This client driver allows you to use a GPIO pin as a source for PPS
[linux-2.6/next.git] / mm / percpu.c
blob28c37a2e2de23acb140a02a3f08779b22b40b976
1 /*
2 * mm/percpu.c - percpu memory allocator
4 * Copyright (C) 2009 SUSE Linux Products GmbH
5 * Copyright (C) 2009 Tejun Heo <tj@kernel.org>
7 * This file is released under the GPLv2.
9 * This is percpu allocator which can handle both static and dynamic
10 * areas. Percpu areas are allocated in chunks. Each chunk is
11 * consisted of boot-time determined number of units and the first
12 * chunk is used for static percpu variables in the kernel image
13 * (special boot time alloc/init handling necessary as these areas
14 * need to be brought up before allocation services are running).
15 * Unit grows as necessary and all units grow or shrink in unison.
16 * When a chunk is filled up, another chunk is allocated.
18 * c0 c1 c2
19 * ------------------- ------------------- ------------
20 * | u0 | u1 | u2 | u3 | | u0 | u1 | u2 | u3 | | u0 | u1 | u
21 * ------------------- ...... ------------------- .... ------------
23 * Allocation is done in offset-size areas of single unit space. Ie,
24 * an area of 512 bytes at 6k in c1 occupies 512 bytes at 6k of c1:u0,
25 * c1:u1, c1:u2 and c1:u3. On UMA, units corresponds directly to
26 * cpus. On NUMA, the mapping can be non-linear and even sparse.
27 * Percpu access can be done by configuring percpu base registers
28 * according to cpu to unit mapping and pcpu_unit_size.
30 * There are usually many small percpu allocations many of them being
31 * as small as 4 bytes. The allocator organizes chunks into lists
32 * according to free size and tries to allocate from the fullest one.
33 * Each chunk keeps the maximum contiguous area size hint which is
34 * guaranteed to be equal to or larger than the maximum contiguous
35 * area in the chunk. This helps the allocator not to iterate the
36 * chunk maps unnecessarily.
38 * Allocation state in each chunk is kept using an array of integers
39 * on chunk->map. A positive value in the map represents a free
40 * region and negative allocated. Allocation inside a chunk is done
41 * by scanning this map sequentially and serving the first matching
42 * entry. This is mostly copied from the percpu_modalloc() allocator.
43 * Chunks can be determined from the address using the index field
44 * in the page struct. The index field contains a pointer to the chunk.
46 * To use this allocator, arch code should do the followings.
48 * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate
49 * regular address to percpu pointer and back if they need to be
50 * different from the default
52 * - use pcpu_setup_first_chunk() during percpu area initialization to
53 * setup the first chunk containing the kernel static percpu area
56 #include <linux/bitmap.h>
57 #include <linux/bootmem.h>
58 #include <linux/err.h>
59 #include <linux/list.h>
60 #include <linux/log2.h>
61 #include <linux/mm.h>
62 #include <linux/module.h>
63 #include <linux/mutex.h>
64 #include <linux/percpu.h>
65 #include <linux/pfn.h>
66 #include <linux/slab.h>
67 #include <linux/spinlock.h>
68 #include <linux/vmalloc.h>
69 #include <linux/workqueue.h>
71 #include <asm/cacheflush.h>
72 #include <asm/sections.h>
73 #include <asm/tlbflush.h>
74 #include <asm/io.h>
76 #define PCPU_SLOT_BASE_SHIFT 5 /* 1-31 shares the same slot */
77 #define PCPU_DFL_MAP_ALLOC 16 /* start a map with 16 ents */
79 #ifdef CONFIG_SMP
80 /* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */
81 #ifndef __addr_to_pcpu_ptr
82 #define __addr_to_pcpu_ptr(addr) \
83 (void __percpu *)((unsigned long)(addr) - \
84 (unsigned long)pcpu_base_addr + \
85 (unsigned long)__per_cpu_start)
86 #endif
87 #ifndef __pcpu_ptr_to_addr
88 #define __pcpu_ptr_to_addr(ptr) \
89 (void __force *)((unsigned long)(ptr) + \
90 (unsigned long)pcpu_base_addr - \
91 (unsigned long)__per_cpu_start)
92 #endif
93 #else /* CONFIG_SMP */
94 /* on UP, it's always identity mapped */
95 #define __addr_to_pcpu_ptr(addr) (void __percpu *)(addr)
96 #define __pcpu_ptr_to_addr(ptr) (void __force *)(ptr)
97 #endif /* CONFIG_SMP */
99 struct pcpu_chunk {
100 struct list_head list; /* linked to pcpu_slot lists */
101 int free_size; /* free bytes in the chunk */
102 int contig_hint; /* max contiguous size hint */
103 void *base_addr; /* base address of this chunk */
104 int map_used; /* # of map entries used */
105 int map_alloc; /* # of map entries allocated */
106 int *map; /* allocation map */
107 void *data; /* chunk data */
108 bool immutable; /* no [de]population allowed */
109 unsigned long populated[]; /* populated bitmap */
112 static int pcpu_unit_pages __read_mostly;
113 static int pcpu_unit_size __read_mostly;
114 static int pcpu_nr_units __read_mostly;
115 static int pcpu_atom_size __read_mostly;
116 static int pcpu_nr_slots __read_mostly;
117 static size_t pcpu_chunk_struct_size __read_mostly;
119 /* cpus with the lowest and highest unit numbers */
120 static unsigned int pcpu_first_unit_cpu __read_mostly;
121 static unsigned int pcpu_last_unit_cpu __read_mostly;
123 /* the address of the first chunk which starts with the kernel static area */
124 void *pcpu_base_addr __read_mostly;
125 EXPORT_SYMBOL_GPL(pcpu_base_addr);
127 static const int *pcpu_unit_map __read_mostly; /* cpu -> unit */
128 const unsigned long *pcpu_unit_offsets __read_mostly; /* cpu -> unit offset */
130 /* group information, used for vm allocation */
131 static int pcpu_nr_groups __read_mostly;
132 static const unsigned long *pcpu_group_offsets __read_mostly;
133 static const size_t *pcpu_group_sizes __read_mostly;
136 * The first chunk which always exists. Note that unlike other
137 * chunks, this one can be allocated and mapped in several different
138 * ways and thus often doesn't live in the vmalloc area.
140 static struct pcpu_chunk *pcpu_first_chunk;
143 * Optional reserved chunk. This chunk reserves part of the first
144 * chunk and serves it for reserved allocations. The amount of
145 * reserved offset is in pcpu_reserved_chunk_limit. When reserved
146 * area doesn't exist, the following variables contain NULL and 0
147 * respectively.
149 static struct pcpu_chunk *pcpu_reserved_chunk;
150 static int pcpu_reserved_chunk_limit;
153 * Synchronization rules.
155 * There are two locks - pcpu_alloc_mutex and pcpu_lock. The former
156 * protects allocation/reclaim paths, chunks, populated bitmap and
157 * vmalloc mapping. The latter is a spinlock and protects the index
158 * data structures - chunk slots, chunks and area maps in chunks.
160 * During allocation, pcpu_alloc_mutex is kept locked all the time and
161 * pcpu_lock is grabbed and released as necessary. All actual memory
162 * allocations are done using GFP_KERNEL with pcpu_lock released. In
163 * general, percpu memory can't be allocated with irq off but
164 * irqsave/restore are still used in alloc path so that it can be used
165 * from early init path - sched_init() specifically.
167 * Free path accesses and alters only the index data structures, so it
168 * can be safely called from atomic context. When memory needs to be
169 * returned to the system, free path schedules reclaim_work which
170 * grabs both pcpu_alloc_mutex and pcpu_lock, unlinks chunks to be
171 * reclaimed, release both locks and frees the chunks. Note that it's
172 * necessary to grab both locks to remove a chunk from circulation as
173 * allocation path might be referencing the chunk with only
174 * pcpu_alloc_mutex locked.
176 static DEFINE_MUTEX(pcpu_alloc_mutex); /* protects whole alloc and reclaim */
177 static DEFINE_SPINLOCK(pcpu_lock); /* protects index data structures */
179 static struct list_head *pcpu_slot __read_mostly; /* chunk list slots */
181 /* reclaim work to release fully free chunks, scheduled from free path */
182 static void pcpu_reclaim(struct work_struct *work);
183 static DECLARE_WORK(pcpu_reclaim_work, pcpu_reclaim);
185 static bool pcpu_addr_in_first_chunk(void *addr)
187 void *first_start = pcpu_first_chunk->base_addr;
189 return addr >= first_start && addr < first_start + pcpu_unit_size;
192 static bool pcpu_addr_in_reserved_chunk(void *addr)
194 void *first_start = pcpu_first_chunk->base_addr;
196 return addr >= first_start &&
197 addr < first_start + pcpu_reserved_chunk_limit;
200 static int __pcpu_size_to_slot(int size)
202 int highbit = fls(size); /* size is in bytes */
203 return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1);
206 static int pcpu_size_to_slot(int size)
208 if (size == pcpu_unit_size)
209 return pcpu_nr_slots - 1;
210 return __pcpu_size_to_slot(size);
213 static int pcpu_chunk_slot(const struct pcpu_chunk *chunk)
215 if (chunk->free_size < sizeof(int) || chunk->contig_hint < sizeof(int))
216 return 0;
218 return pcpu_size_to_slot(chunk->free_size);
221 /* set the pointer to a chunk in a page struct */
222 static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu)
224 page->index = (unsigned long)pcpu;
227 /* obtain pointer to a chunk from a page struct */
228 static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page)
230 return (struct pcpu_chunk *)page->index;
233 static int __maybe_unused pcpu_page_idx(unsigned int cpu, int page_idx)
235 return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx;
238 static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk,
239 unsigned int cpu, int page_idx)
241 return (unsigned long)chunk->base_addr + pcpu_unit_offsets[cpu] +
242 (page_idx << PAGE_SHIFT);
245 static void __maybe_unused pcpu_next_unpop(struct pcpu_chunk *chunk,
246 int *rs, int *re, int end)
248 *rs = find_next_zero_bit(chunk->populated, end, *rs);
249 *re = find_next_bit(chunk->populated, end, *rs + 1);
252 static void __maybe_unused pcpu_next_pop(struct pcpu_chunk *chunk,
253 int *rs, int *re, int end)
255 *rs = find_next_bit(chunk->populated, end, *rs);
256 *re = find_next_zero_bit(chunk->populated, end, *rs + 1);
260 * (Un)populated page region iterators. Iterate over (un)populated
261 * page regions between @start and @end in @chunk. @rs and @re should
262 * be integer variables and will be set to start and end page index of
263 * the current region.
265 #define pcpu_for_each_unpop_region(chunk, rs, re, start, end) \
266 for ((rs) = (start), pcpu_next_unpop((chunk), &(rs), &(re), (end)); \
267 (rs) < (re); \
268 (rs) = (re) + 1, pcpu_next_unpop((chunk), &(rs), &(re), (end)))
270 #define pcpu_for_each_pop_region(chunk, rs, re, start, end) \
271 for ((rs) = (start), pcpu_next_pop((chunk), &(rs), &(re), (end)); \
272 (rs) < (re); \
273 (rs) = (re) + 1, pcpu_next_pop((chunk), &(rs), &(re), (end)))
276 * pcpu_mem_zalloc - allocate memory
277 * @size: bytes to allocate
279 * Allocate @size bytes. If @size is smaller than PAGE_SIZE,
280 * kzalloc() is used; otherwise, vzalloc() is used. The returned
281 * memory is always zeroed.
283 * CONTEXT:
284 * Does GFP_KERNEL allocation.
286 * RETURNS:
287 * Pointer to the allocated area on success, NULL on failure.
289 static void *pcpu_mem_zalloc(size_t size)
291 if (WARN_ON_ONCE(!slab_is_available()))
292 return NULL;
294 if (size <= PAGE_SIZE)
295 return kzalloc(size, GFP_KERNEL);
296 else
297 return vzalloc(size);
301 * pcpu_mem_free - free memory
302 * @ptr: memory to free
303 * @size: size of the area
305 * Free @ptr. @ptr should have been allocated using pcpu_mem_zalloc().
307 static void pcpu_mem_free(void *ptr, size_t size)
309 if (size <= PAGE_SIZE)
310 kfree(ptr);
311 else
312 vfree(ptr);
316 * pcpu_chunk_relocate - put chunk in the appropriate chunk slot
317 * @chunk: chunk of interest
318 * @oslot: the previous slot it was on
320 * This function is called after an allocation or free changed @chunk.
321 * New slot according to the changed state is determined and @chunk is
322 * moved to the slot. Note that the reserved chunk is never put on
323 * chunk slots.
325 * CONTEXT:
326 * pcpu_lock.
328 static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot)
330 int nslot = pcpu_chunk_slot(chunk);
332 if (chunk != pcpu_reserved_chunk && oslot != nslot) {
333 if (oslot < nslot)
334 list_move(&chunk->list, &pcpu_slot[nslot]);
335 else
336 list_move_tail(&chunk->list, &pcpu_slot[nslot]);
341 * pcpu_need_to_extend - determine whether chunk area map needs to be extended
342 * @chunk: chunk of interest
344 * Determine whether area map of @chunk needs to be extended to
345 * accommodate a new allocation.
347 * CONTEXT:
348 * pcpu_lock.
350 * RETURNS:
351 * New target map allocation length if extension is necessary, 0
352 * otherwise.
354 static int pcpu_need_to_extend(struct pcpu_chunk *chunk)
356 int new_alloc;
358 if (chunk->map_alloc >= chunk->map_used + 2)
359 return 0;
361 new_alloc = PCPU_DFL_MAP_ALLOC;
362 while (new_alloc < chunk->map_used + 2)
363 new_alloc *= 2;
365 return new_alloc;
369 * pcpu_extend_area_map - extend area map of a chunk
370 * @chunk: chunk of interest
371 * @new_alloc: new target allocation length of the area map
373 * Extend area map of @chunk to have @new_alloc entries.
375 * CONTEXT:
376 * Does GFP_KERNEL allocation. Grabs and releases pcpu_lock.
378 * RETURNS:
379 * 0 on success, -errno on failure.
381 static int pcpu_extend_area_map(struct pcpu_chunk *chunk, int new_alloc)
383 int *old = NULL, *new = NULL;
384 size_t old_size = 0, new_size = new_alloc * sizeof(new[0]);
385 unsigned long flags;
387 new = pcpu_mem_zalloc(new_size);
388 if (!new)
389 return -ENOMEM;
391 /* acquire pcpu_lock and switch to new area map */
392 spin_lock_irqsave(&pcpu_lock, flags);
394 if (new_alloc <= chunk->map_alloc)
395 goto out_unlock;
397 old_size = chunk->map_alloc * sizeof(chunk->map[0]);
398 old = chunk->map;
400 memcpy(new, old, old_size);
402 chunk->map_alloc = new_alloc;
403 chunk->map = new;
404 new = NULL;
406 out_unlock:
407 spin_unlock_irqrestore(&pcpu_lock, flags);
410 * pcpu_mem_free() might end up calling vfree() which uses
411 * IRQ-unsafe lock and thus can't be called under pcpu_lock.
413 pcpu_mem_free(old, old_size);
414 pcpu_mem_free(new, new_size);
416 return 0;
420 * pcpu_split_block - split a map block
421 * @chunk: chunk of interest
422 * @i: index of map block to split
423 * @head: head size in bytes (can be 0)
424 * @tail: tail size in bytes (can be 0)
426 * Split the @i'th map block into two or three blocks. If @head is
427 * non-zero, @head bytes block is inserted before block @i moving it
428 * to @i+1 and reducing its size by @head bytes.
430 * If @tail is non-zero, the target block, which can be @i or @i+1
431 * depending on @head, is reduced by @tail bytes and @tail byte block
432 * is inserted after the target block.
434 * @chunk->map must have enough free slots to accommodate the split.
436 * CONTEXT:
437 * pcpu_lock.
439 static void pcpu_split_block(struct pcpu_chunk *chunk, int i,
440 int head, int tail)
442 int nr_extra = !!head + !!tail;
444 BUG_ON(chunk->map_alloc < chunk->map_used + nr_extra);
446 /* insert new subblocks */
447 memmove(&chunk->map[i + nr_extra], &chunk->map[i],
448 sizeof(chunk->map[0]) * (chunk->map_used - i));
449 chunk->map_used += nr_extra;
451 if (head) {
452 chunk->map[i + 1] = chunk->map[i] - head;
453 chunk->map[i++] = head;
455 if (tail) {
456 chunk->map[i++] -= tail;
457 chunk->map[i] = tail;
462 * pcpu_alloc_area - allocate area from a pcpu_chunk
463 * @chunk: chunk of interest
464 * @size: wanted size in bytes
465 * @align: wanted align
467 * Try to allocate @size bytes area aligned at @align from @chunk.
468 * Note that this function only allocates the offset. It doesn't
469 * populate or map the area.
471 * @chunk->map must have at least two free slots.
473 * CONTEXT:
474 * pcpu_lock.
476 * RETURNS:
477 * Allocated offset in @chunk on success, -1 if no matching area is
478 * found.
480 static int pcpu_alloc_area(struct pcpu_chunk *chunk, int size, int align)
482 int oslot = pcpu_chunk_slot(chunk);
483 int max_contig = 0;
484 int i, off;
486 for (i = 0, off = 0; i < chunk->map_used; off += abs(chunk->map[i++])) {
487 bool is_last = i + 1 == chunk->map_used;
488 int head, tail;
490 /* extra for alignment requirement */
491 head = ALIGN(off, align) - off;
492 BUG_ON(i == 0 && head != 0);
494 if (chunk->map[i] < 0)
495 continue;
496 if (chunk->map[i] < head + size) {
497 max_contig = max(chunk->map[i], max_contig);
498 continue;
502 * If head is small or the previous block is free,
503 * merge'em. Note that 'small' is defined as smaller
504 * than sizeof(int), which is very small but isn't too
505 * uncommon for percpu allocations.
507 if (head && (head < sizeof(int) || chunk->map[i - 1] > 0)) {
508 if (chunk->map[i - 1] > 0)
509 chunk->map[i - 1] += head;
510 else {
511 chunk->map[i - 1] -= head;
512 chunk->free_size -= head;
514 chunk->map[i] -= head;
515 off += head;
516 head = 0;
519 /* if tail is small, just keep it around */
520 tail = chunk->map[i] - head - size;
521 if (tail < sizeof(int))
522 tail = 0;
524 /* split if warranted */
525 if (head || tail) {
526 pcpu_split_block(chunk, i, head, tail);
527 if (head) {
528 i++;
529 off += head;
530 max_contig = max(chunk->map[i - 1], max_contig);
532 if (tail)
533 max_contig = max(chunk->map[i + 1], max_contig);
536 /* update hint and mark allocated */
537 if (is_last)
538 chunk->contig_hint = max_contig; /* fully scanned */
539 else
540 chunk->contig_hint = max(chunk->contig_hint,
541 max_contig);
543 chunk->free_size -= chunk->map[i];
544 chunk->map[i] = -chunk->map[i];
546 pcpu_chunk_relocate(chunk, oslot);
547 return off;
550 chunk->contig_hint = max_contig; /* fully scanned */
551 pcpu_chunk_relocate(chunk, oslot);
553 /* tell the upper layer that this chunk has no matching area */
554 return -1;
558 * pcpu_free_area - free area to a pcpu_chunk
559 * @chunk: chunk of interest
560 * @freeme: offset of area to free
562 * Free area starting from @freeme to @chunk. Note that this function
563 * only modifies the allocation map. It doesn't depopulate or unmap
564 * the area.
566 * CONTEXT:
567 * pcpu_lock.
569 static void pcpu_free_area(struct pcpu_chunk *chunk, int freeme)
571 int oslot = pcpu_chunk_slot(chunk);
572 int i, off;
574 for (i = 0, off = 0; i < chunk->map_used; off += abs(chunk->map[i++]))
575 if (off == freeme)
576 break;
577 BUG_ON(off != freeme);
578 BUG_ON(chunk->map[i] > 0);
580 chunk->map[i] = -chunk->map[i];
581 chunk->free_size += chunk->map[i];
583 /* merge with previous? */
584 if (i > 0 && chunk->map[i - 1] >= 0) {
585 chunk->map[i - 1] += chunk->map[i];
586 chunk->map_used--;
587 memmove(&chunk->map[i], &chunk->map[i + 1],
588 (chunk->map_used - i) * sizeof(chunk->map[0]));
589 i--;
591 /* merge with next? */
592 if (i + 1 < chunk->map_used && chunk->map[i + 1] >= 0) {
593 chunk->map[i] += chunk->map[i + 1];
594 chunk->map_used--;
595 memmove(&chunk->map[i + 1], &chunk->map[i + 2],
596 (chunk->map_used - (i + 1)) * sizeof(chunk->map[0]));
599 chunk->contig_hint = max(chunk->map[i], chunk->contig_hint);
600 pcpu_chunk_relocate(chunk, oslot);
603 static struct pcpu_chunk *pcpu_alloc_chunk(void)
605 struct pcpu_chunk *chunk;
607 chunk = pcpu_mem_zalloc(pcpu_chunk_struct_size);
608 if (!chunk)
609 return NULL;
611 chunk->map = pcpu_mem_zalloc(PCPU_DFL_MAP_ALLOC *
612 sizeof(chunk->map[0]));
613 if (!chunk->map) {
614 kfree(chunk);
615 return NULL;
618 chunk->map_alloc = PCPU_DFL_MAP_ALLOC;
619 chunk->map[chunk->map_used++] = pcpu_unit_size;
621 INIT_LIST_HEAD(&chunk->list);
622 chunk->free_size = pcpu_unit_size;
623 chunk->contig_hint = pcpu_unit_size;
625 return chunk;
628 static void pcpu_free_chunk(struct pcpu_chunk *chunk)
630 if (!chunk)
631 return;
632 pcpu_mem_free(chunk->map, chunk->map_alloc * sizeof(chunk->map[0]));
633 kfree(chunk);
637 * Chunk management implementation.
639 * To allow different implementations, chunk alloc/free and
640 * [de]population are implemented in a separate file which is pulled
641 * into this file and compiled together. The following functions
642 * should be implemented.
644 * pcpu_populate_chunk - populate the specified range of a chunk
645 * pcpu_depopulate_chunk - depopulate the specified range of a chunk
646 * pcpu_create_chunk - create a new chunk
647 * pcpu_destroy_chunk - destroy a chunk, always preceded by full depop
648 * pcpu_addr_to_page - translate address to physical address
649 * pcpu_verify_alloc_info - check alloc_info is acceptable during init
651 static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size);
652 static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size);
653 static struct pcpu_chunk *pcpu_create_chunk(void);
654 static void pcpu_destroy_chunk(struct pcpu_chunk *chunk);
655 static struct page *pcpu_addr_to_page(void *addr);
656 static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai);
658 #ifdef CONFIG_NEED_PER_CPU_KM
659 #include "percpu-km.c"
660 #else
661 #include "percpu-vm.c"
662 #endif
665 * pcpu_chunk_addr_search - determine chunk containing specified address
666 * @addr: address for which the chunk needs to be determined.
668 * RETURNS:
669 * The address of the found chunk.
671 static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr)
673 /* is it in the first chunk? */
674 if (pcpu_addr_in_first_chunk(addr)) {
675 /* is it in the reserved area? */
676 if (pcpu_addr_in_reserved_chunk(addr))
677 return pcpu_reserved_chunk;
678 return pcpu_first_chunk;
682 * The address is relative to unit0 which might be unused and
683 * thus unmapped. Offset the address to the unit space of the
684 * current processor before looking it up in the vmalloc
685 * space. Note that any possible cpu id can be used here, so
686 * there's no need to worry about preemption or cpu hotplug.
688 addr += pcpu_unit_offsets[raw_smp_processor_id()];
689 return pcpu_get_page_chunk(pcpu_addr_to_page(addr));
693 * pcpu_alloc - the percpu allocator
694 * @size: size of area to allocate in bytes
695 * @align: alignment of area (max PAGE_SIZE)
696 * @reserved: allocate from the reserved chunk if available
698 * Allocate percpu area of @size bytes aligned at @align.
700 * CONTEXT:
701 * Does GFP_KERNEL allocation.
703 * RETURNS:
704 * Percpu pointer to the allocated area on success, NULL on failure.
706 static void __percpu *pcpu_alloc(size_t size, size_t align, bool reserved)
708 static int warn_limit = 10;
709 struct pcpu_chunk *chunk;
710 const char *err;
711 int slot, off, new_alloc;
712 unsigned long flags;
714 if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE)) {
715 WARN(true, "illegal size (%zu) or align (%zu) for "
716 "percpu allocation\n", size, align);
717 return NULL;
720 mutex_lock(&pcpu_alloc_mutex);
721 spin_lock_irqsave(&pcpu_lock, flags);
723 /* serve reserved allocations from the reserved chunk if available */
724 if (reserved && pcpu_reserved_chunk) {
725 chunk = pcpu_reserved_chunk;
727 if (size > chunk->contig_hint) {
728 err = "alloc from reserved chunk failed";
729 goto fail_unlock;
732 while ((new_alloc = pcpu_need_to_extend(chunk))) {
733 spin_unlock_irqrestore(&pcpu_lock, flags);
734 if (pcpu_extend_area_map(chunk, new_alloc) < 0) {
735 err = "failed to extend area map of reserved chunk";
736 goto fail_unlock_mutex;
738 spin_lock_irqsave(&pcpu_lock, flags);
741 off = pcpu_alloc_area(chunk, size, align);
742 if (off >= 0)
743 goto area_found;
745 err = "alloc from reserved chunk failed";
746 goto fail_unlock;
749 restart:
750 /* search through normal chunks */
751 for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) {
752 list_for_each_entry(chunk, &pcpu_slot[slot], list) {
753 if (size > chunk->contig_hint)
754 continue;
756 new_alloc = pcpu_need_to_extend(chunk);
757 if (new_alloc) {
758 spin_unlock_irqrestore(&pcpu_lock, flags);
759 if (pcpu_extend_area_map(chunk,
760 new_alloc) < 0) {
761 err = "failed to extend area map";
762 goto fail_unlock_mutex;
764 spin_lock_irqsave(&pcpu_lock, flags);
766 * pcpu_lock has been dropped, need to
767 * restart cpu_slot list walking.
769 goto restart;
772 off = pcpu_alloc_area(chunk, size, align);
773 if (off >= 0)
774 goto area_found;
778 /* hmmm... no space left, create a new chunk */
779 spin_unlock_irqrestore(&pcpu_lock, flags);
781 chunk = pcpu_create_chunk();
782 if (!chunk) {
783 err = "failed to allocate new chunk";
784 goto fail_unlock_mutex;
787 spin_lock_irqsave(&pcpu_lock, flags);
788 pcpu_chunk_relocate(chunk, -1);
789 goto restart;
791 area_found:
792 spin_unlock_irqrestore(&pcpu_lock, flags);
794 /* populate, map and clear the area */
795 if (pcpu_populate_chunk(chunk, off, size)) {
796 spin_lock_irqsave(&pcpu_lock, flags);
797 pcpu_free_area(chunk, off);
798 err = "failed to populate";
799 goto fail_unlock;
802 mutex_unlock(&pcpu_alloc_mutex);
804 /* return address relative to base address */
805 return __addr_to_pcpu_ptr(chunk->base_addr + off);
807 fail_unlock:
808 spin_unlock_irqrestore(&pcpu_lock, flags);
809 fail_unlock_mutex:
810 mutex_unlock(&pcpu_alloc_mutex);
811 if (warn_limit) {
812 pr_warning("PERCPU: allocation failed, size=%zu align=%zu, "
813 "%s\n", size, align, err);
814 dump_stack();
815 if (!--warn_limit)
816 pr_info("PERCPU: limit reached, disable warning\n");
818 return NULL;
822 * __alloc_percpu - allocate dynamic percpu area
823 * @size: size of area to allocate in bytes
824 * @align: alignment of area (max PAGE_SIZE)
826 * Allocate zero-filled percpu area of @size bytes aligned at @align.
827 * Might sleep. Might trigger writeouts.
829 * CONTEXT:
830 * Does GFP_KERNEL allocation.
832 * RETURNS:
833 * Percpu pointer to the allocated area on success, NULL on failure.
835 void __percpu *__alloc_percpu(size_t size, size_t align)
837 return pcpu_alloc(size, align, false);
839 EXPORT_SYMBOL_GPL(__alloc_percpu);
842 * __alloc_reserved_percpu - allocate reserved percpu area
843 * @size: size of area to allocate in bytes
844 * @align: alignment of area (max PAGE_SIZE)
846 * Allocate zero-filled percpu area of @size bytes aligned at @align
847 * from reserved percpu area if arch has set it up; otherwise,
848 * allocation is served from the same dynamic area. Might sleep.
849 * Might trigger writeouts.
851 * CONTEXT:
852 * Does GFP_KERNEL allocation.
854 * RETURNS:
855 * Percpu pointer to the allocated area on success, NULL on failure.
857 void __percpu *__alloc_reserved_percpu(size_t size, size_t align)
859 return pcpu_alloc(size, align, true);
863 * pcpu_reclaim - reclaim fully free chunks, workqueue function
864 * @work: unused
866 * Reclaim all fully free chunks except for the first one.
868 * CONTEXT:
869 * workqueue context.
871 static void pcpu_reclaim(struct work_struct *work)
873 LIST_HEAD(todo);
874 struct list_head *head = &pcpu_slot[pcpu_nr_slots - 1];
875 struct pcpu_chunk *chunk, *next;
877 mutex_lock(&pcpu_alloc_mutex);
878 spin_lock_irq(&pcpu_lock);
880 list_for_each_entry_safe(chunk, next, head, list) {
881 WARN_ON(chunk->immutable);
883 /* spare the first one */
884 if (chunk == list_first_entry(head, struct pcpu_chunk, list))
885 continue;
887 list_move(&chunk->list, &todo);
890 spin_unlock_irq(&pcpu_lock);
892 list_for_each_entry_safe(chunk, next, &todo, list) {
893 pcpu_depopulate_chunk(chunk, 0, pcpu_unit_size);
894 pcpu_destroy_chunk(chunk);
897 mutex_unlock(&pcpu_alloc_mutex);
901 * free_percpu - free percpu area
902 * @ptr: pointer to area to free
904 * Free percpu area @ptr.
906 * CONTEXT:
907 * Can be called from atomic context.
909 void free_percpu(void __percpu *ptr)
911 void *addr;
912 struct pcpu_chunk *chunk;
913 unsigned long flags;
914 int off;
916 if (!ptr)
917 return;
919 addr = __pcpu_ptr_to_addr(ptr);
921 spin_lock_irqsave(&pcpu_lock, flags);
923 chunk = pcpu_chunk_addr_search(addr);
924 off = addr - chunk->base_addr;
926 pcpu_free_area(chunk, off);
928 /* if there are more than one fully free chunks, wake up grim reaper */
929 if (chunk->free_size == pcpu_unit_size) {
930 struct pcpu_chunk *pos;
932 list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list)
933 if (pos != chunk) {
934 schedule_work(&pcpu_reclaim_work);
935 break;
939 spin_unlock_irqrestore(&pcpu_lock, flags);
941 EXPORT_SYMBOL_GPL(free_percpu);
944 * is_kernel_percpu_address - test whether address is from static percpu area
945 * @addr: address to test
947 * Test whether @addr belongs to in-kernel static percpu area. Module
948 * static percpu areas are not considered. For those, use
949 * is_module_percpu_address().
951 * RETURNS:
952 * %true if @addr is from in-kernel static percpu area, %false otherwise.
954 bool is_kernel_percpu_address(unsigned long addr)
956 #ifdef CONFIG_SMP
957 const size_t static_size = __per_cpu_end - __per_cpu_start;
958 void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
959 unsigned int cpu;
961 for_each_possible_cpu(cpu) {
962 void *start = per_cpu_ptr(base, cpu);
964 if ((void *)addr >= start && (void *)addr < start + static_size)
965 return true;
967 #endif
968 /* on UP, can't distinguish from other static vars, always false */
969 return false;
973 * per_cpu_ptr_to_phys - convert translated percpu address to physical address
974 * @addr: the address to be converted to physical address
976 * Given @addr which is dereferenceable address obtained via one of
977 * percpu access macros, this function translates it into its physical
978 * address. The caller is responsible for ensuring @addr stays valid
979 * until this function finishes.
981 * RETURNS:
982 * The physical address for @addr.
984 phys_addr_t per_cpu_ptr_to_phys(void *addr)
986 void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
987 bool in_first_chunk = false;
988 unsigned long first_start, first_end;
989 unsigned int cpu;
992 * The following test on first_start/end isn't strictly
993 * necessary but will speed up lookups of addresses which
994 * aren't in the first chunk.
996 first_start = pcpu_chunk_addr(pcpu_first_chunk, pcpu_first_unit_cpu, 0);
997 first_end = pcpu_chunk_addr(pcpu_first_chunk, pcpu_last_unit_cpu,
998 pcpu_unit_pages);
999 if ((unsigned long)addr >= first_start &&
1000 (unsigned long)addr < first_end) {
1001 for_each_possible_cpu(cpu) {
1002 void *start = per_cpu_ptr(base, cpu);
1004 if (addr >= start && addr < start + pcpu_unit_size) {
1005 in_first_chunk = true;
1006 break;
1011 if (in_first_chunk) {
1012 if (!is_vmalloc_addr(addr))
1013 return __pa(addr);
1014 else
1015 return page_to_phys(vmalloc_to_page(addr));
1016 } else
1017 return page_to_phys(pcpu_addr_to_page(addr));
1021 * pcpu_alloc_alloc_info - allocate percpu allocation info
1022 * @nr_groups: the number of groups
1023 * @nr_units: the number of units
1025 * Allocate ai which is large enough for @nr_groups groups containing
1026 * @nr_units units. The returned ai's groups[0].cpu_map points to the
1027 * cpu_map array which is long enough for @nr_units and filled with
1028 * NR_CPUS. It's the caller's responsibility to initialize cpu_map
1029 * pointer of other groups.
1031 * RETURNS:
1032 * Pointer to the allocated pcpu_alloc_info on success, NULL on
1033 * failure.
1035 struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups,
1036 int nr_units)
1038 struct pcpu_alloc_info *ai;
1039 size_t base_size, ai_size;
1040 void *ptr;
1041 int unit;
1043 base_size = ALIGN(sizeof(*ai) + nr_groups * sizeof(ai->groups[0]),
1044 __alignof__(ai->groups[0].cpu_map[0]));
1045 ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]);
1047 ptr = alloc_bootmem_nopanic(PFN_ALIGN(ai_size));
1048 if (!ptr)
1049 return NULL;
1050 ai = ptr;
1051 ptr += base_size;
1053 ai->groups[0].cpu_map = ptr;
1055 for (unit = 0; unit < nr_units; unit++)
1056 ai->groups[0].cpu_map[unit] = NR_CPUS;
1058 ai->nr_groups = nr_groups;
1059 ai->__ai_size = PFN_ALIGN(ai_size);
1061 return ai;
1065 * pcpu_free_alloc_info - free percpu allocation info
1066 * @ai: pcpu_alloc_info to free
1068 * Free @ai which was allocated by pcpu_alloc_alloc_info().
1070 void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai)
1072 free_bootmem(__pa(ai), ai->__ai_size);
1076 * pcpu_dump_alloc_info - print out information about pcpu_alloc_info
1077 * @lvl: loglevel
1078 * @ai: allocation info to dump
1080 * Print out information about @ai using loglevel @lvl.
1082 static void pcpu_dump_alloc_info(const char *lvl,
1083 const struct pcpu_alloc_info *ai)
1085 int group_width = 1, cpu_width = 1, width;
1086 char empty_str[] = "--------";
1087 int alloc = 0, alloc_end = 0;
1088 int group, v;
1089 int upa, apl; /* units per alloc, allocs per line */
1091 v = ai->nr_groups;
1092 while (v /= 10)
1093 group_width++;
1095 v = num_possible_cpus();
1096 while (v /= 10)
1097 cpu_width++;
1098 empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0';
1100 upa = ai->alloc_size / ai->unit_size;
1101 width = upa * (cpu_width + 1) + group_width + 3;
1102 apl = rounddown_pow_of_two(max(60 / width, 1));
1104 printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu",
1105 lvl, ai->static_size, ai->reserved_size, ai->dyn_size,
1106 ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size);
1108 for (group = 0; group < ai->nr_groups; group++) {
1109 const struct pcpu_group_info *gi = &ai->groups[group];
1110 int unit = 0, unit_end = 0;
1112 BUG_ON(gi->nr_units % upa);
1113 for (alloc_end += gi->nr_units / upa;
1114 alloc < alloc_end; alloc++) {
1115 if (!(alloc % apl)) {
1116 printk("\n");
1117 printk("%spcpu-alloc: ", lvl);
1119 printk("[%0*d] ", group_width, group);
1121 for (unit_end += upa; unit < unit_end; unit++)
1122 if (gi->cpu_map[unit] != NR_CPUS)
1123 printk("%0*d ", cpu_width,
1124 gi->cpu_map[unit]);
1125 else
1126 printk("%s ", empty_str);
1129 printk("\n");
1133 * pcpu_setup_first_chunk - initialize the first percpu chunk
1134 * @ai: pcpu_alloc_info describing how to percpu area is shaped
1135 * @base_addr: mapped address
1137 * Initialize the first percpu chunk which contains the kernel static
1138 * perpcu area. This function is to be called from arch percpu area
1139 * setup path.
1141 * @ai contains all information necessary to initialize the first
1142 * chunk and prime the dynamic percpu allocator.
1144 * @ai->static_size is the size of static percpu area.
1146 * @ai->reserved_size, if non-zero, specifies the amount of bytes to
1147 * reserve after the static area in the first chunk. This reserves
1148 * the first chunk such that it's available only through reserved
1149 * percpu allocation. This is primarily used to serve module percpu
1150 * static areas on architectures where the addressing model has
1151 * limited offset range for symbol relocations to guarantee module
1152 * percpu symbols fall inside the relocatable range.
1154 * @ai->dyn_size determines the number of bytes available for dynamic
1155 * allocation in the first chunk. The area between @ai->static_size +
1156 * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused.
1158 * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE
1159 * and equal to or larger than @ai->static_size + @ai->reserved_size +
1160 * @ai->dyn_size.
1162 * @ai->atom_size is the allocation atom size and used as alignment
1163 * for vm areas.
1165 * @ai->alloc_size is the allocation size and always multiple of
1166 * @ai->atom_size. This is larger than @ai->atom_size if
1167 * @ai->unit_size is larger than @ai->atom_size.
1169 * @ai->nr_groups and @ai->groups describe virtual memory layout of
1170 * percpu areas. Units which should be colocated are put into the
1171 * same group. Dynamic VM areas will be allocated according to these
1172 * groupings. If @ai->nr_groups is zero, a single group containing
1173 * all units is assumed.
1175 * The caller should have mapped the first chunk at @base_addr and
1176 * copied static data to each unit.
1178 * If the first chunk ends up with both reserved and dynamic areas, it
1179 * is served by two chunks - one to serve the core static and reserved
1180 * areas and the other for the dynamic area. They share the same vm
1181 * and page map but uses different area allocation map to stay away
1182 * from each other. The latter chunk is circulated in the chunk slots
1183 * and available for dynamic allocation like any other chunks.
1185 * RETURNS:
1186 * 0 on success, -errno on failure.
1188 int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
1189 void *base_addr)
1191 static char cpus_buf[4096] __initdata;
1192 static int smap[PERCPU_DYNAMIC_EARLY_SLOTS] __initdata;
1193 static int dmap[PERCPU_DYNAMIC_EARLY_SLOTS] __initdata;
1194 size_t dyn_size = ai->dyn_size;
1195 size_t size_sum = ai->static_size + ai->reserved_size + dyn_size;
1196 struct pcpu_chunk *schunk, *dchunk = NULL;
1197 unsigned long *group_offsets;
1198 size_t *group_sizes;
1199 unsigned long *unit_off;
1200 unsigned int cpu;
1201 int *unit_map;
1202 int group, unit, i;
1204 cpumask_scnprintf(cpus_buf, sizeof(cpus_buf), cpu_possible_mask);
1206 #define PCPU_SETUP_BUG_ON(cond) do { \
1207 if (unlikely(cond)) { \
1208 pr_emerg("PERCPU: failed to initialize, %s", #cond); \
1209 pr_emerg("PERCPU: cpu_possible_mask=%s\n", cpus_buf); \
1210 pcpu_dump_alloc_info(KERN_EMERG, ai); \
1211 BUG(); \
1213 } while (0)
1215 /* sanity checks */
1216 PCPU_SETUP_BUG_ON(ai->nr_groups <= 0);
1217 #ifdef CONFIG_SMP
1218 PCPU_SETUP_BUG_ON(!ai->static_size);
1219 PCPU_SETUP_BUG_ON((unsigned long)__per_cpu_start & ~PAGE_MASK);
1220 #endif
1221 PCPU_SETUP_BUG_ON(!base_addr);
1222 PCPU_SETUP_BUG_ON((unsigned long)base_addr & ~PAGE_MASK);
1223 PCPU_SETUP_BUG_ON(ai->unit_size < size_sum);
1224 PCPU_SETUP_BUG_ON(ai->unit_size & ~PAGE_MASK);
1225 PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE);
1226 PCPU_SETUP_BUG_ON(ai->dyn_size < PERCPU_DYNAMIC_EARLY_SIZE);
1227 PCPU_SETUP_BUG_ON(pcpu_verify_alloc_info(ai) < 0);
1229 /* process group information and build config tables accordingly */
1230 group_offsets = alloc_bootmem(ai->nr_groups * sizeof(group_offsets[0]));
1231 group_sizes = alloc_bootmem(ai->nr_groups * sizeof(group_sizes[0]));
1232 unit_map = alloc_bootmem(nr_cpu_ids * sizeof(unit_map[0]));
1233 unit_off = alloc_bootmem(nr_cpu_ids * sizeof(unit_off[0]));
1235 for (cpu = 0; cpu < nr_cpu_ids; cpu++)
1236 unit_map[cpu] = UINT_MAX;
1237 pcpu_first_unit_cpu = NR_CPUS;
1239 for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) {
1240 const struct pcpu_group_info *gi = &ai->groups[group];
1242 group_offsets[group] = gi->base_offset;
1243 group_sizes[group] = gi->nr_units * ai->unit_size;
1245 for (i = 0; i < gi->nr_units; i++) {
1246 cpu = gi->cpu_map[i];
1247 if (cpu == NR_CPUS)
1248 continue;
1250 PCPU_SETUP_BUG_ON(cpu > nr_cpu_ids);
1251 PCPU_SETUP_BUG_ON(!cpu_possible(cpu));
1252 PCPU_SETUP_BUG_ON(unit_map[cpu] != UINT_MAX);
1254 unit_map[cpu] = unit + i;
1255 unit_off[cpu] = gi->base_offset + i * ai->unit_size;
1257 if (pcpu_first_unit_cpu == NR_CPUS)
1258 pcpu_first_unit_cpu = cpu;
1259 pcpu_last_unit_cpu = cpu;
1262 pcpu_nr_units = unit;
1264 for_each_possible_cpu(cpu)
1265 PCPU_SETUP_BUG_ON(unit_map[cpu] == UINT_MAX);
1267 /* we're done parsing the input, undefine BUG macro and dump config */
1268 #undef PCPU_SETUP_BUG_ON
1269 pcpu_dump_alloc_info(KERN_DEBUG, ai);
1271 pcpu_nr_groups = ai->nr_groups;
1272 pcpu_group_offsets = group_offsets;
1273 pcpu_group_sizes = group_sizes;
1274 pcpu_unit_map = unit_map;
1275 pcpu_unit_offsets = unit_off;
1277 /* determine basic parameters */
1278 pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT;
1279 pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT;
1280 pcpu_atom_size = ai->atom_size;
1281 pcpu_chunk_struct_size = sizeof(struct pcpu_chunk) +
1282 BITS_TO_LONGS(pcpu_unit_pages) * sizeof(unsigned long);
1285 * Allocate chunk slots. The additional last slot is for
1286 * empty chunks.
1288 pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2;
1289 pcpu_slot = alloc_bootmem(pcpu_nr_slots * sizeof(pcpu_slot[0]));
1290 for (i = 0; i < pcpu_nr_slots; i++)
1291 INIT_LIST_HEAD(&pcpu_slot[i]);
1294 * Initialize static chunk. If reserved_size is zero, the
1295 * static chunk covers static area + dynamic allocation area
1296 * in the first chunk. If reserved_size is not zero, it
1297 * covers static area + reserved area (mostly used for module
1298 * static percpu allocation).
1300 schunk = alloc_bootmem(pcpu_chunk_struct_size);
1301 INIT_LIST_HEAD(&schunk->list);
1302 schunk->base_addr = base_addr;
1303 schunk->map = smap;
1304 schunk->map_alloc = ARRAY_SIZE(smap);
1305 schunk->immutable = true;
1306 bitmap_fill(schunk->populated, pcpu_unit_pages);
1308 if (ai->reserved_size) {
1309 schunk->free_size = ai->reserved_size;
1310 pcpu_reserved_chunk = schunk;
1311 pcpu_reserved_chunk_limit = ai->static_size + ai->reserved_size;
1312 } else {
1313 schunk->free_size = dyn_size;
1314 dyn_size = 0; /* dynamic area covered */
1316 schunk->contig_hint = schunk->free_size;
1318 schunk->map[schunk->map_used++] = -ai->static_size;
1319 if (schunk->free_size)
1320 schunk->map[schunk->map_used++] = schunk->free_size;
1322 /* init dynamic chunk if necessary */
1323 if (dyn_size) {
1324 dchunk = alloc_bootmem(pcpu_chunk_struct_size);
1325 INIT_LIST_HEAD(&dchunk->list);
1326 dchunk->base_addr = base_addr;
1327 dchunk->map = dmap;
1328 dchunk->map_alloc = ARRAY_SIZE(dmap);
1329 dchunk->immutable = true;
1330 bitmap_fill(dchunk->populated, pcpu_unit_pages);
1332 dchunk->contig_hint = dchunk->free_size = dyn_size;
1333 dchunk->map[dchunk->map_used++] = -pcpu_reserved_chunk_limit;
1334 dchunk->map[dchunk->map_used++] = dchunk->free_size;
1337 /* link the first chunk in */
1338 pcpu_first_chunk = dchunk ?: schunk;
1339 pcpu_chunk_relocate(pcpu_first_chunk, -1);
1341 /* we're done */
1342 pcpu_base_addr = base_addr;
1343 return 0;
1346 #ifdef CONFIG_SMP
1348 const char *pcpu_fc_names[PCPU_FC_NR] __initdata = {
1349 [PCPU_FC_AUTO] = "auto",
1350 [PCPU_FC_EMBED] = "embed",
1351 [PCPU_FC_PAGE] = "page",
1354 enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO;
1356 static int __init percpu_alloc_setup(char *str)
1358 if (0)
1359 /* nada */;
1360 #ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
1361 else if (!strcmp(str, "embed"))
1362 pcpu_chosen_fc = PCPU_FC_EMBED;
1363 #endif
1364 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
1365 else if (!strcmp(str, "page"))
1366 pcpu_chosen_fc = PCPU_FC_PAGE;
1367 #endif
1368 else
1369 pr_warning("PERCPU: unknown allocator %s specified\n", str);
1371 return 0;
1373 early_param("percpu_alloc", percpu_alloc_setup);
1376 * pcpu_embed_first_chunk() is used by the generic percpu setup.
1377 * Build it if needed by the arch config or the generic setup is going
1378 * to be used.
1380 #if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \
1381 !defined(CONFIG_HAVE_SETUP_PER_CPU_AREA)
1382 #define BUILD_EMBED_FIRST_CHUNK
1383 #endif
1385 /* build pcpu_page_first_chunk() iff needed by the arch config */
1386 #if defined(CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK)
1387 #define BUILD_PAGE_FIRST_CHUNK
1388 #endif
1390 /* pcpu_build_alloc_info() is used by both embed and page first chunk */
1391 #if defined(BUILD_EMBED_FIRST_CHUNK) || defined(BUILD_PAGE_FIRST_CHUNK)
1393 * pcpu_build_alloc_info - build alloc_info considering distances between CPUs
1394 * @reserved_size: the size of reserved percpu area in bytes
1395 * @dyn_size: minimum free size for dynamic allocation in bytes
1396 * @atom_size: allocation atom size
1397 * @cpu_distance_fn: callback to determine distance between cpus, optional
1399 * This function determines grouping of units, their mappings to cpus
1400 * and other parameters considering needed percpu size, allocation
1401 * atom size and distances between CPUs.
1403 * Groups are always mutliples of atom size and CPUs which are of
1404 * LOCAL_DISTANCE both ways are grouped together and share space for
1405 * units in the same group. The returned configuration is guaranteed
1406 * to have CPUs on different nodes on different groups and >=75% usage
1407 * of allocated virtual address space.
1409 * RETURNS:
1410 * On success, pointer to the new allocation_info is returned. On
1411 * failure, ERR_PTR value is returned.
1413 static struct pcpu_alloc_info * __init pcpu_build_alloc_info(
1414 size_t reserved_size, size_t dyn_size,
1415 size_t atom_size,
1416 pcpu_fc_cpu_distance_fn_t cpu_distance_fn)
1418 static int group_map[NR_CPUS] __initdata;
1419 static int group_cnt[NR_CPUS] __initdata;
1420 const size_t static_size = __per_cpu_end - __per_cpu_start;
1421 int nr_groups = 1, nr_units = 0;
1422 size_t size_sum, min_unit_size, alloc_size;
1423 int upa, max_upa, uninitialized_var(best_upa); /* units_per_alloc */
1424 int last_allocs, group, unit;
1425 unsigned int cpu, tcpu;
1426 struct pcpu_alloc_info *ai;
1427 unsigned int *cpu_map;
1429 /* this function may be called multiple times */
1430 memset(group_map, 0, sizeof(group_map));
1431 memset(group_cnt, 0, sizeof(group_cnt));
1433 /* calculate size_sum and ensure dyn_size is enough for early alloc */
1434 size_sum = PFN_ALIGN(static_size + reserved_size +
1435 max_t(size_t, dyn_size, PERCPU_DYNAMIC_EARLY_SIZE));
1436 dyn_size = size_sum - static_size - reserved_size;
1439 * Determine min_unit_size, alloc_size and max_upa such that
1440 * alloc_size is multiple of atom_size and is the smallest
1441 * which can accommodate 4k aligned segments which are equal to
1442 * or larger than min_unit_size.
1444 min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE);
1446 alloc_size = roundup(min_unit_size, atom_size);
1447 upa = alloc_size / min_unit_size;
1448 while (alloc_size % upa || ((alloc_size / upa) & ~PAGE_MASK))
1449 upa--;
1450 max_upa = upa;
1452 /* group cpus according to their proximity */
1453 for_each_possible_cpu(cpu) {
1454 group = 0;
1455 next_group:
1456 for_each_possible_cpu(tcpu) {
1457 if (cpu == tcpu)
1458 break;
1459 if (group_map[tcpu] == group && cpu_distance_fn &&
1460 (cpu_distance_fn(cpu, tcpu) > LOCAL_DISTANCE ||
1461 cpu_distance_fn(tcpu, cpu) > LOCAL_DISTANCE)) {
1462 group++;
1463 nr_groups = max(nr_groups, group + 1);
1464 goto next_group;
1467 group_map[cpu] = group;
1468 group_cnt[group]++;
1472 * Expand unit size until address space usage goes over 75%
1473 * and then as much as possible without using more address
1474 * space.
1476 last_allocs = INT_MAX;
1477 for (upa = max_upa; upa; upa--) {
1478 int allocs = 0, wasted = 0;
1480 if (alloc_size % upa || ((alloc_size / upa) & ~PAGE_MASK))
1481 continue;
1483 for (group = 0; group < nr_groups; group++) {
1484 int this_allocs = DIV_ROUND_UP(group_cnt[group], upa);
1485 allocs += this_allocs;
1486 wasted += this_allocs * upa - group_cnt[group];
1490 * Don't accept if wastage is over 1/3. The
1491 * greater-than comparison ensures upa==1 always
1492 * passes the following check.
1494 if (wasted > num_possible_cpus() / 3)
1495 continue;
1497 /* and then don't consume more memory */
1498 if (allocs > last_allocs)
1499 break;
1500 last_allocs = allocs;
1501 best_upa = upa;
1503 upa = best_upa;
1505 /* allocate and fill alloc_info */
1506 for (group = 0; group < nr_groups; group++)
1507 nr_units += roundup(group_cnt[group], upa);
1509 ai = pcpu_alloc_alloc_info(nr_groups, nr_units);
1510 if (!ai)
1511 return ERR_PTR(-ENOMEM);
1512 cpu_map = ai->groups[0].cpu_map;
1514 for (group = 0; group < nr_groups; group++) {
1515 ai->groups[group].cpu_map = cpu_map;
1516 cpu_map += roundup(group_cnt[group], upa);
1519 ai->static_size = static_size;
1520 ai->reserved_size = reserved_size;
1521 ai->dyn_size = dyn_size;
1522 ai->unit_size = alloc_size / upa;
1523 ai->atom_size = atom_size;
1524 ai->alloc_size = alloc_size;
1526 for (group = 0, unit = 0; group_cnt[group]; group++) {
1527 struct pcpu_group_info *gi = &ai->groups[group];
1530 * Initialize base_offset as if all groups are located
1531 * back-to-back. The caller should update this to
1532 * reflect actual allocation.
1534 gi->base_offset = unit * ai->unit_size;
1536 for_each_possible_cpu(cpu)
1537 if (group_map[cpu] == group)
1538 gi->cpu_map[gi->nr_units++] = cpu;
1539 gi->nr_units = roundup(gi->nr_units, upa);
1540 unit += gi->nr_units;
1542 BUG_ON(unit != nr_units);
1544 return ai;
1546 #endif /* BUILD_EMBED_FIRST_CHUNK || BUILD_PAGE_FIRST_CHUNK */
1548 #if defined(BUILD_EMBED_FIRST_CHUNK)
1550 * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem
1551 * @reserved_size: the size of reserved percpu area in bytes
1552 * @dyn_size: minimum free size for dynamic allocation in bytes
1553 * @atom_size: allocation atom size
1554 * @cpu_distance_fn: callback to determine distance between cpus, optional
1555 * @alloc_fn: function to allocate percpu page
1556 * @free_fn: function to free percpu page
1558 * This is a helper to ease setting up embedded first percpu chunk and
1559 * can be called where pcpu_setup_first_chunk() is expected.
1561 * If this function is used to setup the first chunk, it is allocated
1562 * by calling @alloc_fn and used as-is without being mapped into
1563 * vmalloc area. Allocations are always whole multiples of @atom_size
1564 * aligned to @atom_size.
1566 * This enables the first chunk to piggy back on the linear physical
1567 * mapping which often uses larger page size. Please note that this
1568 * can result in very sparse cpu->unit mapping on NUMA machines thus
1569 * requiring large vmalloc address space. Don't use this allocator if
1570 * vmalloc space is not orders of magnitude larger than distances
1571 * between node memory addresses (ie. 32bit NUMA machines).
1573 * @dyn_size specifies the minimum dynamic area size.
1575 * If the needed size is smaller than the minimum or specified unit
1576 * size, the leftover is returned using @free_fn.
1578 * RETURNS:
1579 * 0 on success, -errno on failure.
1581 int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size,
1582 size_t atom_size,
1583 pcpu_fc_cpu_distance_fn_t cpu_distance_fn,
1584 pcpu_fc_alloc_fn_t alloc_fn,
1585 pcpu_fc_free_fn_t free_fn)
1587 void *base = (void *)ULONG_MAX;
1588 void **areas = NULL;
1589 struct pcpu_alloc_info *ai;
1590 size_t size_sum, areas_size, max_distance;
1591 int group, i, rc;
1593 ai = pcpu_build_alloc_info(reserved_size, dyn_size, atom_size,
1594 cpu_distance_fn);
1595 if (IS_ERR(ai))
1596 return PTR_ERR(ai);
1598 size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
1599 areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *));
1601 areas = alloc_bootmem_nopanic(areas_size);
1602 if (!areas) {
1603 rc = -ENOMEM;
1604 goto out_free;
1607 /* allocate, copy and determine base address */
1608 for (group = 0; group < ai->nr_groups; group++) {
1609 struct pcpu_group_info *gi = &ai->groups[group];
1610 unsigned int cpu = NR_CPUS;
1611 void *ptr;
1613 for (i = 0; i < gi->nr_units && cpu == NR_CPUS; i++)
1614 cpu = gi->cpu_map[i];
1615 BUG_ON(cpu == NR_CPUS);
1617 /* allocate space for the whole group */
1618 ptr = alloc_fn(cpu, gi->nr_units * ai->unit_size, atom_size);
1619 if (!ptr) {
1620 rc = -ENOMEM;
1621 goto out_free_areas;
1623 areas[group] = ptr;
1625 base = min(ptr, base);
1627 for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) {
1628 if (gi->cpu_map[i] == NR_CPUS) {
1629 /* unused unit, free whole */
1630 free_fn(ptr, ai->unit_size);
1631 continue;
1633 /* copy and return the unused part */
1634 memcpy(ptr, __per_cpu_load, ai->static_size);
1635 free_fn(ptr + size_sum, ai->unit_size - size_sum);
1639 /* base address is now known, determine group base offsets */
1640 max_distance = 0;
1641 for (group = 0; group < ai->nr_groups; group++) {
1642 ai->groups[group].base_offset = areas[group] - base;
1643 max_distance = max_t(size_t, max_distance,
1644 ai->groups[group].base_offset);
1646 max_distance += ai->unit_size;
1648 /* warn if maximum distance is further than 75% of vmalloc space */
1649 if (max_distance > (VMALLOC_END - VMALLOC_START) * 3 / 4) {
1650 pr_warning("PERCPU: max_distance=0x%zx too large for vmalloc "
1651 "space 0x%lx\n", max_distance,
1652 (unsigned long)(VMALLOC_END - VMALLOC_START));
1653 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
1654 /* and fail if we have fallback */
1655 rc = -EINVAL;
1656 goto out_free;
1657 #endif
1660 pr_info("PERCPU: Embedded %zu pages/cpu @%p s%zu r%zu d%zu u%zu\n",
1661 PFN_DOWN(size_sum), base, ai->static_size, ai->reserved_size,
1662 ai->dyn_size, ai->unit_size);
1664 rc = pcpu_setup_first_chunk(ai, base);
1665 goto out_free;
1667 out_free_areas:
1668 for (group = 0; group < ai->nr_groups; group++)
1669 free_fn(areas[group],
1670 ai->groups[group].nr_units * ai->unit_size);
1671 out_free:
1672 pcpu_free_alloc_info(ai);
1673 if (areas)
1674 free_bootmem(__pa(areas), areas_size);
1675 return rc;
1677 #endif /* BUILD_EMBED_FIRST_CHUNK */
1679 #ifdef BUILD_PAGE_FIRST_CHUNK
1681 * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages
1682 * @reserved_size: the size of reserved percpu area in bytes
1683 * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE
1684 * @free_fn: function to free percpu page, always called with PAGE_SIZE
1685 * @populate_pte_fn: function to populate pte
1687 * This is a helper to ease setting up page-remapped first percpu
1688 * chunk and can be called where pcpu_setup_first_chunk() is expected.
1690 * This is the basic allocator. Static percpu area is allocated
1691 * page-by-page into vmalloc area.
1693 * RETURNS:
1694 * 0 on success, -errno on failure.
1696 int __init pcpu_page_first_chunk(size_t reserved_size,
1697 pcpu_fc_alloc_fn_t alloc_fn,
1698 pcpu_fc_free_fn_t free_fn,
1699 pcpu_fc_populate_pte_fn_t populate_pte_fn)
1701 static struct vm_struct vm;
1702 struct pcpu_alloc_info *ai;
1703 char psize_str[16];
1704 int unit_pages;
1705 size_t pages_size;
1706 struct page **pages;
1707 int unit, i, j, rc;
1709 snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10);
1711 ai = pcpu_build_alloc_info(reserved_size, 0, PAGE_SIZE, NULL);
1712 if (IS_ERR(ai))
1713 return PTR_ERR(ai);
1714 BUG_ON(ai->nr_groups != 1);
1715 BUG_ON(ai->groups[0].nr_units != num_possible_cpus());
1717 unit_pages = ai->unit_size >> PAGE_SHIFT;
1719 /* unaligned allocations can't be freed, round up to page size */
1720 pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() *
1721 sizeof(pages[0]));
1722 pages = alloc_bootmem(pages_size);
1724 /* allocate pages */
1725 j = 0;
1726 for (unit = 0; unit < num_possible_cpus(); unit++)
1727 for (i = 0; i < unit_pages; i++) {
1728 unsigned int cpu = ai->groups[0].cpu_map[unit];
1729 void *ptr;
1731 ptr = alloc_fn(cpu, PAGE_SIZE, PAGE_SIZE);
1732 if (!ptr) {
1733 pr_warning("PERCPU: failed to allocate %s page "
1734 "for cpu%u\n", psize_str, cpu);
1735 goto enomem;
1737 pages[j++] = virt_to_page(ptr);
1740 /* allocate vm area, map the pages and copy static data */
1741 vm.flags = VM_ALLOC;
1742 vm.size = num_possible_cpus() * ai->unit_size;
1743 vm_area_register_early(&vm, PAGE_SIZE);
1745 for (unit = 0; unit < num_possible_cpus(); unit++) {
1746 unsigned long unit_addr =
1747 (unsigned long)vm.addr + unit * ai->unit_size;
1749 for (i = 0; i < unit_pages; i++)
1750 populate_pte_fn(unit_addr + (i << PAGE_SHIFT));
1752 /* pte already populated, the following shouldn't fail */
1753 rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages],
1754 unit_pages);
1755 if (rc < 0)
1756 panic("failed to map percpu area, err=%d\n", rc);
1759 * FIXME: Archs with virtual cache should flush local
1760 * cache for the linear mapping here - something
1761 * equivalent to flush_cache_vmap() on the local cpu.
1762 * flush_cache_vmap() can't be used as most supporting
1763 * data structures are not set up yet.
1766 /* copy static data */
1767 memcpy((void *)unit_addr, __per_cpu_load, ai->static_size);
1770 /* we're ready, commit */
1771 pr_info("PERCPU: %d %s pages/cpu @%p s%zu r%zu d%zu\n",
1772 unit_pages, psize_str, vm.addr, ai->static_size,
1773 ai->reserved_size, ai->dyn_size);
1775 rc = pcpu_setup_first_chunk(ai, vm.addr);
1776 goto out_free_ar;
1778 enomem:
1779 while (--j >= 0)
1780 free_fn(page_address(pages[j]), PAGE_SIZE);
1781 rc = -ENOMEM;
1782 out_free_ar:
1783 free_bootmem(__pa(pages), pages_size);
1784 pcpu_free_alloc_info(ai);
1785 return rc;
1787 #endif /* BUILD_PAGE_FIRST_CHUNK */
1789 #ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA
1791 * Generic SMP percpu area setup.
1793 * The embedding helper is used because its behavior closely resembles
1794 * the original non-dynamic generic percpu area setup. This is
1795 * important because many archs have addressing restrictions and might
1796 * fail if the percpu area is located far away from the previous
1797 * location. As an added bonus, in non-NUMA cases, embedding is
1798 * generally a good idea TLB-wise because percpu area can piggy back
1799 * on the physical linear memory mapping which uses large page
1800 * mappings on applicable archs.
1802 unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
1803 EXPORT_SYMBOL(__per_cpu_offset);
1805 static void * __init pcpu_dfl_fc_alloc(unsigned int cpu, size_t size,
1806 size_t align)
1808 return __alloc_bootmem_nopanic(size, align, __pa(MAX_DMA_ADDRESS));
1811 static void __init pcpu_dfl_fc_free(void *ptr, size_t size)
1813 free_bootmem(__pa(ptr), size);
1816 void __init setup_per_cpu_areas(void)
1818 unsigned long delta;
1819 unsigned int cpu;
1820 int rc;
1823 * Always reserve area for module percpu variables. That's
1824 * what the legacy allocator did.
1826 rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
1827 PERCPU_DYNAMIC_RESERVE, PAGE_SIZE, NULL,
1828 pcpu_dfl_fc_alloc, pcpu_dfl_fc_free);
1829 if (rc < 0)
1830 panic("Failed to initialize percpu areas.");
1832 delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
1833 for_each_possible_cpu(cpu)
1834 __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
1836 #endif /* CONFIG_HAVE_SETUP_PER_CPU_AREA */
1838 #else /* CONFIG_SMP */
1841 * UP percpu area setup.
1843 * UP always uses km-based percpu allocator with identity mapping.
1844 * Static percpu variables are indistinguishable from the usual static
1845 * variables and don't require any special preparation.
1847 void __init setup_per_cpu_areas(void)
1849 const size_t unit_size =
1850 roundup_pow_of_two(max_t(size_t, PCPU_MIN_UNIT_SIZE,
1851 PERCPU_DYNAMIC_RESERVE));
1852 struct pcpu_alloc_info *ai;
1853 void *fc;
1855 ai = pcpu_alloc_alloc_info(1, 1);
1856 fc = __alloc_bootmem(unit_size, PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
1857 if (!ai || !fc)
1858 panic("Failed to allocate memory for percpu areas.");
1860 ai->dyn_size = unit_size;
1861 ai->unit_size = unit_size;
1862 ai->atom_size = unit_size;
1863 ai->alloc_size = unit_size;
1864 ai->groups[0].nr_units = 1;
1865 ai->groups[0].cpu_map[0] = 0;
1867 if (pcpu_setup_first_chunk(ai, fc) < 0)
1868 panic("Failed to initialize percpu areas.");
1871 #endif /* CONFIG_SMP */
1874 * First and reserved chunks are initialized with temporary allocation
1875 * map in initdata so that they can be used before slab is online.
1876 * This function is called after slab is brought up and replaces those
1877 * with properly allocated maps.
1879 void __init percpu_init_late(void)
1881 struct pcpu_chunk *target_chunks[] =
1882 { pcpu_first_chunk, pcpu_reserved_chunk, NULL };
1883 struct pcpu_chunk *chunk;
1884 unsigned long flags;
1885 int i;
1887 for (i = 0; (chunk = target_chunks[i]); i++) {
1888 int *map;
1889 const size_t size = PERCPU_DYNAMIC_EARLY_SLOTS * sizeof(map[0]);
1891 BUILD_BUG_ON(size > PAGE_SIZE);
1893 map = pcpu_mem_zalloc(size);
1894 BUG_ON(!map);
1896 spin_lock_irqsave(&pcpu_lock, flags);
1897 memcpy(map, chunk->map, size);
1898 chunk->map = map;
1899 spin_unlock_irqrestore(&pcpu_lock, flags);