode->i_mode))
2241 goto exit;
2243 if (!S_ISREG(nd->inode->i_mode))
2244 will_truncate = 0;
2246 if (will_truncate) {
2247 error = mnt_want_write(nd->path.mnt);
2248 if (error)
2249 goto exit;
2250 want_write = 1;
2252 common:
2253 error = may_open(&nd->path, acc_mode, open_flag);
2254 if (error)
2255 goto exit;
2256 filp = nameidata_to_filp(nd);
2257 if (!IS_ERR(filp)) {
2258 error = ima_file_check(filp, op->acc_mode);
2259 if (error) {
2260 fput(filp);
2261 filp = ERR_PTR(error);
2264 if (!IS_ERR(filp)) {
2265 if (will_truncate) {
2266 error = handle_truncate(filp);
2267 if (error) {
2268 fput(filp);
2269 filp = ERR_PTR(error);
2273 out:
2274 if (want_write)
2275 mnt_drop_write(nd->path.mnt);
2276 path_put(&nd->path);
2277 return filp;
2279 exit_mutex_unlock:
2280 mutex_unlock(&dir->d_inode->i_mutex);
2281 exit_dput:
2282 path_put_conditional(path, nd);
2283 exit:
2284 filp = ERR_PTR(error);
2285 goto out;
2288 static struct file *path_openat(int dfd, const char *pathname,
2289 struct nameidata *nd, const struct open_flags *op, int flags)
2291 struct file *base = NULL;
2292 struct file *filp;
2293 struct path path;
2294 int error;
2296 filp = get_empty_filp();
2297 if (!filp)
2298 return ERR_PTR(-ENFILE);
2300 filp->f_flags = op->open_flag;
2301 nd->intent.open.file = filp;
2302 nd->intent.open.flags = open_to_namei_flags(op->open_flag);
2303 nd->intent.open.create_mode = op->mode;
2305 error = path_init(dfd, pathname, flags | LOOKUP_PARENT, nd, &base);
2306 if (unlikely(error))
2307 goto out_filp;
2309 current->total_link_count = 0;
2310 error = link_path_walk(pathname, nd);
2311 if (unlikely(error))
2312 goto out_filp;
2314 filp = do_last(nd, &path, op, pathname);
2315 while (unlikely(!filp)) { /* trailing symlink */
2316 struct path link = path;
2317 void *cookie;
2318 if (!(nd->flags & LOOKUP_FOLLOW)) {
2319 path_put_conditional(&path, nd);
2320 path_put(&nd->path);
2321 filp = ERR_PTR(-ELOOP);
2322 break;
2324 nd->flags |= LOOKUP_PARENT;
2325 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
2326 error = follow_link(&link, nd, &cookie);
2327 if (unlikely(error))
2328 filp = ERR_PTR(error);
2329 else
2330 filp = do_last(nd, &path, op, pathname);
2331 put_link(nd, &link, cookie);
2333 out:
2334 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT))
2335 path_put(&nd->root);
2336 if (base)
2337 fput(base);
2338 release_open_intent(nd);
2339 return filp;
2341 out_filp:
2342 filp = ERR_PTR(error);
2343 goto out;
2346 struct file *do_filp_open(int dfd, const char *pathname,
2347 const struct open_flags *op, int flags)
2349 struct nameidata nd;
2350 struct file *filp;
2352 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_RCU);
2353 if (unlikely(filp == ERR_PTR(-ECHILD)))
2354 filp = path_openat(dfd, pathname, &nd, op, flags);
2355 if (unlikely(filp == ERR_PTR(-ESTALE)))
2356 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_REVAL);
2357 return filp;
2360 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
2361 const char *name, const struct open_flags *op, int flags)
2363 struct nameidata nd;
2364 struct file *file;
2366 nd.root.mnt = mnt;
2367 nd.root.dentry = dentry;
2369 flags |= LOOKUP_ROOT;
2371 if (dentry->d_inode->i_op->follow_link && op->intent & LOOKUP_OPEN)
2372 return ERR_PTR(-ELOOP);
2374 file = path_openat(-1, name, &nd, op, flags | LOOKUP_RCU);
2375 if (unlikely(file == ERR_PTR(-ECHILD)))
2376 file = path_openat(-1, name, &nd, op, flags);
2377 if (unlikely(file == ERR_PTR(-ESTALE)))
2378 file = path_openat(-1, name, &nd, op, flags | LOOKUP_REVAL);
2379 return file;
2382 struct dentry *kern_path_create(int dfd, const char *pathname, struct path *path, int is_dir)
2384 struct dentry *dentry = ERR_PTR(-EEXIST);
2385 struct nameidata nd;
2386 int error = do_path_lookup(dfd, pathname, LOOKUP_PARENT, &nd);
2387 if (error)
2388 return ERR_PTR(error);
2391 * Yucky last component or no last component at all?
2392 * (foo/., foo/.., /////)
2394 if (nd.last_type != LAST_NORM)
2395 goto out;
2396 nd.flags &= ~LOOKUP_PARENT;
2397 nd.flags |= LOOKUP_CREATE | LOOKUP_EXCL;
2398 nd.intent.open.flags = O_EXCL;
2401 * Do the final lookup.
2403 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2404 dentry = lookup_hash(&nd);
2405 if (IS_ERR(dentry))
2406 goto fail;
2408 if (dentry->d_inode)
2409 goto eexist;
2411 * Special case - lookup gave negative, but... we had foo/bar/
2412 * From the vfs_mknod() POV we just have a negative dentry -
2413 * all is fine. Let's be bastards - you had / on the end, you've
2414 * been asking for (non-existent) directory. -ENOENT for you.
2416 if (unlikely(!is_dir && nd.last.name[nd.last.len])) {
2417 dput(dentry);
2418 dentry = ERR_PTR(-ENOENT);
2419 goto fail;
2421 *path = nd.path;
2422 return dentry;
2423 eexist:
2424 dput(dentry);
2425 dentry = ERR_PTR(-EEXIST);
2426 fail:
2427 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2428 out:
2429 path_put(&nd.path);
2430 return dentry;
2432 EXPORT_SYMBOL(kern_path_create);
2434 struct dentry *user_path_create(int dfd, const char __user *pathname, struct path *path, int is_dir)
2436 char *tmp = getname(pathname);
2437 struct dentry *res;
2438 if (IS_ERR(tmp))
2439 return ERR_CAST(tmp);
2440 res = kern_path_create(dfd, tmp, path, is_dir);
2441 putname(tmp);
2442 return res;
2444 EXPORT_SYMBOL(user_path_create);
2446 int vfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
2448 int error = may_create(dir, dentry);
2450 if (error)
2451 return error;
2453 if ((S_ISCHR(mode) || S_ISBLK(mode)) &&
2454 !ns_capable(inode_userns(dir), CAP_MKNOD))
2455 return -EPERM;
2457 if (!dir->i_op->mknod)
2458 return -EPERM;
2460 error = devcgroup_inode_mknod(mode, dev);
2461 if (error)
2462 return error;
2464 error = security_inode_mknod(dir, dentry, mode, dev);
2465 if (error)
2466 return error;
2468 error = dir->i_op->mknod(dir, dentry, mode, dev);
2469 if (!error)
2470 fsnotify_create(dir, dentry);
2471 return error;
2474 static int may_mknod(mode_t mode)
2476 switch (mode & S_IFMT) {
2477 case S_IFREG:
2478 case S_IFCHR:
2479 case S_IFBLK:
2480 case S_IFIFO:
2481 case S_IFSOCK:
2482 case 0: /* zero mode translates to S_IFREG */
2483 return 0;
2484 case S_IFDIR:
2485 return -EPERM;
2486 default:
2487 return -EINVAL;
2491 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, int, mode,
2492 unsigned, dev)
2494 struct dentry *dentry;
2495 struct path path;
2496 int error;
2498 if (S_ISDIR(mode))
2499 return -EPERM;
2501 dentry = user_path_create(dfd, filename, &path, 0);
2502 if (IS_ERR(dentry))
2503 return PTR_ERR(dentry);
2505 if (!IS_POSIXACL(path.dentry->d_inode))
2506 mode &= ~current_umask();
2507 error = may_mknod(mode);
2508 if (error)
2509 goto out_dput;
2510 error = mnt_want_write(path.mnt);
2511 if (error)
2512 goto out_dput;
2513 error = security_path_mknod(&path, dentry, mode, dev);
2514 if (error)
2515 goto out_drop_write;
2516 switch (mode & S_IFMT) {
2517 case 0: case S_IFREG:
2518 error = vfs_create(path.dentry->d_inode,dentry,mode,NULL);
2519 break;
2520 case S_IFCHR: case S_IFBLK:
2521 error = vfs_mknod(path.dentry->d_inode,dentry,mode,
2522 new_decode_dev(dev));
2523 break;
2524 case S_IFIFO: case S_IFSOCK:
2525 error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
2526 break;
2528 out_drop_write:
2529 mnt_drop_write(path.mnt);
2530 out_dput:
2531 dput(dentry);
2532 mutex_unlock(&path.dentry->d_inode->i_mutex);
2533 path_put(&path);
2535 return error;
2538 SYSCALL_DEFINE3(mknod, const char __user *, filename, int, mode, unsigned, dev)
2540 return sys_mknodat(AT_FDCWD, filename, mode, dev);
2543 int vfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
2545 int error = may_create(dir, dentry);
2547 if (error)
2548 return error;
2550 if (!dir->i_op->mkdir)
2551 return -EPERM;
2553 mode &= (S_IRWXUGO|S_ISVTX);
2554 error = security_inode_mkdir(dir, dentry, mode);
2555 if (error)
2556 return error;
2558 error = dir->i_op->mkdir(dir, dentry, mode);
2559 if (!error)
2560 fsnotify_mkdir(dir, dentry);
2561 return error;
2564 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, int, mode)
2566 struct dentry *dentry;
2567 struct path path;
2568 int error;
2570 dentry = user_path_create(dfd, pathname, &path, 1);
2571 if (IS_ERR(dentry))
2572 return PTR_ERR(dentry);
2574 if (!IS_POSIXACL(path.dentry->d_inode))
2575 mode &= ~current_umask();
2576 error = mnt_want_write(path.mnt);
2577 if (error)
2578 goto out_dput;
2579 error = security_path_mkdir(&path, dentry, mode);
2580 if (error)
2581 goto out_drop_write;
2582 error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
2583 out_drop_write:
2584 mnt_drop_write(path.mnt);
2585 out_dput:
2586 dput(dentry);
2587 mutex_unlock(&path.dentry->d_inode->i_mutex);
2588 path_put(&path);
2589 return error;
2592 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, int, mode)
2594 return sys_mkdirat(AT_FDCWD, pathname, mode);
2598 * The dentry_unhash() helper will try to drop the dentry early: we
2599 * should have a usage count of 2 if we're the only user of this
2600 * dentry, and if that is true (possibly after pruning the dcache),
2601 * then we drop the dentry now.
2603 * A low-level filesystem can, if it choses, legally
2604 * do a
2606 * if (!d_unhashed(dentry))
2607 * return -EBUSY;
2609 * if it cannot handle the case of removing a directory
2610 * that is still in use by something else..
2612 void dentry_unhash(struct dentry *dentry)
2614 shrink_dcache_parent(dentry);
2615 spin_lock(&dentry->d_lock);
2616 if (dentry->d_count == 1)
2617 __d_drop(dentry);
2618 spin_unlock(&dentry->d_lock);
2621 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
2623 int error = may_delete(dir, dentry, 1);
2625 if (error)
2626 return error;
2628 if (!dir->i_op->rmdir)
2629 return -EPERM;
2631 mutex_lock(&dentry->d_inode->i_mutex);
2633 error = -EBUSY;
2634 if (d_mountpoint(dentry))
2635 goto out;
2637 error = security_inode_rmdir(dir, dentry);
2638 if (error)
2639 goto out;
2641 shrink_dcache_parent(dentry);
2642 error = dir->i_op->rmdir(dir, dentry);
2643 if (error)
2644 goto out;
2646 dentry->d_inode->i_flags |= S_DEAD;
2647 dont_mount(dentry);
2649 out:
2650 mutex_unlock(&dentry->d_inode->i_mutex);
2651 if (!error)
2652 d_delete(dentry);
2653 return error;
2656 static long do_rmdir(int dfd, const char __user *pathname)
2658 int error = 0;
2659 char * name;
2660 struct dentry *dentry;
2661 struct nameidata nd;
2663 error = user_path_parent(dfd, pathname, &nd, &name);
2664 if (error)
2665 return error;
2667 switch(nd.last_type) {
2668 case LAST_DOTDOT:
2669 error = -ENOTEMPTY;
2670 goto exit1;
2671 case LAST_DOT:
2672 error = -EINVAL;
2673 goto exit1;
2674 case LAST_ROOT:
2675 error = -EBUSY;
2676 goto exit1;
2679 nd.flags &= ~LOOKUP_PARENT;
2681 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2682 dentry = lookup_hash(&nd);
2683 error = PTR_ERR(dentry);
2684 if (IS_ERR(dentry))
2685 goto exit2;
2686 if (!dentry->d_inode) {
2687 error = -ENOENT;
2688 goto exit3;
2690 error = mnt_want_write(nd.path.mnt);
2691 if (error)
2692 goto exit3;
2693 error = security_path_rmdir(&nd.path, dentry);
2694 if (error)
2695 goto exit4;
2696 error = vfs_rmdir(nd.path.dentry->d_inode, dentry);
2697 exit4:
2698 mnt_drop_write(nd.path.mnt);
2699 exit3:
2700 dput(dentry);
2701 exit2:
2702 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2703 exit1:
2704 path_put(&nd.path);
2705 putname(name);
2706 return error;
2709 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
2711 return do_rmdir(AT_FDCWD, pathname);
2714 int vfs_unlink(struct inode *dir, struct dentry *dentry)
2716 int error = may_delete(dir, dentry, 0);
2718 if (error)
2719 return error;
2721 if (!dir->i_op->unlink)
2722 return -EPERM;
2724 mutex_lock(&dentry->d_inode->i_mutex);
2725 if (d_mountpoint(dentry))
2726 error = -EBUSY;
2727 else {
2728 error = security_inode_unlink(dir, dentry);
2729 if (!error) {
2730 error = dir->i_op->unlink(dir, dentry);
2731 if (!error)
2732 dont_mount(dentry);
2735 mutex_unlock(&dentry->d_inode->i_mutex);
2737 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
2738 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
2739 fsnotify_link_count(dentry->d_inode);
2740 d_delete(dentry);
2743 return error;
2747 * Make sure that the actual truncation of the file will occur outside its
2748 * directory's i_mutex. Truncate can take a long time if there is a lot of
2749 * writeout happening, and we don't want to prevent access to the directory
2750 * while waiting on the I/O.
2752 static long do_unlinkat(int dfd, const char __user *pathname)
2754 int error;
2755 char *name;
2756 struct dentry *dentry;
2757 struct nameidata nd;
2758 struct inode *inode = NULL;
2760 error = user_path_parent(dfd, pathname, &nd, &name);
2761 if (error)
2762 return error;
2764 error = -EISDIR;
2765 if (nd.last_type != LAST_NORM)
2766 goto exit1;
2768 nd.flags &= ~LOOKUP_PARENT;
2770 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2771 dentry = lookup_hash(&nd);
2772 error = PTR_ERR(dentry);
2773 if (!IS_ERR(dentry)) {
2774 /* Why not before? Because we want correct error value */
2775 if (nd.last.name[nd.last.len])
2776 goto slashes;
2777 inode = dentry->d_inode;
2778 if (!inode)
2779 goto slashes;
2780 ihold(inode);
2781 error = mnt_want_write(nd.path.mnt);
2782 if (error)
2783 goto exit2;
2784 error = security_path_unlink(&nd.path, dentry);
2785 if (error)
2786 goto exit3;
2787 error = vfs_unlink(nd.path.dentry->d_inode, dentry);
2788 exit3:
2789 mnt_drop_write(nd.path.mnt);
2790 exit2:
2791 dput(dentry);
2793 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2794 if (inode)
2795 iput(inode); /* truncate the inode here */
2796 exit1:
2797 path_put(&nd.path);
2798 putname(name);
2799 return error;
2801 slashes:
2802 error = !dentry->d_inode ? -ENOENT :
2803 S_ISDIR(dentry->d_inode->i_mode) ? -EISDIR : -ENOTDIR;
2804 goto exit2;
2807 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
2809 if ((flag & ~AT_REMOVEDIR) != 0)
2810 return -EINVAL;
2812 if (flag & AT_REMOVEDIR)
2813 return do_rmdir(dfd, pathname);
2815 return do_unlinkat(dfd, pathname);
2818 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
2820 return do_unlinkat(AT_FDCWD, pathname);
2823 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
2825 int error = may_create(dir, dentry);
2827 if (error)
2828 return error;
2830 if (!dir->i_op->symlink)
2831 return -EPERM;
2833 error = security_inode_symlink(dir, dentry, oldname);
2834 if (error)
2835 return error;
2837 error = dir->i_op->symlink(dir, dentry, oldname);
2838 if (!error)
2839 fsnotify_create(dir, dentry);
2840 return error;
2843 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
2844 int, newdfd, const char __user *, newname)
2846 int error;
2847 char *from;
2848 struct dentry *dentry;
2849 struct path path;
2851 from = getname(oldname);
2852 if (IS_ERR(from))
2853 return PTR_ERR(from);
2855 dentry = user_path_create(newdfd, newname, &path, 0);
2856 error = PTR_ERR(dentry);
2857 if (IS_ERR(dentry))
2858 goto out_putname;
2860 error = mnt_want_write(path.mnt);
2861 if (error)
2862 goto out_dput;
2863 error = security_path_symlink(&path, dentry, from);
2864 if (error)
2865 goto out_drop_write;
2866 error = vfs_symlink(path.dentry->d_inode, dentry, from);
2867 out_drop_write:
2868 mnt_drop_write(path.mnt);
2869 out_dput:
2870 dput(dentry);
2871 mutex_unlock(&path.dentry->d_inode->i_mutex);
2872 path_put(&path);
2873 out_putname:
2874 putname(from);
2875 return error;
2878 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
2880 return sys_symlinkat(oldname, AT_FDCWD, newname);
2883 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2885 struct inode *inode = old_dentry->d_inode;
2886 int error;
2888 if (!inode)
2889 return -ENOENT;
2891 error = may_create(dir, new_dentry);
2892 if (error)
2893 return error;
2895 if (dir->i_sb != inode->i_sb)
2896 return -EXDEV;
2899 * A link to an append-only or immutable file cannot be created.
2901 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
2902 return -EPERM;
2903 if (!dir->i_op->link)
2904 return -EPERM;
2905 if (S_ISDIR(inode->i_mode))
2906 return -EPERM;
2908 error = security_inode_link(old_dentry, dir, new_dentry);
2909 if (error)
2910 return error;
2912 mutex_lock(&inode->i_mutex);
2913 /* Make sure we don't allow creating hardlink to an unlinked file */
2914 if (inode->i_nlink == 0)
2915 error = -ENOENT;
2916 else
2917 error = dir->i_op->link(old_dentry, dir, new_dentry);
2918 mutex_unlock(&inode->i_mutex);
2919 if (!error)
2920 fsnotify_link(dir, inode, new_dentry);
2921 return error;
2925 * Hardlinks are often used in delicate situations. We avoid
2926 * security-related surprises by not following symlinks on the
2927 * newname. --KAB
2929 * We don't follow them on the oldname either to be compatible
2930 * with linux 2.0, and to avoid hard-linking to directories
2931 * and other special files. --ADM
2933 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
2934 int, newdfd, const char __user *, newname, int, flags)
2936 struct dentry *new_dentry;
2937 struct path old_path, new_path;
2938 int how = 0;
2939 int error;
2941 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
2942 return -EINVAL;
2944 * To use null names we require CAP_DAC_READ_SEARCH
2945 * This ensures that not everyone will be able to create
2946 * handlink using the passed filedescriptor.
2948 if (flags & AT_EMPTY_PATH) {
2949 if (!capable(CAP_DAC_READ_SEARCH))
2950 return -ENOENT;
2951 how = LOOKUP_EMPTY;
2954 if (flags & AT_SYMLINK_FOLLOW)
2955 how |= LOOKUP_FOLLOW;
2957 error = user_path_at(olddfd, oldname, how, &old_path);
2958 if (error)
2959 return error;
2961 new_dentry = user_path_create(newdfd, newname, &new_path, 0);
2962 error = PTR_ERR(new_dentry);
2963 if (IS_ERR(new_dentry))
2964 goto out;
2966 error = -EXDEV;
2967 if (old_path.mnt != new_path.mnt)
2968 goto out_dput;
2969 error = mnt_want_write(new_path.mnt);
2970 if (error)
2971 goto out_dput;
2972 error = security_path_link(old_path.dentry, &new_path, new_dentry);
2973 if (error)
2974 goto out_drop_write;
2975 error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry);
2976 out_drop_write:
2977 mnt_drop_write(new_path.mnt);
2978 out_dput:
2979 dput(new_dentry);
2980 mutex_unlock(&new_path.dentry->d_inode->i_mutex);
2981 path_put(&new_path);
2982 out:
2983 path_put(&old_path);
2985 return error;
2988 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
2990 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
2994 * The worst of all namespace operations - renaming directory. "Perverted"
2995 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
2996 * Problems:
2997 * a) we can get into loop creation. Check is done in is_subdir().
2998 * b) race potential - two innocent renames can create a loop together.
2999 * That's where 4.4 screws up. Current fix: serialization on
3000 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
3001 * story.
3002 * c) we have to lock _three_ objects - parents and victim (if it exists).
3003 * And that - after we got ->i_mutex on parents (until then we don't know
3004 * whether the target exists). Solution: try to be smart with locking
3005 * order for inodes. We rely on the fact that tree topology may change
3006 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
3007 * move will be locked. Thus we can rank directories by the tree
3008 * (ancestors first) and rank all non-directories after them.
3009 * That works since everybody except rename does "lock parent, lookup,
3010 * lock child" and rename is under ->s_vfs_rename_mutex.
3011 * HOWEVER, it relies on the assumption that any object with ->lookup()
3012 * has no more than 1 dentry. If "hybrid" objects will ever appear,
3013 * we'd better make sure that there's no link(2) for them.
3014 * d) conversion from fhandle to dentry may come in the wrong moment - when
3015 * we are removing the target. Solution: we will have to grab ->i_mutex
3016 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
3017 * ->i_mutex on parents, which works but leads to some truly excessive
3018 * locking].
3020 static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry,
3021 struct inode *new_dir, struct dentry *new_dentry)
3023 int error = 0;
3024 struct inode *target = new_dentry->d_inode;
3027 * If we are going to change the parent - check write permissions,
3028 * we'll need to flip '..'.
3030 if (new_dir != old_dir) {
3031 error = inode_permission(old_dentry->d_inode, MAY_WRITE);
3032 if (error)
3033 return error;
3036 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
3037 if (error)
3038 return error;
3040 if (target)
3041 mutex_lock(&target->i_mutex);
3043 error = -EBUSY;
3044 if (d_mountpoint(old_dentry) || d_mountpoint(new_dentry))
3045 goto out;
3047 if (target)
3048 shrink_dcache_parent(new_dentry);
3049 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
3050 if (error)
3051 goto out;
3053 if (target) {
3054 target->i_flags |= S_DEAD;
3055 dont_mount(new_dentry);
3057 out:
3058 if (target)
3059 mutex_unlock(&target->i_mutex);
3060 if (!error)
3061 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
3062 d_move(old_dentry,new_dentry);
3063 return error;
3066 static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry,
3067 struct inode *new_dir, struct dentry *new_dentry)
3069 struct inode *target = new_dentry->d_inode;
3070 int error;
3072 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
3073 if (error)
3074 return error;
3076 dget(new_dentry);
3077 if (target)
3078 mutex_lock(&target->i_mutex);
3080 error = -EBUSY;
3081 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
3082 goto out;
3084 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
3085 if (error)
3086 goto out;
3088 if (target)
3089 dont_mount(new_dentry);
3090 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
3091 d_move(old_dentry, new_dentry);
3092 out:
3093 if (target)
3094 mutex_unlock(&target->i_mutex);
3095 dput(new_dentry);
3096 return error;
3099 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
3100 struct inode *new_dir, struct dentry *new_dentry)
3102 int error;
3103 int is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
3104 const unsigned char *old_name;
3106 if (old_dentry->d_inode == new_dentry->d_inode)
3107 return 0;
3109 error = may_delete(old_dir, old_dentry, is_dir);
3110 if (error)
3111 return error;
3113 if (!new_dentry->d_inode)
3114 error = may_create(new_dir, new_dentry);
3115 else
3116 error = may_delete(new_dir, new_dentry, is_dir);
3117 if (error)
3118 return error;
3120 if (!old_dir->i_op->rename)
3121 return -EPERM;
3123 old_name = fsnotify_oldname_init(old_dentry->d_name.name);
3125 if (is_dir)
3126 error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry);
3127 else
3128 error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry);
3129 if (!error)
3130 fsnotify_move(old_dir, new_dir, old_name, is_dir,
3131 new_dentry->d_inode, old_dentry);
3132 fsnotify_oldname_free(old_name);
3134 return error;
3137 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
3138 int, newdfd, const char __user *, newname)
3140 struct dentry *old_dir, *new_dir;
3141 struct dentry *old_dentry, *new_dentry;
3142 struct dentry *trap;
3143 struct nameidata oldnd, newnd;
3144 char *from;
3145 char *to;
3146 int error;
3148 error = user_path_parent(olddfd, oldname, &oldnd, &from);
3149 if (error)
3150 goto exit;
3152 error = user_path_parent(newdfd, newname, &newnd, &to);
3153 if (error)
3154 goto exit1;
3156 error = -EXDEV;
3157 if (oldnd.path.mnt != newnd.path.mnt)
3158 goto exit2;
3160 old_dir = oldnd.path.dentry;
3161 error = -EBUSY;
3162 if (oldnd.last_type != LAST_NORM)
3163 goto exit2;
3165 new_dir = newnd.path.dentry;
3166 if (newnd.last_type != LAST_NORM)
3167 goto exit2;
3169 oldnd.flags &= ~LOOKUP_PARENT;
3170 newnd.flags &= ~LOOKUP_PARENT;
3171 newnd.flags |= LOOKUP_RENAME_TARGET;
3173 trap = lock_rename(new_dir, old_dir);
3175 old_dentry = lookup_hash(&oldnd);
3176 error = PTR_ERR(old_dentry);
3177 if (IS_ERR(old_dentry))
3178 goto exit3;
3179 /* source must exist */
3180 error = -ENOENT;
3181 if (!old_dentry->d_inode)
3182 goto exit4;
3183 /* unless the source is a directory trailing slashes give -ENOTDIR */
3184 if (!S_ISDIR(old_dentry->d_inode->i_mode)) {
3185 error = -ENOTDIR;
3186 if (oldnd.last.name[oldnd.last.len])
3187 goto exit4;
3188 if (newnd.last.name[newnd.last.len])
3189 goto exit4;
3191 /* source should not be ancestor of target */
3192 error = -EINVAL;
3193 if (old_dentry == trap)
3194 goto exit4;
3195 new_dentry = lookup_hash(&newnd);
3196 error = PTR_ERR(new_dentry);
3197 if (IS_ERR(new_dentry))
3198 goto exit4;
3199 /* target should not be an ancestor of source */
3200 error = -ENOTEMPTY;
3201 if (new_dentry == trap)
3202 goto exit5;
3204 error = mnt_want_write(oldnd.path.mnt);
3205 if (error)
3206 goto exit5;
3207 error = security_path_rename(&oldnd.path, old_dentry,
3208 &newnd.path, new_dentry);
3209 if (error)
3210 goto exit6;
3211 error = vfs_rename(old_dir->d_inode, old_dentry,
3212 new_dir->d_inode, new_dentry);
3213 exit6:
3214 mnt_drop_write(oldnd.path.mnt);
3215 exit5:
3216 dput(new_dentry);
3217 exit4:
3218 dput(old_dentry);
3219 exit3:
3220 unlock_rename(new_dir, old_dir);
3221 exit2:
3222 path_put(&newnd.path);
3223 putname(to);
3224 exit1:
3225 path_put(&oldnd.path);
3226 putname(from);
3227 exit:
3228 return error;
3231 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
3233 return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname);
3236 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link)
3238 int len;
3240 len = PTR_ERR(link);
3241 if (IS_ERR(link))
3242 goto out;
3244 len = strlen(link);
3245 if (len > (unsigned) buflen)
3246 len = buflen;
3247 if (copy_to_user(buffer, link, len))
3248 len = -EFAULT;
3249 out:
3250 return len;
3254 * A helper for ->readlink(). This should be used *ONLY* for symlinks that
3255 * have ->follow_link() touching nd only in nd_set_link(). Using (or not
3256 * using) it for any given inode is up to filesystem.
3258 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
3260 struct nameidata nd;
3261 void *cookie;
3262 int res;
3264 nd.depth = 0;
3265 cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
3266 if (IS_ERR(cookie))
3267 return PTR_ERR(cookie);
3269 res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd));
3270 if (dentry->d_inode->i_op->put_link)
3271 dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
3272 return res;
3275 int vfs_follow_link(struct nameidata *nd, const char *link)
3277 return __vfs_follow_link(nd, link);
3280 /* get the link contents into pagecache */
3281 static char *page_getlink(struct dentry * dentry, struct page **ppage)
3283 char *kaddr;
3284 struct page *page;
3285 struct address_space *mapping = dentry->d_inode->i_mapping;
3286 page = read_mapping_page(mapping, 0, NULL);
3287 if (IS_ERR(page))
3288 return (char*)page;
3289 *ppage = page;
3290 kaddr = kmap(page);
3291 nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
3292 return kaddr;
3295 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
3297 struct page *page = NULL;
3298 char *s = page_getlink(dentry, &page);
3299 int res = vfs_readlink(dentry,buffer,buflen,s);
3300 if (page) {
3301 kunmap(page);
3302 page_cache_release(page);
3304 return res;
3307 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
3309 struct page *page = NULL;
3310 nd_set_link(nd, page_getlink(dentry, &page));
3311 return page;
3314 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
3316 struct page *page = cookie;
3318 if (page) {
3319 kunmap(page);
3320 page_cache_release(page);
3325 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
3327 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
3329 struct address_space *mapping = inode->i_mapping;
3330 struct page *page;
3331 void *fsdata;
3332 int err;
3333 char *kaddr;
3334 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
3335 if (nofs)
3336 flags |= AOP_FLAG_NOFS;
3338 retry:
3339 err = pagecache_write_begin(NULL, mapping, 0, len-1,
3340 flags, &page, &fsdata);
3341 if (err)
3342 goto fail;
3344 kaddr = kmap_atomic(page, KM_USER0);
3345 memcpy(kaddr, symname, len-1);
3346 kunmap_atomic(kaddr, KM_USER0);
3348 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
3349 page, fsdata);
3350 if (err < 0)
3351 goto fail;
3352 if (err < len-1)
3353 goto retry;
3355 mark_inode_dirty(inode);
3356 return 0;
3357 fail:
3358 return err;
3361 int page_symlink(struct inode *inode, const char *symname, int len)
3363 return __page_symlink(inode, symname, len,
3364 !(mapping_gfp_mask(inode->i_mapping) & __GFP_FS));
3367 const struct inode_operations page_symlink_inode_operations = {
3368 .readlink = generic_readlink,
3369 .follow_link = page_follow_link_light,
3370 .put_link = page_put_link,
3373 EXPORT_SYMBOL(user_path_at);
3374 EXPORT_SYMBOL(follow_down_one);
3375 EXPORT_SYMBOL(follow_down);
3376 EXPORT_SYMBOL(follow_up);
3377 EXPORT_SYMBOL(get_write_access); /* binfmt_aout */
3378 EXPORT_SYMBOL(getname);
3379 EXPORT_SYMBOL(lock_rename);
3380 EXPORT_SYMBOL(lookup_one_len);
3381 EXPORT_SYMBOL(page_follow_link_light);
3382 EXPORT_SYMBOL(page_put_link);
3383 EXPORT_SYMBOL(page_readlink);
3384 EXPORT_SYMBOL(__page_symlink);
3385 EXPORT_SYMBOL(page_symlink);
3386 EXPORT_SYMBOL(page_symlink_inode_operations);
3387 EXPORT_SYMBOL(kern_path);
3388 EXPORT_SYMBOL(vfs_path_lookup);
3389 EXPORT_SYMBOL(inode_permission);
3390 EXPORT_SYMBOL(unlock_rename);
3391 EXPORT_SYMBOL(vfs_create);
3392 EXPORT_SYMBOL(vfs_follow_link);
3393 EXPORT_SYMBOL(vfs_link);
3394 EXPORT_SYMBOL(vfs_mkdir);
3395 EXPORT_SYMBOL(vfs_mknod);
3396 EXPORT_SYMBOL(generic_permission);
3397 EXPORT_SYMBOL(vfs_readlink);
3398 EXPORT_SYMBOL(vfs_rename);
3399 EXPORT_SYMBOL(vfs_rmdir);
3400 EXPORT_SYMBOL(vfs_symlink);
3401 EXPORT_SYMBOL(vfs_unlink);
3402 EXPORT_SYMBOL(dentry_unhash);
3403 EXPORT_SYMBOL(generic_readlink);