gma500: add an mmap ioctl
[linux-2.6/next.git] / drivers / scsi / advansys.c
blobbfd618a6949956f70e41ecd9a910f8422c7a02bb
1 #define DRV_NAME "advansys"
2 #define ASC_VERSION "3.4" /* AdvanSys Driver Version */
4 /*
5 * advansys.c - Linux Host Driver for AdvanSys SCSI Adapters
7 * Copyright (c) 1995-2000 Advanced System Products, Inc.
8 * Copyright (c) 2000-2001 ConnectCom Solutions, Inc.
9 * Copyright (c) 2007 Matthew Wilcox <matthew@wil.cx>
10 * All Rights Reserved.
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License, or
15 * (at your option) any later version.
19 * As of March 8, 2000 Advanced System Products, Inc. (AdvanSys)
20 * changed its name to ConnectCom Solutions, Inc.
21 * On June 18, 2001 Initio Corp. acquired ConnectCom's SCSI assets
24 #include <linux/module.h>
25 #include <linux/string.h>
26 #include <linux/kernel.h>
27 #include <linux/types.h>
28 #include <linux/ioport.h>
29 #include <linux/interrupt.h>
30 #include <linux/delay.h>
31 #include <linux/slab.h>
32 #include <linux/mm.h>
33 #include <linux/proc_fs.h>
34 #include <linux/init.h>
35 #include <linux/blkdev.h>
36 #include <linux/isa.h>
37 #include <linux/eisa.h>
38 #include <linux/pci.h>
39 #include <linux/spinlock.h>
40 #include <linux/dma-mapping.h>
41 #include <linux/firmware.h>
43 #include <asm/io.h>
44 #include <asm/system.h>
45 #include <asm/dma.h>
47 #include <scsi/scsi_cmnd.h>
48 #include <scsi/scsi_device.h>
49 #include <scsi/scsi_tcq.h>
50 #include <scsi/scsi.h>
51 #include <scsi/scsi_host.h>
53 /* FIXME:
55 * 1. Although all of the necessary command mapping places have the
56 * appropriate dma_map.. APIs, the driver still processes its internal
57 * queue using bus_to_virt() and virt_to_bus() which are illegal under
58 * the API. The entire queue processing structure will need to be
59 * altered to fix this.
60 * 2. Need to add memory mapping workaround. Test the memory mapping.
61 * If it doesn't work revert to I/O port access. Can a test be done
62 * safely?
63 * 3. Handle an interrupt not working. Keep an interrupt counter in
64 * the interrupt handler. In the timeout function if the interrupt
65 * has not occurred then print a message and run in polled mode.
66 * 4. Need to add support for target mode commands, cf. CAM XPT.
67 * 5. check DMA mapping functions for failure
68 * 6. Use scsi_transport_spi
69 * 7. advansys_info is not safe against multiple simultaneous callers
70 * 8. Add module_param to override ISA/VLB ioport array
72 #warning this driver is still not properly converted to the DMA API
74 /* Enable driver /proc statistics. */
75 #define ADVANSYS_STATS
77 /* Enable driver tracing. */
78 #undef ADVANSYS_DEBUG
81 * Portable Data Types
83 * Any instance where a 32-bit long or pointer type is assumed
84 * for precision or HW defined structures, the following define
85 * types must be used. In Linux the char, short, and int types
86 * are all consistent at 8, 16, and 32 bits respectively. Pointers
87 * and long types are 64 bits on Alpha and UltraSPARC.
89 #define ASC_PADDR __u32 /* Physical/Bus address data type. */
90 #define ASC_VADDR __u32 /* Virtual address data type. */
91 #define ASC_DCNT __u32 /* Unsigned Data count type. */
92 #define ASC_SDCNT __s32 /* Signed Data count type. */
94 typedef unsigned char uchar;
96 #ifndef TRUE
97 #define TRUE (1)
98 #endif
99 #ifndef FALSE
100 #define FALSE (0)
101 #endif
103 #define ERR (-1)
104 #define UW_ERR (uint)(0xFFFF)
105 #define isodd_word(val) ((((uint)val) & (uint)0x0001) != 0)
107 #define PCI_VENDOR_ID_ASP 0x10cd
108 #define PCI_DEVICE_ID_ASP_1200A 0x1100
109 #define PCI_DEVICE_ID_ASP_ABP940 0x1200
110 #define PCI_DEVICE_ID_ASP_ABP940U 0x1300
111 #define PCI_DEVICE_ID_ASP_ABP940UW 0x2300
112 #define PCI_DEVICE_ID_38C0800_REV1 0x2500
113 #define PCI_DEVICE_ID_38C1600_REV1 0x2700
116 * Enable CC_VERY_LONG_SG_LIST to support up to 64K element SG lists.
117 * The SRB structure will have to be changed and the ASC_SRB2SCSIQ()
118 * macro re-defined to be able to obtain a ASC_SCSI_Q pointer from the
119 * SRB structure.
121 #define CC_VERY_LONG_SG_LIST 0
122 #define ASC_SRB2SCSIQ(srb_ptr) (srb_ptr)
124 #define PortAddr unsigned int /* port address size */
125 #define inp(port) inb(port)
126 #define outp(port, byte) outb((byte), (port))
128 #define inpw(port) inw(port)
129 #define outpw(port, word) outw((word), (port))
131 #define ASC_MAX_SG_QUEUE 7
132 #define ASC_MAX_SG_LIST 255
134 #define ASC_CS_TYPE unsigned short
136 #define ASC_IS_ISA (0x0001)
137 #define ASC_IS_ISAPNP (0x0081)
138 #define ASC_IS_EISA (0x0002)
139 #define ASC_IS_PCI (0x0004)
140 #define ASC_IS_PCI_ULTRA (0x0104)
141 #define ASC_IS_PCMCIA (0x0008)
142 #define ASC_IS_MCA (0x0020)
143 #define ASC_IS_VL (0x0040)
144 #define ASC_IS_WIDESCSI_16 (0x0100)
145 #define ASC_IS_WIDESCSI_32 (0x0200)
146 #define ASC_IS_BIG_ENDIAN (0x8000)
148 #define ASC_CHIP_MIN_VER_VL (0x01)
149 #define ASC_CHIP_MAX_VER_VL (0x07)
150 #define ASC_CHIP_MIN_VER_PCI (0x09)
151 #define ASC_CHIP_MAX_VER_PCI (0x0F)
152 #define ASC_CHIP_VER_PCI_BIT (0x08)
153 #define ASC_CHIP_MIN_VER_ISA (0x11)
154 #define ASC_CHIP_MIN_VER_ISA_PNP (0x21)
155 #define ASC_CHIP_MAX_VER_ISA (0x27)
156 #define ASC_CHIP_VER_ISA_BIT (0x30)
157 #define ASC_CHIP_VER_ISAPNP_BIT (0x20)
158 #define ASC_CHIP_VER_ASYN_BUG (0x21)
159 #define ASC_CHIP_VER_PCI 0x08
160 #define ASC_CHIP_VER_PCI_ULTRA_3150 (ASC_CHIP_VER_PCI | 0x02)
161 #define ASC_CHIP_VER_PCI_ULTRA_3050 (ASC_CHIP_VER_PCI | 0x03)
162 #define ASC_CHIP_MIN_VER_EISA (0x41)
163 #define ASC_CHIP_MAX_VER_EISA (0x47)
164 #define ASC_CHIP_VER_EISA_BIT (0x40)
165 #define ASC_CHIP_LATEST_VER_EISA ((ASC_CHIP_MIN_VER_EISA - 1) + 3)
166 #define ASC_MAX_VL_DMA_COUNT (0x07FFFFFFL)
167 #define ASC_MAX_PCI_DMA_COUNT (0xFFFFFFFFL)
168 #define ASC_MAX_ISA_DMA_COUNT (0x00FFFFFFL)
170 #define ASC_SCSI_ID_BITS 3
171 #define ASC_SCSI_TIX_TYPE uchar
172 #define ASC_ALL_DEVICE_BIT_SET 0xFF
173 #define ASC_SCSI_BIT_ID_TYPE uchar
174 #define ASC_MAX_TID 7
175 #define ASC_MAX_LUN 7
176 #define ASC_SCSI_WIDTH_BIT_SET 0xFF
177 #define ASC_MAX_SENSE_LEN 32
178 #define ASC_MIN_SENSE_LEN 14
179 #define ASC_SCSI_RESET_HOLD_TIME_US 60
182 * Narrow boards only support 12-byte commands, while wide boards
183 * extend to 16-byte commands.
185 #define ASC_MAX_CDB_LEN 12
186 #define ADV_MAX_CDB_LEN 16
188 #define MS_SDTR_LEN 0x03
189 #define MS_WDTR_LEN 0x02
191 #define ASC_SG_LIST_PER_Q 7
192 #define QS_FREE 0x00
193 #define QS_READY 0x01
194 #define QS_DISC1 0x02
195 #define QS_DISC2 0x04
196 #define QS_BUSY 0x08
197 #define QS_ABORTED 0x40
198 #define QS_DONE 0x80
199 #define QC_NO_CALLBACK 0x01
200 #define QC_SG_SWAP_QUEUE 0x02
201 #define QC_SG_HEAD 0x04
202 #define QC_DATA_IN 0x08
203 #define QC_DATA_OUT 0x10
204 #define QC_URGENT 0x20
205 #define QC_MSG_OUT 0x40
206 #define QC_REQ_SENSE 0x80
207 #define QCSG_SG_XFER_LIST 0x02
208 #define QCSG_SG_XFER_MORE 0x04
209 #define QCSG_SG_XFER_END 0x08
210 #define QD_IN_PROGRESS 0x00
211 #define QD_NO_ERROR 0x01
212 #define QD_ABORTED_BY_HOST 0x02
213 #define QD_WITH_ERROR 0x04
214 #define QD_INVALID_REQUEST 0x80
215 #define QD_INVALID_HOST_NUM 0x81
216 #define QD_INVALID_DEVICE 0x82
217 #define QD_ERR_INTERNAL 0xFF
218 #define QHSTA_NO_ERROR 0x00
219 #define QHSTA_M_SEL_TIMEOUT 0x11
220 #define QHSTA_M_DATA_OVER_RUN 0x12
221 #define QHSTA_M_DATA_UNDER_RUN 0x12
222 #define QHSTA_M_UNEXPECTED_BUS_FREE 0x13
223 #define QHSTA_M_BAD_BUS_PHASE_SEQ 0x14
224 #define QHSTA_D_QDONE_SG_LIST_CORRUPTED 0x21
225 #define QHSTA_D_ASC_DVC_ERROR_CODE_SET 0x22
226 #define QHSTA_D_HOST_ABORT_FAILED 0x23
227 #define QHSTA_D_EXE_SCSI_Q_FAILED 0x24
228 #define QHSTA_D_EXE_SCSI_Q_BUSY_TIMEOUT 0x25
229 #define QHSTA_D_ASPI_NO_BUF_POOL 0x26
230 #define QHSTA_M_WTM_TIMEOUT 0x41
231 #define QHSTA_M_BAD_CMPL_STATUS_IN 0x42
232 #define QHSTA_M_NO_AUTO_REQ_SENSE 0x43
233 #define QHSTA_M_AUTO_REQ_SENSE_FAIL 0x44
234 #define QHSTA_M_TARGET_STATUS_BUSY 0x45
235 #define QHSTA_M_BAD_TAG_CODE 0x46
236 #define QHSTA_M_BAD_QUEUE_FULL_OR_BUSY 0x47
237 #define QHSTA_M_HUNG_REQ_SCSI_BUS_RESET 0x48
238 #define QHSTA_D_LRAM_CMP_ERROR 0x81
239 #define QHSTA_M_MICRO_CODE_ERROR_HALT 0xA1
240 #define ASC_FLAG_SCSIQ_REQ 0x01
241 #define ASC_FLAG_BIOS_SCSIQ_REQ 0x02
242 #define ASC_FLAG_BIOS_ASYNC_IO 0x04
243 #define ASC_FLAG_SRB_LINEAR_ADDR 0x08
244 #define ASC_FLAG_WIN16 0x10
245 #define ASC_FLAG_WIN32 0x20
246 #define ASC_FLAG_ISA_OVER_16MB 0x40
247 #define ASC_FLAG_DOS_VM_CALLBACK 0x80
248 #define ASC_TAG_FLAG_EXTRA_BYTES 0x10
249 #define ASC_TAG_FLAG_DISABLE_DISCONNECT 0x04
250 #define ASC_TAG_FLAG_DISABLE_ASYN_USE_SYN_FIX 0x08
251 #define ASC_TAG_FLAG_DISABLE_CHK_COND_INT_HOST 0x40
252 #define ASC_SCSIQ_CPY_BEG 4
253 #define ASC_SCSIQ_SGHD_CPY_BEG 2
254 #define ASC_SCSIQ_B_FWD 0
255 #define ASC_SCSIQ_B_BWD 1
256 #define ASC_SCSIQ_B_STATUS 2
257 #define ASC_SCSIQ_B_QNO 3
258 #define ASC_SCSIQ_B_CNTL 4
259 #define ASC_SCSIQ_B_SG_QUEUE_CNT 5
260 #define ASC_SCSIQ_D_DATA_ADDR 8
261 #define ASC_SCSIQ_D_DATA_CNT 12
262 #define ASC_SCSIQ_B_SENSE_LEN 20
263 #define ASC_SCSIQ_DONE_INFO_BEG 22
264 #define ASC_SCSIQ_D_SRBPTR 22
265 #define ASC_SCSIQ_B_TARGET_IX 26
266 #define ASC_SCSIQ_B_CDB_LEN 28
267 #define ASC_SCSIQ_B_TAG_CODE 29
268 #define ASC_SCSIQ_W_VM_ID 30
269 #define ASC_SCSIQ_DONE_STATUS 32
270 #define ASC_SCSIQ_HOST_STATUS 33
271 #define ASC_SCSIQ_SCSI_STATUS 34
272 #define ASC_SCSIQ_CDB_BEG 36
273 #define ASC_SCSIQ_DW_REMAIN_XFER_ADDR 56
274 #define ASC_SCSIQ_DW_REMAIN_XFER_CNT 60
275 #define ASC_SCSIQ_B_FIRST_SG_WK_QP 48
276 #define ASC_SCSIQ_B_SG_WK_QP 49
277 #define ASC_SCSIQ_B_SG_WK_IX 50
278 #define ASC_SCSIQ_W_ALT_DC1 52
279 #define ASC_SCSIQ_B_LIST_CNT 6
280 #define ASC_SCSIQ_B_CUR_LIST_CNT 7
281 #define ASC_SGQ_B_SG_CNTL 4
282 #define ASC_SGQ_B_SG_HEAD_QP 5
283 #define ASC_SGQ_B_SG_LIST_CNT 6
284 #define ASC_SGQ_B_SG_CUR_LIST_CNT 7
285 #define ASC_SGQ_LIST_BEG 8
286 #define ASC_DEF_SCSI1_QNG 4
287 #define ASC_MAX_SCSI1_QNG 4
288 #define ASC_DEF_SCSI2_QNG 16
289 #define ASC_MAX_SCSI2_QNG 32
290 #define ASC_TAG_CODE_MASK 0x23
291 #define ASC_STOP_REQ_RISC_STOP 0x01
292 #define ASC_STOP_ACK_RISC_STOP 0x03
293 #define ASC_STOP_CLEAN_UP_BUSY_Q 0x10
294 #define ASC_STOP_CLEAN_UP_DISC_Q 0x20
295 #define ASC_STOP_HOST_REQ_RISC_HALT 0x40
296 #define ASC_TIDLUN_TO_IX(tid, lun) (ASC_SCSI_TIX_TYPE)((tid) + ((lun)<<ASC_SCSI_ID_BITS))
297 #define ASC_TID_TO_TARGET_ID(tid) (ASC_SCSI_BIT_ID_TYPE)(0x01 << (tid))
298 #define ASC_TIX_TO_TARGET_ID(tix) (0x01 << ((tix) & ASC_MAX_TID))
299 #define ASC_TIX_TO_TID(tix) ((tix) & ASC_MAX_TID)
300 #define ASC_TID_TO_TIX(tid) ((tid) & ASC_MAX_TID)
301 #define ASC_TIX_TO_LUN(tix) (((tix) >> ASC_SCSI_ID_BITS) & ASC_MAX_LUN)
302 #define ASC_QNO_TO_QADDR(q_no) ((ASC_QADR_BEG)+((int)(q_no) << 6))
304 typedef struct asc_scsiq_1 {
305 uchar status;
306 uchar q_no;
307 uchar cntl;
308 uchar sg_queue_cnt;
309 uchar target_id;
310 uchar target_lun;
311 ASC_PADDR data_addr;
312 ASC_DCNT data_cnt;
313 ASC_PADDR sense_addr;
314 uchar sense_len;
315 uchar extra_bytes;
316 } ASC_SCSIQ_1;
318 typedef struct asc_scsiq_2 {
319 ASC_VADDR srb_ptr;
320 uchar target_ix;
321 uchar flag;
322 uchar cdb_len;
323 uchar tag_code;
324 ushort vm_id;
325 } ASC_SCSIQ_2;
327 typedef struct asc_scsiq_3 {
328 uchar done_stat;
329 uchar host_stat;
330 uchar scsi_stat;
331 uchar scsi_msg;
332 } ASC_SCSIQ_3;
334 typedef struct asc_scsiq_4 {
335 uchar cdb[ASC_MAX_CDB_LEN];
336 uchar y_first_sg_list_qp;
337 uchar y_working_sg_qp;
338 uchar y_working_sg_ix;
339 uchar y_res;
340 ushort x_req_count;
341 ushort x_reconnect_rtn;
342 ASC_PADDR x_saved_data_addr;
343 ASC_DCNT x_saved_data_cnt;
344 } ASC_SCSIQ_4;
346 typedef struct asc_q_done_info {
347 ASC_SCSIQ_2 d2;
348 ASC_SCSIQ_3 d3;
349 uchar q_status;
350 uchar q_no;
351 uchar cntl;
352 uchar sense_len;
353 uchar extra_bytes;
354 uchar res;
355 ASC_DCNT remain_bytes;
356 } ASC_QDONE_INFO;
358 typedef struct asc_sg_list {
359 ASC_PADDR addr;
360 ASC_DCNT bytes;
361 } ASC_SG_LIST;
363 typedef struct asc_sg_head {
364 ushort entry_cnt;
365 ushort queue_cnt;
366 ushort entry_to_copy;
367 ushort res;
368 ASC_SG_LIST sg_list[0];
369 } ASC_SG_HEAD;
371 typedef struct asc_scsi_q {
372 ASC_SCSIQ_1 q1;
373 ASC_SCSIQ_2 q2;
374 uchar *cdbptr;
375 ASC_SG_HEAD *sg_head;
376 ushort remain_sg_entry_cnt;
377 ushort next_sg_index;
378 } ASC_SCSI_Q;
380 typedef struct asc_scsi_req_q {
381 ASC_SCSIQ_1 r1;
382 ASC_SCSIQ_2 r2;
383 uchar *cdbptr;
384 ASC_SG_HEAD *sg_head;
385 uchar *sense_ptr;
386 ASC_SCSIQ_3 r3;
387 uchar cdb[ASC_MAX_CDB_LEN];
388 uchar sense[ASC_MIN_SENSE_LEN];
389 } ASC_SCSI_REQ_Q;
391 typedef struct asc_scsi_bios_req_q {
392 ASC_SCSIQ_1 r1;
393 ASC_SCSIQ_2 r2;
394 uchar *cdbptr;
395 ASC_SG_HEAD *sg_head;
396 uchar *sense_ptr;
397 ASC_SCSIQ_3 r3;
398 uchar cdb[ASC_MAX_CDB_LEN];
399 uchar sense[ASC_MIN_SENSE_LEN];
400 } ASC_SCSI_BIOS_REQ_Q;
402 typedef struct asc_risc_q {
403 uchar fwd;
404 uchar bwd;
405 ASC_SCSIQ_1 i1;
406 ASC_SCSIQ_2 i2;
407 ASC_SCSIQ_3 i3;
408 ASC_SCSIQ_4 i4;
409 } ASC_RISC_Q;
411 typedef struct asc_sg_list_q {
412 uchar seq_no;
413 uchar q_no;
414 uchar cntl;
415 uchar sg_head_qp;
416 uchar sg_list_cnt;
417 uchar sg_cur_list_cnt;
418 } ASC_SG_LIST_Q;
420 typedef struct asc_risc_sg_list_q {
421 uchar fwd;
422 uchar bwd;
423 ASC_SG_LIST_Q sg;
424 ASC_SG_LIST sg_list[7];
425 } ASC_RISC_SG_LIST_Q;
427 #define ASCQ_ERR_Q_STATUS 0x0D
428 #define ASCQ_ERR_CUR_QNG 0x17
429 #define ASCQ_ERR_SG_Q_LINKS 0x18
430 #define ASCQ_ERR_ISR_RE_ENTRY 0x1A
431 #define ASCQ_ERR_CRITICAL_RE_ENTRY 0x1B
432 #define ASCQ_ERR_ISR_ON_CRITICAL 0x1C
435 * Warning code values are set in ASC_DVC_VAR 'warn_code'.
437 #define ASC_WARN_NO_ERROR 0x0000
438 #define ASC_WARN_IO_PORT_ROTATE 0x0001
439 #define ASC_WARN_EEPROM_CHKSUM 0x0002
440 #define ASC_WARN_IRQ_MODIFIED 0x0004
441 #define ASC_WARN_AUTO_CONFIG 0x0008
442 #define ASC_WARN_CMD_QNG_CONFLICT 0x0010
443 #define ASC_WARN_EEPROM_RECOVER 0x0020
444 #define ASC_WARN_CFG_MSW_RECOVER 0x0040
447 * Error code values are set in {ASC/ADV}_DVC_VAR 'err_code'.
449 #define ASC_IERR_NO_CARRIER 0x0001 /* No more carrier memory */
450 #define ASC_IERR_MCODE_CHKSUM 0x0002 /* micro code check sum error */
451 #define ASC_IERR_SET_PC_ADDR 0x0004
452 #define ASC_IERR_START_STOP_CHIP 0x0008 /* start/stop chip failed */
453 #define ASC_IERR_ILLEGAL_CONNECTION 0x0010 /* Illegal cable connection */
454 #define ASC_IERR_SINGLE_END_DEVICE 0x0020 /* SE device on DIFF bus */
455 #define ASC_IERR_REVERSED_CABLE 0x0040 /* Narrow flat cable reversed */
456 #define ASC_IERR_SET_SCSI_ID 0x0080 /* set SCSI ID failed */
457 #define ASC_IERR_HVD_DEVICE 0x0100 /* HVD device on LVD port */
458 #define ASC_IERR_BAD_SIGNATURE 0x0200 /* signature not found */
459 #define ASC_IERR_NO_BUS_TYPE 0x0400
460 #define ASC_IERR_BIST_PRE_TEST 0x0800 /* BIST pre-test error */
461 #define ASC_IERR_BIST_RAM_TEST 0x1000 /* BIST RAM test error */
462 #define ASC_IERR_BAD_CHIPTYPE 0x2000 /* Invalid chip_type setting */
464 #define ASC_DEF_MAX_TOTAL_QNG (0xF0)
465 #define ASC_MIN_TAG_Q_PER_DVC (0x04)
466 #define ASC_MIN_FREE_Q (0x02)
467 #define ASC_MIN_TOTAL_QNG ((ASC_MAX_SG_QUEUE)+(ASC_MIN_FREE_Q))
468 #define ASC_MAX_TOTAL_QNG 240
469 #define ASC_MAX_PCI_ULTRA_INRAM_TOTAL_QNG 16
470 #define ASC_MAX_PCI_ULTRA_INRAM_TAG_QNG 8
471 #define ASC_MAX_PCI_INRAM_TOTAL_QNG 20
472 #define ASC_MAX_INRAM_TAG_QNG 16
473 #define ASC_IOADR_GAP 0x10
474 #define ASC_SYN_MAX_OFFSET 0x0F
475 #define ASC_DEF_SDTR_OFFSET 0x0F
476 #define ASC_SDTR_ULTRA_PCI_10MB_INDEX 0x02
477 #define ASYN_SDTR_DATA_FIX_PCI_REV_AB 0x41
479 /* The narrow chip only supports a limited selection of transfer rates.
480 * These are encoded in the range 0..7 or 0..15 depending whether the chip
481 * is Ultra-capable or not. These tables let us convert from one to the other.
483 static const unsigned char asc_syn_xfer_period[8] = {
484 25, 30, 35, 40, 50, 60, 70, 85
487 static const unsigned char asc_syn_ultra_xfer_period[16] = {
488 12, 19, 25, 32, 38, 44, 50, 57, 63, 69, 75, 82, 88, 94, 100, 107
491 typedef struct ext_msg {
492 uchar msg_type;
493 uchar msg_len;
494 uchar msg_req;
495 union {
496 struct {
497 uchar sdtr_xfer_period;
498 uchar sdtr_req_ack_offset;
499 } sdtr;
500 struct {
501 uchar wdtr_width;
502 } wdtr;
503 struct {
504 uchar mdp_b3;
505 uchar mdp_b2;
506 uchar mdp_b1;
507 uchar mdp_b0;
508 } mdp;
509 } u_ext_msg;
510 uchar res;
511 } EXT_MSG;
513 #define xfer_period u_ext_msg.sdtr.sdtr_xfer_period
514 #define req_ack_offset u_ext_msg.sdtr.sdtr_req_ack_offset
515 #define wdtr_width u_ext_msg.wdtr.wdtr_width
516 #define mdp_b3 u_ext_msg.mdp_b3
517 #define mdp_b2 u_ext_msg.mdp_b2
518 #define mdp_b1 u_ext_msg.mdp_b1
519 #define mdp_b0 u_ext_msg.mdp_b0
521 typedef struct asc_dvc_cfg {
522 ASC_SCSI_BIT_ID_TYPE can_tagged_qng;
523 ASC_SCSI_BIT_ID_TYPE cmd_qng_enabled;
524 ASC_SCSI_BIT_ID_TYPE disc_enable;
525 ASC_SCSI_BIT_ID_TYPE sdtr_enable;
526 uchar chip_scsi_id;
527 uchar isa_dma_speed;
528 uchar isa_dma_channel;
529 uchar chip_version;
530 ushort mcode_date;
531 ushort mcode_version;
532 uchar max_tag_qng[ASC_MAX_TID + 1];
533 uchar sdtr_period_offset[ASC_MAX_TID + 1];
534 uchar adapter_info[6];
535 } ASC_DVC_CFG;
537 #define ASC_DEF_DVC_CNTL 0xFFFF
538 #define ASC_DEF_CHIP_SCSI_ID 7
539 #define ASC_DEF_ISA_DMA_SPEED 4
540 #define ASC_INIT_STATE_BEG_GET_CFG 0x0001
541 #define ASC_INIT_STATE_END_GET_CFG 0x0002
542 #define ASC_INIT_STATE_BEG_SET_CFG 0x0004
543 #define ASC_INIT_STATE_END_SET_CFG 0x0008
544 #define ASC_INIT_STATE_BEG_LOAD_MC 0x0010
545 #define ASC_INIT_STATE_END_LOAD_MC 0x0020
546 #define ASC_INIT_STATE_BEG_INQUIRY 0x0040
547 #define ASC_INIT_STATE_END_INQUIRY 0x0080
548 #define ASC_INIT_RESET_SCSI_DONE 0x0100
549 #define ASC_INIT_STATE_WITHOUT_EEP 0x8000
550 #define ASC_BUG_FIX_IF_NOT_DWB 0x0001
551 #define ASC_BUG_FIX_ASYN_USE_SYN 0x0002
552 #define ASC_MIN_TAGGED_CMD 7
553 #define ASC_MAX_SCSI_RESET_WAIT 30
554 #define ASC_OVERRUN_BSIZE 64
556 struct asc_dvc_var; /* Forward Declaration. */
558 typedef struct asc_dvc_var {
559 PortAddr iop_base;
560 ushort err_code;
561 ushort dvc_cntl;
562 ushort bug_fix_cntl;
563 ushort bus_type;
564 ASC_SCSI_BIT_ID_TYPE init_sdtr;
565 ASC_SCSI_BIT_ID_TYPE sdtr_done;
566 ASC_SCSI_BIT_ID_TYPE use_tagged_qng;
567 ASC_SCSI_BIT_ID_TYPE unit_not_ready;
568 ASC_SCSI_BIT_ID_TYPE queue_full_or_busy;
569 ASC_SCSI_BIT_ID_TYPE start_motor;
570 uchar *overrun_buf;
571 dma_addr_t overrun_dma;
572 uchar scsi_reset_wait;
573 uchar chip_no;
574 char is_in_int;
575 uchar max_total_qng;
576 uchar cur_total_qng;
577 uchar in_critical_cnt;
578 uchar last_q_shortage;
579 ushort init_state;
580 uchar cur_dvc_qng[ASC_MAX_TID + 1];
581 uchar max_dvc_qng[ASC_MAX_TID + 1];
582 ASC_SCSI_Q *scsiq_busy_head[ASC_MAX_TID + 1];
583 ASC_SCSI_Q *scsiq_busy_tail[ASC_MAX_TID + 1];
584 const uchar *sdtr_period_tbl;
585 ASC_DVC_CFG *cfg;
586 ASC_SCSI_BIT_ID_TYPE pci_fix_asyn_xfer_always;
587 char redo_scam;
588 ushort res2;
589 uchar dos_int13_table[ASC_MAX_TID + 1];
590 ASC_DCNT max_dma_count;
591 ASC_SCSI_BIT_ID_TYPE no_scam;
592 ASC_SCSI_BIT_ID_TYPE pci_fix_asyn_xfer;
593 uchar min_sdtr_index;
594 uchar max_sdtr_index;
595 struct asc_board *drv_ptr;
596 int ptr_map_count;
597 void **ptr_map;
598 ASC_DCNT uc_break;
599 } ASC_DVC_VAR;
601 typedef struct asc_dvc_inq_info {
602 uchar type[ASC_MAX_TID + 1][ASC_MAX_LUN + 1];
603 } ASC_DVC_INQ_INFO;
605 typedef struct asc_cap_info {
606 ASC_DCNT lba;
607 ASC_DCNT blk_size;
608 } ASC_CAP_INFO;
610 typedef struct asc_cap_info_array {
611 ASC_CAP_INFO cap_info[ASC_MAX_TID + 1][ASC_MAX_LUN + 1];
612 } ASC_CAP_INFO_ARRAY;
614 #define ASC_MCNTL_NO_SEL_TIMEOUT (ushort)0x0001
615 #define ASC_MCNTL_NULL_TARGET (ushort)0x0002
616 #define ASC_CNTL_INITIATOR (ushort)0x0001
617 #define ASC_CNTL_BIOS_GT_1GB (ushort)0x0002
618 #define ASC_CNTL_BIOS_GT_2_DISK (ushort)0x0004
619 #define ASC_CNTL_BIOS_REMOVABLE (ushort)0x0008
620 #define ASC_CNTL_NO_SCAM (ushort)0x0010
621 #define ASC_CNTL_INT_MULTI_Q (ushort)0x0080
622 #define ASC_CNTL_NO_LUN_SUPPORT (ushort)0x0040
623 #define ASC_CNTL_NO_VERIFY_COPY (ushort)0x0100
624 #define ASC_CNTL_RESET_SCSI (ushort)0x0200
625 #define ASC_CNTL_INIT_INQUIRY (ushort)0x0400
626 #define ASC_CNTL_INIT_VERBOSE (ushort)0x0800
627 #define ASC_CNTL_SCSI_PARITY (ushort)0x1000
628 #define ASC_CNTL_BURST_MODE (ushort)0x2000
629 #define ASC_CNTL_SDTR_ENABLE_ULTRA (ushort)0x4000
630 #define ASC_EEP_DVC_CFG_BEG_VL 2
631 #define ASC_EEP_MAX_DVC_ADDR_VL 15
632 #define ASC_EEP_DVC_CFG_BEG 32
633 #define ASC_EEP_MAX_DVC_ADDR 45
634 #define ASC_EEP_MAX_RETRY 20
637 * These macros keep the chip SCSI id and ISA DMA speed
638 * bitfields in board order. C bitfields aren't portable
639 * between big and little-endian platforms so they are
640 * not used.
643 #define ASC_EEP_GET_CHIP_ID(cfg) ((cfg)->id_speed & 0x0f)
644 #define ASC_EEP_GET_DMA_SPD(cfg) (((cfg)->id_speed & 0xf0) >> 4)
645 #define ASC_EEP_SET_CHIP_ID(cfg, sid) \
646 ((cfg)->id_speed = ((cfg)->id_speed & 0xf0) | ((sid) & ASC_MAX_TID))
647 #define ASC_EEP_SET_DMA_SPD(cfg, spd) \
648 ((cfg)->id_speed = ((cfg)->id_speed & 0x0f) | ((spd) & 0x0f) << 4)
650 typedef struct asceep_config {
651 ushort cfg_lsw;
652 ushort cfg_msw;
653 uchar init_sdtr;
654 uchar disc_enable;
655 uchar use_cmd_qng;
656 uchar start_motor;
657 uchar max_total_qng;
658 uchar max_tag_qng;
659 uchar bios_scan;
660 uchar power_up_wait;
661 uchar no_scam;
662 uchar id_speed; /* low order 4 bits is chip scsi id */
663 /* high order 4 bits is isa dma speed */
664 uchar dos_int13_table[ASC_MAX_TID + 1];
665 uchar adapter_info[6];
666 ushort cntl;
667 ushort chksum;
668 } ASCEEP_CONFIG;
670 #define ASC_EEP_CMD_READ 0x80
671 #define ASC_EEP_CMD_WRITE 0x40
672 #define ASC_EEP_CMD_WRITE_ABLE 0x30
673 #define ASC_EEP_CMD_WRITE_DISABLE 0x00
674 #define ASCV_MSGOUT_BEG 0x0000
675 #define ASCV_MSGOUT_SDTR_PERIOD (ASCV_MSGOUT_BEG+3)
676 #define ASCV_MSGOUT_SDTR_OFFSET (ASCV_MSGOUT_BEG+4)
677 #define ASCV_BREAK_SAVED_CODE (ushort)0x0006
678 #define ASCV_MSGIN_BEG (ASCV_MSGOUT_BEG+8)
679 #define ASCV_MSGIN_SDTR_PERIOD (ASCV_MSGIN_BEG+3)
680 #define ASCV_MSGIN_SDTR_OFFSET (ASCV_MSGIN_BEG+4)
681 #define ASCV_SDTR_DATA_BEG (ASCV_MSGIN_BEG+8)
682 #define ASCV_SDTR_DONE_BEG (ASCV_SDTR_DATA_BEG+8)
683 #define ASCV_MAX_DVC_QNG_BEG (ushort)0x0020
684 #define ASCV_BREAK_ADDR (ushort)0x0028
685 #define ASCV_BREAK_NOTIFY_COUNT (ushort)0x002A
686 #define ASCV_BREAK_CONTROL (ushort)0x002C
687 #define ASCV_BREAK_HIT_COUNT (ushort)0x002E
689 #define ASCV_ASCDVC_ERR_CODE_W (ushort)0x0030
690 #define ASCV_MCODE_CHKSUM_W (ushort)0x0032
691 #define ASCV_MCODE_SIZE_W (ushort)0x0034
692 #define ASCV_STOP_CODE_B (ushort)0x0036
693 #define ASCV_DVC_ERR_CODE_B (ushort)0x0037
694 #define ASCV_OVERRUN_PADDR_D (ushort)0x0038
695 #define ASCV_OVERRUN_BSIZE_D (ushort)0x003C
696 #define ASCV_HALTCODE_W (ushort)0x0040
697 #define ASCV_CHKSUM_W (ushort)0x0042
698 #define ASCV_MC_DATE_W (ushort)0x0044
699 #define ASCV_MC_VER_W (ushort)0x0046
700 #define ASCV_NEXTRDY_B (ushort)0x0048
701 #define ASCV_DONENEXT_B (ushort)0x0049
702 #define ASCV_USE_TAGGED_QNG_B (ushort)0x004A
703 #define ASCV_SCSIBUSY_B (ushort)0x004B
704 #define ASCV_Q_DONE_IN_PROGRESS_B (ushort)0x004C
705 #define ASCV_CURCDB_B (ushort)0x004D
706 #define ASCV_RCLUN_B (ushort)0x004E
707 #define ASCV_BUSY_QHEAD_B (ushort)0x004F
708 #define ASCV_DISC1_QHEAD_B (ushort)0x0050
709 #define ASCV_DISC_ENABLE_B (ushort)0x0052
710 #define ASCV_CAN_TAGGED_QNG_B (ushort)0x0053
711 #define ASCV_HOSTSCSI_ID_B (ushort)0x0055
712 #define ASCV_MCODE_CNTL_B (ushort)0x0056
713 #define ASCV_NULL_TARGET_B (ushort)0x0057
714 #define ASCV_FREE_Q_HEAD_W (ushort)0x0058
715 #define ASCV_DONE_Q_TAIL_W (ushort)0x005A
716 #define ASCV_FREE_Q_HEAD_B (ushort)(ASCV_FREE_Q_HEAD_W+1)
717 #define ASCV_DONE_Q_TAIL_B (ushort)(ASCV_DONE_Q_TAIL_W+1)
718 #define ASCV_HOST_FLAG_B (ushort)0x005D
719 #define ASCV_TOTAL_READY_Q_B (ushort)0x0064
720 #define ASCV_VER_SERIAL_B (ushort)0x0065
721 #define ASCV_HALTCODE_SAVED_W (ushort)0x0066
722 #define ASCV_WTM_FLAG_B (ushort)0x0068
723 #define ASCV_RISC_FLAG_B (ushort)0x006A
724 #define ASCV_REQ_SG_LIST_QP (ushort)0x006B
725 #define ASC_HOST_FLAG_IN_ISR 0x01
726 #define ASC_HOST_FLAG_ACK_INT 0x02
727 #define ASC_RISC_FLAG_GEN_INT 0x01
728 #define ASC_RISC_FLAG_REQ_SG_LIST 0x02
729 #define IOP_CTRL (0x0F)
730 #define IOP_STATUS (0x0E)
731 #define IOP_INT_ACK IOP_STATUS
732 #define IOP_REG_IFC (0x0D)
733 #define IOP_SYN_OFFSET (0x0B)
734 #define IOP_EXTRA_CONTROL (0x0D)
735 #define IOP_REG_PC (0x0C)
736 #define IOP_RAM_ADDR (0x0A)
737 #define IOP_RAM_DATA (0x08)
738 #define IOP_EEP_DATA (0x06)
739 #define IOP_EEP_CMD (0x07)
740 #define IOP_VERSION (0x03)
741 #define IOP_CONFIG_HIGH (0x04)
742 #define IOP_CONFIG_LOW (0x02)
743 #define IOP_SIG_BYTE (0x01)
744 #define IOP_SIG_WORD (0x00)
745 #define IOP_REG_DC1 (0x0E)
746 #define IOP_REG_DC0 (0x0C)
747 #define IOP_REG_SB (0x0B)
748 #define IOP_REG_DA1 (0x0A)
749 #define IOP_REG_DA0 (0x08)
750 #define IOP_REG_SC (0x09)
751 #define IOP_DMA_SPEED (0x07)
752 #define IOP_REG_FLAG (0x07)
753 #define IOP_FIFO_H (0x06)
754 #define IOP_FIFO_L (0x04)
755 #define IOP_REG_ID (0x05)
756 #define IOP_REG_QP (0x03)
757 #define IOP_REG_IH (0x02)
758 #define IOP_REG_IX (0x01)
759 #define IOP_REG_AX (0x00)
760 #define IFC_REG_LOCK (0x00)
761 #define IFC_REG_UNLOCK (0x09)
762 #define IFC_WR_EN_FILTER (0x10)
763 #define IFC_RD_NO_EEPROM (0x10)
764 #define IFC_SLEW_RATE (0x20)
765 #define IFC_ACT_NEG (0x40)
766 #define IFC_INP_FILTER (0x80)
767 #define IFC_INIT_DEFAULT (IFC_ACT_NEG | IFC_REG_UNLOCK)
768 #define SC_SEL (uchar)(0x80)
769 #define SC_BSY (uchar)(0x40)
770 #define SC_ACK (uchar)(0x20)
771 #define SC_REQ (uchar)(0x10)
772 #define SC_ATN (uchar)(0x08)
773 #define SC_IO (uchar)(0x04)
774 #define SC_CD (uchar)(0x02)
775 #define SC_MSG (uchar)(0x01)
776 #define SEC_SCSI_CTL (uchar)(0x80)
777 #define SEC_ACTIVE_NEGATE (uchar)(0x40)
778 #define SEC_SLEW_RATE (uchar)(0x20)
779 #define SEC_ENABLE_FILTER (uchar)(0x10)
780 #define ASC_HALT_EXTMSG_IN (ushort)0x8000
781 #define ASC_HALT_CHK_CONDITION (ushort)0x8100
782 #define ASC_HALT_SS_QUEUE_FULL (ushort)0x8200
783 #define ASC_HALT_DISABLE_ASYN_USE_SYN_FIX (ushort)0x8300
784 #define ASC_HALT_ENABLE_ASYN_USE_SYN_FIX (ushort)0x8400
785 #define ASC_HALT_SDTR_REJECTED (ushort)0x4000
786 #define ASC_HALT_HOST_COPY_SG_LIST_TO_RISC ( ushort )0x2000
787 #define ASC_MAX_QNO 0xF8
788 #define ASC_DATA_SEC_BEG (ushort)0x0080
789 #define ASC_DATA_SEC_END (ushort)0x0080
790 #define ASC_CODE_SEC_BEG (ushort)0x0080
791 #define ASC_CODE_SEC_END (ushort)0x0080
792 #define ASC_QADR_BEG (0x4000)
793 #define ASC_QADR_USED (ushort)(ASC_MAX_QNO * 64)
794 #define ASC_QADR_END (ushort)0x7FFF
795 #define ASC_QLAST_ADR (ushort)0x7FC0
796 #define ASC_QBLK_SIZE 0x40
797 #define ASC_BIOS_DATA_QBEG 0xF8
798 #define ASC_MIN_ACTIVE_QNO 0x01
799 #define ASC_QLINK_END 0xFF
800 #define ASC_EEPROM_WORDS 0x10
801 #define ASC_MAX_MGS_LEN 0x10
802 #define ASC_BIOS_ADDR_DEF 0xDC00
803 #define ASC_BIOS_SIZE 0x3800
804 #define ASC_BIOS_RAM_OFF 0x3800
805 #define ASC_BIOS_RAM_SIZE 0x800
806 #define ASC_BIOS_MIN_ADDR 0xC000
807 #define ASC_BIOS_MAX_ADDR 0xEC00
808 #define ASC_BIOS_BANK_SIZE 0x0400
809 #define ASC_MCODE_START_ADDR 0x0080
810 #define ASC_CFG0_HOST_INT_ON 0x0020
811 #define ASC_CFG0_BIOS_ON 0x0040
812 #define ASC_CFG0_VERA_BURST_ON 0x0080
813 #define ASC_CFG0_SCSI_PARITY_ON 0x0800
814 #define ASC_CFG1_SCSI_TARGET_ON 0x0080
815 #define ASC_CFG1_LRAM_8BITS_ON 0x0800
816 #define ASC_CFG_MSW_CLR_MASK 0x3080
817 #define CSW_TEST1 (ASC_CS_TYPE)0x8000
818 #define CSW_AUTO_CONFIG (ASC_CS_TYPE)0x4000
819 #define CSW_RESERVED1 (ASC_CS_TYPE)0x2000
820 #define CSW_IRQ_WRITTEN (ASC_CS_TYPE)0x1000
821 #define CSW_33MHZ_SELECTED (ASC_CS_TYPE)0x0800
822 #define CSW_TEST2 (ASC_CS_TYPE)0x0400
823 #define CSW_TEST3 (ASC_CS_TYPE)0x0200
824 #define CSW_RESERVED2 (ASC_CS_TYPE)0x0100
825 #define CSW_DMA_DONE (ASC_CS_TYPE)0x0080
826 #define CSW_FIFO_RDY (ASC_CS_TYPE)0x0040
827 #define CSW_EEP_READ_DONE (ASC_CS_TYPE)0x0020
828 #define CSW_HALTED (ASC_CS_TYPE)0x0010
829 #define CSW_SCSI_RESET_ACTIVE (ASC_CS_TYPE)0x0008
830 #define CSW_PARITY_ERR (ASC_CS_TYPE)0x0004
831 #define CSW_SCSI_RESET_LATCH (ASC_CS_TYPE)0x0002
832 #define CSW_INT_PENDING (ASC_CS_TYPE)0x0001
833 #define CIW_CLR_SCSI_RESET_INT (ASC_CS_TYPE)0x1000
834 #define CIW_INT_ACK (ASC_CS_TYPE)0x0100
835 #define CIW_TEST1 (ASC_CS_TYPE)0x0200
836 #define CIW_TEST2 (ASC_CS_TYPE)0x0400
837 #define CIW_SEL_33MHZ (ASC_CS_TYPE)0x0800
838 #define CIW_IRQ_ACT (ASC_CS_TYPE)0x1000
839 #define CC_CHIP_RESET (uchar)0x80
840 #define CC_SCSI_RESET (uchar)0x40
841 #define CC_HALT (uchar)0x20
842 #define CC_SINGLE_STEP (uchar)0x10
843 #define CC_DMA_ABLE (uchar)0x08
844 #define CC_TEST (uchar)0x04
845 #define CC_BANK_ONE (uchar)0x02
846 #define CC_DIAG (uchar)0x01
847 #define ASC_1000_ID0W 0x04C1
848 #define ASC_1000_ID0W_FIX 0x00C1
849 #define ASC_1000_ID1B 0x25
850 #define ASC_EISA_REV_IOP_MASK (0x0C83)
851 #define ASC_EISA_CFG_IOP_MASK (0x0C86)
852 #define ASC_GET_EISA_SLOT(iop) (PortAddr)((iop) & 0xF000)
853 #define INS_HALTINT (ushort)0x6281
854 #define INS_HALT (ushort)0x6280
855 #define INS_SINT (ushort)0x6200
856 #define INS_RFLAG_WTM (ushort)0x7380
857 #define ASC_MC_SAVE_CODE_WSIZE 0x500
858 #define ASC_MC_SAVE_DATA_WSIZE 0x40
860 typedef struct asc_mc_saved {
861 ushort data[ASC_MC_SAVE_DATA_WSIZE];
862 ushort code[ASC_MC_SAVE_CODE_WSIZE];
863 } ASC_MC_SAVED;
865 #define AscGetQDoneInProgress(port) AscReadLramByte((port), ASCV_Q_DONE_IN_PROGRESS_B)
866 #define AscPutQDoneInProgress(port, val) AscWriteLramByte((port), ASCV_Q_DONE_IN_PROGRESS_B, val)
867 #define AscGetVarFreeQHead(port) AscReadLramWord((port), ASCV_FREE_Q_HEAD_W)
868 #define AscGetVarDoneQTail(port) AscReadLramWord((port), ASCV_DONE_Q_TAIL_W)
869 #define AscPutVarFreeQHead(port, val) AscWriteLramWord((port), ASCV_FREE_Q_HEAD_W, val)
870 #define AscPutVarDoneQTail(port, val) AscWriteLramWord((port), ASCV_DONE_Q_TAIL_W, val)
871 #define AscGetRiscVarFreeQHead(port) AscReadLramByte((port), ASCV_NEXTRDY_B)
872 #define AscGetRiscVarDoneQTail(port) AscReadLramByte((port), ASCV_DONENEXT_B)
873 #define AscPutRiscVarFreeQHead(port, val) AscWriteLramByte((port), ASCV_NEXTRDY_B, val)
874 #define AscPutRiscVarDoneQTail(port, val) AscWriteLramByte((port), ASCV_DONENEXT_B, val)
875 #define AscPutMCodeSDTRDoneAtID(port, id, data) AscWriteLramByte((port), (ushort)((ushort)ASCV_SDTR_DONE_BEG+(ushort)id), (data))
876 #define AscGetMCodeSDTRDoneAtID(port, id) AscReadLramByte((port), (ushort)((ushort)ASCV_SDTR_DONE_BEG+(ushort)id))
877 #define AscPutMCodeInitSDTRAtID(port, id, data) AscWriteLramByte((port), (ushort)((ushort)ASCV_SDTR_DATA_BEG+(ushort)id), data)
878 #define AscGetMCodeInitSDTRAtID(port, id) AscReadLramByte((port), (ushort)((ushort)ASCV_SDTR_DATA_BEG+(ushort)id))
879 #define AscGetChipSignatureByte(port) (uchar)inp((port)+IOP_SIG_BYTE)
880 #define AscGetChipSignatureWord(port) (ushort)inpw((port)+IOP_SIG_WORD)
881 #define AscGetChipVerNo(port) (uchar)inp((port)+IOP_VERSION)
882 #define AscGetChipCfgLsw(port) (ushort)inpw((port)+IOP_CONFIG_LOW)
883 #define AscGetChipCfgMsw(port) (ushort)inpw((port)+IOP_CONFIG_HIGH)
884 #define AscSetChipCfgLsw(port, data) outpw((port)+IOP_CONFIG_LOW, data)
885 #define AscSetChipCfgMsw(port, data) outpw((port)+IOP_CONFIG_HIGH, data)
886 #define AscGetChipEEPCmd(port) (uchar)inp((port)+IOP_EEP_CMD)
887 #define AscSetChipEEPCmd(port, data) outp((port)+IOP_EEP_CMD, data)
888 #define AscGetChipEEPData(port) (ushort)inpw((port)+IOP_EEP_DATA)
889 #define AscSetChipEEPData(port, data) outpw((port)+IOP_EEP_DATA, data)
890 #define AscGetChipLramAddr(port) (ushort)inpw((PortAddr)((port)+IOP_RAM_ADDR))
891 #define AscSetChipLramAddr(port, addr) outpw((PortAddr)((port)+IOP_RAM_ADDR), addr)
892 #define AscGetChipLramData(port) (ushort)inpw((port)+IOP_RAM_DATA)
893 #define AscSetChipLramData(port, data) outpw((port)+IOP_RAM_DATA, data)
894 #define AscGetChipIFC(port) (uchar)inp((port)+IOP_REG_IFC)
895 #define AscSetChipIFC(port, data) outp((port)+IOP_REG_IFC, data)
896 #define AscGetChipStatus(port) (ASC_CS_TYPE)inpw((port)+IOP_STATUS)
897 #define AscSetChipStatus(port, cs_val) outpw((port)+IOP_STATUS, cs_val)
898 #define AscGetChipControl(port) (uchar)inp((port)+IOP_CTRL)
899 #define AscSetChipControl(port, cc_val) outp((port)+IOP_CTRL, cc_val)
900 #define AscGetChipSyn(port) (uchar)inp((port)+IOP_SYN_OFFSET)
901 #define AscSetChipSyn(port, data) outp((port)+IOP_SYN_OFFSET, data)
902 #define AscSetPCAddr(port, data) outpw((port)+IOP_REG_PC, data)
903 #define AscGetPCAddr(port) (ushort)inpw((port)+IOP_REG_PC)
904 #define AscIsIntPending(port) (AscGetChipStatus(port) & (CSW_INT_PENDING | CSW_SCSI_RESET_LATCH))
905 #define AscGetChipScsiID(port) ((AscGetChipCfgLsw(port) >> 8) & ASC_MAX_TID)
906 #define AscGetExtraControl(port) (uchar)inp((port)+IOP_EXTRA_CONTROL)
907 #define AscSetExtraControl(port, data) outp((port)+IOP_EXTRA_CONTROL, data)
908 #define AscReadChipAX(port) (ushort)inpw((port)+IOP_REG_AX)
909 #define AscWriteChipAX(port, data) outpw((port)+IOP_REG_AX, data)
910 #define AscReadChipIX(port) (uchar)inp((port)+IOP_REG_IX)
911 #define AscWriteChipIX(port, data) outp((port)+IOP_REG_IX, data)
912 #define AscReadChipIH(port) (ushort)inpw((port)+IOP_REG_IH)
913 #define AscWriteChipIH(port, data) outpw((port)+IOP_REG_IH, data)
914 #define AscReadChipQP(port) (uchar)inp((port)+IOP_REG_QP)
915 #define AscWriteChipQP(port, data) outp((port)+IOP_REG_QP, data)
916 #define AscReadChipFIFO_L(port) (ushort)inpw((port)+IOP_REG_FIFO_L)
917 #define AscWriteChipFIFO_L(port, data) outpw((port)+IOP_REG_FIFO_L, data)
918 #define AscReadChipFIFO_H(port) (ushort)inpw((port)+IOP_REG_FIFO_H)
919 #define AscWriteChipFIFO_H(port, data) outpw((port)+IOP_REG_FIFO_H, data)
920 #define AscReadChipDmaSpeed(port) (uchar)inp((port)+IOP_DMA_SPEED)
921 #define AscWriteChipDmaSpeed(port, data) outp((port)+IOP_DMA_SPEED, data)
922 #define AscReadChipDA0(port) (ushort)inpw((port)+IOP_REG_DA0)
923 #define AscWriteChipDA0(port) outpw((port)+IOP_REG_DA0, data)
924 #define AscReadChipDA1(port) (ushort)inpw((port)+IOP_REG_DA1)
925 #define AscWriteChipDA1(port) outpw((port)+IOP_REG_DA1, data)
926 #define AscReadChipDC0(port) (ushort)inpw((port)+IOP_REG_DC0)
927 #define AscWriteChipDC0(port) outpw((port)+IOP_REG_DC0, data)
928 #define AscReadChipDC1(port) (ushort)inpw((port)+IOP_REG_DC1)
929 #define AscWriteChipDC1(port) outpw((port)+IOP_REG_DC1, data)
930 #define AscReadChipDvcID(port) (uchar)inp((port)+IOP_REG_ID)
931 #define AscWriteChipDvcID(port, data) outp((port)+IOP_REG_ID, data)
934 * Portable Data Types
936 * Any instance where a 32-bit long or pointer type is assumed
937 * for precision or HW defined structures, the following define
938 * types must be used. In Linux the char, short, and int types
939 * are all consistent at 8, 16, and 32 bits respectively. Pointers
940 * and long types are 64 bits on Alpha and UltraSPARC.
942 #define ADV_PADDR __u32 /* Physical address data type. */
943 #define ADV_VADDR __u32 /* Virtual address data type. */
944 #define ADV_DCNT __u32 /* Unsigned Data count type. */
945 #define ADV_SDCNT __s32 /* Signed Data count type. */
948 * These macros are used to convert a virtual address to a
949 * 32-bit value. This currently can be used on Linux Alpha
950 * which uses 64-bit virtual address but a 32-bit bus address.
951 * This is likely to break in the future, but doing this now
952 * will give us time to change the HW and FW to handle 64-bit
953 * addresses.
955 #define ADV_VADDR_TO_U32 virt_to_bus
956 #define ADV_U32_TO_VADDR bus_to_virt
958 #define AdvPortAddr void __iomem * /* Virtual memory address size */
961 * Define Adv Library required memory access macros.
963 #define ADV_MEM_READB(addr) readb(addr)
964 #define ADV_MEM_READW(addr) readw(addr)
965 #define ADV_MEM_WRITEB(addr, byte) writeb(byte, addr)
966 #define ADV_MEM_WRITEW(addr, word) writew(word, addr)
967 #define ADV_MEM_WRITEDW(addr, dword) writel(dword, addr)
969 #define ADV_CARRIER_COUNT (ASC_DEF_MAX_HOST_QNG + 15)
972 * Define total number of simultaneous maximum element scatter-gather
973 * request blocks per wide adapter. ASC_DEF_MAX_HOST_QNG (253) is the
974 * maximum number of outstanding commands per wide host adapter. Each
975 * command uses one or more ADV_SG_BLOCK each with 15 scatter-gather
976 * elements. Allow each command to have at least one ADV_SG_BLOCK structure.
977 * This allows about 15 commands to have the maximum 17 ADV_SG_BLOCK
978 * structures or 255 scatter-gather elements.
980 #define ADV_TOT_SG_BLOCK ASC_DEF_MAX_HOST_QNG
983 * Define maximum number of scatter-gather elements per request.
985 #define ADV_MAX_SG_LIST 255
986 #define NO_OF_SG_PER_BLOCK 15
988 #define ADV_EEP_DVC_CFG_BEGIN (0x00)
989 #define ADV_EEP_DVC_CFG_END (0x15)
990 #define ADV_EEP_DVC_CTL_BEGIN (0x16) /* location of OEM name */
991 #define ADV_EEP_MAX_WORD_ADDR (0x1E)
993 #define ADV_EEP_DELAY_MS 100
995 #define ADV_EEPROM_BIG_ENDIAN 0x8000 /* EEPROM Bit 15 */
996 #define ADV_EEPROM_BIOS_ENABLE 0x4000 /* EEPROM Bit 14 */
998 * For the ASC3550 Bit 13 is Termination Polarity control bit.
999 * For later ICs Bit 13 controls whether the CIS (Card Information
1000 * Service Section) is loaded from EEPROM.
1002 #define ADV_EEPROM_TERM_POL 0x2000 /* EEPROM Bit 13 */
1003 #define ADV_EEPROM_CIS_LD 0x2000 /* EEPROM Bit 13 */
1005 * ASC38C1600 Bit 11
1007 * If EEPROM Bit 11 is 0 for Function 0, then Function 0 will specify
1008 * INT A in the PCI Configuration Space Int Pin field. If it is 1, then
1009 * Function 0 will specify INT B.
1011 * If EEPROM Bit 11 is 0 for Function 1, then Function 1 will specify
1012 * INT B in the PCI Configuration Space Int Pin field. If it is 1, then
1013 * Function 1 will specify INT A.
1015 #define ADV_EEPROM_INTAB 0x0800 /* EEPROM Bit 11 */
1017 typedef struct adveep_3550_config {
1018 /* Word Offset, Description */
1020 ushort cfg_lsw; /* 00 power up initialization */
1021 /* bit 13 set - Term Polarity Control */
1022 /* bit 14 set - BIOS Enable */
1023 /* bit 15 set - Big Endian Mode */
1024 ushort cfg_msw; /* 01 unused */
1025 ushort disc_enable; /* 02 disconnect enable */
1026 ushort wdtr_able; /* 03 Wide DTR able */
1027 ushort sdtr_able; /* 04 Synchronous DTR able */
1028 ushort start_motor; /* 05 send start up motor */
1029 ushort tagqng_able; /* 06 tag queuing able */
1030 ushort bios_scan; /* 07 BIOS device control */
1031 ushort scam_tolerant; /* 08 no scam */
1033 uchar adapter_scsi_id; /* 09 Host Adapter ID */
1034 uchar bios_boot_delay; /* power up wait */
1036 uchar scsi_reset_delay; /* 10 reset delay */
1037 uchar bios_id_lun; /* first boot device scsi id & lun */
1038 /* high nibble is lun */
1039 /* low nibble is scsi id */
1041 uchar termination; /* 11 0 - automatic */
1042 /* 1 - low off / high off */
1043 /* 2 - low off / high on */
1044 /* 3 - low on / high on */
1045 /* There is no low on / high off */
1047 uchar reserved1; /* reserved byte (not used) */
1049 ushort bios_ctrl; /* 12 BIOS control bits */
1050 /* bit 0 BIOS don't act as initiator. */
1051 /* bit 1 BIOS > 1 GB support */
1052 /* bit 2 BIOS > 2 Disk Support */
1053 /* bit 3 BIOS don't support removables */
1054 /* bit 4 BIOS support bootable CD */
1055 /* bit 5 BIOS scan enabled */
1056 /* bit 6 BIOS support multiple LUNs */
1057 /* bit 7 BIOS display of message */
1058 /* bit 8 SCAM disabled */
1059 /* bit 9 Reset SCSI bus during init. */
1060 /* bit 10 */
1061 /* bit 11 No verbose initialization. */
1062 /* bit 12 SCSI parity enabled */
1063 /* bit 13 */
1064 /* bit 14 */
1065 /* bit 15 */
1066 ushort ultra_able; /* 13 ULTRA speed able */
1067 ushort reserved2; /* 14 reserved */
1068 uchar max_host_qng; /* 15 maximum host queuing */
1069 uchar max_dvc_qng; /* maximum per device queuing */
1070 ushort dvc_cntl; /* 16 control bit for driver */
1071 ushort bug_fix; /* 17 control bit for bug fix */
1072 ushort serial_number_word1; /* 18 Board serial number word 1 */
1073 ushort serial_number_word2; /* 19 Board serial number word 2 */
1074 ushort serial_number_word3; /* 20 Board serial number word 3 */
1075 ushort check_sum; /* 21 EEP check sum */
1076 uchar oem_name[16]; /* 22 OEM name */
1077 ushort dvc_err_code; /* 30 last device driver error code */
1078 ushort adv_err_code; /* 31 last uc and Adv Lib error code */
1079 ushort adv_err_addr; /* 32 last uc error address */
1080 ushort saved_dvc_err_code; /* 33 saved last dev. driver error code */
1081 ushort saved_adv_err_code; /* 34 saved last uc and Adv Lib error code */
1082 ushort saved_adv_err_addr; /* 35 saved last uc error address */
1083 ushort num_of_err; /* 36 number of error */
1084 } ADVEEP_3550_CONFIG;
1086 typedef struct adveep_38C0800_config {
1087 /* Word Offset, Description */
1089 ushort cfg_lsw; /* 00 power up initialization */
1090 /* bit 13 set - Load CIS */
1091 /* bit 14 set - BIOS Enable */
1092 /* bit 15 set - Big Endian Mode */
1093 ushort cfg_msw; /* 01 unused */
1094 ushort disc_enable; /* 02 disconnect enable */
1095 ushort wdtr_able; /* 03 Wide DTR able */
1096 ushort sdtr_speed1; /* 04 SDTR Speed TID 0-3 */
1097 ushort start_motor; /* 05 send start up motor */
1098 ushort tagqng_able; /* 06 tag queuing able */
1099 ushort bios_scan; /* 07 BIOS device control */
1100 ushort scam_tolerant; /* 08 no scam */
1102 uchar adapter_scsi_id; /* 09 Host Adapter ID */
1103 uchar bios_boot_delay; /* power up wait */
1105 uchar scsi_reset_delay; /* 10 reset delay */
1106 uchar bios_id_lun; /* first boot device scsi id & lun */
1107 /* high nibble is lun */
1108 /* low nibble is scsi id */
1110 uchar termination_se; /* 11 0 - automatic */
1111 /* 1 - low off / high off */
1112 /* 2 - low off / high on */
1113 /* 3 - low on / high on */
1114 /* There is no low on / high off */
1116 uchar termination_lvd; /* 11 0 - automatic */
1117 /* 1 - low off / high off */
1118 /* 2 - low off / high on */
1119 /* 3 - low on / high on */
1120 /* There is no low on / high off */
1122 ushort bios_ctrl; /* 12 BIOS control bits */
1123 /* bit 0 BIOS don't act as initiator. */
1124 /* bit 1 BIOS > 1 GB support */
1125 /* bit 2 BIOS > 2 Disk Support */
1126 /* bit 3 BIOS don't support removables */
1127 /* bit 4 BIOS support bootable CD */
1128 /* bit 5 BIOS scan enabled */
1129 /* bit 6 BIOS support multiple LUNs */
1130 /* bit 7 BIOS display of message */
1131 /* bit 8 SCAM disabled */
1132 /* bit 9 Reset SCSI bus during init. */
1133 /* bit 10 */
1134 /* bit 11 No verbose initialization. */
1135 /* bit 12 SCSI parity enabled */
1136 /* bit 13 */
1137 /* bit 14 */
1138 /* bit 15 */
1139 ushort sdtr_speed2; /* 13 SDTR speed TID 4-7 */
1140 ushort sdtr_speed3; /* 14 SDTR speed TID 8-11 */
1141 uchar max_host_qng; /* 15 maximum host queueing */
1142 uchar max_dvc_qng; /* maximum per device queuing */
1143 ushort dvc_cntl; /* 16 control bit for driver */
1144 ushort sdtr_speed4; /* 17 SDTR speed 4 TID 12-15 */
1145 ushort serial_number_word1; /* 18 Board serial number word 1 */
1146 ushort serial_number_word2; /* 19 Board serial number word 2 */
1147 ushort serial_number_word3; /* 20 Board serial number word 3 */
1148 ushort check_sum; /* 21 EEP check sum */
1149 uchar oem_name[16]; /* 22 OEM name */
1150 ushort dvc_err_code; /* 30 last device driver error code */
1151 ushort adv_err_code; /* 31 last uc and Adv Lib error code */
1152 ushort adv_err_addr; /* 32 last uc error address */
1153 ushort saved_dvc_err_code; /* 33 saved last dev. driver error code */
1154 ushort saved_adv_err_code; /* 34 saved last uc and Adv Lib error code */
1155 ushort saved_adv_err_addr; /* 35 saved last uc error address */
1156 ushort reserved36; /* 36 reserved */
1157 ushort reserved37; /* 37 reserved */
1158 ushort reserved38; /* 38 reserved */
1159 ushort reserved39; /* 39 reserved */
1160 ushort reserved40; /* 40 reserved */
1161 ushort reserved41; /* 41 reserved */
1162 ushort reserved42; /* 42 reserved */
1163 ushort reserved43; /* 43 reserved */
1164 ushort reserved44; /* 44 reserved */
1165 ushort reserved45; /* 45 reserved */
1166 ushort reserved46; /* 46 reserved */
1167 ushort reserved47; /* 47 reserved */
1168 ushort reserved48; /* 48 reserved */
1169 ushort reserved49; /* 49 reserved */
1170 ushort reserved50; /* 50 reserved */
1171 ushort reserved51; /* 51 reserved */
1172 ushort reserved52; /* 52 reserved */
1173 ushort reserved53; /* 53 reserved */
1174 ushort reserved54; /* 54 reserved */
1175 ushort reserved55; /* 55 reserved */
1176 ushort cisptr_lsw; /* 56 CIS PTR LSW */
1177 ushort cisprt_msw; /* 57 CIS PTR MSW */
1178 ushort subsysvid; /* 58 SubSystem Vendor ID */
1179 ushort subsysid; /* 59 SubSystem ID */
1180 ushort reserved60; /* 60 reserved */
1181 ushort reserved61; /* 61 reserved */
1182 ushort reserved62; /* 62 reserved */
1183 ushort reserved63; /* 63 reserved */
1184 } ADVEEP_38C0800_CONFIG;
1186 typedef struct adveep_38C1600_config {
1187 /* Word Offset, Description */
1189 ushort cfg_lsw; /* 00 power up initialization */
1190 /* bit 11 set - Func. 0 INTB, Func. 1 INTA */
1191 /* clear - Func. 0 INTA, Func. 1 INTB */
1192 /* bit 13 set - Load CIS */
1193 /* bit 14 set - BIOS Enable */
1194 /* bit 15 set - Big Endian Mode */
1195 ushort cfg_msw; /* 01 unused */
1196 ushort disc_enable; /* 02 disconnect enable */
1197 ushort wdtr_able; /* 03 Wide DTR able */
1198 ushort sdtr_speed1; /* 04 SDTR Speed TID 0-3 */
1199 ushort start_motor; /* 05 send start up motor */
1200 ushort tagqng_able; /* 06 tag queuing able */
1201 ushort bios_scan; /* 07 BIOS device control */
1202 ushort scam_tolerant; /* 08 no scam */
1204 uchar adapter_scsi_id; /* 09 Host Adapter ID */
1205 uchar bios_boot_delay; /* power up wait */
1207 uchar scsi_reset_delay; /* 10 reset delay */
1208 uchar bios_id_lun; /* first boot device scsi id & lun */
1209 /* high nibble is lun */
1210 /* low nibble is scsi id */
1212 uchar termination_se; /* 11 0 - automatic */
1213 /* 1 - low off / high off */
1214 /* 2 - low off / high on */
1215 /* 3 - low on / high on */
1216 /* There is no low on / high off */
1218 uchar termination_lvd; /* 11 0 - automatic */
1219 /* 1 - low off / high off */
1220 /* 2 - low off / high on */
1221 /* 3 - low on / high on */
1222 /* There is no low on / high off */
1224 ushort bios_ctrl; /* 12 BIOS control bits */
1225 /* bit 0 BIOS don't act as initiator. */
1226 /* bit 1 BIOS > 1 GB support */
1227 /* bit 2 BIOS > 2 Disk Support */
1228 /* bit 3 BIOS don't support removables */
1229 /* bit 4 BIOS support bootable CD */
1230 /* bit 5 BIOS scan enabled */
1231 /* bit 6 BIOS support multiple LUNs */
1232 /* bit 7 BIOS display of message */
1233 /* bit 8 SCAM disabled */
1234 /* bit 9 Reset SCSI bus during init. */
1235 /* bit 10 Basic Integrity Checking disabled */
1236 /* bit 11 No verbose initialization. */
1237 /* bit 12 SCSI parity enabled */
1238 /* bit 13 AIPP (Asyn. Info. Ph. Prot.) dis. */
1239 /* bit 14 */
1240 /* bit 15 */
1241 ushort sdtr_speed2; /* 13 SDTR speed TID 4-7 */
1242 ushort sdtr_speed3; /* 14 SDTR speed TID 8-11 */
1243 uchar max_host_qng; /* 15 maximum host queueing */
1244 uchar max_dvc_qng; /* maximum per device queuing */
1245 ushort dvc_cntl; /* 16 control bit for driver */
1246 ushort sdtr_speed4; /* 17 SDTR speed 4 TID 12-15 */
1247 ushort serial_number_word1; /* 18 Board serial number word 1 */
1248 ushort serial_number_word2; /* 19 Board serial number word 2 */
1249 ushort serial_number_word3; /* 20 Board serial number word 3 */
1250 ushort check_sum; /* 21 EEP check sum */
1251 uchar oem_name[16]; /* 22 OEM name */
1252 ushort dvc_err_code; /* 30 last device driver error code */
1253 ushort adv_err_code; /* 31 last uc and Adv Lib error code */
1254 ushort adv_err_addr; /* 32 last uc error address */
1255 ushort saved_dvc_err_code; /* 33 saved last dev. driver error code */
1256 ushort saved_adv_err_code; /* 34 saved last uc and Adv Lib error code */
1257 ushort saved_adv_err_addr; /* 35 saved last uc error address */
1258 ushort reserved36; /* 36 reserved */
1259 ushort reserved37; /* 37 reserved */
1260 ushort reserved38; /* 38 reserved */
1261 ushort reserved39; /* 39 reserved */
1262 ushort reserved40; /* 40 reserved */
1263 ushort reserved41; /* 41 reserved */
1264 ushort reserved42; /* 42 reserved */
1265 ushort reserved43; /* 43 reserved */
1266 ushort reserved44; /* 44 reserved */
1267 ushort reserved45; /* 45 reserved */
1268 ushort reserved46; /* 46 reserved */
1269 ushort reserved47; /* 47 reserved */
1270 ushort reserved48; /* 48 reserved */
1271 ushort reserved49; /* 49 reserved */
1272 ushort reserved50; /* 50 reserved */
1273 ushort reserved51; /* 51 reserved */
1274 ushort reserved52; /* 52 reserved */
1275 ushort reserved53; /* 53 reserved */
1276 ushort reserved54; /* 54 reserved */
1277 ushort reserved55; /* 55 reserved */
1278 ushort cisptr_lsw; /* 56 CIS PTR LSW */
1279 ushort cisprt_msw; /* 57 CIS PTR MSW */
1280 ushort subsysvid; /* 58 SubSystem Vendor ID */
1281 ushort subsysid; /* 59 SubSystem ID */
1282 ushort reserved60; /* 60 reserved */
1283 ushort reserved61; /* 61 reserved */
1284 ushort reserved62; /* 62 reserved */
1285 ushort reserved63; /* 63 reserved */
1286 } ADVEEP_38C1600_CONFIG;
1289 * EEPROM Commands
1291 #define ASC_EEP_CMD_DONE 0x0200
1293 /* bios_ctrl */
1294 #define BIOS_CTRL_BIOS 0x0001
1295 #define BIOS_CTRL_EXTENDED_XLAT 0x0002
1296 #define BIOS_CTRL_GT_2_DISK 0x0004
1297 #define BIOS_CTRL_BIOS_REMOVABLE 0x0008
1298 #define BIOS_CTRL_BOOTABLE_CD 0x0010
1299 #define BIOS_CTRL_MULTIPLE_LUN 0x0040
1300 #define BIOS_CTRL_DISPLAY_MSG 0x0080
1301 #define BIOS_CTRL_NO_SCAM 0x0100
1302 #define BIOS_CTRL_RESET_SCSI_BUS 0x0200
1303 #define BIOS_CTRL_INIT_VERBOSE 0x0800
1304 #define BIOS_CTRL_SCSI_PARITY 0x1000
1305 #define BIOS_CTRL_AIPP_DIS 0x2000
1307 #define ADV_3550_MEMSIZE 0x2000 /* 8 KB Internal Memory */
1309 #define ADV_38C0800_MEMSIZE 0x4000 /* 16 KB Internal Memory */
1312 * XXX - Since ASC38C1600 Rev.3 has a local RAM failure issue, there is
1313 * a special 16K Adv Library and Microcode version. After the issue is
1314 * resolved, should restore 32K support.
1316 * #define ADV_38C1600_MEMSIZE 0x8000L * 32 KB Internal Memory *
1318 #define ADV_38C1600_MEMSIZE 0x4000 /* 16 KB Internal Memory */
1321 * Byte I/O register address from base of 'iop_base'.
1323 #define IOPB_INTR_STATUS_REG 0x00
1324 #define IOPB_CHIP_ID_1 0x01
1325 #define IOPB_INTR_ENABLES 0x02
1326 #define IOPB_CHIP_TYPE_REV 0x03
1327 #define IOPB_RES_ADDR_4 0x04
1328 #define IOPB_RES_ADDR_5 0x05
1329 #define IOPB_RAM_DATA 0x06
1330 #define IOPB_RES_ADDR_7 0x07
1331 #define IOPB_FLAG_REG 0x08
1332 #define IOPB_RES_ADDR_9 0x09
1333 #define IOPB_RISC_CSR 0x0A
1334 #define IOPB_RES_ADDR_B 0x0B
1335 #define IOPB_RES_ADDR_C 0x0C
1336 #define IOPB_RES_ADDR_D 0x0D
1337 #define IOPB_SOFT_OVER_WR 0x0E
1338 #define IOPB_RES_ADDR_F 0x0F
1339 #define IOPB_MEM_CFG 0x10
1340 #define IOPB_RES_ADDR_11 0x11
1341 #define IOPB_GPIO_DATA 0x12
1342 #define IOPB_RES_ADDR_13 0x13
1343 #define IOPB_FLASH_PAGE 0x14
1344 #define IOPB_RES_ADDR_15 0x15
1345 #define IOPB_GPIO_CNTL 0x16
1346 #define IOPB_RES_ADDR_17 0x17
1347 #define IOPB_FLASH_DATA 0x18
1348 #define IOPB_RES_ADDR_19 0x19
1349 #define IOPB_RES_ADDR_1A 0x1A
1350 #define IOPB_RES_ADDR_1B 0x1B
1351 #define IOPB_RES_ADDR_1C 0x1C
1352 #define IOPB_RES_ADDR_1D 0x1D
1353 #define IOPB_RES_ADDR_1E 0x1E
1354 #define IOPB_RES_ADDR_1F 0x1F
1355 #define IOPB_DMA_CFG0 0x20
1356 #define IOPB_DMA_CFG1 0x21
1357 #define IOPB_TICKLE 0x22
1358 #define IOPB_DMA_REG_WR 0x23
1359 #define IOPB_SDMA_STATUS 0x24
1360 #define IOPB_SCSI_BYTE_CNT 0x25
1361 #define IOPB_HOST_BYTE_CNT 0x26
1362 #define IOPB_BYTE_LEFT_TO_XFER 0x27
1363 #define IOPB_BYTE_TO_XFER_0 0x28
1364 #define IOPB_BYTE_TO_XFER_1 0x29
1365 #define IOPB_BYTE_TO_XFER_2 0x2A
1366 #define IOPB_BYTE_TO_XFER_3 0x2B
1367 #define IOPB_ACC_GRP 0x2C
1368 #define IOPB_RES_ADDR_2D 0x2D
1369 #define IOPB_DEV_ID 0x2E
1370 #define IOPB_RES_ADDR_2F 0x2F
1371 #define IOPB_SCSI_DATA 0x30
1372 #define IOPB_RES_ADDR_31 0x31
1373 #define IOPB_RES_ADDR_32 0x32
1374 #define IOPB_SCSI_DATA_HSHK 0x33
1375 #define IOPB_SCSI_CTRL 0x34
1376 #define IOPB_RES_ADDR_35 0x35
1377 #define IOPB_RES_ADDR_36 0x36
1378 #define IOPB_RES_ADDR_37 0x37
1379 #define IOPB_RAM_BIST 0x38
1380 #define IOPB_PLL_TEST 0x39
1381 #define IOPB_PCI_INT_CFG 0x3A
1382 #define IOPB_RES_ADDR_3B 0x3B
1383 #define IOPB_RFIFO_CNT 0x3C
1384 #define IOPB_RES_ADDR_3D 0x3D
1385 #define IOPB_RES_ADDR_3E 0x3E
1386 #define IOPB_RES_ADDR_3F 0x3F
1389 * Word I/O register address from base of 'iop_base'.
1391 #define IOPW_CHIP_ID_0 0x00 /* CID0 */
1392 #define IOPW_CTRL_REG 0x02 /* CC */
1393 #define IOPW_RAM_ADDR 0x04 /* LA */
1394 #define IOPW_RAM_DATA 0x06 /* LD */
1395 #define IOPW_RES_ADDR_08 0x08
1396 #define IOPW_RISC_CSR 0x0A /* CSR */
1397 #define IOPW_SCSI_CFG0 0x0C /* CFG0 */
1398 #define IOPW_SCSI_CFG1 0x0E /* CFG1 */
1399 #define IOPW_RES_ADDR_10 0x10
1400 #define IOPW_SEL_MASK 0x12 /* SM */
1401 #define IOPW_RES_ADDR_14 0x14
1402 #define IOPW_FLASH_ADDR 0x16 /* FA */
1403 #define IOPW_RES_ADDR_18 0x18
1404 #define IOPW_EE_CMD 0x1A /* EC */
1405 #define IOPW_EE_DATA 0x1C /* ED */
1406 #define IOPW_SFIFO_CNT 0x1E /* SFC */
1407 #define IOPW_RES_ADDR_20 0x20
1408 #define IOPW_Q_BASE 0x22 /* QB */
1409 #define IOPW_QP 0x24 /* QP */
1410 #define IOPW_IX 0x26 /* IX */
1411 #define IOPW_SP 0x28 /* SP */
1412 #define IOPW_PC 0x2A /* PC */
1413 #define IOPW_RES_ADDR_2C 0x2C
1414 #define IOPW_RES_ADDR_2E 0x2E
1415 #define IOPW_SCSI_DATA 0x30 /* SD */
1416 #define IOPW_SCSI_DATA_HSHK 0x32 /* SDH */
1417 #define IOPW_SCSI_CTRL 0x34 /* SC */
1418 #define IOPW_HSHK_CFG 0x36 /* HCFG */
1419 #define IOPW_SXFR_STATUS 0x36 /* SXS */
1420 #define IOPW_SXFR_CNTL 0x38 /* SXL */
1421 #define IOPW_SXFR_CNTH 0x3A /* SXH */
1422 #define IOPW_RES_ADDR_3C 0x3C
1423 #define IOPW_RFIFO_DATA 0x3E /* RFD */
1426 * Doubleword I/O register address from base of 'iop_base'.
1428 #define IOPDW_RES_ADDR_0 0x00
1429 #define IOPDW_RAM_DATA 0x04
1430 #define IOPDW_RES_ADDR_8 0x08
1431 #define IOPDW_RES_ADDR_C 0x0C
1432 #define IOPDW_RES_ADDR_10 0x10
1433 #define IOPDW_COMMA 0x14
1434 #define IOPDW_COMMB 0x18
1435 #define IOPDW_RES_ADDR_1C 0x1C
1436 #define IOPDW_SDMA_ADDR0 0x20
1437 #define IOPDW_SDMA_ADDR1 0x24
1438 #define IOPDW_SDMA_COUNT 0x28
1439 #define IOPDW_SDMA_ERROR 0x2C
1440 #define IOPDW_RDMA_ADDR0 0x30
1441 #define IOPDW_RDMA_ADDR1 0x34
1442 #define IOPDW_RDMA_COUNT 0x38
1443 #define IOPDW_RDMA_ERROR 0x3C
1445 #define ADV_CHIP_ID_BYTE 0x25
1446 #define ADV_CHIP_ID_WORD 0x04C1
1448 #define ADV_INTR_ENABLE_HOST_INTR 0x01
1449 #define ADV_INTR_ENABLE_SEL_INTR 0x02
1450 #define ADV_INTR_ENABLE_DPR_INTR 0x04
1451 #define ADV_INTR_ENABLE_RTA_INTR 0x08
1452 #define ADV_INTR_ENABLE_RMA_INTR 0x10
1453 #define ADV_INTR_ENABLE_RST_INTR 0x20
1454 #define ADV_INTR_ENABLE_DPE_INTR 0x40
1455 #define ADV_INTR_ENABLE_GLOBAL_INTR 0x80
1457 #define ADV_INTR_STATUS_INTRA 0x01
1458 #define ADV_INTR_STATUS_INTRB 0x02
1459 #define ADV_INTR_STATUS_INTRC 0x04
1461 #define ADV_RISC_CSR_STOP (0x0000)
1462 #define ADV_RISC_TEST_COND (0x2000)
1463 #define ADV_RISC_CSR_RUN (0x4000)
1464 #define ADV_RISC_CSR_SINGLE_STEP (0x8000)
1466 #define ADV_CTRL_REG_HOST_INTR 0x0100
1467 #define ADV_CTRL_REG_SEL_INTR 0x0200
1468 #define ADV_CTRL_REG_DPR_INTR 0x0400
1469 #define ADV_CTRL_REG_RTA_INTR 0x0800
1470 #define ADV_CTRL_REG_RMA_INTR 0x1000
1471 #define ADV_CTRL_REG_RES_BIT14 0x2000
1472 #define ADV_CTRL_REG_DPE_INTR 0x4000
1473 #define ADV_CTRL_REG_POWER_DONE 0x8000
1474 #define ADV_CTRL_REG_ANY_INTR 0xFF00
1476 #define ADV_CTRL_REG_CMD_RESET 0x00C6
1477 #define ADV_CTRL_REG_CMD_WR_IO_REG 0x00C5
1478 #define ADV_CTRL_REG_CMD_RD_IO_REG 0x00C4
1479 #define ADV_CTRL_REG_CMD_WR_PCI_CFG_SPACE 0x00C3
1480 #define ADV_CTRL_REG_CMD_RD_PCI_CFG_SPACE 0x00C2
1482 #define ADV_TICKLE_NOP 0x00
1483 #define ADV_TICKLE_A 0x01
1484 #define ADV_TICKLE_B 0x02
1485 #define ADV_TICKLE_C 0x03
1487 #define AdvIsIntPending(port) \
1488 (AdvReadWordRegister(port, IOPW_CTRL_REG) & ADV_CTRL_REG_HOST_INTR)
1491 * SCSI_CFG0 Register bit definitions
1493 #define TIMER_MODEAB 0xC000 /* Watchdog, Second, and Select. Timer Ctrl. */
1494 #define PARITY_EN 0x2000 /* Enable SCSI Parity Error detection */
1495 #define EVEN_PARITY 0x1000 /* Select Even Parity */
1496 #define WD_LONG 0x0800 /* Watchdog Interval, 1: 57 min, 0: 13 sec */
1497 #define QUEUE_128 0x0400 /* Queue Size, 1: 128 byte, 0: 64 byte */
1498 #define PRIM_MODE 0x0100 /* Primitive SCSI mode */
1499 #define SCAM_EN 0x0080 /* Enable SCAM selection */
1500 #define SEL_TMO_LONG 0x0040 /* Sel/Resel Timeout, 1: 400 ms, 0: 1.6 ms */
1501 #define CFRM_ID 0x0020 /* SCAM id sel. confirm., 1: fast, 0: 6.4 ms */
1502 #define OUR_ID_EN 0x0010 /* Enable OUR_ID bits */
1503 #define OUR_ID 0x000F /* SCSI ID */
1506 * SCSI_CFG1 Register bit definitions
1508 #define BIG_ENDIAN 0x8000 /* Enable Big Endian Mode MIO:15, EEP:15 */
1509 #define TERM_POL 0x2000 /* Terminator Polarity Ctrl. MIO:13, EEP:13 */
1510 #define SLEW_RATE 0x1000 /* SCSI output buffer slew rate */
1511 #define FILTER_SEL 0x0C00 /* Filter Period Selection */
1512 #define FLTR_DISABLE 0x0000 /* Input Filtering Disabled */
1513 #define FLTR_11_TO_20NS 0x0800 /* Input Filtering 11ns to 20ns */
1514 #define FLTR_21_TO_39NS 0x0C00 /* Input Filtering 21ns to 39ns */
1515 #define ACTIVE_DBL 0x0200 /* Disable Active Negation */
1516 #define DIFF_MODE 0x0100 /* SCSI differential Mode (Read-Only) */
1517 #define DIFF_SENSE 0x0080 /* 1: No SE cables, 0: SE cable (Read-Only) */
1518 #define TERM_CTL_SEL 0x0040 /* Enable TERM_CTL_H and TERM_CTL_L */
1519 #define TERM_CTL 0x0030 /* External SCSI Termination Bits */
1520 #define TERM_CTL_H 0x0020 /* Enable External SCSI Upper Termination */
1521 #define TERM_CTL_L 0x0010 /* Enable External SCSI Lower Termination */
1522 #define CABLE_DETECT 0x000F /* External SCSI Cable Connection Status */
1525 * Addendum for ASC-38C0800 Chip
1527 * The ASC-38C1600 Chip uses the same definitions except that the
1528 * bus mode override bits [12:10] have been moved to byte register
1529 * offset 0xE (IOPB_SOFT_OVER_WR) bits [12:10]. The [12:10] bits in
1530 * SCSI_CFG1 are read-only and always available. Bit 14 (DIS_TERM_DRV)
1531 * is not needed. The [12:10] bits in IOPB_SOFT_OVER_WR are write-only.
1532 * Also each ASC-38C1600 function or channel uses only cable bits [5:4]
1533 * and [1:0]. Bits [14], [7:6], [3:2] are unused.
1535 #define DIS_TERM_DRV 0x4000 /* 1: Read c_det[3:0], 0: cannot read */
1536 #define HVD_LVD_SE 0x1C00 /* Device Detect Bits */
1537 #define HVD 0x1000 /* HVD Device Detect */
1538 #define LVD 0x0800 /* LVD Device Detect */
1539 #define SE 0x0400 /* SE Device Detect */
1540 #define TERM_LVD 0x00C0 /* LVD Termination Bits */
1541 #define TERM_LVD_HI 0x0080 /* Enable LVD Upper Termination */
1542 #define TERM_LVD_LO 0x0040 /* Enable LVD Lower Termination */
1543 #define TERM_SE 0x0030 /* SE Termination Bits */
1544 #define TERM_SE_HI 0x0020 /* Enable SE Upper Termination */
1545 #define TERM_SE_LO 0x0010 /* Enable SE Lower Termination */
1546 #define C_DET_LVD 0x000C /* LVD Cable Detect Bits */
1547 #define C_DET3 0x0008 /* Cable Detect for LVD External Wide */
1548 #define C_DET2 0x0004 /* Cable Detect for LVD Internal Wide */
1549 #define C_DET_SE 0x0003 /* SE Cable Detect Bits */
1550 #define C_DET1 0x0002 /* Cable Detect for SE Internal Wide */
1551 #define C_DET0 0x0001 /* Cable Detect for SE Internal Narrow */
1553 #define CABLE_ILLEGAL_A 0x7
1554 /* x 0 0 0 | on on | Illegal (all 3 connectors are used) */
1556 #define CABLE_ILLEGAL_B 0xB
1557 /* 0 x 0 0 | on on | Illegal (all 3 connectors are used) */
1560 * MEM_CFG Register bit definitions
1562 #define BIOS_EN 0x40 /* BIOS Enable MIO:14,EEP:14 */
1563 #define FAST_EE_CLK 0x20 /* Diagnostic Bit */
1564 #define RAM_SZ 0x1C /* Specify size of RAM to RISC */
1565 #define RAM_SZ_2KB 0x00 /* 2 KB */
1566 #define RAM_SZ_4KB 0x04 /* 4 KB */
1567 #define RAM_SZ_8KB 0x08 /* 8 KB */
1568 #define RAM_SZ_16KB 0x0C /* 16 KB */
1569 #define RAM_SZ_32KB 0x10 /* 32 KB */
1570 #define RAM_SZ_64KB 0x14 /* 64 KB */
1573 * DMA_CFG0 Register bit definitions
1575 * This register is only accessible to the host.
1577 #define BC_THRESH_ENB 0x80 /* PCI DMA Start Conditions */
1578 #define FIFO_THRESH 0x70 /* PCI DMA FIFO Threshold */
1579 #define FIFO_THRESH_16B 0x00 /* 16 bytes */
1580 #define FIFO_THRESH_32B 0x20 /* 32 bytes */
1581 #define FIFO_THRESH_48B 0x30 /* 48 bytes */
1582 #define FIFO_THRESH_64B 0x40 /* 64 bytes */
1583 #define FIFO_THRESH_80B 0x50 /* 80 bytes (default) */
1584 #define FIFO_THRESH_96B 0x60 /* 96 bytes */
1585 #define FIFO_THRESH_112B 0x70 /* 112 bytes */
1586 #define START_CTL 0x0C /* DMA start conditions */
1587 #define START_CTL_TH 0x00 /* Wait threshold level (default) */
1588 #define START_CTL_ID 0x04 /* Wait SDMA/SBUS idle */
1589 #define START_CTL_THID 0x08 /* Wait threshold and SDMA/SBUS idle */
1590 #define START_CTL_EMFU 0x0C /* Wait SDMA FIFO empty/full */
1591 #define READ_CMD 0x03 /* Memory Read Method */
1592 #define READ_CMD_MR 0x00 /* Memory Read */
1593 #define READ_CMD_MRL 0x02 /* Memory Read Long */
1594 #define READ_CMD_MRM 0x03 /* Memory Read Multiple (default) */
1597 * ASC-38C0800 RAM BIST Register bit definitions
1599 #define RAM_TEST_MODE 0x80
1600 #define PRE_TEST_MODE 0x40
1601 #define NORMAL_MODE 0x00
1602 #define RAM_TEST_DONE 0x10
1603 #define RAM_TEST_STATUS 0x0F
1604 #define RAM_TEST_HOST_ERROR 0x08
1605 #define RAM_TEST_INTRAM_ERROR 0x04
1606 #define RAM_TEST_RISC_ERROR 0x02
1607 #define RAM_TEST_SCSI_ERROR 0x01
1608 #define RAM_TEST_SUCCESS 0x00
1609 #define PRE_TEST_VALUE 0x05
1610 #define NORMAL_VALUE 0x00
1613 * ASC38C1600 Definitions
1615 * IOPB_PCI_INT_CFG Bit Field Definitions
1618 #define INTAB_LD 0x80 /* Value loaded from EEPROM Bit 11. */
1621 * Bit 1 can be set to change the interrupt for the Function to operate in
1622 * Totem Pole mode. By default Bit 1 is 0 and the interrupt operates in
1623 * Open Drain mode. Both functions of the ASC38C1600 must be set to the same
1624 * mode, otherwise the operating mode is undefined.
1626 #define TOTEMPOLE 0x02
1629 * Bit 0 can be used to change the Int Pin for the Function. The value is
1630 * 0 by default for both Functions with Function 0 using INT A and Function
1631 * B using INT B. For Function 0 if set, INT B is used. For Function 1 if set,
1632 * INT A is used.
1634 * EEPROM Word 0 Bit 11 for each Function may change the initial Int Pin
1635 * value specified in the PCI Configuration Space.
1637 #define INTAB 0x01
1640 * Adv Library Status Definitions
1642 #define ADV_TRUE 1
1643 #define ADV_FALSE 0
1644 #define ADV_SUCCESS 1
1645 #define ADV_BUSY 0
1646 #define ADV_ERROR (-1)
1649 * ADV_DVC_VAR 'warn_code' values
1651 #define ASC_WARN_BUSRESET_ERROR 0x0001 /* SCSI Bus Reset error */
1652 #define ASC_WARN_EEPROM_CHKSUM 0x0002 /* EEP check sum error */
1653 #define ASC_WARN_EEPROM_TERMINATION 0x0004 /* EEP termination bad field */
1654 #define ASC_WARN_ERROR 0xFFFF /* ADV_ERROR return */
1656 #define ADV_MAX_TID 15 /* max. target identifier */
1657 #define ADV_MAX_LUN 7 /* max. logical unit number */
1660 * Fixed locations of microcode operating variables.
1662 #define ASC_MC_CODE_BEGIN_ADDR 0x0028 /* microcode start address */
1663 #define ASC_MC_CODE_END_ADDR 0x002A /* microcode end address */
1664 #define ASC_MC_CODE_CHK_SUM 0x002C /* microcode code checksum */
1665 #define ASC_MC_VERSION_DATE 0x0038 /* microcode version */
1666 #define ASC_MC_VERSION_NUM 0x003A /* microcode number */
1667 #define ASC_MC_BIOSMEM 0x0040 /* BIOS RISC Memory Start */
1668 #define ASC_MC_BIOSLEN 0x0050 /* BIOS RISC Memory Length */
1669 #define ASC_MC_BIOS_SIGNATURE 0x0058 /* BIOS Signature 0x55AA */
1670 #define ASC_MC_BIOS_VERSION 0x005A /* BIOS Version (2 bytes) */
1671 #define ASC_MC_SDTR_SPEED1 0x0090 /* SDTR Speed for TID 0-3 */
1672 #define ASC_MC_SDTR_SPEED2 0x0092 /* SDTR Speed for TID 4-7 */
1673 #define ASC_MC_SDTR_SPEED3 0x0094 /* SDTR Speed for TID 8-11 */
1674 #define ASC_MC_SDTR_SPEED4 0x0096 /* SDTR Speed for TID 12-15 */
1675 #define ASC_MC_CHIP_TYPE 0x009A
1676 #define ASC_MC_INTRB_CODE 0x009B
1677 #define ASC_MC_WDTR_ABLE 0x009C
1678 #define ASC_MC_SDTR_ABLE 0x009E
1679 #define ASC_MC_TAGQNG_ABLE 0x00A0
1680 #define ASC_MC_DISC_ENABLE 0x00A2
1681 #define ASC_MC_IDLE_CMD_STATUS 0x00A4
1682 #define ASC_MC_IDLE_CMD 0x00A6
1683 #define ASC_MC_IDLE_CMD_PARAMETER 0x00A8
1684 #define ASC_MC_DEFAULT_SCSI_CFG0 0x00AC
1685 #define ASC_MC_DEFAULT_SCSI_CFG1 0x00AE
1686 #define ASC_MC_DEFAULT_MEM_CFG 0x00B0
1687 #define ASC_MC_DEFAULT_SEL_MASK 0x00B2
1688 #define ASC_MC_SDTR_DONE 0x00B6
1689 #define ASC_MC_NUMBER_OF_QUEUED_CMD 0x00C0
1690 #define ASC_MC_NUMBER_OF_MAX_CMD 0x00D0
1691 #define ASC_MC_DEVICE_HSHK_CFG_TABLE 0x0100
1692 #define ASC_MC_CONTROL_FLAG 0x0122 /* Microcode control flag. */
1693 #define ASC_MC_WDTR_DONE 0x0124
1694 #define ASC_MC_CAM_MODE_MASK 0x015E /* CAM mode TID bitmask. */
1695 #define ASC_MC_ICQ 0x0160
1696 #define ASC_MC_IRQ 0x0164
1697 #define ASC_MC_PPR_ABLE 0x017A
1700 * BIOS LRAM variable absolute offsets.
1702 #define BIOS_CODESEG 0x54
1703 #define BIOS_CODELEN 0x56
1704 #define BIOS_SIGNATURE 0x58
1705 #define BIOS_VERSION 0x5A
1708 * Microcode Control Flags
1710 * Flags set by the Adv Library in RISC variable 'control_flag' (0x122)
1711 * and handled by the microcode.
1713 #define CONTROL_FLAG_IGNORE_PERR 0x0001 /* Ignore DMA Parity Errors */
1714 #define CONTROL_FLAG_ENABLE_AIPP 0x0002 /* Enabled AIPP checking. */
1717 * ASC_MC_DEVICE_HSHK_CFG_TABLE microcode table or HSHK_CFG register format
1719 #define HSHK_CFG_WIDE_XFR 0x8000
1720 #define HSHK_CFG_RATE 0x0F00
1721 #define HSHK_CFG_OFFSET 0x001F
1723 #define ASC_DEF_MAX_HOST_QNG 0xFD /* Max. number of host commands (253) */
1724 #define ASC_DEF_MIN_HOST_QNG 0x10 /* Min. number of host commands (16) */
1725 #define ASC_DEF_MAX_DVC_QNG 0x3F /* Max. number commands per device (63) */
1726 #define ASC_DEF_MIN_DVC_QNG 0x04 /* Min. number commands per device (4) */
1728 #define ASC_QC_DATA_CHECK 0x01 /* Require ASC_QC_DATA_OUT set or clear. */
1729 #define ASC_QC_DATA_OUT 0x02 /* Data out DMA transfer. */
1730 #define ASC_QC_START_MOTOR 0x04 /* Send auto-start motor before request. */
1731 #define ASC_QC_NO_OVERRUN 0x08 /* Don't report overrun. */
1732 #define ASC_QC_FREEZE_TIDQ 0x10 /* Freeze TID queue after request. XXX TBD */
1734 #define ASC_QSC_NO_DISC 0x01 /* Don't allow disconnect for request. */
1735 #define ASC_QSC_NO_TAGMSG 0x02 /* Don't allow tag queuing for request. */
1736 #define ASC_QSC_NO_SYNC 0x04 /* Don't use Synch. transfer on request. */
1737 #define ASC_QSC_NO_WIDE 0x08 /* Don't use Wide transfer on request. */
1738 #define ASC_QSC_REDO_DTR 0x10 /* Renegotiate WDTR/SDTR before request. */
1740 * Note: If a Tag Message is to be sent and neither ASC_QSC_HEAD_TAG or
1741 * ASC_QSC_ORDERED_TAG is set, then a Simple Tag Message (0x20) is used.
1743 #define ASC_QSC_HEAD_TAG 0x40 /* Use Head Tag Message (0x21). */
1744 #define ASC_QSC_ORDERED_TAG 0x80 /* Use Ordered Tag Message (0x22). */
1747 * All fields here are accessed by the board microcode and need to be
1748 * little-endian.
1750 typedef struct adv_carr_t {
1751 ADV_VADDR carr_va; /* Carrier Virtual Address */
1752 ADV_PADDR carr_pa; /* Carrier Physical Address */
1753 ADV_VADDR areq_vpa; /* ASC_SCSI_REQ_Q Virtual or Physical Address */
1755 * next_vpa [31:4] Carrier Virtual or Physical Next Pointer
1757 * next_vpa [3:1] Reserved Bits
1758 * next_vpa [0] Done Flag set in Response Queue.
1760 ADV_VADDR next_vpa;
1761 } ADV_CARR_T;
1764 * Mask used to eliminate low 4 bits of carrier 'next_vpa' field.
1766 #define ASC_NEXT_VPA_MASK 0xFFFFFFF0
1768 #define ASC_RQ_DONE 0x00000001
1769 #define ASC_RQ_GOOD 0x00000002
1770 #define ASC_CQ_STOPPER 0x00000000
1772 #define ASC_GET_CARRP(carrp) ((carrp) & ASC_NEXT_VPA_MASK)
1774 #define ADV_CARRIER_NUM_PAGE_CROSSING \
1775 (((ADV_CARRIER_COUNT * sizeof(ADV_CARR_T)) + (PAGE_SIZE - 1))/PAGE_SIZE)
1777 #define ADV_CARRIER_BUFSIZE \
1778 ((ADV_CARRIER_COUNT + ADV_CARRIER_NUM_PAGE_CROSSING) * sizeof(ADV_CARR_T))
1781 * ASC_SCSI_REQ_Q 'a_flag' definitions
1783 * The Adv Library should limit use to the lower nibble (4 bits) of
1784 * a_flag. Drivers are free to use the upper nibble (4 bits) of a_flag.
1786 #define ADV_POLL_REQUEST 0x01 /* poll for request completion */
1787 #define ADV_SCSIQ_DONE 0x02 /* request done */
1788 #define ADV_DONT_RETRY 0x08 /* don't do retry */
1790 #define ADV_CHIP_ASC3550 0x01 /* Ultra-Wide IC */
1791 #define ADV_CHIP_ASC38C0800 0x02 /* Ultra2-Wide/LVD IC */
1792 #define ADV_CHIP_ASC38C1600 0x03 /* Ultra3-Wide/LVD2 IC */
1795 * Adapter temporary configuration structure
1797 * This structure can be discarded after initialization. Don't add
1798 * fields here needed after initialization.
1800 * Field naming convention:
1802 * *_enable indicates the field enables or disables a feature. The
1803 * value of the field is never reset.
1805 typedef struct adv_dvc_cfg {
1806 ushort disc_enable; /* enable disconnection */
1807 uchar chip_version; /* chip version */
1808 uchar termination; /* Term. Ctrl. bits 6-5 of SCSI_CFG1 register */
1809 ushort control_flag; /* Microcode Control Flag */
1810 ushort mcode_date; /* Microcode date */
1811 ushort mcode_version; /* Microcode version */
1812 ushort serial1; /* EEPROM serial number word 1 */
1813 ushort serial2; /* EEPROM serial number word 2 */
1814 ushort serial3; /* EEPROM serial number word 3 */
1815 } ADV_DVC_CFG;
1817 struct adv_dvc_var;
1818 struct adv_scsi_req_q;
1820 typedef struct asc_sg_block {
1821 uchar reserved1;
1822 uchar reserved2;
1823 uchar reserved3;
1824 uchar sg_cnt; /* Valid entries in block. */
1825 ADV_PADDR sg_ptr; /* Pointer to next sg block. */
1826 struct {
1827 ADV_PADDR sg_addr; /* SG element address. */
1828 ADV_DCNT sg_count; /* SG element count. */
1829 } sg_list[NO_OF_SG_PER_BLOCK];
1830 } ADV_SG_BLOCK;
1833 * ADV_SCSI_REQ_Q - microcode request structure
1835 * All fields in this structure up to byte 60 are used by the microcode.
1836 * The microcode makes assumptions about the size and ordering of fields
1837 * in this structure. Do not change the structure definition here without
1838 * coordinating the change with the microcode.
1840 * All fields accessed by microcode must be maintained in little_endian
1841 * order.
1843 typedef struct adv_scsi_req_q {
1844 uchar cntl; /* Ucode flags and state (ASC_MC_QC_*). */
1845 uchar target_cmd;
1846 uchar target_id; /* Device target identifier. */
1847 uchar target_lun; /* Device target logical unit number. */
1848 ADV_PADDR data_addr; /* Data buffer physical address. */
1849 ADV_DCNT data_cnt; /* Data count. Ucode sets to residual. */
1850 ADV_PADDR sense_addr;
1851 ADV_PADDR carr_pa;
1852 uchar mflag;
1853 uchar sense_len;
1854 uchar cdb_len; /* SCSI CDB length. Must <= 16 bytes. */
1855 uchar scsi_cntl;
1856 uchar done_status; /* Completion status. */
1857 uchar scsi_status; /* SCSI status byte. */
1858 uchar host_status; /* Ucode host status. */
1859 uchar sg_working_ix;
1860 uchar cdb[12]; /* SCSI CDB bytes 0-11. */
1861 ADV_PADDR sg_real_addr; /* SG list physical address. */
1862 ADV_PADDR scsiq_rptr;
1863 uchar cdb16[4]; /* SCSI CDB bytes 12-15. */
1864 ADV_VADDR scsiq_ptr;
1865 ADV_VADDR carr_va;
1867 * End of microcode structure - 60 bytes. The rest of the structure
1868 * is used by the Adv Library and ignored by the microcode.
1870 ADV_VADDR srb_ptr;
1871 ADV_SG_BLOCK *sg_list_ptr; /* SG list virtual address. */
1872 char *vdata_addr; /* Data buffer virtual address. */
1873 uchar a_flag;
1874 uchar pad[2]; /* Pad out to a word boundary. */
1875 } ADV_SCSI_REQ_Q;
1878 * The following two structures are used to process Wide Board requests.
1880 * The ADV_SCSI_REQ_Q structure in adv_req_t is passed to the Adv Library
1881 * and microcode with the ADV_SCSI_REQ_Q field 'srb_ptr' pointing to the
1882 * adv_req_t. The adv_req_t structure 'cmndp' field in turn points to the
1883 * Mid-Level SCSI request structure.
1885 * Zero or more ADV_SG_BLOCK are used with each ADV_SCSI_REQ_Q. Each
1886 * ADV_SG_BLOCK structure holds 15 scatter-gather elements. Under Linux
1887 * up to 255 scatter-gather elements may be used per request or
1888 * ADV_SCSI_REQ_Q.
1890 * Both structures must be 32 byte aligned.
1892 typedef struct adv_sgblk {
1893 ADV_SG_BLOCK sg_block; /* Sgblock structure. */
1894 uchar align[32]; /* Sgblock structure padding. */
1895 struct adv_sgblk *next_sgblkp; /* Next scatter-gather structure. */
1896 } adv_sgblk_t;
1898 typedef struct adv_req {
1899 ADV_SCSI_REQ_Q scsi_req_q; /* Adv Library request structure. */
1900 uchar align[32]; /* Request structure padding. */
1901 struct scsi_cmnd *cmndp; /* Mid-Level SCSI command pointer. */
1902 adv_sgblk_t *sgblkp; /* Adv Library scatter-gather pointer. */
1903 struct adv_req *next_reqp; /* Next Request Structure. */
1904 } adv_req_t;
1907 * Adapter operation variable structure.
1909 * One structure is required per host adapter.
1911 * Field naming convention:
1913 * *_able indicates both whether a feature should be enabled or disabled
1914 * and whether a device isi capable of the feature. At initialization
1915 * this field may be set, but later if a device is found to be incapable
1916 * of the feature, the field is cleared.
1918 typedef struct adv_dvc_var {
1919 AdvPortAddr iop_base; /* I/O port address */
1920 ushort err_code; /* fatal error code */
1921 ushort bios_ctrl; /* BIOS control word, EEPROM word 12 */
1922 ushort wdtr_able; /* try WDTR for a device */
1923 ushort sdtr_able; /* try SDTR for a device */
1924 ushort ultra_able; /* try SDTR Ultra speed for a device */
1925 ushort sdtr_speed1; /* EEPROM SDTR Speed for TID 0-3 */
1926 ushort sdtr_speed2; /* EEPROM SDTR Speed for TID 4-7 */
1927 ushort sdtr_speed3; /* EEPROM SDTR Speed for TID 8-11 */
1928 ushort sdtr_speed4; /* EEPROM SDTR Speed for TID 12-15 */
1929 ushort tagqng_able; /* try tagged queuing with a device */
1930 ushort ppr_able; /* PPR message capable per TID bitmask. */
1931 uchar max_dvc_qng; /* maximum number of tagged commands per device */
1932 ushort start_motor; /* start motor command allowed */
1933 uchar scsi_reset_wait; /* delay in seconds after scsi bus reset */
1934 uchar chip_no; /* should be assigned by caller */
1935 uchar max_host_qng; /* maximum number of Q'ed command allowed */
1936 ushort no_scam; /* scam_tolerant of EEPROM */
1937 struct asc_board *drv_ptr; /* driver pointer to private structure */
1938 uchar chip_scsi_id; /* chip SCSI target ID */
1939 uchar chip_type;
1940 uchar bist_err_code;
1941 ADV_CARR_T *carrier_buf;
1942 ADV_CARR_T *carr_freelist; /* Carrier free list. */
1943 ADV_CARR_T *icq_sp; /* Initiator command queue stopper pointer. */
1944 ADV_CARR_T *irq_sp; /* Initiator response queue stopper pointer. */
1945 ushort carr_pending_cnt; /* Count of pending carriers. */
1946 struct adv_req *orig_reqp; /* adv_req_t memory block. */
1948 * Note: The following fields will not be used after initialization. The
1949 * driver may discard the buffer after initialization is done.
1951 ADV_DVC_CFG *cfg; /* temporary configuration structure */
1952 } ADV_DVC_VAR;
1955 * Microcode idle loop commands
1957 #define IDLE_CMD_COMPLETED 0
1958 #define IDLE_CMD_STOP_CHIP 0x0001
1959 #define IDLE_CMD_STOP_CHIP_SEND_INT 0x0002
1960 #define IDLE_CMD_SEND_INT 0x0004
1961 #define IDLE_CMD_ABORT 0x0008
1962 #define IDLE_CMD_DEVICE_RESET 0x0010
1963 #define IDLE_CMD_SCSI_RESET_START 0x0020 /* Assert SCSI Bus Reset */
1964 #define IDLE_CMD_SCSI_RESET_END 0x0040 /* Deassert SCSI Bus Reset */
1965 #define IDLE_CMD_SCSIREQ 0x0080
1967 #define IDLE_CMD_STATUS_SUCCESS 0x0001
1968 #define IDLE_CMD_STATUS_FAILURE 0x0002
1971 * AdvSendIdleCmd() flag definitions.
1973 #define ADV_NOWAIT 0x01
1976 * Wait loop time out values.
1978 #define SCSI_WAIT_100_MSEC 100UL /* 100 milliseconds */
1979 #define SCSI_US_PER_MSEC 1000 /* microseconds per millisecond */
1980 #define SCSI_MAX_RETRY 10 /* retry count */
1982 #define ADV_ASYNC_RDMA_FAILURE 0x01 /* Fatal RDMA failure. */
1983 #define ADV_ASYNC_SCSI_BUS_RESET_DET 0x02 /* Detected SCSI Bus Reset. */
1984 #define ADV_ASYNC_CARRIER_READY_FAILURE 0x03 /* Carrier Ready failure. */
1985 #define ADV_RDMA_IN_CARR_AND_Q_INVALID 0x04 /* RDMAed-in data invalid. */
1987 #define ADV_HOST_SCSI_BUS_RESET 0x80 /* Host Initiated SCSI Bus Reset. */
1989 /* Read byte from a register. */
1990 #define AdvReadByteRegister(iop_base, reg_off) \
1991 (ADV_MEM_READB((iop_base) + (reg_off)))
1993 /* Write byte to a register. */
1994 #define AdvWriteByteRegister(iop_base, reg_off, byte) \
1995 (ADV_MEM_WRITEB((iop_base) + (reg_off), (byte)))
1997 /* Read word (2 bytes) from a register. */
1998 #define AdvReadWordRegister(iop_base, reg_off) \
1999 (ADV_MEM_READW((iop_base) + (reg_off)))
2001 /* Write word (2 bytes) to a register. */
2002 #define AdvWriteWordRegister(iop_base, reg_off, word) \
2003 (ADV_MEM_WRITEW((iop_base) + (reg_off), (word)))
2005 /* Write dword (4 bytes) to a register. */
2006 #define AdvWriteDWordRegister(iop_base, reg_off, dword) \
2007 (ADV_MEM_WRITEDW((iop_base) + (reg_off), (dword)))
2009 /* Read byte from LRAM. */
2010 #define AdvReadByteLram(iop_base, addr, byte) \
2011 do { \
2012 ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)); \
2013 (byte) = ADV_MEM_READB((iop_base) + IOPB_RAM_DATA); \
2014 } while (0)
2016 /* Write byte to LRAM. */
2017 #define AdvWriteByteLram(iop_base, addr, byte) \
2018 (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)), \
2019 ADV_MEM_WRITEB((iop_base) + IOPB_RAM_DATA, (byte)))
2021 /* Read word (2 bytes) from LRAM. */
2022 #define AdvReadWordLram(iop_base, addr, word) \
2023 do { \
2024 ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)); \
2025 (word) = (ADV_MEM_READW((iop_base) + IOPW_RAM_DATA)); \
2026 } while (0)
2028 /* Write word (2 bytes) to LRAM. */
2029 #define AdvWriteWordLram(iop_base, addr, word) \
2030 (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)), \
2031 ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, (word)))
2033 /* Write little-endian double word (4 bytes) to LRAM */
2034 /* Because of unspecified C language ordering don't use auto-increment. */
2035 #define AdvWriteDWordLramNoSwap(iop_base, addr, dword) \
2036 ((ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)), \
2037 ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, \
2038 cpu_to_le16((ushort) ((dword) & 0xFFFF)))), \
2039 (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr) + 2), \
2040 ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, \
2041 cpu_to_le16((ushort) ((dword >> 16) & 0xFFFF)))))
2043 /* Read word (2 bytes) from LRAM assuming that the address is already set. */
2044 #define AdvReadWordAutoIncLram(iop_base) \
2045 (ADV_MEM_READW((iop_base) + IOPW_RAM_DATA))
2047 /* Write word (2 bytes) to LRAM assuming that the address is already set. */
2048 #define AdvWriteWordAutoIncLram(iop_base, word) \
2049 (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, (word)))
2052 * Define macro to check for Condor signature.
2054 * Evaluate to ADV_TRUE if a Condor chip is found the specified port
2055 * address 'iop_base'. Otherwise evalue to ADV_FALSE.
2057 #define AdvFindSignature(iop_base) \
2058 (((AdvReadByteRegister((iop_base), IOPB_CHIP_ID_1) == \
2059 ADV_CHIP_ID_BYTE) && \
2060 (AdvReadWordRegister((iop_base), IOPW_CHIP_ID_0) == \
2061 ADV_CHIP_ID_WORD)) ? ADV_TRUE : ADV_FALSE)
2064 * Define macro to Return the version number of the chip at 'iop_base'.
2066 * The second parameter 'bus_type' is currently unused.
2068 #define AdvGetChipVersion(iop_base, bus_type) \
2069 AdvReadByteRegister((iop_base), IOPB_CHIP_TYPE_REV)
2072 * Abort an SRB in the chip's RISC Memory. The 'srb_ptr' argument must
2073 * match the ASC_SCSI_REQ_Q 'srb_ptr' field.
2075 * If the request has not yet been sent to the device it will simply be
2076 * aborted from RISC memory. If the request is disconnected it will be
2077 * aborted on reselection by sending an Abort Message to the target ID.
2079 * Return value:
2080 * ADV_TRUE(1) - Queue was successfully aborted.
2081 * ADV_FALSE(0) - Queue was not found on the active queue list.
2083 #define AdvAbortQueue(asc_dvc, scsiq) \
2084 AdvSendIdleCmd((asc_dvc), (ushort) IDLE_CMD_ABORT, \
2085 (ADV_DCNT) (scsiq))
2088 * Send a Bus Device Reset Message to the specified target ID.
2090 * All outstanding commands will be purged if sending the
2091 * Bus Device Reset Message is successful.
2093 * Return Value:
2094 * ADV_TRUE(1) - All requests on the target are purged.
2095 * ADV_FALSE(0) - Couldn't issue Bus Device Reset Message; Requests
2096 * are not purged.
2098 #define AdvResetDevice(asc_dvc, target_id) \
2099 AdvSendIdleCmd((asc_dvc), (ushort) IDLE_CMD_DEVICE_RESET, \
2100 (ADV_DCNT) (target_id))
2103 * SCSI Wide Type definition.
2105 #define ADV_SCSI_BIT_ID_TYPE ushort
2108 * AdvInitScsiTarget() 'cntl_flag' options.
2110 #define ADV_SCAN_LUN 0x01
2111 #define ADV_CAPINFO_NOLUN 0x02
2114 * Convert target id to target id bit mask.
2116 #define ADV_TID_TO_TIDMASK(tid) (0x01 << ((tid) & ADV_MAX_TID))
2119 * ASC_SCSI_REQ_Q 'done_status' and 'host_status' return values.
2122 #define QD_NO_STATUS 0x00 /* Request not completed yet. */
2123 #define QD_NO_ERROR 0x01
2124 #define QD_ABORTED_BY_HOST 0x02
2125 #define QD_WITH_ERROR 0x04
2127 #define QHSTA_NO_ERROR 0x00
2128 #define QHSTA_M_SEL_TIMEOUT 0x11
2129 #define QHSTA_M_DATA_OVER_RUN 0x12
2130 #define QHSTA_M_UNEXPECTED_BUS_FREE 0x13
2131 #define QHSTA_M_QUEUE_ABORTED 0x15
2132 #define QHSTA_M_SXFR_SDMA_ERR 0x16 /* SXFR_STATUS SCSI DMA Error */
2133 #define QHSTA_M_SXFR_SXFR_PERR 0x17 /* SXFR_STATUS SCSI Bus Parity Error */
2134 #define QHSTA_M_RDMA_PERR 0x18 /* RISC PCI DMA parity error */
2135 #define QHSTA_M_SXFR_OFF_UFLW 0x19 /* SXFR_STATUS Offset Underflow */
2136 #define QHSTA_M_SXFR_OFF_OFLW 0x20 /* SXFR_STATUS Offset Overflow */
2137 #define QHSTA_M_SXFR_WD_TMO 0x21 /* SXFR_STATUS Watchdog Timeout */
2138 #define QHSTA_M_SXFR_DESELECTED 0x22 /* SXFR_STATUS Deselected */
2139 /* Note: QHSTA_M_SXFR_XFR_OFLW is identical to QHSTA_M_DATA_OVER_RUN. */
2140 #define QHSTA_M_SXFR_XFR_OFLW 0x12 /* SXFR_STATUS Transfer Overflow */
2141 #define QHSTA_M_SXFR_XFR_PH_ERR 0x24 /* SXFR_STATUS Transfer Phase Error */
2142 #define QHSTA_M_SXFR_UNKNOWN_ERROR 0x25 /* SXFR_STATUS Unknown Error */
2143 #define QHSTA_M_SCSI_BUS_RESET 0x30 /* Request aborted from SBR */
2144 #define QHSTA_M_SCSI_BUS_RESET_UNSOL 0x31 /* Request aborted from unsol. SBR */
2145 #define QHSTA_M_BUS_DEVICE_RESET 0x32 /* Request aborted from BDR */
2146 #define QHSTA_M_DIRECTION_ERR 0x35 /* Data Phase mismatch */
2147 #define QHSTA_M_DIRECTION_ERR_HUNG 0x36 /* Data Phase mismatch and bus hang */
2148 #define QHSTA_M_WTM_TIMEOUT 0x41
2149 #define QHSTA_M_BAD_CMPL_STATUS_IN 0x42
2150 #define QHSTA_M_NO_AUTO_REQ_SENSE 0x43
2151 #define QHSTA_M_AUTO_REQ_SENSE_FAIL 0x44
2152 #define QHSTA_M_INVALID_DEVICE 0x45 /* Bad target ID */
2153 #define QHSTA_M_FROZEN_TIDQ 0x46 /* TID Queue frozen. */
2154 #define QHSTA_M_SGBACKUP_ERROR 0x47 /* Scatter-Gather backup error */
2156 /* Return the address that is aligned at the next doubleword >= to 'addr'. */
2157 #define ADV_8BALIGN(addr) (((ulong) (addr) + 0x7) & ~0x7)
2158 #define ADV_16BALIGN(addr) (((ulong) (addr) + 0xF) & ~0xF)
2159 #define ADV_32BALIGN(addr) (((ulong) (addr) + 0x1F) & ~0x1F)
2162 * Total contiguous memory needed for driver SG blocks.
2164 * ADV_MAX_SG_LIST must be defined by a driver. It is the maximum
2165 * number of scatter-gather elements the driver supports in a
2166 * single request.
2169 #define ADV_SG_LIST_MAX_BYTE_SIZE \
2170 (sizeof(ADV_SG_BLOCK) * \
2171 ((ADV_MAX_SG_LIST + (NO_OF_SG_PER_BLOCK - 1))/NO_OF_SG_PER_BLOCK))
2173 /* struct asc_board flags */
2174 #define ASC_IS_WIDE_BOARD 0x04 /* AdvanSys Wide Board */
2176 #define ASC_NARROW_BOARD(boardp) (((boardp)->flags & ASC_IS_WIDE_BOARD) == 0)
2178 #define NO_ISA_DMA 0xff /* No ISA DMA Channel Used */
2180 #define ASC_INFO_SIZE 128 /* advansys_info() line size */
2182 #ifdef CONFIG_PROC_FS
2183 /* /proc/scsi/advansys/[0...] related definitions */
2184 #define ASC_PRTBUF_SIZE 2048
2185 #define ASC_PRTLINE_SIZE 160
2187 #define ASC_PRT_NEXT() \
2188 if (cp) { \
2189 totlen += len; \
2190 leftlen -= len; \
2191 if (leftlen == 0) { \
2192 return totlen; \
2194 cp += len; \
2196 #endif /* CONFIG_PROC_FS */
2198 /* Asc Library return codes */
2199 #define ASC_TRUE 1
2200 #define ASC_FALSE 0
2201 #define ASC_NOERROR 1
2202 #define ASC_BUSY 0
2203 #define ASC_ERROR (-1)
2205 /* struct scsi_cmnd function return codes */
2206 #define STATUS_BYTE(byte) (byte)
2207 #define MSG_BYTE(byte) ((byte) << 8)
2208 #define HOST_BYTE(byte) ((byte) << 16)
2209 #define DRIVER_BYTE(byte) ((byte) << 24)
2211 #define ASC_STATS(shost, counter) ASC_STATS_ADD(shost, counter, 1)
2212 #ifndef ADVANSYS_STATS
2213 #define ASC_STATS_ADD(shost, counter, count)
2214 #else /* ADVANSYS_STATS */
2215 #define ASC_STATS_ADD(shost, counter, count) \
2216 (((struct asc_board *) shost_priv(shost))->asc_stats.counter += (count))
2217 #endif /* ADVANSYS_STATS */
2219 /* If the result wraps when calculating tenths, return 0. */
2220 #define ASC_TENTHS(num, den) \
2221 (((10 * ((num)/(den))) > (((num) * 10)/(den))) ? \
2222 0 : ((((num) * 10)/(den)) - (10 * ((num)/(den)))))
2225 * Display a message to the console.
2227 #define ASC_PRINT(s) \
2229 printk("advansys: "); \
2230 printk(s); \
2233 #define ASC_PRINT1(s, a1) \
2235 printk("advansys: "); \
2236 printk((s), (a1)); \
2239 #define ASC_PRINT2(s, a1, a2) \
2241 printk("advansys: "); \
2242 printk((s), (a1), (a2)); \
2245 #define ASC_PRINT3(s, a1, a2, a3) \
2247 printk("advansys: "); \
2248 printk((s), (a1), (a2), (a3)); \
2251 #define ASC_PRINT4(s, a1, a2, a3, a4) \
2253 printk("advansys: "); \
2254 printk((s), (a1), (a2), (a3), (a4)); \
2257 #ifndef ADVANSYS_DEBUG
2259 #define ASC_DBG(lvl, s...)
2260 #define ASC_DBG_PRT_SCSI_HOST(lvl, s)
2261 #define ASC_DBG_PRT_ASC_SCSI_Q(lvl, scsiqp)
2262 #define ASC_DBG_PRT_ADV_SCSI_REQ_Q(lvl, scsiqp)
2263 #define ASC_DBG_PRT_ASC_QDONE_INFO(lvl, qdone)
2264 #define ADV_DBG_PRT_ADV_SCSI_REQ_Q(lvl, scsiqp)
2265 #define ASC_DBG_PRT_HEX(lvl, name, start, length)
2266 #define ASC_DBG_PRT_CDB(lvl, cdb, len)
2267 #define ASC_DBG_PRT_SENSE(lvl, sense, len)
2268 #define ASC_DBG_PRT_INQUIRY(lvl, inq, len)
2270 #else /* ADVANSYS_DEBUG */
2273 * Debugging Message Levels:
2274 * 0: Errors Only
2275 * 1: High-Level Tracing
2276 * 2-N: Verbose Tracing
2279 #define ASC_DBG(lvl, format, arg...) { \
2280 if (asc_dbglvl >= (lvl)) \
2281 printk(KERN_DEBUG "%s: %s: " format, DRV_NAME, \
2282 __func__ , ## arg); \
2285 #define ASC_DBG_PRT_SCSI_HOST(lvl, s) \
2287 if (asc_dbglvl >= (lvl)) { \
2288 asc_prt_scsi_host(s); \
2292 #define ASC_DBG_PRT_ASC_SCSI_Q(lvl, scsiqp) \
2294 if (asc_dbglvl >= (lvl)) { \
2295 asc_prt_asc_scsi_q(scsiqp); \
2299 #define ASC_DBG_PRT_ASC_QDONE_INFO(lvl, qdone) \
2301 if (asc_dbglvl >= (lvl)) { \
2302 asc_prt_asc_qdone_info(qdone); \
2306 #define ASC_DBG_PRT_ADV_SCSI_REQ_Q(lvl, scsiqp) \
2308 if (asc_dbglvl >= (lvl)) { \
2309 asc_prt_adv_scsi_req_q(scsiqp); \
2313 #define ASC_DBG_PRT_HEX(lvl, name, start, length) \
2315 if (asc_dbglvl >= (lvl)) { \
2316 asc_prt_hex((name), (start), (length)); \
2320 #define ASC_DBG_PRT_CDB(lvl, cdb, len) \
2321 ASC_DBG_PRT_HEX((lvl), "CDB", (uchar *) (cdb), (len));
2323 #define ASC_DBG_PRT_SENSE(lvl, sense, len) \
2324 ASC_DBG_PRT_HEX((lvl), "SENSE", (uchar *) (sense), (len));
2326 #define ASC_DBG_PRT_INQUIRY(lvl, inq, len) \
2327 ASC_DBG_PRT_HEX((lvl), "INQUIRY", (uchar *) (inq), (len));
2328 #endif /* ADVANSYS_DEBUG */
2330 #ifdef ADVANSYS_STATS
2332 /* Per board statistics structure */
2333 struct asc_stats {
2334 /* Driver Entrypoint Statistics */
2335 ADV_DCNT queuecommand; /* # calls to advansys_queuecommand() */
2336 ADV_DCNT reset; /* # calls to advansys_eh_bus_reset() */
2337 ADV_DCNT biosparam; /* # calls to advansys_biosparam() */
2338 ADV_DCNT interrupt; /* # advansys_interrupt() calls */
2339 ADV_DCNT callback; /* # calls to asc/adv_isr_callback() */
2340 ADV_DCNT done; /* # calls to request's scsi_done function */
2341 ADV_DCNT build_error; /* # asc/adv_build_req() ASC_ERROR returns. */
2342 ADV_DCNT adv_build_noreq; /* # adv_build_req() adv_req_t alloc. fail. */
2343 ADV_DCNT adv_build_nosg; /* # adv_build_req() adv_sgblk_t alloc. fail. */
2344 /* AscExeScsiQueue()/AdvExeScsiQueue() Statistics */
2345 ADV_DCNT exe_noerror; /* # ASC_NOERROR returns. */
2346 ADV_DCNT exe_busy; /* # ASC_BUSY returns. */
2347 ADV_DCNT exe_error; /* # ASC_ERROR returns. */
2348 ADV_DCNT exe_unknown; /* # unknown returns. */
2349 /* Data Transfer Statistics */
2350 ADV_DCNT xfer_cnt; /* # I/O requests received */
2351 ADV_DCNT xfer_elem; /* # scatter-gather elements */
2352 ADV_DCNT xfer_sect; /* # 512-byte blocks */
2354 #endif /* ADVANSYS_STATS */
2357 * Structure allocated for each board.
2359 * This structure is allocated by scsi_host_alloc() at the end
2360 * of the 'Scsi_Host' structure starting at the 'hostdata'
2361 * field. It is guaranteed to be allocated from DMA-able memory.
2363 struct asc_board {
2364 struct device *dev;
2365 uint flags; /* Board flags */
2366 unsigned int irq;
2367 union {
2368 ASC_DVC_VAR asc_dvc_var; /* Narrow board */
2369 ADV_DVC_VAR adv_dvc_var; /* Wide board */
2370 } dvc_var;
2371 union {
2372 ASC_DVC_CFG asc_dvc_cfg; /* Narrow board */
2373 ADV_DVC_CFG adv_dvc_cfg; /* Wide board */
2374 } dvc_cfg;
2375 ushort asc_n_io_port; /* Number I/O ports. */
2376 ADV_SCSI_BIT_ID_TYPE init_tidmask; /* Target init./valid mask */
2377 ushort reqcnt[ADV_MAX_TID + 1]; /* Starvation request count */
2378 ADV_SCSI_BIT_ID_TYPE queue_full; /* Queue full mask */
2379 ushort queue_full_cnt[ADV_MAX_TID + 1]; /* Queue full count */
2380 union {
2381 ASCEEP_CONFIG asc_eep; /* Narrow EEPROM config. */
2382 ADVEEP_3550_CONFIG adv_3550_eep; /* 3550 EEPROM config. */
2383 ADVEEP_38C0800_CONFIG adv_38C0800_eep; /* 38C0800 EEPROM config. */
2384 ADVEEP_38C1600_CONFIG adv_38C1600_eep; /* 38C1600 EEPROM config. */
2385 } eep_config;
2386 ulong last_reset; /* Saved last reset time */
2387 /* /proc/scsi/advansys/[0...] */
2388 char *prtbuf; /* /proc print buffer */
2389 #ifdef ADVANSYS_STATS
2390 struct asc_stats asc_stats; /* Board statistics */
2391 #endif /* ADVANSYS_STATS */
2393 * The following fields are used only for Narrow Boards.
2395 uchar sdtr_data[ASC_MAX_TID + 1]; /* SDTR information */
2397 * The following fields are used only for Wide Boards.
2399 void __iomem *ioremap_addr; /* I/O Memory remap address. */
2400 ushort ioport; /* I/O Port address. */
2401 adv_req_t *adv_reqp; /* Request structures. */
2402 adv_sgblk_t *adv_sgblkp; /* Scatter-gather structures. */
2403 ushort bios_signature; /* BIOS Signature. */
2404 ushort bios_version; /* BIOS Version. */
2405 ushort bios_codeseg; /* BIOS Code Segment. */
2406 ushort bios_codelen; /* BIOS Code Segment Length. */
2409 #define asc_dvc_to_board(asc_dvc) container_of(asc_dvc, struct asc_board, \
2410 dvc_var.asc_dvc_var)
2411 #define adv_dvc_to_board(adv_dvc) container_of(adv_dvc, struct asc_board, \
2412 dvc_var.adv_dvc_var)
2413 #define adv_dvc_to_pdev(adv_dvc) to_pci_dev(adv_dvc_to_board(adv_dvc)->dev)
2415 #ifdef ADVANSYS_DEBUG
2416 static int asc_dbglvl = 3;
2419 * asc_prt_asc_dvc_var()
2421 static void asc_prt_asc_dvc_var(ASC_DVC_VAR *h)
2423 printk("ASC_DVC_VAR at addr 0x%lx\n", (ulong)h);
2425 printk(" iop_base 0x%x, err_code 0x%x, dvc_cntl 0x%x, bug_fix_cntl "
2426 "%d,\n", h->iop_base, h->err_code, h->dvc_cntl, h->bug_fix_cntl);
2428 printk(" bus_type %d, init_sdtr 0x%x,\n", h->bus_type,
2429 (unsigned)h->init_sdtr);
2431 printk(" sdtr_done 0x%x, use_tagged_qng 0x%x, unit_not_ready 0x%x, "
2432 "chip_no 0x%x,\n", (unsigned)h->sdtr_done,
2433 (unsigned)h->use_tagged_qng, (unsigned)h->unit_not_ready,
2434 (unsigned)h->chip_no);
2436 printk(" queue_full_or_busy 0x%x, start_motor 0x%x, scsi_reset_wait "
2437 "%u,\n", (unsigned)h->queue_full_or_busy,
2438 (unsigned)h->start_motor, (unsigned)h->scsi_reset_wait);
2440 printk(" is_in_int %u, max_total_qng %u, cur_total_qng %u, "
2441 "in_critical_cnt %u,\n", (unsigned)h->is_in_int,
2442 (unsigned)h->max_total_qng, (unsigned)h->cur_total_qng,
2443 (unsigned)h->in_critical_cnt);
2445 printk(" last_q_shortage %u, init_state 0x%x, no_scam 0x%x, "
2446 "pci_fix_asyn_xfer 0x%x,\n", (unsigned)h->last_q_shortage,
2447 (unsigned)h->init_state, (unsigned)h->no_scam,
2448 (unsigned)h->pci_fix_asyn_xfer);
2450 printk(" cfg 0x%lx\n", (ulong)h->cfg);
2454 * asc_prt_asc_dvc_cfg()
2456 static void asc_prt_asc_dvc_cfg(ASC_DVC_CFG *h)
2458 printk("ASC_DVC_CFG at addr 0x%lx\n", (ulong)h);
2460 printk(" can_tagged_qng 0x%x, cmd_qng_enabled 0x%x,\n",
2461 h->can_tagged_qng, h->cmd_qng_enabled);
2462 printk(" disc_enable 0x%x, sdtr_enable 0x%x,\n",
2463 h->disc_enable, h->sdtr_enable);
2465 printk(" chip_scsi_id %d, isa_dma_speed %d, isa_dma_channel %d, "
2466 "chip_version %d,\n", h->chip_scsi_id, h->isa_dma_speed,
2467 h->isa_dma_channel, h->chip_version);
2469 printk(" mcode_date 0x%x, mcode_version %d\n",
2470 h->mcode_date, h->mcode_version);
2474 * asc_prt_adv_dvc_var()
2476 * Display an ADV_DVC_VAR structure.
2478 static void asc_prt_adv_dvc_var(ADV_DVC_VAR *h)
2480 printk(" ADV_DVC_VAR at addr 0x%lx\n", (ulong)h);
2482 printk(" iop_base 0x%lx, err_code 0x%x, ultra_able 0x%x\n",
2483 (ulong)h->iop_base, h->err_code, (unsigned)h->ultra_able);
2485 printk(" sdtr_able 0x%x, wdtr_able 0x%x\n",
2486 (unsigned)h->sdtr_able, (unsigned)h->wdtr_able);
2488 printk(" start_motor 0x%x, scsi_reset_wait 0x%x\n",
2489 (unsigned)h->start_motor, (unsigned)h->scsi_reset_wait);
2491 printk(" max_host_qng %u, max_dvc_qng %u, carr_freelist 0x%lxn\n",
2492 (unsigned)h->max_host_qng, (unsigned)h->max_dvc_qng,
2493 (ulong)h->carr_freelist);
2495 printk(" icq_sp 0x%lx, irq_sp 0x%lx\n",
2496 (ulong)h->icq_sp, (ulong)h->irq_sp);
2498 printk(" no_scam 0x%x, tagqng_able 0x%x\n",
2499 (unsigned)h->no_scam, (unsigned)h->tagqng_able);
2501 printk(" chip_scsi_id 0x%x, cfg 0x%lx\n",
2502 (unsigned)h->chip_scsi_id, (ulong)h->cfg);
2506 * asc_prt_adv_dvc_cfg()
2508 * Display an ADV_DVC_CFG structure.
2510 static void asc_prt_adv_dvc_cfg(ADV_DVC_CFG *h)
2512 printk(" ADV_DVC_CFG at addr 0x%lx\n", (ulong)h);
2514 printk(" disc_enable 0x%x, termination 0x%x\n",
2515 h->disc_enable, h->termination);
2517 printk(" chip_version 0x%x, mcode_date 0x%x\n",
2518 h->chip_version, h->mcode_date);
2520 printk(" mcode_version 0x%x, control_flag 0x%x\n",
2521 h->mcode_version, h->control_flag);
2525 * asc_prt_scsi_host()
2527 static void asc_prt_scsi_host(struct Scsi_Host *s)
2529 struct asc_board *boardp = shost_priv(s);
2531 printk("Scsi_Host at addr 0x%p, device %s\n", s, dev_name(boardp->dev));
2532 printk(" host_busy %u, host_no %d, last_reset %d,\n",
2533 s->host_busy, s->host_no, (unsigned)s->last_reset);
2535 printk(" base 0x%lx, io_port 0x%lx, irq %d,\n",
2536 (ulong)s->base, (ulong)s->io_port, boardp->irq);
2538 printk(" dma_channel %d, this_id %d, can_queue %d,\n",
2539 s->dma_channel, s->this_id, s->can_queue);
2541 printk(" cmd_per_lun %d, sg_tablesize %d, unchecked_isa_dma %d\n",
2542 s->cmd_per_lun, s->sg_tablesize, s->unchecked_isa_dma);
2544 if (ASC_NARROW_BOARD(boardp)) {
2545 asc_prt_asc_dvc_var(&boardp->dvc_var.asc_dvc_var);
2546 asc_prt_asc_dvc_cfg(&boardp->dvc_cfg.asc_dvc_cfg);
2547 } else {
2548 asc_prt_adv_dvc_var(&boardp->dvc_var.adv_dvc_var);
2549 asc_prt_adv_dvc_cfg(&boardp->dvc_cfg.adv_dvc_cfg);
2554 * asc_prt_hex()
2556 * Print hexadecimal output in 4 byte groupings 32 bytes
2557 * or 8 double-words per line.
2559 static void asc_prt_hex(char *f, uchar *s, int l)
2561 int i;
2562 int j;
2563 int k;
2564 int m;
2566 printk("%s: (%d bytes)\n", f, l);
2568 for (i = 0; i < l; i += 32) {
2570 /* Display a maximum of 8 double-words per line. */
2571 if ((k = (l - i) / 4) >= 8) {
2572 k = 8;
2573 m = 0;
2574 } else {
2575 m = (l - i) % 4;
2578 for (j = 0; j < k; j++) {
2579 printk(" %2.2X%2.2X%2.2X%2.2X",
2580 (unsigned)s[i + (j * 4)],
2581 (unsigned)s[i + (j * 4) + 1],
2582 (unsigned)s[i + (j * 4) + 2],
2583 (unsigned)s[i + (j * 4) + 3]);
2586 switch (m) {
2587 case 0:
2588 default:
2589 break;
2590 case 1:
2591 printk(" %2.2X", (unsigned)s[i + (j * 4)]);
2592 break;
2593 case 2:
2594 printk(" %2.2X%2.2X",
2595 (unsigned)s[i + (j * 4)],
2596 (unsigned)s[i + (j * 4) + 1]);
2597 break;
2598 case 3:
2599 printk(" %2.2X%2.2X%2.2X",
2600 (unsigned)s[i + (j * 4) + 1],
2601 (unsigned)s[i + (j * 4) + 2],
2602 (unsigned)s[i + (j * 4) + 3]);
2603 break;
2606 printk("\n");
2611 * asc_prt_asc_scsi_q()
2613 static void asc_prt_asc_scsi_q(ASC_SCSI_Q *q)
2615 ASC_SG_HEAD *sgp;
2616 int i;
2618 printk("ASC_SCSI_Q at addr 0x%lx\n", (ulong)q);
2620 printk
2621 (" target_ix 0x%x, target_lun %u, srb_ptr 0x%lx, tag_code 0x%x,\n",
2622 q->q2.target_ix, q->q1.target_lun, (ulong)q->q2.srb_ptr,
2623 q->q2.tag_code);
2625 printk
2626 (" data_addr 0x%lx, data_cnt %lu, sense_addr 0x%lx, sense_len %u,\n",
2627 (ulong)le32_to_cpu(q->q1.data_addr),
2628 (ulong)le32_to_cpu(q->q1.data_cnt),
2629 (ulong)le32_to_cpu(q->q1.sense_addr), q->q1.sense_len);
2631 printk(" cdbptr 0x%lx, cdb_len %u, sg_head 0x%lx, sg_queue_cnt %u\n",
2632 (ulong)q->cdbptr, q->q2.cdb_len,
2633 (ulong)q->sg_head, q->q1.sg_queue_cnt);
2635 if (q->sg_head) {
2636 sgp = q->sg_head;
2637 printk("ASC_SG_HEAD at addr 0x%lx\n", (ulong)sgp);
2638 printk(" entry_cnt %u, queue_cnt %u\n", sgp->entry_cnt,
2639 sgp->queue_cnt);
2640 for (i = 0; i < sgp->entry_cnt; i++) {
2641 printk(" [%u]: addr 0x%lx, bytes %lu\n",
2642 i, (ulong)le32_to_cpu(sgp->sg_list[i].addr),
2643 (ulong)le32_to_cpu(sgp->sg_list[i].bytes));
2650 * asc_prt_asc_qdone_info()
2652 static void asc_prt_asc_qdone_info(ASC_QDONE_INFO *q)
2654 printk("ASC_QDONE_INFO at addr 0x%lx\n", (ulong)q);
2655 printk(" srb_ptr 0x%lx, target_ix %u, cdb_len %u, tag_code %u,\n",
2656 (ulong)q->d2.srb_ptr, q->d2.target_ix, q->d2.cdb_len,
2657 q->d2.tag_code);
2658 printk
2659 (" done_stat 0x%x, host_stat 0x%x, scsi_stat 0x%x, scsi_msg 0x%x\n",
2660 q->d3.done_stat, q->d3.host_stat, q->d3.scsi_stat, q->d3.scsi_msg);
2664 * asc_prt_adv_sgblock()
2666 * Display an ADV_SG_BLOCK structure.
2668 static void asc_prt_adv_sgblock(int sgblockno, ADV_SG_BLOCK *b)
2670 int i;
2672 printk(" ASC_SG_BLOCK at addr 0x%lx (sgblockno %d)\n",
2673 (ulong)b, sgblockno);
2674 printk(" sg_cnt %u, sg_ptr 0x%lx\n",
2675 b->sg_cnt, (ulong)le32_to_cpu(b->sg_ptr));
2676 BUG_ON(b->sg_cnt > NO_OF_SG_PER_BLOCK);
2677 if (b->sg_ptr != 0)
2678 BUG_ON(b->sg_cnt != NO_OF_SG_PER_BLOCK);
2679 for (i = 0; i < b->sg_cnt; i++) {
2680 printk(" [%u]: sg_addr 0x%lx, sg_count 0x%lx\n",
2681 i, (ulong)b->sg_list[i].sg_addr,
2682 (ulong)b->sg_list[i].sg_count);
2687 * asc_prt_adv_scsi_req_q()
2689 * Display an ADV_SCSI_REQ_Q structure.
2691 static void asc_prt_adv_scsi_req_q(ADV_SCSI_REQ_Q *q)
2693 int sg_blk_cnt;
2694 struct asc_sg_block *sg_ptr;
2696 printk("ADV_SCSI_REQ_Q at addr 0x%lx\n", (ulong)q);
2698 printk(" target_id %u, target_lun %u, srb_ptr 0x%lx, a_flag 0x%x\n",
2699 q->target_id, q->target_lun, (ulong)q->srb_ptr, q->a_flag);
2701 printk(" cntl 0x%x, data_addr 0x%lx, vdata_addr 0x%lx\n",
2702 q->cntl, (ulong)le32_to_cpu(q->data_addr), (ulong)q->vdata_addr);
2704 printk(" data_cnt %lu, sense_addr 0x%lx, sense_len %u,\n",
2705 (ulong)le32_to_cpu(q->data_cnt),
2706 (ulong)le32_to_cpu(q->sense_addr), q->sense_len);
2708 printk
2709 (" cdb_len %u, done_status 0x%x, host_status 0x%x, scsi_status 0x%x\n",
2710 q->cdb_len, q->done_status, q->host_status, q->scsi_status);
2712 printk(" sg_working_ix 0x%x, target_cmd %u\n",
2713 q->sg_working_ix, q->target_cmd);
2715 printk(" scsiq_rptr 0x%lx, sg_real_addr 0x%lx, sg_list_ptr 0x%lx\n",
2716 (ulong)le32_to_cpu(q->scsiq_rptr),
2717 (ulong)le32_to_cpu(q->sg_real_addr), (ulong)q->sg_list_ptr);
2719 /* Display the request's ADV_SG_BLOCK structures. */
2720 if (q->sg_list_ptr != NULL) {
2721 sg_blk_cnt = 0;
2722 while (1) {
2724 * 'sg_ptr' is a physical address. Convert it to a virtual
2725 * address by indexing 'sg_blk_cnt' into the virtual address
2726 * array 'sg_list_ptr'.
2728 * XXX - Assumes all SG physical blocks are virtually contiguous.
2730 sg_ptr =
2731 &(((ADV_SG_BLOCK *)(q->sg_list_ptr))[sg_blk_cnt]);
2732 asc_prt_adv_sgblock(sg_blk_cnt, sg_ptr);
2733 if (sg_ptr->sg_ptr == 0) {
2734 break;
2736 sg_blk_cnt++;
2740 #endif /* ADVANSYS_DEBUG */
2743 * The advansys chip/microcode contains a 32-bit identifier for each command
2744 * known as the 'srb'. I don't know what it stands for. The driver used
2745 * to encode the scsi_cmnd pointer by calling virt_to_bus and retrieve it
2746 * with bus_to_virt. Now the driver keeps a per-host map of integers to
2747 * pointers. It auto-expands when full, unless it can't allocate memory.
2748 * Note that an srb of 0 is treated specially by the chip/firmware, hence
2749 * the return of i+1 in this routine, and the corresponding subtraction in
2750 * the inverse routine.
2752 #define BAD_SRB 0
2753 static u32 advansys_ptr_to_srb(struct asc_dvc_var *asc_dvc, void *ptr)
2755 int i;
2756 void **new_ptr;
2758 for (i = 0; i < asc_dvc->ptr_map_count; i++) {
2759 if (!asc_dvc->ptr_map[i])
2760 goto out;
2763 if (asc_dvc->ptr_map_count == 0)
2764 asc_dvc->ptr_map_count = 1;
2765 else
2766 asc_dvc->ptr_map_count *= 2;
2768 new_ptr = krealloc(asc_dvc->ptr_map,
2769 asc_dvc->ptr_map_count * sizeof(void *), GFP_ATOMIC);
2770 if (!new_ptr)
2771 return BAD_SRB;
2772 asc_dvc->ptr_map = new_ptr;
2773 out:
2774 ASC_DBG(3, "Putting ptr %p into array offset %d\n", ptr, i);
2775 asc_dvc->ptr_map[i] = ptr;
2776 return i + 1;
2779 static void * advansys_srb_to_ptr(struct asc_dvc_var *asc_dvc, u32 srb)
2781 void *ptr;
2783 srb--;
2784 if (srb >= asc_dvc->ptr_map_count) {
2785 printk("advansys: bad SRB %u, max %u\n", srb,
2786 asc_dvc->ptr_map_count);
2787 return NULL;
2789 ptr = asc_dvc->ptr_map[srb];
2790 asc_dvc->ptr_map[srb] = NULL;
2791 ASC_DBG(3, "Returning ptr %p from array offset %d\n", ptr, srb);
2792 return ptr;
2796 * advansys_info()
2798 * Return suitable for printing on the console with the argument
2799 * adapter's configuration information.
2801 * Note: The information line should not exceed ASC_INFO_SIZE bytes,
2802 * otherwise the static 'info' array will be overrun.
2804 static const char *advansys_info(struct Scsi_Host *shost)
2806 static char info[ASC_INFO_SIZE];
2807 struct asc_board *boardp = shost_priv(shost);
2808 ASC_DVC_VAR *asc_dvc_varp;
2809 ADV_DVC_VAR *adv_dvc_varp;
2810 char *busname;
2811 char *widename = NULL;
2813 if (ASC_NARROW_BOARD(boardp)) {
2814 asc_dvc_varp = &boardp->dvc_var.asc_dvc_var;
2815 ASC_DBG(1, "begin\n");
2816 if (asc_dvc_varp->bus_type & ASC_IS_ISA) {
2817 if ((asc_dvc_varp->bus_type & ASC_IS_ISAPNP) ==
2818 ASC_IS_ISAPNP) {
2819 busname = "ISA PnP";
2820 } else {
2821 busname = "ISA";
2823 sprintf(info,
2824 "AdvanSys SCSI %s: %s: IO 0x%lX-0x%lX, IRQ 0x%X, DMA 0x%X",
2825 ASC_VERSION, busname,
2826 (ulong)shost->io_port,
2827 (ulong)shost->io_port + ASC_IOADR_GAP - 1,
2828 boardp->irq, shost->dma_channel);
2829 } else {
2830 if (asc_dvc_varp->bus_type & ASC_IS_VL) {
2831 busname = "VL";
2832 } else if (asc_dvc_varp->bus_type & ASC_IS_EISA) {
2833 busname = "EISA";
2834 } else if (asc_dvc_varp->bus_type & ASC_IS_PCI) {
2835 if ((asc_dvc_varp->bus_type & ASC_IS_PCI_ULTRA)
2836 == ASC_IS_PCI_ULTRA) {
2837 busname = "PCI Ultra";
2838 } else {
2839 busname = "PCI";
2841 } else {
2842 busname = "?";
2843 shost_printk(KERN_ERR, shost, "unknown bus "
2844 "type %d\n", asc_dvc_varp->bus_type);
2846 sprintf(info,
2847 "AdvanSys SCSI %s: %s: IO 0x%lX-0x%lX, IRQ 0x%X",
2848 ASC_VERSION, busname, (ulong)shost->io_port,
2849 (ulong)shost->io_port + ASC_IOADR_GAP - 1,
2850 boardp->irq);
2852 } else {
2854 * Wide Adapter Information
2856 * Memory-mapped I/O is used instead of I/O space to access
2857 * the adapter, but display the I/O Port range. The Memory
2858 * I/O address is displayed through the driver /proc file.
2860 adv_dvc_varp = &boardp->dvc_var.adv_dvc_var;
2861 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
2862 widename = "Ultra-Wide";
2863 } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
2864 widename = "Ultra2-Wide";
2865 } else {
2866 widename = "Ultra3-Wide";
2868 sprintf(info,
2869 "AdvanSys SCSI %s: PCI %s: PCIMEM 0x%lX-0x%lX, IRQ 0x%X",
2870 ASC_VERSION, widename, (ulong)adv_dvc_varp->iop_base,
2871 (ulong)adv_dvc_varp->iop_base + boardp->asc_n_io_port - 1, boardp->irq);
2873 BUG_ON(strlen(info) >= ASC_INFO_SIZE);
2874 ASC_DBG(1, "end\n");
2875 return info;
2878 #ifdef CONFIG_PROC_FS
2880 * asc_prt_line()
2882 * If 'cp' is NULL print to the console, otherwise print to a buffer.
2884 * Return 0 if printing to the console, otherwise return the number of
2885 * bytes written to the buffer.
2887 * Note: If any single line is greater than ASC_PRTLINE_SIZE bytes the stack
2888 * will be corrupted. 's[]' is defined to be ASC_PRTLINE_SIZE bytes.
2890 static int asc_prt_line(char *buf, int buflen, char *fmt, ...)
2892 va_list args;
2893 int ret;
2894 char s[ASC_PRTLINE_SIZE];
2896 va_start(args, fmt);
2897 ret = vsprintf(s, fmt, args);
2898 BUG_ON(ret >= ASC_PRTLINE_SIZE);
2899 if (buf == NULL) {
2900 (void)printk(s);
2901 ret = 0;
2902 } else {
2903 ret = min(buflen, ret);
2904 memcpy(buf, s, ret);
2906 va_end(args);
2907 return ret;
2911 * asc_prt_board_devices()
2913 * Print driver information for devices attached to the board.
2915 * Note: no single line should be greater than ASC_PRTLINE_SIZE,
2916 * cf. asc_prt_line().
2918 * Return the number of characters copied into 'cp'. No more than
2919 * 'cplen' characters will be copied to 'cp'.
2921 static int asc_prt_board_devices(struct Scsi_Host *shost, char *cp, int cplen)
2923 struct asc_board *boardp = shost_priv(shost);
2924 int leftlen;
2925 int totlen;
2926 int len;
2927 int chip_scsi_id;
2928 int i;
2930 leftlen = cplen;
2931 totlen = len = 0;
2933 len = asc_prt_line(cp, leftlen,
2934 "\nDevice Information for AdvanSys SCSI Host %d:\n",
2935 shost->host_no);
2936 ASC_PRT_NEXT();
2938 if (ASC_NARROW_BOARD(boardp)) {
2939 chip_scsi_id = boardp->dvc_cfg.asc_dvc_cfg.chip_scsi_id;
2940 } else {
2941 chip_scsi_id = boardp->dvc_var.adv_dvc_var.chip_scsi_id;
2944 len = asc_prt_line(cp, leftlen, "Target IDs Detected:");
2945 ASC_PRT_NEXT();
2946 for (i = 0; i <= ADV_MAX_TID; i++) {
2947 if (boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) {
2948 len = asc_prt_line(cp, leftlen, " %X,", i);
2949 ASC_PRT_NEXT();
2952 len = asc_prt_line(cp, leftlen, " (%X=Host Adapter)\n", chip_scsi_id);
2953 ASC_PRT_NEXT();
2955 return totlen;
2959 * Display Wide Board BIOS Information.
2961 static int asc_prt_adv_bios(struct Scsi_Host *shost, char *cp, int cplen)
2963 struct asc_board *boardp = shost_priv(shost);
2964 int leftlen;
2965 int totlen;
2966 int len;
2967 ushort major, minor, letter;
2969 leftlen = cplen;
2970 totlen = len = 0;
2972 len = asc_prt_line(cp, leftlen, "\nROM BIOS Version: ");
2973 ASC_PRT_NEXT();
2976 * If the BIOS saved a valid signature, then fill in
2977 * the BIOS code segment base address.
2979 if (boardp->bios_signature != 0x55AA) {
2980 len = asc_prt_line(cp, leftlen, "Disabled or Pre-3.1\n");
2981 ASC_PRT_NEXT();
2982 len = asc_prt_line(cp, leftlen,
2983 "BIOS either disabled or Pre-3.1. If it is pre-3.1, then a newer version\n");
2984 ASC_PRT_NEXT();
2985 len = asc_prt_line(cp, leftlen,
2986 "can be found at the ConnectCom FTP site: ftp://ftp.connectcom.net/pub\n");
2987 ASC_PRT_NEXT();
2988 } else {
2989 major = (boardp->bios_version >> 12) & 0xF;
2990 minor = (boardp->bios_version >> 8) & 0xF;
2991 letter = (boardp->bios_version & 0xFF);
2993 len = asc_prt_line(cp, leftlen, "%d.%d%c\n",
2994 major, minor,
2995 letter >= 26 ? '?' : letter + 'A');
2996 ASC_PRT_NEXT();
2999 * Current available ROM BIOS release is 3.1I for UW
3000 * and 3.2I for U2W. This code doesn't differentiate
3001 * UW and U2W boards.
3003 if (major < 3 || (major <= 3 && minor < 1) ||
3004 (major <= 3 && minor <= 1 && letter < ('I' - 'A'))) {
3005 len = asc_prt_line(cp, leftlen,
3006 "Newer version of ROM BIOS is available at the ConnectCom FTP site:\n");
3007 ASC_PRT_NEXT();
3008 len = asc_prt_line(cp, leftlen,
3009 "ftp://ftp.connectcom.net/pub\n");
3010 ASC_PRT_NEXT();
3014 return totlen;
3018 * Add serial number to information bar if signature AAh
3019 * is found in at bit 15-9 (7 bits) of word 1.
3021 * Serial Number consists fo 12 alpha-numeric digits.
3023 * 1 - Product type (A,B,C,D..) Word0: 15-13 (3 bits)
3024 * 2 - MFG Location (A,B,C,D..) Word0: 12-10 (3 bits)
3025 * 3-4 - Product ID (0-99) Word0: 9-0 (10 bits)
3026 * 5 - Product revision (A-J) Word0: " "
3028 * Signature Word1: 15-9 (7 bits)
3029 * 6 - Year (0-9) Word1: 8-6 (3 bits) & Word2: 15 (1 bit)
3030 * 7-8 - Week of the year (1-52) Word1: 5-0 (6 bits)
3032 * 9-12 - Serial Number (A001-Z999) Word2: 14-0 (15 bits)
3034 * Note 1: Only production cards will have a serial number.
3036 * Note 2: Signature is most significant 7 bits (0xFE).
3038 * Returns ASC_TRUE if serial number found, otherwise returns ASC_FALSE.
3040 static int asc_get_eeprom_string(ushort *serialnum, uchar *cp)
3042 ushort w, num;
3044 if ((serialnum[1] & 0xFE00) != ((ushort)0xAA << 8)) {
3045 return ASC_FALSE;
3046 } else {
3048 * First word - 6 digits.
3050 w = serialnum[0];
3052 /* Product type - 1st digit. */
3053 if ((*cp = 'A' + ((w & 0xE000) >> 13)) == 'H') {
3054 /* Product type is P=Prototype */
3055 *cp += 0x8;
3057 cp++;
3059 /* Manufacturing location - 2nd digit. */
3060 *cp++ = 'A' + ((w & 0x1C00) >> 10);
3062 /* Product ID - 3rd, 4th digits. */
3063 num = w & 0x3FF;
3064 *cp++ = '0' + (num / 100);
3065 num %= 100;
3066 *cp++ = '0' + (num / 10);
3068 /* Product revision - 5th digit. */
3069 *cp++ = 'A' + (num % 10);
3072 * Second word
3074 w = serialnum[1];
3077 * Year - 6th digit.
3079 * If bit 15 of third word is set, then the
3080 * last digit of the year is greater than 7.
3082 if (serialnum[2] & 0x8000) {
3083 *cp++ = '8' + ((w & 0x1C0) >> 6);
3084 } else {
3085 *cp++ = '0' + ((w & 0x1C0) >> 6);
3088 /* Week of year - 7th, 8th digits. */
3089 num = w & 0x003F;
3090 *cp++ = '0' + num / 10;
3091 num %= 10;
3092 *cp++ = '0' + num;
3095 * Third word
3097 w = serialnum[2] & 0x7FFF;
3099 /* Serial number - 9th digit. */
3100 *cp++ = 'A' + (w / 1000);
3102 /* 10th, 11th, 12th digits. */
3103 num = w % 1000;
3104 *cp++ = '0' + num / 100;
3105 num %= 100;
3106 *cp++ = '0' + num / 10;
3107 num %= 10;
3108 *cp++ = '0' + num;
3110 *cp = '\0'; /* Null Terminate the string. */
3111 return ASC_TRUE;
3116 * asc_prt_asc_board_eeprom()
3118 * Print board EEPROM configuration.
3120 * Note: no single line should be greater than ASC_PRTLINE_SIZE,
3121 * cf. asc_prt_line().
3123 * Return the number of characters copied into 'cp'. No more than
3124 * 'cplen' characters will be copied to 'cp'.
3126 static int asc_prt_asc_board_eeprom(struct Scsi_Host *shost, char *cp, int cplen)
3128 struct asc_board *boardp = shost_priv(shost);
3129 ASC_DVC_VAR *asc_dvc_varp;
3130 int leftlen;
3131 int totlen;
3132 int len;
3133 ASCEEP_CONFIG *ep;
3134 int i;
3135 #ifdef CONFIG_ISA
3136 int isa_dma_speed[] = { 10, 8, 7, 6, 5, 4, 3, 2 };
3137 #endif /* CONFIG_ISA */
3138 uchar serialstr[13];
3140 asc_dvc_varp = &boardp->dvc_var.asc_dvc_var;
3141 ep = &boardp->eep_config.asc_eep;
3143 leftlen = cplen;
3144 totlen = len = 0;
3146 len = asc_prt_line(cp, leftlen,
3147 "\nEEPROM Settings for AdvanSys SCSI Host %d:\n",
3148 shost->host_no);
3149 ASC_PRT_NEXT();
3151 if (asc_get_eeprom_string((ushort *)&ep->adapter_info[0], serialstr)
3152 == ASC_TRUE) {
3153 len =
3154 asc_prt_line(cp, leftlen, " Serial Number: %s\n",
3155 serialstr);
3156 ASC_PRT_NEXT();
3157 } else {
3158 if (ep->adapter_info[5] == 0xBB) {
3159 len = asc_prt_line(cp, leftlen,
3160 " Default Settings Used for EEPROM-less Adapter.\n");
3161 ASC_PRT_NEXT();
3162 } else {
3163 len = asc_prt_line(cp, leftlen,
3164 " Serial Number Signature Not Present.\n");
3165 ASC_PRT_NEXT();
3169 len = asc_prt_line(cp, leftlen,
3170 " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n",
3171 ASC_EEP_GET_CHIP_ID(ep), ep->max_total_qng,
3172 ep->max_tag_qng);
3173 ASC_PRT_NEXT();
3175 len = asc_prt_line(cp, leftlen,
3176 " cntl 0x%x, no_scam 0x%x\n", ep->cntl, ep->no_scam);
3177 ASC_PRT_NEXT();
3179 len = asc_prt_line(cp, leftlen, " Target ID: ");
3180 ASC_PRT_NEXT();
3181 for (i = 0; i <= ASC_MAX_TID; i++) {
3182 len = asc_prt_line(cp, leftlen, " %d", i);
3183 ASC_PRT_NEXT();
3185 len = asc_prt_line(cp, leftlen, "\n");
3186 ASC_PRT_NEXT();
3188 len = asc_prt_line(cp, leftlen, " Disconnects: ");
3189 ASC_PRT_NEXT();
3190 for (i = 0; i <= ASC_MAX_TID; i++) {
3191 len = asc_prt_line(cp, leftlen, " %c",
3192 (ep->
3193 disc_enable & ADV_TID_TO_TIDMASK(i)) ? 'Y' :
3194 'N');
3195 ASC_PRT_NEXT();
3197 len = asc_prt_line(cp, leftlen, "\n");
3198 ASC_PRT_NEXT();
3200 len = asc_prt_line(cp, leftlen, " Command Queuing: ");
3201 ASC_PRT_NEXT();
3202 for (i = 0; i <= ASC_MAX_TID; i++) {
3203 len = asc_prt_line(cp, leftlen, " %c",
3204 (ep->
3205 use_cmd_qng & ADV_TID_TO_TIDMASK(i)) ? 'Y' :
3206 'N');
3207 ASC_PRT_NEXT();
3209 len = asc_prt_line(cp, leftlen, "\n");
3210 ASC_PRT_NEXT();
3212 len = asc_prt_line(cp, leftlen, " Start Motor: ");
3213 ASC_PRT_NEXT();
3214 for (i = 0; i <= ASC_MAX_TID; i++) {
3215 len = asc_prt_line(cp, leftlen, " %c",
3216 (ep->
3217 start_motor & ADV_TID_TO_TIDMASK(i)) ? 'Y' :
3218 'N');
3219 ASC_PRT_NEXT();
3221 len = asc_prt_line(cp, leftlen, "\n");
3222 ASC_PRT_NEXT();
3224 len = asc_prt_line(cp, leftlen, " Synchronous Transfer:");
3225 ASC_PRT_NEXT();
3226 for (i = 0; i <= ASC_MAX_TID; i++) {
3227 len = asc_prt_line(cp, leftlen, " %c",
3228 (ep->
3229 init_sdtr & ADV_TID_TO_TIDMASK(i)) ? 'Y' :
3230 'N');
3231 ASC_PRT_NEXT();
3233 len = asc_prt_line(cp, leftlen, "\n");
3234 ASC_PRT_NEXT();
3236 #ifdef CONFIG_ISA
3237 if (asc_dvc_varp->bus_type & ASC_IS_ISA) {
3238 len = asc_prt_line(cp, leftlen,
3239 " Host ISA DMA speed: %d MB/S\n",
3240 isa_dma_speed[ASC_EEP_GET_DMA_SPD(ep)]);
3241 ASC_PRT_NEXT();
3243 #endif /* CONFIG_ISA */
3245 return totlen;
3249 * asc_prt_adv_board_eeprom()
3251 * Print board EEPROM configuration.
3253 * Note: no single line should be greater than ASC_PRTLINE_SIZE,
3254 * cf. asc_prt_line().
3256 * Return the number of characters copied into 'cp'. No more than
3257 * 'cplen' characters will be copied to 'cp'.
3259 static int asc_prt_adv_board_eeprom(struct Scsi_Host *shost, char *cp, int cplen)
3261 struct asc_board *boardp = shost_priv(shost);
3262 ADV_DVC_VAR *adv_dvc_varp;
3263 int leftlen;
3264 int totlen;
3265 int len;
3266 int i;
3267 char *termstr;
3268 uchar serialstr[13];
3269 ADVEEP_3550_CONFIG *ep_3550 = NULL;
3270 ADVEEP_38C0800_CONFIG *ep_38C0800 = NULL;
3271 ADVEEP_38C1600_CONFIG *ep_38C1600 = NULL;
3272 ushort word;
3273 ushort *wordp;
3274 ushort sdtr_speed = 0;
3276 adv_dvc_varp = &boardp->dvc_var.adv_dvc_var;
3277 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3278 ep_3550 = &boardp->eep_config.adv_3550_eep;
3279 } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
3280 ep_38C0800 = &boardp->eep_config.adv_38C0800_eep;
3281 } else {
3282 ep_38C1600 = &boardp->eep_config.adv_38C1600_eep;
3285 leftlen = cplen;
3286 totlen = len = 0;
3288 len = asc_prt_line(cp, leftlen,
3289 "\nEEPROM Settings for AdvanSys SCSI Host %d:\n",
3290 shost->host_no);
3291 ASC_PRT_NEXT();
3293 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3294 wordp = &ep_3550->serial_number_word1;
3295 } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
3296 wordp = &ep_38C0800->serial_number_word1;
3297 } else {
3298 wordp = &ep_38C1600->serial_number_word1;
3301 if (asc_get_eeprom_string(wordp, serialstr) == ASC_TRUE) {
3302 len =
3303 asc_prt_line(cp, leftlen, " Serial Number: %s\n",
3304 serialstr);
3305 ASC_PRT_NEXT();
3306 } else {
3307 len = asc_prt_line(cp, leftlen,
3308 " Serial Number Signature Not Present.\n");
3309 ASC_PRT_NEXT();
3312 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3313 len = asc_prt_line(cp, leftlen,
3314 " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n",
3315 ep_3550->adapter_scsi_id,
3316 ep_3550->max_host_qng, ep_3550->max_dvc_qng);
3317 ASC_PRT_NEXT();
3318 } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
3319 len = asc_prt_line(cp, leftlen,
3320 " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n",
3321 ep_38C0800->adapter_scsi_id,
3322 ep_38C0800->max_host_qng,
3323 ep_38C0800->max_dvc_qng);
3324 ASC_PRT_NEXT();
3325 } else {
3326 len = asc_prt_line(cp, leftlen,
3327 " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n",
3328 ep_38C1600->adapter_scsi_id,
3329 ep_38C1600->max_host_qng,
3330 ep_38C1600->max_dvc_qng);
3331 ASC_PRT_NEXT();
3333 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3334 word = ep_3550->termination;
3335 } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
3336 word = ep_38C0800->termination_lvd;
3337 } else {
3338 word = ep_38C1600->termination_lvd;
3340 switch (word) {
3341 case 1:
3342 termstr = "Low Off/High Off";
3343 break;
3344 case 2:
3345 termstr = "Low Off/High On";
3346 break;
3347 case 3:
3348 termstr = "Low On/High On";
3349 break;
3350 default:
3351 case 0:
3352 termstr = "Automatic";
3353 break;
3356 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3357 len = asc_prt_line(cp, leftlen,
3358 " termination: %u (%s), bios_ctrl: 0x%x\n",
3359 ep_3550->termination, termstr,
3360 ep_3550->bios_ctrl);
3361 ASC_PRT_NEXT();
3362 } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
3363 len = asc_prt_line(cp, leftlen,
3364 " termination: %u (%s), bios_ctrl: 0x%x\n",
3365 ep_38C0800->termination_lvd, termstr,
3366 ep_38C0800->bios_ctrl);
3367 ASC_PRT_NEXT();
3368 } else {
3369 len = asc_prt_line(cp, leftlen,
3370 " termination: %u (%s), bios_ctrl: 0x%x\n",
3371 ep_38C1600->termination_lvd, termstr,
3372 ep_38C1600->bios_ctrl);
3373 ASC_PRT_NEXT();
3376 len = asc_prt_line(cp, leftlen, " Target ID: ");
3377 ASC_PRT_NEXT();
3378 for (i = 0; i <= ADV_MAX_TID; i++) {
3379 len = asc_prt_line(cp, leftlen, " %X", i);
3380 ASC_PRT_NEXT();
3382 len = asc_prt_line(cp, leftlen, "\n");
3383 ASC_PRT_NEXT();
3385 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3386 word = ep_3550->disc_enable;
3387 } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
3388 word = ep_38C0800->disc_enable;
3389 } else {
3390 word = ep_38C1600->disc_enable;
3392 len = asc_prt_line(cp, leftlen, " Disconnects: ");
3393 ASC_PRT_NEXT();
3394 for (i = 0; i <= ADV_MAX_TID; i++) {
3395 len = asc_prt_line(cp, leftlen, " %c",
3396 (word & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3397 ASC_PRT_NEXT();
3399 len = asc_prt_line(cp, leftlen, "\n");
3400 ASC_PRT_NEXT();
3402 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3403 word = ep_3550->tagqng_able;
3404 } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
3405 word = ep_38C0800->tagqng_able;
3406 } else {
3407 word = ep_38C1600->tagqng_able;
3409 len = asc_prt_line(cp, leftlen, " Command Queuing: ");
3410 ASC_PRT_NEXT();
3411 for (i = 0; i <= ADV_MAX_TID; i++) {
3412 len = asc_prt_line(cp, leftlen, " %c",
3413 (word & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3414 ASC_PRT_NEXT();
3416 len = asc_prt_line(cp, leftlen, "\n");
3417 ASC_PRT_NEXT();
3419 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3420 word = ep_3550->start_motor;
3421 } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
3422 word = ep_38C0800->start_motor;
3423 } else {
3424 word = ep_38C1600->start_motor;
3426 len = asc_prt_line(cp, leftlen, " Start Motor: ");
3427 ASC_PRT_NEXT();
3428 for (i = 0; i <= ADV_MAX_TID; i++) {
3429 len = asc_prt_line(cp, leftlen, " %c",
3430 (word & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3431 ASC_PRT_NEXT();
3433 len = asc_prt_line(cp, leftlen, "\n");
3434 ASC_PRT_NEXT();
3436 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3437 len = asc_prt_line(cp, leftlen, " Synchronous Transfer:");
3438 ASC_PRT_NEXT();
3439 for (i = 0; i <= ADV_MAX_TID; i++) {
3440 len = asc_prt_line(cp, leftlen, " %c",
3441 (ep_3550->
3442 sdtr_able & ADV_TID_TO_TIDMASK(i)) ?
3443 'Y' : 'N');
3444 ASC_PRT_NEXT();
3446 len = asc_prt_line(cp, leftlen, "\n");
3447 ASC_PRT_NEXT();
3450 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3451 len = asc_prt_line(cp, leftlen, " Ultra Transfer: ");
3452 ASC_PRT_NEXT();
3453 for (i = 0; i <= ADV_MAX_TID; i++) {
3454 len = asc_prt_line(cp, leftlen, " %c",
3455 (ep_3550->
3456 ultra_able & ADV_TID_TO_TIDMASK(i))
3457 ? 'Y' : 'N');
3458 ASC_PRT_NEXT();
3460 len = asc_prt_line(cp, leftlen, "\n");
3461 ASC_PRT_NEXT();
3464 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3465 word = ep_3550->wdtr_able;
3466 } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
3467 word = ep_38C0800->wdtr_able;
3468 } else {
3469 word = ep_38C1600->wdtr_able;
3471 len = asc_prt_line(cp, leftlen, " Wide Transfer: ");
3472 ASC_PRT_NEXT();
3473 for (i = 0; i <= ADV_MAX_TID; i++) {
3474 len = asc_prt_line(cp, leftlen, " %c",
3475 (word & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3476 ASC_PRT_NEXT();
3478 len = asc_prt_line(cp, leftlen, "\n");
3479 ASC_PRT_NEXT();
3481 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800 ||
3482 adv_dvc_varp->chip_type == ADV_CHIP_ASC38C1600) {
3483 len = asc_prt_line(cp, leftlen,
3484 " Synchronous Transfer Speed (Mhz):\n ");
3485 ASC_PRT_NEXT();
3486 for (i = 0; i <= ADV_MAX_TID; i++) {
3487 char *speed_str;
3489 if (i == 0) {
3490 sdtr_speed = adv_dvc_varp->sdtr_speed1;
3491 } else if (i == 4) {
3492 sdtr_speed = adv_dvc_varp->sdtr_speed2;
3493 } else if (i == 8) {
3494 sdtr_speed = adv_dvc_varp->sdtr_speed3;
3495 } else if (i == 12) {
3496 sdtr_speed = adv_dvc_varp->sdtr_speed4;
3498 switch (sdtr_speed & ADV_MAX_TID) {
3499 case 0:
3500 speed_str = "Off";
3501 break;
3502 case 1:
3503 speed_str = " 5";
3504 break;
3505 case 2:
3506 speed_str = " 10";
3507 break;
3508 case 3:
3509 speed_str = " 20";
3510 break;
3511 case 4:
3512 speed_str = " 40";
3513 break;
3514 case 5:
3515 speed_str = " 80";
3516 break;
3517 default:
3518 speed_str = "Unk";
3519 break;
3521 len = asc_prt_line(cp, leftlen, "%X:%s ", i, speed_str);
3522 ASC_PRT_NEXT();
3523 if (i == 7) {
3524 len = asc_prt_line(cp, leftlen, "\n ");
3525 ASC_PRT_NEXT();
3527 sdtr_speed >>= 4;
3529 len = asc_prt_line(cp, leftlen, "\n");
3530 ASC_PRT_NEXT();
3533 return totlen;
3537 * asc_prt_driver_conf()
3539 * Note: no single line should be greater than ASC_PRTLINE_SIZE,
3540 * cf. asc_prt_line().
3542 * Return the number of characters copied into 'cp'. No more than
3543 * 'cplen' characters will be copied to 'cp'.
3545 static int asc_prt_driver_conf(struct Scsi_Host *shost, char *cp, int cplen)
3547 struct asc_board *boardp = shost_priv(shost);
3548 int leftlen;
3549 int totlen;
3550 int len;
3551 int chip_scsi_id;
3553 leftlen = cplen;
3554 totlen = len = 0;
3556 len = asc_prt_line(cp, leftlen,
3557 "\nLinux Driver Configuration and Information for AdvanSys SCSI Host %d:\n",
3558 shost->host_no);
3559 ASC_PRT_NEXT();
3561 len = asc_prt_line(cp, leftlen,
3562 " host_busy %u, last_reset %u, max_id %u, max_lun %u, max_channel %u\n",
3563 shost->host_busy, shost->last_reset, shost->max_id,
3564 shost->max_lun, shost->max_channel);
3565 ASC_PRT_NEXT();
3567 len = asc_prt_line(cp, leftlen,
3568 " unique_id %d, can_queue %d, this_id %d, sg_tablesize %u, cmd_per_lun %u\n",
3569 shost->unique_id, shost->can_queue, shost->this_id,
3570 shost->sg_tablesize, shost->cmd_per_lun);
3571 ASC_PRT_NEXT();
3573 len = asc_prt_line(cp, leftlen,
3574 " unchecked_isa_dma %d, use_clustering %d\n",
3575 shost->unchecked_isa_dma, shost->use_clustering);
3576 ASC_PRT_NEXT();
3578 len = asc_prt_line(cp, leftlen,
3579 " flags 0x%x, last_reset 0x%x, jiffies 0x%x, asc_n_io_port 0x%x\n",
3580 boardp->flags, boardp->last_reset, jiffies,
3581 boardp->asc_n_io_port);
3582 ASC_PRT_NEXT();
3584 len = asc_prt_line(cp, leftlen, " io_port 0x%x\n", shost->io_port);
3585 ASC_PRT_NEXT();
3587 if (ASC_NARROW_BOARD(boardp)) {
3588 chip_scsi_id = boardp->dvc_cfg.asc_dvc_cfg.chip_scsi_id;
3589 } else {
3590 chip_scsi_id = boardp->dvc_var.adv_dvc_var.chip_scsi_id;
3593 return totlen;
3597 * asc_prt_asc_board_info()
3599 * Print dynamic board configuration information.
3601 * Note: no single line should be greater than ASC_PRTLINE_SIZE,
3602 * cf. asc_prt_line().
3604 * Return the number of characters copied into 'cp'. No more than
3605 * 'cplen' characters will be copied to 'cp'.
3607 static int asc_prt_asc_board_info(struct Scsi_Host *shost, char *cp, int cplen)
3609 struct asc_board *boardp = shost_priv(shost);
3610 int chip_scsi_id;
3611 int leftlen;
3612 int totlen;
3613 int len;
3614 ASC_DVC_VAR *v;
3615 ASC_DVC_CFG *c;
3616 int i;
3617 int renegotiate = 0;
3619 v = &boardp->dvc_var.asc_dvc_var;
3620 c = &boardp->dvc_cfg.asc_dvc_cfg;
3621 chip_scsi_id = c->chip_scsi_id;
3623 leftlen = cplen;
3624 totlen = len = 0;
3626 len = asc_prt_line(cp, leftlen,
3627 "\nAsc Library Configuration and Statistics for AdvanSys SCSI Host %d:\n",
3628 shost->host_no);
3629 ASC_PRT_NEXT();
3631 len = asc_prt_line(cp, leftlen, " chip_version %u, mcode_date 0x%x, "
3632 "mcode_version 0x%x, err_code %u\n",
3633 c->chip_version, c->mcode_date, c->mcode_version,
3634 v->err_code);
3635 ASC_PRT_NEXT();
3637 /* Current number of commands waiting for the host. */
3638 len = asc_prt_line(cp, leftlen,
3639 " Total Command Pending: %d\n", v->cur_total_qng);
3640 ASC_PRT_NEXT();
3642 len = asc_prt_line(cp, leftlen, " Command Queuing:");
3643 ASC_PRT_NEXT();
3644 for (i = 0; i <= ASC_MAX_TID; i++) {
3645 if ((chip_scsi_id == i) ||
3646 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3647 continue;
3649 len = asc_prt_line(cp, leftlen, " %X:%c",
3651 (v->
3652 use_tagged_qng & ADV_TID_TO_TIDMASK(i)) ?
3653 'Y' : 'N');
3654 ASC_PRT_NEXT();
3656 len = asc_prt_line(cp, leftlen, "\n");
3657 ASC_PRT_NEXT();
3659 /* Current number of commands waiting for a device. */
3660 len = asc_prt_line(cp, leftlen, " Command Queue Pending:");
3661 ASC_PRT_NEXT();
3662 for (i = 0; i <= ASC_MAX_TID; i++) {
3663 if ((chip_scsi_id == i) ||
3664 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3665 continue;
3667 len = asc_prt_line(cp, leftlen, " %X:%u", i, v->cur_dvc_qng[i]);
3668 ASC_PRT_NEXT();
3670 len = asc_prt_line(cp, leftlen, "\n");
3671 ASC_PRT_NEXT();
3673 /* Current limit on number of commands that can be sent to a device. */
3674 len = asc_prt_line(cp, leftlen, " Command Queue Limit:");
3675 ASC_PRT_NEXT();
3676 for (i = 0; i <= ASC_MAX_TID; i++) {
3677 if ((chip_scsi_id == i) ||
3678 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3679 continue;
3681 len = asc_prt_line(cp, leftlen, " %X:%u", i, v->max_dvc_qng[i]);
3682 ASC_PRT_NEXT();
3684 len = asc_prt_line(cp, leftlen, "\n");
3685 ASC_PRT_NEXT();
3687 /* Indicate whether the device has returned queue full status. */
3688 len = asc_prt_line(cp, leftlen, " Command Queue Full:");
3689 ASC_PRT_NEXT();
3690 for (i = 0; i <= ASC_MAX_TID; i++) {
3691 if ((chip_scsi_id == i) ||
3692 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3693 continue;
3695 if (boardp->queue_full & ADV_TID_TO_TIDMASK(i)) {
3696 len = asc_prt_line(cp, leftlen, " %X:Y-%d",
3697 i, boardp->queue_full_cnt[i]);
3698 } else {
3699 len = asc_prt_line(cp, leftlen, " %X:N", i);
3701 ASC_PRT_NEXT();
3703 len = asc_prt_line(cp, leftlen, "\n");
3704 ASC_PRT_NEXT();
3706 len = asc_prt_line(cp, leftlen, " Synchronous Transfer:");
3707 ASC_PRT_NEXT();
3708 for (i = 0; i <= ASC_MAX_TID; i++) {
3709 if ((chip_scsi_id == i) ||
3710 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3711 continue;
3713 len = asc_prt_line(cp, leftlen, " %X:%c",
3715 (v->
3716 sdtr_done & ADV_TID_TO_TIDMASK(i)) ? 'Y' :
3717 'N');
3718 ASC_PRT_NEXT();
3720 len = asc_prt_line(cp, leftlen, "\n");
3721 ASC_PRT_NEXT();
3723 for (i = 0; i <= ASC_MAX_TID; i++) {
3724 uchar syn_period_ix;
3726 if ((chip_scsi_id == i) ||
3727 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0) ||
3728 ((v->init_sdtr & ADV_TID_TO_TIDMASK(i)) == 0)) {
3729 continue;
3732 len = asc_prt_line(cp, leftlen, " %X:", i);
3733 ASC_PRT_NEXT();
3735 if ((boardp->sdtr_data[i] & ASC_SYN_MAX_OFFSET) == 0) {
3736 len = asc_prt_line(cp, leftlen, " Asynchronous");
3737 ASC_PRT_NEXT();
3738 } else {
3739 syn_period_ix =
3740 (boardp->sdtr_data[i] >> 4) & (v->max_sdtr_index -
3743 len = asc_prt_line(cp, leftlen,
3744 " Transfer Period Factor: %d (%d.%d Mhz),",
3745 v->sdtr_period_tbl[syn_period_ix],
3746 250 /
3747 v->sdtr_period_tbl[syn_period_ix],
3748 ASC_TENTHS(250,
3750 sdtr_period_tbl
3751 [syn_period_ix]));
3752 ASC_PRT_NEXT();
3754 len = asc_prt_line(cp, leftlen, " REQ/ACK Offset: %d",
3755 boardp->
3756 sdtr_data[i] & ASC_SYN_MAX_OFFSET);
3757 ASC_PRT_NEXT();
3760 if ((v->sdtr_done & ADV_TID_TO_TIDMASK(i)) == 0) {
3761 len = asc_prt_line(cp, leftlen, "*\n");
3762 renegotiate = 1;
3763 } else {
3764 len = asc_prt_line(cp, leftlen, "\n");
3766 ASC_PRT_NEXT();
3769 if (renegotiate) {
3770 len = asc_prt_line(cp, leftlen,
3771 " * = Re-negotiation pending before next command.\n");
3772 ASC_PRT_NEXT();
3775 return totlen;
3779 * asc_prt_adv_board_info()
3781 * Print dynamic board configuration information.
3783 * Note: no single line should be greater than ASC_PRTLINE_SIZE,
3784 * cf. asc_prt_line().
3786 * Return the number of characters copied into 'cp'. No more than
3787 * 'cplen' characters will be copied to 'cp'.
3789 static int asc_prt_adv_board_info(struct Scsi_Host *shost, char *cp, int cplen)
3791 struct asc_board *boardp = shost_priv(shost);
3792 int leftlen;
3793 int totlen;
3794 int len;
3795 int i;
3796 ADV_DVC_VAR *v;
3797 ADV_DVC_CFG *c;
3798 AdvPortAddr iop_base;
3799 ushort chip_scsi_id;
3800 ushort lramword;
3801 uchar lrambyte;
3802 ushort tagqng_able;
3803 ushort sdtr_able, wdtr_able;
3804 ushort wdtr_done, sdtr_done;
3805 ushort period = 0;
3806 int renegotiate = 0;
3808 v = &boardp->dvc_var.adv_dvc_var;
3809 c = &boardp->dvc_cfg.adv_dvc_cfg;
3810 iop_base = v->iop_base;
3811 chip_scsi_id = v->chip_scsi_id;
3813 leftlen = cplen;
3814 totlen = len = 0;
3816 len = asc_prt_line(cp, leftlen,
3817 "\nAdv Library Configuration and Statistics for AdvanSys SCSI Host %d:\n",
3818 shost->host_no);
3819 ASC_PRT_NEXT();
3821 len = asc_prt_line(cp, leftlen,
3822 " iop_base 0x%lx, cable_detect: %X, err_code %u\n",
3823 v->iop_base,
3824 AdvReadWordRegister(iop_base,
3825 IOPW_SCSI_CFG1) & CABLE_DETECT,
3826 v->err_code);
3827 ASC_PRT_NEXT();
3829 len = asc_prt_line(cp, leftlen, " chip_version %u, mcode_date 0x%x, "
3830 "mcode_version 0x%x\n", c->chip_version,
3831 c->mcode_date, c->mcode_version);
3832 ASC_PRT_NEXT();
3834 AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able);
3835 len = asc_prt_line(cp, leftlen, " Queuing Enabled:");
3836 ASC_PRT_NEXT();
3837 for (i = 0; i <= ADV_MAX_TID; i++) {
3838 if ((chip_scsi_id == i) ||
3839 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3840 continue;
3843 len = asc_prt_line(cp, leftlen, " %X:%c",
3845 (tagqng_able & ADV_TID_TO_TIDMASK(i)) ? 'Y' :
3846 'N');
3847 ASC_PRT_NEXT();
3849 len = asc_prt_line(cp, leftlen, "\n");
3850 ASC_PRT_NEXT();
3852 len = asc_prt_line(cp, leftlen, " Queue Limit:");
3853 ASC_PRT_NEXT();
3854 for (i = 0; i <= ADV_MAX_TID; i++) {
3855 if ((chip_scsi_id == i) ||
3856 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3857 continue;
3860 AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + i,
3861 lrambyte);
3863 len = asc_prt_line(cp, leftlen, " %X:%d", i, lrambyte);
3864 ASC_PRT_NEXT();
3866 len = asc_prt_line(cp, leftlen, "\n");
3867 ASC_PRT_NEXT();
3869 len = asc_prt_line(cp, leftlen, " Command Pending:");
3870 ASC_PRT_NEXT();
3871 for (i = 0; i <= ADV_MAX_TID; i++) {
3872 if ((chip_scsi_id == i) ||
3873 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3874 continue;
3877 AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_QUEUED_CMD + i,
3878 lrambyte);
3880 len = asc_prt_line(cp, leftlen, " %X:%d", i, lrambyte);
3881 ASC_PRT_NEXT();
3883 len = asc_prt_line(cp, leftlen, "\n");
3884 ASC_PRT_NEXT();
3886 AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
3887 len = asc_prt_line(cp, leftlen, " Wide Enabled:");
3888 ASC_PRT_NEXT();
3889 for (i = 0; i <= ADV_MAX_TID; i++) {
3890 if ((chip_scsi_id == i) ||
3891 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3892 continue;
3895 len = asc_prt_line(cp, leftlen, " %X:%c",
3897 (wdtr_able & ADV_TID_TO_TIDMASK(i)) ? 'Y' :
3898 'N');
3899 ASC_PRT_NEXT();
3901 len = asc_prt_line(cp, leftlen, "\n");
3902 ASC_PRT_NEXT();
3904 AdvReadWordLram(iop_base, ASC_MC_WDTR_DONE, wdtr_done);
3905 len = asc_prt_line(cp, leftlen, " Transfer Bit Width:");
3906 ASC_PRT_NEXT();
3907 for (i = 0; i <= ADV_MAX_TID; i++) {
3908 if ((chip_scsi_id == i) ||
3909 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3910 continue;
3913 AdvReadWordLram(iop_base,
3914 ASC_MC_DEVICE_HSHK_CFG_TABLE + (2 * i),
3915 lramword);
3917 len = asc_prt_line(cp, leftlen, " %X:%d",
3918 i, (lramword & 0x8000) ? 16 : 8);
3919 ASC_PRT_NEXT();
3921 if ((wdtr_able & ADV_TID_TO_TIDMASK(i)) &&
3922 (wdtr_done & ADV_TID_TO_TIDMASK(i)) == 0) {
3923 len = asc_prt_line(cp, leftlen, "*");
3924 ASC_PRT_NEXT();
3925 renegotiate = 1;
3928 len = asc_prt_line(cp, leftlen, "\n");
3929 ASC_PRT_NEXT();
3931 AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
3932 len = asc_prt_line(cp, leftlen, " Synchronous Enabled:");
3933 ASC_PRT_NEXT();
3934 for (i = 0; i <= ADV_MAX_TID; i++) {
3935 if ((chip_scsi_id == i) ||
3936 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3937 continue;
3940 len = asc_prt_line(cp, leftlen, " %X:%c",
3942 (sdtr_able & ADV_TID_TO_TIDMASK(i)) ? 'Y' :
3943 'N');
3944 ASC_PRT_NEXT();
3946 len = asc_prt_line(cp, leftlen, "\n");
3947 ASC_PRT_NEXT();
3949 AdvReadWordLram(iop_base, ASC_MC_SDTR_DONE, sdtr_done);
3950 for (i = 0; i <= ADV_MAX_TID; i++) {
3952 AdvReadWordLram(iop_base,
3953 ASC_MC_DEVICE_HSHK_CFG_TABLE + (2 * i),
3954 lramword);
3955 lramword &= ~0x8000;
3957 if ((chip_scsi_id == i) ||
3958 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0) ||
3959 ((sdtr_able & ADV_TID_TO_TIDMASK(i)) == 0)) {
3960 continue;
3963 len = asc_prt_line(cp, leftlen, " %X:", i);
3964 ASC_PRT_NEXT();
3966 if ((lramword & 0x1F) == 0) { /* Check for REQ/ACK Offset 0. */
3967 len = asc_prt_line(cp, leftlen, " Asynchronous");
3968 ASC_PRT_NEXT();
3969 } else {
3970 len =
3971 asc_prt_line(cp, leftlen,
3972 " Transfer Period Factor: ");
3973 ASC_PRT_NEXT();
3975 if ((lramword & 0x1F00) == 0x1100) { /* 80 Mhz */
3976 len =
3977 asc_prt_line(cp, leftlen, "9 (80.0 Mhz),");
3978 ASC_PRT_NEXT();
3979 } else if ((lramword & 0x1F00) == 0x1000) { /* 40 Mhz */
3980 len =
3981 asc_prt_line(cp, leftlen, "10 (40.0 Mhz),");
3982 ASC_PRT_NEXT();
3983 } else { /* 20 Mhz or below. */
3985 period = (((lramword >> 8) * 25) + 50) / 4;
3987 if (period == 0) { /* Should never happen. */
3988 len =
3989 asc_prt_line(cp, leftlen,
3990 "%d (? Mhz), ");
3991 ASC_PRT_NEXT();
3992 } else {
3993 len = asc_prt_line(cp, leftlen,
3994 "%d (%d.%d Mhz),",
3995 period, 250 / period,
3996 ASC_TENTHS(250,
3997 period));
3998 ASC_PRT_NEXT();
4002 len = asc_prt_line(cp, leftlen, " REQ/ACK Offset: %d",
4003 lramword & 0x1F);
4004 ASC_PRT_NEXT();
4007 if ((sdtr_done & ADV_TID_TO_TIDMASK(i)) == 0) {
4008 len = asc_prt_line(cp, leftlen, "*\n");
4009 renegotiate = 1;
4010 } else {
4011 len = asc_prt_line(cp, leftlen, "\n");
4013 ASC_PRT_NEXT();
4016 if (renegotiate) {
4017 len = asc_prt_line(cp, leftlen,
4018 " * = Re-negotiation pending before next command.\n");
4019 ASC_PRT_NEXT();
4022 return totlen;
4026 * asc_proc_copy()
4028 * Copy proc information to a read buffer taking into account the current
4029 * read offset in the file and the remaining space in the read buffer.
4031 static int
4032 asc_proc_copy(off_t advoffset, off_t offset, char *curbuf, int leftlen,
4033 char *cp, int cplen)
4035 int cnt = 0;
4037 ASC_DBG(2, "offset %d, advoffset %d, cplen %d\n",
4038 (unsigned)offset, (unsigned)advoffset, cplen);
4039 if (offset <= advoffset) {
4040 /* Read offset below current offset, copy everything. */
4041 cnt = min(cplen, leftlen);
4042 ASC_DBG(2, "curbuf 0x%lx, cp 0x%lx, cnt %d\n",
4043 (ulong)curbuf, (ulong)cp, cnt);
4044 memcpy(curbuf, cp, cnt);
4045 } else if (offset < advoffset + cplen) {
4046 /* Read offset within current range, partial copy. */
4047 cnt = (advoffset + cplen) - offset;
4048 cp = (cp + cplen) - cnt;
4049 cnt = min(cnt, leftlen);
4050 ASC_DBG(2, "curbuf 0x%lx, cp 0x%lx, cnt %d\n",
4051 (ulong)curbuf, (ulong)cp, cnt);
4052 memcpy(curbuf, cp, cnt);
4054 return cnt;
4057 #ifdef ADVANSYS_STATS
4059 * asc_prt_board_stats()
4061 * Note: no single line should be greater than ASC_PRTLINE_SIZE,
4062 * cf. asc_prt_line().
4064 * Return the number of characters copied into 'cp'. No more than
4065 * 'cplen' characters will be copied to 'cp'.
4067 static int asc_prt_board_stats(struct Scsi_Host *shost, char *cp, int cplen)
4069 struct asc_board *boardp = shost_priv(shost);
4070 struct asc_stats *s = &boardp->asc_stats;
4072 int leftlen = cplen;
4073 int len, totlen = 0;
4075 len = asc_prt_line(cp, leftlen,
4076 "\nLinux Driver Statistics for AdvanSys SCSI Host %d:\n",
4077 shost->host_no);
4078 ASC_PRT_NEXT();
4080 len = asc_prt_line(cp, leftlen,
4081 " queuecommand %lu, reset %lu, biosparam %lu, interrupt %lu\n",
4082 s->queuecommand, s->reset, s->biosparam,
4083 s->interrupt);
4084 ASC_PRT_NEXT();
4086 len = asc_prt_line(cp, leftlen,
4087 " callback %lu, done %lu, build_error %lu, build_noreq %lu, build_nosg %lu\n",
4088 s->callback, s->done, s->build_error,
4089 s->adv_build_noreq, s->adv_build_nosg);
4090 ASC_PRT_NEXT();
4092 len = asc_prt_line(cp, leftlen,
4093 " exe_noerror %lu, exe_busy %lu, exe_error %lu, exe_unknown %lu\n",
4094 s->exe_noerror, s->exe_busy, s->exe_error,
4095 s->exe_unknown);
4096 ASC_PRT_NEXT();
4099 * Display data transfer statistics.
4101 if (s->xfer_cnt > 0) {
4102 len = asc_prt_line(cp, leftlen, " xfer_cnt %lu, xfer_elem %lu, ",
4103 s->xfer_cnt, s->xfer_elem);
4104 ASC_PRT_NEXT();
4106 len = asc_prt_line(cp, leftlen, "xfer_bytes %lu.%01lu kb\n",
4107 s->xfer_sect / 2, ASC_TENTHS(s->xfer_sect, 2));
4108 ASC_PRT_NEXT();
4110 /* Scatter gather transfer statistics */
4111 len = asc_prt_line(cp, leftlen, " avg_num_elem %lu.%01lu, ",
4112 s->xfer_elem / s->xfer_cnt,
4113 ASC_TENTHS(s->xfer_elem, s->xfer_cnt));
4114 ASC_PRT_NEXT();
4116 len = asc_prt_line(cp, leftlen, "avg_elem_size %lu.%01lu kb, ",
4117 (s->xfer_sect / 2) / s->xfer_elem,
4118 ASC_TENTHS((s->xfer_sect / 2), s->xfer_elem));
4119 ASC_PRT_NEXT();
4121 len = asc_prt_line(cp, leftlen, "avg_xfer_size %lu.%01lu kb\n",
4122 (s->xfer_sect / 2) / s->xfer_cnt,
4123 ASC_TENTHS((s->xfer_sect / 2), s->xfer_cnt));
4124 ASC_PRT_NEXT();
4127 return totlen;
4129 #endif /* ADVANSYS_STATS */
4132 * advansys_proc_info() - /proc/scsi/advansys/{0,1,2,3,...}
4134 * *buffer: I/O buffer
4135 * **start: if inout == FALSE pointer into buffer where user read should start
4136 * offset: current offset into a /proc/scsi/advansys/[0...] file
4137 * length: length of buffer
4138 * hostno: Scsi_Host host_no
4139 * inout: TRUE - user is writing; FALSE - user is reading
4141 * Return the number of bytes read from or written to a
4142 * /proc/scsi/advansys/[0...] file.
4144 * Note: This function uses the per board buffer 'prtbuf' which is
4145 * allocated when the board is initialized in advansys_detect(). The
4146 * buffer is ASC_PRTBUF_SIZE bytes. The function asc_proc_copy() is
4147 * used to write to the buffer. The way asc_proc_copy() is written
4148 * if 'prtbuf' is too small it will not be overwritten. Instead the
4149 * user just won't get all the available statistics.
4151 static int
4152 advansys_proc_info(struct Scsi_Host *shost, char *buffer, char **start,
4153 off_t offset, int length, int inout)
4155 struct asc_board *boardp = shost_priv(shost);
4156 char *cp;
4157 int cplen;
4158 int cnt;
4159 int totcnt;
4160 int leftlen;
4161 char *curbuf;
4162 off_t advoffset;
4164 ASC_DBG(1, "begin\n");
4167 * User write not supported.
4169 if (inout == TRUE)
4170 return -ENOSYS;
4173 * User read of /proc/scsi/advansys/[0...] file.
4176 /* Copy read data starting at the beginning of the buffer. */
4177 *start = buffer;
4178 curbuf = buffer;
4179 advoffset = 0;
4180 totcnt = 0;
4181 leftlen = length;
4184 * Get board configuration information.
4186 * advansys_info() returns the board string from its own static buffer.
4188 cp = (char *)advansys_info(shost);
4189 strcat(cp, "\n");
4190 cplen = strlen(cp);
4191 /* Copy board information. */
4192 cnt = asc_proc_copy(advoffset, offset, curbuf, leftlen, cp, cplen);
4193 totcnt += cnt;
4194 leftlen -= cnt;
4195 if (leftlen == 0) {
4196 ASC_DBG(1, "totcnt %d\n", totcnt);
4197 return totcnt;
4199 advoffset += cplen;
4200 curbuf += cnt;
4203 * Display Wide Board BIOS Information.
4205 if (!ASC_NARROW_BOARD(boardp)) {
4206 cp = boardp->prtbuf;
4207 cplen = asc_prt_adv_bios(shost, cp, ASC_PRTBUF_SIZE);
4208 BUG_ON(cplen >= ASC_PRTBUF_SIZE);
4209 cnt = asc_proc_copy(advoffset, offset, curbuf, leftlen, cp,
4210 cplen);
4211 totcnt += cnt;
4212 leftlen -= cnt;
4213 if (leftlen == 0) {
4214 ASC_DBG(1, "totcnt %d\n", totcnt);
4215 return totcnt;
4217 advoffset += cplen;
4218 curbuf += cnt;
4222 * Display driver information for each device attached to the board.
4224 cp = boardp->prtbuf;
4225 cplen = asc_prt_board_devices(shost, cp, ASC_PRTBUF_SIZE);
4226 BUG_ON(cplen >= ASC_PRTBUF_SIZE);
4227 cnt = asc_proc_copy(advoffset, offset, curbuf, leftlen, cp, cplen);
4228 totcnt += cnt;
4229 leftlen -= cnt;
4230 if (leftlen == 0) {
4231 ASC_DBG(1, "totcnt %d\n", totcnt);
4232 return totcnt;
4234 advoffset += cplen;
4235 curbuf += cnt;
4238 * Display EEPROM configuration for the board.
4240 cp = boardp->prtbuf;
4241 if (ASC_NARROW_BOARD(boardp)) {
4242 cplen = asc_prt_asc_board_eeprom(shost, cp, ASC_PRTBUF_SIZE);
4243 } else {
4244 cplen = asc_prt_adv_board_eeprom(shost, cp, ASC_PRTBUF_SIZE);
4246 BUG_ON(cplen >= ASC_PRTBUF_SIZE);
4247 cnt = asc_proc_copy(advoffset, offset, curbuf, leftlen, cp, cplen);
4248 totcnt += cnt;
4249 leftlen -= cnt;
4250 if (leftlen == 0) {
4251 ASC_DBG(1, "totcnt %d\n", totcnt);
4252 return totcnt;
4254 advoffset += cplen;
4255 curbuf += cnt;
4258 * Display driver configuration and information for the board.
4260 cp = boardp->prtbuf;
4261 cplen = asc_prt_driver_conf(shost, cp, ASC_PRTBUF_SIZE);
4262 BUG_ON(cplen >= ASC_PRTBUF_SIZE);
4263 cnt = asc_proc_copy(advoffset, offset, curbuf, leftlen, cp, cplen);
4264 totcnt += cnt;
4265 leftlen -= cnt;
4266 if (leftlen == 0) {
4267 ASC_DBG(1, "totcnt %d\n", totcnt);
4268 return totcnt;
4270 advoffset += cplen;
4271 curbuf += cnt;
4273 #ifdef ADVANSYS_STATS
4275 * Display driver statistics for the board.
4277 cp = boardp->prtbuf;
4278 cplen = asc_prt_board_stats(shost, cp, ASC_PRTBUF_SIZE);
4279 BUG_ON(cplen >= ASC_PRTBUF_SIZE);
4280 cnt = asc_proc_copy(advoffset, offset, curbuf, leftlen, cp, cplen);
4281 totcnt += cnt;
4282 leftlen -= cnt;
4283 if (leftlen == 0) {
4284 ASC_DBG(1, "totcnt %d\n", totcnt);
4285 return totcnt;
4287 advoffset += cplen;
4288 curbuf += cnt;
4289 #endif /* ADVANSYS_STATS */
4292 * Display Asc Library dynamic configuration information
4293 * for the board.
4295 cp = boardp->prtbuf;
4296 if (ASC_NARROW_BOARD(boardp)) {
4297 cplen = asc_prt_asc_board_info(shost, cp, ASC_PRTBUF_SIZE);
4298 } else {
4299 cplen = asc_prt_adv_board_info(shost, cp, ASC_PRTBUF_SIZE);
4301 BUG_ON(cplen >= ASC_PRTBUF_SIZE);
4302 cnt = asc_proc_copy(advoffset, offset, curbuf, leftlen, cp, cplen);
4303 totcnt += cnt;
4304 leftlen -= cnt;
4305 if (leftlen == 0) {
4306 ASC_DBG(1, "totcnt %d\n", totcnt);
4307 return totcnt;
4309 advoffset += cplen;
4310 curbuf += cnt;
4312 ASC_DBG(1, "totcnt %d\n", totcnt);
4314 return totcnt;
4316 #endif /* CONFIG_PROC_FS */
4318 static void asc_scsi_done(struct scsi_cmnd *scp)
4320 scsi_dma_unmap(scp);
4321 ASC_STATS(scp->device->host, done);
4322 scp->scsi_done(scp);
4325 static void AscSetBank(PortAddr iop_base, uchar bank)
4327 uchar val;
4329 val = AscGetChipControl(iop_base) &
4331 (CC_SINGLE_STEP | CC_TEST | CC_DIAG | CC_SCSI_RESET |
4332 CC_CHIP_RESET));
4333 if (bank == 1) {
4334 val |= CC_BANK_ONE;
4335 } else if (bank == 2) {
4336 val |= CC_DIAG | CC_BANK_ONE;
4337 } else {
4338 val &= ~CC_BANK_ONE;
4340 AscSetChipControl(iop_base, val);
4343 static void AscSetChipIH(PortAddr iop_base, ushort ins_code)
4345 AscSetBank(iop_base, 1);
4346 AscWriteChipIH(iop_base, ins_code);
4347 AscSetBank(iop_base, 0);
4350 static int AscStartChip(PortAddr iop_base)
4352 AscSetChipControl(iop_base, 0);
4353 if ((AscGetChipStatus(iop_base) & CSW_HALTED) != 0) {
4354 return (0);
4356 return (1);
4359 static int AscStopChip(PortAddr iop_base)
4361 uchar cc_val;
4363 cc_val =
4364 AscGetChipControl(iop_base) &
4365 (~(CC_SINGLE_STEP | CC_TEST | CC_DIAG));
4366 AscSetChipControl(iop_base, (uchar)(cc_val | CC_HALT));
4367 AscSetChipIH(iop_base, INS_HALT);
4368 AscSetChipIH(iop_base, INS_RFLAG_WTM);
4369 if ((AscGetChipStatus(iop_base) & CSW_HALTED) == 0) {
4370 return (0);
4372 return (1);
4375 static int AscIsChipHalted(PortAddr iop_base)
4377 if ((AscGetChipStatus(iop_base) & CSW_HALTED) != 0) {
4378 if ((AscGetChipControl(iop_base) & CC_HALT) != 0) {
4379 return (1);
4382 return (0);
4385 static int AscResetChipAndScsiBus(ASC_DVC_VAR *asc_dvc)
4387 PortAddr iop_base;
4388 int i = 10;
4390 iop_base = asc_dvc->iop_base;
4391 while ((AscGetChipStatus(iop_base) & CSW_SCSI_RESET_ACTIVE)
4392 && (i-- > 0)) {
4393 mdelay(100);
4395 AscStopChip(iop_base);
4396 AscSetChipControl(iop_base, CC_CHIP_RESET | CC_SCSI_RESET | CC_HALT);
4397 udelay(60);
4398 AscSetChipIH(iop_base, INS_RFLAG_WTM);
4399 AscSetChipIH(iop_base, INS_HALT);
4400 AscSetChipControl(iop_base, CC_CHIP_RESET | CC_HALT);
4401 AscSetChipControl(iop_base, CC_HALT);
4402 mdelay(200);
4403 AscSetChipStatus(iop_base, CIW_CLR_SCSI_RESET_INT);
4404 AscSetChipStatus(iop_base, 0);
4405 return (AscIsChipHalted(iop_base));
4408 static int AscFindSignature(PortAddr iop_base)
4410 ushort sig_word;
4412 ASC_DBG(1, "AscGetChipSignatureByte(0x%x) 0x%x\n",
4413 iop_base, AscGetChipSignatureByte(iop_base));
4414 if (AscGetChipSignatureByte(iop_base) == (uchar)ASC_1000_ID1B) {
4415 ASC_DBG(1, "AscGetChipSignatureWord(0x%x) 0x%x\n",
4416 iop_base, AscGetChipSignatureWord(iop_base));
4417 sig_word = AscGetChipSignatureWord(iop_base);
4418 if ((sig_word == (ushort)ASC_1000_ID0W) ||
4419 (sig_word == (ushort)ASC_1000_ID0W_FIX)) {
4420 return (1);
4423 return (0);
4426 static void AscEnableInterrupt(PortAddr iop_base)
4428 ushort cfg;
4430 cfg = AscGetChipCfgLsw(iop_base);
4431 AscSetChipCfgLsw(iop_base, cfg | ASC_CFG0_HOST_INT_ON);
4434 static void AscDisableInterrupt(PortAddr iop_base)
4436 ushort cfg;
4438 cfg = AscGetChipCfgLsw(iop_base);
4439 AscSetChipCfgLsw(iop_base, cfg & (~ASC_CFG0_HOST_INT_ON));
4442 static uchar AscReadLramByte(PortAddr iop_base, ushort addr)
4444 unsigned char byte_data;
4445 unsigned short word_data;
4447 if (isodd_word(addr)) {
4448 AscSetChipLramAddr(iop_base, addr - 1);
4449 word_data = AscGetChipLramData(iop_base);
4450 byte_data = (word_data >> 8) & 0xFF;
4451 } else {
4452 AscSetChipLramAddr(iop_base, addr);
4453 word_data = AscGetChipLramData(iop_base);
4454 byte_data = word_data & 0xFF;
4456 return byte_data;
4459 static ushort AscReadLramWord(PortAddr iop_base, ushort addr)
4461 ushort word_data;
4463 AscSetChipLramAddr(iop_base, addr);
4464 word_data = AscGetChipLramData(iop_base);
4465 return (word_data);
4468 #if CC_VERY_LONG_SG_LIST
4469 static ASC_DCNT AscReadLramDWord(PortAddr iop_base, ushort addr)
4471 ushort val_low, val_high;
4472 ASC_DCNT dword_data;
4474 AscSetChipLramAddr(iop_base, addr);
4475 val_low = AscGetChipLramData(iop_base);
4476 val_high = AscGetChipLramData(iop_base);
4477 dword_data = ((ASC_DCNT) val_high << 16) | (ASC_DCNT) val_low;
4478 return (dword_data);
4480 #endif /* CC_VERY_LONG_SG_LIST */
4482 static void
4483 AscMemWordSetLram(PortAddr iop_base, ushort s_addr, ushort set_wval, int words)
4485 int i;
4487 AscSetChipLramAddr(iop_base, s_addr);
4488 for (i = 0; i < words; i++) {
4489 AscSetChipLramData(iop_base, set_wval);
4493 static void AscWriteLramWord(PortAddr iop_base, ushort addr, ushort word_val)
4495 AscSetChipLramAddr(iop_base, addr);
4496 AscSetChipLramData(iop_base, word_val);
4499 static void AscWriteLramByte(PortAddr iop_base, ushort addr, uchar byte_val)
4501 ushort word_data;
4503 if (isodd_word(addr)) {
4504 addr--;
4505 word_data = AscReadLramWord(iop_base, addr);
4506 word_data &= 0x00FF;
4507 word_data |= (((ushort)byte_val << 8) & 0xFF00);
4508 } else {
4509 word_data = AscReadLramWord(iop_base, addr);
4510 word_data &= 0xFF00;
4511 word_data |= ((ushort)byte_val & 0x00FF);
4513 AscWriteLramWord(iop_base, addr, word_data);
4517 * Copy 2 bytes to LRAM.
4519 * The source data is assumed to be in little-endian order in memory
4520 * and is maintained in little-endian order when written to LRAM.
4522 static void
4523 AscMemWordCopyPtrToLram(PortAddr iop_base, ushort s_addr,
4524 const uchar *s_buffer, int words)
4526 int i;
4528 AscSetChipLramAddr(iop_base, s_addr);
4529 for (i = 0; i < 2 * words; i += 2) {
4531 * On a little-endian system the second argument below
4532 * produces a little-endian ushort which is written to
4533 * LRAM in little-endian order. On a big-endian system
4534 * the second argument produces a big-endian ushort which
4535 * is "transparently" byte-swapped by outpw() and written
4536 * in little-endian order to LRAM.
4538 outpw(iop_base + IOP_RAM_DATA,
4539 ((ushort)s_buffer[i + 1] << 8) | s_buffer[i]);
4544 * Copy 4 bytes to LRAM.
4546 * The source data is assumed to be in little-endian order in memory
4547 * and is maintained in little-endian order when written to LRAM.
4549 static void
4550 AscMemDWordCopyPtrToLram(PortAddr iop_base,
4551 ushort s_addr, uchar *s_buffer, int dwords)
4553 int i;
4555 AscSetChipLramAddr(iop_base, s_addr);
4556 for (i = 0; i < 4 * dwords; i += 4) {
4557 outpw(iop_base + IOP_RAM_DATA, ((ushort)s_buffer[i + 1] << 8) | s_buffer[i]); /* LSW */
4558 outpw(iop_base + IOP_RAM_DATA, ((ushort)s_buffer[i + 3] << 8) | s_buffer[i + 2]); /* MSW */
4563 * Copy 2 bytes from LRAM.
4565 * The source data is assumed to be in little-endian order in LRAM
4566 * and is maintained in little-endian order when written to memory.
4568 static void
4569 AscMemWordCopyPtrFromLram(PortAddr iop_base,
4570 ushort s_addr, uchar *d_buffer, int words)
4572 int i;
4573 ushort word;
4575 AscSetChipLramAddr(iop_base, s_addr);
4576 for (i = 0; i < 2 * words; i += 2) {
4577 word = inpw(iop_base + IOP_RAM_DATA);
4578 d_buffer[i] = word & 0xff;
4579 d_buffer[i + 1] = (word >> 8) & 0xff;
4583 static ASC_DCNT AscMemSumLramWord(PortAddr iop_base, ushort s_addr, int words)
4585 ASC_DCNT sum;
4586 int i;
4588 sum = 0L;
4589 for (i = 0; i < words; i++, s_addr += 2) {
4590 sum += AscReadLramWord(iop_base, s_addr);
4592 return (sum);
4595 static ushort AscInitLram(ASC_DVC_VAR *asc_dvc)
4597 uchar i;
4598 ushort s_addr;
4599 PortAddr iop_base;
4600 ushort warn_code;
4602 iop_base = asc_dvc->iop_base;
4603 warn_code = 0;
4604 AscMemWordSetLram(iop_base, ASC_QADR_BEG, 0,
4605 (ushort)(((int)(asc_dvc->max_total_qng + 2 + 1) *
4606 64) >> 1));
4607 i = ASC_MIN_ACTIVE_QNO;
4608 s_addr = ASC_QADR_BEG + ASC_QBLK_SIZE;
4609 AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_FWD),
4610 (uchar)(i + 1));
4611 AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_BWD),
4612 (uchar)(asc_dvc->max_total_qng));
4613 AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_QNO),
4614 (uchar)i);
4615 i++;
4616 s_addr += ASC_QBLK_SIZE;
4617 for (; i < asc_dvc->max_total_qng; i++, s_addr += ASC_QBLK_SIZE) {
4618 AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_FWD),
4619 (uchar)(i + 1));
4620 AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_BWD),
4621 (uchar)(i - 1));
4622 AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_QNO),
4623 (uchar)i);
4625 AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_FWD),
4626 (uchar)ASC_QLINK_END);
4627 AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_BWD),
4628 (uchar)(asc_dvc->max_total_qng - 1));
4629 AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_QNO),
4630 (uchar)asc_dvc->max_total_qng);
4631 i++;
4632 s_addr += ASC_QBLK_SIZE;
4633 for (; i <= (uchar)(asc_dvc->max_total_qng + 3);
4634 i++, s_addr += ASC_QBLK_SIZE) {
4635 AscWriteLramByte(iop_base,
4636 (ushort)(s_addr + (ushort)ASC_SCSIQ_B_FWD), i);
4637 AscWriteLramByte(iop_base,
4638 (ushort)(s_addr + (ushort)ASC_SCSIQ_B_BWD), i);
4639 AscWriteLramByte(iop_base,
4640 (ushort)(s_addr + (ushort)ASC_SCSIQ_B_QNO), i);
4642 return warn_code;
4645 static ASC_DCNT
4646 AscLoadMicroCode(PortAddr iop_base, ushort s_addr,
4647 const uchar *mcode_buf, ushort mcode_size)
4649 ASC_DCNT chksum;
4650 ushort mcode_word_size;
4651 ushort mcode_chksum;
4653 /* Write the microcode buffer starting at LRAM address 0. */
4654 mcode_word_size = (ushort)(mcode_size >> 1);
4655 AscMemWordSetLram(iop_base, s_addr, 0, mcode_word_size);
4656 AscMemWordCopyPtrToLram(iop_base, s_addr, mcode_buf, mcode_word_size);
4658 chksum = AscMemSumLramWord(iop_base, s_addr, mcode_word_size);
4659 ASC_DBG(1, "chksum 0x%lx\n", (ulong)chksum);
4660 mcode_chksum = (ushort)AscMemSumLramWord(iop_base,
4661 (ushort)ASC_CODE_SEC_BEG,
4662 (ushort)((mcode_size -
4663 s_addr - (ushort)
4664 ASC_CODE_SEC_BEG) /
4665 2));
4666 ASC_DBG(1, "mcode_chksum 0x%lx\n", (ulong)mcode_chksum);
4667 AscWriteLramWord(iop_base, ASCV_MCODE_CHKSUM_W, mcode_chksum);
4668 AscWriteLramWord(iop_base, ASCV_MCODE_SIZE_W, mcode_size);
4669 return chksum;
4672 static void AscInitQLinkVar(ASC_DVC_VAR *asc_dvc)
4674 PortAddr iop_base;
4675 int i;
4676 ushort lram_addr;
4678 iop_base = asc_dvc->iop_base;
4679 AscPutRiscVarFreeQHead(iop_base, 1);
4680 AscPutRiscVarDoneQTail(iop_base, asc_dvc->max_total_qng);
4681 AscPutVarFreeQHead(iop_base, 1);
4682 AscPutVarDoneQTail(iop_base, asc_dvc->max_total_qng);
4683 AscWriteLramByte(iop_base, ASCV_BUSY_QHEAD_B,
4684 (uchar)((int)asc_dvc->max_total_qng + 1));
4685 AscWriteLramByte(iop_base, ASCV_DISC1_QHEAD_B,
4686 (uchar)((int)asc_dvc->max_total_qng + 2));
4687 AscWriteLramByte(iop_base, (ushort)ASCV_TOTAL_READY_Q_B,
4688 asc_dvc->max_total_qng);
4689 AscWriteLramWord(iop_base, ASCV_ASCDVC_ERR_CODE_W, 0);
4690 AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
4691 AscWriteLramByte(iop_base, ASCV_STOP_CODE_B, 0);
4692 AscWriteLramByte(iop_base, ASCV_SCSIBUSY_B, 0);
4693 AscWriteLramByte(iop_base, ASCV_WTM_FLAG_B, 0);
4694 AscPutQDoneInProgress(iop_base, 0);
4695 lram_addr = ASC_QADR_BEG;
4696 for (i = 0; i < 32; i++, lram_addr += 2) {
4697 AscWriteLramWord(iop_base, lram_addr, 0);
4701 static ushort AscInitMicroCodeVar(ASC_DVC_VAR *asc_dvc)
4703 int i;
4704 ushort warn_code;
4705 PortAddr iop_base;
4706 ASC_PADDR phy_addr;
4707 ASC_DCNT phy_size;
4708 struct asc_board *board = asc_dvc_to_board(asc_dvc);
4710 iop_base = asc_dvc->iop_base;
4711 warn_code = 0;
4712 for (i = 0; i <= ASC_MAX_TID; i++) {
4713 AscPutMCodeInitSDTRAtID(iop_base, i,
4714 asc_dvc->cfg->sdtr_period_offset[i]);
4717 AscInitQLinkVar(asc_dvc);
4718 AscWriteLramByte(iop_base, ASCV_DISC_ENABLE_B,
4719 asc_dvc->cfg->disc_enable);
4720 AscWriteLramByte(iop_base, ASCV_HOSTSCSI_ID_B,
4721 ASC_TID_TO_TARGET_ID(asc_dvc->cfg->chip_scsi_id));
4723 /* Ensure overrun buffer is aligned on an 8 byte boundary. */
4724 BUG_ON((unsigned long)asc_dvc->overrun_buf & 7);
4725 asc_dvc->overrun_dma = dma_map_single(board->dev, asc_dvc->overrun_buf,
4726 ASC_OVERRUN_BSIZE, DMA_FROM_DEVICE);
4727 if (dma_mapping_error(board->dev, asc_dvc->overrun_dma)) {
4728 warn_code = -ENOMEM;
4729 goto err_dma_map;
4731 phy_addr = cpu_to_le32(asc_dvc->overrun_dma);
4732 AscMemDWordCopyPtrToLram(iop_base, ASCV_OVERRUN_PADDR_D,
4733 (uchar *)&phy_addr, 1);
4734 phy_size = cpu_to_le32(ASC_OVERRUN_BSIZE);
4735 AscMemDWordCopyPtrToLram(iop_base, ASCV_OVERRUN_BSIZE_D,
4736 (uchar *)&phy_size, 1);
4738 asc_dvc->cfg->mcode_date =
4739 AscReadLramWord(iop_base, (ushort)ASCV_MC_DATE_W);
4740 asc_dvc->cfg->mcode_version =
4741 AscReadLramWord(iop_base, (ushort)ASCV_MC_VER_W);
4743 AscSetPCAddr(iop_base, ASC_MCODE_START_ADDR);
4744 if (AscGetPCAddr(iop_base) != ASC_MCODE_START_ADDR) {
4745 asc_dvc->err_code |= ASC_IERR_SET_PC_ADDR;
4746 warn_code = UW_ERR;
4747 goto err_mcode_start;
4749 if (AscStartChip(iop_base) != 1) {
4750 asc_dvc->err_code |= ASC_IERR_START_STOP_CHIP;
4751 warn_code = UW_ERR;
4752 goto err_mcode_start;
4755 return warn_code;
4757 err_mcode_start:
4758 dma_unmap_single(board->dev, asc_dvc->overrun_dma,
4759 ASC_OVERRUN_BSIZE, DMA_FROM_DEVICE);
4760 err_dma_map:
4761 asc_dvc->overrun_dma = 0;
4762 return warn_code;
4765 static ushort AscInitAsc1000Driver(ASC_DVC_VAR *asc_dvc)
4767 const struct firmware *fw;
4768 const char fwname[] = "advansys/mcode.bin";
4769 int err;
4770 unsigned long chksum;
4771 ushort warn_code;
4772 PortAddr iop_base;
4774 iop_base = asc_dvc->iop_base;
4775 warn_code = 0;
4776 if ((asc_dvc->dvc_cntl & ASC_CNTL_RESET_SCSI) &&
4777 !(asc_dvc->init_state & ASC_INIT_RESET_SCSI_DONE)) {
4778 AscResetChipAndScsiBus(asc_dvc);
4779 mdelay(asc_dvc->scsi_reset_wait * 1000); /* XXX: msleep? */
4781 asc_dvc->init_state |= ASC_INIT_STATE_BEG_LOAD_MC;
4782 if (asc_dvc->err_code != 0)
4783 return UW_ERR;
4784 if (!AscFindSignature(asc_dvc->iop_base)) {
4785 asc_dvc->err_code = ASC_IERR_BAD_SIGNATURE;
4786 return warn_code;
4788 AscDisableInterrupt(iop_base);
4789 warn_code |= AscInitLram(asc_dvc);
4790 if (asc_dvc->err_code != 0)
4791 return UW_ERR;
4793 err = request_firmware(&fw, fwname, asc_dvc->drv_ptr->dev);
4794 if (err) {
4795 printk(KERN_ERR "Failed to load image \"%s\" err %d\n",
4796 fwname, err);
4797 asc_dvc->err_code |= ASC_IERR_MCODE_CHKSUM;
4798 return err;
4800 if (fw->size < 4) {
4801 printk(KERN_ERR "Bogus length %zu in image \"%s\"\n",
4802 fw->size, fwname);
4803 release_firmware(fw);
4804 asc_dvc->err_code |= ASC_IERR_MCODE_CHKSUM;
4805 return -EINVAL;
4807 chksum = (fw->data[3] << 24) | (fw->data[2] << 16) |
4808 (fw->data[1] << 8) | fw->data[0];
4809 ASC_DBG(1, "_asc_mcode_chksum 0x%lx\n", (ulong)chksum);
4810 if (AscLoadMicroCode(iop_base, 0, &fw->data[4],
4811 fw->size - 4) != chksum) {
4812 asc_dvc->err_code |= ASC_IERR_MCODE_CHKSUM;
4813 release_firmware(fw);
4814 return warn_code;
4816 release_firmware(fw);
4817 warn_code |= AscInitMicroCodeVar(asc_dvc);
4818 if (!asc_dvc->overrun_dma)
4819 return warn_code;
4820 asc_dvc->init_state |= ASC_INIT_STATE_END_LOAD_MC;
4821 AscEnableInterrupt(iop_base);
4822 return warn_code;
4826 * Load the Microcode
4828 * Write the microcode image to RISC memory starting at address 0.
4830 * The microcode is stored compressed in the following format:
4832 * 254 word (508 byte) table indexed by byte code followed
4833 * by the following byte codes:
4835 * 1-Byte Code:
4836 * 00: Emit word 0 in table.
4837 * 01: Emit word 1 in table.
4839 * FD: Emit word 253 in table.
4841 * Multi-Byte Code:
4842 * FE WW WW: (3 byte code) Word to emit is the next word WW WW.
4843 * FF BB WW WW: (4 byte code) Emit BB count times next word WW WW.
4845 * Returns 0 or an error if the checksum doesn't match
4847 static int AdvLoadMicrocode(AdvPortAddr iop_base, const unsigned char *buf,
4848 int size, int memsize, int chksum)
4850 int i, j, end, len = 0;
4851 ADV_DCNT sum;
4853 AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, 0);
4855 for (i = 253 * 2; i < size; i++) {
4856 if (buf[i] == 0xff) {
4857 unsigned short word = (buf[i + 3] << 8) | buf[i + 2];
4858 for (j = 0; j < buf[i + 1]; j++) {
4859 AdvWriteWordAutoIncLram(iop_base, word);
4860 len += 2;
4862 i += 3;
4863 } else if (buf[i] == 0xfe) {
4864 unsigned short word = (buf[i + 2] << 8) | buf[i + 1];
4865 AdvWriteWordAutoIncLram(iop_base, word);
4866 i += 2;
4867 len += 2;
4868 } else {
4869 unsigned int off = buf[i] * 2;
4870 unsigned short word = (buf[off + 1] << 8) | buf[off];
4871 AdvWriteWordAutoIncLram(iop_base, word);
4872 len += 2;
4876 end = len;
4878 while (len < memsize) {
4879 AdvWriteWordAutoIncLram(iop_base, 0);
4880 len += 2;
4883 /* Verify the microcode checksum. */
4884 sum = 0;
4885 AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, 0);
4887 for (len = 0; len < end; len += 2) {
4888 sum += AdvReadWordAutoIncLram(iop_base);
4891 if (sum != chksum)
4892 return ASC_IERR_MCODE_CHKSUM;
4894 return 0;
4897 static void AdvBuildCarrierFreelist(struct adv_dvc_var *asc_dvc)
4899 ADV_CARR_T *carrp;
4900 ADV_SDCNT buf_size;
4901 ADV_PADDR carr_paddr;
4903 carrp = (ADV_CARR_T *) ADV_16BALIGN(asc_dvc->carrier_buf);
4904 asc_dvc->carr_freelist = NULL;
4905 if (carrp == asc_dvc->carrier_buf) {
4906 buf_size = ADV_CARRIER_BUFSIZE;
4907 } else {
4908 buf_size = ADV_CARRIER_BUFSIZE - sizeof(ADV_CARR_T);
4911 do {
4912 /* Get physical address of the carrier 'carrp'. */
4913 carr_paddr = cpu_to_le32(virt_to_bus(carrp));
4915 buf_size -= sizeof(ADV_CARR_T);
4917 carrp->carr_pa = carr_paddr;
4918 carrp->carr_va = cpu_to_le32(ADV_VADDR_TO_U32(carrp));
4921 * Insert the carrier at the beginning of the freelist.
4923 carrp->next_vpa =
4924 cpu_to_le32(ADV_VADDR_TO_U32(asc_dvc->carr_freelist));
4925 asc_dvc->carr_freelist = carrp;
4927 carrp++;
4928 } while (buf_size > 0);
4932 * Send an idle command to the chip and wait for completion.
4934 * Command completion is polled for once per microsecond.
4936 * The function can be called from anywhere including an interrupt handler.
4937 * But the function is not re-entrant, so it uses the DvcEnter/LeaveCritical()
4938 * functions to prevent reentrancy.
4940 * Return Values:
4941 * ADV_TRUE - command completed successfully
4942 * ADV_FALSE - command failed
4943 * ADV_ERROR - command timed out
4945 static int
4946 AdvSendIdleCmd(ADV_DVC_VAR *asc_dvc,
4947 ushort idle_cmd, ADV_DCNT idle_cmd_parameter)
4949 int result;
4950 ADV_DCNT i, j;
4951 AdvPortAddr iop_base;
4953 iop_base = asc_dvc->iop_base;
4956 * Clear the idle command status which is set by the microcode
4957 * to a non-zero value to indicate when the command is completed.
4958 * The non-zero result is one of the IDLE_CMD_STATUS_* values
4960 AdvWriteWordLram(iop_base, ASC_MC_IDLE_CMD_STATUS, (ushort)0);
4963 * Write the idle command value after the idle command parameter
4964 * has been written to avoid a race condition. If the order is not
4965 * followed, the microcode may process the idle command before the
4966 * parameters have been written to LRAM.
4968 AdvWriteDWordLramNoSwap(iop_base, ASC_MC_IDLE_CMD_PARAMETER,
4969 cpu_to_le32(idle_cmd_parameter));
4970 AdvWriteWordLram(iop_base, ASC_MC_IDLE_CMD, idle_cmd);
4973 * Tickle the RISC to tell it to process the idle command.
4975 AdvWriteByteRegister(iop_base, IOPB_TICKLE, ADV_TICKLE_B);
4976 if (asc_dvc->chip_type == ADV_CHIP_ASC3550) {
4978 * Clear the tickle value. In the ASC-3550 the RISC flag
4979 * command 'clr_tickle_b' does not work unless the host
4980 * value is cleared.
4982 AdvWriteByteRegister(iop_base, IOPB_TICKLE, ADV_TICKLE_NOP);
4985 /* Wait for up to 100 millisecond for the idle command to timeout. */
4986 for (i = 0; i < SCSI_WAIT_100_MSEC; i++) {
4987 /* Poll once each microsecond for command completion. */
4988 for (j = 0; j < SCSI_US_PER_MSEC; j++) {
4989 AdvReadWordLram(iop_base, ASC_MC_IDLE_CMD_STATUS,
4990 result);
4991 if (result != 0)
4992 return result;
4993 udelay(1);
4997 BUG(); /* The idle command should never timeout. */
4998 return ADV_ERROR;
5002 * Reset SCSI Bus and purge all outstanding requests.
5004 * Return Value:
5005 * ADV_TRUE(1) - All requests are purged and SCSI Bus is reset.
5006 * ADV_FALSE(0) - Microcode command failed.
5007 * ADV_ERROR(-1) - Microcode command timed-out. Microcode or IC
5008 * may be hung which requires driver recovery.
5010 static int AdvResetSB(ADV_DVC_VAR *asc_dvc)
5012 int status;
5015 * Send the SCSI Bus Reset idle start idle command which asserts
5016 * the SCSI Bus Reset signal.
5018 status = AdvSendIdleCmd(asc_dvc, (ushort)IDLE_CMD_SCSI_RESET_START, 0L);
5019 if (status != ADV_TRUE) {
5020 return status;
5024 * Delay for the specified SCSI Bus Reset hold time.
5026 * The hold time delay is done on the host because the RISC has no
5027 * microsecond accurate timer.
5029 udelay(ASC_SCSI_RESET_HOLD_TIME_US);
5032 * Send the SCSI Bus Reset end idle command which de-asserts
5033 * the SCSI Bus Reset signal and purges any pending requests.
5035 status = AdvSendIdleCmd(asc_dvc, (ushort)IDLE_CMD_SCSI_RESET_END, 0L);
5036 if (status != ADV_TRUE) {
5037 return status;
5040 mdelay(asc_dvc->scsi_reset_wait * 1000); /* XXX: msleep? */
5042 return status;
5046 * Initialize the ASC-3550.
5048 * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
5050 * For a non-fatal error return a warning code. If there are no warnings
5051 * then 0 is returned.
5053 * Needed after initialization for error recovery.
5055 static int AdvInitAsc3550Driver(ADV_DVC_VAR *asc_dvc)
5057 const struct firmware *fw;
5058 const char fwname[] = "advansys/3550.bin";
5059 AdvPortAddr iop_base;
5060 ushort warn_code;
5061 int begin_addr;
5062 int end_addr;
5063 ushort code_sum;
5064 int word;
5065 int i;
5066 int err;
5067 unsigned long chksum;
5068 ushort scsi_cfg1;
5069 uchar tid;
5070 ushort bios_mem[ASC_MC_BIOSLEN / 2]; /* BIOS RISC Memory 0x40-0x8F. */
5071 ushort wdtr_able = 0, sdtr_able, tagqng_able;
5072 uchar max_cmd[ADV_MAX_TID + 1];
5074 /* If there is already an error, don't continue. */
5075 if (asc_dvc->err_code != 0)
5076 return ADV_ERROR;
5079 * The caller must set 'chip_type' to ADV_CHIP_ASC3550.
5081 if (asc_dvc->chip_type != ADV_CHIP_ASC3550) {
5082 asc_dvc->err_code = ASC_IERR_BAD_CHIPTYPE;
5083 return ADV_ERROR;
5086 warn_code = 0;
5087 iop_base = asc_dvc->iop_base;
5090 * Save the RISC memory BIOS region before writing the microcode.
5091 * The BIOS may already be loaded and using its RISC LRAM region
5092 * so its region must be saved and restored.
5094 * Note: This code makes the assumption, which is currently true,
5095 * that a chip reset does not clear RISC LRAM.
5097 for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) {
5098 AdvReadWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i),
5099 bios_mem[i]);
5103 * Save current per TID negotiated values.
5105 if (bios_mem[(ASC_MC_BIOS_SIGNATURE - ASC_MC_BIOSMEM) / 2] == 0x55AA) {
5106 ushort bios_version, major, minor;
5108 bios_version =
5109 bios_mem[(ASC_MC_BIOS_VERSION - ASC_MC_BIOSMEM) / 2];
5110 major = (bios_version >> 12) & 0xF;
5111 minor = (bios_version >> 8) & 0xF;
5112 if (major < 3 || (major == 3 && minor == 1)) {
5113 /* BIOS 3.1 and earlier location of 'wdtr_able' variable. */
5114 AdvReadWordLram(iop_base, 0x120, wdtr_able);
5115 } else {
5116 AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
5119 AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
5120 AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able);
5121 for (tid = 0; tid <= ADV_MAX_TID; tid++) {
5122 AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid,
5123 max_cmd[tid]);
5126 err = request_firmware(&fw, fwname, asc_dvc->drv_ptr->dev);
5127 if (err) {
5128 printk(KERN_ERR "Failed to load image \"%s\" err %d\n",
5129 fwname, err);
5130 asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM;
5131 return err;
5133 if (fw->size < 4) {
5134 printk(KERN_ERR "Bogus length %zu in image \"%s\"\n",
5135 fw->size, fwname);
5136 release_firmware(fw);
5137 asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM;
5138 return -EINVAL;
5140 chksum = (fw->data[3] << 24) | (fw->data[2] << 16) |
5141 (fw->data[1] << 8) | fw->data[0];
5142 asc_dvc->err_code = AdvLoadMicrocode(iop_base, &fw->data[4],
5143 fw->size - 4, ADV_3550_MEMSIZE,
5144 chksum);
5145 release_firmware(fw);
5146 if (asc_dvc->err_code)
5147 return ADV_ERROR;
5150 * Restore the RISC memory BIOS region.
5152 for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) {
5153 AdvWriteWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i),
5154 bios_mem[i]);
5158 * Calculate and write the microcode code checksum to the microcode
5159 * code checksum location ASC_MC_CODE_CHK_SUM (0x2C).
5161 AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, begin_addr);
5162 AdvReadWordLram(iop_base, ASC_MC_CODE_END_ADDR, end_addr);
5163 code_sum = 0;
5164 AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, begin_addr);
5165 for (word = begin_addr; word < end_addr; word += 2) {
5166 code_sum += AdvReadWordAutoIncLram(iop_base);
5168 AdvWriteWordLram(iop_base, ASC_MC_CODE_CHK_SUM, code_sum);
5171 * Read and save microcode version and date.
5173 AdvReadWordLram(iop_base, ASC_MC_VERSION_DATE,
5174 asc_dvc->cfg->mcode_date);
5175 AdvReadWordLram(iop_base, ASC_MC_VERSION_NUM,
5176 asc_dvc->cfg->mcode_version);
5179 * Set the chip type to indicate the ASC3550.
5181 AdvWriteWordLram(iop_base, ASC_MC_CHIP_TYPE, ADV_CHIP_ASC3550);
5184 * If the PCI Configuration Command Register "Parity Error Response
5185 * Control" Bit was clear (0), then set the microcode variable
5186 * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode
5187 * to ignore DMA parity errors.
5189 if (asc_dvc->cfg->control_flag & CONTROL_FLAG_IGNORE_PERR) {
5190 AdvReadWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
5191 word |= CONTROL_FLAG_IGNORE_PERR;
5192 AdvWriteWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
5196 * For ASC-3550, setting the START_CTL_EMFU [3:2] bits sets a FIFO
5197 * threshold of 128 bytes. This register is only accessible to the host.
5199 AdvWriteByteRegister(iop_base, IOPB_DMA_CFG0,
5200 START_CTL_EMFU | READ_CMD_MRM);
5203 * Microcode operating variables for WDTR, SDTR, and command tag
5204 * queuing will be set in slave_configure() based on what a
5205 * device reports it is capable of in Inquiry byte 7.
5207 * If SCSI Bus Resets have been disabled, then directly set
5208 * SDTR and WDTR from the EEPROM configuration. This will allow
5209 * the BIOS and warm boot to work without a SCSI bus hang on
5210 * the Inquiry caused by host and target mismatched DTR values.
5211 * Without the SCSI Bus Reset, before an Inquiry a device can't
5212 * be assumed to be in Asynchronous, Narrow mode.
5214 if ((asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) == 0) {
5215 AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE,
5216 asc_dvc->wdtr_able);
5217 AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE,
5218 asc_dvc->sdtr_able);
5222 * Set microcode operating variables for SDTR_SPEED1, SDTR_SPEED2,
5223 * SDTR_SPEED3, and SDTR_SPEED4 based on the ULTRA EEPROM per TID
5224 * bitmask. These values determine the maximum SDTR speed negotiated
5225 * with a device.
5227 * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2,
5228 * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them
5229 * without determining here whether the device supports SDTR.
5231 * 4-bit speed SDTR speed name
5232 * =========== ===============
5233 * 0000b (0x0) SDTR disabled
5234 * 0001b (0x1) 5 Mhz
5235 * 0010b (0x2) 10 Mhz
5236 * 0011b (0x3) 20 Mhz (Ultra)
5237 * 0100b (0x4) 40 Mhz (LVD/Ultra2)
5238 * 0101b (0x5) 80 Mhz (LVD2/Ultra3)
5239 * 0110b (0x6) Undefined
5241 * 1111b (0xF) Undefined
5243 word = 0;
5244 for (tid = 0; tid <= ADV_MAX_TID; tid++) {
5245 if (ADV_TID_TO_TIDMASK(tid) & asc_dvc->ultra_able) {
5246 /* Set Ultra speed for TID 'tid'. */
5247 word |= (0x3 << (4 * (tid % 4)));
5248 } else {
5249 /* Set Fast speed for TID 'tid'. */
5250 word |= (0x2 << (4 * (tid % 4)));
5252 if (tid == 3) { /* Check if done with sdtr_speed1. */
5253 AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED1, word);
5254 word = 0;
5255 } else if (tid == 7) { /* Check if done with sdtr_speed2. */
5256 AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED2, word);
5257 word = 0;
5258 } else if (tid == 11) { /* Check if done with sdtr_speed3. */
5259 AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED3, word);
5260 word = 0;
5261 } else if (tid == 15) { /* Check if done with sdtr_speed4. */
5262 AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED4, word);
5263 /* End of loop. */
5268 * Set microcode operating variable for the disconnect per TID bitmask.
5270 AdvWriteWordLram(iop_base, ASC_MC_DISC_ENABLE,
5271 asc_dvc->cfg->disc_enable);
5274 * Set SCSI_CFG0 Microcode Default Value.
5276 * The microcode will set the SCSI_CFG0 register using this value
5277 * after it is started below.
5279 AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG0,
5280 PARITY_EN | QUEUE_128 | SEL_TMO_LONG | OUR_ID_EN |
5281 asc_dvc->chip_scsi_id);
5284 * Determine SCSI_CFG1 Microcode Default Value.
5286 * The microcode will set the SCSI_CFG1 register using this value
5287 * after it is started below.
5290 /* Read current SCSI_CFG1 Register value. */
5291 scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1);
5294 * If all three connectors are in use, return an error.
5296 if ((scsi_cfg1 & CABLE_ILLEGAL_A) == 0 ||
5297 (scsi_cfg1 & CABLE_ILLEGAL_B) == 0) {
5298 asc_dvc->err_code |= ASC_IERR_ILLEGAL_CONNECTION;
5299 return ADV_ERROR;
5303 * If the internal narrow cable is reversed all of the SCSI_CTRL
5304 * register signals will be set. Check for and return an error if
5305 * this condition is found.
5307 if ((AdvReadWordRegister(iop_base, IOPW_SCSI_CTRL) & 0x3F07) == 0x3F07) {
5308 asc_dvc->err_code |= ASC_IERR_REVERSED_CABLE;
5309 return ADV_ERROR;
5313 * If this is a differential board and a single-ended device
5314 * is attached to one of the connectors, return an error.
5316 if ((scsi_cfg1 & DIFF_MODE) && (scsi_cfg1 & DIFF_SENSE) == 0) {
5317 asc_dvc->err_code |= ASC_IERR_SINGLE_END_DEVICE;
5318 return ADV_ERROR;
5322 * If automatic termination control is enabled, then set the
5323 * termination value based on a table listed in a_condor.h.
5325 * If manual termination was specified with an EEPROM setting
5326 * then 'termination' was set-up in AdvInitFrom3550EEPROM() and
5327 * is ready to be 'ored' into SCSI_CFG1.
5329 if (asc_dvc->cfg->termination == 0) {
5331 * The software always controls termination by setting TERM_CTL_SEL.
5332 * If TERM_CTL_SEL were set to 0, the hardware would set termination.
5334 asc_dvc->cfg->termination |= TERM_CTL_SEL;
5336 switch (scsi_cfg1 & CABLE_DETECT) {
5337 /* TERM_CTL_H: on, TERM_CTL_L: on */
5338 case 0x3:
5339 case 0x7:
5340 case 0xB:
5341 case 0xD:
5342 case 0xE:
5343 case 0xF:
5344 asc_dvc->cfg->termination |= (TERM_CTL_H | TERM_CTL_L);
5345 break;
5347 /* TERM_CTL_H: on, TERM_CTL_L: off */
5348 case 0x1:
5349 case 0x5:
5350 case 0x9:
5351 case 0xA:
5352 case 0xC:
5353 asc_dvc->cfg->termination |= TERM_CTL_H;
5354 break;
5356 /* TERM_CTL_H: off, TERM_CTL_L: off */
5357 case 0x2:
5358 case 0x6:
5359 break;
5364 * Clear any set TERM_CTL_H and TERM_CTL_L bits.
5366 scsi_cfg1 &= ~TERM_CTL;
5369 * Invert the TERM_CTL_H and TERM_CTL_L bits and then
5370 * set 'scsi_cfg1'. The TERM_POL bit does not need to be
5371 * referenced, because the hardware internally inverts
5372 * the Termination High and Low bits if TERM_POL is set.
5374 scsi_cfg1 |= (TERM_CTL_SEL | (~asc_dvc->cfg->termination & TERM_CTL));
5377 * Set SCSI_CFG1 Microcode Default Value
5379 * Set filter value and possibly modified termination control
5380 * bits in the Microcode SCSI_CFG1 Register Value.
5382 * The microcode will set the SCSI_CFG1 register using this value
5383 * after it is started below.
5385 AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG1,
5386 FLTR_DISABLE | scsi_cfg1);
5389 * Set MEM_CFG Microcode Default Value
5391 * The microcode will set the MEM_CFG register using this value
5392 * after it is started below.
5394 * MEM_CFG may be accessed as a word or byte, but only bits 0-7
5395 * are defined.
5397 * ASC-3550 has 8KB internal memory.
5399 AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_MEM_CFG,
5400 BIOS_EN | RAM_SZ_8KB);
5403 * Set SEL_MASK Microcode Default Value
5405 * The microcode will set the SEL_MASK register using this value
5406 * after it is started below.
5408 AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SEL_MASK,
5409 ADV_TID_TO_TIDMASK(asc_dvc->chip_scsi_id));
5411 AdvBuildCarrierFreelist(asc_dvc);
5414 * Set-up the Host->RISC Initiator Command Queue (ICQ).
5417 if ((asc_dvc->icq_sp = asc_dvc->carr_freelist) == NULL) {
5418 asc_dvc->err_code |= ASC_IERR_NO_CARRIER;
5419 return ADV_ERROR;
5421 asc_dvc->carr_freelist = (ADV_CARR_T *)
5422 ADV_U32_TO_VADDR(le32_to_cpu(asc_dvc->icq_sp->next_vpa));
5425 * The first command issued will be placed in the stopper carrier.
5427 asc_dvc->icq_sp->next_vpa = cpu_to_le32(ASC_CQ_STOPPER);
5430 * Set RISC ICQ physical address start value.
5432 AdvWriteDWordLramNoSwap(iop_base, ASC_MC_ICQ, asc_dvc->icq_sp->carr_pa);
5435 * Set-up the RISC->Host Initiator Response Queue (IRQ).
5437 if ((asc_dvc->irq_sp = asc_dvc->carr_freelist) == NULL) {
5438 asc_dvc->err_code |= ASC_IERR_NO_CARRIER;
5439 return ADV_ERROR;
5441 asc_dvc->carr_freelist = (ADV_CARR_T *)
5442 ADV_U32_TO_VADDR(le32_to_cpu(asc_dvc->irq_sp->next_vpa));
5445 * The first command completed by the RISC will be placed in
5446 * the stopper.
5448 * Note: Set 'next_vpa' to ASC_CQ_STOPPER. When the request is
5449 * completed the RISC will set the ASC_RQ_STOPPER bit.
5451 asc_dvc->irq_sp->next_vpa = cpu_to_le32(ASC_CQ_STOPPER);
5454 * Set RISC IRQ physical address start value.
5456 AdvWriteDWordLramNoSwap(iop_base, ASC_MC_IRQ, asc_dvc->irq_sp->carr_pa);
5457 asc_dvc->carr_pending_cnt = 0;
5459 AdvWriteByteRegister(iop_base, IOPB_INTR_ENABLES,
5460 (ADV_INTR_ENABLE_HOST_INTR |
5461 ADV_INTR_ENABLE_GLOBAL_INTR));
5463 AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, word);
5464 AdvWriteWordRegister(iop_base, IOPW_PC, word);
5466 /* finally, finally, gentlemen, start your engine */
5467 AdvWriteWordRegister(iop_base, IOPW_RISC_CSR, ADV_RISC_CSR_RUN);
5470 * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus
5471 * Resets should be performed. The RISC has to be running
5472 * to issue a SCSI Bus Reset.
5474 if (asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) {
5476 * If the BIOS Signature is present in memory, restore the
5477 * BIOS Handshake Configuration Table and do not perform
5478 * a SCSI Bus Reset.
5480 if (bios_mem[(ASC_MC_BIOS_SIGNATURE - ASC_MC_BIOSMEM) / 2] ==
5481 0x55AA) {
5483 * Restore per TID negotiated values.
5485 AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
5486 AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
5487 AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE,
5488 tagqng_able);
5489 for (tid = 0; tid <= ADV_MAX_TID; tid++) {
5490 AdvWriteByteLram(iop_base,
5491 ASC_MC_NUMBER_OF_MAX_CMD + tid,
5492 max_cmd[tid]);
5494 } else {
5495 if (AdvResetSB(asc_dvc) != ADV_TRUE) {
5496 warn_code = ASC_WARN_BUSRESET_ERROR;
5501 return warn_code;
5505 * Initialize the ASC-38C0800.
5507 * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
5509 * For a non-fatal error return a warning code. If there are no warnings
5510 * then 0 is returned.
5512 * Needed after initialization for error recovery.
5514 static int AdvInitAsc38C0800Driver(ADV_DVC_VAR *asc_dvc)
5516 const struct firmware *fw;
5517 const char fwname[] = "advansys/38C0800.bin";
5518 AdvPortAddr iop_base;
5519 ushort warn_code;
5520 int begin_addr;
5521 int end_addr;
5522 ushort code_sum;
5523 int word;
5524 int i;
5525 int err;
5526 unsigned long chksum;
5527 ushort scsi_cfg1;
5528 uchar byte;
5529 uchar tid;
5530 ushort bios_mem[ASC_MC_BIOSLEN / 2]; /* BIOS RISC Memory 0x40-0x8F. */
5531 ushort wdtr_able, sdtr_able, tagqng_able;
5532 uchar max_cmd[ADV_MAX_TID + 1];
5534 /* If there is already an error, don't continue. */
5535 if (asc_dvc->err_code != 0)
5536 return ADV_ERROR;
5539 * The caller must set 'chip_type' to ADV_CHIP_ASC38C0800.
5541 if (asc_dvc->chip_type != ADV_CHIP_ASC38C0800) {
5542 asc_dvc->err_code = ASC_IERR_BAD_CHIPTYPE;
5543 return ADV_ERROR;
5546 warn_code = 0;
5547 iop_base = asc_dvc->iop_base;
5550 * Save the RISC memory BIOS region before writing the microcode.
5551 * The BIOS may already be loaded and using its RISC LRAM region
5552 * so its region must be saved and restored.
5554 * Note: This code makes the assumption, which is currently true,
5555 * that a chip reset does not clear RISC LRAM.
5557 for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) {
5558 AdvReadWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i),
5559 bios_mem[i]);
5563 * Save current per TID negotiated values.
5565 AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
5566 AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
5567 AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able);
5568 for (tid = 0; tid <= ADV_MAX_TID; tid++) {
5569 AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid,
5570 max_cmd[tid]);
5574 * RAM BIST (RAM Built-In Self Test)
5576 * Address : I/O base + offset 0x38h register (byte).
5577 * Function: Bit 7-6(RW) : RAM mode
5578 * Normal Mode : 0x00
5579 * Pre-test Mode : 0x40
5580 * RAM Test Mode : 0x80
5581 * Bit 5 : unused
5582 * Bit 4(RO) : Done bit
5583 * Bit 3-0(RO) : Status
5584 * Host Error : 0x08
5585 * Int_RAM Error : 0x04
5586 * RISC Error : 0x02
5587 * SCSI Error : 0x01
5588 * No Error : 0x00
5590 * Note: RAM BIST code should be put right here, before loading the
5591 * microcode and after saving the RISC memory BIOS region.
5595 * LRAM Pre-test
5597 * Write PRE_TEST_MODE (0x40) to register and wait for 10 milliseconds.
5598 * If Done bit not set or low nibble not PRE_TEST_VALUE (0x05), return
5599 * an error. Reset to NORMAL_MODE (0x00) and do again. If cannot reset
5600 * to NORMAL_MODE, return an error too.
5602 for (i = 0; i < 2; i++) {
5603 AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, PRE_TEST_MODE);
5604 mdelay(10); /* Wait for 10ms before reading back. */
5605 byte = AdvReadByteRegister(iop_base, IOPB_RAM_BIST);
5606 if ((byte & RAM_TEST_DONE) == 0
5607 || (byte & 0x0F) != PRE_TEST_VALUE) {
5608 asc_dvc->err_code = ASC_IERR_BIST_PRE_TEST;
5609 return ADV_ERROR;
5612 AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, NORMAL_MODE);
5613 mdelay(10); /* Wait for 10ms before reading back. */
5614 if (AdvReadByteRegister(iop_base, IOPB_RAM_BIST)
5615 != NORMAL_VALUE) {
5616 asc_dvc->err_code = ASC_IERR_BIST_PRE_TEST;
5617 return ADV_ERROR;
5622 * LRAM Test - It takes about 1.5 ms to run through the test.
5624 * Write RAM_TEST_MODE (0x80) to register and wait for 10 milliseconds.
5625 * If Done bit not set or Status not 0, save register byte, set the
5626 * err_code, and return an error.
5628 AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, RAM_TEST_MODE);
5629 mdelay(10); /* Wait for 10ms before checking status. */
5631 byte = AdvReadByteRegister(iop_base, IOPB_RAM_BIST);
5632 if ((byte & RAM_TEST_DONE) == 0 || (byte & RAM_TEST_STATUS) != 0) {
5633 /* Get here if Done bit not set or Status not 0. */
5634 asc_dvc->bist_err_code = byte; /* for BIOS display message */
5635 asc_dvc->err_code = ASC_IERR_BIST_RAM_TEST;
5636 return ADV_ERROR;
5639 /* We need to reset back to normal mode after LRAM test passes. */
5640 AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, NORMAL_MODE);
5642 err = request_firmware(&fw, fwname, asc_dvc->drv_ptr->dev);
5643 if (err) {
5644 printk(KERN_ERR "Failed to load image \"%s\" err %d\n",
5645 fwname, err);
5646 asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM;
5647 return err;
5649 if (fw->size < 4) {
5650 printk(KERN_ERR "Bogus length %zu in image \"%s\"\n",
5651 fw->size, fwname);
5652 release_firmware(fw);
5653 asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM;
5654 return -EINVAL;
5656 chksum = (fw->data[3] << 24) | (fw->data[2] << 16) |
5657 (fw->data[1] << 8) | fw->data[0];
5658 asc_dvc->err_code = AdvLoadMicrocode(iop_base, &fw->data[4],
5659 fw->size - 4, ADV_38C0800_MEMSIZE,
5660 chksum);
5661 release_firmware(fw);
5662 if (asc_dvc->err_code)
5663 return ADV_ERROR;
5666 * Restore the RISC memory BIOS region.
5668 for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) {
5669 AdvWriteWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i),
5670 bios_mem[i]);
5674 * Calculate and write the microcode code checksum to the microcode
5675 * code checksum location ASC_MC_CODE_CHK_SUM (0x2C).
5677 AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, begin_addr);
5678 AdvReadWordLram(iop_base, ASC_MC_CODE_END_ADDR, end_addr);
5679 code_sum = 0;
5680 AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, begin_addr);
5681 for (word = begin_addr; word < end_addr; word += 2) {
5682 code_sum += AdvReadWordAutoIncLram(iop_base);
5684 AdvWriteWordLram(iop_base, ASC_MC_CODE_CHK_SUM, code_sum);
5687 * Read microcode version and date.
5689 AdvReadWordLram(iop_base, ASC_MC_VERSION_DATE,
5690 asc_dvc->cfg->mcode_date);
5691 AdvReadWordLram(iop_base, ASC_MC_VERSION_NUM,
5692 asc_dvc->cfg->mcode_version);
5695 * Set the chip type to indicate the ASC38C0800.
5697 AdvWriteWordLram(iop_base, ASC_MC_CHIP_TYPE, ADV_CHIP_ASC38C0800);
5700 * Write 1 to bit 14 'DIS_TERM_DRV' in the SCSI_CFG1 register.
5701 * When DIS_TERM_DRV set to 1, C_DET[3:0] will reflect current
5702 * cable detection and then we are able to read C_DET[3:0].
5704 * Note: We will reset DIS_TERM_DRV to 0 in the 'Set SCSI_CFG1
5705 * Microcode Default Value' section below.
5707 scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1);
5708 AdvWriteWordRegister(iop_base, IOPW_SCSI_CFG1,
5709 scsi_cfg1 | DIS_TERM_DRV);
5712 * If the PCI Configuration Command Register "Parity Error Response
5713 * Control" Bit was clear (0), then set the microcode variable
5714 * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode
5715 * to ignore DMA parity errors.
5717 if (asc_dvc->cfg->control_flag & CONTROL_FLAG_IGNORE_PERR) {
5718 AdvReadWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
5719 word |= CONTROL_FLAG_IGNORE_PERR;
5720 AdvWriteWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
5724 * For ASC-38C0800, set FIFO_THRESH_80B [6:4] bits and START_CTL_TH [3:2]
5725 * bits for the default FIFO threshold.
5727 * Note: ASC-38C0800 FIFO threshold has been changed to 256 bytes.
5729 * For DMA Errata #4 set the BC_THRESH_ENB bit.
5731 AdvWriteByteRegister(iop_base, IOPB_DMA_CFG0,
5732 BC_THRESH_ENB | FIFO_THRESH_80B | START_CTL_TH |
5733 READ_CMD_MRM);
5736 * Microcode operating variables for WDTR, SDTR, and command tag
5737 * queuing will be set in slave_configure() based on what a
5738 * device reports it is capable of in Inquiry byte 7.
5740 * If SCSI Bus Resets have been disabled, then directly set
5741 * SDTR and WDTR from the EEPROM configuration. This will allow
5742 * the BIOS and warm boot to work without a SCSI bus hang on
5743 * the Inquiry caused by host and target mismatched DTR values.
5744 * Without the SCSI Bus Reset, before an Inquiry a device can't
5745 * be assumed to be in Asynchronous, Narrow mode.
5747 if ((asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) == 0) {
5748 AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE,
5749 asc_dvc->wdtr_able);
5750 AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE,
5751 asc_dvc->sdtr_able);
5755 * Set microcode operating variables for DISC and SDTR_SPEED1,
5756 * SDTR_SPEED2, SDTR_SPEED3, and SDTR_SPEED4 based on the EEPROM
5757 * configuration values.
5759 * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2,
5760 * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them
5761 * without determining here whether the device supports SDTR.
5763 AdvWriteWordLram(iop_base, ASC_MC_DISC_ENABLE,
5764 asc_dvc->cfg->disc_enable);
5765 AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED1, asc_dvc->sdtr_speed1);
5766 AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED2, asc_dvc->sdtr_speed2);
5767 AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED3, asc_dvc->sdtr_speed3);
5768 AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED4, asc_dvc->sdtr_speed4);
5771 * Set SCSI_CFG0 Microcode Default Value.
5773 * The microcode will set the SCSI_CFG0 register using this value
5774 * after it is started below.
5776 AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG0,
5777 PARITY_EN | QUEUE_128 | SEL_TMO_LONG | OUR_ID_EN |
5778 asc_dvc->chip_scsi_id);
5781 * Determine SCSI_CFG1 Microcode Default Value.
5783 * The microcode will set the SCSI_CFG1 register using this value
5784 * after it is started below.
5787 /* Read current SCSI_CFG1 Register value. */
5788 scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1);
5791 * If the internal narrow cable is reversed all of the SCSI_CTRL
5792 * register signals will be set. Check for and return an error if
5793 * this condition is found.
5795 if ((AdvReadWordRegister(iop_base, IOPW_SCSI_CTRL) & 0x3F07) == 0x3F07) {
5796 asc_dvc->err_code |= ASC_IERR_REVERSED_CABLE;
5797 return ADV_ERROR;
5801 * All kind of combinations of devices attached to one of four
5802 * connectors are acceptable except HVD device attached. For example,
5803 * LVD device can be attached to SE connector while SE device attached
5804 * to LVD connector. If LVD device attached to SE connector, it only
5805 * runs up to Ultra speed.
5807 * If an HVD device is attached to one of LVD connectors, return an
5808 * error. However, there is no way to detect HVD device attached to
5809 * SE connectors.
5811 if (scsi_cfg1 & HVD) {
5812 asc_dvc->err_code = ASC_IERR_HVD_DEVICE;
5813 return ADV_ERROR;
5817 * If either SE or LVD automatic termination control is enabled, then
5818 * set the termination value based on a table listed in a_condor.h.
5820 * If manual termination was specified with an EEPROM setting then
5821 * 'termination' was set-up in AdvInitFrom38C0800EEPROM() and is ready
5822 * to be 'ored' into SCSI_CFG1.
5824 if ((asc_dvc->cfg->termination & TERM_SE) == 0) {
5825 /* SE automatic termination control is enabled. */
5826 switch (scsi_cfg1 & C_DET_SE) {
5827 /* TERM_SE_HI: on, TERM_SE_LO: on */
5828 case 0x1:
5829 case 0x2:
5830 case 0x3:
5831 asc_dvc->cfg->termination |= TERM_SE;
5832 break;
5834 /* TERM_SE_HI: on, TERM_SE_LO: off */
5835 case 0x0:
5836 asc_dvc->cfg->termination |= TERM_SE_HI;
5837 break;
5841 if ((asc_dvc->cfg->termination & TERM_LVD) == 0) {
5842 /* LVD automatic termination control is enabled. */
5843 switch (scsi_cfg1 & C_DET_LVD) {
5844 /* TERM_LVD_HI: on, TERM_LVD_LO: on */
5845 case 0x4:
5846 case 0x8:
5847 case 0xC:
5848 asc_dvc->cfg->termination |= TERM_LVD;
5849 break;
5851 /* TERM_LVD_HI: off, TERM_LVD_LO: off */
5852 case 0x0:
5853 break;
5858 * Clear any set TERM_SE and TERM_LVD bits.
5860 scsi_cfg1 &= (~TERM_SE & ~TERM_LVD);
5863 * Invert the TERM_SE and TERM_LVD bits and then set 'scsi_cfg1'.
5865 scsi_cfg1 |= (~asc_dvc->cfg->termination & 0xF0);
5868 * Clear BIG_ENDIAN, DIS_TERM_DRV, Terminator Polarity and HVD/LVD/SE
5869 * bits and set possibly modified termination control bits in the
5870 * Microcode SCSI_CFG1 Register Value.
5872 scsi_cfg1 &= (~BIG_ENDIAN & ~DIS_TERM_DRV & ~TERM_POL & ~HVD_LVD_SE);
5875 * Set SCSI_CFG1 Microcode Default Value
5877 * Set possibly modified termination control and reset DIS_TERM_DRV
5878 * bits in the Microcode SCSI_CFG1 Register Value.
5880 * The microcode will set the SCSI_CFG1 register using this value
5881 * after it is started below.
5883 AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG1, scsi_cfg1);
5886 * Set MEM_CFG Microcode Default Value
5888 * The microcode will set the MEM_CFG register using this value
5889 * after it is started below.
5891 * MEM_CFG may be accessed as a word or byte, but only bits 0-7
5892 * are defined.
5894 * ASC-38C0800 has 16KB internal memory.
5896 AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_MEM_CFG,
5897 BIOS_EN | RAM_SZ_16KB);
5900 * Set SEL_MASK Microcode Default Value
5902 * The microcode will set the SEL_MASK register using this value
5903 * after it is started below.
5905 AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SEL_MASK,
5906 ADV_TID_TO_TIDMASK(asc_dvc->chip_scsi_id));
5908 AdvBuildCarrierFreelist(asc_dvc);
5911 * Set-up the Host->RISC Initiator Command Queue (ICQ).
5914 if ((asc_dvc->icq_sp = asc_dvc->carr_freelist) == NULL) {
5915 asc_dvc->err_code |= ASC_IERR_NO_CARRIER;
5916 return ADV_ERROR;
5918 asc_dvc->carr_freelist = (ADV_CARR_T *)
5919 ADV_U32_TO_VADDR(le32_to_cpu(asc_dvc->icq_sp->next_vpa));
5922 * The first command issued will be placed in the stopper carrier.
5924 asc_dvc->icq_sp->next_vpa = cpu_to_le32(ASC_CQ_STOPPER);
5927 * Set RISC ICQ physical address start value.
5928 * carr_pa is LE, must be native before write
5930 AdvWriteDWordLramNoSwap(iop_base, ASC_MC_ICQ, asc_dvc->icq_sp->carr_pa);
5933 * Set-up the RISC->Host Initiator Response Queue (IRQ).
5935 if ((asc_dvc->irq_sp = asc_dvc->carr_freelist) == NULL) {
5936 asc_dvc->err_code |= ASC_IERR_NO_CARRIER;
5937 return ADV_ERROR;
5939 asc_dvc->carr_freelist = (ADV_CARR_T *)
5940 ADV_U32_TO_VADDR(le32_to_cpu(asc_dvc->irq_sp->next_vpa));
5943 * The first command completed by the RISC will be placed in
5944 * the stopper.
5946 * Note: Set 'next_vpa' to ASC_CQ_STOPPER. When the request is
5947 * completed the RISC will set the ASC_RQ_STOPPER bit.
5949 asc_dvc->irq_sp->next_vpa = cpu_to_le32(ASC_CQ_STOPPER);
5952 * Set RISC IRQ physical address start value.
5954 * carr_pa is LE, must be native before write *
5956 AdvWriteDWordLramNoSwap(iop_base, ASC_MC_IRQ, asc_dvc->irq_sp->carr_pa);
5957 asc_dvc->carr_pending_cnt = 0;
5959 AdvWriteByteRegister(iop_base, IOPB_INTR_ENABLES,
5960 (ADV_INTR_ENABLE_HOST_INTR |
5961 ADV_INTR_ENABLE_GLOBAL_INTR));
5963 AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, word);
5964 AdvWriteWordRegister(iop_base, IOPW_PC, word);
5966 /* finally, finally, gentlemen, start your engine */
5967 AdvWriteWordRegister(iop_base, IOPW_RISC_CSR, ADV_RISC_CSR_RUN);
5970 * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus
5971 * Resets should be performed. The RISC has to be running
5972 * to issue a SCSI Bus Reset.
5974 if (asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) {
5976 * If the BIOS Signature is present in memory, restore the
5977 * BIOS Handshake Configuration Table and do not perform
5978 * a SCSI Bus Reset.
5980 if (bios_mem[(ASC_MC_BIOS_SIGNATURE - ASC_MC_BIOSMEM) / 2] ==
5981 0x55AA) {
5983 * Restore per TID negotiated values.
5985 AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
5986 AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
5987 AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE,
5988 tagqng_able);
5989 for (tid = 0; tid <= ADV_MAX_TID; tid++) {
5990 AdvWriteByteLram(iop_base,
5991 ASC_MC_NUMBER_OF_MAX_CMD + tid,
5992 max_cmd[tid]);
5994 } else {
5995 if (AdvResetSB(asc_dvc) != ADV_TRUE) {
5996 warn_code = ASC_WARN_BUSRESET_ERROR;
6001 return warn_code;
6005 * Initialize the ASC-38C1600.
6007 * On failure set the ASC_DVC_VAR field 'err_code' and return ADV_ERROR.
6009 * For a non-fatal error return a warning code. If there are no warnings
6010 * then 0 is returned.
6012 * Needed after initialization for error recovery.
6014 static int AdvInitAsc38C1600Driver(ADV_DVC_VAR *asc_dvc)
6016 const struct firmware *fw;
6017 const char fwname[] = "advansys/38C1600.bin";
6018 AdvPortAddr iop_base;
6019 ushort warn_code;
6020 int begin_addr;
6021 int end_addr;
6022 ushort code_sum;
6023 long word;
6024 int i;
6025 int err;
6026 unsigned long chksum;
6027 ushort scsi_cfg1;
6028 uchar byte;
6029 uchar tid;
6030 ushort bios_mem[ASC_MC_BIOSLEN / 2]; /* BIOS RISC Memory 0x40-0x8F. */
6031 ushort wdtr_able, sdtr_able, ppr_able, tagqng_able;
6032 uchar max_cmd[ASC_MAX_TID + 1];
6034 /* If there is already an error, don't continue. */
6035 if (asc_dvc->err_code != 0) {
6036 return ADV_ERROR;
6040 * The caller must set 'chip_type' to ADV_CHIP_ASC38C1600.
6042 if (asc_dvc->chip_type != ADV_CHIP_ASC38C1600) {
6043 asc_dvc->err_code = ASC_IERR_BAD_CHIPTYPE;
6044 return ADV_ERROR;
6047 warn_code = 0;
6048 iop_base = asc_dvc->iop_base;
6051 * Save the RISC memory BIOS region before writing the microcode.
6052 * The BIOS may already be loaded and using its RISC LRAM region
6053 * so its region must be saved and restored.
6055 * Note: This code makes the assumption, which is currently true,
6056 * that a chip reset does not clear RISC LRAM.
6058 for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) {
6059 AdvReadWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i),
6060 bios_mem[i]);
6064 * Save current per TID negotiated values.
6066 AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
6067 AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
6068 AdvReadWordLram(iop_base, ASC_MC_PPR_ABLE, ppr_able);
6069 AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able);
6070 for (tid = 0; tid <= ASC_MAX_TID; tid++) {
6071 AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid,
6072 max_cmd[tid]);
6076 * RAM BIST (Built-In Self Test)
6078 * Address : I/O base + offset 0x38h register (byte).
6079 * Function: Bit 7-6(RW) : RAM mode
6080 * Normal Mode : 0x00
6081 * Pre-test Mode : 0x40
6082 * RAM Test Mode : 0x80
6083 * Bit 5 : unused
6084 * Bit 4(RO) : Done bit
6085 * Bit 3-0(RO) : Status
6086 * Host Error : 0x08
6087 * Int_RAM Error : 0x04
6088 * RISC Error : 0x02
6089 * SCSI Error : 0x01
6090 * No Error : 0x00
6092 * Note: RAM BIST code should be put right here, before loading the
6093 * microcode and after saving the RISC memory BIOS region.
6097 * LRAM Pre-test
6099 * Write PRE_TEST_MODE (0x40) to register and wait for 10 milliseconds.
6100 * If Done bit not set or low nibble not PRE_TEST_VALUE (0x05), return
6101 * an error. Reset to NORMAL_MODE (0x00) and do again. If cannot reset
6102 * to NORMAL_MODE, return an error too.
6104 for (i = 0; i < 2; i++) {
6105 AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, PRE_TEST_MODE);
6106 mdelay(10); /* Wait for 10ms before reading back. */
6107 byte = AdvReadByteRegister(iop_base, IOPB_RAM_BIST);
6108 if ((byte & RAM_TEST_DONE) == 0
6109 || (byte & 0x0F) != PRE_TEST_VALUE) {
6110 asc_dvc->err_code = ASC_IERR_BIST_PRE_TEST;
6111 return ADV_ERROR;
6114 AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, NORMAL_MODE);
6115 mdelay(10); /* Wait for 10ms before reading back. */
6116 if (AdvReadByteRegister(iop_base, IOPB_RAM_BIST)
6117 != NORMAL_VALUE) {
6118 asc_dvc->err_code = ASC_IERR_BIST_PRE_TEST;
6119 return ADV_ERROR;
6124 * LRAM Test - It takes about 1.5 ms to run through the test.
6126 * Write RAM_TEST_MODE (0x80) to register and wait for 10 milliseconds.
6127 * If Done bit not set or Status not 0, save register byte, set the
6128 * err_code, and return an error.
6130 AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, RAM_TEST_MODE);
6131 mdelay(10); /* Wait for 10ms before checking status. */
6133 byte = AdvReadByteRegister(iop_base, IOPB_RAM_BIST);
6134 if ((byte & RAM_TEST_DONE) == 0 || (byte & RAM_TEST_STATUS) != 0) {
6135 /* Get here if Done bit not set or Status not 0. */
6136 asc_dvc->bist_err_code = byte; /* for BIOS display message */
6137 asc_dvc->err_code = ASC_IERR_BIST_RAM_TEST;
6138 return ADV_ERROR;
6141 /* We need to reset back to normal mode after LRAM test passes. */
6142 AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, NORMAL_MODE);
6144 err = request_firmware(&fw, fwname, asc_dvc->drv_ptr->dev);
6145 if (err) {
6146 printk(KERN_ERR "Failed to load image \"%s\" err %d\n",
6147 fwname, err);
6148 asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM;
6149 return err;
6151 if (fw->size < 4) {
6152 printk(KERN_ERR "Bogus length %zu in image \"%s\"\n",
6153 fw->size, fwname);
6154 release_firmware(fw);
6155 asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM;
6156 return -EINVAL;
6158 chksum = (fw->data[3] << 24) | (fw->data[2] << 16) |
6159 (fw->data[1] << 8) | fw->data[0];
6160 asc_dvc->err_code = AdvLoadMicrocode(iop_base, &fw->data[4],
6161 fw->size - 4, ADV_38C1600_MEMSIZE,
6162 chksum);
6163 release_firmware(fw);
6164 if (asc_dvc->err_code)
6165 return ADV_ERROR;
6168 * Restore the RISC memory BIOS region.
6170 for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) {
6171 AdvWriteWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i),
6172 bios_mem[i]);
6176 * Calculate and write the microcode code checksum to the microcode
6177 * code checksum location ASC_MC_CODE_CHK_SUM (0x2C).
6179 AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, begin_addr);
6180 AdvReadWordLram(iop_base, ASC_MC_CODE_END_ADDR, end_addr);
6181 code_sum = 0;
6182 AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, begin_addr);
6183 for (word = begin_addr; word < end_addr; word += 2) {
6184 code_sum += AdvReadWordAutoIncLram(iop_base);
6186 AdvWriteWordLram(iop_base, ASC_MC_CODE_CHK_SUM, code_sum);
6189 * Read microcode version and date.
6191 AdvReadWordLram(iop_base, ASC_MC_VERSION_DATE,
6192 asc_dvc->cfg->mcode_date);
6193 AdvReadWordLram(iop_base, ASC_MC_VERSION_NUM,
6194 asc_dvc->cfg->mcode_version);
6197 * Set the chip type to indicate the ASC38C1600.
6199 AdvWriteWordLram(iop_base, ASC_MC_CHIP_TYPE, ADV_CHIP_ASC38C1600);
6202 * Write 1 to bit 14 'DIS_TERM_DRV' in the SCSI_CFG1 register.
6203 * When DIS_TERM_DRV set to 1, C_DET[3:0] will reflect current
6204 * cable detection and then we are able to read C_DET[3:0].
6206 * Note: We will reset DIS_TERM_DRV to 0 in the 'Set SCSI_CFG1
6207 * Microcode Default Value' section below.
6209 scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1);
6210 AdvWriteWordRegister(iop_base, IOPW_SCSI_CFG1,
6211 scsi_cfg1 | DIS_TERM_DRV);
6214 * If the PCI Configuration Command Register "Parity Error Response
6215 * Control" Bit was clear (0), then set the microcode variable
6216 * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode
6217 * to ignore DMA parity errors.
6219 if (asc_dvc->cfg->control_flag & CONTROL_FLAG_IGNORE_PERR) {
6220 AdvReadWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
6221 word |= CONTROL_FLAG_IGNORE_PERR;
6222 AdvWriteWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
6226 * If the BIOS control flag AIPP (Asynchronous Information
6227 * Phase Protection) disable bit is not set, then set the firmware
6228 * 'control_flag' CONTROL_FLAG_ENABLE_AIPP bit to enable
6229 * AIPP checking and encoding.
6231 if ((asc_dvc->bios_ctrl & BIOS_CTRL_AIPP_DIS) == 0) {
6232 AdvReadWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
6233 word |= CONTROL_FLAG_ENABLE_AIPP;
6234 AdvWriteWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
6238 * For ASC-38C1600 use DMA_CFG0 default values: FIFO_THRESH_80B [6:4],
6239 * and START_CTL_TH [3:2].
6241 AdvWriteByteRegister(iop_base, IOPB_DMA_CFG0,
6242 FIFO_THRESH_80B | START_CTL_TH | READ_CMD_MRM);
6245 * Microcode operating variables for WDTR, SDTR, and command tag
6246 * queuing will be set in slave_configure() based on what a
6247 * device reports it is capable of in Inquiry byte 7.
6249 * If SCSI Bus Resets have been disabled, then directly set
6250 * SDTR and WDTR from the EEPROM configuration. This will allow
6251 * the BIOS and warm boot to work without a SCSI bus hang on
6252 * the Inquiry caused by host and target mismatched DTR values.
6253 * Without the SCSI Bus Reset, before an Inquiry a device can't
6254 * be assumed to be in Asynchronous, Narrow mode.
6256 if ((asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) == 0) {
6257 AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE,
6258 asc_dvc->wdtr_able);
6259 AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE,
6260 asc_dvc->sdtr_able);
6264 * Set microcode operating variables for DISC and SDTR_SPEED1,
6265 * SDTR_SPEED2, SDTR_SPEED3, and SDTR_SPEED4 based on the EEPROM
6266 * configuration values.
6268 * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2,
6269 * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them
6270 * without determining here whether the device supports SDTR.
6272 AdvWriteWordLram(iop_base, ASC_MC_DISC_ENABLE,
6273 asc_dvc->cfg->disc_enable);
6274 AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED1, asc_dvc->sdtr_speed1);
6275 AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED2, asc_dvc->sdtr_speed2);
6276 AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED3, asc_dvc->sdtr_speed3);
6277 AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED4, asc_dvc->sdtr_speed4);
6280 * Set SCSI_CFG0 Microcode Default Value.
6282 * The microcode will set the SCSI_CFG0 register using this value
6283 * after it is started below.
6285 AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG0,
6286 PARITY_EN | QUEUE_128 | SEL_TMO_LONG | OUR_ID_EN |
6287 asc_dvc->chip_scsi_id);
6290 * Calculate SCSI_CFG1 Microcode Default Value.
6292 * The microcode will set the SCSI_CFG1 register using this value
6293 * after it is started below.
6295 * Each ASC-38C1600 function has only two cable detect bits.
6296 * The bus mode override bits are in IOPB_SOFT_OVER_WR.
6298 scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1);
6301 * If the cable is reversed all of the SCSI_CTRL register signals
6302 * will be set. Check for and return an error if this condition is
6303 * found.
6305 if ((AdvReadWordRegister(iop_base, IOPW_SCSI_CTRL) & 0x3F07) == 0x3F07) {
6306 asc_dvc->err_code |= ASC_IERR_REVERSED_CABLE;
6307 return ADV_ERROR;
6311 * Each ASC-38C1600 function has two connectors. Only an HVD device
6312 * can not be connected to either connector. An LVD device or SE device
6313 * may be connected to either connecor. If an SE device is connected,
6314 * then at most Ultra speed (20 Mhz) can be used on both connectors.
6316 * If an HVD device is attached, return an error.
6318 if (scsi_cfg1 & HVD) {
6319 asc_dvc->err_code |= ASC_IERR_HVD_DEVICE;
6320 return ADV_ERROR;
6324 * Each function in the ASC-38C1600 uses only the SE cable detect and
6325 * termination because there are two connectors for each function. Each
6326 * function may use either LVD or SE mode. Corresponding the SE automatic
6327 * termination control EEPROM bits are used for each function. Each
6328 * function has its own EEPROM. If SE automatic control is enabled for
6329 * the function, then set the termination value based on a table listed
6330 * in a_condor.h.
6332 * If manual termination is specified in the EEPROM for the function,
6333 * then 'termination' was set-up in AscInitFrom38C1600EEPROM() and is
6334 * ready to be 'ored' into SCSI_CFG1.
6336 if ((asc_dvc->cfg->termination & TERM_SE) == 0) {
6337 struct pci_dev *pdev = adv_dvc_to_pdev(asc_dvc);
6338 /* SE automatic termination control is enabled. */
6339 switch (scsi_cfg1 & C_DET_SE) {
6340 /* TERM_SE_HI: on, TERM_SE_LO: on */
6341 case 0x1:
6342 case 0x2:
6343 case 0x3:
6344 asc_dvc->cfg->termination |= TERM_SE;
6345 break;
6347 case 0x0:
6348 if (PCI_FUNC(pdev->devfn) == 0) {
6349 /* Function 0 - TERM_SE_HI: off, TERM_SE_LO: off */
6350 } else {
6351 /* Function 1 - TERM_SE_HI: on, TERM_SE_LO: off */
6352 asc_dvc->cfg->termination |= TERM_SE_HI;
6354 break;
6359 * Clear any set TERM_SE bits.
6361 scsi_cfg1 &= ~TERM_SE;
6364 * Invert the TERM_SE bits and then set 'scsi_cfg1'.
6366 scsi_cfg1 |= (~asc_dvc->cfg->termination & TERM_SE);
6369 * Clear Big Endian and Terminator Polarity bits and set possibly
6370 * modified termination control bits in the Microcode SCSI_CFG1
6371 * Register Value.
6373 * Big Endian bit is not used even on big endian machines.
6375 scsi_cfg1 &= (~BIG_ENDIAN & ~DIS_TERM_DRV & ~TERM_POL);
6378 * Set SCSI_CFG1 Microcode Default Value
6380 * Set possibly modified termination control bits in the Microcode
6381 * SCSI_CFG1 Register Value.
6383 * The microcode will set the SCSI_CFG1 register using this value
6384 * after it is started below.
6386 AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG1, scsi_cfg1);
6389 * Set MEM_CFG Microcode Default Value
6391 * The microcode will set the MEM_CFG register using this value
6392 * after it is started below.
6394 * MEM_CFG may be accessed as a word or byte, but only bits 0-7
6395 * are defined.
6397 * ASC-38C1600 has 32KB internal memory.
6399 * XXX - Since ASC38C1600 Rev.3 has a Local RAM failure issue, we come
6400 * out a special 16K Adv Library and Microcode version. After the issue
6401 * resolved, we should turn back to the 32K support. Both a_condor.h and
6402 * mcode.sas files also need to be updated.
6404 * AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_MEM_CFG,
6405 * BIOS_EN | RAM_SZ_32KB);
6407 AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_MEM_CFG,
6408 BIOS_EN | RAM_SZ_16KB);
6411 * Set SEL_MASK Microcode Default Value
6413 * The microcode will set the SEL_MASK register using this value
6414 * after it is started below.
6416 AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SEL_MASK,
6417 ADV_TID_TO_TIDMASK(asc_dvc->chip_scsi_id));
6419 AdvBuildCarrierFreelist(asc_dvc);
6422 * Set-up the Host->RISC Initiator Command Queue (ICQ).
6424 if ((asc_dvc->icq_sp = asc_dvc->carr_freelist) == NULL) {
6425 asc_dvc->err_code |= ASC_IERR_NO_CARRIER;
6426 return ADV_ERROR;
6428 asc_dvc->carr_freelist = (ADV_CARR_T *)
6429 ADV_U32_TO_VADDR(le32_to_cpu(asc_dvc->icq_sp->next_vpa));
6432 * The first command issued will be placed in the stopper carrier.
6434 asc_dvc->icq_sp->next_vpa = cpu_to_le32(ASC_CQ_STOPPER);
6437 * Set RISC ICQ physical address start value. Initialize the
6438 * COMMA register to the same value otherwise the RISC will
6439 * prematurely detect a command is available.
6441 AdvWriteDWordLramNoSwap(iop_base, ASC_MC_ICQ, asc_dvc->icq_sp->carr_pa);
6442 AdvWriteDWordRegister(iop_base, IOPDW_COMMA,
6443 le32_to_cpu(asc_dvc->icq_sp->carr_pa));
6446 * Set-up the RISC->Host Initiator Response Queue (IRQ).
6448 if ((asc_dvc->irq_sp = asc_dvc->carr_freelist) == NULL) {
6449 asc_dvc->err_code |= ASC_IERR_NO_CARRIER;
6450 return ADV_ERROR;
6452 asc_dvc->carr_freelist = (ADV_CARR_T *)
6453 ADV_U32_TO_VADDR(le32_to_cpu(asc_dvc->irq_sp->next_vpa));
6456 * The first command completed by the RISC will be placed in
6457 * the stopper.
6459 * Note: Set 'next_vpa' to ASC_CQ_STOPPER. When the request is
6460 * completed the RISC will set the ASC_RQ_STOPPER bit.
6462 asc_dvc->irq_sp->next_vpa = cpu_to_le32(ASC_CQ_STOPPER);
6465 * Set RISC IRQ physical address start value.
6467 AdvWriteDWordLramNoSwap(iop_base, ASC_MC_IRQ, asc_dvc->irq_sp->carr_pa);
6468 asc_dvc->carr_pending_cnt = 0;
6470 AdvWriteByteRegister(iop_base, IOPB_INTR_ENABLES,
6471 (ADV_INTR_ENABLE_HOST_INTR |
6472 ADV_INTR_ENABLE_GLOBAL_INTR));
6473 AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, word);
6474 AdvWriteWordRegister(iop_base, IOPW_PC, word);
6476 /* finally, finally, gentlemen, start your engine */
6477 AdvWriteWordRegister(iop_base, IOPW_RISC_CSR, ADV_RISC_CSR_RUN);
6480 * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus
6481 * Resets should be performed. The RISC has to be running
6482 * to issue a SCSI Bus Reset.
6484 if (asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) {
6486 * If the BIOS Signature is present in memory, restore the
6487 * per TID microcode operating variables.
6489 if (bios_mem[(ASC_MC_BIOS_SIGNATURE - ASC_MC_BIOSMEM) / 2] ==
6490 0x55AA) {
6492 * Restore per TID negotiated values.
6494 AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
6495 AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
6496 AdvWriteWordLram(iop_base, ASC_MC_PPR_ABLE, ppr_able);
6497 AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE,
6498 tagqng_able);
6499 for (tid = 0; tid <= ASC_MAX_TID; tid++) {
6500 AdvWriteByteLram(iop_base,
6501 ASC_MC_NUMBER_OF_MAX_CMD + tid,
6502 max_cmd[tid]);
6504 } else {
6505 if (AdvResetSB(asc_dvc) != ADV_TRUE) {
6506 warn_code = ASC_WARN_BUSRESET_ERROR;
6511 return warn_code;
6515 * Reset chip and SCSI Bus.
6517 * Return Value:
6518 * ADV_TRUE(1) - Chip re-initialization and SCSI Bus Reset successful.
6519 * ADV_FALSE(0) - Chip re-initialization and SCSI Bus Reset failure.
6521 static int AdvResetChipAndSB(ADV_DVC_VAR *asc_dvc)
6523 int status;
6524 ushort wdtr_able, sdtr_able, tagqng_able;
6525 ushort ppr_able = 0;
6526 uchar tid, max_cmd[ADV_MAX_TID + 1];
6527 AdvPortAddr iop_base;
6528 ushort bios_sig;
6530 iop_base = asc_dvc->iop_base;
6533 * Save current per TID negotiated values.
6535 AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
6536 AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
6537 if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) {
6538 AdvReadWordLram(iop_base, ASC_MC_PPR_ABLE, ppr_able);
6540 AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able);
6541 for (tid = 0; tid <= ADV_MAX_TID; tid++) {
6542 AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid,
6543 max_cmd[tid]);
6547 * Force the AdvInitAsc3550/38C0800Driver() function to
6548 * perform a SCSI Bus Reset by clearing the BIOS signature word.
6549 * The initialization functions assumes a SCSI Bus Reset is not
6550 * needed if the BIOS signature word is present.
6552 AdvReadWordLram(iop_base, ASC_MC_BIOS_SIGNATURE, bios_sig);
6553 AdvWriteWordLram(iop_base, ASC_MC_BIOS_SIGNATURE, 0);
6556 * Stop chip and reset it.
6558 AdvWriteWordRegister(iop_base, IOPW_RISC_CSR, ADV_RISC_CSR_STOP);
6559 AdvWriteWordRegister(iop_base, IOPW_CTRL_REG, ADV_CTRL_REG_CMD_RESET);
6560 mdelay(100);
6561 AdvWriteWordRegister(iop_base, IOPW_CTRL_REG,
6562 ADV_CTRL_REG_CMD_WR_IO_REG);
6565 * Reset Adv Library error code, if any, and try
6566 * re-initializing the chip.
6568 asc_dvc->err_code = 0;
6569 if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) {
6570 status = AdvInitAsc38C1600Driver(asc_dvc);
6571 } else if (asc_dvc->chip_type == ADV_CHIP_ASC38C0800) {
6572 status = AdvInitAsc38C0800Driver(asc_dvc);
6573 } else {
6574 status = AdvInitAsc3550Driver(asc_dvc);
6577 /* Translate initialization return value to status value. */
6578 if (status == 0) {
6579 status = ADV_TRUE;
6580 } else {
6581 status = ADV_FALSE;
6585 * Restore the BIOS signature word.
6587 AdvWriteWordLram(iop_base, ASC_MC_BIOS_SIGNATURE, bios_sig);
6590 * Restore per TID negotiated values.
6592 AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
6593 AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
6594 if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) {
6595 AdvWriteWordLram(iop_base, ASC_MC_PPR_ABLE, ppr_able);
6597 AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able);
6598 for (tid = 0; tid <= ADV_MAX_TID; tid++) {
6599 AdvWriteByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid,
6600 max_cmd[tid]);
6603 return status;
6607 * adv_async_callback() - Adv Library asynchronous event callback function.
6609 static void adv_async_callback(ADV_DVC_VAR *adv_dvc_varp, uchar code)
6611 switch (code) {
6612 case ADV_ASYNC_SCSI_BUS_RESET_DET:
6614 * The firmware detected a SCSI Bus reset.
6616 ASC_DBG(0, "ADV_ASYNC_SCSI_BUS_RESET_DET\n");
6617 break;
6619 case ADV_ASYNC_RDMA_FAILURE:
6621 * Handle RDMA failure by resetting the SCSI Bus and
6622 * possibly the chip if it is unresponsive. Log the error
6623 * with a unique code.
6625 ASC_DBG(0, "ADV_ASYNC_RDMA_FAILURE\n");
6626 AdvResetChipAndSB(adv_dvc_varp);
6627 break;
6629 case ADV_HOST_SCSI_BUS_RESET:
6631 * Host generated SCSI bus reset occurred.
6633 ASC_DBG(0, "ADV_HOST_SCSI_BUS_RESET\n");
6634 break;
6636 default:
6637 ASC_DBG(0, "unknown code 0x%x\n", code);
6638 break;
6643 * adv_isr_callback() - Second Level Interrupt Handler called by AdvISR().
6645 * Callback function for the Wide SCSI Adv Library.
6647 static void adv_isr_callback(ADV_DVC_VAR *adv_dvc_varp, ADV_SCSI_REQ_Q *scsiqp)
6649 struct asc_board *boardp;
6650 adv_req_t *reqp;
6651 adv_sgblk_t *sgblkp;
6652 struct scsi_cmnd *scp;
6653 struct Scsi_Host *shost;
6654 ADV_DCNT resid_cnt;
6656 ASC_DBG(1, "adv_dvc_varp 0x%lx, scsiqp 0x%lx\n",
6657 (ulong)adv_dvc_varp, (ulong)scsiqp);
6658 ASC_DBG_PRT_ADV_SCSI_REQ_Q(2, scsiqp);
6661 * Get the adv_req_t structure for the command that has been
6662 * completed. The adv_req_t structure actually contains the
6663 * completed ADV_SCSI_REQ_Q structure.
6665 reqp = (adv_req_t *)ADV_U32_TO_VADDR(scsiqp->srb_ptr);
6666 ASC_DBG(1, "reqp 0x%lx\n", (ulong)reqp);
6667 if (reqp == NULL) {
6668 ASC_PRINT("adv_isr_callback: reqp is NULL\n");
6669 return;
6673 * Get the struct scsi_cmnd structure and Scsi_Host structure for the
6674 * command that has been completed.
6676 * Note: The adv_req_t request structure and adv_sgblk_t structure,
6677 * if any, are dropped, because a board structure pointer can not be
6678 * determined.
6680 scp = reqp->cmndp;
6681 ASC_DBG(1, "scp 0x%p\n", scp);
6682 if (scp == NULL) {
6683 ASC_PRINT
6684 ("adv_isr_callback: scp is NULL; adv_req_t dropped.\n");
6685 return;
6687 ASC_DBG_PRT_CDB(2, scp->cmnd, scp->cmd_len);
6689 shost = scp->device->host;
6690 ASC_STATS(shost, callback);
6691 ASC_DBG(1, "shost 0x%p\n", shost);
6693 boardp = shost_priv(shost);
6694 BUG_ON(adv_dvc_varp != &boardp->dvc_var.adv_dvc_var);
6697 * 'done_status' contains the command's ending status.
6699 switch (scsiqp->done_status) {
6700 case QD_NO_ERROR:
6701 ASC_DBG(2, "QD_NO_ERROR\n");
6702 scp->result = 0;
6705 * Check for an underrun condition.
6707 * If there was no error and an underrun condition, then
6708 * then return the number of underrun bytes.
6710 resid_cnt = le32_to_cpu(scsiqp->data_cnt);
6711 if (scsi_bufflen(scp) != 0 && resid_cnt != 0 &&
6712 resid_cnt <= scsi_bufflen(scp)) {
6713 ASC_DBG(1, "underrun condition %lu bytes\n",
6714 (ulong)resid_cnt);
6715 scsi_set_resid(scp, resid_cnt);
6717 break;
6719 case QD_WITH_ERROR:
6720 ASC_DBG(2, "QD_WITH_ERROR\n");
6721 switch (scsiqp->host_status) {
6722 case QHSTA_NO_ERROR:
6723 if (scsiqp->scsi_status == SAM_STAT_CHECK_CONDITION) {
6724 ASC_DBG(2, "SAM_STAT_CHECK_CONDITION\n");
6725 ASC_DBG_PRT_SENSE(2, scp->sense_buffer,
6726 SCSI_SENSE_BUFFERSIZE);
6728 * Note: The 'status_byte()' macro used by
6729 * target drivers defined in scsi.h shifts the
6730 * status byte returned by host drivers right
6731 * by 1 bit. This is why target drivers also
6732 * use right shifted status byte definitions.
6733 * For instance target drivers use
6734 * CHECK_CONDITION, defined to 0x1, instead of
6735 * the SCSI defined check condition value of
6736 * 0x2. Host drivers are supposed to return
6737 * the status byte as it is defined by SCSI.
6739 scp->result = DRIVER_BYTE(DRIVER_SENSE) |
6740 STATUS_BYTE(scsiqp->scsi_status);
6741 } else {
6742 scp->result = STATUS_BYTE(scsiqp->scsi_status);
6744 break;
6746 default:
6747 /* Some other QHSTA error occurred. */
6748 ASC_DBG(1, "host_status 0x%x\n", scsiqp->host_status);
6749 scp->result = HOST_BYTE(DID_BAD_TARGET);
6750 break;
6752 break;
6754 case QD_ABORTED_BY_HOST:
6755 ASC_DBG(1, "QD_ABORTED_BY_HOST\n");
6756 scp->result =
6757 HOST_BYTE(DID_ABORT) | STATUS_BYTE(scsiqp->scsi_status);
6758 break;
6760 default:
6761 ASC_DBG(1, "done_status 0x%x\n", scsiqp->done_status);
6762 scp->result =
6763 HOST_BYTE(DID_ERROR) | STATUS_BYTE(scsiqp->scsi_status);
6764 break;
6768 * If the 'init_tidmask' bit isn't already set for the target and the
6769 * current request finished normally, then set the bit for the target
6770 * to indicate that a device is present.
6772 if ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(scp->device->id)) == 0 &&
6773 scsiqp->done_status == QD_NO_ERROR &&
6774 scsiqp->host_status == QHSTA_NO_ERROR) {
6775 boardp->init_tidmask |= ADV_TID_TO_TIDMASK(scp->device->id);
6778 asc_scsi_done(scp);
6781 * Free all 'adv_sgblk_t' structures allocated for the request.
6783 while ((sgblkp = reqp->sgblkp) != NULL) {
6784 /* Remove 'sgblkp' from the request list. */
6785 reqp->sgblkp = sgblkp->next_sgblkp;
6787 /* Add 'sgblkp' to the board free list. */
6788 sgblkp->next_sgblkp = boardp->adv_sgblkp;
6789 boardp->adv_sgblkp = sgblkp;
6793 * Free the adv_req_t structure used with the command by adding
6794 * it back to the board free list.
6796 reqp->next_reqp = boardp->adv_reqp;
6797 boardp->adv_reqp = reqp;
6799 ASC_DBG(1, "done\n");
6803 * Adv Library Interrupt Service Routine
6805 * This function is called by a driver's interrupt service routine.
6806 * The function disables and re-enables interrupts.
6808 * When a microcode idle command is completed, the ADV_DVC_VAR
6809 * 'idle_cmd_done' field is set to ADV_TRUE.
6811 * Note: AdvISR() can be called when interrupts are disabled or even
6812 * when there is no hardware interrupt condition present. It will
6813 * always check for completed idle commands and microcode requests.
6814 * This is an important feature that shouldn't be changed because it
6815 * allows commands to be completed from polling mode loops.
6817 * Return:
6818 * ADV_TRUE(1) - interrupt was pending
6819 * ADV_FALSE(0) - no interrupt was pending
6821 static int AdvISR(ADV_DVC_VAR *asc_dvc)
6823 AdvPortAddr iop_base;
6824 uchar int_stat;
6825 ushort target_bit;
6826 ADV_CARR_T *free_carrp;
6827 ADV_VADDR irq_next_vpa;
6828 ADV_SCSI_REQ_Q *scsiq;
6830 iop_base = asc_dvc->iop_base;
6832 /* Reading the register clears the interrupt. */
6833 int_stat = AdvReadByteRegister(iop_base, IOPB_INTR_STATUS_REG);
6835 if ((int_stat & (ADV_INTR_STATUS_INTRA | ADV_INTR_STATUS_INTRB |
6836 ADV_INTR_STATUS_INTRC)) == 0) {
6837 return ADV_FALSE;
6841 * Notify the driver of an asynchronous microcode condition by
6842 * calling the adv_async_callback function. The function
6843 * is passed the microcode ASC_MC_INTRB_CODE byte value.
6845 if (int_stat & ADV_INTR_STATUS_INTRB) {
6846 uchar intrb_code;
6848 AdvReadByteLram(iop_base, ASC_MC_INTRB_CODE, intrb_code);
6850 if (asc_dvc->chip_type == ADV_CHIP_ASC3550 ||
6851 asc_dvc->chip_type == ADV_CHIP_ASC38C0800) {
6852 if (intrb_code == ADV_ASYNC_CARRIER_READY_FAILURE &&
6853 asc_dvc->carr_pending_cnt != 0) {
6854 AdvWriteByteRegister(iop_base, IOPB_TICKLE,
6855 ADV_TICKLE_A);
6856 if (asc_dvc->chip_type == ADV_CHIP_ASC3550) {
6857 AdvWriteByteRegister(iop_base,
6858 IOPB_TICKLE,
6859 ADV_TICKLE_NOP);
6864 adv_async_callback(asc_dvc, intrb_code);
6868 * Check if the IRQ stopper carrier contains a completed request.
6870 while (((irq_next_vpa =
6871 le32_to_cpu(asc_dvc->irq_sp->next_vpa)) & ASC_RQ_DONE) != 0) {
6873 * Get a pointer to the newly completed ADV_SCSI_REQ_Q structure.
6874 * The RISC will have set 'areq_vpa' to a virtual address.
6876 * The firmware will have copied the ASC_SCSI_REQ_Q.scsiq_ptr
6877 * field to the carrier ADV_CARR_T.areq_vpa field. The conversion
6878 * below complements the conversion of ASC_SCSI_REQ_Q.scsiq_ptr'
6879 * in AdvExeScsiQueue().
6881 scsiq = (ADV_SCSI_REQ_Q *)
6882 ADV_U32_TO_VADDR(le32_to_cpu(asc_dvc->irq_sp->areq_vpa));
6885 * Request finished with good status and the queue was not
6886 * DMAed to host memory by the firmware. Set all status fields
6887 * to indicate good status.
6889 if ((irq_next_vpa & ASC_RQ_GOOD) != 0) {
6890 scsiq->done_status = QD_NO_ERROR;
6891 scsiq->host_status = scsiq->scsi_status = 0;
6892 scsiq->data_cnt = 0L;
6896 * Advance the stopper pointer to the next carrier
6897 * ignoring the lower four bits. Free the previous
6898 * stopper carrier.
6900 free_carrp = asc_dvc->irq_sp;
6901 asc_dvc->irq_sp = (ADV_CARR_T *)
6902 ADV_U32_TO_VADDR(ASC_GET_CARRP(irq_next_vpa));
6904 free_carrp->next_vpa =
6905 cpu_to_le32(ADV_VADDR_TO_U32(asc_dvc->carr_freelist));
6906 asc_dvc->carr_freelist = free_carrp;
6907 asc_dvc->carr_pending_cnt--;
6909 target_bit = ADV_TID_TO_TIDMASK(scsiq->target_id);
6912 * Clear request microcode control flag.
6914 scsiq->cntl = 0;
6917 * Notify the driver of the completed request by passing
6918 * the ADV_SCSI_REQ_Q pointer to its callback function.
6920 scsiq->a_flag |= ADV_SCSIQ_DONE;
6921 adv_isr_callback(asc_dvc, scsiq);
6923 * Note: After the driver callback function is called, 'scsiq'
6924 * can no longer be referenced.
6926 * Fall through and continue processing other completed
6927 * requests...
6930 return ADV_TRUE;
6933 static int AscSetLibErrorCode(ASC_DVC_VAR *asc_dvc, ushort err_code)
6935 if (asc_dvc->err_code == 0) {
6936 asc_dvc->err_code = err_code;
6937 AscWriteLramWord(asc_dvc->iop_base, ASCV_ASCDVC_ERR_CODE_W,
6938 err_code);
6940 return err_code;
6943 static void AscAckInterrupt(PortAddr iop_base)
6945 uchar host_flag;
6946 uchar risc_flag;
6947 ushort loop;
6949 loop = 0;
6950 do {
6951 risc_flag = AscReadLramByte(iop_base, ASCV_RISC_FLAG_B);
6952 if (loop++ > 0x7FFF) {
6953 break;
6955 } while ((risc_flag & ASC_RISC_FLAG_GEN_INT) != 0);
6956 host_flag =
6957 AscReadLramByte(iop_base,
6958 ASCV_HOST_FLAG_B) & (~ASC_HOST_FLAG_ACK_INT);
6959 AscWriteLramByte(iop_base, ASCV_HOST_FLAG_B,
6960 (uchar)(host_flag | ASC_HOST_FLAG_ACK_INT));
6961 AscSetChipStatus(iop_base, CIW_INT_ACK);
6962 loop = 0;
6963 while (AscGetChipStatus(iop_base) & CSW_INT_PENDING) {
6964 AscSetChipStatus(iop_base, CIW_INT_ACK);
6965 if (loop++ > 3) {
6966 break;
6969 AscWriteLramByte(iop_base, ASCV_HOST_FLAG_B, host_flag);
6972 static uchar AscGetSynPeriodIndex(ASC_DVC_VAR *asc_dvc, uchar syn_time)
6974 const uchar *period_table;
6975 int max_index;
6976 int min_index;
6977 int i;
6979 period_table = asc_dvc->sdtr_period_tbl;
6980 max_index = (int)asc_dvc->max_sdtr_index;
6981 min_index = (int)asc_dvc->min_sdtr_index;
6982 if ((syn_time <= period_table[max_index])) {
6983 for (i = min_index; i < (max_index - 1); i++) {
6984 if (syn_time <= period_table[i]) {
6985 return (uchar)i;
6988 return (uchar)max_index;
6989 } else {
6990 return (uchar)(max_index + 1);
6994 static uchar
6995 AscMsgOutSDTR(ASC_DVC_VAR *asc_dvc, uchar sdtr_period, uchar sdtr_offset)
6997 EXT_MSG sdtr_buf;
6998 uchar sdtr_period_index;
6999 PortAddr iop_base;
7001 iop_base = asc_dvc->iop_base;
7002 sdtr_buf.msg_type = EXTENDED_MESSAGE;
7003 sdtr_buf.msg_len = MS_SDTR_LEN;
7004 sdtr_buf.msg_req = EXTENDED_SDTR;
7005 sdtr_buf.xfer_period = sdtr_period;
7006 sdtr_offset &= ASC_SYN_MAX_OFFSET;
7007 sdtr_buf.req_ack_offset = sdtr_offset;
7008 sdtr_period_index = AscGetSynPeriodIndex(asc_dvc, sdtr_period);
7009 if (sdtr_period_index <= asc_dvc->max_sdtr_index) {
7010 AscMemWordCopyPtrToLram(iop_base, ASCV_MSGOUT_BEG,
7011 (uchar *)&sdtr_buf,
7012 sizeof(EXT_MSG) >> 1);
7013 return ((sdtr_period_index << 4) | sdtr_offset);
7014 } else {
7015 sdtr_buf.req_ack_offset = 0;
7016 AscMemWordCopyPtrToLram(iop_base, ASCV_MSGOUT_BEG,
7017 (uchar *)&sdtr_buf,
7018 sizeof(EXT_MSG) >> 1);
7019 return 0;
7023 static uchar
7024 AscCalSDTRData(ASC_DVC_VAR *asc_dvc, uchar sdtr_period, uchar syn_offset)
7026 uchar byte;
7027 uchar sdtr_period_ix;
7029 sdtr_period_ix = AscGetSynPeriodIndex(asc_dvc, sdtr_period);
7030 if (sdtr_period_ix > asc_dvc->max_sdtr_index)
7031 return 0xFF;
7032 byte = (sdtr_period_ix << 4) | (syn_offset & ASC_SYN_MAX_OFFSET);
7033 return byte;
7036 static int AscSetChipSynRegAtID(PortAddr iop_base, uchar id, uchar sdtr_data)
7038 ASC_SCSI_BIT_ID_TYPE org_id;
7039 int i;
7040 int sta = TRUE;
7042 AscSetBank(iop_base, 1);
7043 org_id = AscReadChipDvcID(iop_base);
7044 for (i = 0; i <= ASC_MAX_TID; i++) {
7045 if (org_id == (0x01 << i))
7046 break;
7048 org_id = (ASC_SCSI_BIT_ID_TYPE) i;
7049 AscWriteChipDvcID(iop_base, id);
7050 if (AscReadChipDvcID(iop_base) == (0x01 << id)) {
7051 AscSetBank(iop_base, 0);
7052 AscSetChipSyn(iop_base, sdtr_data);
7053 if (AscGetChipSyn(iop_base) != sdtr_data) {
7054 sta = FALSE;
7056 } else {
7057 sta = FALSE;
7059 AscSetBank(iop_base, 1);
7060 AscWriteChipDvcID(iop_base, org_id);
7061 AscSetBank(iop_base, 0);
7062 return (sta);
7065 static void AscSetChipSDTR(PortAddr iop_base, uchar sdtr_data, uchar tid_no)
7067 AscSetChipSynRegAtID(iop_base, tid_no, sdtr_data);
7068 AscPutMCodeSDTRDoneAtID(iop_base, tid_no, sdtr_data);
7071 static int AscIsrChipHalted(ASC_DVC_VAR *asc_dvc)
7073 EXT_MSG ext_msg;
7074 EXT_MSG out_msg;
7075 ushort halt_q_addr;
7076 int sdtr_accept;
7077 ushort int_halt_code;
7078 ASC_SCSI_BIT_ID_TYPE scsi_busy;
7079 ASC_SCSI_BIT_ID_TYPE target_id;
7080 PortAddr iop_base;
7081 uchar tag_code;
7082 uchar q_status;
7083 uchar halt_qp;
7084 uchar sdtr_data;
7085 uchar target_ix;
7086 uchar q_cntl, tid_no;
7087 uchar cur_dvc_qng;
7088 uchar asyn_sdtr;
7089 uchar scsi_status;
7090 struct asc_board *boardp;
7092 BUG_ON(!asc_dvc->drv_ptr);
7093 boardp = asc_dvc->drv_ptr;
7095 iop_base = asc_dvc->iop_base;
7096 int_halt_code = AscReadLramWord(iop_base, ASCV_HALTCODE_W);
7098 halt_qp = AscReadLramByte(iop_base, ASCV_CURCDB_B);
7099 halt_q_addr = ASC_QNO_TO_QADDR(halt_qp);
7100 target_ix = AscReadLramByte(iop_base,
7101 (ushort)(halt_q_addr +
7102 (ushort)ASC_SCSIQ_B_TARGET_IX));
7103 q_cntl = AscReadLramByte(iop_base,
7104 (ushort)(halt_q_addr + (ushort)ASC_SCSIQ_B_CNTL));
7105 tid_no = ASC_TIX_TO_TID(target_ix);
7106 target_id = (uchar)ASC_TID_TO_TARGET_ID(tid_no);
7107 if (asc_dvc->pci_fix_asyn_xfer & target_id) {
7108 asyn_sdtr = ASYN_SDTR_DATA_FIX_PCI_REV_AB;
7109 } else {
7110 asyn_sdtr = 0;
7112 if (int_halt_code == ASC_HALT_DISABLE_ASYN_USE_SYN_FIX) {
7113 if (asc_dvc->pci_fix_asyn_xfer & target_id) {
7114 AscSetChipSDTR(iop_base, 0, tid_no);
7115 boardp->sdtr_data[tid_no] = 0;
7117 AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
7118 return (0);
7119 } else if (int_halt_code == ASC_HALT_ENABLE_ASYN_USE_SYN_FIX) {
7120 if (asc_dvc->pci_fix_asyn_xfer & target_id) {
7121 AscSetChipSDTR(iop_base, asyn_sdtr, tid_no);
7122 boardp->sdtr_data[tid_no] = asyn_sdtr;
7124 AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
7125 return (0);
7126 } else if (int_halt_code == ASC_HALT_EXTMSG_IN) {
7127 AscMemWordCopyPtrFromLram(iop_base,
7128 ASCV_MSGIN_BEG,
7129 (uchar *)&ext_msg,
7130 sizeof(EXT_MSG) >> 1);
7132 if (ext_msg.msg_type == EXTENDED_MESSAGE &&
7133 ext_msg.msg_req == EXTENDED_SDTR &&
7134 ext_msg.msg_len == MS_SDTR_LEN) {
7135 sdtr_accept = TRUE;
7136 if ((ext_msg.req_ack_offset > ASC_SYN_MAX_OFFSET)) {
7138 sdtr_accept = FALSE;
7139 ext_msg.req_ack_offset = ASC_SYN_MAX_OFFSET;
7141 if ((ext_msg.xfer_period <
7142 asc_dvc->sdtr_period_tbl[asc_dvc->min_sdtr_index])
7143 || (ext_msg.xfer_period >
7144 asc_dvc->sdtr_period_tbl[asc_dvc->
7145 max_sdtr_index])) {
7146 sdtr_accept = FALSE;
7147 ext_msg.xfer_period =
7148 asc_dvc->sdtr_period_tbl[asc_dvc->
7149 min_sdtr_index];
7151 if (sdtr_accept) {
7152 sdtr_data =
7153 AscCalSDTRData(asc_dvc, ext_msg.xfer_period,
7154 ext_msg.req_ack_offset);
7155 if ((sdtr_data == 0xFF)) {
7157 q_cntl |= QC_MSG_OUT;
7158 asc_dvc->init_sdtr &= ~target_id;
7159 asc_dvc->sdtr_done &= ~target_id;
7160 AscSetChipSDTR(iop_base, asyn_sdtr,
7161 tid_no);
7162 boardp->sdtr_data[tid_no] = asyn_sdtr;
7165 if (ext_msg.req_ack_offset == 0) {
7167 q_cntl &= ~QC_MSG_OUT;
7168 asc_dvc->init_sdtr &= ~target_id;
7169 asc_dvc->sdtr_done &= ~target_id;
7170 AscSetChipSDTR(iop_base, asyn_sdtr, tid_no);
7171 } else {
7172 if (sdtr_accept && (q_cntl & QC_MSG_OUT)) {
7173 q_cntl &= ~QC_MSG_OUT;
7174 asc_dvc->sdtr_done |= target_id;
7175 asc_dvc->init_sdtr |= target_id;
7176 asc_dvc->pci_fix_asyn_xfer &=
7177 ~target_id;
7178 sdtr_data =
7179 AscCalSDTRData(asc_dvc,
7180 ext_msg.xfer_period,
7181 ext_msg.
7182 req_ack_offset);
7183 AscSetChipSDTR(iop_base, sdtr_data,
7184 tid_no);
7185 boardp->sdtr_data[tid_no] = sdtr_data;
7186 } else {
7187 q_cntl |= QC_MSG_OUT;
7188 AscMsgOutSDTR(asc_dvc,
7189 ext_msg.xfer_period,
7190 ext_msg.req_ack_offset);
7191 asc_dvc->pci_fix_asyn_xfer &=
7192 ~target_id;
7193 sdtr_data =
7194 AscCalSDTRData(asc_dvc,
7195 ext_msg.xfer_period,
7196 ext_msg.
7197 req_ack_offset);
7198 AscSetChipSDTR(iop_base, sdtr_data,
7199 tid_no);
7200 boardp->sdtr_data[tid_no] = sdtr_data;
7201 asc_dvc->sdtr_done |= target_id;
7202 asc_dvc->init_sdtr |= target_id;
7206 AscWriteLramByte(iop_base,
7207 (ushort)(halt_q_addr +
7208 (ushort)ASC_SCSIQ_B_CNTL),
7209 q_cntl);
7210 AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
7211 return (0);
7212 } else if (ext_msg.msg_type == EXTENDED_MESSAGE &&
7213 ext_msg.msg_req == EXTENDED_WDTR &&
7214 ext_msg.msg_len == MS_WDTR_LEN) {
7216 ext_msg.wdtr_width = 0;
7217 AscMemWordCopyPtrToLram(iop_base,
7218 ASCV_MSGOUT_BEG,
7219 (uchar *)&ext_msg,
7220 sizeof(EXT_MSG) >> 1);
7221 q_cntl |= QC_MSG_OUT;
7222 AscWriteLramByte(iop_base,
7223 (ushort)(halt_q_addr +
7224 (ushort)ASC_SCSIQ_B_CNTL),
7225 q_cntl);
7226 AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
7227 return (0);
7228 } else {
7230 ext_msg.msg_type = MESSAGE_REJECT;
7231 AscMemWordCopyPtrToLram(iop_base,
7232 ASCV_MSGOUT_BEG,
7233 (uchar *)&ext_msg,
7234 sizeof(EXT_MSG) >> 1);
7235 q_cntl |= QC_MSG_OUT;
7236 AscWriteLramByte(iop_base,
7237 (ushort)(halt_q_addr +
7238 (ushort)ASC_SCSIQ_B_CNTL),
7239 q_cntl);
7240 AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
7241 return (0);
7243 } else if (int_halt_code == ASC_HALT_CHK_CONDITION) {
7245 q_cntl |= QC_REQ_SENSE;
7247 if ((asc_dvc->init_sdtr & target_id) != 0) {
7249 asc_dvc->sdtr_done &= ~target_id;
7251 sdtr_data = AscGetMCodeInitSDTRAtID(iop_base, tid_no);
7252 q_cntl |= QC_MSG_OUT;
7253 AscMsgOutSDTR(asc_dvc,
7254 asc_dvc->
7255 sdtr_period_tbl[(sdtr_data >> 4) &
7256 (uchar)(asc_dvc->
7257 max_sdtr_index -
7258 1)],
7259 (uchar)(sdtr_data & (uchar)
7260 ASC_SYN_MAX_OFFSET));
7263 AscWriteLramByte(iop_base,
7264 (ushort)(halt_q_addr +
7265 (ushort)ASC_SCSIQ_B_CNTL), q_cntl);
7267 tag_code = AscReadLramByte(iop_base,
7268 (ushort)(halt_q_addr + (ushort)
7269 ASC_SCSIQ_B_TAG_CODE));
7270 tag_code &= 0xDC;
7271 if ((asc_dvc->pci_fix_asyn_xfer & target_id)
7272 && !(asc_dvc->pci_fix_asyn_xfer_always & target_id)
7275 tag_code |= (ASC_TAG_FLAG_DISABLE_DISCONNECT
7276 | ASC_TAG_FLAG_DISABLE_ASYN_USE_SYN_FIX);
7279 AscWriteLramByte(iop_base,
7280 (ushort)(halt_q_addr +
7281 (ushort)ASC_SCSIQ_B_TAG_CODE),
7282 tag_code);
7284 q_status = AscReadLramByte(iop_base,
7285 (ushort)(halt_q_addr + (ushort)
7286 ASC_SCSIQ_B_STATUS));
7287 q_status |= (QS_READY | QS_BUSY);
7288 AscWriteLramByte(iop_base,
7289 (ushort)(halt_q_addr +
7290 (ushort)ASC_SCSIQ_B_STATUS),
7291 q_status);
7293 scsi_busy = AscReadLramByte(iop_base, (ushort)ASCV_SCSIBUSY_B);
7294 scsi_busy &= ~target_id;
7295 AscWriteLramByte(iop_base, (ushort)ASCV_SCSIBUSY_B, scsi_busy);
7297 AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
7298 return (0);
7299 } else if (int_halt_code == ASC_HALT_SDTR_REJECTED) {
7301 AscMemWordCopyPtrFromLram(iop_base,
7302 ASCV_MSGOUT_BEG,
7303 (uchar *)&out_msg,
7304 sizeof(EXT_MSG) >> 1);
7306 if ((out_msg.msg_type == EXTENDED_MESSAGE) &&
7307 (out_msg.msg_len == MS_SDTR_LEN) &&
7308 (out_msg.msg_req == EXTENDED_SDTR)) {
7310 asc_dvc->init_sdtr &= ~target_id;
7311 asc_dvc->sdtr_done &= ~target_id;
7312 AscSetChipSDTR(iop_base, asyn_sdtr, tid_no);
7313 boardp->sdtr_data[tid_no] = asyn_sdtr;
7315 q_cntl &= ~QC_MSG_OUT;
7316 AscWriteLramByte(iop_base,
7317 (ushort)(halt_q_addr +
7318 (ushort)ASC_SCSIQ_B_CNTL), q_cntl);
7319 AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
7320 return (0);
7321 } else if (int_halt_code == ASC_HALT_SS_QUEUE_FULL) {
7323 scsi_status = AscReadLramByte(iop_base,
7324 (ushort)((ushort)halt_q_addr +
7325 (ushort)
7326 ASC_SCSIQ_SCSI_STATUS));
7327 cur_dvc_qng =
7328 AscReadLramByte(iop_base,
7329 (ushort)((ushort)ASC_QADR_BEG +
7330 (ushort)target_ix));
7331 if ((cur_dvc_qng > 0) && (asc_dvc->cur_dvc_qng[tid_no] > 0)) {
7333 scsi_busy = AscReadLramByte(iop_base,
7334 (ushort)ASCV_SCSIBUSY_B);
7335 scsi_busy |= target_id;
7336 AscWriteLramByte(iop_base,
7337 (ushort)ASCV_SCSIBUSY_B, scsi_busy);
7338 asc_dvc->queue_full_or_busy |= target_id;
7340 if (scsi_status == SAM_STAT_TASK_SET_FULL) {
7341 if (cur_dvc_qng > ASC_MIN_TAGGED_CMD) {
7342 cur_dvc_qng -= 1;
7343 asc_dvc->max_dvc_qng[tid_no] =
7344 cur_dvc_qng;
7346 AscWriteLramByte(iop_base,
7347 (ushort)((ushort)
7348 ASCV_MAX_DVC_QNG_BEG
7349 + (ushort)
7350 tid_no),
7351 cur_dvc_qng);
7354 * Set the device queue depth to the
7355 * number of active requests when the
7356 * QUEUE FULL condition was encountered.
7358 boardp->queue_full |= target_id;
7359 boardp->queue_full_cnt[tid_no] =
7360 cur_dvc_qng;
7364 AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
7365 return (0);
7367 #if CC_VERY_LONG_SG_LIST
7368 else if (int_halt_code == ASC_HALT_HOST_COPY_SG_LIST_TO_RISC) {
7369 uchar q_no;
7370 ushort q_addr;
7371 uchar sg_wk_q_no;
7372 uchar first_sg_wk_q_no;
7373 ASC_SCSI_Q *scsiq; /* Ptr to driver request. */
7374 ASC_SG_HEAD *sg_head; /* Ptr to driver SG request. */
7375 ASC_SG_LIST_Q scsi_sg_q; /* Structure written to queue. */
7376 ushort sg_list_dwords;
7377 ushort sg_entry_cnt;
7378 uchar next_qp;
7379 int i;
7381 q_no = AscReadLramByte(iop_base, (ushort)ASCV_REQ_SG_LIST_QP);
7382 if (q_no == ASC_QLINK_END)
7383 return 0;
7385 q_addr = ASC_QNO_TO_QADDR(q_no);
7388 * Convert the request's SRB pointer to a host ASC_SCSI_REQ
7389 * structure pointer using a macro provided by the driver.
7390 * The ASC_SCSI_REQ pointer provides a pointer to the
7391 * host ASC_SG_HEAD structure.
7393 /* Read request's SRB pointer. */
7394 scsiq = (ASC_SCSI_Q *)
7395 ASC_SRB2SCSIQ(ASC_U32_TO_VADDR(AscReadLramDWord(iop_base,
7396 (ushort)
7397 (q_addr +
7398 ASC_SCSIQ_D_SRBPTR))));
7401 * Get request's first and working SG queue.
7403 sg_wk_q_no = AscReadLramByte(iop_base,
7404 (ushort)(q_addr +
7405 ASC_SCSIQ_B_SG_WK_QP));
7407 first_sg_wk_q_no = AscReadLramByte(iop_base,
7408 (ushort)(q_addr +
7409 ASC_SCSIQ_B_FIRST_SG_WK_QP));
7412 * Reset request's working SG queue back to the
7413 * first SG queue.
7415 AscWriteLramByte(iop_base,
7416 (ushort)(q_addr +
7417 (ushort)ASC_SCSIQ_B_SG_WK_QP),
7418 first_sg_wk_q_no);
7420 sg_head = scsiq->sg_head;
7423 * Set sg_entry_cnt to the number of SG elements
7424 * that will be completed on this interrupt.
7426 * Note: The allocated SG queues contain ASC_MAX_SG_LIST - 1
7427 * SG elements. The data_cnt and data_addr fields which
7428 * add 1 to the SG element capacity are not used when
7429 * restarting SG handling after a halt.
7431 if (scsiq->remain_sg_entry_cnt > (ASC_MAX_SG_LIST - 1)) {
7432 sg_entry_cnt = ASC_MAX_SG_LIST - 1;
7435 * Keep track of remaining number of SG elements that
7436 * will need to be handled on the next interrupt.
7438 scsiq->remain_sg_entry_cnt -= (ASC_MAX_SG_LIST - 1);
7439 } else {
7440 sg_entry_cnt = scsiq->remain_sg_entry_cnt;
7441 scsiq->remain_sg_entry_cnt = 0;
7445 * Copy SG elements into the list of allocated SG queues.
7447 * Last index completed is saved in scsiq->next_sg_index.
7449 next_qp = first_sg_wk_q_no;
7450 q_addr = ASC_QNO_TO_QADDR(next_qp);
7451 scsi_sg_q.sg_head_qp = q_no;
7452 scsi_sg_q.cntl = QCSG_SG_XFER_LIST;
7453 for (i = 0; i < sg_head->queue_cnt; i++) {
7454 scsi_sg_q.seq_no = i + 1;
7455 if (sg_entry_cnt > ASC_SG_LIST_PER_Q) {
7456 sg_list_dwords = (uchar)(ASC_SG_LIST_PER_Q * 2);
7457 sg_entry_cnt -= ASC_SG_LIST_PER_Q;
7459 * After very first SG queue RISC FW uses next
7460 * SG queue first element then checks sg_list_cnt
7461 * against zero and then decrements, so set
7462 * sg_list_cnt 1 less than number of SG elements
7463 * in each SG queue.
7465 scsi_sg_q.sg_list_cnt = ASC_SG_LIST_PER_Q - 1;
7466 scsi_sg_q.sg_cur_list_cnt =
7467 ASC_SG_LIST_PER_Q - 1;
7468 } else {
7470 * This is the last SG queue in the list of
7471 * allocated SG queues. If there are more
7472 * SG elements than will fit in the allocated
7473 * queues, then set the QCSG_SG_XFER_MORE flag.
7475 if (scsiq->remain_sg_entry_cnt != 0) {
7476 scsi_sg_q.cntl |= QCSG_SG_XFER_MORE;
7477 } else {
7478 scsi_sg_q.cntl |= QCSG_SG_XFER_END;
7480 /* equals sg_entry_cnt * 2 */
7481 sg_list_dwords = sg_entry_cnt << 1;
7482 scsi_sg_q.sg_list_cnt = sg_entry_cnt - 1;
7483 scsi_sg_q.sg_cur_list_cnt = sg_entry_cnt - 1;
7484 sg_entry_cnt = 0;
7487 scsi_sg_q.q_no = next_qp;
7488 AscMemWordCopyPtrToLram(iop_base,
7489 q_addr + ASC_SCSIQ_SGHD_CPY_BEG,
7490 (uchar *)&scsi_sg_q,
7491 sizeof(ASC_SG_LIST_Q) >> 1);
7493 AscMemDWordCopyPtrToLram(iop_base,
7494 q_addr + ASC_SGQ_LIST_BEG,
7495 (uchar *)&sg_head->
7496 sg_list[scsiq->next_sg_index],
7497 sg_list_dwords);
7499 scsiq->next_sg_index += ASC_SG_LIST_PER_Q;
7502 * If the just completed SG queue contained the
7503 * last SG element, then no more SG queues need
7504 * to be written.
7506 if (scsi_sg_q.cntl & QCSG_SG_XFER_END) {
7507 break;
7510 next_qp = AscReadLramByte(iop_base,
7511 (ushort)(q_addr +
7512 ASC_SCSIQ_B_FWD));
7513 q_addr = ASC_QNO_TO_QADDR(next_qp);
7517 * Clear the halt condition so the RISC will be restarted
7518 * after the return.
7520 AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
7521 return (0);
7523 #endif /* CC_VERY_LONG_SG_LIST */
7524 return (0);
7528 * void
7529 * DvcGetQinfo(PortAddr iop_base, ushort s_addr, uchar *inbuf, int words)
7531 * Calling/Exit State:
7532 * none
7534 * Description:
7535 * Input an ASC_QDONE_INFO structure from the chip
7537 static void
7538 DvcGetQinfo(PortAddr iop_base, ushort s_addr, uchar *inbuf, int words)
7540 int i;
7541 ushort word;
7543 AscSetChipLramAddr(iop_base, s_addr);
7544 for (i = 0; i < 2 * words; i += 2) {
7545 if (i == 10) {
7546 continue;
7548 word = inpw(iop_base + IOP_RAM_DATA);
7549 inbuf[i] = word & 0xff;
7550 inbuf[i + 1] = (word >> 8) & 0xff;
7552 ASC_DBG_PRT_HEX(2, "DvcGetQinfo", inbuf, 2 * words);
7555 static uchar
7556 _AscCopyLramScsiDoneQ(PortAddr iop_base,
7557 ushort q_addr,
7558 ASC_QDONE_INFO *scsiq, ASC_DCNT max_dma_count)
7560 ushort _val;
7561 uchar sg_queue_cnt;
7563 DvcGetQinfo(iop_base,
7564 q_addr + ASC_SCSIQ_DONE_INFO_BEG,
7565 (uchar *)scsiq,
7566 (sizeof(ASC_SCSIQ_2) + sizeof(ASC_SCSIQ_3)) / 2);
7568 _val = AscReadLramWord(iop_base,
7569 (ushort)(q_addr + (ushort)ASC_SCSIQ_B_STATUS));
7570 scsiq->q_status = (uchar)_val;
7571 scsiq->q_no = (uchar)(_val >> 8);
7572 _val = AscReadLramWord(iop_base,
7573 (ushort)(q_addr + (ushort)ASC_SCSIQ_B_CNTL));
7574 scsiq->cntl = (uchar)_val;
7575 sg_queue_cnt = (uchar)(_val >> 8);
7576 _val = AscReadLramWord(iop_base,
7577 (ushort)(q_addr +
7578 (ushort)ASC_SCSIQ_B_SENSE_LEN));
7579 scsiq->sense_len = (uchar)_val;
7580 scsiq->extra_bytes = (uchar)(_val >> 8);
7583 * Read high word of remain bytes from alternate location.
7585 scsiq->remain_bytes = (((ADV_DCNT)AscReadLramWord(iop_base,
7586 (ushort)(q_addr +
7587 (ushort)
7588 ASC_SCSIQ_W_ALT_DC1)))
7589 << 16);
7591 * Read low word of remain bytes from original location.
7593 scsiq->remain_bytes += AscReadLramWord(iop_base,
7594 (ushort)(q_addr + (ushort)
7595 ASC_SCSIQ_DW_REMAIN_XFER_CNT));
7597 scsiq->remain_bytes &= max_dma_count;
7598 return sg_queue_cnt;
7602 * asc_isr_callback() - Second Level Interrupt Handler called by AscISR().
7604 * Interrupt callback function for the Narrow SCSI Asc Library.
7606 static void asc_isr_callback(ASC_DVC_VAR *asc_dvc_varp, ASC_QDONE_INFO *qdonep)
7608 struct asc_board *boardp;
7609 struct scsi_cmnd *scp;
7610 struct Scsi_Host *shost;
7612 ASC_DBG(1, "asc_dvc_varp 0x%p, qdonep 0x%p\n", asc_dvc_varp, qdonep);
7613 ASC_DBG_PRT_ASC_QDONE_INFO(2, qdonep);
7615 scp = advansys_srb_to_ptr(asc_dvc_varp, qdonep->d2.srb_ptr);
7616 if (!scp)
7617 return;
7619 ASC_DBG_PRT_CDB(2, scp->cmnd, scp->cmd_len);
7621 shost = scp->device->host;
7622 ASC_STATS(shost, callback);
7623 ASC_DBG(1, "shost 0x%p\n", shost);
7625 boardp = shost_priv(shost);
7626 BUG_ON(asc_dvc_varp != &boardp->dvc_var.asc_dvc_var);
7628 dma_unmap_single(boardp->dev, scp->SCp.dma_handle,
7629 SCSI_SENSE_BUFFERSIZE, DMA_FROM_DEVICE);
7631 * 'qdonep' contains the command's ending status.
7633 switch (qdonep->d3.done_stat) {
7634 case QD_NO_ERROR:
7635 ASC_DBG(2, "QD_NO_ERROR\n");
7636 scp->result = 0;
7639 * Check for an underrun condition.
7641 * If there was no error and an underrun condition, then
7642 * return the number of underrun bytes.
7644 if (scsi_bufflen(scp) != 0 && qdonep->remain_bytes != 0 &&
7645 qdonep->remain_bytes <= scsi_bufflen(scp)) {
7646 ASC_DBG(1, "underrun condition %u bytes\n",
7647 (unsigned)qdonep->remain_bytes);
7648 scsi_set_resid(scp, qdonep->remain_bytes);
7650 break;
7652 case QD_WITH_ERROR:
7653 ASC_DBG(2, "QD_WITH_ERROR\n");
7654 switch (qdonep->d3.host_stat) {
7655 case QHSTA_NO_ERROR:
7656 if (qdonep->d3.scsi_stat == SAM_STAT_CHECK_CONDITION) {
7657 ASC_DBG(2, "SAM_STAT_CHECK_CONDITION\n");
7658 ASC_DBG_PRT_SENSE(2, scp->sense_buffer,
7659 SCSI_SENSE_BUFFERSIZE);
7661 * Note: The 'status_byte()' macro used by
7662 * target drivers defined in scsi.h shifts the
7663 * status byte returned by host drivers right
7664 * by 1 bit. This is why target drivers also
7665 * use right shifted status byte definitions.
7666 * For instance target drivers use
7667 * CHECK_CONDITION, defined to 0x1, instead of
7668 * the SCSI defined check condition value of
7669 * 0x2. Host drivers are supposed to return
7670 * the status byte as it is defined by SCSI.
7672 scp->result = DRIVER_BYTE(DRIVER_SENSE) |
7673 STATUS_BYTE(qdonep->d3.scsi_stat);
7674 } else {
7675 scp->result = STATUS_BYTE(qdonep->d3.scsi_stat);
7677 break;
7679 default:
7680 /* QHSTA error occurred */
7681 ASC_DBG(1, "host_stat 0x%x\n", qdonep->d3.host_stat);
7682 scp->result = HOST_BYTE(DID_BAD_TARGET);
7683 break;
7685 break;
7687 case QD_ABORTED_BY_HOST:
7688 ASC_DBG(1, "QD_ABORTED_BY_HOST\n");
7689 scp->result =
7690 HOST_BYTE(DID_ABORT) | MSG_BYTE(qdonep->d3.
7691 scsi_msg) |
7692 STATUS_BYTE(qdonep->d3.scsi_stat);
7693 break;
7695 default:
7696 ASC_DBG(1, "done_stat 0x%x\n", qdonep->d3.done_stat);
7697 scp->result =
7698 HOST_BYTE(DID_ERROR) | MSG_BYTE(qdonep->d3.
7699 scsi_msg) |
7700 STATUS_BYTE(qdonep->d3.scsi_stat);
7701 break;
7705 * If the 'init_tidmask' bit isn't already set for the target and the
7706 * current request finished normally, then set the bit for the target
7707 * to indicate that a device is present.
7709 if ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(scp->device->id)) == 0 &&
7710 qdonep->d3.done_stat == QD_NO_ERROR &&
7711 qdonep->d3.host_stat == QHSTA_NO_ERROR) {
7712 boardp->init_tidmask |= ADV_TID_TO_TIDMASK(scp->device->id);
7715 asc_scsi_done(scp);
7718 static int AscIsrQDone(ASC_DVC_VAR *asc_dvc)
7720 uchar next_qp;
7721 uchar n_q_used;
7722 uchar sg_list_qp;
7723 uchar sg_queue_cnt;
7724 uchar q_cnt;
7725 uchar done_q_tail;
7726 uchar tid_no;
7727 ASC_SCSI_BIT_ID_TYPE scsi_busy;
7728 ASC_SCSI_BIT_ID_TYPE target_id;
7729 PortAddr iop_base;
7730 ushort q_addr;
7731 ushort sg_q_addr;
7732 uchar cur_target_qng;
7733 ASC_QDONE_INFO scsiq_buf;
7734 ASC_QDONE_INFO *scsiq;
7735 int false_overrun;
7737 iop_base = asc_dvc->iop_base;
7738 n_q_used = 1;
7739 scsiq = (ASC_QDONE_INFO *)&scsiq_buf;
7740 done_q_tail = (uchar)AscGetVarDoneQTail(iop_base);
7741 q_addr = ASC_QNO_TO_QADDR(done_q_tail);
7742 next_qp = AscReadLramByte(iop_base,
7743 (ushort)(q_addr + (ushort)ASC_SCSIQ_B_FWD));
7744 if (next_qp != ASC_QLINK_END) {
7745 AscPutVarDoneQTail(iop_base, next_qp);
7746 q_addr = ASC_QNO_TO_QADDR(next_qp);
7747 sg_queue_cnt = _AscCopyLramScsiDoneQ(iop_base, q_addr, scsiq,
7748 asc_dvc->max_dma_count);
7749 AscWriteLramByte(iop_base,
7750 (ushort)(q_addr +
7751 (ushort)ASC_SCSIQ_B_STATUS),
7752 (uchar)(scsiq->
7753 q_status & (uchar)~(QS_READY |
7754 QS_ABORTED)));
7755 tid_no = ASC_TIX_TO_TID(scsiq->d2.target_ix);
7756 target_id = ASC_TIX_TO_TARGET_ID(scsiq->d2.target_ix);
7757 if ((scsiq->cntl & QC_SG_HEAD) != 0) {
7758 sg_q_addr = q_addr;
7759 sg_list_qp = next_qp;
7760 for (q_cnt = 0; q_cnt < sg_queue_cnt; q_cnt++) {
7761 sg_list_qp = AscReadLramByte(iop_base,
7762 (ushort)(sg_q_addr
7763 + (ushort)
7764 ASC_SCSIQ_B_FWD));
7765 sg_q_addr = ASC_QNO_TO_QADDR(sg_list_qp);
7766 if (sg_list_qp == ASC_QLINK_END) {
7767 AscSetLibErrorCode(asc_dvc,
7768 ASCQ_ERR_SG_Q_LINKS);
7769 scsiq->d3.done_stat = QD_WITH_ERROR;
7770 scsiq->d3.host_stat =
7771 QHSTA_D_QDONE_SG_LIST_CORRUPTED;
7772 goto FATAL_ERR_QDONE;
7774 AscWriteLramByte(iop_base,
7775 (ushort)(sg_q_addr + (ushort)
7776 ASC_SCSIQ_B_STATUS),
7777 QS_FREE);
7779 n_q_used = sg_queue_cnt + 1;
7780 AscPutVarDoneQTail(iop_base, sg_list_qp);
7782 if (asc_dvc->queue_full_or_busy & target_id) {
7783 cur_target_qng = AscReadLramByte(iop_base,
7784 (ushort)((ushort)
7785 ASC_QADR_BEG
7786 + (ushort)
7787 scsiq->d2.
7788 target_ix));
7789 if (cur_target_qng < asc_dvc->max_dvc_qng[tid_no]) {
7790 scsi_busy = AscReadLramByte(iop_base, (ushort)
7791 ASCV_SCSIBUSY_B);
7792 scsi_busy &= ~target_id;
7793 AscWriteLramByte(iop_base,
7794 (ushort)ASCV_SCSIBUSY_B,
7795 scsi_busy);
7796 asc_dvc->queue_full_or_busy &= ~target_id;
7799 if (asc_dvc->cur_total_qng >= n_q_used) {
7800 asc_dvc->cur_total_qng -= n_q_used;
7801 if (asc_dvc->cur_dvc_qng[tid_no] != 0) {
7802 asc_dvc->cur_dvc_qng[tid_no]--;
7804 } else {
7805 AscSetLibErrorCode(asc_dvc, ASCQ_ERR_CUR_QNG);
7806 scsiq->d3.done_stat = QD_WITH_ERROR;
7807 goto FATAL_ERR_QDONE;
7809 if ((scsiq->d2.srb_ptr == 0UL) ||
7810 ((scsiq->q_status & QS_ABORTED) != 0)) {
7811 return (0x11);
7812 } else if (scsiq->q_status == QS_DONE) {
7813 false_overrun = FALSE;
7814 if (scsiq->extra_bytes != 0) {
7815 scsiq->remain_bytes +=
7816 (ADV_DCNT)scsiq->extra_bytes;
7818 if (scsiq->d3.done_stat == QD_WITH_ERROR) {
7819 if (scsiq->d3.host_stat ==
7820 QHSTA_M_DATA_OVER_RUN) {
7821 if ((scsiq->
7822 cntl & (QC_DATA_IN | QC_DATA_OUT))
7823 == 0) {
7824 scsiq->d3.done_stat =
7825 QD_NO_ERROR;
7826 scsiq->d3.host_stat =
7827 QHSTA_NO_ERROR;
7828 } else if (false_overrun) {
7829 scsiq->d3.done_stat =
7830 QD_NO_ERROR;
7831 scsiq->d3.host_stat =
7832 QHSTA_NO_ERROR;
7834 } else if (scsiq->d3.host_stat ==
7835 QHSTA_M_HUNG_REQ_SCSI_BUS_RESET) {
7836 AscStopChip(iop_base);
7837 AscSetChipControl(iop_base,
7838 (uchar)(CC_SCSI_RESET
7839 | CC_HALT));
7840 udelay(60);
7841 AscSetChipControl(iop_base, CC_HALT);
7842 AscSetChipStatus(iop_base,
7843 CIW_CLR_SCSI_RESET_INT);
7844 AscSetChipStatus(iop_base, 0);
7845 AscSetChipControl(iop_base, 0);
7848 if ((scsiq->cntl & QC_NO_CALLBACK) == 0) {
7849 asc_isr_callback(asc_dvc, scsiq);
7850 } else {
7851 if ((AscReadLramByte(iop_base,
7852 (ushort)(q_addr + (ushort)
7853 ASC_SCSIQ_CDB_BEG))
7854 == START_STOP)) {
7855 asc_dvc->unit_not_ready &= ~target_id;
7856 if (scsiq->d3.done_stat != QD_NO_ERROR) {
7857 asc_dvc->start_motor &=
7858 ~target_id;
7862 return (1);
7863 } else {
7864 AscSetLibErrorCode(asc_dvc, ASCQ_ERR_Q_STATUS);
7865 FATAL_ERR_QDONE:
7866 if ((scsiq->cntl & QC_NO_CALLBACK) == 0) {
7867 asc_isr_callback(asc_dvc, scsiq);
7869 return (0x80);
7872 return (0);
7875 static int AscISR(ASC_DVC_VAR *asc_dvc)
7877 ASC_CS_TYPE chipstat;
7878 PortAddr iop_base;
7879 ushort saved_ram_addr;
7880 uchar ctrl_reg;
7881 uchar saved_ctrl_reg;
7882 int int_pending;
7883 int status;
7884 uchar host_flag;
7886 iop_base = asc_dvc->iop_base;
7887 int_pending = FALSE;
7889 if (AscIsIntPending(iop_base) == 0)
7890 return int_pending;
7892 if ((asc_dvc->init_state & ASC_INIT_STATE_END_LOAD_MC) == 0) {
7893 return ERR;
7895 if (asc_dvc->in_critical_cnt != 0) {
7896 AscSetLibErrorCode(asc_dvc, ASCQ_ERR_ISR_ON_CRITICAL);
7897 return ERR;
7899 if (asc_dvc->is_in_int) {
7900 AscSetLibErrorCode(asc_dvc, ASCQ_ERR_ISR_RE_ENTRY);
7901 return ERR;
7903 asc_dvc->is_in_int = TRUE;
7904 ctrl_reg = AscGetChipControl(iop_base);
7905 saved_ctrl_reg = ctrl_reg & (~(CC_SCSI_RESET | CC_CHIP_RESET |
7906 CC_SINGLE_STEP | CC_DIAG | CC_TEST));
7907 chipstat = AscGetChipStatus(iop_base);
7908 if (chipstat & CSW_SCSI_RESET_LATCH) {
7909 if (!(asc_dvc->bus_type & (ASC_IS_VL | ASC_IS_EISA))) {
7910 int i = 10;
7911 int_pending = TRUE;
7912 asc_dvc->sdtr_done = 0;
7913 saved_ctrl_reg &= (uchar)(~CC_HALT);
7914 while ((AscGetChipStatus(iop_base) &
7915 CSW_SCSI_RESET_ACTIVE) && (i-- > 0)) {
7916 mdelay(100);
7918 AscSetChipControl(iop_base, (CC_CHIP_RESET | CC_HALT));
7919 AscSetChipControl(iop_base, CC_HALT);
7920 AscSetChipStatus(iop_base, CIW_CLR_SCSI_RESET_INT);
7921 AscSetChipStatus(iop_base, 0);
7922 chipstat = AscGetChipStatus(iop_base);
7925 saved_ram_addr = AscGetChipLramAddr(iop_base);
7926 host_flag = AscReadLramByte(iop_base,
7927 ASCV_HOST_FLAG_B) &
7928 (uchar)(~ASC_HOST_FLAG_IN_ISR);
7929 AscWriteLramByte(iop_base, ASCV_HOST_FLAG_B,
7930 (uchar)(host_flag | (uchar)ASC_HOST_FLAG_IN_ISR));
7931 if ((chipstat & CSW_INT_PENDING) || (int_pending)) {
7932 AscAckInterrupt(iop_base);
7933 int_pending = TRUE;
7934 if ((chipstat & CSW_HALTED) && (ctrl_reg & CC_SINGLE_STEP)) {
7935 if (AscIsrChipHalted(asc_dvc) == ERR) {
7936 goto ISR_REPORT_QDONE_FATAL_ERROR;
7937 } else {
7938 saved_ctrl_reg &= (uchar)(~CC_HALT);
7940 } else {
7941 ISR_REPORT_QDONE_FATAL_ERROR:
7942 if ((asc_dvc->dvc_cntl & ASC_CNTL_INT_MULTI_Q) != 0) {
7943 while (((status =
7944 AscIsrQDone(asc_dvc)) & 0x01) != 0) {
7946 } else {
7947 do {
7948 if ((status =
7949 AscIsrQDone(asc_dvc)) == 1) {
7950 break;
7952 } while (status == 0x11);
7954 if ((status & 0x80) != 0)
7955 int_pending = ERR;
7958 AscWriteLramByte(iop_base, ASCV_HOST_FLAG_B, host_flag);
7959 AscSetChipLramAddr(iop_base, saved_ram_addr);
7960 AscSetChipControl(iop_base, saved_ctrl_reg);
7961 asc_dvc->is_in_int = FALSE;
7962 return int_pending;
7966 * advansys_reset()
7968 * Reset the bus associated with the command 'scp'.
7970 * This function runs its own thread. Interrupts must be blocked but
7971 * sleeping is allowed and no locking other than for host structures is
7972 * required. Returns SUCCESS or FAILED.
7974 static int advansys_reset(struct scsi_cmnd *scp)
7976 struct Scsi_Host *shost = scp->device->host;
7977 struct asc_board *boardp = shost_priv(shost);
7978 unsigned long flags;
7979 int status;
7980 int ret = SUCCESS;
7982 ASC_DBG(1, "0x%p\n", scp);
7984 ASC_STATS(shost, reset);
7986 scmd_printk(KERN_INFO, scp, "SCSI bus reset started...\n");
7988 if (ASC_NARROW_BOARD(boardp)) {
7989 ASC_DVC_VAR *asc_dvc = &boardp->dvc_var.asc_dvc_var;
7991 /* Reset the chip and SCSI bus. */
7992 ASC_DBG(1, "before AscInitAsc1000Driver()\n");
7993 status = AscInitAsc1000Driver(asc_dvc);
7995 /* Refer to ASC_IERR_* definitions for meaning of 'err_code'. */
7996 if (asc_dvc->err_code || !asc_dvc->overrun_dma) {
7997 scmd_printk(KERN_INFO, scp, "SCSI bus reset error: "
7998 "0x%x, status: 0x%x\n", asc_dvc->err_code,
7999 status);
8000 ret = FAILED;
8001 } else if (status) {
8002 scmd_printk(KERN_INFO, scp, "SCSI bus reset warning: "
8003 "0x%x\n", status);
8004 } else {
8005 scmd_printk(KERN_INFO, scp, "SCSI bus reset "
8006 "successful\n");
8009 ASC_DBG(1, "after AscInitAsc1000Driver()\n");
8010 spin_lock_irqsave(shost->host_lock, flags);
8011 } else {
8013 * If the suggest reset bus flags are set, then reset the bus.
8014 * Otherwise only reset the device.
8016 ADV_DVC_VAR *adv_dvc = &boardp->dvc_var.adv_dvc_var;
8019 * Reset the target's SCSI bus.
8021 ASC_DBG(1, "before AdvResetChipAndSB()\n");
8022 switch (AdvResetChipAndSB(adv_dvc)) {
8023 case ASC_TRUE:
8024 scmd_printk(KERN_INFO, scp, "SCSI bus reset "
8025 "successful\n");
8026 break;
8027 case ASC_FALSE:
8028 default:
8029 scmd_printk(KERN_INFO, scp, "SCSI bus reset error\n");
8030 ret = FAILED;
8031 break;
8033 spin_lock_irqsave(shost->host_lock, flags);
8034 AdvISR(adv_dvc);
8037 /* Save the time of the most recently completed reset. */
8038 boardp->last_reset = jiffies;
8039 spin_unlock_irqrestore(shost->host_lock, flags);
8041 ASC_DBG(1, "ret %d\n", ret);
8043 return ret;
8047 * advansys_biosparam()
8049 * Translate disk drive geometry if the "BIOS greater than 1 GB"
8050 * support is enabled for a drive.
8052 * ip (information pointer) is an int array with the following definition:
8053 * ip[0]: heads
8054 * ip[1]: sectors
8055 * ip[2]: cylinders
8057 static int
8058 advansys_biosparam(struct scsi_device *sdev, struct block_device *bdev,
8059 sector_t capacity, int ip[])
8061 struct asc_board *boardp = shost_priv(sdev->host);
8063 ASC_DBG(1, "begin\n");
8064 ASC_STATS(sdev->host, biosparam);
8065 if (ASC_NARROW_BOARD(boardp)) {
8066 if ((boardp->dvc_var.asc_dvc_var.dvc_cntl &
8067 ASC_CNTL_BIOS_GT_1GB) && capacity > 0x200000) {
8068 ip[0] = 255;
8069 ip[1] = 63;
8070 } else {
8071 ip[0] = 64;
8072 ip[1] = 32;
8074 } else {
8075 if ((boardp->dvc_var.adv_dvc_var.bios_ctrl &
8076 BIOS_CTRL_EXTENDED_XLAT) && capacity > 0x200000) {
8077 ip[0] = 255;
8078 ip[1] = 63;
8079 } else {
8080 ip[0] = 64;
8081 ip[1] = 32;
8084 ip[2] = (unsigned long)capacity / (ip[0] * ip[1]);
8085 ASC_DBG(1, "end\n");
8086 return 0;
8090 * First-level interrupt handler.
8092 * 'dev_id' is a pointer to the interrupting adapter's Scsi_Host.
8094 static irqreturn_t advansys_interrupt(int irq, void *dev_id)
8096 struct Scsi_Host *shost = dev_id;
8097 struct asc_board *boardp = shost_priv(shost);
8098 irqreturn_t result = IRQ_NONE;
8100 ASC_DBG(2, "boardp 0x%p\n", boardp);
8101 spin_lock(shost->host_lock);
8102 if (ASC_NARROW_BOARD(boardp)) {
8103 if (AscIsIntPending(shost->io_port)) {
8104 result = IRQ_HANDLED;
8105 ASC_STATS(shost, interrupt);
8106 ASC_DBG(1, "before AscISR()\n");
8107 AscISR(&boardp->dvc_var.asc_dvc_var);
8109 } else {
8110 ASC_DBG(1, "before AdvISR()\n");
8111 if (AdvISR(&boardp->dvc_var.adv_dvc_var)) {
8112 result = IRQ_HANDLED;
8113 ASC_STATS(shost, interrupt);
8116 spin_unlock(shost->host_lock);
8118 ASC_DBG(1, "end\n");
8119 return result;
8122 static int AscHostReqRiscHalt(PortAddr iop_base)
8124 int count = 0;
8125 int sta = 0;
8126 uchar saved_stop_code;
8128 if (AscIsChipHalted(iop_base))
8129 return (1);
8130 saved_stop_code = AscReadLramByte(iop_base, ASCV_STOP_CODE_B);
8131 AscWriteLramByte(iop_base, ASCV_STOP_CODE_B,
8132 ASC_STOP_HOST_REQ_RISC_HALT | ASC_STOP_REQ_RISC_STOP);
8133 do {
8134 if (AscIsChipHalted(iop_base)) {
8135 sta = 1;
8136 break;
8138 mdelay(100);
8139 } while (count++ < 20);
8140 AscWriteLramByte(iop_base, ASCV_STOP_CODE_B, saved_stop_code);
8141 return (sta);
8144 static int
8145 AscSetRunChipSynRegAtID(PortAddr iop_base, uchar tid_no, uchar sdtr_data)
8147 int sta = FALSE;
8149 if (AscHostReqRiscHalt(iop_base)) {
8150 sta = AscSetChipSynRegAtID(iop_base, tid_no, sdtr_data);
8151 AscStartChip(iop_base);
8153 return sta;
8156 static void AscAsyncFix(ASC_DVC_VAR *asc_dvc, struct scsi_device *sdev)
8158 char type = sdev->type;
8159 ASC_SCSI_BIT_ID_TYPE tid_bits = 1 << sdev->id;
8161 if (!(asc_dvc->bug_fix_cntl & ASC_BUG_FIX_ASYN_USE_SYN))
8162 return;
8163 if (asc_dvc->init_sdtr & tid_bits)
8164 return;
8166 if ((type == TYPE_ROM) && (strncmp(sdev->vendor, "HP ", 3) == 0))
8167 asc_dvc->pci_fix_asyn_xfer_always |= tid_bits;
8169 asc_dvc->pci_fix_asyn_xfer |= tid_bits;
8170 if ((type == TYPE_PROCESSOR) || (type == TYPE_SCANNER) ||
8171 (type == TYPE_ROM) || (type == TYPE_TAPE))
8172 asc_dvc->pci_fix_asyn_xfer &= ~tid_bits;
8174 if (asc_dvc->pci_fix_asyn_xfer & tid_bits)
8175 AscSetRunChipSynRegAtID(asc_dvc->iop_base, sdev->id,
8176 ASYN_SDTR_DATA_FIX_PCI_REV_AB);
8179 static void
8180 advansys_narrow_slave_configure(struct scsi_device *sdev, ASC_DVC_VAR *asc_dvc)
8182 ASC_SCSI_BIT_ID_TYPE tid_bit = 1 << sdev->id;
8183 ASC_SCSI_BIT_ID_TYPE orig_use_tagged_qng = asc_dvc->use_tagged_qng;
8185 if (sdev->lun == 0) {
8186 ASC_SCSI_BIT_ID_TYPE orig_init_sdtr = asc_dvc->init_sdtr;
8187 if ((asc_dvc->cfg->sdtr_enable & tid_bit) && sdev->sdtr) {
8188 asc_dvc->init_sdtr |= tid_bit;
8189 } else {
8190 asc_dvc->init_sdtr &= ~tid_bit;
8193 if (orig_init_sdtr != asc_dvc->init_sdtr)
8194 AscAsyncFix(asc_dvc, sdev);
8197 if (sdev->tagged_supported) {
8198 if (asc_dvc->cfg->cmd_qng_enabled & tid_bit) {
8199 if (sdev->lun == 0) {
8200 asc_dvc->cfg->can_tagged_qng |= tid_bit;
8201 asc_dvc->use_tagged_qng |= tid_bit;
8203 scsi_adjust_queue_depth(sdev, MSG_ORDERED_TAG,
8204 asc_dvc->max_dvc_qng[sdev->id]);
8206 } else {
8207 if (sdev->lun == 0) {
8208 asc_dvc->cfg->can_tagged_qng &= ~tid_bit;
8209 asc_dvc->use_tagged_qng &= ~tid_bit;
8211 scsi_adjust_queue_depth(sdev, 0, sdev->host->cmd_per_lun);
8214 if ((sdev->lun == 0) &&
8215 (orig_use_tagged_qng != asc_dvc->use_tagged_qng)) {
8216 AscWriteLramByte(asc_dvc->iop_base, ASCV_DISC_ENABLE_B,
8217 asc_dvc->cfg->disc_enable);
8218 AscWriteLramByte(asc_dvc->iop_base, ASCV_USE_TAGGED_QNG_B,
8219 asc_dvc->use_tagged_qng);
8220 AscWriteLramByte(asc_dvc->iop_base, ASCV_CAN_TAGGED_QNG_B,
8221 asc_dvc->cfg->can_tagged_qng);
8223 asc_dvc->max_dvc_qng[sdev->id] =
8224 asc_dvc->cfg->max_tag_qng[sdev->id];
8225 AscWriteLramByte(asc_dvc->iop_base,
8226 (ushort)(ASCV_MAX_DVC_QNG_BEG + sdev->id),
8227 asc_dvc->max_dvc_qng[sdev->id]);
8232 * Wide Transfers
8234 * If the EEPROM enabled WDTR for the device and the device supports wide
8235 * bus (16 bit) transfers, then turn on the device's 'wdtr_able' bit and
8236 * write the new value to the microcode.
8238 static void
8239 advansys_wide_enable_wdtr(AdvPortAddr iop_base, unsigned short tidmask)
8241 unsigned short cfg_word;
8242 AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, cfg_word);
8243 if ((cfg_word & tidmask) != 0)
8244 return;
8246 cfg_word |= tidmask;
8247 AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, cfg_word);
8250 * Clear the microcode SDTR and WDTR negotiation done indicators for
8251 * the target to cause it to negotiate with the new setting set above.
8252 * WDTR when accepted causes the target to enter asynchronous mode, so
8253 * SDTR must be negotiated.
8255 AdvReadWordLram(iop_base, ASC_MC_SDTR_DONE, cfg_word);
8256 cfg_word &= ~tidmask;
8257 AdvWriteWordLram(iop_base, ASC_MC_SDTR_DONE, cfg_word);
8258 AdvReadWordLram(iop_base, ASC_MC_WDTR_DONE, cfg_word);
8259 cfg_word &= ~tidmask;
8260 AdvWriteWordLram(iop_base, ASC_MC_WDTR_DONE, cfg_word);
8264 * Synchronous Transfers
8266 * If the EEPROM enabled SDTR for the device and the device
8267 * supports synchronous transfers, then turn on the device's
8268 * 'sdtr_able' bit. Write the new value to the microcode.
8270 static void
8271 advansys_wide_enable_sdtr(AdvPortAddr iop_base, unsigned short tidmask)
8273 unsigned short cfg_word;
8274 AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, cfg_word);
8275 if ((cfg_word & tidmask) != 0)
8276 return;
8278 cfg_word |= tidmask;
8279 AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, cfg_word);
8282 * Clear the microcode "SDTR negotiation" done indicator for the
8283 * target to cause it to negotiate with the new setting set above.
8285 AdvReadWordLram(iop_base, ASC_MC_SDTR_DONE, cfg_word);
8286 cfg_word &= ~tidmask;
8287 AdvWriteWordLram(iop_base, ASC_MC_SDTR_DONE, cfg_word);
8291 * PPR (Parallel Protocol Request) Capable
8293 * If the device supports DT mode, then it must be PPR capable.
8294 * The PPR message will be used in place of the SDTR and WDTR
8295 * messages to negotiate synchronous speed and offset, transfer
8296 * width, and protocol options.
8298 static void advansys_wide_enable_ppr(ADV_DVC_VAR *adv_dvc,
8299 AdvPortAddr iop_base, unsigned short tidmask)
8301 AdvReadWordLram(iop_base, ASC_MC_PPR_ABLE, adv_dvc->ppr_able);
8302 adv_dvc->ppr_able |= tidmask;
8303 AdvWriteWordLram(iop_base, ASC_MC_PPR_ABLE, adv_dvc->ppr_able);
8306 static void
8307 advansys_wide_slave_configure(struct scsi_device *sdev, ADV_DVC_VAR *adv_dvc)
8309 AdvPortAddr iop_base = adv_dvc->iop_base;
8310 unsigned short tidmask = 1 << sdev->id;
8312 if (sdev->lun == 0) {
8314 * Handle WDTR, SDTR, and Tag Queuing. If the feature
8315 * is enabled in the EEPROM and the device supports the
8316 * feature, then enable it in the microcode.
8319 if ((adv_dvc->wdtr_able & tidmask) && sdev->wdtr)
8320 advansys_wide_enable_wdtr(iop_base, tidmask);
8321 if ((adv_dvc->sdtr_able & tidmask) && sdev->sdtr)
8322 advansys_wide_enable_sdtr(iop_base, tidmask);
8323 if (adv_dvc->chip_type == ADV_CHIP_ASC38C1600 && sdev->ppr)
8324 advansys_wide_enable_ppr(adv_dvc, iop_base, tidmask);
8327 * Tag Queuing is disabled for the BIOS which runs in polled
8328 * mode and would see no benefit from Tag Queuing. Also by
8329 * disabling Tag Queuing in the BIOS devices with Tag Queuing
8330 * bugs will at least work with the BIOS.
8332 if ((adv_dvc->tagqng_able & tidmask) &&
8333 sdev->tagged_supported) {
8334 unsigned short cfg_word;
8335 AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, cfg_word);
8336 cfg_word |= tidmask;
8337 AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE,
8338 cfg_word);
8339 AdvWriteByteLram(iop_base,
8340 ASC_MC_NUMBER_OF_MAX_CMD + sdev->id,
8341 adv_dvc->max_dvc_qng);
8345 if ((adv_dvc->tagqng_able & tidmask) && sdev->tagged_supported) {
8346 scsi_adjust_queue_depth(sdev, MSG_ORDERED_TAG,
8347 adv_dvc->max_dvc_qng);
8348 } else {
8349 scsi_adjust_queue_depth(sdev, 0, sdev->host->cmd_per_lun);
8354 * Set the number of commands to queue per device for the
8355 * specified host adapter.
8357 static int advansys_slave_configure(struct scsi_device *sdev)
8359 struct asc_board *boardp = shost_priv(sdev->host);
8361 if (ASC_NARROW_BOARD(boardp))
8362 advansys_narrow_slave_configure(sdev,
8363 &boardp->dvc_var.asc_dvc_var);
8364 else
8365 advansys_wide_slave_configure(sdev,
8366 &boardp->dvc_var.adv_dvc_var);
8368 return 0;
8371 static __le32 advansys_get_sense_buffer_dma(struct scsi_cmnd *scp)
8373 struct asc_board *board = shost_priv(scp->device->host);
8374 scp->SCp.dma_handle = dma_map_single(board->dev, scp->sense_buffer,
8375 SCSI_SENSE_BUFFERSIZE, DMA_FROM_DEVICE);
8376 dma_cache_sync(board->dev, scp->sense_buffer,
8377 SCSI_SENSE_BUFFERSIZE, DMA_FROM_DEVICE);
8378 return cpu_to_le32(scp->SCp.dma_handle);
8381 static int asc_build_req(struct asc_board *boardp, struct scsi_cmnd *scp,
8382 struct asc_scsi_q *asc_scsi_q)
8384 struct asc_dvc_var *asc_dvc = &boardp->dvc_var.asc_dvc_var;
8385 int use_sg;
8387 memset(asc_scsi_q, 0, sizeof(*asc_scsi_q));
8390 * Point the ASC_SCSI_Q to the 'struct scsi_cmnd'.
8392 asc_scsi_q->q2.srb_ptr = advansys_ptr_to_srb(asc_dvc, scp);
8393 if (asc_scsi_q->q2.srb_ptr == BAD_SRB) {
8394 scp->result = HOST_BYTE(DID_SOFT_ERROR);
8395 return ASC_ERROR;
8399 * Build the ASC_SCSI_Q request.
8401 asc_scsi_q->cdbptr = &scp->cmnd[0];
8402 asc_scsi_q->q2.cdb_len = scp->cmd_len;
8403 asc_scsi_q->q1.target_id = ASC_TID_TO_TARGET_ID(scp->device->id);
8404 asc_scsi_q->q1.target_lun = scp->device->lun;
8405 asc_scsi_q->q2.target_ix =
8406 ASC_TIDLUN_TO_IX(scp->device->id, scp->device->lun);
8407 asc_scsi_q->q1.sense_addr = advansys_get_sense_buffer_dma(scp);
8408 asc_scsi_q->q1.sense_len = SCSI_SENSE_BUFFERSIZE;
8411 * If there are any outstanding requests for the current target,
8412 * then every 255th request send an ORDERED request. This heuristic
8413 * tries to retain the benefit of request sorting while preventing
8414 * request starvation. 255 is the max number of tags or pending commands
8415 * a device may have outstanding.
8417 * The request count is incremented below for every successfully
8418 * started request.
8421 if ((asc_dvc->cur_dvc_qng[scp->device->id] > 0) &&
8422 (boardp->reqcnt[scp->device->id] % 255) == 0) {
8423 asc_scsi_q->q2.tag_code = MSG_ORDERED_TAG;
8424 } else {
8425 asc_scsi_q->q2.tag_code = MSG_SIMPLE_TAG;
8428 /* Build ASC_SCSI_Q */
8429 use_sg = scsi_dma_map(scp);
8430 if (use_sg != 0) {
8431 int sgcnt;
8432 struct scatterlist *slp;
8433 struct asc_sg_head *asc_sg_head;
8435 if (use_sg > scp->device->host->sg_tablesize) {
8436 scmd_printk(KERN_ERR, scp, "use_sg %d > "
8437 "sg_tablesize %d\n", use_sg,
8438 scp->device->host->sg_tablesize);
8439 scsi_dma_unmap(scp);
8440 scp->result = HOST_BYTE(DID_ERROR);
8441 return ASC_ERROR;
8444 asc_sg_head = kzalloc(sizeof(asc_scsi_q->sg_head) +
8445 use_sg * sizeof(struct asc_sg_list), GFP_ATOMIC);
8446 if (!asc_sg_head) {
8447 scsi_dma_unmap(scp);
8448 scp->result = HOST_BYTE(DID_SOFT_ERROR);
8449 return ASC_ERROR;
8452 asc_scsi_q->q1.cntl |= QC_SG_HEAD;
8453 asc_scsi_q->sg_head = asc_sg_head;
8454 asc_scsi_q->q1.data_cnt = 0;
8455 asc_scsi_q->q1.data_addr = 0;
8456 /* This is a byte value, otherwise it would need to be swapped. */
8457 asc_sg_head->entry_cnt = asc_scsi_q->q1.sg_queue_cnt = use_sg;
8458 ASC_STATS_ADD(scp->device->host, xfer_elem,
8459 asc_sg_head->entry_cnt);
8462 * Convert scatter-gather list into ASC_SG_HEAD list.
8464 scsi_for_each_sg(scp, slp, use_sg, sgcnt) {
8465 asc_sg_head->sg_list[sgcnt].addr =
8466 cpu_to_le32(sg_dma_address(slp));
8467 asc_sg_head->sg_list[sgcnt].bytes =
8468 cpu_to_le32(sg_dma_len(slp));
8469 ASC_STATS_ADD(scp->device->host, xfer_sect,
8470 DIV_ROUND_UP(sg_dma_len(slp), 512));
8474 ASC_STATS(scp->device->host, xfer_cnt);
8476 ASC_DBG_PRT_ASC_SCSI_Q(2, asc_scsi_q);
8477 ASC_DBG_PRT_CDB(1, scp->cmnd, scp->cmd_len);
8479 return ASC_NOERROR;
8483 * Build scatter-gather list for Adv Library (Wide Board).
8485 * Additional ADV_SG_BLOCK structures will need to be allocated
8486 * if the total number of scatter-gather elements exceeds
8487 * NO_OF_SG_PER_BLOCK (15). The ADV_SG_BLOCK structures are
8488 * assumed to be physically contiguous.
8490 * Return:
8491 * ADV_SUCCESS(1) - SG List successfully created
8492 * ADV_ERROR(-1) - SG List creation failed
8494 static int
8495 adv_get_sglist(struct asc_board *boardp, adv_req_t *reqp, struct scsi_cmnd *scp,
8496 int use_sg)
8498 adv_sgblk_t *sgblkp;
8499 ADV_SCSI_REQ_Q *scsiqp;
8500 struct scatterlist *slp;
8501 int sg_elem_cnt;
8502 ADV_SG_BLOCK *sg_block, *prev_sg_block;
8503 ADV_PADDR sg_block_paddr;
8504 int i;
8506 scsiqp = (ADV_SCSI_REQ_Q *)ADV_32BALIGN(&reqp->scsi_req_q);
8507 slp = scsi_sglist(scp);
8508 sg_elem_cnt = use_sg;
8509 prev_sg_block = NULL;
8510 reqp->sgblkp = NULL;
8512 for (;;) {
8514 * Allocate a 'adv_sgblk_t' structure from the board free
8515 * list. One 'adv_sgblk_t' structure holds NO_OF_SG_PER_BLOCK
8516 * (15) scatter-gather elements.
8518 if ((sgblkp = boardp->adv_sgblkp) == NULL) {
8519 ASC_DBG(1, "no free adv_sgblk_t\n");
8520 ASC_STATS(scp->device->host, adv_build_nosg);
8523 * Allocation failed. Free 'adv_sgblk_t' structures
8524 * already allocated for the request.
8526 while ((sgblkp = reqp->sgblkp) != NULL) {
8527 /* Remove 'sgblkp' from the request list. */
8528 reqp->sgblkp = sgblkp->next_sgblkp;
8530 /* Add 'sgblkp' to the board free list. */
8531 sgblkp->next_sgblkp = boardp->adv_sgblkp;
8532 boardp->adv_sgblkp = sgblkp;
8534 return ASC_BUSY;
8537 /* Complete 'adv_sgblk_t' board allocation. */
8538 boardp->adv_sgblkp = sgblkp->next_sgblkp;
8539 sgblkp->next_sgblkp = NULL;
8542 * Get 8 byte aligned virtual and physical addresses
8543 * for the allocated ADV_SG_BLOCK structure.
8545 sg_block = (ADV_SG_BLOCK *)ADV_8BALIGN(&sgblkp->sg_block);
8546 sg_block_paddr = virt_to_bus(sg_block);
8549 * Check if this is the first 'adv_sgblk_t' for the
8550 * request.
8552 if (reqp->sgblkp == NULL) {
8553 /* Request's first scatter-gather block. */
8554 reqp->sgblkp = sgblkp;
8557 * Set ADV_SCSI_REQ_T ADV_SG_BLOCK virtual and physical
8558 * address pointers.
8560 scsiqp->sg_list_ptr = sg_block;
8561 scsiqp->sg_real_addr = cpu_to_le32(sg_block_paddr);
8562 } else {
8563 /* Request's second or later scatter-gather block. */
8564 sgblkp->next_sgblkp = reqp->sgblkp;
8565 reqp->sgblkp = sgblkp;
8568 * Point the previous ADV_SG_BLOCK structure to
8569 * the newly allocated ADV_SG_BLOCK structure.
8571 prev_sg_block->sg_ptr = cpu_to_le32(sg_block_paddr);
8574 for (i = 0; i < NO_OF_SG_PER_BLOCK; i++) {
8575 sg_block->sg_list[i].sg_addr =
8576 cpu_to_le32(sg_dma_address(slp));
8577 sg_block->sg_list[i].sg_count =
8578 cpu_to_le32(sg_dma_len(slp));
8579 ASC_STATS_ADD(scp->device->host, xfer_sect,
8580 DIV_ROUND_UP(sg_dma_len(slp), 512));
8582 if (--sg_elem_cnt == 0) { /* Last ADV_SG_BLOCK and scatter-gather entry. */
8583 sg_block->sg_cnt = i + 1;
8584 sg_block->sg_ptr = 0L; /* Last ADV_SG_BLOCK in list. */
8585 return ADV_SUCCESS;
8587 slp++;
8589 sg_block->sg_cnt = NO_OF_SG_PER_BLOCK;
8590 prev_sg_block = sg_block;
8595 * Build a request structure for the Adv Library (Wide Board).
8597 * If an adv_req_t can not be allocated to issue the request,
8598 * then return ASC_BUSY. If an error occurs, then return ASC_ERROR.
8600 * Multi-byte fields in the ASC_SCSI_REQ_Q that are used by the
8601 * microcode for DMA addresses or math operations are byte swapped
8602 * to little-endian order.
8604 static int
8605 adv_build_req(struct asc_board *boardp, struct scsi_cmnd *scp,
8606 ADV_SCSI_REQ_Q **adv_scsiqpp)
8608 adv_req_t *reqp;
8609 ADV_SCSI_REQ_Q *scsiqp;
8610 int i;
8611 int ret;
8612 int use_sg;
8615 * Allocate an adv_req_t structure from the board to execute
8616 * the command.
8618 if (boardp->adv_reqp == NULL) {
8619 ASC_DBG(1, "no free adv_req_t\n");
8620 ASC_STATS(scp->device->host, adv_build_noreq);
8621 return ASC_BUSY;
8622 } else {
8623 reqp = boardp->adv_reqp;
8624 boardp->adv_reqp = reqp->next_reqp;
8625 reqp->next_reqp = NULL;
8629 * Get 32-byte aligned ADV_SCSI_REQ_Q and ADV_SG_BLOCK pointers.
8631 scsiqp = (ADV_SCSI_REQ_Q *)ADV_32BALIGN(&reqp->scsi_req_q);
8634 * Initialize the structure.
8636 scsiqp->cntl = scsiqp->scsi_cntl = scsiqp->done_status = 0;
8639 * Set the ADV_SCSI_REQ_Q 'srb_ptr' to point to the adv_req_t structure.
8641 scsiqp->srb_ptr = ADV_VADDR_TO_U32(reqp);
8644 * Set the adv_req_t 'cmndp' to point to the struct scsi_cmnd structure.
8646 reqp->cmndp = scp;
8649 * Build the ADV_SCSI_REQ_Q request.
8652 /* Set CDB length and copy it to the request structure. */
8653 scsiqp->cdb_len = scp->cmd_len;
8654 /* Copy first 12 CDB bytes to cdb[]. */
8655 for (i = 0; i < scp->cmd_len && i < 12; i++) {
8656 scsiqp->cdb[i] = scp->cmnd[i];
8658 /* Copy last 4 CDB bytes, if present, to cdb16[]. */
8659 for (; i < scp->cmd_len; i++) {
8660 scsiqp->cdb16[i - 12] = scp->cmnd[i];
8663 scsiqp->target_id = scp->device->id;
8664 scsiqp->target_lun = scp->device->lun;
8666 scsiqp->sense_addr = cpu_to_le32(virt_to_bus(&scp->sense_buffer[0]));
8667 scsiqp->sense_len = SCSI_SENSE_BUFFERSIZE;
8669 /* Build ADV_SCSI_REQ_Q */
8671 use_sg = scsi_dma_map(scp);
8672 if (use_sg == 0) {
8673 /* Zero-length transfer */
8674 reqp->sgblkp = NULL;
8675 scsiqp->data_cnt = 0;
8676 scsiqp->vdata_addr = NULL;
8678 scsiqp->data_addr = 0;
8679 scsiqp->sg_list_ptr = NULL;
8680 scsiqp->sg_real_addr = 0;
8681 } else {
8682 if (use_sg > ADV_MAX_SG_LIST) {
8683 scmd_printk(KERN_ERR, scp, "use_sg %d > "
8684 "ADV_MAX_SG_LIST %d\n", use_sg,
8685 scp->device->host->sg_tablesize);
8686 scsi_dma_unmap(scp);
8687 scp->result = HOST_BYTE(DID_ERROR);
8690 * Free the 'adv_req_t' structure by adding it back
8691 * to the board free list.
8693 reqp->next_reqp = boardp->adv_reqp;
8694 boardp->adv_reqp = reqp;
8696 return ASC_ERROR;
8699 scsiqp->data_cnt = cpu_to_le32(scsi_bufflen(scp));
8701 ret = adv_get_sglist(boardp, reqp, scp, use_sg);
8702 if (ret != ADV_SUCCESS) {
8704 * Free the adv_req_t structure by adding it back to
8705 * the board free list.
8707 reqp->next_reqp = boardp->adv_reqp;
8708 boardp->adv_reqp = reqp;
8710 return ret;
8713 ASC_STATS_ADD(scp->device->host, xfer_elem, use_sg);
8716 ASC_STATS(scp->device->host, xfer_cnt);
8718 ASC_DBG_PRT_ADV_SCSI_REQ_Q(2, scsiqp);
8719 ASC_DBG_PRT_CDB(1, scp->cmnd, scp->cmd_len);
8721 *adv_scsiqpp = scsiqp;
8723 return ASC_NOERROR;
8726 static int AscSgListToQueue(int sg_list)
8728 int n_sg_list_qs;
8730 n_sg_list_qs = ((sg_list - 1) / ASC_SG_LIST_PER_Q);
8731 if (((sg_list - 1) % ASC_SG_LIST_PER_Q) != 0)
8732 n_sg_list_qs++;
8733 return n_sg_list_qs + 1;
8736 static uint
8737 AscGetNumOfFreeQueue(ASC_DVC_VAR *asc_dvc, uchar target_ix, uchar n_qs)
8739 uint cur_used_qs;
8740 uint cur_free_qs;
8741 ASC_SCSI_BIT_ID_TYPE target_id;
8742 uchar tid_no;
8744 target_id = ASC_TIX_TO_TARGET_ID(target_ix);
8745 tid_no = ASC_TIX_TO_TID(target_ix);
8746 if ((asc_dvc->unit_not_ready & target_id) ||
8747 (asc_dvc->queue_full_or_busy & target_id)) {
8748 return 0;
8750 if (n_qs == 1) {
8751 cur_used_qs = (uint) asc_dvc->cur_total_qng +
8752 (uint) asc_dvc->last_q_shortage + (uint) ASC_MIN_FREE_Q;
8753 } else {
8754 cur_used_qs = (uint) asc_dvc->cur_total_qng +
8755 (uint) ASC_MIN_FREE_Q;
8757 if ((uint) (cur_used_qs + n_qs) <= (uint) asc_dvc->max_total_qng) {
8758 cur_free_qs = (uint) asc_dvc->max_total_qng - cur_used_qs;
8759 if (asc_dvc->cur_dvc_qng[tid_no] >=
8760 asc_dvc->max_dvc_qng[tid_no]) {
8761 return 0;
8763 return cur_free_qs;
8765 if (n_qs > 1) {
8766 if ((n_qs > asc_dvc->last_q_shortage)
8767 && (n_qs <= (asc_dvc->max_total_qng - ASC_MIN_FREE_Q))) {
8768 asc_dvc->last_q_shortage = n_qs;
8771 return 0;
8774 static uchar AscAllocFreeQueue(PortAddr iop_base, uchar free_q_head)
8776 ushort q_addr;
8777 uchar next_qp;
8778 uchar q_status;
8780 q_addr = ASC_QNO_TO_QADDR(free_q_head);
8781 q_status = (uchar)AscReadLramByte(iop_base,
8782 (ushort)(q_addr +
8783 ASC_SCSIQ_B_STATUS));
8784 next_qp = AscReadLramByte(iop_base, (ushort)(q_addr + ASC_SCSIQ_B_FWD));
8785 if (((q_status & QS_READY) == 0) && (next_qp != ASC_QLINK_END))
8786 return next_qp;
8787 return ASC_QLINK_END;
8790 static uchar
8791 AscAllocMultipleFreeQueue(PortAddr iop_base, uchar free_q_head, uchar n_free_q)
8793 uchar i;
8795 for (i = 0; i < n_free_q; i++) {
8796 free_q_head = AscAllocFreeQueue(iop_base, free_q_head);
8797 if (free_q_head == ASC_QLINK_END)
8798 break;
8800 return free_q_head;
8804 * void
8805 * DvcPutScsiQ(PortAddr iop_base, ushort s_addr, uchar *outbuf, int words)
8807 * Calling/Exit State:
8808 * none
8810 * Description:
8811 * Output an ASC_SCSI_Q structure to the chip
8813 static void
8814 DvcPutScsiQ(PortAddr iop_base, ushort s_addr, uchar *outbuf, int words)
8816 int i;
8818 ASC_DBG_PRT_HEX(2, "DvcPutScsiQ", outbuf, 2 * words);
8819 AscSetChipLramAddr(iop_base, s_addr);
8820 for (i = 0; i < 2 * words; i += 2) {
8821 if (i == 4 || i == 20) {
8822 continue;
8824 outpw(iop_base + IOP_RAM_DATA,
8825 ((ushort)outbuf[i + 1] << 8) | outbuf[i]);
8829 static int AscPutReadyQueue(ASC_DVC_VAR *asc_dvc, ASC_SCSI_Q *scsiq, uchar q_no)
8831 ushort q_addr;
8832 uchar tid_no;
8833 uchar sdtr_data;
8834 uchar syn_period_ix;
8835 uchar syn_offset;
8836 PortAddr iop_base;
8838 iop_base = asc_dvc->iop_base;
8839 if (((asc_dvc->init_sdtr & scsiq->q1.target_id) != 0) &&
8840 ((asc_dvc->sdtr_done & scsiq->q1.target_id) == 0)) {
8841 tid_no = ASC_TIX_TO_TID(scsiq->q2.target_ix);
8842 sdtr_data = AscGetMCodeInitSDTRAtID(iop_base, tid_no);
8843 syn_period_ix =
8844 (sdtr_data >> 4) & (asc_dvc->max_sdtr_index - 1);
8845 syn_offset = sdtr_data & ASC_SYN_MAX_OFFSET;
8846 AscMsgOutSDTR(asc_dvc,
8847 asc_dvc->sdtr_period_tbl[syn_period_ix],
8848 syn_offset);
8849 scsiq->q1.cntl |= QC_MSG_OUT;
8851 q_addr = ASC_QNO_TO_QADDR(q_no);
8852 if ((scsiq->q1.target_id & asc_dvc->use_tagged_qng) == 0) {
8853 scsiq->q2.tag_code &= ~MSG_SIMPLE_TAG;
8855 scsiq->q1.status = QS_FREE;
8856 AscMemWordCopyPtrToLram(iop_base,
8857 q_addr + ASC_SCSIQ_CDB_BEG,
8858 (uchar *)scsiq->cdbptr, scsiq->q2.cdb_len >> 1);
8860 DvcPutScsiQ(iop_base,
8861 q_addr + ASC_SCSIQ_CPY_BEG,
8862 (uchar *)&scsiq->q1.cntl,
8863 ((sizeof(ASC_SCSIQ_1) + sizeof(ASC_SCSIQ_2)) / 2) - 1);
8864 AscWriteLramWord(iop_base,
8865 (ushort)(q_addr + (ushort)ASC_SCSIQ_B_STATUS),
8866 (ushort)(((ushort)scsiq->q1.
8867 q_no << 8) | (ushort)QS_READY));
8868 return 1;
8871 static int
8872 AscPutReadySgListQueue(ASC_DVC_VAR *asc_dvc, ASC_SCSI_Q *scsiq, uchar q_no)
8874 int sta;
8875 int i;
8876 ASC_SG_HEAD *sg_head;
8877 ASC_SG_LIST_Q scsi_sg_q;
8878 ASC_DCNT saved_data_addr;
8879 ASC_DCNT saved_data_cnt;
8880 PortAddr iop_base;
8881 ushort sg_list_dwords;
8882 ushort sg_index;
8883 ushort sg_entry_cnt;
8884 ushort q_addr;
8885 uchar next_qp;
8887 iop_base = asc_dvc->iop_base;
8888 sg_head = scsiq->sg_head;
8889 saved_data_addr = scsiq->q1.data_addr;
8890 saved_data_cnt = scsiq->q1.data_cnt;
8891 scsiq->q1.data_addr = (ASC_PADDR) sg_head->sg_list[0].addr;
8892 scsiq->q1.data_cnt = (ASC_DCNT) sg_head->sg_list[0].bytes;
8893 #if CC_VERY_LONG_SG_LIST
8895 * If sg_head->entry_cnt is greater than ASC_MAX_SG_LIST
8896 * then not all SG elements will fit in the allocated queues.
8897 * The rest of the SG elements will be copied when the RISC
8898 * completes the SG elements that fit and halts.
8900 if (sg_head->entry_cnt > ASC_MAX_SG_LIST) {
8902 * Set sg_entry_cnt to be the number of SG elements that
8903 * will fit in the allocated SG queues. It is minus 1, because
8904 * the first SG element is handled above. ASC_MAX_SG_LIST is
8905 * already inflated by 1 to account for this. For example it
8906 * may be 50 which is 1 + 7 queues * 7 SG elements.
8908 sg_entry_cnt = ASC_MAX_SG_LIST - 1;
8911 * Keep track of remaining number of SG elements that will
8912 * need to be handled from a_isr.c.
8914 scsiq->remain_sg_entry_cnt =
8915 sg_head->entry_cnt - ASC_MAX_SG_LIST;
8916 } else {
8917 #endif /* CC_VERY_LONG_SG_LIST */
8919 * Set sg_entry_cnt to be the number of SG elements that
8920 * will fit in the allocated SG queues. It is minus 1, because
8921 * the first SG element is handled above.
8923 sg_entry_cnt = sg_head->entry_cnt - 1;
8924 #if CC_VERY_LONG_SG_LIST
8926 #endif /* CC_VERY_LONG_SG_LIST */
8927 if (sg_entry_cnt != 0) {
8928 scsiq->q1.cntl |= QC_SG_HEAD;
8929 q_addr = ASC_QNO_TO_QADDR(q_no);
8930 sg_index = 1;
8931 scsiq->q1.sg_queue_cnt = sg_head->queue_cnt;
8932 scsi_sg_q.sg_head_qp = q_no;
8933 scsi_sg_q.cntl = QCSG_SG_XFER_LIST;
8934 for (i = 0; i < sg_head->queue_cnt; i++) {
8935 scsi_sg_q.seq_no = i + 1;
8936 if (sg_entry_cnt > ASC_SG_LIST_PER_Q) {
8937 sg_list_dwords = (uchar)(ASC_SG_LIST_PER_Q * 2);
8938 sg_entry_cnt -= ASC_SG_LIST_PER_Q;
8939 if (i == 0) {
8940 scsi_sg_q.sg_list_cnt =
8941 ASC_SG_LIST_PER_Q;
8942 scsi_sg_q.sg_cur_list_cnt =
8943 ASC_SG_LIST_PER_Q;
8944 } else {
8945 scsi_sg_q.sg_list_cnt =
8946 ASC_SG_LIST_PER_Q - 1;
8947 scsi_sg_q.sg_cur_list_cnt =
8948 ASC_SG_LIST_PER_Q - 1;
8950 } else {
8951 #if CC_VERY_LONG_SG_LIST
8953 * This is the last SG queue in the list of
8954 * allocated SG queues. If there are more
8955 * SG elements than will fit in the allocated
8956 * queues, then set the QCSG_SG_XFER_MORE flag.
8958 if (sg_head->entry_cnt > ASC_MAX_SG_LIST) {
8959 scsi_sg_q.cntl |= QCSG_SG_XFER_MORE;
8960 } else {
8961 #endif /* CC_VERY_LONG_SG_LIST */
8962 scsi_sg_q.cntl |= QCSG_SG_XFER_END;
8963 #if CC_VERY_LONG_SG_LIST
8965 #endif /* CC_VERY_LONG_SG_LIST */
8966 sg_list_dwords = sg_entry_cnt << 1;
8967 if (i == 0) {
8968 scsi_sg_q.sg_list_cnt = sg_entry_cnt;
8969 scsi_sg_q.sg_cur_list_cnt =
8970 sg_entry_cnt;
8971 } else {
8972 scsi_sg_q.sg_list_cnt =
8973 sg_entry_cnt - 1;
8974 scsi_sg_q.sg_cur_list_cnt =
8975 sg_entry_cnt - 1;
8977 sg_entry_cnt = 0;
8979 next_qp = AscReadLramByte(iop_base,
8980 (ushort)(q_addr +
8981 ASC_SCSIQ_B_FWD));
8982 scsi_sg_q.q_no = next_qp;
8983 q_addr = ASC_QNO_TO_QADDR(next_qp);
8984 AscMemWordCopyPtrToLram(iop_base,
8985 q_addr + ASC_SCSIQ_SGHD_CPY_BEG,
8986 (uchar *)&scsi_sg_q,
8987 sizeof(ASC_SG_LIST_Q) >> 1);
8988 AscMemDWordCopyPtrToLram(iop_base,
8989 q_addr + ASC_SGQ_LIST_BEG,
8990 (uchar *)&sg_head->
8991 sg_list[sg_index],
8992 sg_list_dwords);
8993 sg_index += ASC_SG_LIST_PER_Q;
8994 scsiq->next_sg_index = sg_index;
8996 } else {
8997 scsiq->q1.cntl &= ~QC_SG_HEAD;
8999 sta = AscPutReadyQueue(asc_dvc, scsiq, q_no);
9000 scsiq->q1.data_addr = saved_data_addr;
9001 scsiq->q1.data_cnt = saved_data_cnt;
9002 return (sta);
9005 static int
9006 AscSendScsiQueue(ASC_DVC_VAR *asc_dvc, ASC_SCSI_Q *scsiq, uchar n_q_required)
9008 PortAddr iop_base;
9009 uchar free_q_head;
9010 uchar next_qp;
9011 uchar tid_no;
9012 uchar target_ix;
9013 int sta;
9015 iop_base = asc_dvc->iop_base;
9016 target_ix = scsiq->q2.target_ix;
9017 tid_no = ASC_TIX_TO_TID(target_ix);
9018 sta = 0;
9019 free_q_head = (uchar)AscGetVarFreeQHead(iop_base);
9020 if (n_q_required > 1) {
9021 next_qp = AscAllocMultipleFreeQueue(iop_base, free_q_head,
9022 (uchar)n_q_required);
9023 if (next_qp != ASC_QLINK_END) {
9024 asc_dvc->last_q_shortage = 0;
9025 scsiq->sg_head->queue_cnt = n_q_required - 1;
9026 scsiq->q1.q_no = free_q_head;
9027 sta = AscPutReadySgListQueue(asc_dvc, scsiq,
9028 free_q_head);
9030 } else if (n_q_required == 1) {
9031 next_qp = AscAllocFreeQueue(iop_base, free_q_head);
9032 if (next_qp != ASC_QLINK_END) {
9033 scsiq->q1.q_no = free_q_head;
9034 sta = AscPutReadyQueue(asc_dvc, scsiq, free_q_head);
9037 if (sta == 1) {
9038 AscPutVarFreeQHead(iop_base, next_qp);
9039 asc_dvc->cur_total_qng += n_q_required;
9040 asc_dvc->cur_dvc_qng[tid_no]++;
9042 return sta;
9045 #define ASC_SYN_OFFSET_ONE_DISABLE_LIST 16
9046 static uchar _syn_offset_one_disable_cmd[ASC_SYN_OFFSET_ONE_DISABLE_LIST] = {
9047 INQUIRY,
9048 REQUEST_SENSE,
9049 READ_CAPACITY,
9050 READ_TOC,
9051 MODE_SELECT,
9052 MODE_SENSE,
9053 MODE_SELECT_10,
9054 MODE_SENSE_10,
9055 0xFF,
9056 0xFF,
9057 0xFF,
9058 0xFF,
9059 0xFF,
9060 0xFF,
9061 0xFF,
9062 0xFF
9065 static int AscExeScsiQueue(ASC_DVC_VAR *asc_dvc, ASC_SCSI_Q *scsiq)
9067 PortAddr iop_base;
9068 int sta;
9069 int n_q_required;
9070 int disable_syn_offset_one_fix;
9071 int i;
9072 ASC_PADDR addr;
9073 ushort sg_entry_cnt = 0;
9074 ushort sg_entry_cnt_minus_one = 0;
9075 uchar target_ix;
9076 uchar tid_no;
9077 uchar sdtr_data;
9078 uchar extra_bytes;
9079 uchar scsi_cmd;
9080 uchar disable_cmd;
9081 ASC_SG_HEAD *sg_head;
9082 ASC_DCNT data_cnt;
9084 iop_base = asc_dvc->iop_base;
9085 sg_head = scsiq->sg_head;
9086 if (asc_dvc->err_code != 0)
9087 return (ERR);
9088 scsiq->q1.q_no = 0;
9089 if ((scsiq->q2.tag_code & ASC_TAG_FLAG_EXTRA_BYTES) == 0) {
9090 scsiq->q1.extra_bytes = 0;
9092 sta = 0;
9093 target_ix = scsiq->q2.target_ix;
9094 tid_no = ASC_TIX_TO_TID(target_ix);
9095 n_q_required = 1;
9096 if (scsiq->cdbptr[0] == REQUEST_SENSE) {
9097 if ((asc_dvc->init_sdtr & scsiq->q1.target_id) != 0) {
9098 asc_dvc->sdtr_done &= ~scsiq->q1.target_id;
9099 sdtr_data = AscGetMCodeInitSDTRAtID(iop_base, tid_no);
9100 AscMsgOutSDTR(asc_dvc,
9101 asc_dvc->
9102 sdtr_period_tbl[(sdtr_data >> 4) &
9103 (uchar)(asc_dvc->
9104 max_sdtr_index -
9105 1)],
9106 (uchar)(sdtr_data & (uchar)
9107 ASC_SYN_MAX_OFFSET));
9108 scsiq->q1.cntl |= (QC_MSG_OUT | QC_URGENT);
9111 if (asc_dvc->in_critical_cnt != 0) {
9112 AscSetLibErrorCode(asc_dvc, ASCQ_ERR_CRITICAL_RE_ENTRY);
9113 return (ERR);
9115 asc_dvc->in_critical_cnt++;
9116 if ((scsiq->q1.cntl & QC_SG_HEAD) != 0) {
9117 if ((sg_entry_cnt = sg_head->entry_cnt) == 0) {
9118 asc_dvc->in_critical_cnt--;
9119 return (ERR);
9121 #if !CC_VERY_LONG_SG_LIST
9122 if (sg_entry_cnt > ASC_MAX_SG_LIST) {
9123 asc_dvc->in_critical_cnt--;
9124 return (ERR);
9126 #endif /* !CC_VERY_LONG_SG_LIST */
9127 if (sg_entry_cnt == 1) {
9128 scsiq->q1.data_addr =
9129 (ADV_PADDR)sg_head->sg_list[0].addr;
9130 scsiq->q1.data_cnt =
9131 (ADV_DCNT)sg_head->sg_list[0].bytes;
9132 scsiq->q1.cntl &= ~(QC_SG_HEAD | QC_SG_SWAP_QUEUE);
9134 sg_entry_cnt_minus_one = sg_entry_cnt - 1;
9136 scsi_cmd = scsiq->cdbptr[0];
9137 disable_syn_offset_one_fix = FALSE;
9138 if ((asc_dvc->pci_fix_asyn_xfer & scsiq->q1.target_id) &&
9139 !(asc_dvc->pci_fix_asyn_xfer_always & scsiq->q1.target_id)) {
9140 if (scsiq->q1.cntl & QC_SG_HEAD) {
9141 data_cnt = 0;
9142 for (i = 0; i < sg_entry_cnt; i++) {
9143 data_cnt +=
9144 (ADV_DCNT)le32_to_cpu(sg_head->sg_list[i].
9145 bytes);
9147 } else {
9148 data_cnt = le32_to_cpu(scsiq->q1.data_cnt);
9150 if (data_cnt != 0UL) {
9151 if (data_cnt < 512UL) {
9152 disable_syn_offset_one_fix = TRUE;
9153 } else {
9154 for (i = 0; i < ASC_SYN_OFFSET_ONE_DISABLE_LIST;
9155 i++) {
9156 disable_cmd =
9157 _syn_offset_one_disable_cmd[i];
9158 if (disable_cmd == 0xFF) {
9159 break;
9161 if (scsi_cmd == disable_cmd) {
9162 disable_syn_offset_one_fix =
9163 TRUE;
9164 break;
9170 if (disable_syn_offset_one_fix) {
9171 scsiq->q2.tag_code &= ~MSG_SIMPLE_TAG;
9172 scsiq->q2.tag_code |= (ASC_TAG_FLAG_DISABLE_ASYN_USE_SYN_FIX |
9173 ASC_TAG_FLAG_DISABLE_DISCONNECT);
9174 } else {
9175 scsiq->q2.tag_code &= 0x27;
9177 if ((scsiq->q1.cntl & QC_SG_HEAD) != 0) {
9178 if (asc_dvc->bug_fix_cntl) {
9179 if (asc_dvc->bug_fix_cntl & ASC_BUG_FIX_IF_NOT_DWB) {
9180 if ((scsi_cmd == READ_6) ||
9181 (scsi_cmd == READ_10)) {
9182 addr =
9183 (ADV_PADDR)le32_to_cpu(sg_head->
9184 sg_list
9185 [sg_entry_cnt_minus_one].
9186 addr) +
9187 (ADV_DCNT)le32_to_cpu(sg_head->
9188 sg_list
9189 [sg_entry_cnt_minus_one].
9190 bytes);
9191 extra_bytes =
9192 (uchar)((ushort)addr & 0x0003);
9193 if ((extra_bytes != 0)
9195 ((scsiq->q2.
9196 tag_code &
9197 ASC_TAG_FLAG_EXTRA_BYTES)
9198 == 0)) {
9199 scsiq->q2.tag_code |=
9200 ASC_TAG_FLAG_EXTRA_BYTES;
9201 scsiq->q1.extra_bytes =
9202 extra_bytes;
9203 data_cnt =
9204 le32_to_cpu(sg_head->
9205 sg_list
9206 [sg_entry_cnt_minus_one].
9207 bytes);
9208 data_cnt -=
9209 (ASC_DCNT) extra_bytes;
9210 sg_head->
9211 sg_list
9212 [sg_entry_cnt_minus_one].
9213 bytes =
9214 cpu_to_le32(data_cnt);
9219 sg_head->entry_to_copy = sg_head->entry_cnt;
9220 #if CC_VERY_LONG_SG_LIST
9222 * Set the sg_entry_cnt to the maximum possible. The rest of
9223 * the SG elements will be copied when the RISC completes the
9224 * SG elements that fit and halts.
9226 if (sg_entry_cnt > ASC_MAX_SG_LIST) {
9227 sg_entry_cnt = ASC_MAX_SG_LIST;
9229 #endif /* CC_VERY_LONG_SG_LIST */
9230 n_q_required = AscSgListToQueue(sg_entry_cnt);
9231 if ((AscGetNumOfFreeQueue(asc_dvc, target_ix, n_q_required) >=
9232 (uint) n_q_required)
9233 || ((scsiq->q1.cntl & QC_URGENT) != 0)) {
9234 if ((sta =
9235 AscSendScsiQueue(asc_dvc, scsiq,
9236 n_q_required)) == 1) {
9237 asc_dvc->in_critical_cnt--;
9238 return (sta);
9241 } else {
9242 if (asc_dvc->bug_fix_cntl) {
9243 if (asc_dvc->bug_fix_cntl & ASC_BUG_FIX_IF_NOT_DWB) {
9244 if ((scsi_cmd == READ_6) ||
9245 (scsi_cmd == READ_10)) {
9246 addr =
9247 le32_to_cpu(scsiq->q1.data_addr) +
9248 le32_to_cpu(scsiq->q1.data_cnt);
9249 extra_bytes =
9250 (uchar)((ushort)addr & 0x0003);
9251 if ((extra_bytes != 0)
9253 ((scsiq->q2.
9254 tag_code &
9255 ASC_TAG_FLAG_EXTRA_BYTES)
9256 == 0)) {
9257 data_cnt =
9258 le32_to_cpu(scsiq->q1.
9259 data_cnt);
9260 if (((ushort)data_cnt & 0x01FF)
9261 == 0) {
9262 scsiq->q2.tag_code |=
9263 ASC_TAG_FLAG_EXTRA_BYTES;
9264 data_cnt -= (ASC_DCNT)
9265 extra_bytes;
9266 scsiq->q1.data_cnt =
9267 cpu_to_le32
9268 (data_cnt);
9269 scsiq->q1.extra_bytes =
9270 extra_bytes;
9276 n_q_required = 1;
9277 if ((AscGetNumOfFreeQueue(asc_dvc, target_ix, 1) >= 1) ||
9278 ((scsiq->q1.cntl & QC_URGENT) != 0)) {
9279 if ((sta = AscSendScsiQueue(asc_dvc, scsiq,
9280 n_q_required)) == 1) {
9281 asc_dvc->in_critical_cnt--;
9282 return (sta);
9286 asc_dvc->in_critical_cnt--;
9287 return (sta);
9291 * AdvExeScsiQueue() - Send a request to the RISC microcode program.
9293 * Allocate a carrier structure, point the carrier to the ADV_SCSI_REQ_Q,
9294 * add the carrier to the ICQ (Initiator Command Queue), and tickle the
9295 * RISC to notify it a new command is ready to be executed.
9297 * If 'done_status' is not set to QD_DO_RETRY, then 'error_retry' will be
9298 * set to SCSI_MAX_RETRY.
9300 * Multi-byte fields in the ASC_SCSI_REQ_Q that are used by the microcode
9301 * for DMA addresses or math operations are byte swapped to little-endian
9302 * order.
9304 * Return:
9305 * ADV_SUCCESS(1) - The request was successfully queued.
9306 * ADV_BUSY(0) - Resource unavailable; Retry again after pending
9307 * request completes.
9308 * ADV_ERROR(-1) - Invalid ADV_SCSI_REQ_Q request structure
9309 * host IC error.
9311 static int AdvExeScsiQueue(ADV_DVC_VAR *asc_dvc, ADV_SCSI_REQ_Q *scsiq)
9313 AdvPortAddr iop_base;
9314 ADV_PADDR req_paddr;
9315 ADV_CARR_T *new_carrp;
9318 * The ADV_SCSI_REQ_Q 'target_id' field should never exceed ADV_MAX_TID.
9320 if (scsiq->target_id > ADV_MAX_TID) {
9321 scsiq->host_status = QHSTA_M_INVALID_DEVICE;
9322 scsiq->done_status = QD_WITH_ERROR;
9323 return ADV_ERROR;
9326 iop_base = asc_dvc->iop_base;
9329 * Allocate a carrier ensuring at least one carrier always
9330 * remains on the freelist and initialize fields.
9332 if ((new_carrp = asc_dvc->carr_freelist) == NULL) {
9333 return ADV_BUSY;
9335 asc_dvc->carr_freelist = (ADV_CARR_T *)
9336 ADV_U32_TO_VADDR(le32_to_cpu(new_carrp->next_vpa));
9337 asc_dvc->carr_pending_cnt++;
9340 * Set the carrier to be a stopper by setting 'next_vpa'
9341 * to the stopper value. The current stopper will be changed
9342 * below to point to the new stopper.
9344 new_carrp->next_vpa = cpu_to_le32(ASC_CQ_STOPPER);
9347 * Clear the ADV_SCSI_REQ_Q done flag.
9349 scsiq->a_flag &= ~ADV_SCSIQ_DONE;
9351 req_paddr = virt_to_bus(scsiq);
9352 BUG_ON(req_paddr & 31);
9353 /* Wait for assertion before making little-endian */
9354 req_paddr = cpu_to_le32(req_paddr);
9356 /* Save virtual and physical address of ADV_SCSI_REQ_Q and carrier. */
9357 scsiq->scsiq_ptr = cpu_to_le32(ADV_VADDR_TO_U32(scsiq));
9358 scsiq->scsiq_rptr = req_paddr;
9360 scsiq->carr_va = cpu_to_le32(ADV_VADDR_TO_U32(asc_dvc->icq_sp));
9362 * Every ADV_CARR_T.carr_pa is byte swapped to little-endian
9363 * order during initialization.
9365 scsiq->carr_pa = asc_dvc->icq_sp->carr_pa;
9368 * Use the current stopper to send the ADV_SCSI_REQ_Q command to
9369 * the microcode. The newly allocated stopper will become the new
9370 * stopper.
9372 asc_dvc->icq_sp->areq_vpa = req_paddr;
9375 * Set the 'next_vpa' pointer for the old stopper to be the
9376 * physical address of the new stopper. The RISC can only
9377 * follow physical addresses.
9379 asc_dvc->icq_sp->next_vpa = new_carrp->carr_pa;
9382 * Set the host adapter stopper pointer to point to the new carrier.
9384 asc_dvc->icq_sp = new_carrp;
9386 if (asc_dvc->chip_type == ADV_CHIP_ASC3550 ||
9387 asc_dvc->chip_type == ADV_CHIP_ASC38C0800) {
9389 * Tickle the RISC to tell it to read its Command Queue Head pointer.
9391 AdvWriteByteRegister(iop_base, IOPB_TICKLE, ADV_TICKLE_A);
9392 if (asc_dvc->chip_type == ADV_CHIP_ASC3550) {
9394 * Clear the tickle value. In the ASC-3550 the RISC flag
9395 * command 'clr_tickle_a' does not work unless the host
9396 * value is cleared.
9398 AdvWriteByteRegister(iop_base, IOPB_TICKLE,
9399 ADV_TICKLE_NOP);
9401 } else if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) {
9403 * Notify the RISC a carrier is ready by writing the physical
9404 * address of the new carrier stopper to the COMMA register.
9406 AdvWriteDWordRegister(iop_base, IOPDW_COMMA,
9407 le32_to_cpu(new_carrp->carr_pa));
9410 return ADV_SUCCESS;
9414 * Execute a single 'Scsi_Cmnd'.
9416 static int asc_execute_scsi_cmnd(struct scsi_cmnd *scp)
9418 int ret, err_code;
9419 struct asc_board *boardp = shost_priv(scp->device->host);
9421 ASC_DBG(1, "scp 0x%p\n", scp);
9423 if (ASC_NARROW_BOARD(boardp)) {
9424 ASC_DVC_VAR *asc_dvc = &boardp->dvc_var.asc_dvc_var;
9425 struct asc_scsi_q asc_scsi_q;
9427 /* asc_build_req() can not return ASC_BUSY. */
9428 ret = asc_build_req(boardp, scp, &asc_scsi_q);
9429 if (ret == ASC_ERROR) {
9430 ASC_STATS(scp->device->host, build_error);
9431 return ASC_ERROR;
9434 ret = AscExeScsiQueue(asc_dvc, &asc_scsi_q);
9435 kfree(asc_scsi_q.sg_head);
9436 err_code = asc_dvc->err_code;
9437 } else {
9438 ADV_DVC_VAR *adv_dvc = &boardp->dvc_var.adv_dvc_var;
9439 ADV_SCSI_REQ_Q *adv_scsiqp;
9441 switch (adv_build_req(boardp, scp, &adv_scsiqp)) {
9442 case ASC_NOERROR:
9443 ASC_DBG(3, "adv_build_req ASC_NOERROR\n");
9444 break;
9445 case ASC_BUSY:
9446 ASC_DBG(1, "adv_build_req ASC_BUSY\n");
9448 * The asc_stats fields 'adv_build_noreq' and
9449 * 'adv_build_nosg' count wide board busy conditions.
9450 * They are updated in adv_build_req and
9451 * adv_get_sglist, respectively.
9453 return ASC_BUSY;
9454 case ASC_ERROR:
9455 default:
9456 ASC_DBG(1, "adv_build_req ASC_ERROR\n");
9457 ASC_STATS(scp->device->host, build_error);
9458 return ASC_ERROR;
9461 ret = AdvExeScsiQueue(adv_dvc, adv_scsiqp);
9462 err_code = adv_dvc->err_code;
9465 switch (ret) {
9466 case ASC_NOERROR:
9467 ASC_STATS(scp->device->host, exe_noerror);
9469 * Increment monotonically increasing per device
9470 * successful request counter. Wrapping doesn't matter.
9472 boardp->reqcnt[scp->device->id]++;
9473 ASC_DBG(1, "ExeScsiQueue() ASC_NOERROR\n");
9474 break;
9475 case ASC_BUSY:
9476 ASC_STATS(scp->device->host, exe_busy);
9477 break;
9478 case ASC_ERROR:
9479 scmd_printk(KERN_ERR, scp, "ExeScsiQueue() ASC_ERROR, "
9480 "err_code 0x%x\n", err_code);
9481 ASC_STATS(scp->device->host, exe_error);
9482 scp->result = HOST_BYTE(DID_ERROR);
9483 break;
9484 default:
9485 scmd_printk(KERN_ERR, scp, "ExeScsiQueue() unknown, "
9486 "err_code 0x%x\n", err_code);
9487 ASC_STATS(scp->device->host, exe_unknown);
9488 scp->result = HOST_BYTE(DID_ERROR);
9489 break;
9492 ASC_DBG(1, "end\n");
9493 return ret;
9497 * advansys_queuecommand() - interrupt-driven I/O entrypoint.
9499 * This function always returns 0. Command return status is saved
9500 * in the 'scp' result field.
9502 static int
9503 advansys_queuecommand_lck(struct scsi_cmnd *scp, void (*done)(struct scsi_cmnd *))
9505 struct Scsi_Host *shost = scp->device->host;
9506 int asc_res, result = 0;
9508 ASC_STATS(shost, queuecommand);
9509 scp->scsi_done = done;
9511 asc_res = asc_execute_scsi_cmnd(scp);
9513 switch (asc_res) {
9514 case ASC_NOERROR:
9515 break;
9516 case ASC_BUSY:
9517 result = SCSI_MLQUEUE_HOST_BUSY;
9518 break;
9519 case ASC_ERROR:
9520 default:
9521 asc_scsi_done(scp);
9522 break;
9525 return result;
9528 static DEF_SCSI_QCMD(advansys_queuecommand)
9530 static ushort __devinit AscGetEisaChipCfg(PortAddr iop_base)
9532 PortAddr eisa_cfg_iop = (PortAddr) ASC_GET_EISA_SLOT(iop_base) |
9533 (PortAddr) (ASC_EISA_CFG_IOP_MASK);
9534 return inpw(eisa_cfg_iop);
9538 * Return the BIOS address of the adapter at the specified
9539 * I/O port and with the specified bus type.
9541 static unsigned short __devinit
9542 AscGetChipBiosAddress(PortAddr iop_base, unsigned short bus_type)
9544 unsigned short cfg_lsw;
9545 unsigned short bios_addr;
9548 * The PCI BIOS is re-located by the motherboard BIOS. Because
9549 * of this the driver can not determine where a PCI BIOS is
9550 * loaded and executes.
9552 if (bus_type & ASC_IS_PCI)
9553 return 0;
9555 if ((bus_type & ASC_IS_EISA) != 0) {
9556 cfg_lsw = AscGetEisaChipCfg(iop_base);
9557 cfg_lsw &= 0x000F;
9558 bios_addr = ASC_BIOS_MIN_ADDR + cfg_lsw * ASC_BIOS_BANK_SIZE;
9559 return bios_addr;
9562 cfg_lsw = AscGetChipCfgLsw(iop_base);
9565 * ISA PnP uses the top bit as the 32K BIOS flag
9567 if (bus_type == ASC_IS_ISAPNP)
9568 cfg_lsw &= 0x7FFF;
9569 bios_addr = ASC_BIOS_MIN_ADDR + (cfg_lsw >> 12) * ASC_BIOS_BANK_SIZE;
9570 return bios_addr;
9573 static uchar __devinit AscSetChipScsiID(PortAddr iop_base, uchar new_host_id)
9575 ushort cfg_lsw;
9577 if (AscGetChipScsiID(iop_base) == new_host_id) {
9578 return (new_host_id);
9580 cfg_lsw = AscGetChipCfgLsw(iop_base);
9581 cfg_lsw &= 0xF8FF;
9582 cfg_lsw |= (ushort)((new_host_id & ASC_MAX_TID) << 8);
9583 AscSetChipCfgLsw(iop_base, cfg_lsw);
9584 return (AscGetChipScsiID(iop_base));
9587 static unsigned char __devinit AscGetChipScsiCtrl(PortAddr iop_base)
9589 unsigned char sc;
9591 AscSetBank(iop_base, 1);
9592 sc = inp(iop_base + IOP_REG_SC);
9593 AscSetBank(iop_base, 0);
9594 return sc;
9597 static unsigned char __devinit
9598 AscGetChipVersion(PortAddr iop_base, unsigned short bus_type)
9600 if (bus_type & ASC_IS_EISA) {
9601 PortAddr eisa_iop;
9602 unsigned char revision;
9603 eisa_iop = (PortAddr) ASC_GET_EISA_SLOT(iop_base) |
9604 (PortAddr) ASC_EISA_REV_IOP_MASK;
9605 revision = inp(eisa_iop);
9606 return ASC_CHIP_MIN_VER_EISA - 1 + revision;
9608 return AscGetChipVerNo(iop_base);
9611 #ifdef CONFIG_ISA
9612 static void __devinit AscEnableIsaDma(uchar dma_channel)
9614 if (dma_channel < 4) {
9615 outp(0x000B, (ushort)(0xC0 | dma_channel));
9616 outp(0x000A, dma_channel);
9617 } else if (dma_channel < 8) {
9618 outp(0x00D6, (ushort)(0xC0 | (dma_channel - 4)));
9619 outp(0x00D4, (ushort)(dma_channel - 4));
9622 #endif /* CONFIG_ISA */
9624 static int AscStopQueueExe(PortAddr iop_base)
9626 int count = 0;
9628 if (AscReadLramByte(iop_base, ASCV_STOP_CODE_B) == 0) {
9629 AscWriteLramByte(iop_base, ASCV_STOP_CODE_B,
9630 ASC_STOP_REQ_RISC_STOP);
9631 do {
9632 if (AscReadLramByte(iop_base, ASCV_STOP_CODE_B) &
9633 ASC_STOP_ACK_RISC_STOP) {
9634 return (1);
9636 mdelay(100);
9637 } while (count++ < 20);
9639 return (0);
9642 static ASC_DCNT __devinit AscGetMaxDmaCount(ushort bus_type)
9644 if (bus_type & ASC_IS_ISA)
9645 return ASC_MAX_ISA_DMA_COUNT;
9646 else if (bus_type & (ASC_IS_EISA | ASC_IS_VL))
9647 return ASC_MAX_VL_DMA_COUNT;
9648 return ASC_MAX_PCI_DMA_COUNT;
9651 #ifdef CONFIG_ISA
9652 static ushort __devinit AscGetIsaDmaChannel(PortAddr iop_base)
9654 ushort channel;
9656 channel = AscGetChipCfgLsw(iop_base) & 0x0003;
9657 if (channel == 0x03)
9658 return (0);
9659 else if (channel == 0x00)
9660 return (7);
9661 return (channel + 4);
9664 static ushort __devinit AscSetIsaDmaChannel(PortAddr iop_base, ushort dma_channel)
9666 ushort cfg_lsw;
9667 uchar value;
9669 if ((dma_channel >= 5) && (dma_channel <= 7)) {
9670 if (dma_channel == 7)
9671 value = 0x00;
9672 else
9673 value = dma_channel - 4;
9674 cfg_lsw = AscGetChipCfgLsw(iop_base) & 0xFFFC;
9675 cfg_lsw |= value;
9676 AscSetChipCfgLsw(iop_base, cfg_lsw);
9677 return (AscGetIsaDmaChannel(iop_base));
9679 return 0;
9682 static uchar __devinit AscGetIsaDmaSpeed(PortAddr iop_base)
9684 uchar speed_value;
9686 AscSetBank(iop_base, 1);
9687 speed_value = AscReadChipDmaSpeed(iop_base);
9688 speed_value &= 0x07;
9689 AscSetBank(iop_base, 0);
9690 return speed_value;
9693 static uchar __devinit AscSetIsaDmaSpeed(PortAddr iop_base, uchar speed_value)
9695 speed_value &= 0x07;
9696 AscSetBank(iop_base, 1);
9697 AscWriteChipDmaSpeed(iop_base, speed_value);
9698 AscSetBank(iop_base, 0);
9699 return AscGetIsaDmaSpeed(iop_base);
9701 #endif /* CONFIG_ISA */
9703 static ushort __devinit AscInitAscDvcVar(ASC_DVC_VAR *asc_dvc)
9705 int i;
9706 PortAddr iop_base;
9707 ushort warn_code;
9708 uchar chip_version;
9710 iop_base = asc_dvc->iop_base;
9711 warn_code = 0;
9712 asc_dvc->err_code = 0;
9713 if ((asc_dvc->bus_type &
9714 (ASC_IS_ISA | ASC_IS_PCI | ASC_IS_EISA | ASC_IS_VL)) == 0) {
9715 asc_dvc->err_code |= ASC_IERR_NO_BUS_TYPE;
9717 AscSetChipControl(iop_base, CC_HALT);
9718 AscSetChipStatus(iop_base, 0);
9719 asc_dvc->bug_fix_cntl = 0;
9720 asc_dvc->pci_fix_asyn_xfer = 0;
9721 asc_dvc->pci_fix_asyn_xfer_always = 0;
9722 /* asc_dvc->init_state initialized in AscInitGetConfig(). */
9723 asc_dvc->sdtr_done = 0;
9724 asc_dvc->cur_total_qng = 0;
9725 asc_dvc->is_in_int = 0;
9726 asc_dvc->in_critical_cnt = 0;
9727 asc_dvc->last_q_shortage = 0;
9728 asc_dvc->use_tagged_qng = 0;
9729 asc_dvc->no_scam = 0;
9730 asc_dvc->unit_not_ready = 0;
9731 asc_dvc->queue_full_or_busy = 0;
9732 asc_dvc->redo_scam = 0;
9733 asc_dvc->res2 = 0;
9734 asc_dvc->min_sdtr_index = 0;
9735 asc_dvc->cfg->can_tagged_qng = 0;
9736 asc_dvc->cfg->cmd_qng_enabled = 0;
9737 asc_dvc->dvc_cntl = ASC_DEF_DVC_CNTL;
9738 asc_dvc->init_sdtr = 0;
9739 asc_dvc->max_total_qng = ASC_DEF_MAX_TOTAL_QNG;
9740 asc_dvc->scsi_reset_wait = 3;
9741 asc_dvc->start_motor = ASC_SCSI_WIDTH_BIT_SET;
9742 asc_dvc->max_dma_count = AscGetMaxDmaCount(asc_dvc->bus_type);
9743 asc_dvc->cfg->sdtr_enable = ASC_SCSI_WIDTH_BIT_SET;
9744 asc_dvc->cfg->disc_enable = ASC_SCSI_WIDTH_BIT_SET;
9745 asc_dvc->cfg->chip_scsi_id = ASC_DEF_CHIP_SCSI_ID;
9746 chip_version = AscGetChipVersion(iop_base, asc_dvc->bus_type);
9747 asc_dvc->cfg->chip_version = chip_version;
9748 asc_dvc->sdtr_period_tbl = asc_syn_xfer_period;
9749 asc_dvc->max_sdtr_index = 7;
9750 if ((asc_dvc->bus_type & ASC_IS_PCI) &&
9751 (chip_version >= ASC_CHIP_VER_PCI_ULTRA_3150)) {
9752 asc_dvc->bus_type = ASC_IS_PCI_ULTRA;
9753 asc_dvc->sdtr_period_tbl = asc_syn_ultra_xfer_period;
9754 asc_dvc->max_sdtr_index = 15;
9755 if (chip_version == ASC_CHIP_VER_PCI_ULTRA_3150) {
9756 AscSetExtraControl(iop_base,
9757 (SEC_ACTIVE_NEGATE | SEC_SLEW_RATE));
9758 } else if (chip_version >= ASC_CHIP_VER_PCI_ULTRA_3050) {
9759 AscSetExtraControl(iop_base,
9760 (SEC_ACTIVE_NEGATE |
9761 SEC_ENABLE_FILTER));
9764 if (asc_dvc->bus_type == ASC_IS_PCI) {
9765 AscSetExtraControl(iop_base,
9766 (SEC_ACTIVE_NEGATE | SEC_SLEW_RATE));
9769 asc_dvc->cfg->isa_dma_speed = ASC_DEF_ISA_DMA_SPEED;
9770 #ifdef CONFIG_ISA
9771 if ((asc_dvc->bus_type & ASC_IS_ISA) != 0) {
9772 if (chip_version >= ASC_CHIP_MIN_VER_ISA_PNP) {
9773 AscSetChipIFC(iop_base, IFC_INIT_DEFAULT);
9774 asc_dvc->bus_type = ASC_IS_ISAPNP;
9776 asc_dvc->cfg->isa_dma_channel =
9777 (uchar)AscGetIsaDmaChannel(iop_base);
9779 #endif /* CONFIG_ISA */
9780 for (i = 0; i <= ASC_MAX_TID; i++) {
9781 asc_dvc->cur_dvc_qng[i] = 0;
9782 asc_dvc->max_dvc_qng[i] = ASC_MAX_SCSI1_QNG;
9783 asc_dvc->scsiq_busy_head[i] = (ASC_SCSI_Q *)0L;
9784 asc_dvc->scsiq_busy_tail[i] = (ASC_SCSI_Q *)0L;
9785 asc_dvc->cfg->max_tag_qng[i] = ASC_MAX_INRAM_TAG_QNG;
9787 return warn_code;
9790 static int __devinit AscWriteEEPCmdReg(PortAddr iop_base, uchar cmd_reg)
9792 int retry;
9794 for (retry = 0; retry < ASC_EEP_MAX_RETRY; retry++) {
9795 unsigned char read_back;
9796 AscSetChipEEPCmd(iop_base, cmd_reg);
9797 mdelay(1);
9798 read_back = AscGetChipEEPCmd(iop_base);
9799 if (read_back == cmd_reg)
9800 return 1;
9802 return 0;
9805 static void __devinit AscWaitEEPRead(void)
9807 mdelay(1);
9810 static ushort __devinit AscReadEEPWord(PortAddr iop_base, uchar addr)
9812 ushort read_wval;
9813 uchar cmd_reg;
9815 AscWriteEEPCmdReg(iop_base, ASC_EEP_CMD_WRITE_DISABLE);
9816 AscWaitEEPRead();
9817 cmd_reg = addr | ASC_EEP_CMD_READ;
9818 AscWriteEEPCmdReg(iop_base, cmd_reg);
9819 AscWaitEEPRead();
9820 read_wval = AscGetChipEEPData(iop_base);
9821 AscWaitEEPRead();
9822 return read_wval;
9825 static ushort __devinit
9826 AscGetEEPConfig(PortAddr iop_base, ASCEEP_CONFIG *cfg_buf, ushort bus_type)
9828 ushort wval;
9829 ushort sum;
9830 ushort *wbuf;
9831 int cfg_beg;
9832 int cfg_end;
9833 int uchar_end_in_config = ASC_EEP_MAX_DVC_ADDR - 2;
9834 int s_addr;
9836 wbuf = (ushort *)cfg_buf;
9837 sum = 0;
9838 /* Read two config words; Byte-swapping done by AscReadEEPWord(). */
9839 for (s_addr = 0; s_addr < 2; s_addr++, wbuf++) {
9840 *wbuf = AscReadEEPWord(iop_base, (uchar)s_addr);
9841 sum += *wbuf;
9843 if (bus_type & ASC_IS_VL) {
9844 cfg_beg = ASC_EEP_DVC_CFG_BEG_VL;
9845 cfg_end = ASC_EEP_MAX_DVC_ADDR_VL;
9846 } else {
9847 cfg_beg = ASC_EEP_DVC_CFG_BEG;
9848 cfg_end = ASC_EEP_MAX_DVC_ADDR;
9850 for (s_addr = cfg_beg; s_addr <= (cfg_end - 1); s_addr++, wbuf++) {
9851 wval = AscReadEEPWord(iop_base, (uchar)s_addr);
9852 if (s_addr <= uchar_end_in_config) {
9854 * Swap all char fields - must unswap bytes already swapped
9855 * by AscReadEEPWord().
9857 *wbuf = le16_to_cpu(wval);
9858 } else {
9859 /* Don't swap word field at the end - cntl field. */
9860 *wbuf = wval;
9862 sum += wval; /* Checksum treats all EEPROM data as words. */
9865 * Read the checksum word which will be compared against 'sum'
9866 * by the caller. Word field already swapped.
9868 *wbuf = AscReadEEPWord(iop_base, (uchar)s_addr);
9869 return sum;
9872 static int __devinit AscTestExternalLram(ASC_DVC_VAR *asc_dvc)
9874 PortAddr iop_base;
9875 ushort q_addr;
9876 ushort saved_word;
9877 int sta;
9879 iop_base = asc_dvc->iop_base;
9880 sta = 0;
9881 q_addr = ASC_QNO_TO_QADDR(241);
9882 saved_word = AscReadLramWord(iop_base, q_addr);
9883 AscSetChipLramAddr(iop_base, q_addr);
9884 AscSetChipLramData(iop_base, 0x55AA);
9885 mdelay(10);
9886 AscSetChipLramAddr(iop_base, q_addr);
9887 if (AscGetChipLramData(iop_base) == 0x55AA) {
9888 sta = 1;
9889 AscWriteLramWord(iop_base, q_addr, saved_word);
9891 return (sta);
9894 static void __devinit AscWaitEEPWrite(void)
9896 mdelay(20);
9899 static int __devinit AscWriteEEPDataReg(PortAddr iop_base, ushort data_reg)
9901 ushort read_back;
9902 int retry;
9904 retry = 0;
9905 while (TRUE) {
9906 AscSetChipEEPData(iop_base, data_reg);
9907 mdelay(1);
9908 read_back = AscGetChipEEPData(iop_base);
9909 if (read_back == data_reg) {
9910 return (1);
9912 if (retry++ > ASC_EEP_MAX_RETRY) {
9913 return (0);
9918 static ushort __devinit
9919 AscWriteEEPWord(PortAddr iop_base, uchar addr, ushort word_val)
9921 ushort read_wval;
9923 read_wval = AscReadEEPWord(iop_base, addr);
9924 if (read_wval != word_val) {
9925 AscWriteEEPCmdReg(iop_base, ASC_EEP_CMD_WRITE_ABLE);
9926 AscWaitEEPRead();
9927 AscWriteEEPDataReg(iop_base, word_val);
9928 AscWaitEEPRead();
9929 AscWriteEEPCmdReg(iop_base,
9930 (uchar)((uchar)ASC_EEP_CMD_WRITE | addr));
9931 AscWaitEEPWrite();
9932 AscWriteEEPCmdReg(iop_base, ASC_EEP_CMD_WRITE_DISABLE);
9933 AscWaitEEPRead();
9934 return (AscReadEEPWord(iop_base, addr));
9936 return (read_wval);
9939 static int __devinit
9940 AscSetEEPConfigOnce(PortAddr iop_base, ASCEEP_CONFIG *cfg_buf, ushort bus_type)
9942 int n_error;
9943 ushort *wbuf;
9944 ushort word;
9945 ushort sum;
9946 int s_addr;
9947 int cfg_beg;
9948 int cfg_end;
9949 int uchar_end_in_config = ASC_EEP_MAX_DVC_ADDR - 2;
9951 wbuf = (ushort *)cfg_buf;
9952 n_error = 0;
9953 sum = 0;
9954 /* Write two config words; AscWriteEEPWord() will swap bytes. */
9955 for (s_addr = 0; s_addr < 2; s_addr++, wbuf++) {
9956 sum += *wbuf;
9957 if (*wbuf != AscWriteEEPWord(iop_base, (uchar)s_addr, *wbuf)) {
9958 n_error++;
9961 if (bus_type & ASC_IS_VL) {
9962 cfg_beg = ASC_EEP_DVC_CFG_BEG_VL;
9963 cfg_end = ASC_EEP_MAX_DVC_ADDR_VL;
9964 } else {
9965 cfg_beg = ASC_EEP_DVC_CFG_BEG;
9966 cfg_end = ASC_EEP_MAX_DVC_ADDR;
9968 for (s_addr = cfg_beg; s_addr <= (cfg_end - 1); s_addr++, wbuf++) {
9969 if (s_addr <= uchar_end_in_config) {
9971 * This is a char field. Swap char fields before they are
9972 * swapped again by AscWriteEEPWord().
9974 word = cpu_to_le16(*wbuf);
9975 if (word !=
9976 AscWriteEEPWord(iop_base, (uchar)s_addr, word)) {
9977 n_error++;
9979 } else {
9980 /* Don't swap word field at the end - cntl field. */
9981 if (*wbuf !=
9982 AscWriteEEPWord(iop_base, (uchar)s_addr, *wbuf)) {
9983 n_error++;
9986 sum += *wbuf; /* Checksum calculated from word values. */
9988 /* Write checksum word. It will be swapped by AscWriteEEPWord(). */
9989 *wbuf = sum;
9990 if (sum != AscWriteEEPWord(iop_base, (uchar)s_addr, sum)) {
9991 n_error++;
9994 /* Read EEPROM back again. */
9995 wbuf = (ushort *)cfg_buf;
9997 * Read two config words; Byte-swapping done by AscReadEEPWord().
9999 for (s_addr = 0; s_addr < 2; s_addr++, wbuf++) {
10000 if (*wbuf != AscReadEEPWord(iop_base, (uchar)s_addr)) {
10001 n_error++;
10004 if (bus_type & ASC_IS_VL) {
10005 cfg_beg = ASC_EEP_DVC_CFG_BEG_VL;
10006 cfg_end = ASC_EEP_MAX_DVC_ADDR_VL;
10007 } else {
10008 cfg_beg = ASC_EEP_DVC_CFG_BEG;
10009 cfg_end = ASC_EEP_MAX_DVC_ADDR;
10011 for (s_addr = cfg_beg; s_addr <= (cfg_end - 1); s_addr++, wbuf++) {
10012 if (s_addr <= uchar_end_in_config) {
10014 * Swap all char fields. Must unswap bytes already swapped
10015 * by AscReadEEPWord().
10017 word =
10018 le16_to_cpu(AscReadEEPWord
10019 (iop_base, (uchar)s_addr));
10020 } else {
10021 /* Don't swap word field at the end - cntl field. */
10022 word = AscReadEEPWord(iop_base, (uchar)s_addr);
10024 if (*wbuf != word) {
10025 n_error++;
10028 /* Read checksum; Byte swapping not needed. */
10029 if (AscReadEEPWord(iop_base, (uchar)s_addr) != sum) {
10030 n_error++;
10032 return n_error;
10035 static int __devinit
10036 AscSetEEPConfig(PortAddr iop_base, ASCEEP_CONFIG *cfg_buf, ushort bus_type)
10038 int retry;
10039 int n_error;
10041 retry = 0;
10042 while (TRUE) {
10043 if ((n_error = AscSetEEPConfigOnce(iop_base, cfg_buf,
10044 bus_type)) == 0) {
10045 break;
10047 if (++retry > ASC_EEP_MAX_RETRY) {
10048 break;
10051 return n_error;
10054 static ushort __devinit AscInitFromEEP(ASC_DVC_VAR *asc_dvc)
10056 ASCEEP_CONFIG eep_config_buf;
10057 ASCEEP_CONFIG *eep_config;
10058 PortAddr iop_base;
10059 ushort chksum;
10060 ushort warn_code;
10061 ushort cfg_msw, cfg_lsw;
10062 int i;
10063 int write_eep = 0;
10065 iop_base = asc_dvc->iop_base;
10066 warn_code = 0;
10067 AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0x00FE);
10068 AscStopQueueExe(iop_base);
10069 if ((AscStopChip(iop_base) == FALSE) ||
10070 (AscGetChipScsiCtrl(iop_base) != 0)) {
10071 asc_dvc->init_state |= ASC_INIT_RESET_SCSI_DONE;
10072 AscResetChipAndScsiBus(asc_dvc);
10073 mdelay(asc_dvc->scsi_reset_wait * 1000); /* XXX: msleep? */
10075 if (AscIsChipHalted(iop_base) == FALSE) {
10076 asc_dvc->err_code |= ASC_IERR_START_STOP_CHIP;
10077 return (warn_code);
10079 AscSetPCAddr(iop_base, ASC_MCODE_START_ADDR);
10080 if (AscGetPCAddr(iop_base) != ASC_MCODE_START_ADDR) {
10081 asc_dvc->err_code |= ASC_IERR_SET_PC_ADDR;
10082 return (warn_code);
10084 eep_config = (ASCEEP_CONFIG *)&eep_config_buf;
10085 cfg_msw = AscGetChipCfgMsw(iop_base);
10086 cfg_lsw = AscGetChipCfgLsw(iop_base);
10087 if ((cfg_msw & ASC_CFG_MSW_CLR_MASK) != 0) {
10088 cfg_msw &= ~ASC_CFG_MSW_CLR_MASK;
10089 warn_code |= ASC_WARN_CFG_MSW_RECOVER;
10090 AscSetChipCfgMsw(iop_base, cfg_msw);
10092 chksum = AscGetEEPConfig(iop_base, eep_config, asc_dvc->bus_type);
10093 ASC_DBG(1, "chksum 0x%x\n", chksum);
10094 if (chksum == 0) {
10095 chksum = 0xaa55;
10097 if (AscGetChipStatus(iop_base) & CSW_AUTO_CONFIG) {
10098 warn_code |= ASC_WARN_AUTO_CONFIG;
10099 if (asc_dvc->cfg->chip_version == 3) {
10100 if (eep_config->cfg_lsw != cfg_lsw) {
10101 warn_code |= ASC_WARN_EEPROM_RECOVER;
10102 eep_config->cfg_lsw =
10103 AscGetChipCfgLsw(iop_base);
10105 if (eep_config->cfg_msw != cfg_msw) {
10106 warn_code |= ASC_WARN_EEPROM_RECOVER;
10107 eep_config->cfg_msw =
10108 AscGetChipCfgMsw(iop_base);
10112 eep_config->cfg_msw &= ~ASC_CFG_MSW_CLR_MASK;
10113 eep_config->cfg_lsw |= ASC_CFG0_HOST_INT_ON;
10114 ASC_DBG(1, "eep_config->chksum 0x%x\n", eep_config->chksum);
10115 if (chksum != eep_config->chksum) {
10116 if (AscGetChipVersion(iop_base, asc_dvc->bus_type) ==
10117 ASC_CHIP_VER_PCI_ULTRA_3050) {
10118 ASC_DBG(1, "chksum error ignored; EEPROM-less board\n");
10119 eep_config->init_sdtr = 0xFF;
10120 eep_config->disc_enable = 0xFF;
10121 eep_config->start_motor = 0xFF;
10122 eep_config->use_cmd_qng = 0;
10123 eep_config->max_total_qng = 0xF0;
10124 eep_config->max_tag_qng = 0x20;
10125 eep_config->cntl = 0xBFFF;
10126 ASC_EEP_SET_CHIP_ID(eep_config, 7);
10127 eep_config->no_scam = 0;
10128 eep_config->adapter_info[0] = 0;
10129 eep_config->adapter_info[1] = 0;
10130 eep_config->adapter_info[2] = 0;
10131 eep_config->adapter_info[3] = 0;
10132 eep_config->adapter_info[4] = 0;
10133 /* Indicate EEPROM-less board. */
10134 eep_config->adapter_info[5] = 0xBB;
10135 } else {
10136 ASC_PRINT
10137 ("AscInitFromEEP: EEPROM checksum error; Will try to re-write EEPROM.\n");
10138 write_eep = 1;
10139 warn_code |= ASC_WARN_EEPROM_CHKSUM;
10142 asc_dvc->cfg->sdtr_enable = eep_config->init_sdtr;
10143 asc_dvc->cfg->disc_enable = eep_config->disc_enable;
10144 asc_dvc->cfg->cmd_qng_enabled = eep_config->use_cmd_qng;
10145 asc_dvc->cfg->isa_dma_speed = ASC_EEP_GET_DMA_SPD(eep_config);
10146 asc_dvc->start_motor = eep_config->start_motor;
10147 asc_dvc->dvc_cntl = eep_config->cntl;
10148 asc_dvc->no_scam = eep_config->no_scam;
10149 asc_dvc->cfg->adapter_info[0] = eep_config->adapter_info[0];
10150 asc_dvc->cfg->adapter_info[1] = eep_config->adapter_info[1];
10151 asc_dvc->cfg->adapter_info[2] = eep_config->adapter_info[2];
10152 asc_dvc->cfg->adapter_info[3] = eep_config->adapter_info[3];
10153 asc_dvc->cfg->adapter_info[4] = eep_config->adapter_info[4];
10154 asc_dvc->cfg->adapter_info[5] = eep_config->adapter_info[5];
10155 if (!AscTestExternalLram(asc_dvc)) {
10156 if (((asc_dvc->bus_type & ASC_IS_PCI_ULTRA) ==
10157 ASC_IS_PCI_ULTRA)) {
10158 eep_config->max_total_qng =
10159 ASC_MAX_PCI_ULTRA_INRAM_TOTAL_QNG;
10160 eep_config->max_tag_qng =
10161 ASC_MAX_PCI_ULTRA_INRAM_TAG_QNG;
10162 } else {
10163 eep_config->cfg_msw |= 0x0800;
10164 cfg_msw |= 0x0800;
10165 AscSetChipCfgMsw(iop_base, cfg_msw);
10166 eep_config->max_total_qng = ASC_MAX_PCI_INRAM_TOTAL_QNG;
10167 eep_config->max_tag_qng = ASC_MAX_INRAM_TAG_QNG;
10169 } else {
10171 if (eep_config->max_total_qng < ASC_MIN_TOTAL_QNG) {
10172 eep_config->max_total_qng = ASC_MIN_TOTAL_QNG;
10174 if (eep_config->max_total_qng > ASC_MAX_TOTAL_QNG) {
10175 eep_config->max_total_qng = ASC_MAX_TOTAL_QNG;
10177 if (eep_config->max_tag_qng > eep_config->max_total_qng) {
10178 eep_config->max_tag_qng = eep_config->max_total_qng;
10180 if (eep_config->max_tag_qng < ASC_MIN_TAG_Q_PER_DVC) {
10181 eep_config->max_tag_qng = ASC_MIN_TAG_Q_PER_DVC;
10183 asc_dvc->max_total_qng = eep_config->max_total_qng;
10184 if ((eep_config->use_cmd_qng & eep_config->disc_enable) !=
10185 eep_config->use_cmd_qng) {
10186 eep_config->disc_enable = eep_config->use_cmd_qng;
10187 warn_code |= ASC_WARN_CMD_QNG_CONFLICT;
10189 ASC_EEP_SET_CHIP_ID(eep_config,
10190 ASC_EEP_GET_CHIP_ID(eep_config) & ASC_MAX_TID);
10191 asc_dvc->cfg->chip_scsi_id = ASC_EEP_GET_CHIP_ID(eep_config);
10192 if (((asc_dvc->bus_type & ASC_IS_PCI_ULTRA) == ASC_IS_PCI_ULTRA) &&
10193 !(asc_dvc->dvc_cntl & ASC_CNTL_SDTR_ENABLE_ULTRA)) {
10194 asc_dvc->min_sdtr_index = ASC_SDTR_ULTRA_PCI_10MB_INDEX;
10197 for (i = 0; i <= ASC_MAX_TID; i++) {
10198 asc_dvc->dos_int13_table[i] = eep_config->dos_int13_table[i];
10199 asc_dvc->cfg->max_tag_qng[i] = eep_config->max_tag_qng;
10200 asc_dvc->cfg->sdtr_period_offset[i] =
10201 (uchar)(ASC_DEF_SDTR_OFFSET |
10202 (asc_dvc->min_sdtr_index << 4));
10204 eep_config->cfg_msw = AscGetChipCfgMsw(iop_base);
10205 if (write_eep) {
10206 if ((i = AscSetEEPConfig(iop_base, eep_config,
10207 asc_dvc->bus_type)) != 0) {
10208 ASC_PRINT1
10209 ("AscInitFromEEP: Failed to re-write EEPROM with %d errors.\n",
10211 } else {
10212 ASC_PRINT
10213 ("AscInitFromEEP: Successfully re-wrote EEPROM.\n");
10216 return (warn_code);
10219 static int __devinit AscInitGetConfig(struct Scsi_Host *shost)
10221 struct asc_board *board = shost_priv(shost);
10222 ASC_DVC_VAR *asc_dvc = &board->dvc_var.asc_dvc_var;
10223 unsigned short warn_code = 0;
10225 asc_dvc->init_state = ASC_INIT_STATE_BEG_GET_CFG;
10226 if (asc_dvc->err_code != 0)
10227 return asc_dvc->err_code;
10229 if (AscFindSignature(asc_dvc->iop_base)) {
10230 warn_code |= AscInitAscDvcVar(asc_dvc);
10231 warn_code |= AscInitFromEEP(asc_dvc);
10232 asc_dvc->init_state |= ASC_INIT_STATE_END_GET_CFG;
10233 if (asc_dvc->scsi_reset_wait > ASC_MAX_SCSI_RESET_WAIT)
10234 asc_dvc->scsi_reset_wait = ASC_MAX_SCSI_RESET_WAIT;
10235 } else {
10236 asc_dvc->err_code = ASC_IERR_BAD_SIGNATURE;
10239 switch (warn_code) {
10240 case 0: /* No error */
10241 break;
10242 case ASC_WARN_IO_PORT_ROTATE:
10243 shost_printk(KERN_WARNING, shost, "I/O port address "
10244 "modified\n");
10245 break;
10246 case ASC_WARN_AUTO_CONFIG:
10247 shost_printk(KERN_WARNING, shost, "I/O port increment switch "
10248 "enabled\n");
10249 break;
10250 case ASC_WARN_EEPROM_CHKSUM:
10251 shost_printk(KERN_WARNING, shost, "EEPROM checksum error\n");
10252 break;
10253 case ASC_WARN_IRQ_MODIFIED:
10254 shost_printk(KERN_WARNING, shost, "IRQ modified\n");
10255 break;
10256 case ASC_WARN_CMD_QNG_CONFLICT:
10257 shost_printk(KERN_WARNING, shost, "tag queuing enabled w/o "
10258 "disconnects\n");
10259 break;
10260 default:
10261 shost_printk(KERN_WARNING, shost, "unknown warning: 0x%x\n",
10262 warn_code);
10263 break;
10266 if (asc_dvc->err_code != 0)
10267 shost_printk(KERN_ERR, shost, "error 0x%x at init_state "
10268 "0x%x\n", asc_dvc->err_code, asc_dvc->init_state);
10270 return asc_dvc->err_code;
10273 static int __devinit AscInitSetConfig(struct pci_dev *pdev, struct Scsi_Host *shost)
10275 struct asc_board *board = shost_priv(shost);
10276 ASC_DVC_VAR *asc_dvc = &board->dvc_var.asc_dvc_var;
10277 PortAddr iop_base = asc_dvc->iop_base;
10278 unsigned short cfg_msw;
10279 unsigned short warn_code = 0;
10281 asc_dvc->init_state |= ASC_INIT_STATE_BEG_SET_CFG;
10282 if (asc_dvc->err_code != 0)
10283 return asc_dvc->err_code;
10284 if (!AscFindSignature(asc_dvc->iop_base)) {
10285 asc_dvc->err_code = ASC_IERR_BAD_SIGNATURE;
10286 return asc_dvc->err_code;
10289 cfg_msw = AscGetChipCfgMsw(iop_base);
10290 if ((cfg_msw & ASC_CFG_MSW_CLR_MASK) != 0) {
10291 cfg_msw &= ~ASC_CFG_MSW_CLR_MASK;
10292 warn_code |= ASC_WARN_CFG_MSW_RECOVER;
10293 AscSetChipCfgMsw(iop_base, cfg_msw);
10295 if ((asc_dvc->cfg->cmd_qng_enabled & asc_dvc->cfg->disc_enable) !=
10296 asc_dvc->cfg->cmd_qng_enabled) {
10297 asc_dvc->cfg->disc_enable = asc_dvc->cfg->cmd_qng_enabled;
10298 warn_code |= ASC_WARN_CMD_QNG_CONFLICT;
10300 if (AscGetChipStatus(iop_base) & CSW_AUTO_CONFIG) {
10301 warn_code |= ASC_WARN_AUTO_CONFIG;
10303 #ifdef CONFIG_PCI
10304 if (asc_dvc->bus_type & ASC_IS_PCI) {
10305 cfg_msw &= 0xFFC0;
10306 AscSetChipCfgMsw(iop_base, cfg_msw);
10307 if ((asc_dvc->bus_type & ASC_IS_PCI_ULTRA) == ASC_IS_PCI_ULTRA) {
10308 } else {
10309 if ((pdev->device == PCI_DEVICE_ID_ASP_1200A) ||
10310 (pdev->device == PCI_DEVICE_ID_ASP_ABP940)) {
10311 asc_dvc->bug_fix_cntl |= ASC_BUG_FIX_IF_NOT_DWB;
10312 asc_dvc->bug_fix_cntl |=
10313 ASC_BUG_FIX_ASYN_USE_SYN;
10316 } else
10317 #endif /* CONFIG_PCI */
10318 if (asc_dvc->bus_type == ASC_IS_ISAPNP) {
10319 if (AscGetChipVersion(iop_base, asc_dvc->bus_type)
10320 == ASC_CHIP_VER_ASYN_BUG) {
10321 asc_dvc->bug_fix_cntl |= ASC_BUG_FIX_ASYN_USE_SYN;
10324 if (AscSetChipScsiID(iop_base, asc_dvc->cfg->chip_scsi_id) !=
10325 asc_dvc->cfg->chip_scsi_id) {
10326 asc_dvc->err_code |= ASC_IERR_SET_SCSI_ID;
10328 #ifdef CONFIG_ISA
10329 if (asc_dvc->bus_type & ASC_IS_ISA) {
10330 AscSetIsaDmaChannel(iop_base, asc_dvc->cfg->isa_dma_channel);
10331 AscSetIsaDmaSpeed(iop_base, asc_dvc->cfg->isa_dma_speed);
10333 #endif /* CONFIG_ISA */
10335 asc_dvc->init_state |= ASC_INIT_STATE_END_SET_CFG;
10337 switch (warn_code) {
10338 case 0: /* No error. */
10339 break;
10340 case ASC_WARN_IO_PORT_ROTATE:
10341 shost_printk(KERN_WARNING, shost, "I/O port address "
10342 "modified\n");
10343 break;
10344 case ASC_WARN_AUTO_CONFIG:
10345 shost_printk(KERN_WARNING, shost, "I/O port increment switch "
10346 "enabled\n");
10347 break;
10348 case ASC_WARN_EEPROM_CHKSUM:
10349 shost_printk(KERN_WARNING, shost, "EEPROM checksum error\n");
10350 break;
10351 case ASC_WARN_IRQ_MODIFIED:
10352 shost_printk(KERN_WARNING, shost, "IRQ modified\n");
10353 break;
10354 case ASC_WARN_CMD_QNG_CONFLICT:
10355 shost_printk(KERN_WARNING, shost, "tag queuing w/o "
10356 "disconnects\n");
10357 break;
10358 default:
10359 shost_printk(KERN_WARNING, shost, "unknown warning: 0x%x\n",
10360 warn_code);
10361 break;
10364 if (asc_dvc->err_code != 0)
10365 shost_printk(KERN_ERR, shost, "error 0x%x at init_state "
10366 "0x%x\n", asc_dvc->err_code, asc_dvc->init_state);
10368 return asc_dvc->err_code;
10372 * EEPROM Configuration.
10374 * All drivers should use this structure to set the default EEPROM
10375 * configuration. The BIOS now uses this structure when it is built.
10376 * Additional structure information can be found in a_condor.h where
10377 * the structure is defined.
10379 * The *_Field_IsChar structs are needed to correct for endianness.
10380 * These values are read from the board 16 bits at a time directly
10381 * into the structs. Because some fields are char, the values will be
10382 * in the wrong order. The *_Field_IsChar tells when to flip the
10383 * bytes. Data read and written to PCI memory is automatically swapped
10384 * on big-endian platforms so char fields read as words are actually being
10385 * unswapped on big-endian platforms.
10387 static ADVEEP_3550_CONFIG Default_3550_EEPROM_Config __devinitdata = {
10388 ADV_EEPROM_BIOS_ENABLE, /* cfg_lsw */
10389 0x0000, /* cfg_msw */
10390 0xFFFF, /* disc_enable */
10391 0xFFFF, /* wdtr_able */
10392 0xFFFF, /* sdtr_able */
10393 0xFFFF, /* start_motor */
10394 0xFFFF, /* tagqng_able */
10395 0xFFFF, /* bios_scan */
10396 0, /* scam_tolerant */
10397 7, /* adapter_scsi_id */
10398 0, /* bios_boot_delay */
10399 3, /* scsi_reset_delay */
10400 0, /* bios_id_lun */
10401 0, /* termination */
10402 0, /* reserved1 */
10403 0xFFE7, /* bios_ctrl */
10404 0xFFFF, /* ultra_able */
10405 0, /* reserved2 */
10406 ASC_DEF_MAX_HOST_QNG, /* max_host_qng */
10407 ASC_DEF_MAX_DVC_QNG, /* max_dvc_qng */
10408 0, /* dvc_cntl */
10409 0, /* bug_fix */
10410 0, /* serial_number_word1 */
10411 0, /* serial_number_word2 */
10412 0, /* serial_number_word3 */
10413 0, /* check_sum */
10414 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
10415 , /* oem_name[16] */
10416 0, /* dvc_err_code */
10417 0, /* adv_err_code */
10418 0, /* adv_err_addr */
10419 0, /* saved_dvc_err_code */
10420 0, /* saved_adv_err_code */
10421 0, /* saved_adv_err_addr */
10422 0 /* num_of_err */
10425 static ADVEEP_3550_CONFIG ADVEEP_3550_Config_Field_IsChar __devinitdata = {
10426 0, /* cfg_lsw */
10427 0, /* cfg_msw */
10428 0, /* -disc_enable */
10429 0, /* wdtr_able */
10430 0, /* sdtr_able */
10431 0, /* start_motor */
10432 0, /* tagqng_able */
10433 0, /* bios_scan */
10434 0, /* scam_tolerant */
10435 1, /* adapter_scsi_id */
10436 1, /* bios_boot_delay */
10437 1, /* scsi_reset_delay */
10438 1, /* bios_id_lun */
10439 1, /* termination */
10440 1, /* reserved1 */
10441 0, /* bios_ctrl */
10442 0, /* ultra_able */
10443 0, /* reserved2 */
10444 1, /* max_host_qng */
10445 1, /* max_dvc_qng */
10446 0, /* dvc_cntl */
10447 0, /* bug_fix */
10448 0, /* serial_number_word1 */
10449 0, /* serial_number_word2 */
10450 0, /* serial_number_word3 */
10451 0, /* check_sum */
10452 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}
10453 , /* oem_name[16] */
10454 0, /* dvc_err_code */
10455 0, /* adv_err_code */
10456 0, /* adv_err_addr */
10457 0, /* saved_dvc_err_code */
10458 0, /* saved_adv_err_code */
10459 0, /* saved_adv_err_addr */
10460 0 /* num_of_err */
10463 static ADVEEP_38C0800_CONFIG Default_38C0800_EEPROM_Config __devinitdata = {
10464 ADV_EEPROM_BIOS_ENABLE, /* 00 cfg_lsw */
10465 0x0000, /* 01 cfg_msw */
10466 0xFFFF, /* 02 disc_enable */
10467 0xFFFF, /* 03 wdtr_able */
10468 0x4444, /* 04 sdtr_speed1 */
10469 0xFFFF, /* 05 start_motor */
10470 0xFFFF, /* 06 tagqng_able */
10471 0xFFFF, /* 07 bios_scan */
10472 0, /* 08 scam_tolerant */
10473 7, /* 09 adapter_scsi_id */
10474 0, /* bios_boot_delay */
10475 3, /* 10 scsi_reset_delay */
10476 0, /* bios_id_lun */
10477 0, /* 11 termination_se */
10478 0, /* termination_lvd */
10479 0xFFE7, /* 12 bios_ctrl */
10480 0x4444, /* 13 sdtr_speed2 */
10481 0x4444, /* 14 sdtr_speed3 */
10482 ASC_DEF_MAX_HOST_QNG, /* 15 max_host_qng */
10483 ASC_DEF_MAX_DVC_QNG, /* max_dvc_qng */
10484 0, /* 16 dvc_cntl */
10485 0x4444, /* 17 sdtr_speed4 */
10486 0, /* 18 serial_number_word1 */
10487 0, /* 19 serial_number_word2 */
10488 0, /* 20 serial_number_word3 */
10489 0, /* 21 check_sum */
10490 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
10491 , /* 22-29 oem_name[16] */
10492 0, /* 30 dvc_err_code */
10493 0, /* 31 adv_err_code */
10494 0, /* 32 adv_err_addr */
10495 0, /* 33 saved_dvc_err_code */
10496 0, /* 34 saved_adv_err_code */
10497 0, /* 35 saved_adv_err_addr */
10498 0, /* 36 reserved */
10499 0, /* 37 reserved */
10500 0, /* 38 reserved */
10501 0, /* 39 reserved */
10502 0, /* 40 reserved */
10503 0, /* 41 reserved */
10504 0, /* 42 reserved */
10505 0, /* 43 reserved */
10506 0, /* 44 reserved */
10507 0, /* 45 reserved */
10508 0, /* 46 reserved */
10509 0, /* 47 reserved */
10510 0, /* 48 reserved */
10511 0, /* 49 reserved */
10512 0, /* 50 reserved */
10513 0, /* 51 reserved */
10514 0, /* 52 reserved */
10515 0, /* 53 reserved */
10516 0, /* 54 reserved */
10517 0, /* 55 reserved */
10518 0, /* 56 cisptr_lsw */
10519 0, /* 57 cisprt_msw */
10520 PCI_VENDOR_ID_ASP, /* 58 subsysvid */
10521 PCI_DEVICE_ID_38C0800_REV1, /* 59 subsysid */
10522 0, /* 60 reserved */
10523 0, /* 61 reserved */
10524 0, /* 62 reserved */
10525 0 /* 63 reserved */
10528 static ADVEEP_38C0800_CONFIG ADVEEP_38C0800_Config_Field_IsChar __devinitdata = {
10529 0, /* 00 cfg_lsw */
10530 0, /* 01 cfg_msw */
10531 0, /* 02 disc_enable */
10532 0, /* 03 wdtr_able */
10533 0, /* 04 sdtr_speed1 */
10534 0, /* 05 start_motor */
10535 0, /* 06 tagqng_able */
10536 0, /* 07 bios_scan */
10537 0, /* 08 scam_tolerant */
10538 1, /* 09 adapter_scsi_id */
10539 1, /* bios_boot_delay */
10540 1, /* 10 scsi_reset_delay */
10541 1, /* bios_id_lun */
10542 1, /* 11 termination_se */
10543 1, /* termination_lvd */
10544 0, /* 12 bios_ctrl */
10545 0, /* 13 sdtr_speed2 */
10546 0, /* 14 sdtr_speed3 */
10547 1, /* 15 max_host_qng */
10548 1, /* max_dvc_qng */
10549 0, /* 16 dvc_cntl */
10550 0, /* 17 sdtr_speed4 */
10551 0, /* 18 serial_number_word1 */
10552 0, /* 19 serial_number_word2 */
10553 0, /* 20 serial_number_word3 */
10554 0, /* 21 check_sum */
10555 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}
10556 , /* 22-29 oem_name[16] */
10557 0, /* 30 dvc_err_code */
10558 0, /* 31 adv_err_code */
10559 0, /* 32 adv_err_addr */
10560 0, /* 33 saved_dvc_err_code */
10561 0, /* 34 saved_adv_err_code */
10562 0, /* 35 saved_adv_err_addr */
10563 0, /* 36 reserved */
10564 0, /* 37 reserved */
10565 0, /* 38 reserved */
10566 0, /* 39 reserved */
10567 0, /* 40 reserved */
10568 0, /* 41 reserved */
10569 0, /* 42 reserved */
10570 0, /* 43 reserved */
10571 0, /* 44 reserved */
10572 0, /* 45 reserved */
10573 0, /* 46 reserved */
10574 0, /* 47 reserved */
10575 0, /* 48 reserved */
10576 0, /* 49 reserved */
10577 0, /* 50 reserved */
10578 0, /* 51 reserved */
10579 0, /* 52 reserved */
10580 0, /* 53 reserved */
10581 0, /* 54 reserved */
10582 0, /* 55 reserved */
10583 0, /* 56 cisptr_lsw */
10584 0, /* 57 cisprt_msw */
10585 0, /* 58 subsysvid */
10586 0, /* 59 subsysid */
10587 0, /* 60 reserved */
10588 0, /* 61 reserved */
10589 0, /* 62 reserved */
10590 0 /* 63 reserved */
10593 static ADVEEP_38C1600_CONFIG Default_38C1600_EEPROM_Config __devinitdata = {
10594 ADV_EEPROM_BIOS_ENABLE, /* 00 cfg_lsw */
10595 0x0000, /* 01 cfg_msw */
10596 0xFFFF, /* 02 disc_enable */
10597 0xFFFF, /* 03 wdtr_able */
10598 0x5555, /* 04 sdtr_speed1 */
10599 0xFFFF, /* 05 start_motor */
10600 0xFFFF, /* 06 tagqng_able */
10601 0xFFFF, /* 07 bios_scan */
10602 0, /* 08 scam_tolerant */
10603 7, /* 09 adapter_scsi_id */
10604 0, /* bios_boot_delay */
10605 3, /* 10 scsi_reset_delay */
10606 0, /* bios_id_lun */
10607 0, /* 11 termination_se */
10608 0, /* termination_lvd */
10609 0xFFE7, /* 12 bios_ctrl */
10610 0x5555, /* 13 sdtr_speed2 */
10611 0x5555, /* 14 sdtr_speed3 */
10612 ASC_DEF_MAX_HOST_QNG, /* 15 max_host_qng */
10613 ASC_DEF_MAX_DVC_QNG, /* max_dvc_qng */
10614 0, /* 16 dvc_cntl */
10615 0x5555, /* 17 sdtr_speed4 */
10616 0, /* 18 serial_number_word1 */
10617 0, /* 19 serial_number_word2 */
10618 0, /* 20 serial_number_word3 */
10619 0, /* 21 check_sum */
10620 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
10621 , /* 22-29 oem_name[16] */
10622 0, /* 30 dvc_err_code */
10623 0, /* 31 adv_err_code */
10624 0, /* 32 adv_err_addr */
10625 0, /* 33 saved_dvc_err_code */
10626 0, /* 34 saved_adv_err_code */
10627 0, /* 35 saved_adv_err_addr */
10628 0, /* 36 reserved */
10629 0, /* 37 reserved */
10630 0, /* 38 reserved */
10631 0, /* 39 reserved */
10632 0, /* 40 reserved */
10633 0, /* 41 reserved */
10634 0, /* 42 reserved */
10635 0, /* 43 reserved */
10636 0, /* 44 reserved */
10637 0, /* 45 reserved */
10638 0, /* 46 reserved */
10639 0, /* 47 reserved */
10640 0, /* 48 reserved */
10641 0, /* 49 reserved */
10642 0, /* 50 reserved */
10643 0, /* 51 reserved */
10644 0, /* 52 reserved */
10645 0, /* 53 reserved */
10646 0, /* 54 reserved */
10647 0, /* 55 reserved */
10648 0, /* 56 cisptr_lsw */
10649 0, /* 57 cisprt_msw */
10650 PCI_VENDOR_ID_ASP, /* 58 subsysvid */
10651 PCI_DEVICE_ID_38C1600_REV1, /* 59 subsysid */
10652 0, /* 60 reserved */
10653 0, /* 61 reserved */
10654 0, /* 62 reserved */
10655 0 /* 63 reserved */
10658 static ADVEEP_38C1600_CONFIG ADVEEP_38C1600_Config_Field_IsChar __devinitdata = {
10659 0, /* 00 cfg_lsw */
10660 0, /* 01 cfg_msw */
10661 0, /* 02 disc_enable */
10662 0, /* 03 wdtr_able */
10663 0, /* 04 sdtr_speed1 */
10664 0, /* 05 start_motor */
10665 0, /* 06 tagqng_able */
10666 0, /* 07 bios_scan */
10667 0, /* 08 scam_tolerant */
10668 1, /* 09 adapter_scsi_id */
10669 1, /* bios_boot_delay */
10670 1, /* 10 scsi_reset_delay */
10671 1, /* bios_id_lun */
10672 1, /* 11 termination_se */
10673 1, /* termination_lvd */
10674 0, /* 12 bios_ctrl */
10675 0, /* 13 sdtr_speed2 */
10676 0, /* 14 sdtr_speed3 */
10677 1, /* 15 max_host_qng */
10678 1, /* max_dvc_qng */
10679 0, /* 16 dvc_cntl */
10680 0, /* 17 sdtr_speed4 */
10681 0, /* 18 serial_number_word1 */
10682 0, /* 19 serial_number_word2 */
10683 0, /* 20 serial_number_word3 */
10684 0, /* 21 check_sum */
10685 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}
10686 , /* 22-29 oem_name[16] */
10687 0, /* 30 dvc_err_code */
10688 0, /* 31 adv_err_code */
10689 0, /* 32 adv_err_addr */
10690 0, /* 33 saved_dvc_err_code */
10691 0, /* 34 saved_adv_err_code */
10692 0, /* 35 saved_adv_err_addr */
10693 0, /* 36 reserved */
10694 0, /* 37 reserved */
10695 0, /* 38 reserved */
10696 0, /* 39 reserved */
10697 0, /* 40 reserved */
10698 0, /* 41 reserved */
10699 0, /* 42 reserved */
10700 0, /* 43 reserved */
10701 0, /* 44 reserved */
10702 0, /* 45 reserved */
10703 0, /* 46 reserved */
10704 0, /* 47 reserved */
10705 0, /* 48 reserved */
10706 0, /* 49 reserved */
10707 0, /* 50 reserved */
10708 0, /* 51 reserved */
10709 0, /* 52 reserved */
10710 0, /* 53 reserved */
10711 0, /* 54 reserved */
10712 0, /* 55 reserved */
10713 0, /* 56 cisptr_lsw */
10714 0, /* 57 cisprt_msw */
10715 0, /* 58 subsysvid */
10716 0, /* 59 subsysid */
10717 0, /* 60 reserved */
10718 0, /* 61 reserved */
10719 0, /* 62 reserved */
10720 0 /* 63 reserved */
10723 #ifdef CONFIG_PCI
10725 * Wait for EEPROM command to complete
10727 static void __devinit AdvWaitEEPCmd(AdvPortAddr iop_base)
10729 int eep_delay_ms;
10731 for (eep_delay_ms = 0; eep_delay_ms < ADV_EEP_DELAY_MS; eep_delay_ms++) {
10732 if (AdvReadWordRegister(iop_base, IOPW_EE_CMD) &
10733 ASC_EEP_CMD_DONE) {
10734 break;
10736 mdelay(1);
10738 if ((AdvReadWordRegister(iop_base, IOPW_EE_CMD) & ASC_EEP_CMD_DONE) ==
10740 BUG();
10744 * Read the EEPROM from specified location
10746 static ushort __devinit AdvReadEEPWord(AdvPortAddr iop_base, int eep_word_addr)
10748 AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
10749 ASC_EEP_CMD_READ | eep_word_addr);
10750 AdvWaitEEPCmd(iop_base);
10751 return AdvReadWordRegister(iop_base, IOPW_EE_DATA);
10755 * Write the EEPROM from 'cfg_buf'.
10757 static void __devinit
10758 AdvSet3550EEPConfig(AdvPortAddr iop_base, ADVEEP_3550_CONFIG *cfg_buf)
10760 ushort *wbuf;
10761 ushort addr, chksum;
10762 ushort *charfields;
10764 wbuf = (ushort *)cfg_buf;
10765 charfields = (ushort *)&ADVEEP_3550_Config_Field_IsChar;
10766 chksum = 0;
10768 AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_ABLE);
10769 AdvWaitEEPCmd(iop_base);
10772 * Write EEPROM from word 0 to word 20.
10774 for (addr = ADV_EEP_DVC_CFG_BEGIN;
10775 addr < ADV_EEP_DVC_CFG_END; addr++, wbuf++) {
10776 ushort word;
10778 if (*charfields++) {
10779 word = cpu_to_le16(*wbuf);
10780 } else {
10781 word = *wbuf;
10783 chksum += *wbuf; /* Checksum is calculated from word values. */
10784 AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word);
10785 AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
10786 ASC_EEP_CMD_WRITE | addr);
10787 AdvWaitEEPCmd(iop_base);
10788 mdelay(ADV_EEP_DELAY_MS);
10792 * Write EEPROM checksum at word 21.
10794 AdvWriteWordRegister(iop_base, IOPW_EE_DATA, chksum);
10795 AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE | addr);
10796 AdvWaitEEPCmd(iop_base);
10797 wbuf++;
10798 charfields++;
10801 * Write EEPROM OEM name at words 22 to 29.
10803 for (addr = ADV_EEP_DVC_CTL_BEGIN;
10804 addr < ADV_EEP_MAX_WORD_ADDR; addr++, wbuf++) {
10805 ushort word;
10807 if (*charfields++) {
10808 word = cpu_to_le16(*wbuf);
10809 } else {
10810 word = *wbuf;
10812 AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word);
10813 AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
10814 ASC_EEP_CMD_WRITE | addr);
10815 AdvWaitEEPCmd(iop_base);
10817 AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_DISABLE);
10818 AdvWaitEEPCmd(iop_base);
10822 * Write the EEPROM from 'cfg_buf'.
10824 static void __devinit
10825 AdvSet38C0800EEPConfig(AdvPortAddr iop_base, ADVEEP_38C0800_CONFIG *cfg_buf)
10827 ushort *wbuf;
10828 ushort *charfields;
10829 ushort addr, chksum;
10831 wbuf = (ushort *)cfg_buf;
10832 charfields = (ushort *)&ADVEEP_38C0800_Config_Field_IsChar;
10833 chksum = 0;
10835 AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_ABLE);
10836 AdvWaitEEPCmd(iop_base);
10839 * Write EEPROM from word 0 to word 20.
10841 for (addr = ADV_EEP_DVC_CFG_BEGIN;
10842 addr < ADV_EEP_DVC_CFG_END; addr++, wbuf++) {
10843 ushort word;
10845 if (*charfields++) {
10846 word = cpu_to_le16(*wbuf);
10847 } else {
10848 word = *wbuf;
10850 chksum += *wbuf; /* Checksum is calculated from word values. */
10851 AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word);
10852 AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
10853 ASC_EEP_CMD_WRITE | addr);
10854 AdvWaitEEPCmd(iop_base);
10855 mdelay(ADV_EEP_DELAY_MS);
10859 * Write EEPROM checksum at word 21.
10861 AdvWriteWordRegister(iop_base, IOPW_EE_DATA, chksum);
10862 AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE | addr);
10863 AdvWaitEEPCmd(iop_base);
10864 wbuf++;
10865 charfields++;
10868 * Write EEPROM OEM name at words 22 to 29.
10870 for (addr = ADV_EEP_DVC_CTL_BEGIN;
10871 addr < ADV_EEP_MAX_WORD_ADDR; addr++, wbuf++) {
10872 ushort word;
10874 if (*charfields++) {
10875 word = cpu_to_le16(*wbuf);
10876 } else {
10877 word = *wbuf;
10879 AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word);
10880 AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
10881 ASC_EEP_CMD_WRITE | addr);
10882 AdvWaitEEPCmd(iop_base);
10884 AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_DISABLE);
10885 AdvWaitEEPCmd(iop_base);
10889 * Write the EEPROM from 'cfg_buf'.
10891 static void __devinit
10892 AdvSet38C1600EEPConfig(AdvPortAddr iop_base, ADVEEP_38C1600_CONFIG *cfg_buf)
10894 ushort *wbuf;
10895 ushort *charfields;
10896 ushort addr, chksum;
10898 wbuf = (ushort *)cfg_buf;
10899 charfields = (ushort *)&ADVEEP_38C1600_Config_Field_IsChar;
10900 chksum = 0;
10902 AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_ABLE);
10903 AdvWaitEEPCmd(iop_base);
10906 * Write EEPROM from word 0 to word 20.
10908 for (addr = ADV_EEP_DVC_CFG_BEGIN;
10909 addr < ADV_EEP_DVC_CFG_END; addr++, wbuf++) {
10910 ushort word;
10912 if (*charfields++) {
10913 word = cpu_to_le16(*wbuf);
10914 } else {
10915 word = *wbuf;
10917 chksum += *wbuf; /* Checksum is calculated from word values. */
10918 AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word);
10919 AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
10920 ASC_EEP_CMD_WRITE | addr);
10921 AdvWaitEEPCmd(iop_base);
10922 mdelay(ADV_EEP_DELAY_MS);
10926 * Write EEPROM checksum at word 21.
10928 AdvWriteWordRegister(iop_base, IOPW_EE_DATA, chksum);
10929 AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE | addr);
10930 AdvWaitEEPCmd(iop_base);
10931 wbuf++;
10932 charfields++;
10935 * Write EEPROM OEM name at words 22 to 29.
10937 for (addr = ADV_EEP_DVC_CTL_BEGIN;
10938 addr < ADV_EEP_MAX_WORD_ADDR; addr++, wbuf++) {
10939 ushort word;
10941 if (*charfields++) {
10942 word = cpu_to_le16(*wbuf);
10943 } else {
10944 word = *wbuf;
10946 AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word);
10947 AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
10948 ASC_EEP_CMD_WRITE | addr);
10949 AdvWaitEEPCmd(iop_base);
10951 AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_DISABLE);
10952 AdvWaitEEPCmd(iop_base);
10956 * Read EEPROM configuration into the specified buffer.
10958 * Return a checksum based on the EEPROM configuration read.
10960 static ushort __devinit
10961 AdvGet3550EEPConfig(AdvPortAddr iop_base, ADVEEP_3550_CONFIG *cfg_buf)
10963 ushort wval, chksum;
10964 ushort *wbuf;
10965 int eep_addr;
10966 ushort *charfields;
10968 charfields = (ushort *)&ADVEEP_3550_Config_Field_IsChar;
10969 wbuf = (ushort *)cfg_buf;
10970 chksum = 0;
10972 for (eep_addr = ADV_EEP_DVC_CFG_BEGIN;
10973 eep_addr < ADV_EEP_DVC_CFG_END; eep_addr++, wbuf++) {
10974 wval = AdvReadEEPWord(iop_base, eep_addr);
10975 chksum += wval; /* Checksum is calculated from word values. */
10976 if (*charfields++) {
10977 *wbuf = le16_to_cpu(wval);
10978 } else {
10979 *wbuf = wval;
10982 /* Read checksum word. */
10983 *wbuf = AdvReadEEPWord(iop_base, eep_addr);
10984 wbuf++;
10985 charfields++;
10987 /* Read rest of EEPROM not covered by the checksum. */
10988 for (eep_addr = ADV_EEP_DVC_CTL_BEGIN;
10989 eep_addr < ADV_EEP_MAX_WORD_ADDR; eep_addr++, wbuf++) {
10990 *wbuf = AdvReadEEPWord(iop_base, eep_addr);
10991 if (*charfields++) {
10992 *wbuf = le16_to_cpu(*wbuf);
10995 return chksum;
10999 * Read EEPROM configuration into the specified buffer.
11001 * Return a checksum based on the EEPROM configuration read.
11003 static ushort __devinit
11004 AdvGet38C0800EEPConfig(AdvPortAddr iop_base, ADVEEP_38C0800_CONFIG *cfg_buf)
11006 ushort wval, chksum;
11007 ushort *wbuf;
11008 int eep_addr;
11009 ushort *charfields;
11011 charfields = (ushort *)&ADVEEP_38C0800_Config_Field_IsChar;
11012 wbuf = (ushort *)cfg_buf;
11013 chksum = 0;
11015 for (eep_addr = ADV_EEP_DVC_CFG_BEGIN;
11016 eep_addr < ADV_EEP_DVC_CFG_END; eep_addr++, wbuf++) {
11017 wval = AdvReadEEPWord(iop_base, eep_addr);
11018 chksum += wval; /* Checksum is calculated from word values. */
11019 if (*charfields++) {
11020 *wbuf = le16_to_cpu(wval);
11021 } else {
11022 *wbuf = wval;
11025 /* Read checksum word. */
11026 *wbuf = AdvReadEEPWord(iop_base, eep_addr);
11027 wbuf++;
11028 charfields++;
11030 /* Read rest of EEPROM not covered by the checksum. */
11031 for (eep_addr = ADV_EEP_DVC_CTL_BEGIN;
11032 eep_addr < ADV_EEP_MAX_WORD_ADDR; eep_addr++, wbuf++) {
11033 *wbuf = AdvReadEEPWord(iop_base, eep_addr);
11034 if (*charfields++) {
11035 *wbuf = le16_to_cpu(*wbuf);
11038 return chksum;
11042 * Read EEPROM configuration into the specified buffer.
11044 * Return a checksum based on the EEPROM configuration read.
11046 static ushort __devinit
11047 AdvGet38C1600EEPConfig(AdvPortAddr iop_base, ADVEEP_38C1600_CONFIG *cfg_buf)
11049 ushort wval, chksum;
11050 ushort *wbuf;
11051 int eep_addr;
11052 ushort *charfields;
11054 charfields = (ushort *)&ADVEEP_38C1600_Config_Field_IsChar;
11055 wbuf = (ushort *)cfg_buf;
11056 chksum = 0;
11058 for (eep_addr = ADV_EEP_DVC_CFG_BEGIN;
11059 eep_addr < ADV_EEP_DVC_CFG_END; eep_addr++, wbuf++) {
11060 wval = AdvReadEEPWord(iop_base, eep_addr);
11061 chksum += wval; /* Checksum is calculated from word values. */
11062 if (*charfields++) {
11063 *wbuf = le16_to_cpu(wval);
11064 } else {
11065 *wbuf = wval;
11068 /* Read checksum word. */
11069 *wbuf = AdvReadEEPWord(iop_base, eep_addr);
11070 wbuf++;
11071 charfields++;
11073 /* Read rest of EEPROM not covered by the checksum. */
11074 for (eep_addr = ADV_EEP_DVC_CTL_BEGIN;
11075 eep_addr < ADV_EEP_MAX_WORD_ADDR; eep_addr++, wbuf++) {
11076 *wbuf = AdvReadEEPWord(iop_base, eep_addr);
11077 if (*charfields++) {
11078 *wbuf = le16_to_cpu(*wbuf);
11081 return chksum;
11085 * Read the board's EEPROM configuration. Set fields in ADV_DVC_VAR and
11086 * ADV_DVC_CFG based on the EEPROM settings. The chip is stopped while
11087 * all of this is done.
11089 * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
11091 * For a non-fatal error return a warning code. If there are no warnings
11092 * then 0 is returned.
11094 * Note: Chip is stopped on entry.
11096 static int __devinit AdvInitFrom3550EEP(ADV_DVC_VAR *asc_dvc)
11098 AdvPortAddr iop_base;
11099 ushort warn_code;
11100 ADVEEP_3550_CONFIG eep_config;
11102 iop_base = asc_dvc->iop_base;
11104 warn_code = 0;
11107 * Read the board's EEPROM configuration.
11109 * Set default values if a bad checksum is found.
11111 if (AdvGet3550EEPConfig(iop_base, &eep_config) != eep_config.check_sum) {
11112 warn_code |= ASC_WARN_EEPROM_CHKSUM;
11115 * Set EEPROM default values.
11117 memcpy(&eep_config, &Default_3550_EEPROM_Config,
11118 sizeof(ADVEEP_3550_CONFIG));
11121 * Assume the 6 byte board serial number that was read from
11122 * EEPROM is correct even if the EEPROM checksum failed.
11124 eep_config.serial_number_word3 =
11125 AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 1);
11127 eep_config.serial_number_word2 =
11128 AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 2);
11130 eep_config.serial_number_word1 =
11131 AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 3);
11133 AdvSet3550EEPConfig(iop_base, &eep_config);
11136 * Set ASC_DVC_VAR and ASC_DVC_CFG variables from the
11137 * EEPROM configuration that was read.
11139 * This is the mapping of EEPROM fields to Adv Library fields.
11141 asc_dvc->wdtr_able = eep_config.wdtr_able;
11142 asc_dvc->sdtr_able = eep_config.sdtr_able;
11143 asc_dvc->ultra_able = eep_config.ultra_able;
11144 asc_dvc->tagqng_able = eep_config.tagqng_able;
11145 asc_dvc->cfg->disc_enable = eep_config.disc_enable;
11146 asc_dvc->max_host_qng = eep_config.max_host_qng;
11147 asc_dvc->max_dvc_qng = eep_config.max_dvc_qng;
11148 asc_dvc->chip_scsi_id = (eep_config.adapter_scsi_id & ADV_MAX_TID);
11149 asc_dvc->start_motor = eep_config.start_motor;
11150 asc_dvc->scsi_reset_wait = eep_config.scsi_reset_delay;
11151 asc_dvc->bios_ctrl = eep_config.bios_ctrl;
11152 asc_dvc->no_scam = eep_config.scam_tolerant;
11153 asc_dvc->cfg->serial1 = eep_config.serial_number_word1;
11154 asc_dvc->cfg->serial2 = eep_config.serial_number_word2;
11155 asc_dvc->cfg->serial3 = eep_config.serial_number_word3;
11158 * Set the host maximum queuing (max. 253, min. 16) and the per device
11159 * maximum queuing (max. 63, min. 4).
11161 if (eep_config.max_host_qng > ASC_DEF_MAX_HOST_QNG) {
11162 eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
11163 } else if (eep_config.max_host_qng < ASC_DEF_MIN_HOST_QNG) {
11164 /* If the value is zero, assume it is uninitialized. */
11165 if (eep_config.max_host_qng == 0) {
11166 eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
11167 } else {
11168 eep_config.max_host_qng = ASC_DEF_MIN_HOST_QNG;
11172 if (eep_config.max_dvc_qng > ASC_DEF_MAX_DVC_QNG) {
11173 eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
11174 } else if (eep_config.max_dvc_qng < ASC_DEF_MIN_DVC_QNG) {
11175 /* If the value is zero, assume it is uninitialized. */
11176 if (eep_config.max_dvc_qng == 0) {
11177 eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
11178 } else {
11179 eep_config.max_dvc_qng = ASC_DEF_MIN_DVC_QNG;
11184 * If 'max_dvc_qng' is greater than 'max_host_qng', then
11185 * set 'max_dvc_qng' to 'max_host_qng'.
11187 if (eep_config.max_dvc_qng > eep_config.max_host_qng) {
11188 eep_config.max_dvc_qng = eep_config.max_host_qng;
11192 * Set ADV_DVC_VAR 'max_host_qng' and ADV_DVC_VAR 'max_dvc_qng'
11193 * values based on possibly adjusted EEPROM values.
11195 asc_dvc->max_host_qng = eep_config.max_host_qng;
11196 asc_dvc->max_dvc_qng = eep_config.max_dvc_qng;
11199 * If the EEPROM 'termination' field is set to automatic (0), then set
11200 * the ADV_DVC_CFG 'termination' field to automatic also.
11202 * If the termination is specified with a non-zero 'termination'
11203 * value check that a legal value is set and set the ADV_DVC_CFG
11204 * 'termination' field appropriately.
11206 if (eep_config.termination == 0) {
11207 asc_dvc->cfg->termination = 0; /* auto termination */
11208 } else {
11209 /* Enable manual control with low off / high off. */
11210 if (eep_config.termination == 1) {
11211 asc_dvc->cfg->termination = TERM_CTL_SEL;
11213 /* Enable manual control with low off / high on. */
11214 } else if (eep_config.termination == 2) {
11215 asc_dvc->cfg->termination = TERM_CTL_SEL | TERM_CTL_H;
11217 /* Enable manual control with low on / high on. */
11218 } else if (eep_config.termination == 3) {
11219 asc_dvc->cfg->termination =
11220 TERM_CTL_SEL | TERM_CTL_H | TERM_CTL_L;
11221 } else {
11223 * The EEPROM 'termination' field contains a bad value. Use
11224 * automatic termination instead.
11226 asc_dvc->cfg->termination = 0;
11227 warn_code |= ASC_WARN_EEPROM_TERMINATION;
11231 return warn_code;
11235 * Read the board's EEPROM configuration. Set fields in ADV_DVC_VAR and
11236 * ADV_DVC_CFG based on the EEPROM settings. The chip is stopped while
11237 * all of this is done.
11239 * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
11241 * For a non-fatal error return a warning code. If there are no warnings
11242 * then 0 is returned.
11244 * Note: Chip is stopped on entry.
11246 static int __devinit AdvInitFrom38C0800EEP(ADV_DVC_VAR *asc_dvc)
11248 AdvPortAddr iop_base;
11249 ushort warn_code;
11250 ADVEEP_38C0800_CONFIG eep_config;
11251 uchar tid, termination;
11252 ushort sdtr_speed = 0;
11254 iop_base = asc_dvc->iop_base;
11256 warn_code = 0;
11259 * Read the board's EEPROM configuration.
11261 * Set default values if a bad checksum is found.
11263 if (AdvGet38C0800EEPConfig(iop_base, &eep_config) !=
11264 eep_config.check_sum) {
11265 warn_code |= ASC_WARN_EEPROM_CHKSUM;
11268 * Set EEPROM default values.
11270 memcpy(&eep_config, &Default_38C0800_EEPROM_Config,
11271 sizeof(ADVEEP_38C0800_CONFIG));
11274 * Assume the 6 byte board serial number that was read from
11275 * EEPROM is correct even if the EEPROM checksum failed.
11277 eep_config.serial_number_word3 =
11278 AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 1);
11280 eep_config.serial_number_word2 =
11281 AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 2);
11283 eep_config.serial_number_word1 =
11284 AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 3);
11286 AdvSet38C0800EEPConfig(iop_base, &eep_config);
11289 * Set ADV_DVC_VAR and ADV_DVC_CFG variables from the
11290 * EEPROM configuration that was read.
11292 * This is the mapping of EEPROM fields to Adv Library fields.
11294 asc_dvc->wdtr_able = eep_config.wdtr_able;
11295 asc_dvc->sdtr_speed1 = eep_config.sdtr_speed1;
11296 asc_dvc->sdtr_speed2 = eep_config.sdtr_speed2;
11297 asc_dvc->sdtr_speed3 = eep_config.sdtr_speed3;
11298 asc_dvc->sdtr_speed4 = eep_config.sdtr_speed4;
11299 asc_dvc->tagqng_able = eep_config.tagqng_able;
11300 asc_dvc->cfg->disc_enable = eep_config.disc_enable;
11301 asc_dvc->max_host_qng = eep_config.max_host_qng;
11302 asc_dvc->max_dvc_qng = eep_config.max_dvc_qng;
11303 asc_dvc->chip_scsi_id = (eep_config.adapter_scsi_id & ADV_MAX_TID);
11304 asc_dvc->start_motor = eep_config.start_motor;
11305 asc_dvc->scsi_reset_wait = eep_config.scsi_reset_delay;
11306 asc_dvc->bios_ctrl = eep_config.bios_ctrl;
11307 asc_dvc->no_scam = eep_config.scam_tolerant;
11308 asc_dvc->cfg->serial1 = eep_config.serial_number_word1;
11309 asc_dvc->cfg->serial2 = eep_config.serial_number_word2;
11310 asc_dvc->cfg->serial3 = eep_config.serial_number_word3;
11313 * For every Target ID if any of its 'sdtr_speed[1234]' bits
11314 * are set, then set an 'sdtr_able' bit for it.
11316 asc_dvc->sdtr_able = 0;
11317 for (tid = 0; tid <= ADV_MAX_TID; tid++) {
11318 if (tid == 0) {
11319 sdtr_speed = asc_dvc->sdtr_speed1;
11320 } else if (tid == 4) {
11321 sdtr_speed = asc_dvc->sdtr_speed2;
11322 } else if (tid == 8) {
11323 sdtr_speed = asc_dvc->sdtr_speed3;
11324 } else if (tid == 12) {
11325 sdtr_speed = asc_dvc->sdtr_speed4;
11327 if (sdtr_speed & ADV_MAX_TID) {
11328 asc_dvc->sdtr_able |= (1 << tid);
11330 sdtr_speed >>= 4;
11334 * Set the host maximum queuing (max. 253, min. 16) and the per device
11335 * maximum queuing (max. 63, min. 4).
11337 if (eep_config.max_host_qng > ASC_DEF_MAX_HOST_QNG) {
11338 eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
11339 } else if (eep_config.max_host_qng < ASC_DEF_MIN_HOST_QNG) {
11340 /* If the value is zero, assume it is uninitialized. */
11341 if (eep_config.max_host_qng == 0) {
11342 eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
11343 } else {
11344 eep_config.max_host_qng = ASC_DEF_MIN_HOST_QNG;
11348 if (eep_config.max_dvc_qng > ASC_DEF_MAX_DVC_QNG) {
11349 eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
11350 } else if (eep_config.max_dvc_qng < ASC_DEF_MIN_DVC_QNG) {
11351 /* If the value is zero, assume it is uninitialized. */
11352 if (eep_config.max_dvc_qng == 0) {
11353 eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
11354 } else {
11355 eep_config.max_dvc_qng = ASC_DEF_MIN_DVC_QNG;
11360 * If 'max_dvc_qng' is greater than 'max_host_qng', then
11361 * set 'max_dvc_qng' to 'max_host_qng'.
11363 if (eep_config.max_dvc_qng > eep_config.max_host_qng) {
11364 eep_config.max_dvc_qng = eep_config.max_host_qng;
11368 * Set ADV_DVC_VAR 'max_host_qng' and ADV_DVC_VAR 'max_dvc_qng'
11369 * values based on possibly adjusted EEPROM values.
11371 asc_dvc->max_host_qng = eep_config.max_host_qng;
11372 asc_dvc->max_dvc_qng = eep_config.max_dvc_qng;
11375 * If the EEPROM 'termination' field is set to automatic (0), then set
11376 * the ADV_DVC_CFG 'termination' field to automatic also.
11378 * If the termination is specified with a non-zero 'termination'
11379 * value check that a legal value is set and set the ADV_DVC_CFG
11380 * 'termination' field appropriately.
11382 if (eep_config.termination_se == 0) {
11383 termination = 0; /* auto termination for SE */
11384 } else {
11385 /* Enable manual control with low off / high off. */
11386 if (eep_config.termination_se == 1) {
11387 termination = 0;
11389 /* Enable manual control with low off / high on. */
11390 } else if (eep_config.termination_se == 2) {
11391 termination = TERM_SE_HI;
11393 /* Enable manual control with low on / high on. */
11394 } else if (eep_config.termination_se == 3) {
11395 termination = TERM_SE;
11396 } else {
11398 * The EEPROM 'termination_se' field contains a bad value.
11399 * Use automatic termination instead.
11401 termination = 0;
11402 warn_code |= ASC_WARN_EEPROM_TERMINATION;
11406 if (eep_config.termination_lvd == 0) {
11407 asc_dvc->cfg->termination = termination; /* auto termination for LVD */
11408 } else {
11409 /* Enable manual control with low off / high off. */
11410 if (eep_config.termination_lvd == 1) {
11411 asc_dvc->cfg->termination = termination;
11413 /* Enable manual control with low off / high on. */
11414 } else if (eep_config.termination_lvd == 2) {
11415 asc_dvc->cfg->termination = termination | TERM_LVD_HI;
11417 /* Enable manual control with low on / high on. */
11418 } else if (eep_config.termination_lvd == 3) {
11419 asc_dvc->cfg->termination = termination | TERM_LVD;
11420 } else {
11422 * The EEPROM 'termination_lvd' field contains a bad value.
11423 * Use automatic termination instead.
11425 asc_dvc->cfg->termination = termination;
11426 warn_code |= ASC_WARN_EEPROM_TERMINATION;
11430 return warn_code;
11434 * Read the board's EEPROM configuration. Set fields in ASC_DVC_VAR and
11435 * ASC_DVC_CFG based on the EEPROM settings. The chip is stopped while
11436 * all of this is done.
11438 * On failure set the ASC_DVC_VAR field 'err_code' and return ADV_ERROR.
11440 * For a non-fatal error return a warning code. If there are no warnings
11441 * then 0 is returned.
11443 * Note: Chip is stopped on entry.
11445 static int __devinit AdvInitFrom38C1600EEP(ADV_DVC_VAR *asc_dvc)
11447 AdvPortAddr iop_base;
11448 ushort warn_code;
11449 ADVEEP_38C1600_CONFIG eep_config;
11450 uchar tid, termination;
11451 ushort sdtr_speed = 0;
11453 iop_base = asc_dvc->iop_base;
11455 warn_code = 0;
11458 * Read the board's EEPROM configuration.
11460 * Set default values if a bad checksum is found.
11462 if (AdvGet38C1600EEPConfig(iop_base, &eep_config) !=
11463 eep_config.check_sum) {
11464 struct pci_dev *pdev = adv_dvc_to_pdev(asc_dvc);
11465 warn_code |= ASC_WARN_EEPROM_CHKSUM;
11468 * Set EEPROM default values.
11470 memcpy(&eep_config, &Default_38C1600_EEPROM_Config,
11471 sizeof(ADVEEP_38C1600_CONFIG));
11473 if (PCI_FUNC(pdev->devfn) != 0) {
11474 u8 ints;
11476 * Disable Bit 14 (BIOS_ENABLE) to fix SPARC Ultra 60
11477 * and old Mac system booting problem. The Expansion
11478 * ROM must be disabled in Function 1 for these systems
11480 eep_config.cfg_lsw &= ~ADV_EEPROM_BIOS_ENABLE;
11482 * Clear the INTAB (bit 11) if the GPIO 0 input
11483 * indicates the Function 1 interrupt line is wired
11484 * to INTB.
11486 * Set/Clear Bit 11 (INTAB) from the GPIO bit 0 input:
11487 * 1 - Function 1 interrupt line wired to INT A.
11488 * 0 - Function 1 interrupt line wired to INT B.
11490 * Note: Function 0 is always wired to INTA.
11491 * Put all 5 GPIO bits in input mode and then read
11492 * their input values.
11494 AdvWriteByteRegister(iop_base, IOPB_GPIO_CNTL, 0);
11495 ints = AdvReadByteRegister(iop_base, IOPB_GPIO_DATA);
11496 if ((ints & 0x01) == 0)
11497 eep_config.cfg_lsw &= ~ADV_EEPROM_INTAB;
11501 * Assume the 6 byte board serial number that was read from
11502 * EEPROM is correct even if the EEPROM checksum failed.
11504 eep_config.serial_number_word3 =
11505 AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 1);
11506 eep_config.serial_number_word2 =
11507 AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 2);
11508 eep_config.serial_number_word1 =
11509 AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 3);
11511 AdvSet38C1600EEPConfig(iop_base, &eep_config);
11515 * Set ASC_DVC_VAR and ASC_DVC_CFG variables from the
11516 * EEPROM configuration that was read.
11518 * This is the mapping of EEPROM fields to Adv Library fields.
11520 asc_dvc->wdtr_able = eep_config.wdtr_able;
11521 asc_dvc->sdtr_speed1 = eep_config.sdtr_speed1;
11522 asc_dvc->sdtr_speed2 = eep_config.sdtr_speed2;
11523 asc_dvc->sdtr_speed3 = eep_config.sdtr_speed3;
11524 asc_dvc->sdtr_speed4 = eep_config.sdtr_speed4;
11525 asc_dvc->ppr_able = 0;
11526 asc_dvc->tagqng_able = eep_config.tagqng_able;
11527 asc_dvc->cfg->disc_enable = eep_config.disc_enable;
11528 asc_dvc->max_host_qng = eep_config.max_host_qng;
11529 asc_dvc->max_dvc_qng = eep_config.max_dvc_qng;
11530 asc_dvc->chip_scsi_id = (eep_config.adapter_scsi_id & ASC_MAX_TID);
11531 asc_dvc->start_motor = eep_config.start_motor;
11532 asc_dvc->scsi_reset_wait = eep_config.scsi_reset_delay;
11533 asc_dvc->bios_ctrl = eep_config.bios_ctrl;
11534 asc_dvc->no_scam = eep_config.scam_tolerant;
11537 * For every Target ID if any of its 'sdtr_speed[1234]' bits
11538 * are set, then set an 'sdtr_able' bit for it.
11540 asc_dvc->sdtr_able = 0;
11541 for (tid = 0; tid <= ASC_MAX_TID; tid++) {
11542 if (tid == 0) {
11543 sdtr_speed = asc_dvc->sdtr_speed1;
11544 } else if (tid == 4) {
11545 sdtr_speed = asc_dvc->sdtr_speed2;
11546 } else if (tid == 8) {
11547 sdtr_speed = asc_dvc->sdtr_speed3;
11548 } else if (tid == 12) {
11549 sdtr_speed = asc_dvc->sdtr_speed4;
11551 if (sdtr_speed & ASC_MAX_TID) {
11552 asc_dvc->sdtr_able |= (1 << tid);
11554 sdtr_speed >>= 4;
11558 * Set the host maximum queuing (max. 253, min. 16) and the per device
11559 * maximum queuing (max. 63, min. 4).
11561 if (eep_config.max_host_qng > ASC_DEF_MAX_HOST_QNG) {
11562 eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
11563 } else if (eep_config.max_host_qng < ASC_DEF_MIN_HOST_QNG) {
11564 /* If the value is zero, assume it is uninitialized. */
11565 if (eep_config.max_host_qng == 0) {
11566 eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
11567 } else {
11568 eep_config.max_host_qng = ASC_DEF_MIN_HOST_QNG;
11572 if (eep_config.max_dvc_qng > ASC_DEF_MAX_DVC_QNG) {
11573 eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
11574 } else if (eep_config.max_dvc_qng < ASC_DEF_MIN_DVC_QNG) {
11575 /* If the value is zero, assume it is uninitialized. */
11576 if (eep_config.max_dvc_qng == 0) {
11577 eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
11578 } else {
11579 eep_config.max_dvc_qng = ASC_DEF_MIN_DVC_QNG;
11584 * If 'max_dvc_qng' is greater than 'max_host_qng', then
11585 * set 'max_dvc_qng' to 'max_host_qng'.
11587 if (eep_config.max_dvc_qng > eep_config.max_host_qng) {
11588 eep_config.max_dvc_qng = eep_config.max_host_qng;
11592 * Set ASC_DVC_VAR 'max_host_qng' and ASC_DVC_VAR 'max_dvc_qng'
11593 * values based on possibly adjusted EEPROM values.
11595 asc_dvc->max_host_qng = eep_config.max_host_qng;
11596 asc_dvc->max_dvc_qng = eep_config.max_dvc_qng;
11599 * If the EEPROM 'termination' field is set to automatic (0), then set
11600 * the ASC_DVC_CFG 'termination' field to automatic also.
11602 * If the termination is specified with a non-zero 'termination'
11603 * value check that a legal value is set and set the ASC_DVC_CFG
11604 * 'termination' field appropriately.
11606 if (eep_config.termination_se == 0) {
11607 termination = 0; /* auto termination for SE */
11608 } else {
11609 /* Enable manual control with low off / high off. */
11610 if (eep_config.termination_se == 1) {
11611 termination = 0;
11613 /* Enable manual control with low off / high on. */
11614 } else if (eep_config.termination_se == 2) {
11615 termination = TERM_SE_HI;
11617 /* Enable manual control with low on / high on. */
11618 } else if (eep_config.termination_se == 3) {
11619 termination = TERM_SE;
11620 } else {
11622 * The EEPROM 'termination_se' field contains a bad value.
11623 * Use automatic termination instead.
11625 termination = 0;
11626 warn_code |= ASC_WARN_EEPROM_TERMINATION;
11630 if (eep_config.termination_lvd == 0) {
11631 asc_dvc->cfg->termination = termination; /* auto termination for LVD */
11632 } else {
11633 /* Enable manual control with low off / high off. */
11634 if (eep_config.termination_lvd == 1) {
11635 asc_dvc->cfg->termination = termination;
11637 /* Enable manual control with low off / high on. */
11638 } else if (eep_config.termination_lvd == 2) {
11639 asc_dvc->cfg->termination = termination | TERM_LVD_HI;
11641 /* Enable manual control with low on / high on. */
11642 } else if (eep_config.termination_lvd == 3) {
11643 asc_dvc->cfg->termination = termination | TERM_LVD;
11644 } else {
11646 * The EEPROM 'termination_lvd' field contains a bad value.
11647 * Use automatic termination instead.
11649 asc_dvc->cfg->termination = termination;
11650 warn_code |= ASC_WARN_EEPROM_TERMINATION;
11654 return warn_code;
11658 * Initialize the ADV_DVC_VAR structure.
11660 * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
11662 * For a non-fatal error return a warning code. If there are no warnings
11663 * then 0 is returned.
11665 static int __devinit
11666 AdvInitGetConfig(struct pci_dev *pdev, struct Scsi_Host *shost)
11668 struct asc_board *board = shost_priv(shost);
11669 ADV_DVC_VAR *asc_dvc = &board->dvc_var.adv_dvc_var;
11670 unsigned short warn_code = 0;
11671 AdvPortAddr iop_base = asc_dvc->iop_base;
11672 u16 cmd;
11673 int status;
11675 asc_dvc->err_code = 0;
11678 * Save the state of the PCI Configuration Command Register
11679 * "Parity Error Response Control" Bit. If the bit is clear (0),
11680 * in AdvInitAsc3550/38C0800Driver() tell the microcode to ignore
11681 * DMA parity errors.
11683 asc_dvc->cfg->control_flag = 0;
11684 pci_read_config_word(pdev, PCI_COMMAND, &cmd);
11685 if ((cmd & PCI_COMMAND_PARITY) == 0)
11686 asc_dvc->cfg->control_flag |= CONTROL_FLAG_IGNORE_PERR;
11688 asc_dvc->cfg->chip_version =
11689 AdvGetChipVersion(iop_base, asc_dvc->bus_type);
11691 ASC_DBG(1, "iopb_chip_id_1: 0x%x 0x%x\n",
11692 (ushort)AdvReadByteRegister(iop_base, IOPB_CHIP_ID_1),
11693 (ushort)ADV_CHIP_ID_BYTE);
11695 ASC_DBG(1, "iopw_chip_id_0: 0x%x 0x%x\n",
11696 (ushort)AdvReadWordRegister(iop_base, IOPW_CHIP_ID_0),
11697 (ushort)ADV_CHIP_ID_WORD);
11700 * Reset the chip to start and allow register writes.
11702 if (AdvFindSignature(iop_base) == 0) {
11703 asc_dvc->err_code = ASC_IERR_BAD_SIGNATURE;
11704 return ADV_ERROR;
11705 } else {
11707 * The caller must set 'chip_type' to a valid setting.
11709 if (asc_dvc->chip_type != ADV_CHIP_ASC3550 &&
11710 asc_dvc->chip_type != ADV_CHIP_ASC38C0800 &&
11711 asc_dvc->chip_type != ADV_CHIP_ASC38C1600) {
11712 asc_dvc->err_code |= ASC_IERR_BAD_CHIPTYPE;
11713 return ADV_ERROR;
11717 * Reset Chip.
11719 AdvWriteWordRegister(iop_base, IOPW_CTRL_REG,
11720 ADV_CTRL_REG_CMD_RESET);
11721 mdelay(100);
11722 AdvWriteWordRegister(iop_base, IOPW_CTRL_REG,
11723 ADV_CTRL_REG_CMD_WR_IO_REG);
11725 if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) {
11726 status = AdvInitFrom38C1600EEP(asc_dvc);
11727 } else if (asc_dvc->chip_type == ADV_CHIP_ASC38C0800) {
11728 status = AdvInitFrom38C0800EEP(asc_dvc);
11729 } else {
11730 status = AdvInitFrom3550EEP(asc_dvc);
11732 warn_code |= status;
11735 if (warn_code != 0)
11736 shost_printk(KERN_WARNING, shost, "warning: 0x%x\n", warn_code);
11738 if (asc_dvc->err_code)
11739 shost_printk(KERN_ERR, shost, "error code 0x%x\n",
11740 asc_dvc->err_code);
11742 return asc_dvc->err_code;
11744 #endif
11746 static struct scsi_host_template advansys_template = {
11747 .proc_name = DRV_NAME,
11748 #ifdef CONFIG_PROC_FS
11749 .proc_info = advansys_proc_info,
11750 #endif
11751 .name = DRV_NAME,
11752 .info = advansys_info,
11753 .queuecommand = advansys_queuecommand,
11754 .eh_bus_reset_handler = advansys_reset,
11755 .bios_param = advansys_biosparam,
11756 .slave_configure = advansys_slave_configure,
11758 * Because the driver may control an ISA adapter 'unchecked_isa_dma'
11759 * must be set. The flag will be cleared in advansys_board_found
11760 * for non-ISA adapters.
11762 .unchecked_isa_dma = 1,
11764 * All adapters controlled by this driver are capable of large
11765 * scatter-gather lists. According to the mid-level SCSI documentation
11766 * this obviates any performance gain provided by setting
11767 * 'use_clustering'. But empirically while CPU utilization is increased
11768 * by enabling clustering, I/O throughput increases as well.
11770 .use_clustering = ENABLE_CLUSTERING,
11773 static int __devinit advansys_wide_init_chip(struct Scsi_Host *shost)
11775 struct asc_board *board = shost_priv(shost);
11776 struct adv_dvc_var *adv_dvc = &board->dvc_var.adv_dvc_var;
11777 int req_cnt = 0;
11778 adv_req_t *reqp = NULL;
11779 int sg_cnt = 0;
11780 adv_sgblk_t *sgp;
11781 int warn_code, err_code;
11784 * Allocate buffer carrier structures. The total size
11785 * is about 4 KB, so allocate all at once.
11787 adv_dvc->carrier_buf = kmalloc(ADV_CARRIER_BUFSIZE, GFP_KERNEL);
11788 ASC_DBG(1, "carrier_buf 0x%p\n", adv_dvc->carrier_buf);
11790 if (!adv_dvc->carrier_buf)
11791 goto kmalloc_failed;
11794 * Allocate up to 'max_host_qng' request structures for the Wide
11795 * board. The total size is about 16 KB, so allocate all at once.
11796 * If the allocation fails decrement and try again.
11798 for (req_cnt = adv_dvc->max_host_qng; req_cnt > 0; req_cnt--) {
11799 reqp = kmalloc(sizeof(adv_req_t) * req_cnt, GFP_KERNEL);
11801 ASC_DBG(1, "reqp 0x%p, req_cnt %d, bytes %lu\n", reqp, req_cnt,
11802 (ulong)sizeof(adv_req_t) * req_cnt);
11804 if (reqp)
11805 break;
11808 if (!reqp)
11809 goto kmalloc_failed;
11811 adv_dvc->orig_reqp = reqp;
11814 * Allocate up to ADV_TOT_SG_BLOCK request structures for
11815 * the Wide board. Each structure is about 136 bytes.
11817 board->adv_sgblkp = NULL;
11818 for (sg_cnt = 0; sg_cnt < ADV_TOT_SG_BLOCK; sg_cnt++) {
11819 sgp = kmalloc(sizeof(adv_sgblk_t), GFP_KERNEL);
11821 if (!sgp)
11822 break;
11824 sgp->next_sgblkp = board->adv_sgblkp;
11825 board->adv_sgblkp = sgp;
11829 ASC_DBG(1, "sg_cnt %d * %lu = %lu bytes\n", sg_cnt, sizeof(adv_sgblk_t),
11830 sizeof(adv_sgblk_t) * sg_cnt);
11832 if (!board->adv_sgblkp)
11833 goto kmalloc_failed;
11836 * Point 'adv_reqp' to the request structures and
11837 * link them together.
11839 req_cnt--;
11840 reqp[req_cnt].next_reqp = NULL;
11841 for (; req_cnt > 0; req_cnt--) {
11842 reqp[req_cnt - 1].next_reqp = &reqp[req_cnt];
11844 board->adv_reqp = &reqp[0];
11846 if (adv_dvc->chip_type == ADV_CHIP_ASC3550) {
11847 ASC_DBG(2, "AdvInitAsc3550Driver()\n");
11848 warn_code = AdvInitAsc3550Driver(adv_dvc);
11849 } else if (adv_dvc->chip_type == ADV_CHIP_ASC38C0800) {
11850 ASC_DBG(2, "AdvInitAsc38C0800Driver()\n");
11851 warn_code = AdvInitAsc38C0800Driver(adv_dvc);
11852 } else {
11853 ASC_DBG(2, "AdvInitAsc38C1600Driver()\n");
11854 warn_code = AdvInitAsc38C1600Driver(adv_dvc);
11856 err_code = adv_dvc->err_code;
11858 if (warn_code || err_code) {
11859 shost_printk(KERN_WARNING, shost, "error: warn 0x%x, error "
11860 "0x%x\n", warn_code, err_code);
11863 goto exit;
11865 kmalloc_failed:
11866 shost_printk(KERN_ERR, shost, "error: kmalloc() failed\n");
11867 err_code = ADV_ERROR;
11868 exit:
11869 return err_code;
11872 static void advansys_wide_free_mem(struct asc_board *board)
11874 struct adv_dvc_var *adv_dvc = &board->dvc_var.adv_dvc_var;
11875 kfree(adv_dvc->carrier_buf);
11876 adv_dvc->carrier_buf = NULL;
11877 kfree(adv_dvc->orig_reqp);
11878 adv_dvc->orig_reqp = board->adv_reqp = NULL;
11879 while (board->adv_sgblkp) {
11880 adv_sgblk_t *sgp = board->adv_sgblkp;
11881 board->adv_sgblkp = sgp->next_sgblkp;
11882 kfree(sgp);
11886 static int __devinit advansys_board_found(struct Scsi_Host *shost,
11887 unsigned int iop, int bus_type)
11889 struct pci_dev *pdev;
11890 struct asc_board *boardp = shost_priv(shost);
11891 ASC_DVC_VAR *asc_dvc_varp = NULL;
11892 ADV_DVC_VAR *adv_dvc_varp = NULL;
11893 int share_irq, warn_code, ret;
11895 pdev = (bus_type == ASC_IS_PCI) ? to_pci_dev(boardp->dev) : NULL;
11897 if (ASC_NARROW_BOARD(boardp)) {
11898 ASC_DBG(1, "narrow board\n");
11899 asc_dvc_varp = &boardp->dvc_var.asc_dvc_var;
11900 asc_dvc_varp->bus_type = bus_type;
11901 asc_dvc_varp->drv_ptr = boardp;
11902 asc_dvc_varp->cfg = &boardp->dvc_cfg.asc_dvc_cfg;
11903 asc_dvc_varp->iop_base = iop;
11904 } else {
11905 #ifdef CONFIG_PCI
11906 adv_dvc_varp = &boardp->dvc_var.adv_dvc_var;
11907 adv_dvc_varp->drv_ptr = boardp;
11908 adv_dvc_varp->cfg = &boardp->dvc_cfg.adv_dvc_cfg;
11909 if (pdev->device == PCI_DEVICE_ID_ASP_ABP940UW) {
11910 ASC_DBG(1, "wide board ASC-3550\n");
11911 adv_dvc_varp->chip_type = ADV_CHIP_ASC3550;
11912 } else if (pdev->device == PCI_DEVICE_ID_38C0800_REV1) {
11913 ASC_DBG(1, "wide board ASC-38C0800\n");
11914 adv_dvc_varp->chip_type = ADV_CHIP_ASC38C0800;
11915 } else {
11916 ASC_DBG(1, "wide board ASC-38C1600\n");
11917 adv_dvc_varp->chip_type = ADV_CHIP_ASC38C1600;
11920 boardp->asc_n_io_port = pci_resource_len(pdev, 1);
11921 boardp->ioremap_addr = pci_ioremap_bar(pdev, 1);
11922 if (!boardp->ioremap_addr) {
11923 shost_printk(KERN_ERR, shost, "ioremap(%lx, %d) "
11924 "returned NULL\n",
11925 (long)pci_resource_start(pdev, 1),
11926 boardp->asc_n_io_port);
11927 ret = -ENODEV;
11928 goto err_shost;
11930 adv_dvc_varp->iop_base = (AdvPortAddr)boardp->ioremap_addr;
11931 ASC_DBG(1, "iop_base: 0x%p\n", adv_dvc_varp->iop_base);
11934 * Even though it isn't used to access wide boards, other
11935 * than for the debug line below, save I/O Port address so
11936 * that it can be reported.
11938 boardp->ioport = iop;
11940 ASC_DBG(1, "iopb_chip_id_1 0x%x, iopw_chip_id_0 0x%x\n",
11941 (ushort)inp(iop + 1), (ushort)inpw(iop));
11942 #endif /* CONFIG_PCI */
11945 #ifdef CONFIG_PROC_FS
11947 * Allocate buffer for printing information from
11948 * /proc/scsi/advansys/[0...].
11950 boardp->prtbuf = kmalloc(ASC_PRTBUF_SIZE, GFP_KERNEL);
11951 if (!boardp->prtbuf) {
11952 shost_printk(KERN_ERR, shost, "kmalloc(%d) returned NULL\n",
11953 ASC_PRTBUF_SIZE);
11954 ret = -ENOMEM;
11955 goto err_unmap;
11957 #endif /* CONFIG_PROC_FS */
11959 if (ASC_NARROW_BOARD(boardp)) {
11961 * Set the board bus type and PCI IRQ before
11962 * calling AscInitGetConfig().
11964 switch (asc_dvc_varp->bus_type) {
11965 #ifdef CONFIG_ISA
11966 case ASC_IS_ISA:
11967 shost->unchecked_isa_dma = TRUE;
11968 share_irq = 0;
11969 break;
11970 case ASC_IS_VL:
11971 shost->unchecked_isa_dma = FALSE;
11972 share_irq = 0;
11973 break;
11974 case ASC_IS_EISA:
11975 shost->unchecked_isa_dma = FALSE;
11976 share_irq = IRQF_SHARED;
11977 break;
11978 #endif /* CONFIG_ISA */
11979 #ifdef CONFIG_PCI
11980 case ASC_IS_PCI:
11981 shost->unchecked_isa_dma = FALSE;
11982 share_irq = IRQF_SHARED;
11983 break;
11984 #endif /* CONFIG_PCI */
11985 default:
11986 shost_printk(KERN_ERR, shost, "unknown adapter type: "
11987 "%d\n", asc_dvc_varp->bus_type);
11988 shost->unchecked_isa_dma = TRUE;
11989 share_irq = 0;
11990 break;
11994 * NOTE: AscInitGetConfig() may change the board's
11995 * bus_type value. The bus_type value should no
11996 * longer be used. If the bus_type field must be
11997 * referenced only use the bit-wise AND operator "&".
11999 ASC_DBG(2, "AscInitGetConfig()\n");
12000 ret = AscInitGetConfig(shost) ? -ENODEV : 0;
12001 } else {
12002 #ifdef CONFIG_PCI
12004 * For Wide boards set PCI information before calling
12005 * AdvInitGetConfig().
12007 shost->unchecked_isa_dma = FALSE;
12008 share_irq = IRQF_SHARED;
12009 ASC_DBG(2, "AdvInitGetConfig()\n");
12011 ret = AdvInitGetConfig(pdev, shost) ? -ENODEV : 0;
12012 #endif /* CONFIG_PCI */
12015 if (ret)
12016 goto err_free_proc;
12019 * Save the EEPROM configuration so that it can be displayed
12020 * from /proc/scsi/advansys/[0...].
12022 if (ASC_NARROW_BOARD(boardp)) {
12024 ASCEEP_CONFIG *ep;
12027 * Set the adapter's target id bit in the 'init_tidmask' field.
12029 boardp->init_tidmask |=
12030 ADV_TID_TO_TIDMASK(asc_dvc_varp->cfg->chip_scsi_id);
12033 * Save EEPROM settings for the board.
12035 ep = &boardp->eep_config.asc_eep;
12037 ep->init_sdtr = asc_dvc_varp->cfg->sdtr_enable;
12038 ep->disc_enable = asc_dvc_varp->cfg->disc_enable;
12039 ep->use_cmd_qng = asc_dvc_varp->cfg->cmd_qng_enabled;
12040 ASC_EEP_SET_DMA_SPD(ep, asc_dvc_varp->cfg->isa_dma_speed);
12041 ep->start_motor = asc_dvc_varp->start_motor;
12042 ep->cntl = asc_dvc_varp->dvc_cntl;
12043 ep->no_scam = asc_dvc_varp->no_scam;
12044 ep->max_total_qng = asc_dvc_varp->max_total_qng;
12045 ASC_EEP_SET_CHIP_ID(ep, asc_dvc_varp->cfg->chip_scsi_id);
12046 /* 'max_tag_qng' is set to the same value for every device. */
12047 ep->max_tag_qng = asc_dvc_varp->cfg->max_tag_qng[0];
12048 ep->adapter_info[0] = asc_dvc_varp->cfg->adapter_info[0];
12049 ep->adapter_info[1] = asc_dvc_varp->cfg->adapter_info[1];
12050 ep->adapter_info[2] = asc_dvc_varp->cfg->adapter_info[2];
12051 ep->adapter_info[3] = asc_dvc_varp->cfg->adapter_info[3];
12052 ep->adapter_info[4] = asc_dvc_varp->cfg->adapter_info[4];
12053 ep->adapter_info[5] = asc_dvc_varp->cfg->adapter_info[5];
12056 * Modify board configuration.
12058 ASC_DBG(2, "AscInitSetConfig()\n");
12059 ret = AscInitSetConfig(pdev, shost) ? -ENODEV : 0;
12060 if (ret)
12061 goto err_free_proc;
12062 } else {
12063 ADVEEP_3550_CONFIG *ep_3550;
12064 ADVEEP_38C0800_CONFIG *ep_38C0800;
12065 ADVEEP_38C1600_CONFIG *ep_38C1600;
12068 * Save Wide EEP Configuration Information.
12070 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
12071 ep_3550 = &boardp->eep_config.adv_3550_eep;
12073 ep_3550->adapter_scsi_id = adv_dvc_varp->chip_scsi_id;
12074 ep_3550->max_host_qng = adv_dvc_varp->max_host_qng;
12075 ep_3550->max_dvc_qng = adv_dvc_varp->max_dvc_qng;
12076 ep_3550->termination = adv_dvc_varp->cfg->termination;
12077 ep_3550->disc_enable = adv_dvc_varp->cfg->disc_enable;
12078 ep_3550->bios_ctrl = adv_dvc_varp->bios_ctrl;
12079 ep_3550->wdtr_able = adv_dvc_varp->wdtr_able;
12080 ep_3550->sdtr_able = adv_dvc_varp->sdtr_able;
12081 ep_3550->ultra_able = adv_dvc_varp->ultra_able;
12082 ep_3550->tagqng_able = adv_dvc_varp->tagqng_able;
12083 ep_3550->start_motor = adv_dvc_varp->start_motor;
12084 ep_3550->scsi_reset_delay =
12085 adv_dvc_varp->scsi_reset_wait;
12086 ep_3550->serial_number_word1 =
12087 adv_dvc_varp->cfg->serial1;
12088 ep_3550->serial_number_word2 =
12089 adv_dvc_varp->cfg->serial2;
12090 ep_3550->serial_number_word3 =
12091 adv_dvc_varp->cfg->serial3;
12092 } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
12093 ep_38C0800 = &boardp->eep_config.adv_38C0800_eep;
12095 ep_38C0800->adapter_scsi_id =
12096 adv_dvc_varp->chip_scsi_id;
12097 ep_38C0800->max_host_qng = adv_dvc_varp->max_host_qng;
12098 ep_38C0800->max_dvc_qng = adv_dvc_varp->max_dvc_qng;
12099 ep_38C0800->termination_lvd =
12100 adv_dvc_varp->cfg->termination;
12101 ep_38C0800->disc_enable =
12102 adv_dvc_varp->cfg->disc_enable;
12103 ep_38C0800->bios_ctrl = adv_dvc_varp->bios_ctrl;
12104 ep_38C0800->wdtr_able = adv_dvc_varp->wdtr_able;
12105 ep_38C0800->tagqng_able = adv_dvc_varp->tagqng_able;
12106 ep_38C0800->sdtr_speed1 = adv_dvc_varp->sdtr_speed1;
12107 ep_38C0800->sdtr_speed2 = adv_dvc_varp->sdtr_speed2;
12108 ep_38C0800->sdtr_speed3 = adv_dvc_varp->sdtr_speed3;
12109 ep_38C0800->sdtr_speed4 = adv_dvc_varp->sdtr_speed4;
12110 ep_38C0800->tagqng_able = adv_dvc_varp->tagqng_able;
12111 ep_38C0800->start_motor = adv_dvc_varp->start_motor;
12112 ep_38C0800->scsi_reset_delay =
12113 adv_dvc_varp->scsi_reset_wait;
12114 ep_38C0800->serial_number_word1 =
12115 adv_dvc_varp->cfg->serial1;
12116 ep_38C0800->serial_number_word2 =
12117 adv_dvc_varp->cfg->serial2;
12118 ep_38C0800->serial_number_word3 =
12119 adv_dvc_varp->cfg->serial3;
12120 } else {
12121 ep_38C1600 = &boardp->eep_config.adv_38C1600_eep;
12123 ep_38C1600->adapter_scsi_id =
12124 adv_dvc_varp->chip_scsi_id;
12125 ep_38C1600->max_host_qng = adv_dvc_varp->max_host_qng;
12126 ep_38C1600->max_dvc_qng = adv_dvc_varp->max_dvc_qng;
12127 ep_38C1600->termination_lvd =
12128 adv_dvc_varp->cfg->termination;
12129 ep_38C1600->disc_enable =
12130 adv_dvc_varp->cfg->disc_enable;
12131 ep_38C1600->bios_ctrl = adv_dvc_varp->bios_ctrl;
12132 ep_38C1600->wdtr_able = adv_dvc_varp->wdtr_able;
12133 ep_38C1600->tagqng_able = adv_dvc_varp->tagqng_able;
12134 ep_38C1600->sdtr_speed1 = adv_dvc_varp->sdtr_speed1;
12135 ep_38C1600->sdtr_speed2 = adv_dvc_varp->sdtr_speed2;
12136 ep_38C1600->sdtr_speed3 = adv_dvc_varp->sdtr_speed3;
12137 ep_38C1600->sdtr_speed4 = adv_dvc_varp->sdtr_speed4;
12138 ep_38C1600->tagqng_able = adv_dvc_varp->tagqng_able;
12139 ep_38C1600->start_motor = adv_dvc_varp->start_motor;
12140 ep_38C1600->scsi_reset_delay =
12141 adv_dvc_varp->scsi_reset_wait;
12142 ep_38C1600->serial_number_word1 =
12143 adv_dvc_varp->cfg->serial1;
12144 ep_38C1600->serial_number_word2 =
12145 adv_dvc_varp->cfg->serial2;
12146 ep_38C1600->serial_number_word3 =
12147 adv_dvc_varp->cfg->serial3;
12151 * Set the adapter's target id bit in the 'init_tidmask' field.
12153 boardp->init_tidmask |=
12154 ADV_TID_TO_TIDMASK(adv_dvc_varp->chip_scsi_id);
12158 * Channels are numbered beginning with 0. For AdvanSys one host
12159 * structure supports one channel. Multi-channel boards have a
12160 * separate host structure for each channel.
12162 shost->max_channel = 0;
12163 if (ASC_NARROW_BOARD(boardp)) {
12164 shost->max_id = ASC_MAX_TID + 1;
12165 shost->max_lun = ASC_MAX_LUN + 1;
12166 shost->max_cmd_len = ASC_MAX_CDB_LEN;
12168 shost->io_port = asc_dvc_varp->iop_base;
12169 boardp->asc_n_io_port = ASC_IOADR_GAP;
12170 shost->this_id = asc_dvc_varp->cfg->chip_scsi_id;
12172 /* Set maximum number of queues the adapter can handle. */
12173 shost->can_queue = asc_dvc_varp->max_total_qng;
12174 } else {
12175 shost->max_id = ADV_MAX_TID + 1;
12176 shost->max_lun = ADV_MAX_LUN + 1;
12177 shost->max_cmd_len = ADV_MAX_CDB_LEN;
12180 * Save the I/O Port address and length even though
12181 * I/O ports are not used to access Wide boards.
12182 * Instead the Wide boards are accessed with
12183 * PCI Memory Mapped I/O.
12185 shost->io_port = iop;
12187 shost->this_id = adv_dvc_varp->chip_scsi_id;
12189 /* Set maximum number of queues the adapter can handle. */
12190 shost->can_queue = adv_dvc_varp->max_host_qng;
12194 * Following v1.3.89, 'cmd_per_lun' is no longer needed
12195 * and should be set to zero.
12197 * But because of a bug introduced in v1.3.89 if the driver is
12198 * compiled as a module and 'cmd_per_lun' is zero, the Mid-Level
12199 * SCSI function 'allocate_device' will panic. To allow the driver
12200 * to work as a module in these kernels set 'cmd_per_lun' to 1.
12202 * Note: This is wrong. cmd_per_lun should be set to the depth
12203 * you want on untagged devices always.
12204 #ifdef MODULE
12206 shost->cmd_per_lun = 1;
12207 /* #else
12208 shost->cmd_per_lun = 0;
12209 #endif */
12212 * Set the maximum number of scatter-gather elements the
12213 * adapter can handle.
12215 if (ASC_NARROW_BOARD(boardp)) {
12217 * Allow two commands with 'sg_tablesize' scatter-gather
12218 * elements to be executed simultaneously. This value is
12219 * the theoretical hardware limit. It may be decreased
12220 * below.
12222 shost->sg_tablesize =
12223 (((asc_dvc_varp->max_total_qng - 2) / 2) *
12224 ASC_SG_LIST_PER_Q) + 1;
12225 } else {
12226 shost->sg_tablesize = ADV_MAX_SG_LIST;
12230 * The value of 'sg_tablesize' can not exceed the SCSI
12231 * mid-level driver definition of SG_ALL. SG_ALL also
12232 * must not be exceeded, because it is used to define the
12233 * size of the scatter-gather table in 'struct asc_sg_head'.
12235 if (shost->sg_tablesize > SG_ALL) {
12236 shost->sg_tablesize = SG_ALL;
12239 ASC_DBG(1, "sg_tablesize: %d\n", shost->sg_tablesize);
12241 /* BIOS start address. */
12242 if (ASC_NARROW_BOARD(boardp)) {
12243 shost->base = AscGetChipBiosAddress(asc_dvc_varp->iop_base,
12244 asc_dvc_varp->bus_type);
12245 } else {
12247 * Fill-in BIOS board variables. The Wide BIOS saves
12248 * information in LRAM that is used by the driver.
12250 AdvReadWordLram(adv_dvc_varp->iop_base,
12251 BIOS_SIGNATURE, boardp->bios_signature);
12252 AdvReadWordLram(adv_dvc_varp->iop_base,
12253 BIOS_VERSION, boardp->bios_version);
12254 AdvReadWordLram(adv_dvc_varp->iop_base,
12255 BIOS_CODESEG, boardp->bios_codeseg);
12256 AdvReadWordLram(adv_dvc_varp->iop_base,
12257 BIOS_CODELEN, boardp->bios_codelen);
12259 ASC_DBG(1, "bios_signature 0x%x, bios_version 0x%x\n",
12260 boardp->bios_signature, boardp->bios_version);
12262 ASC_DBG(1, "bios_codeseg 0x%x, bios_codelen 0x%x\n",
12263 boardp->bios_codeseg, boardp->bios_codelen);
12266 * If the BIOS saved a valid signature, then fill in
12267 * the BIOS code segment base address.
12269 if (boardp->bios_signature == 0x55AA) {
12271 * Convert x86 realmode code segment to a linear
12272 * address by shifting left 4.
12274 shost->base = ((ulong)boardp->bios_codeseg << 4);
12275 } else {
12276 shost->base = 0;
12281 * Register Board Resources - I/O Port, DMA, IRQ
12284 /* Register DMA Channel for Narrow boards. */
12285 shost->dma_channel = NO_ISA_DMA; /* Default to no ISA DMA. */
12286 #ifdef CONFIG_ISA
12287 if (ASC_NARROW_BOARD(boardp)) {
12288 /* Register DMA channel for ISA bus. */
12289 if (asc_dvc_varp->bus_type & ASC_IS_ISA) {
12290 shost->dma_channel = asc_dvc_varp->cfg->isa_dma_channel;
12291 ret = request_dma(shost->dma_channel, DRV_NAME);
12292 if (ret) {
12293 shost_printk(KERN_ERR, shost, "request_dma() "
12294 "%d failed %d\n",
12295 shost->dma_channel, ret);
12296 goto err_free_proc;
12298 AscEnableIsaDma(shost->dma_channel);
12301 #endif /* CONFIG_ISA */
12303 /* Register IRQ Number. */
12304 ASC_DBG(2, "request_irq(%d, %p)\n", boardp->irq, shost);
12306 ret = request_irq(boardp->irq, advansys_interrupt, share_irq,
12307 DRV_NAME, shost);
12309 if (ret) {
12310 if (ret == -EBUSY) {
12311 shost_printk(KERN_ERR, shost, "request_irq(): IRQ 0x%x "
12312 "already in use\n", boardp->irq);
12313 } else if (ret == -EINVAL) {
12314 shost_printk(KERN_ERR, shost, "request_irq(): IRQ 0x%x "
12315 "not valid\n", boardp->irq);
12316 } else {
12317 shost_printk(KERN_ERR, shost, "request_irq(): IRQ 0x%x "
12318 "failed with %d\n", boardp->irq, ret);
12320 goto err_free_dma;
12324 * Initialize board RISC chip and enable interrupts.
12326 if (ASC_NARROW_BOARD(boardp)) {
12327 ASC_DBG(2, "AscInitAsc1000Driver()\n");
12329 asc_dvc_varp->overrun_buf = kzalloc(ASC_OVERRUN_BSIZE, GFP_KERNEL);
12330 if (!asc_dvc_varp->overrun_buf) {
12331 ret = -ENOMEM;
12332 goto err_free_irq;
12334 warn_code = AscInitAsc1000Driver(asc_dvc_varp);
12336 if (warn_code || asc_dvc_varp->err_code) {
12337 shost_printk(KERN_ERR, shost, "error: init_state 0x%x, "
12338 "warn 0x%x, error 0x%x\n",
12339 asc_dvc_varp->init_state, warn_code,
12340 asc_dvc_varp->err_code);
12341 if (!asc_dvc_varp->overrun_dma) {
12342 ret = -ENODEV;
12343 goto err_free_mem;
12346 } else {
12347 if (advansys_wide_init_chip(shost)) {
12348 ret = -ENODEV;
12349 goto err_free_mem;
12353 ASC_DBG_PRT_SCSI_HOST(2, shost);
12355 ret = scsi_add_host(shost, boardp->dev);
12356 if (ret)
12357 goto err_free_mem;
12359 scsi_scan_host(shost);
12360 return 0;
12362 err_free_mem:
12363 if (ASC_NARROW_BOARD(boardp)) {
12364 if (asc_dvc_varp->overrun_dma)
12365 dma_unmap_single(boardp->dev, asc_dvc_varp->overrun_dma,
12366 ASC_OVERRUN_BSIZE, DMA_FROM_DEVICE);
12367 kfree(asc_dvc_varp->overrun_buf);
12368 } else
12369 advansys_wide_free_mem(boardp);
12370 err_free_irq:
12371 free_irq(boardp->irq, shost);
12372 err_free_dma:
12373 #ifdef CONFIG_ISA
12374 if (shost->dma_channel != NO_ISA_DMA)
12375 free_dma(shost->dma_channel);
12376 #endif
12377 err_free_proc:
12378 kfree(boardp->prtbuf);
12379 err_unmap:
12380 if (boardp->ioremap_addr)
12381 iounmap(boardp->ioremap_addr);
12382 err_shost:
12383 return ret;
12387 * advansys_release()
12389 * Release resources allocated for a single AdvanSys adapter.
12391 static int advansys_release(struct Scsi_Host *shost)
12393 struct asc_board *board = shost_priv(shost);
12394 ASC_DBG(1, "begin\n");
12395 scsi_remove_host(shost);
12396 free_irq(board->irq, shost);
12397 #ifdef CONFIG_ISA
12398 if (shost->dma_channel != NO_ISA_DMA) {
12399 ASC_DBG(1, "free_dma()\n");
12400 free_dma(shost->dma_channel);
12402 #endif
12403 if (ASC_NARROW_BOARD(board)) {
12404 dma_unmap_single(board->dev,
12405 board->dvc_var.asc_dvc_var.overrun_dma,
12406 ASC_OVERRUN_BSIZE, DMA_FROM_DEVICE);
12407 kfree(board->dvc_var.asc_dvc_var.overrun_buf);
12408 } else {
12409 iounmap(board->ioremap_addr);
12410 advansys_wide_free_mem(board);
12412 kfree(board->prtbuf);
12413 scsi_host_put(shost);
12414 ASC_DBG(1, "end\n");
12415 return 0;
12418 #define ASC_IOADR_TABLE_MAX_IX 11
12420 static PortAddr _asc_def_iop_base[ASC_IOADR_TABLE_MAX_IX] = {
12421 0x100, 0x0110, 0x120, 0x0130, 0x140, 0x0150, 0x0190,
12422 0x0210, 0x0230, 0x0250, 0x0330
12426 * The ISA IRQ number is found in bits 2 and 3 of the CfgLsw. It decodes as:
12427 * 00: 10
12428 * 01: 11
12429 * 10: 12
12430 * 11: 15
12432 static unsigned int __devinit advansys_isa_irq_no(PortAddr iop_base)
12434 unsigned short cfg_lsw = AscGetChipCfgLsw(iop_base);
12435 unsigned int chip_irq = ((cfg_lsw >> 2) & 0x03) + 10;
12436 if (chip_irq == 13)
12437 chip_irq = 15;
12438 return chip_irq;
12441 static int __devinit advansys_isa_probe(struct device *dev, unsigned int id)
12443 int err = -ENODEV;
12444 PortAddr iop_base = _asc_def_iop_base[id];
12445 struct Scsi_Host *shost;
12446 struct asc_board *board;
12448 if (!request_region(iop_base, ASC_IOADR_GAP, DRV_NAME)) {
12449 ASC_DBG(1, "I/O port 0x%x busy\n", iop_base);
12450 return -ENODEV;
12452 ASC_DBG(1, "probing I/O port 0x%x\n", iop_base);
12453 if (!AscFindSignature(iop_base))
12454 goto release_region;
12455 if (!(AscGetChipVersion(iop_base, ASC_IS_ISA) & ASC_CHIP_VER_ISA_BIT))
12456 goto release_region;
12458 err = -ENOMEM;
12459 shost = scsi_host_alloc(&advansys_template, sizeof(*board));
12460 if (!shost)
12461 goto release_region;
12463 board = shost_priv(shost);
12464 board->irq = advansys_isa_irq_no(iop_base);
12465 board->dev = dev;
12467 err = advansys_board_found(shost, iop_base, ASC_IS_ISA);
12468 if (err)
12469 goto free_host;
12471 dev_set_drvdata(dev, shost);
12472 return 0;
12474 free_host:
12475 scsi_host_put(shost);
12476 release_region:
12477 release_region(iop_base, ASC_IOADR_GAP);
12478 return err;
12481 static int __devexit advansys_isa_remove(struct device *dev, unsigned int id)
12483 int ioport = _asc_def_iop_base[id];
12484 advansys_release(dev_get_drvdata(dev));
12485 release_region(ioport, ASC_IOADR_GAP);
12486 return 0;
12489 static struct isa_driver advansys_isa_driver = {
12490 .probe = advansys_isa_probe,
12491 .remove = __devexit_p(advansys_isa_remove),
12492 .driver = {
12493 .owner = THIS_MODULE,
12494 .name = DRV_NAME,
12499 * The VLB IRQ number is found in bits 2 to 4 of the CfgLsw. It decodes as:
12500 * 000: invalid
12501 * 001: 10
12502 * 010: 11
12503 * 011: 12
12504 * 100: invalid
12505 * 101: 14
12506 * 110: 15
12507 * 111: invalid
12509 static unsigned int __devinit advansys_vlb_irq_no(PortAddr iop_base)
12511 unsigned short cfg_lsw = AscGetChipCfgLsw(iop_base);
12512 unsigned int chip_irq = ((cfg_lsw >> 2) & 0x07) + 9;
12513 if ((chip_irq < 10) || (chip_irq == 13) || (chip_irq > 15))
12514 return 0;
12515 return chip_irq;
12518 static int __devinit advansys_vlb_probe(struct device *dev, unsigned int id)
12520 int err = -ENODEV;
12521 PortAddr iop_base = _asc_def_iop_base[id];
12522 struct Scsi_Host *shost;
12523 struct asc_board *board;
12525 if (!request_region(iop_base, ASC_IOADR_GAP, DRV_NAME)) {
12526 ASC_DBG(1, "I/O port 0x%x busy\n", iop_base);
12527 return -ENODEV;
12529 ASC_DBG(1, "probing I/O port 0x%x\n", iop_base);
12530 if (!AscFindSignature(iop_base))
12531 goto release_region;
12533 * I don't think this condition can actually happen, but the old
12534 * driver did it, and the chances of finding a VLB setup in 2007
12535 * to do testing with is slight to none.
12537 if (AscGetChipVersion(iop_base, ASC_IS_VL) > ASC_CHIP_MAX_VER_VL)
12538 goto release_region;
12540 err = -ENOMEM;
12541 shost = scsi_host_alloc(&advansys_template, sizeof(*board));
12542 if (!shost)
12543 goto release_region;
12545 board = shost_priv(shost);
12546 board->irq = advansys_vlb_irq_no(iop_base);
12547 board->dev = dev;
12549 err = advansys_board_found(shost, iop_base, ASC_IS_VL);
12550 if (err)
12551 goto free_host;
12553 dev_set_drvdata(dev, shost);
12554 return 0;
12556 free_host:
12557 scsi_host_put(shost);
12558 release_region:
12559 release_region(iop_base, ASC_IOADR_GAP);
12560 return -ENODEV;
12563 static struct isa_driver advansys_vlb_driver = {
12564 .probe = advansys_vlb_probe,
12565 .remove = __devexit_p(advansys_isa_remove),
12566 .driver = {
12567 .owner = THIS_MODULE,
12568 .name = "advansys_vlb",
12572 static struct eisa_device_id advansys_eisa_table[] __devinitdata = {
12573 { "ABP7401" },
12574 { "ABP7501" },
12575 { "" }
12578 MODULE_DEVICE_TABLE(eisa, advansys_eisa_table);
12581 * EISA is a little more tricky than PCI; each EISA device may have two
12582 * channels, and this driver is written to make each channel its own Scsi_Host
12584 struct eisa_scsi_data {
12585 struct Scsi_Host *host[2];
12589 * The EISA IRQ number is found in bits 8 to 10 of the CfgLsw. It decodes as:
12590 * 000: 10
12591 * 001: 11
12592 * 010: 12
12593 * 011: invalid
12594 * 100: 14
12595 * 101: 15
12596 * 110: invalid
12597 * 111: invalid
12599 static unsigned int __devinit advansys_eisa_irq_no(struct eisa_device *edev)
12601 unsigned short cfg_lsw = inw(edev->base_addr + 0xc86);
12602 unsigned int chip_irq = ((cfg_lsw >> 8) & 0x07) + 10;
12603 if ((chip_irq == 13) || (chip_irq > 15))
12604 return 0;
12605 return chip_irq;
12608 static int __devinit advansys_eisa_probe(struct device *dev)
12610 int i, ioport, irq = 0;
12611 int err;
12612 struct eisa_device *edev = to_eisa_device(dev);
12613 struct eisa_scsi_data *data;
12615 err = -ENOMEM;
12616 data = kzalloc(sizeof(*data), GFP_KERNEL);
12617 if (!data)
12618 goto fail;
12619 ioport = edev->base_addr + 0xc30;
12621 err = -ENODEV;
12622 for (i = 0; i < 2; i++, ioport += 0x20) {
12623 struct asc_board *board;
12624 struct Scsi_Host *shost;
12625 if (!request_region(ioport, ASC_IOADR_GAP, DRV_NAME)) {
12626 printk(KERN_WARNING "Region %x-%x busy\n", ioport,
12627 ioport + ASC_IOADR_GAP - 1);
12628 continue;
12630 if (!AscFindSignature(ioport)) {
12631 release_region(ioport, ASC_IOADR_GAP);
12632 continue;
12636 * I don't know why we need to do this for EISA chips, but
12637 * not for any others. It looks to be equivalent to
12638 * AscGetChipCfgMsw, but I may have overlooked something,
12639 * so I'm not converting it until I get an EISA board to
12640 * test with.
12642 inw(ioport + 4);
12644 if (!irq)
12645 irq = advansys_eisa_irq_no(edev);
12647 err = -ENOMEM;
12648 shost = scsi_host_alloc(&advansys_template, sizeof(*board));
12649 if (!shost)
12650 goto release_region;
12652 board = shost_priv(shost);
12653 board->irq = irq;
12654 board->dev = dev;
12656 err = advansys_board_found(shost, ioport, ASC_IS_EISA);
12657 if (!err) {
12658 data->host[i] = shost;
12659 continue;
12662 scsi_host_put(shost);
12663 release_region:
12664 release_region(ioport, ASC_IOADR_GAP);
12665 break;
12668 if (err)
12669 goto free_data;
12670 dev_set_drvdata(dev, data);
12671 return 0;
12673 free_data:
12674 kfree(data->host[0]);
12675 kfree(data->host[1]);
12676 kfree(data);
12677 fail:
12678 return err;
12681 static __devexit int advansys_eisa_remove(struct device *dev)
12683 int i;
12684 struct eisa_scsi_data *data = dev_get_drvdata(dev);
12686 for (i = 0; i < 2; i++) {
12687 int ioport;
12688 struct Scsi_Host *shost = data->host[i];
12689 if (!shost)
12690 continue;
12691 ioport = shost->io_port;
12692 advansys_release(shost);
12693 release_region(ioport, ASC_IOADR_GAP);
12696 kfree(data);
12697 return 0;
12700 static struct eisa_driver advansys_eisa_driver = {
12701 .id_table = advansys_eisa_table,
12702 .driver = {
12703 .name = DRV_NAME,
12704 .probe = advansys_eisa_probe,
12705 .remove = __devexit_p(advansys_eisa_remove),
12709 /* PCI Devices supported by this driver */
12710 static struct pci_device_id advansys_pci_tbl[] __devinitdata = {
12711 {PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_ASP_1200A,
12712 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
12713 {PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_ASP_ABP940,
12714 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
12715 {PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_ASP_ABP940U,
12716 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
12717 {PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_ASP_ABP940UW,
12718 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
12719 {PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_38C0800_REV1,
12720 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
12721 {PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_38C1600_REV1,
12722 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
12726 MODULE_DEVICE_TABLE(pci, advansys_pci_tbl);
12728 static void __devinit advansys_set_latency(struct pci_dev *pdev)
12730 if ((pdev->device == PCI_DEVICE_ID_ASP_1200A) ||
12731 (pdev->device == PCI_DEVICE_ID_ASP_ABP940)) {
12732 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0);
12733 } else {
12734 u8 latency;
12735 pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &latency);
12736 if (latency < 0x20)
12737 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0x20);
12741 static int __devinit
12742 advansys_pci_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
12744 int err, ioport;
12745 struct Scsi_Host *shost;
12746 struct asc_board *board;
12748 err = pci_enable_device(pdev);
12749 if (err)
12750 goto fail;
12751 err = pci_request_regions(pdev, DRV_NAME);
12752 if (err)
12753 goto disable_device;
12754 pci_set_master(pdev);
12755 advansys_set_latency(pdev);
12757 err = -ENODEV;
12758 if (pci_resource_len(pdev, 0) == 0)
12759 goto release_region;
12761 ioport = pci_resource_start(pdev, 0);
12763 err = -ENOMEM;
12764 shost = scsi_host_alloc(&advansys_template, sizeof(*board));
12765 if (!shost)
12766 goto release_region;
12768 board = shost_priv(shost);
12769 board->irq = pdev->irq;
12770 board->dev = &pdev->dev;
12772 if (pdev->device == PCI_DEVICE_ID_ASP_ABP940UW ||
12773 pdev->device == PCI_DEVICE_ID_38C0800_REV1 ||
12774 pdev->device == PCI_DEVICE_ID_38C1600_REV1) {
12775 board->flags |= ASC_IS_WIDE_BOARD;
12778 err = advansys_board_found(shost, ioport, ASC_IS_PCI);
12779 if (err)
12780 goto free_host;
12782 pci_set_drvdata(pdev, shost);
12783 return 0;
12785 free_host:
12786 scsi_host_put(shost);
12787 release_region:
12788 pci_release_regions(pdev);
12789 disable_device:
12790 pci_disable_device(pdev);
12791 fail:
12792 return err;
12795 static void __devexit advansys_pci_remove(struct pci_dev *pdev)
12797 advansys_release(pci_get_drvdata(pdev));
12798 pci_release_regions(pdev);
12799 pci_disable_device(pdev);
12802 static struct pci_driver advansys_pci_driver = {
12803 .name = DRV_NAME,
12804 .id_table = advansys_pci_tbl,
12805 .probe = advansys_pci_probe,
12806 .remove = __devexit_p(advansys_pci_remove),
12809 static int __init advansys_init(void)
12811 int error;
12813 error = isa_register_driver(&advansys_isa_driver,
12814 ASC_IOADR_TABLE_MAX_IX);
12815 if (error)
12816 goto fail;
12818 error = isa_register_driver(&advansys_vlb_driver,
12819 ASC_IOADR_TABLE_MAX_IX);
12820 if (error)
12821 goto unregister_isa;
12823 error = eisa_driver_register(&advansys_eisa_driver);
12824 if (error)
12825 goto unregister_vlb;
12827 error = pci_register_driver(&advansys_pci_driver);
12828 if (error)
12829 goto unregister_eisa;
12831 return 0;
12833 unregister_eisa:
12834 eisa_driver_unregister(&advansys_eisa_driver);
12835 unregister_vlb:
12836 isa_unregister_driver(&advansys_vlb_driver);
12837 unregister_isa:
12838 isa_unregister_driver(&advansys_isa_driver);
12839 fail:
12840 return error;
12843 static void __exit advansys_exit(void)
12845 pci_unregister_driver(&advansys_pci_driver);
12846 eisa_driver_unregister(&advansys_eisa_driver);
12847 isa_unregister_driver(&advansys_vlb_driver);
12848 isa_unregister_driver(&advansys_isa_driver);
12851 module_init(advansys_init);
12852 module_exit(advansys_exit);
12854 MODULE_LICENSE("GPL");
12855 MODULE_FIRMWARE("advansys/mcode.bin");
12856 MODULE_FIRMWARE("advansys/3550.bin");
12857 MODULE_FIRMWARE("advansys/38C0800.bin");
12858 MODULE_FIRMWARE("advansys/38C1600.bin");