This client driver allows you to use a GPIO pin as a source for PPS
[linux-2.6/next.git] / net / mac80211 / tx.c
blob01072639666fb77bccceda47aad242c6ec241405
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
5 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
12 * Transmit and frame generation functions.
15 #include <linux/kernel.h>
16 #include <linux/slab.h>
17 #include <linux/skbuff.h>
18 #include <linux/etherdevice.h>
19 #include <linux/bitmap.h>
20 #include <linux/rcupdate.h>
21 #include <net/net_namespace.h>
22 #include <net/ieee80211_radiotap.h>
23 #include <net/cfg80211.h>
24 #include <net/mac80211.h>
25 #include <asm/unaligned.h>
27 #include "ieee80211_i.h"
28 #include "driver-ops.h"
29 #include "led.h"
30 #include "mesh.h"
31 #include "wep.h"
32 #include "wpa.h"
33 #include "wme.h"
34 #include "rate.h"
36 /* misc utils */
38 static __le16 ieee80211_duration(struct ieee80211_tx_data *tx, int group_addr,
39 int next_frag_len)
41 int rate, mrate, erp, dur, i;
42 struct ieee80211_rate *txrate;
43 struct ieee80211_local *local = tx->local;
44 struct ieee80211_supported_band *sband;
45 struct ieee80211_hdr *hdr;
46 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
48 /* assume HW handles this */
49 if (info->control.rates[0].flags & IEEE80211_TX_RC_MCS)
50 return 0;
52 /* uh huh? */
53 if (WARN_ON_ONCE(info->control.rates[0].idx < 0))
54 return 0;
56 sband = local->hw.wiphy->bands[tx->channel->band];
57 txrate = &sband->bitrates[info->control.rates[0].idx];
59 erp = txrate->flags & IEEE80211_RATE_ERP_G;
62 * data and mgmt (except PS Poll):
63 * - during CFP: 32768
64 * - during contention period:
65 * if addr1 is group address: 0
66 * if more fragments = 0 and addr1 is individual address: time to
67 * transmit one ACK plus SIFS
68 * if more fragments = 1 and addr1 is individual address: time to
69 * transmit next fragment plus 2 x ACK plus 3 x SIFS
71 * IEEE 802.11, 9.6:
72 * - control response frame (CTS or ACK) shall be transmitted using the
73 * same rate as the immediately previous frame in the frame exchange
74 * sequence, if this rate belongs to the PHY mandatory rates, or else
75 * at the highest possible rate belonging to the PHY rates in the
76 * BSSBasicRateSet
78 hdr = (struct ieee80211_hdr *)tx->skb->data;
79 if (ieee80211_is_ctl(hdr->frame_control)) {
80 /* TODO: These control frames are not currently sent by
81 * mac80211, but should they be implemented, this function
82 * needs to be updated to support duration field calculation.
84 * RTS: time needed to transmit pending data/mgmt frame plus
85 * one CTS frame plus one ACK frame plus 3 x SIFS
86 * CTS: duration of immediately previous RTS minus time
87 * required to transmit CTS and its SIFS
88 * ACK: 0 if immediately previous directed data/mgmt had
89 * more=0, with more=1 duration in ACK frame is duration
90 * from previous frame minus time needed to transmit ACK
91 * and its SIFS
92 * PS Poll: BIT(15) | BIT(14) | aid
94 return 0;
97 /* data/mgmt */
98 if (0 /* FIX: data/mgmt during CFP */)
99 return cpu_to_le16(32768);
101 if (group_addr) /* Group address as the destination - no ACK */
102 return 0;
104 /* Individual destination address:
105 * IEEE 802.11, Ch. 9.6 (after IEEE 802.11g changes)
106 * CTS and ACK frames shall be transmitted using the highest rate in
107 * basic rate set that is less than or equal to the rate of the
108 * immediately previous frame and that is using the same modulation
109 * (CCK or OFDM). If no basic rate set matches with these requirements,
110 * the highest mandatory rate of the PHY that is less than or equal to
111 * the rate of the previous frame is used.
112 * Mandatory rates for IEEE 802.11g PHY: 1, 2, 5.5, 11, 6, 12, 24 Mbps
114 rate = -1;
115 /* use lowest available if everything fails */
116 mrate = sband->bitrates[0].bitrate;
117 for (i = 0; i < sband->n_bitrates; i++) {
118 struct ieee80211_rate *r = &sband->bitrates[i];
120 if (r->bitrate > txrate->bitrate)
121 break;
123 if (tx->sdata->vif.bss_conf.basic_rates & BIT(i))
124 rate = r->bitrate;
126 switch (sband->band) {
127 case IEEE80211_BAND_2GHZ: {
128 u32 flag;
129 if (tx->sdata->flags & IEEE80211_SDATA_OPERATING_GMODE)
130 flag = IEEE80211_RATE_MANDATORY_G;
131 else
132 flag = IEEE80211_RATE_MANDATORY_B;
133 if (r->flags & flag)
134 mrate = r->bitrate;
135 break;
137 case IEEE80211_BAND_5GHZ:
138 if (r->flags & IEEE80211_RATE_MANDATORY_A)
139 mrate = r->bitrate;
140 break;
141 case IEEE80211_NUM_BANDS:
142 WARN_ON(1);
143 break;
146 if (rate == -1) {
147 /* No matching basic rate found; use highest suitable mandatory
148 * PHY rate */
149 rate = mrate;
152 /* Time needed to transmit ACK
153 * (10 bytes + 4-byte FCS = 112 bits) plus SIFS; rounded up
154 * to closest integer */
156 dur = ieee80211_frame_duration(local, 10, rate, erp,
157 tx->sdata->vif.bss_conf.use_short_preamble);
159 if (next_frag_len) {
160 /* Frame is fragmented: duration increases with time needed to
161 * transmit next fragment plus ACK and 2 x SIFS. */
162 dur *= 2; /* ACK + SIFS */
163 /* next fragment */
164 dur += ieee80211_frame_duration(local, next_frag_len,
165 txrate->bitrate, erp,
166 tx->sdata->vif.bss_conf.use_short_preamble);
169 return cpu_to_le16(dur);
172 static inline int is_ieee80211_device(struct ieee80211_local *local,
173 struct net_device *dev)
175 return local == wdev_priv(dev->ieee80211_ptr);
178 /* tx handlers */
179 static ieee80211_tx_result debug_noinline
180 ieee80211_tx_h_dynamic_ps(struct ieee80211_tx_data *tx)
182 struct ieee80211_local *local = tx->local;
183 struct ieee80211_if_managed *ifmgd;
185 /* driver doesn't support power save */
186 if (!(local->hw.flags & IEEE80211_HW_SUPPORTS_PS))
187 return TX_CONTINUE;
189 /* hardware does dynamic power save */
190 if (local->hw.flags & IEEE80211_HW_SUPPORTS_DYNAMIC_PS)
191 return TX_CONTINUE;
193 /* dynamic power save disabled */
194 if (local->hw.conf.dynamic_ps_timeout <= 0)
195 return TX_CONTINUE;
197 /* we are scanning, don't enable power save */
198 if (local->scanning)
199 return TX_CONTINUE;
201 if (!local->ps_sdata)
202 return TX_CONTINUE;
204 /* No point if we're going to suspend */
205 if (local->quiescing)
206 return TX_CONTINUE;
208 /* dynamic ps is supported only in managed mode */
209 if (tx->sdata->vif.type != NL80211_IFTYPE_STATION)
210 return TX_CONTINUE;
212 ifmgd = &tx->sdata->u.mgd;
215 * Don't wakeup from power save if u-apsd is enabled, voip ac has
216 * u-apsd enabled and the frame is in voip class. This effectively
217 * means that even if all access categories have u-apsd enabled, in
218 * practise u-apsd is only used with the voip ac. This is a
219 * workaround for the case when received voip class packets do not
220 * have correct qos tag for some reason, due the network or the
221 * peer application.
223 * Note: local->uapsd_queues access is racy here. If the value is
224 * changed via debugfs, user needs to reassociate manually to have
225 * everything in sync.
227 if ((ifmgd->flags & IEEE80211_STA_UAPSD_ENABLED)
228 && (local->uapsd_queues & IEEE80211_WMM_IE_STA_QOSINFO_AC_VO)
229 && skb_get_queue_mapping(tx->skb) == 0)
230 return TX_CONTINUE;
232 if (local->hw.conf.flags & IEEE80211_CONF_PS) {
233 ieee80211_stop_queues_by_reason(&local->hw,
234 IEEE80211_QUEUE_STOP_REASON_PS);
235 ifmgd->flags &= ~IEEE80211_STA_NULLFUNC_ACKED;
236 ieee80211_queue_work(&local->hw,
237 &local->dynamic_ps_disable_work);
240 /* Don't restart the timer if we're not disassociated */
241 if (!ifmgd->associated)
242 return TX_CONTINUE;
244 mod_timer(&local->dynamic_ps_timer, jiffies +
245 msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout));
247 return TX_CONTINUE;
250 static ieee80211_tx_result debug_noinline
251 ieee80211_tx_h_check_assoc(struct ieee80211_tx_data *tx)
254 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data;
255 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
256 u32 sta_flags;
258 if (unlikely(info->flags & IEEE80211_TX_CTL_INJECTED))
259 return TX_CONTINUE;
261 if (unlikely(test_bit(SCAN_SW_SCANNING, &tx->local->scanning)) &&
262 test_bit(SDATA_STATE_OFFCHANNEL, &tx->sdata->state) &&
263 !ieee80211_is_probe_req(hdr->frame_control) &&
264 !ieee80211_is_nullfunc(hdr->frame_control))
266 * When software scanning only nullfunc frames (to notify
267 * the sleep state to the AP) and probe requests (for the
268 * active scan) are allowed, all other frames should not be
269 * sent and we should not get here, but if we do
270 * nonetheless, drop them to avoid sending them
271 * off-channel. See the link below and
272 * ieee80211_start_scan() for more.
274 * http://article.gmane.org/gmane.linux.kernel.wireless.general/30089
276 return TX_DROP;
278 if (tx->sdata->vif.type == NL80211_IFTYPE_WDS)
279 return TX_CONTINUE;
281 if (tx->sdata->vif.type == NL80211_IFTYPE_MESH_POINT)
282 return TX_CONTINUE;
284 if (tx->flags & IEEE80211_TX_PS_BUFFERED)
285 return TX_CONTINUE;
287 sta_flags = tx->sta ? get_sta_flags(tx->sta) : 0;
289 if (likely(tx->flags & IEEE80211_TX_UNICAST)) {
290 if (unlikely(!(sta_flags & WLAN_STA_ASSOC) &&
291 tx->sdata->vif.type != NL80211_IFTYPE_ADHOC &&
292 ieee80211_is_data(hdr->frame_control))) {
293 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
294 printk(KERN_DEBUG "%s: dropped data frame to not "
295 "associated station %pM\n",
296 tx->sdata->name, hdr->addr1);
297 #endif /* CONFIG_MAC80211_VERBOSE_DEBUG */
298 I802_DEBUG_INC(tx->local->tx_handlers_drop_not_assoc);
299 return TX_DROP;
301 } else {
302 if (unlikely(ieee80211_is_data(hdr->frame_control) &&
303 tx->local->num_sta == 0 &&
304 tx->sdata->vif.type != NL80211_IFTYPE_ADHOC)) {
306 * No associated STAs - no need to send multicast
307 * frames.
309 return TX_DROP;
311 return TX_CONTINUE;
314 return TX_CONTINUE;
317 /* This function is called whenever the AP is about to exceed the maximum limit
318 * of buffered frames for power saving STAs. This situation should not really
319 * happen often during normal operation, so dropping the oldest buffered packet
320 * from each queue should be OK to make some room for new frames. */
321 static void purge_old_ps_buffers(struct ieee80211_local *local)
323 int total = 0, purged = 0;
324 struct sk_buff *skb;
325 struct ieee80211_sub_if_data *sdata;
326 struct sta_info *sta;
329 * virtual interfaces are protected by RCU
331 rcu_read_lock();
333 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
334 struct ieee80211_if_ap *ap;
335 if (sdata->vif.type != NL80211_IFTYPE_AP)
336 continue;
337 ap = &sdata->u.ap;
338 skb = skb_dequeue(&ap->ps_bc_buf);
339 if (skb) {
340 purged++;
341 dev_kfree_skb(skb);
343 total += skb_queue_len(&ap->ps_bc_buf);
346 list_for_each_entry_rcu(sta, &local->sta_list, list) {
347 skb = skb_dequeue(&sta->ps_tx_buf);
348 if (skb) {
349 purged++;
350 dev_kfree_skb(skb);
352 total += skb_queue_len(&sta->ps_tx_buf);
355 rcu_read_unlock();
357 local->total_ps_buffered = total;
358 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
359 wiphy_debug(local->hw.wiphy, "PS buffers full - purged %d frames\n",
360 purged);
361 #endif
364 static ieee80211_tx_result
365 ieee80211_tx_h_multicast_ps_buf(struct ieee80211_tx_data *tx)
367 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
368 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data;
371 * broadcast/multicast frame
373 * If any of the associated stations is in power save mode,
374 * the frame is buffered to be sent after DTIM beacon frame.
375 * This is done either by the hardware or us.
378 /* powersaving STAs only in AP/VLAN mode */
379 if (!tx->sdata->bss)
380 return TX_CONTINUE;
382 /* no buffering for ordered frames */
383 if (ieee80211_has_order(hdr->frame_control))
384 return TX_CONTINUE;
386 /* no stations in PS mode */
387 if (!atomic_read(&tx->sdata->bss->num_sta_ps))
388 return TX_CONTINUE;
390 info->flags |= IEEE80211_TX_CTL_SEND_AFTER_DTIM;
392 /* device releases frame after DTIM beacon */
393 if (!(tx->local->hw.flags & IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING))
394 return TX_CONTINUE;
396 /* buffered in mac80211 */
397 if (tx->local->total_ps_buffered >= TOTAL_MAX_TX_BUFFER)
398 purge_old_ps_buffers(tx->local);
400 if (skb_queue_len(&tx->sdata->bss->ps_bc_buf) >= AP_MAX_BC_BUFFER) {
401 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
402 if (net_ratelimit())
403 printk(KERN_DEBUG "%s: BC TX buffer full - dropping the oldest frame\n",
404 tx->sdata->name);
405 #endif
406 dev_kfree_skb(skb_dequeue(&tx->sdata->bss->ps_bc_buf));
407 } else
408 tx->local->total_ps_buffered++;
410 skb_queue_tail(&tx->sdata->bss->ps_bc_buf, tx->skb);
412 return TX_QUEUED;
415 static int ieee80211_use_mfp(__le16 fc, struct sta_info *sta,
416 struct sk_buff *skb)
418 if (!ieee80211_is_mgmt(fc))
419 return 0;
421 if (sta == NULL || !test_sta_flags(sta, WLAN_STA_MFP))
422 return 0;
424 if (!ieee80211_is_robust_mgmt_frame((struct ieee80211_hdr *)
425 skb->data))
426 return 0;
428 return 1;
431 static ieee80211_tx_result
432 ieee80211_tx_h_unicast_ps_buf(struct ieee80211_tx_data *tx)
434 struct sta_info *sta = tx->sta;
435 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
436 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data;
437 struct ieee80211_local *local = tx->local;
438 u32 staflags;
440 if (unlikely(!sta ||
441 ieee80211_is_probe_resp(hdr->frame_control) ||
442 ieee80211_is_auth(hdr->frame_control) ||
443 ieee80211_is_assoc_resp(hdr->frame_control) ||
444 ieee80211_is_reassoc_resp(hdr->frame_control)))
445 return TX_CONTINUE;
447 staflags = get_sta_flags(sta);
449 if (unlikely((staflags & (WLAN_STA_PS_STA | WLAN_STA_PS_DRIVER)) &&
450 !(info->flags & IEEE80211_TX_CTL_PSPOLL_RESPONSE))) {
451 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
452 printk(KERN_DEBUG "STA %pM aid %d: PS buffer (entries "
453 "before %d)\n",
454 sta->sta.addr, sta->sta.aid,
455 skb_queue_len(&sta->ps_tx_buf));
456 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
457 if (tx->local->total_ps_buffered >= TOTAL_MAX_TX_BUFFER)
458 purge_old_ps_buffers(tx->local);
459 if (skb_queue_len(&sta->ps_tx_buf) >= STA_MAX_TX_BUFFER) {
460 struct sk_buff *old = skb_dequeue(&sta->ps_tx_buf);
461 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
462 if (net_ratelimit()) {
463 printk(KERN_DEBUG "%s: STA %pM TX "
464 "buffer full - dropping oldest frame\n",
465 tx->sdata->name, sta->sta.addr);
467 #endif
468 dev_kfree_skb(old);
469 } else
470 tx->local->total_ps_buffered++;
473 * Queue frame to be sent after STA wakes up/polls,
474 * but don't set the TIM bit if the driver is blocking
475 * wakeup or poll response transmissions anyway.
477 if (skb_queue_empty(&sta->ps_tx_buf) &&
478 !(staflags & WLAN_STA_PS_DRIVER))
479 sta_info_set_tim_bit(sta);
481 info->control.jiffies = jiffies;
482 info->control.vif = &tx->sdata->vif;
483 info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING;
484 skb_queue_tail(&sta->ps_tx_buf, tx->skb);
486 if (!timer_pending(&local->sta_cleanup))
487 mod_timer(&local->sta_cleanup,
488 round_jiffies(jiffies +
489 STA_INFO_CLEANUP_INTERVAL));
491 return TX_QUEUED;
493 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
494 else if (unlikely(staflags & WLAN_STA_PS_STA)) {
495 printk(KERN_DEBUG "%s: STA %pM in PS mode, but pspoll "
496 "set -> send frame\n", tx->sdata->name,
497 sta->sta.addr);
499 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
501 return TX_CONTINUE;
504 static ieee80211_tx_result debug_noinline
505 ieee80211_tx_h_ps_buf(struct ieee80211_tx_data *tx)
507 if (unlikely(tx->flags & IEEE80211_TX_PS_BUFFERED))
508 return TX_CONTINUE;
510 if (tx->flags & IEEE80211_TX_UNICAST)
511 return ieee80211_tx_h_unicast_ps_buf(tx);
512 else
513 return ieee80211_tx_h_multicast_ps_buf(tx);
516 static ieee80211_tx_result debug_noinline
517 ieee80211_tx_h_check_control_port_protocol(struct ieee80211_tx_data *tx)
519 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
521 if (unlikely(tx->sdata->control_port_protocol == tx->skb->protocol &&
522 tx->sdata->control_port_no_encrypt))
523 info->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT;
525 return TX_CONTINUE;
528 static ieee80211_tx_result debug_noinline
529 ieee80211_tx_h_select_key(struct ieee80211_tx_data *tx)
531 struct ieee80211_key *key = NULL;
532 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
533 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data;
535 if (unlikely(info->flags & IEEE80211_TX_INTFL_DONT_ENCRYPT))
536 tx->key = NULL;
537 else if (tx->sta && (key = rcu_dereference(tx->sta->ptk)))
538 tx->key = key;
539 else if (ieee80211_is_mgmt(hdr->frame_control) &&
540 is_multicast_ether_addr(hdr->addr1) &&
541 ieee80211_is_robust_mgmt_frame(hdr) &&
542 (key = rcu_dereference(tx->sdata->default_mgmt_key)))
543 tx->key = key;
544 else if (is_multicast_ether_addr(hdr->addr1) &&
545 (key = rcu_dereference(tx->sdata->default_multicast_key)))
546 tx->key = key;
547 else if (!is_multicast_ether_addr(hdr->addr1) &&
548 (key = rcu_dereference(tx->sdata->default_unicast_key)))
549 tx->key = key;
550 else if (tx->sdata->drop_unencrypted &&
551 (tx->skb->protocol != tx->sdata->control_port_protocol) &&
552 !(info->flags & IEEE80211_TX_CTL_INJECTED) &&
553 (!ieee80211_is_robust_mgmt_frame(hdr) ||
554 (ieee80211_is_action(hdr->frame_control) &&
555 tx->sta && test_sta_flags(tx->sta, WLAN_STA_MFP)))) {
556 I802_DEBUG_INC(tx->local->tx_handlers_drop_unencrypted);
557 return TX_DROP;
558 } else
559 tx->key = NULL;
561 if (tx->key) {
562 bool skip_hw = false;
564 tx->key->tx_rx_count++;
565 /* TODO: add threshold stuff again */
567 switch (tx->key->conf.cipher) {
568 case WLAN_CIPHER_SUITE_WEP40:
569 case WLAN_CIPHER_SUITE_WEP104:
570 if (ieee80211_is_auth(hdr->frame_control))
571 break;
572 case WLAN_CIPHER_SUITE_TKIP:
573 if (!ieee80211_is_data_present(hdr->frame_control))
574 tx->key = NULL;
575 break;
576 case WLAN_CIPHER_SUITE_CCMP:
577 if (!ieee80211_is_data_present(hdr->frame_control) &&
578 !ieee80211_use_mfp(hdr->frame_control, tx->sta,
579 tx->skb))
580 tx->key = NULL;
581 else
582 skip_hw = (tx->key->conf.flags &
583 IEEE80211_KEY_FLAG_SW_MGMT) &&
584 ieee80211_is_mgmt(hdr->frame_control);
585 break;
586 case WLAN_CIPHER_SUITE_AES_CMAC:
587 if (!ieee80211_is_mgmt(hdr->frame_control))
588 tx->key = NULL;
589 break;
592 if (unlikely(tx->key && tx->key->flags & KEY_FLAG_TAINTED))
593 return TX_DROP;
595 if (!skip_hw && tx->key &&
596 tx->key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE)
597 info->control.hw_key = &tx->key->conf;
600 return TX_CONTINUE;
603 static ieee80211_tx_result debug_noinline
604 ieee80211_tx_h_rate_ctrl(struct ieee80211_tx_data *tx)
606 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
607 struct ieee80211_hdr *hdr = (void *)tx->skb->data;
608 struct ieee80211_supported_band *sband;
609 struct ieee80211_rate *rate;
610 int i;
611 u32 len;
612 bool inval = false, rts = false, short_preamble = false;
613 struct ieee80211_tx_rate_control txrc;
614 u32 sta_flags;
616 memset(&txrc, 0, sizeof(txrc));
618 sband = tx->local->hw.wiphy->bands[tx->channel->band];
620 len = min_t(u32, tx->skb->len + FCS_LEN,
621 tx->local->hw.wiphy->frag_threshold);
623 /* set up the tx rate control struct we give the RC algo */
624 txrc.hw = local_to_hw(tx->local);
625 txrc.sband = sband;
626 txrc.bss_conf = &tx->sdata->vif.bss_conf;
627 txrc.skb = tx->skb;
628 txrc.reported_rate.idx = -1;
629 txrc.rate_idx_mask = tx->sdata->rc_rateidx_mask[tx->channel->band];
630 if (txrc.rate_idx_mask == (1 << sband->n_bitrates) - 1)
631 txrc.max_rate_idx = -1;
632 else
633 txrc.max_rate_idx = fls(txrc.rate_idx_mask) - 1;
634 txrc.bss = (tx->sdata->vif.type == NL80211_IFTYPE_AP ||
635 tx->sdata->vif.type == NL80211_IFTYPE_ADHOC);
637 /* set up RTS protection if desired */
638 if (len > tx->local->hw.wiphy->rts_threshold) {
639 txrc.rts = rts = true;
643 * Use short preamble if the BSS can handle it, but not for
644 * management frames unless we know the receiver can handle
645 * that -- the management frame might be to a station that
646 * just wants a probe response.
648 if (tx->sdata->vif.bss_conf.use_short_preamble &&
649 (ieee80211_is_data(hdr->frame_control) ||
650 (tx->sta && test_sta_flags(tx->sta, WLAN_STA_SHORT_PREAMBLE))))
651 txrc.short_preamble = short_preamble = true;
653 sta_flags = tx->sta ? get_sta_flags(tx->sta) : 0;
656 * Lets not bother rate control if we're associated and cannot
657 * talk to the sta. This should not happen.
659 if (WARN(test_bit(SCAN_SW_SCANNING, &tx->local->scanning) &&
660 (sta_flags & WLAN_STA_ASSOC) &&
661 !rate_usable_index_exists(sband, &tx->sta->sta),
662 "%s: Dropped data frame as no usable bitrate found while "
663 "scanning and associated. Target station: "
664 "%pM on %d GHz band\n",
665 tx->sdata->name, hdr->addr1,
666 tx->channel->band ? 5 : 2))
667 return TX_DROP;
670 * If we're associated with the sta at this point we know we can at
671 * least send the frame at the lowest bit rate.
673 rate_control_get_rate(tx->sdata, tx->sta, &txrc);
675 if (unlikely(info->control.rates[0].idx < 0))
676 return TX_DROP;
678 if (txrc.reported_rate.idx < 0) {
679 txrc.reported_rate = info->control.rates[0];
680 if (tx->sta && ieee80211_is_data(hdr->frame_control))
681 tx->sta->last_tx_rate = txrc.reported_rate;
682 } else if (tx->sta)
683 tx->sta->last_tx_rate = txrc.reported_rate;
685 if (unlikely(!info->control.rates[0].count))
686 info->control.rates[0].count = 1;
688 if (WARN_ON_ONCE((info->control.rates[0].count > 1) &&
689 (info->flags & IEEE80211_TX_CTL_NO_ACK)))
690 info->control.rates[0].count = 1;
692 if (is_multicast_ether_addr(hdr->addr1)) {
694 * XXX: verify the rate is in the basic rateset
696 return TX_CONTINUE;
700 * set up the RTS/CTS rate as the fastest basic rate
701 * that is not faster than the data rate
703 * XXX: Should this check all retry rates?
705 if (!(info->control.rates[0].flags & IEEE80211_TX_RC_MCS)) {
706 s8 baserate = 0;
708 rate = &sband->bitrates[info->control.rates[0].idx];
710 for (i = 0; i < sband->n_bitrates; i++) {
711 /* must be a basic rate */
712 if (!(tx->sdata->vif.bss_conf.basic_rates & BIT(i)))
713 continue;
714 /* must not be faster than the data rate */
715 if (sband->bitrates[i].bitrate > rate->bitrate)
716 continue;
717 /* maximum */
718 if (sband->bitrates[baserate].bitrate <
719 sband->bitrates[i].bitrate)
720 baserate = i;
723 info->control.rts_cts_rate_idx = baserate;
726 for (i = 0; i < IEEE80211_TX_MAX_RATES; i++) {
728 * make sure there's no valid rate following
729 * an invalid one, just in case drivers don't
730 * take the API seriously to stop at -1.
732 if (inval) {
733 info->control.rates[i].idx = -1;
734 continue;
736 if (info->control.rates[i].idx < 0) {
737 inval = true;
738 continue;
742 * For now assume MCS is already set up correctly, this
743 * needs to be fixed.
745 if (info->control.rates[i].flags & IEEE80211_TX_RC_MCS) {
746 WARN_ON(info->control.rates[i].idx > 76);
747 continue;
750 /* set up RTS protection if desired */
751 if (rts)
752 info->control.rates[i].flags |=
753 IEEE80211_TX_RC_USE_RTS_CTS;
755 /* RC is busted */
756 if (WARN_ON_ONCE(info->control.rates[i].idx >=
757 sband->n_bitrates)) {
758 info->control.rates[i].idx = -1;
759 continue;
762 rate = &sband->bitrates[info->control.rates[i].idx];
764 /* set up short preamble */
765 if (short_preamble &&
766 rate->flags & IEEE80211_RATE_SHORT_PREAMBLE)
767 info->control.rates[i].flags |=
768 IEEE80211_TX_RC_USE_SHORT_PREAMBLE;
770 /* set up G protection */
771 if (!rts && tx->sdata->vif.bss_conf.use_cts_prot &&
772 rate->flags & IEEE80211_RATE_ERP_G)
773 info->control.rates[i].flags |=
774 IEEE80211_TX_RC_USE_CTS_PROTECT;
777 return TX_CONTINUE;
780 static ieee80211_tx_result debug_noinline
781 ieee80211_tx_h_sequence(struct ieee80211_tx_data *tx)
783 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
784 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data;
785 u16 *seq;
786 u8 *qc;
787 int tid;
790 * Packet injection may want to control the sequence
791 * number, if we have no matching interface then we
792 * neither assign one ourselves nor ask the driver to.
794 if (unlikely(info->control.vif->type == NL80211_IFTYPE_MONITOR))
795 return TX_CONTINUE;
797 if (unlikely(ieee80211_is_ctl(hdr->frame_control)))
798 return TX_CONTINUE;
800 if (ieee80211_hdrlen(hdr->frame_control) < 24)
801 return TX_CONTINUE;
804 * Anything but QoS data that has a sequence number field
805 * (is long enough) gets a sequence number from the global
806 * counter.
808 if (!ieee80211_is_data_qos(hdr->frame_control)) {
809 /* driver should assign sequence number */
810 info->flags |= IEEE80211_TX_CTL_ASSIGN_SEQ;
811 /* for pure STA mode without beacons, we can do it */
812 hdr->seq_ctrl = cpu_to_le16(tx->sdata->sequence_number);
813 tx->sdata->sequence_number += 0x10;
814 return TX_CONTINUE;
818 * This should be true for injected/management frames only, for
819 * management frames we have set the IEEE80211_TX_CTL_ASSIGN_SEQ
820 * above since they are not QoS-data frames.
822 if (!tx->sta)
823 return TX_CONTINUE;
825 /* include per-STA, per-TID sequence counter */
827 qc = ieee80211_get_qos_ctl(hdr);
828 tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
829 seq = &tx->sta->tid_seq[tid];
831 hdr->seq_ctrl = cpu_to_le16(*seq);
833 /* Increase the sequence number. */
834 *seq = (*seq + 0x10) & IEEE80211_SCTL_SEQ;
836 return TX_CONTINUE;
839 static int ieee80211_fragment(struct ieee80211_local *local,
840 struct sk_buff *skb, int hdrlen,
841 int frag_threshold)
843 struct sk_buff *tail = skb, *tmp;
844 int per_fragm = frag_threshold - hdrlen - FCS_LEN;
845 int pos = hdrlen + per_fragm;
846 int rem = skb->len - hdrlen - per_fragm;
848 if (WARN_ON(rem < 0))
849 return -EINVAL;
851 while (rem) {
852 int fraglen = per_fragm;
854 if (fraglen > rem)
855 fraglen = rem;
856 rem -= fraglen;
857 tmp = dev_alloc_skb(local->tx_headroom +
858 frag_threshold +
859 IEEE80211_ENCRYPT_HEADROOM +
860 IEEE80211_ENCRYPT_TAILROOM);
861 if (!tmp)
862 return -ENOMEM;
863 tail->next = tmp;
864 tail = tmp;
865 skb_reserve(tmp, local->tx_headroom +
866 IEEE80211_ENCRYPT_HEADROOM);
867 /* copy control information */
868 memcpy(tmp->cb, skb->cb, sizeof(tmp->cb));
869 skb_copy_queue_mapping(tmp, skb);
870 tmp->priority = skb->priority;
871 tmp->dev = skb->dev;
873 /* copy header and data */
874 memcpy(skb_put(tmp, hdrlen), skb->data, hdrlen);
875 memcpy(skb_put(tmp, fraglen), skb->data + pos, fraglen);
877 pos += fraglen;
880 skb->len = hdrlen + per_fragm;
881 return 0;
884 static ieee80211_tx_result debug_noinline
885 ieee80211_tx_h_fragment(struct ieee80211_tx_data *tx)
887 struct sk_buff *skb = tx->skb;
888 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
889 struct ieee80211_hdr *hdr = (void *)skb->data;
890 int frag_threshold = tx->local->hw.wiphy->frag_threshold;
891 int hdrlen;
892 int fragnum;
894 if (!(tx->flags & IEEE80211_TX_FRAGMENTED))
895 return TX_CONTINUE;
898 * Warn when submitting a fragmented A-MPDU frame and drop it.
899 * This scenario is handled in ieee80211_tx_prepare but extra
900 * caution taken here as fragmented ampdu may cause Tx stop.
902 if (WARN_ON(info->flags & IEEE80211_TX_CTL_AMPDU))
903 return TX_DROP;
905 hdrlen = ieee80211_hdrlen(hdr->frame_control);
907 /* internal error, why is TX_FRAGMENTED set? */
908 if (WARN_ON(skb->len + FCS_LEN <= frag_threshold))
909 return TX_DROP;
912 * Now fragment the frame. This will allocate all the fragments and
913 * chain them (using skb as the first fragment) to skb->next.
914 * During transmission, we will remove the successfully transmitted
915 * fragments from this list. When the low-level driver rejects one
916 * of the fragments then we will simply pretend to accept the skb
917 * but store it away as pending.
919 if (ieee80211_fragment(tx->local, skb, hdrlen, frag_threshold))
920 return TX_DROP;
922 /* update duration/seq/flags of fragments */
923 fragnum = 0;
924 do {
925 int next_len;
926 const __le16 morefrags = cpu_to_le16(IEEE80211_FCTL_MOREFRAGS);
928 hdr = (void *)skb->data;
929 info = IEEE80211_SKB_CB(skb);
931 if (skb->next) {
932 hdr->frame_control |= morefrags;
933 next_len = skb->next->len;
935 * No multi-rate retries for fragmented frames, that
936 * would completely throw off the NAV at other STAs.
938 info->control.rates[1].idx = -1;
939 info->control.rates[2].idx = -1;
940 info->control.rates[3].idx = -1;
941 info->control.rates[4].idx = -1;
942 BUILD_BUG_ON(IEEE80211_TX_MAX_RATES != 5);
943 info->flags &= ~IEEE80211_TX_CTL_RATE_CTRL_PROBE;
944 } else {
945 hdr->frame_control &= ~morefrags;
946 next_len = 0;
948 hdr->duration_id = ieee80211_duration(tx, 0, next_len);
949 hdr->seq_ctrl |= cpu_to_le16(fragnum & IEEE80211_SCTL_FRAG);
950 fragnum++;
951 } while ((skb = skb->next));
953 return TX_CONTINUE;
956 static ieee80211_tx_result debug_noinline
957 ieee80211_tx_h_stats(struct ieee80211_tx_data *tx)
959 struct sk_buff *skb = tx->skb;
961 if (!tx->sta)
962 return TX_CONTINUE;
964 tx->sta->tx_packets++;
965 do {
966 tx->sta->tx_fragments++;
967 tx->sta->tx_bytes += skb->len;
968 } while ((skb = skb->next));
970 return TX_CONTINUE;
973 static ieee80211_tx_result debug_noinline
974 ieee80211_tx_h_encrypt(struct ieee80211_tx_data *tx)
976 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
978 if (!tx->key)
979 return TX_CONTINUE;
981 switch (tx->key->conf.cipher) {
982 case WLAN_CIPHER_SUITE_WEP40:
983 case WLAN_CIPHER_SUITE_WEP104:
984 return ieee80211_crypto_wep_encrypt(tx);
985 case WLAN_CIPHER_SUITE_TKIP:
986 return ieee80211_crypto_tkip_encrypt(tx);
987 case WLAN_CIPHER_SUITE_CCMP:
988 return ieee80211_crypto_ccmp_encrypt(tx);
989 case WLAN_CIPHER_SUITE_AES_CMAC:
990 return ieee80211_crypto_aes_cmac_encrypt(tx);
991 default:
992 /* handle hw-only algorithm */
993 if (info->control.hw_key) {
994 ieee80211_tx_set_protected(tx);
995 return TX_CONTINUE;
997 break;
1001 return TX_DROP;
1004 static ieee80211_tx_result debug_noinline
1005 ieee80211_tx_h_calculate_duration(struct ieee80211_tx_data *tx)
1007 struct sk_buff *skb = tx->skb;
1008 struct ieee80211_hdr *hdr;
1009 int next_len;
1010 bool group_addr;
1012 do {
1013 hdr = (void *) skb->data;
1014 if (unlikely(ieee80211_is_pspoll(hdr->frame_control)))
1015 break; /* must not overwrite AID */
1016 next_len = skb->next ? skb->next->len : 0;
1017 group_addr = is_multicast_ether_addr(hdr->addr1);
1019 hdr->duration_id =
1020 ieee80211_duration(tx, group_addr, next_len);
1021 } while ((skb = skb->next));
1023 return TX_CONTINUE;
1026 /* actual transmit path */
1029 * deal with packet injection down monitor interface
1030 * with Radiotap Header -- only called for monitor mode interface
1032 static bool __ieee80211_parse_tx_radiotap(struct ieee80211_tx_data *tx,
1033 struct sk_buff *skb)
1036 * this is the moment to interpret and discard the radiotap header that
1037 * must be at the start of the packet injected in Monitor mode
1039 * Need to take some care with endian-ness since radiotap
1040 * args are little-endian
1043 struct ieee80211_radiotap_iterator iterator;
1044 struct ieee80211_radiotap_header *rthdr =
1045 (struct ieee80211_radiotap_header *) skb->data;
1046 bool hw_frag;
1047 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1048 int ret = ieee80211_radiotap_iterator_init(&iterator, rthdr, skb->len,
1049 NULL);
1051 info->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT;
1052 tx->flags &= ~IEEE80211_TX_FRAGMENTED;
1054 /* packet is fragmented in HW if we have a non-NULL driver callback */
1055 hw_frag = (tx->local->ops->set_frag_threshold != NULL);
1058 * for every radiotap entry that is present
1059 * (ieee80211_radiotap_iterator_next returns -ENOENT when no more
1060 * entries present, or -EINVAL on error)
1063 while (!ret) {
1064 ret = ieee80211_radiotap_iterator_next(&iterator);
1066 if (ret)
1067 continue;
1069 /* see if this argument is something we can use */
1070 switch (iterator.this_arg_index) {
1072 * You must take care when dereferencing iterator.this_arg
1073 * for multibyte types... the pointer is not aligned. Use
1074 * get_unaligned((type *)iterator.this_arg) to dereference
1075 * iterator.this_arg for type "type" safely on all arches.
1077 case IEEE80211_RADIOTAP_FLAGS:
1078 if (*iterator.this_arg & IEEE80211_RADIOTAP_F_FCS) {
1080 * this indicates that the skb we have been
1081 * handed has the 32-bit FCS CRC at the end...
1082 * we should react to that by snipping it off
1083 * because it will be recomputed and added
1084 * on transmission
1086 if (skb->len < (iterator._max_length + FCS_LEN))
1087 return false;
1089 skb_trim(skb, skb->len - FCS_LEN);
1091 if (*iterator.this_arg & IEEE80211_RADIOTAP_F_WEP)
1092 info->flags &= ~IEEE80211_TX_INTFL_DONT_ENCRYPT;
1093 if ((*iterator.this_arg & IEEE80211_RADIOTAP_F_FRAG) &&
1094 !hw_frag)
1095 tx->flags |= IEEE80211_TX_FRAGMENTED;
1096 break;
1099 * Please update the file
1100 * Documentation/networking/mac80211-injection.txt
1101 * when parsing new fields here.
1104 default:
1105 break;
1109 if (ret != -ENOENT) /* ie, if we didn't simply run out of fields */
1110 return false;
1113 * remove the radiotap header
1114 * iterator->_max_length was sanity-checked against
1115 * skb->len by iterator init
1117 skb_pull(skb, iterator._max_length);
1119 return true;
1122 static bool ieee80211_tx_prep_agg(struct ieee80211_tx_data *tx,
1123 struct sk_buff *skb,
1124 struct ieee80211_tx_info *info,
1125 struct tid_ampdu_tx *tid_tx,
1126 int tid)
1128 bool queued = false;
1130 if (test_bit(HT_AGG_STATE_OPERATIONAL, &tid_tx->state)) {
1131 info->flags |= IEEE80211_TX_CTL_AMPDU;
1132 } else if (test_bit(HT_AGG_STATE_WANT_START, &tid_tx->state)) {
1134 * nothing -- this aggregation session is being started
1135 * but that might still fail with the driver
1137 } else {
1138 spin_lock(&tx->sta->lock);
1140 * Need to re-check now, because we may get here
1142 * 1) in the window during which the setup is actually
1143 * already done, but not marked yet because not all
1144 * packets are spliced over to the driver pending
1145 * queue yet -- if this happened we acquire the lock
1146 * either before or after the splice happens, but
1147 * need to recheck which of these cases happened.
1149 * 2) during session teardown, if the OPERATIONAL bit
1150 * was cleared due to the teardown but the pointer
1151 * hasn't been assigned NULL yet (or we loaded it
1152 * before it was assigned) -- in this case it may
1153 * now be NULL which means we should just let the
1154 * packet pass through because splicing the frames
1155 * back is already done.
1157 tid_tx = rcu_dereference_protected_tid_tx(tx->sta, tid);
1159 if (!tid_tx) {
1160 /* do nothing, let packet pass through */
1161 } else if (test_bit(HT_AGG_STATE_OPERATIONAL, &tid_tx->state)) {
1162 info->flags |= IEEE80211_TX_CTL_AMPDU;
1163 } else {
1164 queued = true;
1165 info->control.vif = &tx->sdata->vif;
1166 info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING;
1167 __skb_queue_tail(&tid_tx->pending, skb);
1169 spin_unlock(&tx->sta->lock);
1172 return queued;
1176 * initialises @tx
1178 static ieee80211_tx_result
1179 ieee80211_tx_prepare(struct ieee80211_sub_if_data *sdata,
1180 struct ieee80211_tx_data *tx,
1181 struct sk_buff *skb)
1183 struct ieee80211_local *local = sdata->local;
1184 struct ieee80211_hdr *hdr;
1185 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1186 int hdrlen, tid;
1187 u8 *qc;
1189 memset(tx, 0, sizeof(*tx));
1190 tx->skb = skb;
1191 tx->local = local;
1192 tx->sdata = sdata;
1193 tx->channel = local->hw.conf.channel;
1195 * Set this flag (used below to indicate "automatic fragmentation"),
1196 * it will be cleared/left by radiotap as desired.
1197 * Only valid when fragmentation is done by the stack.
1199 if (!local->ops->set_frag_threshold)
1200 tx->flags |= IEEE80211_TX_FRAGMENTED;
1202 /* process and remove the injection radiotap header */
1203 if (unlikely(info->flags & IEEE80211_TX_INTFL_HAS_RADIOTAP)) {
1204 if (!__ieee80211_parse_tx_radiotap(tx, skb))
1205 return TX_DROP;
1208 * __ieee80211_parse_tx_radiotap has now removed
1209 * the radiotap header that was present and pre-filled
1210 * 'tx' with tx control information.
1212 info->flags &= ~IEEE80211_TX_INTFL_HAS_RADIOTAP;
1216 * If this flag is set to true anywhere, and we get here,
1217 * we are doing the needed processing, so remove the flag
1218 * now.
1220 info->flags &= ~IEEE80211_TX_INTFL_NEED_TXPROCESSING;
1222 hdr = (struct ieee80211_hdr *) skb->data;
1224 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN) {
1225 tx->sta = rcu_dereference(sdata->u.vlan.sta);
1226 if (!tx->sta && sdata->dev->ieee80211_ptr->use_4addr)
1227 return TX_DROP;
1228 } else if (info->flags & IEEE80211_TX_CTL_INJECTED) {
1229 tx->sta = sta_info_get_bss(sdata, hdr->addr1);
1231 if (!tx->sta)
1232 tx->sta = sta_info_get(sdata, hdr->addr1);
1234 if (tx->sta && ieee80211_is_data_qos(hdr->frame_control) &&
1235 (local->hw.flags & IEEE80211_HW_AMPDU_AGGREGATION)) {
1236 struct tid_ampdu_tx *tid_tx;
1238 qc = ieee80211_get_qos_ctl(hdr);
1239 tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
1241 tid_tx = rcu_dereference(tx->sta->ampdu_mlme.tid_tx[tid]);
1242 if (tid_tx) {
1243 bool queued;
1245 queued = ieee80211_tx_prep_agg(tx, skb, info,
1246 tid_tx, tid);
1248 if (unlikely(queued))
1249 return TX_QUEUED;
1253 if (is_multicast_ether_addr(hdr->addr1)) {
1254 tx->flags &= ~IEEE80211_TX_UNICAST;
1255 info->flags |= IEEE80211_TX_CTL_NO_ACK;
1256 } else {
1257 tx->flags |= IEEE80211_TX_UNICAST;
1258 if (unlikely(local->wifi_wme_noack_test))
1259 info->flags |= IEEE80211_TX_CTL_NO_ACK;
1260 else
1261 info->flags &= ~IEEE80211_TX_CTL_NO_ACK;
1264 if (tx->flags & IEEE80211_TX_FRAGMENTED) {
1265 if ((tx->flags & IEEE80211_TX_UNICAST) &&
1266 skb->len + FCS_LEN > local->hw.wiphy->frag_threshold &&
1267 !(info->flags & IEEE80211_TX_CTL_AMPDU))
1268 tx->flags |= IEEE80211_TX_FRAGMENTED;
1269 else
1270 tx->flags &= ~IEEE80211_TX_FRAGMENTED;
1273 if (!tx->sta)
1274 info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
1275 else if (test_and_clear_sta_flags(tx->sta, WLAN_STA_CLEAR_PS_FILT))
1276 info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
1278 hdrlen = ieee80211_hdrlen(hdr->frame_control);
1279 if (skb->len > hdrlen + sizeof(rfc1042_header) + 2) {
1280 u8 *pos = &skb->data[hdrlen + sizeof(rfc1042_header)];
1281 tx->ethertype = (pos[0] << 8) | pos[1];
1283 info->flags |= IEEE80211_TX_CTL_FIRST_FRAGMENT;
1285 return TX_CONTINUE;
1289 * Returns false if the frame couldn't be transmitted but was queued instead.
1291 static bool __ieee80211_tx(struct ieee80211_local *local, struct sk_buff **skbp,
1292 struct sta_info *sta, bool txpending)
1294 struct sk_buff *skb = *skbp, *next;
1295 struct ieee80211_tx_info *info;
1296 struct ieee80211_sub_if_data *sdata;
1297 unsigned long flags;
1298 int len;
1299 bool fragm = false;
1301 while (skb) {
1302 int q = skb_get_queue_mapping(skb);
1303 __le16 fc;
1305 spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
1306 if (local->queue_stop_reasons[q] ||
1307 (!txpending && !skb_queue_empty(&local->pending[q]))) {
1309 * Since queue is stopped, queue up frames for later
1310 * transmission from the tx-pending tasklet when the
1311 * queue is woken again.
1314 do {
1315 next = skb->next;
1316 skb->next = NULL;
1318 * NB: If txpending is true, next must already
1319 * be NULL since we must've gone through this
1320 * loop before already; therefore we can just
1321 * queue the frame to the head without worrying
1322 * about reordering of fragments.
1324 if (unlikely(txpending))
1325 __skb_queue_head(&local->pending[q],
1326 skb);
1327 else
1328 __skb_queue_tail(&local->pending[q],
1329 skb);
1330 } while ((skb = next));
1332 spin_unlock_irqrestore(&local->queue_stop_reason_lock,
1333 flags);
1334 return false;
1336 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
1338 info = IEEE80211_SKB_CB(skb);
1340 if (fragm)
1341 info->flags &= ~(IEEE80211_TX_CTL_CLEAR_PS_FILT |
1342 IEEE80211_TX_CTL_FIRST_FRAGMENT);
1344 next = skb->next;
1345 len = skb->len;
1347 if (next)
1348 info->flags |= IEEE80211_TX_CTL_MORE_FRAMES;
1350 sdata = vif_to_sdata(info->control.vif);
1352 switch (sdata->vif.type) {
1353 case NL80211_IFTYPE_MONITOR:
1354 info->control.vif = NULL;
1355 break;
1356 case NL80211_IFTYPE_AP_VLAN:
1357 info->control.vif = &container_of(sdata->bss,
1358 struct ieee80211_sub_if_data, u.ap)->vif;
1359 break;
1360 default:
1361 /* keep */
1362 break;
1365 if (sta && sta->uploaded)
1366 info->control.sta = &sta->sta;
1367 else
1368 info->control.sta = NULL;
1370 fc = ((struct ieee80211_hdr *)skb->data)->frame_control;
1371 drv_tx(local, skb);
1373 ieee80211_tpt_led_trig_tx(local, fc, len);
1374 *skbp = skb = next;
1375 ieee80211_led_tx(local, 1);
1376 fragm = true;
1379 return true;
1383 * Invoke TX handlers, return 0 on success and non-zero if the
1384 * frame was dropped or queued.
1386 static int invoke_tx_handlers(struct ieee80211_tx_data *tx)
1388 struct sk_buff *skb = tx->skb;
1389 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1390 ieee80211_tx_result res = TX_DROP;
1392 #define CALL_TXH(txh) \
1393 do { \
1394 res = txh(tx); \
1395 if (res != TX_CONTINUE) \
1396 goto txh_done; \
1397 } while (0)
1399 CALL_TXH(ieee80211_tx_h_dynamic_ps);
1400 CALL_TXH(ieee80211_tx_h_check_assoc);
1401 CALL_TXH(ieee80211_tx_h_ps_buf);
1402 CALL_TXH(ieee80211_tx_h_check_control_port_protocol);
1403 CALL_TXH(ieee80211_tx_h_select_key);
1404 if (!(tx->local->hw.flags & IEEE80211_HW_HAS_RATE_CONTROL))
1405 CALL_TXH(ieee80211_tx_h_rate_ctrl);
1407 if (unlikely(info->flags & IEEE80211_TX_INTFL_RETRANSMISSION))
1408 goto txh_done;
1410 CALL_TXH(ieee80211_tx_h_michael_mic_add);
1411 CALL_TXH(ieee80211_tx_h_sequence);
1412 CALL_TXH(ieee80211_tx_h_fragment);
1413 /* handlers after fragment must be aware of tx info fragmentation! */
1414 CALL_TXH(ieee80211_tx_h_stats);
1415 CALL_TXH(ieee80211_tx_h_encrypt);
1416 if (!(tx->local->hw.flags & IEEE80211_HW_HAS_RATE_CONTROL))
1417 CALL_TXH(ieee80211_tx_h_calculate_duration);
1418 #undef CALL_TXH
1420 txh_done:
1421 if (unlikely(res == TX_DROP)) {
1422 I802_DEBUG_INC(tx->local->tx_handlers_drop);
1423 while (skb) {
1424 struct sk_buff *next;
1426 next = skb->next;
1427 dev_kfree_skb(skb);
1428 skb = next;
1430 return -1;
1431 } else if (unlikely(res == TX_QUEUED)) {
1432 I802_DEBUG_INC(tx->local->tx_handlers_queued);
1433 return -1;
1436 return 0;
1440 * Returns false if the frame couldn't be transmitted but was queued instead.
1442 static bool ieee80211_tx(struct ieee80211_sub_if_data *sdata,
1443 struct sk_buff *skb, bool txpending)
1445 struct ieee80211_local *local = sdata->local;
1446 struct ieee80211_tx_data tx;
1447 ieee80211_tx_result res_prepare;
1448 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1449 bool result = true;
1451 if (unlikely(skb->len < 10)) {
1452 dev_kfree_skb(skb);
1453 return true;
1456 rcu_read_lock();
1458 /* initialises tx */
1459 res_prepare = ieee80211_tx_prepare(sdata, &tx, skb);
1461 if (unlikely(res_prepare == TX_DROP)) {
1462 dev_kfree_skb(skb);
1463 goto out;
1464 } else if (unlikely(res_prepare == TX_QUEUED)) {
1465 goto out;
1468 tx.channel = local->hw.conf.channel;
1469 info->band = tx.channel->band;
1471 if (!invoke_tx_handlers(&tx))
1472 result = __ieee80211_tx(local, &tx.skb, tx.sta, txpending);
1473 out:
1474 rcu_read_unlock();
1475 return result;
1478 /* device xmit handlers */
1480 static int ieee80211_skb_resize(struct ieee80211_sub_if_data *sdata,
1481 struct sk_buff *skb,
1482 int head_need, bool may_encrypt)
1484 struct ieee80211_local *local = sdata->local;
1485 int tail_need = 0;
1487 if (may_encrypt && sdata->crypto_tx_tailroom_needed_cnt) {
1488 tail_need = IEEE80211_ENCRYPT_TAILROOM;
1489 tail_need -= skb_tailroom(skb);
1490 tail_need = max_t(int, tail_need, 0);
1493 if (head_need || tail_need) {
1494 /* Sorry. Can't account for this any more */
1495 skb_orphan(skb);
1498 if (skb_cloned(skb))
1499 I802_DEBUG_INC(local->tx_expand_skb_head_cloned);
1500 else if (head_need || tail_need)
1501 I802_DEBUG_INC(local->tx_expand_skb_head);
1502 else
1503 return 0;
1505 if (pskb_expand_head(skb, head_need, tail_need, GFP_ATOMIC)) {
1506 wiphy_debug(local->hw.wiphy,
1507 "failed to reallocate TX buffer\n");
1508 return -ENOMEM;
1511 /* update truesize too */
1512 skb->truesize += head_need + tail_need;
1514 return 0;
1517 static void ieee80211_xmit(struct ieee80211_sub_if_data *sdata,
1518 struct sk_buff *skb)
1520 struct ieee80211_local *local = sdata->local;
1521 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1522 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
1523 struct ieee80211_sub_if_data *tmp_sdata;
1524 int headroom;
1525 bool may_encrypt;
1527 rcu_read_lock();
1529 if (unlikely(sdata->vif.type == NL80211_IFTYPE_MONITOR)) {
1530 int hdrlen;
1531 u16 len_rthdr;
1533 info->flags |= IEEE80211_TX_CTL_INJECTED |
1534 IEEE80211_TX_INTFL_HAS_RADIOTAP;
1536 len_rthdr = ieee80211_get_radiotap_len(skb->data);
1537 hdr = (struct ieee80211_hdr *)(skb->data + len_rthdr);
1538 hdrlen = ieee80211_hdrlen(hdr->frame_control);
1540 /* check the header is complete in the frame */
1541 if (likely(skb->len >= len_rthdr + hdrlen)) {
1543 * We process outgoing injected frames that have a
1544 * local address we handle as though they are our
1545 * own frames.
1546 * This code here isn't entirely correct, the local
1547 * MAC address is not necessarily enough to find
1548 * the interface to use; for that proper VLAN/WDS
1549 * support we will need a different mechanism.
1552 list_for_each_entry_rcu(tmp_sdata, &local->interfaces,
1553 list) {
1554 if (!ieee80211_sdata_running(tmp_sdata))
1555 continue;
1556 if (tmp_sdata->vif.type ==
1557 NL80211_IFTYPE_MONITOR ||
1558 tmp_sdata->vif.type ==
1559 NL80211_IFTYPE_AP_VLAN ||
1560 tmp_sdata->vif.type ==
1561 NL80211_IFTYPE_WDS)
1562 continue;
1563 if (compare_ether_addr(tmp_sdata->vif.addr,
1564 hdr->addr2) == 0) {
1565 sdata = tmp_sdata;
1566 break;
1572 may_encrypt = !(info->flags & IEEE80211_TX_INTFL_DONT_ENCRYPT);
1574 headroom = local->tx_headroom;
1575 if (may_encrypt)
1576 headroom += IEEE80211_ENCRYPT_HEADROOM;
1577 headroom -= skb_headroom(skb);
1578 headroom = max_t(int, 0, headroom);
1580 if (ieee80211_skb_resize(sdata, skb, headroom, may_encrypt)) {
1581 dev_kfree_skb(skb);
1582 rcu_read_unlock();
1583 return;
1586 hdr = (struct ieee80211_hdr *) skb->data;
1587 info->control.vif = &sdata->vif;
1589 if (ieee80211_vif_is_mesh(&sdata->vif) &&
1590 ieee80211_is_data(hdr->frame_control) &&
1591 !is_multicast_ether_addr(hdr->addr1))
1592 if (mesh_nexthop_lookup(skb, sdata)) {
1593 /* skb queued: don't free */
1594 rcu_read_unlock();
1595 return;
1598 ieee80211_set_qos_hdr(local, skb);
1599 ieee80211_tx(sdata, skb, false);
1600 rcu_read_unlock();
1603 netdev_tx_t ieee80211_monitor_start_xmit(struct sk_buff *skb,
1604 struct net_device *dev)
1606 struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
1607 struct ieee80211_channel *chan = local->hw.conf.channel;
1608 struct ieee80211_radiotap_header *prthdr =
1609 (struct ieee80211_radiotap_header *)skb->data;
1610 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1611 struct ieee80211_hdr *hdr;
1612 u16 len_rthdr;
1613 u8 *payload;
1616 * Frame injection is not allowed if beaconing is not allowed
1617 * or if we need radar detection. Beaconing is usually not allowed when
1618 * the mode or operation (Adhoc, AP, Mesh) does not support DFS.
1619 * Passive scan is also used in world regulatory domains where
1620 * your country is not known and as such it should be treated as
1621 * NO TX unless the channel is explicitly allowed in which case
1622 * your current regulatory domain would not have the passive scan
1623 * flag.
1625 * Since AP mode uses monitor interfaces to inject/TX management
1626 * frames we can make AP mode the exception to this rule once it
1627 * supports radar detection as its implementation can deal with
1628 * radar detection by itself. We can do that later by adding a
1629 * monitor flag interfaces used for AP support.
1631 if ((chan->flags & (IEEE80211_CHAN_NO_IBSS | IEEE80211_CHAN_RADAR |
1632 IEEE80211_CHAN_PASSIVE_SCAN)))
1633 goto fail;
1635 /* check for not even having the fixed radiotap header part */
1636 if (unlikely(skb->len < sizeof(struct ieee80211_radiotap_header)))
1637 goto fail; /* too short to be possibly valid */
1639 /* is it a header version we can trust to find length from? */
1640 if (unlikely(prthdr->it_version))
1641 goto fail; /* only version 0 is supported */
1643 /* then there must be a radiotap header with a length we can use */
1644 len_rthdr = ieee80211_get_radiotap_len(skb->data);
1646 /* does the skb contain enough to deliver on the alleged length? */
1647 if (unlikely(skb->len < len_rthdr))
1648 goto fail; /* skb too short for claimed rt header extent */
1651 * fix up the pointers accounting for the radiotap
1652 * header still being in there. We are being given
1653 * a precooked IEEE80211 header so no need for
1654 * normal processing
1656 skb_set_mac_header(skb, len_rthdr);
1658 * these are just fixed to the end of the rt area since we
1659 * don't have any better information and at this point, nobody cares
1661 skb_set_network_header(skb, len_rthdr);
1662 skb_set_transport_header(skb, len_rthdr);
1665 * Initialize skb->protocol if the injected frame is a data frame
1666 * carrying a rfc1042 header
1668 if (skb->len > len_rthdr + 2) {
1669 hdr = (struct ieee80211_hdr *)(skb->data + len_rthdr);
1670 if (ieee80211_is_data(hdr->frame_control) &&
1671 skb->len >= len_rthdr +
1672 ieee80211_hdrlen(hdr->frame_control) +
1673 sizeof(rfc1042_header) + 2) {
1674 payload = (u8 *)hdr +
1675 ieee80211_hdrlen(hdr->frame_control);
1676 if (compare_ether_addr(payload, rfc1042_header) == 0)
1677 skb->protocol = cpu_to_be16((payload[6] << 8) |
1678 payload[7]);
1682 memset(info, 0, sizeof(*info));
1684 info->flags |= IEEE80211_TX_CTL_REQ_TX_STATUS;
1686 /* pass the radiotap header up to xmit */
1687 ieee80211_xmit(IEEE80211_DEV_TO_SUB_IF(dev), skb);
1688 return NETDEV_TX_OK;
1690 fail:
1691 dev_kfree_skb(skb);
1692 return NETDEV_TX_OK; /* meaning, we dealt with the skb */
1696 * ieee80211_subif_start_xmit - netif start_xmit function for Ethernet-type
1697 * subinterfaces (wlan#, WDS, and VLAN interfaces)
1698 * @skb: packet to be sent
1699 * @dev: incoming interface
1701 * Returns: 0 on success (and frees skb in this case) or 1 on failure (skb will
1702 * not be freed, and caller is responsible for either retrying later or freeing
1703 * skb).
1705 * This function takes in an Ethernet header and encapsulates it with suitable
1706 * IEEE 802.11 header based on which interface the packet is coming in. The
1707 * encapsulated packet will then be passed to master interface, wlan#.11, for
1708 * transmission (through low-level driver).
1710 netdev_tx_t ieee80211_subif_start_xmit(struct sk_buff *skb,
1711 struct net_device *dev)
1713 struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
1714 struct ieee80211_local *local = sdata->local;
1715 struct ieee80211_tx_info *info;
1716 int ret = NETDEV_TX_BUSY, head_need;
1717 u16 ethertype, hdrlen, meshhdrlen = 0;
1718 __le16 fc;
1719 struct ieee80211_hdr hdr;
1720 struct ieee80211s_hdr mesh_hdr __maybe_unused;
1721 struct mesh_path __maybe_unused *mppath = NULL;
1722 const u8 *encaps_data;
1723 int encaps_len, skip_header_bytes;
1724 int nh_pos, h_pos;
1725 struct sta_info *sta = NULL;
1726 u32 sta_flags = 0;
1727 struct sk_buff *tmp_skb;
1729 if (unlikely(skb->len < ETH_HLEN)) {
1730 ret = NETDEV_TX_OK;
1731 goto fail;
1734 /* convert Ethernet header to proper 802.11 header (based on
1735 * operation mode) */
1736 ethertype = (skb->data[12] << 8) | skb->data[13];
1737 fc = cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_DATA);
1739 switch (sdata->vif.type) {
1740 case NL80211_IFTYPE_AP_VLAN:
1741 rcu_read_lock();
1742 sta = rcu_dereference(sdata->u.vlan.sta);
1743 if (sta) {
1744 fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS | IEEE80211_FCTL_TODS);
1745 /* RA TA DA SA */
1746 memcpy(hdr.addr1, sta->sta.addr, ETH_ALEN);
1747 memcpy(hdr.addr2, sdata->vif.addr, ETH_ALEN);
1748 memcpy(hdr.addr3, skb->data, ETH_ALEN);
1749 memcpy(hdr.addr4, skb->data + ETH_ALEN, ETH_ALEN);
1750 hdrlen = 30;
1751 sta_flags = get_sta_flags(sta);
1753 rcu_read_unlock();
1754 if (sta)
1755 break;
1756 /* fall through */
1757 case NL80211_IFTYPE_AP:
1758 fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS);
1759 /* DA BSSID SA */
1760 memcpy(hdr.addr1, skb->data, ETH_ALEN);
1761 memcpy(hdr.addr2, sdata->vif.addr, ETH_ALEN);
1762 memcpy(hdr.addr3, skb->data + ETH_ALEN, ETH_ALEN);
1763 hdrlen = 24;
1764 break;
1765 case NL80211_IFTYPE_WDS:
1766 fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS | IEEE80211_FCTL_TODS);
1767 /* RA TA DA SA */
1768 memcpy(hdr.addr1, sdata->u.wds.remote_addr, ETH_ALEN);
1769 memcpy(hdr.addr2, sdata->vif.addr, ETH_ALEN);
1770 memcpy(hdr.addr3, skb->data, ETH_ALEN);
1771 memcpy(hdr.addr4, skb->data + ETH_ALEN, ETH_ALEN);
1772 hdrlen = 30;
1773 break;
1774 #ifdef CONFIG_MAC80211_MESH
1775 case NL80211_IFTYPE_MESH_POINT:
1776 if (!sdata->u.mesh.mshcfg.dot11MeshTTL) {
1777 /* Do not send frames with mesh_ttl == 0 */
1778 sdata->u.mesh.mshstats.dropped_frames_ttl++;
1779 ret = NETDEV_TX_OK;
1780 goto fail;
1782 rcu_read_lock();
1783 if (!is_multicast_ether_addr(skb->data))
1784 mppath = mpp_path_lookup(skb->data, sdata);
1787 * Use address extension if it is a packet from
1788 * another interface or if we know the destination
1789 * is being proxied by a portal (i.e. portal address
1790 * differs from proxied address)
1792 if (compare_ether_addr(sdata->vif.addr,
1793 skb->data + ETH_ALEN) == 0 &&
1794 !(mppath && compare_ether_addr(mppath->mpp, skb->data))) {
1795 hdrlen = ieee80211_fill_mesh_addresses(&hdr, &fc,
1796 skb->data, skb->data + ETH_ALEN);
1797 rcu_read_unlock();
1798 meshhdrlen = ieee80211_new_mesh_header(&mesh_hdr,
1799 sdata, NULL, NULL);
1800 } else {
1801 int is_mesh_mcast = 1;
1802 const u8 *mesh_da;
1804 if (is_multicast_ether_addr(skb->data))
1805 /* DA TA mSA AE:SA */
1806 mesh_da = skb->data;
1807 else {
1808 static const u8 bcast[ETH_ALEN] =
1809 { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
1810 if (mppath) {
1811 /* RA TA mDA mSA AE:DA SA */
1812 mesh_da = mppath->mpp;
1813 is_mesh_mcast = 0;
1814 } else {
1815 /* DA TA mSA AE:SA */
1816 mesh_da = bcast;
1819 hdrlen = ieee80211_fill_mesh_addresses(&hdr, &fc,
1820 mesh_da, sdata->vif.addr);
1821 rcu_read_unlock();
1822 if (is_mesh_mcast)
1823 meshhdrlen =
1824 ieee80211_new_mesh_header(&mesh_hdr,
1825 sdata,
1826 skb->data + ETH_ALEN,
1827 NULL);
1828 else
1829 meshhdrlen =
1830 ieee80211_new_mesh_header(&mesh_hdr,
1831 sdata,
1832 skb->data,
1833 skb->data + ETH_ALEN);
1836 break;
1837 #endif
1838 case NL80211_IFTYPE_STATION:
1839 memcpy(hdr.addr1, sdata->u.mgd.bssid, ETH_ALEN);
1840 if (sdata->u.mgd.use_4addr &&
1841 cpu_to_be16(ethertype) != sdata->control_port_protocol) {
1842 fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS | IEEE80211_FCTL_TODS);
1843 /* RA TA DA SA */
1844 memcpy(hdr.addr2, sdata->vif.addr, ETH_ALEN);
1845 memcpy(hdr.addr3, skb->data, ETH_ALEN);
1846 memcpy(hdr.addr4, skb->data + ETH_ALEN, ETH_ALEN);
1847 hdrlen = 30;
1848 } else {
1849 fc |= cpu_to_le16(IEEE80211_FCTL_TODS);
1850 /* BSSID SA DA */
1851 memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
1852 memcpy(hdr.addr3, skb->data, ETH_ALEN);
1853 hdrlen = 24;
1855 break;
1856 case NL80211_IFTYPE_ADHOC:
1857 /* DA SA BSSID */
1858 memcpy(hdr.addr1, skb->data, ETH_ALEN);
1859 memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
1860 memcpy(hdr.addr3, sdata->u.ibss.bssid, ETH_ALEN);
1861 hdrlen = 24;
1862 break;
1863 default:
1864 ret = NETDEV_TX_OK;
1865 goto fail;
1869 * There's no need to try to look up the destination
1870 * if it is a multicast address (which can only happen
1871 * in AP mode)
1873 if (!is_multicast_ether_addr(hdr.addr1)) {
1874 rcu_read_lock();
1875 sta = sta_info_get(sdata, hdr.addr1);
1876 if (sta)
1877 sta_flags = get_sta_flags(sta);
1878 rcu_read_unlock();
1881 /* receiver and we are QoS enabled, use a QoS type frame */
1882 if ((sta_flags & WLAN_STA_WME) && local->hw.queues >= 4) {
1883 fc |= cpu_to_le16(IEEE80211_STYPE_QOS_DATA);
1884 hdrlen += 2;
1888 * Drop unicast frames to unauthorised stations unless they are
1889 * EAPOL frames from the local station.
1891 if (!ieee80211_vif_is_mesh(&sdata->vif) &&
1892 unlikely(!is_multicast_ether_addr(hdr.addr1) &&
1893 !(sta_flags & WLAN_STA_AUTHORIZED) &&
1894 !(cpu_to_be16(ethertype) == sdata->control_port_protocol &&
1895 compare_ether_addr(sdata->vif.addr,
1896 skb->data + ETH_ALEN) == 0))) {
1897 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
1898 if (net_ratelimit())
1899 printk(KERN_DEBUG "%s: dropped frame to %pM"
1900 " (unauthorized port)\n", dev->name,
1901 hdr.addr1);
1902 #endif
1904 I802_DEBUG_INC(local->tx_handlers_drop_unauth_port);
1906 ret = NETDEV_TX_OK;
1907 goto fail;
1911 * If the skb is shared we need to obtain our own copy.
1913 if (skb_shared(skb)) {
1914 tmp_skb = skb;
1915 skb = skb_clone(skb, GFP_ATOMIC);
1916 kfree_skb(tmp_skb);
1918 if (!skb) {
1919 ret = NETDEV_TX_OK;
1920 goto fail;
1924 hdr.frame_control = fc;
1925 hdr.duration_id = 0;
1926 hdr.seq_ctrl = 0;
1928 skip_header_bytes = ETH_HLEN;
1929 if (ethertype == ETH_P_AARP || ethertype == ETH_P_IPX) {
1930 encaps_data = bridge_tunnel_header;
1931 encaps_len = sizeof(bridge_tunnel_header);
1932 skip_header_bytes -= 2;
1933 } else if (ethertype >= 0x600) {
1934 encaps_data = rfc1042_header;
1935 encaps_len = sizeof(rfc1042_header);
1936 skip_header_bytes -= 2;
1937 } else {
1938 encaps_data = NULL;
1939 encaps_len = 0;
1942 nh_pos = skb_network_header(skb) - skb->data;
1943 h_pos = skb_transport_header(skb) - skb->data;
1945 skb_pull(skb, skip_header_bytes);
1946 nh_pos -= skip_header_bytes;
1947 h_pos -= skip_header_bytes;
1949 head_need = hdrlen + encaps_len + meshhdrlen - skb_headroom(skb);
1952 * So we need to modify the skb header and hence need a copy of
1953 * that. The head_need variable above doesn't, so far, include
1954 * the needed header space that we don't need right away. If we
1955 * can, then we don't reallocate right now but only after the
1956 * frame arrives at the master device (if it does...)
1958 * If we cannot, however, then we will reallocate to include all
1959 * the ever needed space. Also, if we need to reallocate it anyway,
1960 * make it big enough for everything we may ever need.
1963 if (head_need > 0 || skb_cloned(skb)) {
1964 head_need += IEEE80211_ENCRYPT_HEADROOM;
1965 head_need += local->tx_headroom;
1966 head_need = max_t(int, 0, head_need);
1967 if (ieee80211_skb_resize(sdata, skb, head_need, true))
1968 goto fail;
1971 if (encaps_data) {
1972 memcpy(skb_push(skb, encaps_len), encaps_data, encaps_len);
1973 nh_pos += encaps_len;
1974 h_pos += encaps_len;
1977 #ifdef CONFIG_MAC80211_MESH
1978 if (meshhdrlen > 0) {
1979 memcpy(skb_push(skb, meshhdrlen), &mesh_hdr, meshhdrlen);
1980 nh_pos += meshhdrlen;
1981 h_pos += meshhdrlen;
1983 #endif
1985 if (ieee80211_is_data_qos(fc)) {
1986 __le16 *qos_control;
1988 qos_control = (__le16*) skb_push(skb, 2);
1989 memcpy(skb_push(skb, hdrlen - 2), &hdr, hdrlen - 2);
1991 * Maybe we could actually set some fields here, for now just
1992 * initialise to zero to indicate no special operation.
1994 *qos_control = 0;
1995 } else
1996 memcpy(skb_push(skb, hdrlen), &hdr, hdrlen);
1998 nh_pos += hdrlen;
1999 h_pos += hdrlen;
2001 dev->stats.tx_packets++;
2002 dev->stats.tx_bytes += skb->len;
2004 /* Update skb pointers to various headers since this modified frame
2005 * is going to go through Linux networking code that may potentially
2006 * need things like pointer to IP header. */
2007 skb_set_mac_header(skb, 0);
2008 skb_set_network_header(skb, nh_pos);
2009 skb_set_transport_header(skb, h_pos);
2011 info = IEEE80211_SKB_CB(skb);
2012 memset(info, 0, sizeof(*info));
2014 dev->trans_start = jiffies;
2015 ieee80211_xmit(sdata, skb);
2017 return NETDEV_TX_OK;
2019 fail:
2020 if (ret == NETDEV_TX_OK)
2021 dev_kfree_skb(skb);
2023 return ret;
2028 * ieee80211_clear_tx_pending may not be called in a context where
2029 * it is possible that it packets could come in again.
2031 void ieee80211_clear_tx_pending(struct ieee80211_local *local)
2033 int i;
2035 for (i = 0; i < local->hw.queues; i++)
2036 skb_queue_purge(&local->pending[i]);
2040 * Returns false if the frame couldn't be transmitted but was queued instead,
2041 * which in this case means re-queued -- take as an indication to stop sending
2042 * more pending frames.
2044 static bool ieee80211_tx_pending_skb(struct ieee80211_local *local,
2045 struct sk_buff *skb)
2047 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
2048 struct ieee80211_sub_if_data *sdata;
2049 struct sta_info *sta;
2050 struct ieee80211_hdr *hdr;
2051 bool result;
2053 sdata = vif_to_sdata(info->control.vif);
2055 if (info->flags & IEEE80211_TX_INTFL_NEED_TXPROCESSING) {
2056 result = ieee80211_tx(sdata, skb, true);
2057 } else {
2058 hdr = (struct ieee80211_hdr *)skb->data;
2059 sta = sta_info_get(sdata, hdr->addr1);
2061 result = __ieee80211_tx(local, &skb, sta, true);
2064 return result;
2068 * Transmit all pending packets. Called from tasklet.
2070 void ieee80211_tx_pending(unsigned long data)
2072 struct ieee80211_local *local = (struct ieee80211_local *)data;
2073 struct ieee80211_sub_if_data *sdata;
2074 unsigned long flags;
2075 int i;
2076 bool txok;
2078 rcu_read_lock();
2080 spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
2081 for (i = 0; i < local->hw.queues; i++) {
2083 * If queue is stopped by something other than due to pending
2084 * frames, or we have no pending frames, proceed to next queue.
2086 if (local->queue_stop_reasons[i] ||
2087 skb_queue_empty(&local->pending[i]))
2088 continue;
2090 while (!skb_queue_empty(&local->pending[i])) {
2091 struct sk_buff *skb = __skb_dequeue(&local->pending[i]);
2092 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
2094 if (WARN_ON(!info->control.vif)) {
2095 kfree_skb(skb);
2096 continue;
2099 spin_unlock_irqrestore(&local->queue_stop_reason_lock,
2100 flags);
2102 txok = ieee80211_tx_pending_skb(local, skb);
2103 spin_lock_irqsave(&local->queue_stop_reason_lock,
2104 flags);
2105 if (!txok)
2106 break;
2109 if (skb_queue_empty(&local->pending[i]))
2110 list_for_each_entry_rcu(sdata, &local->interfaces, list)
2111 netif_wake_subqueue(sdata->dev, i);
2113 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
2115 rcu_read_unlock();
2118 /* functions for drivers to get certain frames */
2120 static void ieee80211_beacon_add_tim(struct ieee80211_if_ap *bss,
2121 struct sk_buff *skb,
2122 struct beacon_data *beacon)
2124 u8 *pos, *tim;
2125 int aid0 = 0;
2126 int i, have_bits = 0, n1, n2;
2128 /* Generate bitmap for TIM only if there are any STAs in power save
2129 * mode. */
2130 if (atomic_read(&bss->num_sta_ps) > 0)
2131 /* in the hope that this is faster than
2132 * checking byte-for-byte */
2133 have_bits = !bitmap_empty((unsigned long*)bss->tim,
2134 IEEE80211_MAX_AID+1);
2136 if (bss->dtim_count == 0)
2137 bss->dtim_count = beacon->dtim_period - 1;
2138 else
2139 bss->dtim_count--;
2141 tim = pos = (u8 *) skb_put(skb, 6);
2142 *pos++ = WLAN_EID_TIM;
2143 *pos++ = 4;
2144 *pos++ = bss->dtim_count;
2145 *pos++ = beacon->dtim_period;
2147 if (bss->dtim_count == 0 && !skb_queue_empty(&bss->ps_bc_buf))
2148 aid0 = 1;
2150 bss->dtim_bc_mc = aid0 == 1;
2152 if (have_bits) {
2153 /* Find largest even number N1 so that bits numbered 1 through
2154 * (N1 x 8) - 1 in the bitmap are 0 and number N2 so that bits
2155 * (N2 + 1) x 8 through 2007 are 0. */
2156 n1 = 0;
2157 for (i = 0; i < IEEE80211_MAX_TIM_LEN; i++) {
2158 if (bss->tim[i]) {
2159 n1 = i & 0xfe;
2160 break;
2163 n2 = n1;
2164 for (i = IEEE80211_MAX_TIM_LEN - 1; i >= n1; i--) {
2165 if (bss->tim[i]) {
2166 n2 = i;
2167 break;
2171 /* Bitmap control */
2172 *pos++ = n1 | aid0;
2173 /* Part Virt Bitmap */
2174 memcpy(pos, bss->tim + n1, n2 - n1 + 1);
2176 tim[1] = n2 - n1 + 4;
2177 skb_put(skb, n2 - n1);
2178 } else {
2179 *pos++ = aid0; /* Bitmap control */
2180 *pos++ = 0; /* Part Virt Bitmap */
2184 struct sk_buff *ieee80211_beacon_get_tim(struct ieee80211_hw *hw,
2185 struct ieee80211_vif *vif,
2186 u16 *tim_offset, u16 *tim_length)
2188 struct ieee80211_local *local = hw_to_local(hw);
2189 struct sk_buff *skb = NULL;
2190 struct ieee80211_tx_info *info;
2191 struct ieee80211_sub_if_data *sdata = NULL;
2192 struct ieee80211_if_ap *ap = NULL;
2193 struct beacon_data *beacon;
2194 struct ieee80211_supported_band *sband;
2195 enum ieee80211_band band = local->hw.conf.channel->band;
2196 struct ieee80211_tx_rate_control txrc;
2198 sband = local->hw.wiphy->bands[band];
2200 rcu_read_lock();
2202 sdata = vif_to_sdata(vif);
2204 if (!ieee80211_sdata_running(sdata))
2205 goto out;
2207 if (tim_offset)
2208 *tim_offset = 0;
2209 if (tim_length)
2210 *tim_length = 0;
2212 if (sdata->vif.type == NL80211_IFTYPE_AP) {
2213 ap = &sdata->u.ap;
2214 beacon = rcu_dereference(ap->beacon);
2215 if (beacon) {
2217 * headroom, head length,
2218 * tail length and maximum TIM length
2220 skb = dev_alloc_skb(local->tx_headroom +
2221 beacon->head_len +
2222 beacon->tail_len + 256);
2223 if (!skb)
2224 goto out;
2226 skb_reserve(skb, local->tx_headroom);
2227 memcpy(skb_put(skb, beacon->head_len), beacon->head,
2228 beacon->head_len);
2231 * Not very nice, but we want to allow the driver to call
2232 * ieee80211_beacon_get() as a response to the set_tim()
2233 * callback. That, however, is already invoked under the
2234 * sta_lock to guarantee consistent and race-free update
2235 * of the tim bitmap in mac80211 and the driver.
2237 if (local->tim_in_locked_section) {
2238 ieee80211_beacon_add_tim(ap, skb, beacon);
2239 } else {
2240 unsigned long flags;
2242 spin_lock_irqsave(&local->sta_lock, flags);
2243 ieee80211_beacon_add_tim(ap, skb, beacon);
2244 spin_unlock_irqrestore(&local->sta_lock, flags);
2247 if (tim_offset)
2248 *tim_offset = beacon->head_len;
2249 if (tim_length)
2250 *tim_length = skb->len - beacon->head_len;
2252 if (beacon->tail)
2253 memcpy(skb_put(skb, beacon->tail_len),
2254 beacon->tail, beacon->tail_len);
2255 } else
2256 goto out;
2257 } else if (sdata->vif.type == NL80211_IFTYPE_ADHOC) {
2258 struct ieee80211_if_ibss *ifibss = &sdata->u.ibss;
2259 struct ieee80211_hdr *hdr;
2260 struct sk_buff *presp = rcu_dereference(ifibss->presp);
2262 if (!presp)
2263 goto out;
2265 skb = skb_copy(presp, GFP_ATOMIC);
2266 if (!skb)
2267 goto out;
2269 hdr = (struct ieee80211_hdr *) skb->data;
2270 hdr->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
2271 IEEE80211_STYPE_BEACON);
2272 } else if (ieee80211_vif_is_mesh(&sdata->vif)) {
2273 struct ieee80211_mgmt *mgmt;
2274 u8 *pos;
2276 #ifdef CONFIG_MAC80211_MESH
2277 if (!sdata->u.mesh.mesh_id_len)
2278 goto out;
2279 #endif
2281 /* headroom, head length, tail length and maximum TIM length */
2282 skb = dev_alloc_skb(local->tx_headroom + 400 +
2283 sdata->u.mesh.ie_len);
2284 if (!skb)
2285 goto out;
2287 skb_reserve(skb, local->hw.extra_tx_headroom);
2288 mgmt = (struct ieee80211_mgmt *)
2289 skb_put(skb, 24 + sizeof(mgmt->u.beacon));
2290 memset(mgmt, 0, 24 + sizeof(mgmt->u.beacon));
2291 mgmt->frame_control =
2292 cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_BEACON);
2293 memset(mgmt->da, 0xff, ETH_ALEN);
2294 memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN);
2295 memcpy(mgmt->bssid, sdata->vif.addr, ETH_ALEN);
2296 mgmt->u.beacon.beacon_int =
2297 cpu_to_le16(sdata->vif.bss_conf.beacon_int);
2298 mgmt->u.beacon.capab_info |= cpu_to_le16(
2299 sdata->u.mesh.security ? WLAN_CAPABILITY_PRIVACY : 0);
2301 pos = skb_put(skb, 2);
2302 *pos++ = WLAN_EID_SSID;
2303 *pos++ = 0x0;
2305 if (mesh_add_srates_ie(skb, sdata) ||
2306 mesh_add_ds_params_ie(skb, sdata) ||
2307 mesh_add_ext_srates_ie(skb, sdata) ||
2308 mesh_add_rsn_ie(skb, sdata) ||
2309 mesh_add_meshid_ie(skb, sdata) ||
2310 mesh_add_meshconf_ie(skb, sdata) ||
2311 mesh_add_vendor_ies(skb, sdata)) {
2312 pr_err("o11s: couldn't add ies!\n");
2313 goto out;
2315 } else {
2316 WARN_ON(1);
2317 goto out;
2320 info = IEEE80211_SKB_CB(skb);
2322 info->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT;
2323 info->flags |= IEEE80211_TX_CTL_NO_ACK;
2324 info->band = band;
2326 memset(&txrc, 0, sizeof(txrc));
2327 txrc.hw = hw;
2328 txrc.sband = sband;
2329 txrc.bss_conf = &sdata->vif.bss_conf;
2330 txrc.skb = skb;
2331 txrc.reported_rate.idx = -1;
2332 txrc.rate_idx_mask = sdata->rc_rateidx_mask[band];
2333 if (txrc.rate_idx_mask == (1 << sband->n_bitrates) - 1)
2334 txrc.max_rate_idx = -1;
2335 else
2336 txrc.max_rate_idx = fls(txrc.rate_idx_mask) - 1;
2337 txrc.bss = true;
2338 rate_control_get_rate(sdata, NULL, &txrc);
2340 info->control.vif = vif;
2342 info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT |
2343 IEEE80211_TX_CTL_ASSIGN_SEQ |
2344 IEEE80211_TX_CTL_FIRST_FRAGMENT;
2345 out:
2346 rcu_read_unlock();
2347 return skb;
2349 EXPORT_SYMBOL(ieee80211_beacon_get_tim);
2351 struct sk_buff *ieee80211_pspoll_get(struct ieee80211_hw *hw,
2352 struct ieee80211_vif *vif)
2354 struct ieee80211_sub_if_data *sdata;
2355 struct ieee80211_if_managed *ifmgd;
2356 struct ieee80211_pspoll *pspoll;
2357 struct ieee80211_local *local;
2358 struct sk_buff *skb;
2360 if (WARN_ON(vif->type != NL80211_IFTYPE_STATION))
2361 return NULL;
2363 sdata = vif_to_sdata(vif);
2364 ifmgd = &sdata->u.mgd;
2365 local = sdata->local;
2367 skb = dev_alloc_skb(local->hw.extra_tx_headroom + sizeof(*pspoll));
2368 if (!skb) {
2369 printk(KERN_DEBUG "%s: failed to allocate buffer for "
2370 "pspoll template\n", sdata->name);
2371 return NULL;
2373 skb_reserve(skb, local->hw.extra_tx_headroom);
2375 pspoll = (struct ieee80211_pspoll *) skb_put(skb, sizeof(*pspoll));
2376 memset(pspoll, 0, sizeof(*pspoll));
2377 pspoll->frame_control = cpu_to_le16(IEEE80211_FTYPE_CTL |
2378 IEEE80211_STYPE_PSPOLL);
2379 pspoll->aid = cpu_to_le16(ifmgd->aid);
2381 /* aid in PS-Poll has its two MSBs each set to 1 */
2382 pspoll->aid |= cpu_to_le16(1 << 15 | 1 << 14);
2384 memcpy(pspoll->bssid, ifmgd->bssid, ETH_ALEN);
2385 memcpy(pspoll->ta, vif->addr, ETH_ALEN);
2387 return skb;
2389 EXPORT_SYMBOL(ieee80211_pspoll_get);
2391 struct sk_buff *ieee80211_nullfunc_get(struct ieee80211_hw *hw,
2392 struct ieee80211_vif *vif)
2394 struct ieee80211_hdr_3addr *nullfunc;
2395 struct ieee80211_sub_if_data *sdata;
2396 struct ieee80211_if_managed *ifmgd;
2397 struct ieee80211_local *local;
2398 struct sk_buff *skb;
2400 if (WARN_ON(vif->type != NL80211_IFTYPE_STATION))
2401 return NULL;
2403 sdata = vif_to_sdata(vif);
2404 ifmgd = &sdata->u.mgd;
2405 local = sdata->local;
2407 skb = dev_alloc_skb(local->hw.extra_tx_headroom + sizeof(*nullfunc));
2408 if (!skb) {
2409 printk(KERN_DEBUG "%s: failed to allocate buffer for nullfunc "
2410 "template\n", sdata->name);
2411 return NULL;
2413 skb_reserve(skb, local->hw.extra_tx_headroom);
2415 nullfunc = (struct ieee80211_hdr_3addr *) skb_put(skb,
2416 sizeof(*nullfunc));
2417 memset(nullfunc, 0, sizeof(*nullfunc));
2418 nullfunc->frame_control = cpu_to_le16(IEEE80211_FTYPE_DATA |
2419 IEEE80211_STYPE_NULLFUNC |
2420 IEEE80211_FCTL_TODS);
2421 memcpy(nullfunc->addr1, ifmgd->bssid, ETH_ALEN);
2422 memcpy(nullfunc->addr2, vif->addr, ETH_ALEN);
2423 memcpy(nullfunc->addr3, ifmgd->bssid, ETH_ALEN);
2425 return skb;
2427 EXPORT_SYMBOL(ieee80211_nullfunc_get);
2429 struct sk_buff *ieee80211_probereq_get(struct ieee80211_hw *hw,
2430 struct ieee80211_vif *vif,
2431 const u8 *ssid, size_t ssid_len,
2432 const u8 *ie, size_t ie_len)
2434 struct ieee80211_sub_if_data *sdata;
2435 struct ieee80211_local *local;
2436 struct ieee80211_hdr_3addr *hdr;
2437 struct sk_buff *skb;
2438 size_t ie_ssid_len;
2439 u8 *pos;
2441 sdata = vif_to_sdata(vif);
2442 local = sdata->local;
2443 ie_ssid_len = 2 + ssid_len;
2445 skb = dev_alloc_skb(local->hw.extra_tx_headroom + sizeof(*hdr) +
2446 ie_ssid_len + ie_len);
2447 if (!skb) {
2448 printk(KERN_DEBUG "%s: failed to allocate buffer for probe "
2449 "request template\n", sdata->name);
2450 return NULL;
2453 skb_reserve(skb, local->hw.extra_tx_headroom);
2455 hdr = (struct ieee80211_hdr_3addr *) skb_put(skb, sizeof(*hdr));
2456 memset(hdr, 0, sizeof(*hdr));
2457 hdr->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
2458 IEEE80211_STYPE_PROBE_REQ);
2459 memset(hdr->addr1, 0xff, ETH_ALEN);
2460 memcpy(hdr->addr2, vif->addr, ETH_ALEN);
2461 memset(hdr->addr3, 0xff, ETH_ALEN);
2463 pos = skb_put(skb, ie_ssid_len);
2464 *pos++ = WLAN_EID_SSID;
2465 *pos++ = ssid_len;
2466 if (ssid)
2467 memcpy(pos, ssid, ssid_len);
2468 pos += ssid_len;
2470 if (ie) {
2471 pos = skb_put(skb, ie_len);
2472 memcpy(pos, ie, ie_len);
2475 return skb;
2477 EXPORT_SYMBOL(ieee80211_probereq_get);
2479 void ieee80211_rts_get(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
2480 const void *frame, size_t frame_len,
2481 const struct ieee80211_tx_info *frame_txctl,
2482 struct ieee80211_rts *rts)
2484 const struct ieee80211_hdr *hdr = frame;
2486 rts->frame_control =
2487 cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_RTS);
2488 rts->duration = ieee80211_rts_duration(hw, vif, frame_len,
2489 frame_txctl);
2490 memcpy(rts->ra, hdr->addr1, sizeof(rts->ra));
2491 memcpy(rts->ta, hdr->addr2, sizeof(rts->ta));
2493 EXPORT_SYMBOL(ieee80211_rts_get);
2495 void ieee80211_ctstoself_get(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
2496 const void *frame, size_t frame_len,
2497 const struct ieee80211_tx_info *frame_txctl,
2498 struct ieee80211_cts *cts)
2500 const struct ieee80211_hdr *hdr = frame;
2502 cts->frame_control =
2503 cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_CTS);
2504 cts->duration = ieee80211_ctstoself_duration(hw, vif,
2505 frame_len, frame_txctl);
2506 memcpy(cts->ra, hdr->addr1, sizeof(cts->ra));
2508 EXPORT_SYMBOL(ieee80211_ctstoself_get);
2510 struct sk_buff *
2511 ieee80211_get_buffered_bc(struct ieee80211_hw *hw,
2512 struct ieee80211_vif *vif)
2514 struct ieee80211_local *local = hw_to_local(hw);
2515 struct sk_buff *skb = NULL;
2516 struct ieee80211_tx_data tx;
2517 struct ieee80211_sub_if_data *sdata;
2518 struct ieee80211_if_ap *bss = NULL;
2519 struct beacon_data *beacon;
2520 struct ieee80211_tx_info *info;
2522 sdata = vif_to_sdata(vif);
2523 bss = &sdata->u.ap;
2525 rcu_read_lock();
2526 beacon = rcu_dereference(bss->beacon);
2528 if (sdata->vif.type != NL80211_IFTYPE_AP || !beacon || !beacon->head)
2529 goto out;
2531 if (bss->dtim_count != 0 || !bss->dtim_bc_mc)
2532 goto out; /* send buffered bc/mc only after DTIM beacon */
2534 while (1) {
2535 skb = skb_dequeue(&bss->ps_bc_buf);
2536 if (!skb)
2537 goto out;
2538 local->total_ps_buffered--;
2540 if (!skb_queue_empty(&bss->ps_bc_buf) && skb->len >= 2) {
2541 struct ieee80211_hdr *hdr =
2542 (struct ieee80211_hdr *) skb->data;
2543 /* more buffered multicast/broadcast frames ==> set
2544 * MoreData flag in IEEE 802.11 header to inform PS
2545 * STAs */
2546 hdr->frame_control |=
2547 cpu_to_le16(IEEE80211_FCTL_MOREDATA);
2550 if (!ieee80211_tx_prepare(sdata, &tx, skb))
2551 break;
2552 dev_kfree_skb_any(skb);
2555 info = IEEE80211_SKB_CB(skb);
2557 tx.flags |= IEEE80211_TX_PS_BUFFERED;
2558 tx.channel = local->hw.conf.channel;
2559 info->band = tx.channel->band;
2561 if (invoke_tx_handlers(&tx))
2562 skb = NULL;
2563 out:
2564 rcu_read_unlock();
2566 return skb;
2568 EXPORT_SYMBOL(ieee80211_get_buffered_bc);
2570 void ieee80211_tx_skb(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb)
2572 skb_set_mac_header(skb, 0);
2573 skb_set_network_header(skb, 0);
2574 skb_set_transport_header(skb, 0);
2576 /* Send all internal mgmt frames on VO. Accordingly set TID to 7. */
2577 skb_set_queue_mapping(skb, IEEE80211_AC_VO);
2578 skb->priority = 7;
2581 * The other path calling ieee80211_xmit is from the tasklet,
2582 * and while we can handle concurrent transmissions locking
2583 * requirements are that we do not come into tx with bhs on.
2585 local_bh_disable();
2586 ieee80211_xmit(sdata, skb);
2587 local_bh_enable();