2 * libata-core.c - helper library for ATA
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
33 * Standards documents from:
34 * http://www.t13.org (ATA standards, PCI DMA IDE spec)
35 * http://www.t10.org (SCSI MMC - for ATAPI MMC)
36 * http://www.sata-io.org (SATA)
37 * http://www.compactflash.org (CF)
38 * http://www.qic.org (QIC157 - Tape and DSC)
39 * http://www.ce-ata.org (CE-ATA: not supported)
43 #include <linux/kernel.h>
44 #include <linux/module.h>
45 #include <linux/pci.h>
46 #include <linux/init.h>
47 #include <linux/list.h>
49 #include <linux/spinlock.h>
50 #include <linux/blkdev.h>
51 #include <linux/delay.h>
52 #include <linux/timer.h>
53 #include <linux/interrupt.h>
54 #include <linux/completion.h>
55 #include <linux/suspend.h>
56 #include <linux/workqueue.h>
57 #include <linux/scatterlist.h>
59 #include <linux/async.h>
60 #include <linux/log2.h>
61 #include <linux/slab.h>
62 #include <scsi/scsi.h>
63 #include <scsi/scsi_cmnd.h>
64 #include <scsi/scsi_host.h>
65 #include <linux/libata.h>
66 #include <asm/byteorder.h>
67 #include <linux/cdrom.h>
68 #include <linux/ratelimit.h>
73 /* debounce timing parameters in msecs { interval, duration, timeout } */
74 const unsigned long sata_deb_timing_normal
[] = { 5, 100, 2000 };
75 const unsigned long sata_deb_timing_hotplug
[] = { 25, 500, 2000 };
76 const unsigned long sata_deb_timing_long
[] = { 100, 2000, 5000 };
78 const struct ata_port_operations ata_base_port_ops
= {
79 .prereset
= ata_std_prereset
,
80 .postreset
= ata_std_postreset
,
81 .error_handler
= ata_std_error_handler
,
84 const struct ata_port_operations sata_port_ops
= {
85 .inherits
= &ata_base_port_ops
,
87 .qc_defer
= ata_std_qc_defer
,
88 .hardreset
= sata_std_hardreset
,
91 static unsigned int ata_dev_init_params(struct ata_device
*dev
,
92 u16 heads
, u16 sectors
);
93 static unsigned int ata_dev_set_xfermode(struct ata_device
*dev
);
94 static unsigned int ata_dev_set_feature(struct ata_device
*dev
,
95 u8 enable
, u8 feature
);
96 static void ata_dev_xfermask(struct ata_device
*dev
);
97 static unsigned long ata_dev_blacklisted(const struct ata_device
*dev
);
99 unsigned int ata_print_id
= 1;
101 struct workqueue_struct
*ata_aux_wq
;
103 struct ata_force_param
{
107 unsigned long xfer_mask
;
108 unsigned int horkage_on
;
109 unsigned int horkage_off
;
113 struct ata_force_ent
{
116 struct ata_force_param param
;
119 static struct ata_force_ent
*ata_force_tbl
;
120 static int ata_force_tbl_size
;
122 static char ata_force_param_buf
[PAGE_SIZE
] __initdata
;
123 /* param_buf is thrown away after initialization, disallow read */
124 module_param_string(force
, ata_force_param_buf
, sizeof(ata_force_param_buf
), 0);
125 MODULE_PARM_DESC(force
, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/kernel-parameters.txt for details)");
127 static int atapi_enabled
= 1;
128 module_param(atapi_enabled
, int, 0444);
129 MODULE_PARM_DESC(atapi_enabled
, "Enable discovery of ATAPI devices (0=off, 1=on [default])");
131 static int atapi_dmadir
= 0;
132 module_param(atapi_dmadir
, int, 0444);
133 MODULE_PARM_DESC(atapi_dmadir
, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)");
135 int atapi_passthru16
= 1;
136 module_param(atapi_passthru16
, int, 0444);
137 MODULE_PARM_DESC(atapi_passthru16
, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])");
140 module_param_named(fua
, libata_fua
, int, 0444);
141 MODULE_PARM_DESC(fua
, "FUA support (0=off [default], 1=on)");
143 static int ata_ignore_hpa
;
144 module_param_named(ignore_hpa
, ata_ignore_hpa
, int, 0644);
145 MODULE_PARM_DESC(ignore_hpa
, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
147 static int libata_dma_mask
= ATA_DMA_MASK_ATA
|ATA_DMA_MASK_ATAPI
|ATA_DMA_MASK_CFA
;
148 module_param_named(dma
, libata_dma_mask
, int, 0444);
149 MODULE_PARM_DESC(dma
, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
151 static int ata_probe_timeout
;
152 module_param(ata_probe_timeout
, int, 0444);
153 MODULE_PARM_DESC(ata_probe_timeout
, "Set ATA probing timeout (seconds)");
155 int libata_noacpi
= 0;
156 module_param_named(noacpi
, libata_noacpi
, int, 0444);
157 MODULE_PARM_DESC(noacpi
, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)");
159 int libata_allow_tpm
= 0;
160 module_param_named(allow_tpm
, libata_allow_tpm
, int, 0444);
161 MODULE_PARM_DESC(allow_tpm
, "Permit the use of TPM commands (0=off [default], 1=on)");
164 module_param(atapi_an
, int, 0444);
165 MODULE_PARM_DESC(atapi_an
, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)");
167 MODULE_AUTHOR("Jeff Garzik");
168 MODULE_DESCRIPTION("Library module for ATA devices");
169 MODULE_LICENSE("GPL");
170 MODULE_VERSION(DRV_VERSION
);
173 static bool ata_sstatus_online(u32 sstatus
)
175 return (sstatus
& 0xf) == 0x3;
179 * ata_link_next - link iteration helper
180 * @link: the previous link, NULL to start
181 * @ap: ATA port containing links to iterate
182 * @mode: iteration mode, one of ATA_LITER_*
185 * Host lock or EH context.
188 * Pointer to the next link.
190 struct ata_link
*ata_link_next(struct ata_link
*link
, struct ata_port
*ap
,
191 enum ata_link_iter_mode mode
)
193 BUG_ON(mode
!= ATA_LITER_EDGE
&&
194 mode
!= ATA_LITER_PMP_FIRST
&& mode
!= ATA_LITER_HOST_FIRST
);
196 /* NULL link indicates start of iteration */
200 case ATA_LITER_PMP_FIRST
:
201 if (sata_pmp_attached(ap
))
204 case ATA_LITER_HOST_FIRST
:
208 /* we just iterated over the host link, what's next? */
209 if (link
== &ap
->link
)
211 case ATA_LITER_HOST_FIRST
:
212 if (sata_pmp_attached(ap
))
215 case ATA_LITER_PMP_FIRST
:
216 if (unlikely(ap
->slave_link
))
217 return ap
->slave_link
;
223 /* slave_link excludes PMP */
224 if (unlikely(link
== ap
->slave_link
))
227 /* we were over a PMP link */
228 if (++link
< ap
->pmp_link
+ ap
->nr_pmp_links
)
231 if (mode
== ATA_LITER_PMP_FIRST
)
238 * ata_dev_next - device iteration helper
239 * @dev: the previous device, NULL to start
240 * @link: ATA link containing devices to iterate
241 * @mode: iteration mode, one of ATA_DITER_*
244 * Host lock or EH context.
247 * Pointer to the next device.
249 struct ata_device
*ata_dev_next(struct ata_device
*dev
, struct ata_link
*link
,
250 enum ata_dev_iter_mode mode
)
252 BUG_ON(mode
!= ATA_DITER_ENABLED
&& mode
!= ATA_DITER_ENABLED_REVERSE
&&
253 mode
!= ATA_DITER_ALL
&& mode
!= ATA_DITER_ALL_REVERSE
);
255 /* NULL dev indicates start of iteration */
258 case ATA_DITER_ENABLED
:
262 case ATA_DITER_ENABLED_REVERSE
:
263 case ATA_DITER_ALL_REVERSE
:
264 dev
= link
->device
+ ata_link_max_devices(link
) - 1;
269 /* move to the next one */
271 case ATA_DITER_ENABLED
:
273 if (++dev
< link
->device
+ ata_link_max_devices(link
))
276 case ATA_DITER_ENABLED_REVERSE
:
277 case ATA_DITER_ALL_REVERSE
:
278 if (--dev
>= link
->device
)
284 if ((mode
== ATA_DITER_ENABLED
|| mode
== ATA_DITER_ENABLED_REVERSE
) &&
285 !ata_dev_enabled(dev
))
291 * ata_dev_phys_link - find physical link for a device
292 * @dev: ATA device to look up physical link for
294 * Look up physical link which @dev is attached to. Note that
295 * this is different from @dev->link only when @dev is on slave
296 * link. For all other cases, it's the same as @dev->link.
302 * Pointer to the found physical link.
304 struct ata_link
*ata_dev_phys_link(struct ata_device
*dev
)
306 struct ata_port
*ap
= dev
->link
->ap
;
312 return ap
->slave_link
;
316 * ata_force_cbl - force cable type according to libata.force
317 * @ap: ATA port of interest
319 * Force cable type according to libata.force and whine about it.
320 * The last entry which has matching port number is used, so it
321 * can be specified as part of device force parameters. For
322 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
328 void ata_force_cbl(struct ata_port
*ap
)
332 for (i
= ata_force_tbl_size
- 1; i
>= 0; i
--) {
333 const struct ata_force_ent
*fe
= &ata_force_tbl
[i
];
335 if (fe
->port
!= -1 && fe
->port
!= ap
->print_id
)
338 if (fe
->param
.cbl
== ATA_CBL_NONE
)
341 ap
->cbl
= fe
->param
.cbl
;
342 ata_port_printk(ap
, KERN_NOTICE
,
343 "FORCE: cable set to %s\n", fe
->param
.name
);
349 * ata_force_link_limits - force link limits according to libata.force
350 * @link: ATA link of interest
352 * Force link flags and SATA spd limit according to libata.force
353 * and whine about it. When only the port part is specified
354 * (e.g. 1:), the limit applies to all links connected to both
355 * the host link and all fan-out ports connected via PMP. If the
356 * device part is specified as 0 (e.g. 1.00:), it specifies the
357 * first fan-out link not the host link. Device number 15 always
358 * points to the host link whether PMP is attached or not. If the
359 * controller has slave link, device number 16 points to it.
364 static void ata_force_link_limits(struct ata_link
*link
)
366 bool did_spd
= false;
367 int linkno
= link
->pmp
;
370 if (ata_is_host_link(link
))
373 for (i
= ata_force_tbl_size
- 1; i
>= 0; i
--) {
374 const struct ata_force_ent
*fe
= &ata_force_tbl
[i
];
376 if (fe
->port
!= -1 && fe
->port
!= link
->ap
->print_id
)
379 if (fe
->device
!= -1 && fe
->device
!= linkno
)
382 /* only honor the first spd limit */
383 if (!did_spd
&& fe
->param
.spd_limit
) {
384 link
->hw_sata_spd_limit
= (1 << fe
->param
.spd_limit
) - 1;
385 ata_link_printk(link
, KERN_NOTICE
,
386 "FORCE: PHY spd limit set to %s\n",
391 /* let lflags stack */
392 if (fe
->param
.lflags
) {
393 link
->flags
|= fe
->param
.lflags
;
394 ata_link_printk(link
, KERN_NOTICE
,
395 "FORCE: link flag 0x%x forced -> 0x%x\n",
396 fe
->param
.lflags
, link
->flags
);
402 * ata_force_xfermask - force xfermask according to libata.force
403 * @dev: ATA device of interest
405 * Force xfer_mask according to libata.force and whine about it.
406 * For consistency with link selection, device number 15 selects
407 * the first device connected to the host link.
412 static void ata_force_xfermask(struct ata_device
*dev
)
414 int devno
= dev
->link
->pmp
+ dev
->devno
;
415 int alt_devno
= devno
;
418 /* allow n.15/16 for devices attached to host port */
419 if (ata_is_host_link(dev
->link
))
422 for (i
= ata_force_tbl_size
- 1; i
>= 0; i
--) {
423 const struct ata_force_ent
*fe
= &ata_force_tbl
[i
];
424 unsigned long pio_mask
, mwdma_mask
, udma_mask
;
426 if (fe
->port
!= -1 && fe
->port
!= dev
->link
->ap
->print_id
)
429 if (fe
->device
!= -1 && fe
->device
!= devno
&&
430 fe
->device
!= alt_devno
)
433 if (!fe
->param
.xfer_mask
)
436 ata_unpack_xfermask(fe
->param
.xfer_mask
,
437 &pio_mask
, &mwdma_mask
, &udma_mask
);
439 dev
->udma_mask
= udma_mask
;
440 else if (mwdma_mask
) {
442 dev
->mwdma_mask
= mwdma_mask
;
446 dev
->pio_mask
= pio_mask
;
449 ata_dev_printk(dev
, KERN_NOTICE
,
450 "FORCE: xfer_mask set to %s\n", fe
->param
.name
);
456 * ata_force_horkage - force horkage according to libata.force
457 * @dev: ATA device of interest
459 * Force horkage according to libata.force and whine about it.
460 * For consistency with link selection, device number 15 selects
461 * the first device connected to the host link.
466 static void ata_force_horkage(struct ata_device
*dev
)
468 int devno
= dev
->link
->pmp
+ dev
->devno
;
469 int alt_devno
= devno
;
472 /* allow n.15/16 for devices attached to host port */
473 if (ata_is_host_link(dev
->link
))
476 for (i
= 0; i
< ata_force_tbl_size
; i
++) {
477 const struct ata_force_ent
*fe
= &ata_force_tbl
[i
];
479 if (fe
->port
!= -1 && fe
->port
!= dev
->link
->ap
->print_id
)
482 if (fe
->device
!= -1 && fe
->device
!= devno
&&
483 fe
->device
!= alt_devno
)
486 if (!(~dev
->horkage
& fe
->param
.horkage_on
) &&
487 !(dev
->horkage
& fe
->param
.horkage_off
))
490 dev
->horkage
|= fe
->param
.horkage_on
;
491 dev
->horkage
&= ~fe
->param
.horkage_off
;
493 ata_dev_printk(dev
, KERN_NOTICE
,
494 "FORCE: horkage modified (%s)\n", fe
->param
.name
);
499 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode
500 * @opcode: SCSI opcode
502 * Determine ATAPI command type from @opcode.
508 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
510 int atapi_cmd_type(u8 opcode
)
519 case GPCMD_WRITE_AND_VERIFY_10
:
523 case GPCMD_READ_CD_MSF
:
524 return ATAPI_READ_CD
;
528 if (atapi_passthru16
)
529 return ATAPI_PASS_THRU
;
537 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
538 * @tf: Taskfile to convert
539 * @pmp: Port multiplier port
540 * @is_cmd: This FIS is for command
541 * @fis: Buffer into which data will output
543 * Converts a standard ATA taskfile to a Serial ATA
544 * FIS structure (Register - Host to Device).
547 * Inherited from caller.
549 void ata_tf_to_fis(const struct ata_taskfile
*tf
, u8 pmp
, int is_cmd
, u8
*fis
)
551 fis
[0] = 0x27; /* Register - Host to Device FIS */
552 fis
[1] = pmp
& 0xf; /* Port multiplier number*/
554 fis
[1] |= (1 << 7); /* bit 7 indicates Command FIS */
556 fis
[2] = tf
->command
;
557 fis
[3] = tf
->feature
;
564 fis
[8] = tf
->hob_lbal
;
565 fis
[9] = tf
->hob_lbam
;
566 fis
[10] = tf
->hob_lbah
;
567 fis
[11] = tf
->hob_feature
;
570 fis
[13] = tf
->hob_nsect
;
581 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
582 * @fis: Buffer from which data will be input
583 * @tf: Taskfile to output
585 * Converts a serial ATA FIS structure to a standard ATA taskfile.
588 * Inherited from caller.
591 void ata_tf_from_fis(const u8
*fis
, struct ata_taskfile
*tf
)
593 tf
->command
= fis
[2]; /* status */
594 tf
->feature
= fis
[3]; /* error */
601 tf
->hob_lbal
= fis
[8];
602 tf
->hob_lbam
= fis
[9];
603 tf
->hob_lbah
= fis
[10];
606 tf
->hob_nsect
= fis
[13];
609 static const u8 ata_rw_cmds
[] = {
613 ATA_CMD_READ_MULTI_EXT
,
614 ATA_CMD_WRITE_MULTI_EXT
,
618 ATA_CMD_WRITE_MULTI_FUA_EXT
,
622 ATA_CMD_PIO_READ_EXT
,
623 ATA_CMD_PIO_WRITE_EXT
,
636 ATA_CMD_WRITE_FUA_EXT
640 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
641 * @tf: command to examine and configure
642 * @dev: device tf belongs to
644 * Examine the device configuration and tf->flags to calculate
645 * the proper read/write commands and protocol to use.
650 static int ata_rwcmd_protocol(struct ata_taskfile
*tf
, struct ata_device
*dev
)
654 int index
, fua
, lba48
, write
;
656 fua
= (tf
->flags
& ATA_TFLAG_FUA
) ? 4 : 0;
657 lba48
= (tf
->flags
& ATA_TFLAG_LBA48
) ? 2 : 0;
658 write
= (tf
->flags
& ATA_TFLAG_WRITE
) ? 1 : 0;
660 if (dev
->flags
& ATA_DFLAG_PIO
) {
661 tf
->protocol
= ATA_PROT_PIO
;
662 index
= dev
->multi_count
? 0 : 8;
663 } else if (lba48
&& (dev
->link
->ap
->flags
& ATA_FLAG_PIO_LBA48
)) {
664 /* Unable to use DMA due to host limitation */
665 tf
->protocol
= ATA_PROT_PIO
;
666 index
= dev
->multi_count
? 0 : 8;
668 tf
->protocol
= ATA_PROT_DMA
;
672 cmd
= ata_rw_cmds
[index
+ fua
+ lba48
+ write
];
681 * ata_tf_read_block - Read block address from ATA taskfile
682 * @tf: ATA taskfile of interest
683 * @dev: ATA device @tf belongs to
688 * Read block address from @tf. This function can handle all
689 * three address formats - LBA, LBA48 and CHS. tf->protocol and
690 * flags select the address format to use.
693 * Block address read from @tf.
695 u64
ata_tf_read_block(struct ata_taskfile
*tf
, struct ata_device
*dev
)
699 if (tf
->flags
& ATA_TFLAG_LBA
) {
700 if (tf
->flags
& ATA_TFLAG_LBA48
) {
701 block
|= (u64
)tf
->hob_lbah
<< 40;
702 block
|= (u64
)tf
->hob_lbam
<< 32;
703 block
|= (u64
)tf
->hob_lbal
<< 24;
705 block
|= (tf
->device
& 0xf) << 24;
707 block
|= tf
->lbah
<< 16;
708 block
|= tf
->lbam
<< 8;
713 cyl
= tf
->lbam
| (tf
->lbah
<< 8);
714 head
= tf
->device
& 0xf;
718 ata_dev_printk(dev
, KERN_WARNING
, "device reported "
719 "invalid CHS sector 0\n");
720 sect
= 1; /* oh well */
723 block
= (cyl
* dev
->heads
+ head
) * dev
->sectors
+ sect
- 1;
730 * ata_build_rw_tf - Build ATA taskfile for given read/write request
731 * @tf: Target ATA taskfile
732 * @dev: ATA device @tf belongs to
733 * @block: Block address
734 * @n_block: Number of blocks
735 * @tf_flags: RW/FUA etc...
741 * Build ATA taskfile @tf for read/write request described by
742 * @block, @n_block, @tf_flags and @tag on @dev.
746 * 0 on success, -ERANGE if the request is too large for @dev,
747 * -EINVAL if the request is invalid.
749 int ata_build_rw_tf(struct ata_taskfile
*tf
, struct ata_device
*dev
,
750 u64 block
, u32 n_block
, unsigned int tf_flags
,
753 tf
->flags
|= ATA_TFLAG_ISADDR
| ATA_TFLAG_DEVICE
;
754 tf
->flags
|= tf_flags
;
756 if (ata_ncq_enabled(dev
) && likely(tag
!= ATA_TAG_INTERNAL
)) {
758 if (!lba_48_ok(block
, n_block
))
761 tf
->protocol
= ATA_PROT_NCQ
;
762 tf
->flags
|= ATA_TFLAG_LBA
| ATA_TFLAG_LBA48
;
764 if (tf
->flags
& ATA_TFLAG_WRITE
)
765 tf
->command
= ATA_CMD_FPDMA_WRITE
;
767 tf
->command
= ATA_CMD_FPDMA_READ
;
769 tf
->nsect
= tag
<< 3;
770 tf
->hob_feature
= (n_block
>> 8) & 0xff;
771 tf
->feature
= n_block
& 0xff;
773 tf
->hob_lbah
= (block
>> 40) & 0xff;
774 tf
->hob_lbam
= (block
>> 32) & 0xff;
775 tf
->hob_lbal
= (block
>> 24) & 0xff;
776 tf
->lbah
= (block
>> 16) & 0xff;
777 tf
->lbam
= (block
>> 8) & 0xff;
778 tf
->lbal
= block
& 0xff;
781 if (tf
->flags
& ATA_TFLAG_FUA
)
782 tf
->device
|= 1 << 7;
783 } else if (dev
->flags
& ATA_DFLAG_LBA
) {
784 tf
->flags
|= ATA_TFLAG_LBA
;
786 if (lba_28_ok(block
, n_block
)) {
788 tf
->device
|= (block
>> 24) & 0xf;
789 } else if (lba_48_ok(block
, n_block
)) {
790 if (!(dev
->flags
& ATA_DFLAG_LBA48
))
794 tf
->flags
|= ATA_TFLAG_LBA48
;
796 tf
->hob_nsect
= (n_block
>> 8) & 0xff;
798 tf
->hob_lbah
= (block
>> 40) & 0xff;
799 tf
->hob_lbam
= (block
>> 32) & 0xff;
800 tf
->hob_lbal
= (block
>> 24) & 0xff;
802 /* request too large even for LBA48 */
805 if (unlikely(ata_rwcmd_protocol(tf
, dev
) < 0))
808 tf
->nsect
= n_block
& 0xff;
810 tf
->lbah
= (block
>> 16) & 0xff;
811 tf
->lbam
= (block
>> 8) & 0xff;
812 tf
->lbal
= block
& 0xff;
814 tf
->device
|= ATA_LBA
;
817 u32 sect
, head
, cyl
, track
;
819 /* The request -may- be too large for CHS addressing. */
820 if (!lba_28_ok(block
, n_block
))
823 if (unlikely(ata_rwcmd_protocol(tf
, dev
) < 0))
826 /* Convert LBA to CHS */
827 track
= (u32
)block
/ dev
->sectors
;
828 cyl
= track
/ dev
->heads
;
829 head
= track
% dev
->heads
;
830 sect
= (u32
)block
% dev
->sectors
+ 1;
832 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
833 (u32
)block
, track
, cyl
, head
, sect
);
835 /* Check whether the converted CHS can fit.
839 if ((cyl
>> 16) || (head
>> 4) || (sect
>> 8) || (!sect
))
842 tf
->nsect
= n_block
& 0xff; /* Sector count 0 means 256 sectors */
853 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
854 * @pio_mask: pio_mask
855 * @mwdma_mask: mwdma_mask
856 * @udma_mask: udma_mask
858 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
859 * unsigned int xfer_mask.
867 unsigned long ata_pack_xfermask(unsigned long pio_mask
,
868 unsigned long mwdma_mask
,
869 unsigned long udma_mask
)
871 return ((pio_mask
<< ATA_SHIFT_PIO
) & ATA_MASK_PIO
) |
872 ((mwdma_mask
<< ATA_SHIFT_MWDMA
) & ATA_MASK_MWDMA
) |
873 ((udma_mask
<< ATA_SHIFT_UDMA
) & ATA_MASK_UDMA
);
877 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
878 * @xfer_mask: xfer_mask to unpack
879 * @pio_mask: resulting pio_mask
880 * @mwdma_mask: resulting mwdma_mask
881 * @udma_mask: resulting udma_mask
883 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
884 * Any NULL distination masks will be ignored.
886 void ata_unpack_xfermask(unsigned long xfer_mask
, unsigned long *pio_mask
,
887 unsigned long *mwdma_mask
, unsigned long *udma_mask
)
890 *pio_mask
= (xfer_mask
& ATA_MASK_PIO
) >> ATA_SHIFT_PIO
;
892 *mwdma_mask
= (xfer_mask
& ATA_MASK_MWDMA
) >> ATA_SHIFT_MWDMA
;
894 *udma_mask
= (xfer_mask
& ATA_MASK_UDMA
) >> ATA_SHIFT_UDMA
;
897 static const struct ata_xfer_ent
{
901 { ATA_SHIFT_PIO
, ATA_NR_PIO_MODES
, XFER_PIO_0
},
902 { ATA_SHIFT_MWDMA
, ATA_NR_MWDMA_MODES
, XFER_MW_DMA_0
},
903 { ATA_SHIFT_UDMA
, ATA_NR_UDMA_MODES
, XFER_UDMA_0
},
908 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
909 * @xfer_mask: xfer_mask of interest
911 * Return matching XFER_* value for @xfer_mask. Only the highest
912 * bit of @xfer_mask is considered.
918 * Matching XFER_* value, 0xff if no match found.
920 u8
ata_xfer_mask2mode(unsigned long xfer_mask
)
922 int highbit
= fls(xfer_mask
) - 1;
923 const struct ata_xfer_ent
*ent
;
925 for (ent
= ata_xfer_tbl
; ent
->shift
>= 0; ent
++)
926 if (highbit
>= ent
->shift
&& highbit
< ent
->shift
+ ent
->bits
)
927 return ent
->base
+ highbit
- ent
->shift
;
932 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
933 * @xfer_mode: XFER_* of interest
935 * Return matching xfer_mask for @xfer_mode.
941 * Matching xfer_mask, 0 if no match found.
943 unsigned long ata_xfer_mode2mask(u8 xfer_mode
)
945 const struct ata_xfer_ent
*ent
;
947 for (ent
= ata_xfer_tbl
; ent
->shift
>= 0; ent
++)
948 if (xfer_mode
>= ent
->base
&& xfer_mode
< ent
->base
+ ent
->bits
)
949 return ((2 << (ent
->shift
+ xfer_mode
- ent
->base
)) - 1)
950 & ~((1 << ent
->shift
) - 1);
955 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
956 * @xfer_mode: XFER_* of interest
958 * Return matching xfer_shift for @xfer_mode.
964 * Matching xfer_shift, -1 if no match found.
966 int ata_xfer_mode2shift(unsigned long xfer_mode
)
968 const struct ata_xfer_ent
*ent
;
970 for (ent
= ata_xfer_tbl
; ent
->shift
>= 0; ent
++)
971 if (xfer_mode
>= ent
->base
&& xfer_mode
< ent
->base
+ ent
->bits
)
977 * ata_mode_string - convert xfer_mask to string
978 * @xfer_mask: mask of bits supported; only highest bit counts.
980 * Determine string which represents the highest speed
981 * (highest bit in @modemask).
987 * Constant C string representing highest speed listed in
988 * @mode_mask, or the constant C string "<n/a>".
990 const char *ata_mode_string(unsigned long xfer_mask
)
992 static const char * const xfer_mode_str
[] = {
1016 highbit
= fls(xfer_mask
) - 1;
1017 if (highbit
>= 0 && highbit
< ARRAY_SIZE(xfer_mode_str
))
1018 return xfer_mode_str
[highbit
];
1022 static const char *sata_spd_string(unsigned int spd
)
1024 static const char * const spd_str
[] = {
1030 if (spd
== 0 || (spd
- 1) >= ARRAY_SIZE(spd_str
))
1032 return spd_str
[spd
- 1];
1035 static int ata_dev_set_dipm(struct ata_device
*dev
, enum link_pm policy
)
1037 struct ata_link
*link
= dev
->link
;
1038 struct ata_port
*ap
= link
->ap
;
1040 unsigned int err_mask
;
1044 * disallow DIPM for drivers which haven't set
1045 * ATA_FLAG_IPM. This is because when DIPM is enabled,
1046 * phy ready will be set in the interrupt status on
1047 * state changes, which will cause some drivers to
1048 * think there are errors - additionally drivers will
1049 * need to disable hot plug.
1051 if (!(ap
->flags
& ATA_FLAG_IPM
) || !ata_dev_enabled(dev
)) {
1052 ap
->pm_policy
= NOT_AVAILABLE
;
1057 * For DIPM, we will only enable it for the
1058 * min_power setting.
1060 * Why? Because Disks are too stupid to know that
1061 * If the host rejects a request to go to SLUMBER
1062 * they should retry at PARTIAL, and instead it
1063 * just would give up. So, for medium_power to
1064 * work at all, we need to only allow HIPM.
1066 rc
= sata_scr_read(link
, SCR_CONTROL
, &scontrol
);
1072 /* no restrictions on IPM transitions */
1073 scontrol
&= ~(0x3 << 8);
1074 rc
= sata_scr_write(link
, SCR_CONTROL
, scontrol
);
1079 if (dev
->flags
& ATA_DFLAG_DIPM
)
1080 err_mask
= ata_dev_set_feature(dev
,
1081 SETFEATURES_SATA_ENABLE
, SATA_DIPM
);
1084 /* allow IPM to PARTIAL */
1085 scontrol
&= ~(0x1 << 8);
1086 scontrol
|= (0x2 << 8);
1087 rc
= sata_scr_write(link
, SCR_CONTROL
, scontrol
);
1092 * we don't have to disable DIPM since IPM flags
1093 * disallow transitions to SLUMBER, which effectively
1094 * disable DIPM if it does not support PARTIAL
1098 case MAX_PERFORMANCE
:
1099 /* disable all IPM transitions */
1100 scontrol
|= (0x3 << 8);
1101 rc
= sata_scr_write(link
, SCR_CONTROL
, scontrol
);
1106 * we don't have to disable DIPM since IPM flags
1107 * disallow all transitions which effectively
1108 * disable DIPM anyway.
1113 /* FIXME: handle SET FEATURES failure */
1120 * ata_dev_enable_pm - enable SATA interface power management
1121 * @dev: device to enable power management
1122 * @policy: the link power management policy
1124 * Enable SATA Interface power management. This will enable
1125 * Device Interface Power Management (DIPM) for min_power
1126 * policy, and then call driver specific callbacks for
1127 * enabling Host Initiated Power management.
1130 * Returns: -EINVAL if IPM is not supported, 0 otherwise.
1132 void ata_dev_enable_pm(struct ata_device
*dev
, enum link_pm policy
)
1135 struct ata_port
*ap
= dev
->link
->ap
;
1137 /* set HIPM first, then DIPM */
1138 if (ap
->ops
->enable_pm
)
1139 rc
= ap
->ops
->enable_pm(ap
, policy
);
1142 rc
= ata_dev_set_dipm(dev
, policy
);
1146 ap
->pm_policy
= MAX_PERFORMANCE
;
1148 ap
->pm_policy
= policy
;
1149 return /* rc */; /* hopefully we can use 'rc' eventually */
1154 * ata_dev_disable_pm - disable SATA interface power management
1155 * @dev: device to disable power management
1157 * Disable SATA Interface power management. This will disable
1158 * Device Interface Power Management (DIPM) without changing
1159 * policy, call driver specific callbacks for disabling Host
1160 * Initiated Power management.
1165 static void ata_dev_disable_pm(struct ata_device
*dev
)
1167 struct ata_port
*ap
= dev
->link
->ap
;
1169 ata_dev_set_dipm(dev
, MAX_PERFORMANCE
);
1170 if (ap
->ops
->disable_pm
)
1171 ap
->ops
->disable_pm(ap
);
1173 #endif /* CONFIG_PM */
1175 void ata_lpm_schedule(struct ata_port
*ap
, enum link_pm policy
)
1177 ap
->pm_policy
= policy
;
1178 ap
->link
.eh_info
.action
|= ATA_EH_LPM
;
1179 ap
->link
.eh_info
.flags
|= ATA_EHI_NO_AUTOPSY
;
1180 ata_port_schedule_eh(ap
);
1184 static void ata_lpm_enable(struct ata_host
*host
)
1186 struct ata_link
*link
;
1187 struct ata_port
*ap
;
1188 struct ata_device
*dev
;
1191 for (i
= 0; i
< host
->n_ports
; i
++) {
1192 ap
= host
->ports
[i
];
1193 ata_for_each_link(link
, ap
, EDGE
) {
1194 ata_for_each_dev(dev
, link
, ALL
)
1195 ata_dev_disable_pm(dev
);
1200 static void ata_lpm_disable(struct ata_host
*host
)
1204 for (i
= 0; i
< host
->n_ports
; i
++) {
1205 struct ata_port
*ap
= host
->ports
[i
];
1206 ata_lpm_schedule(ap
, ap
->pm_policy
);
1209 #endif /* CONFIG_PM */
1212 * ata_dev_classify - determine device type based on ATA-spec signature
1213 * @tf: ATA taskfile register set for device to be identified
1215 * Determine from taskfile register contents whether a device is
1216 * ATA or ATAPI, as per "Signature and persistence" section
1217 * of ATA/PI spec (volume 1, sect 5.14).
1223 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP or
1224 * %ATA_DEV_UNKNOWN the event of failure.
1226 unsigned int ata_dev_classify(const struct ata_taskfile
*tf
)
1228 /* Apple's open source Darwin code hints that some devices only
1229 * put a proper signature into the LBA mid/high registers,
1230 * So, we only check those. It's sufficient for uniqueness.
1232 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1233 * signatures for ATA and ATAPI devices attached on SerialATA,
1234 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA
1235 * spec has never mentioned about using different signatures
1236 * for ATA/ATAPI devices. Then, Serial ATA II: Port
1237 * Multiplier specification began to use 0x69/0x96 to identify
1238 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1239 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1240 * 0x69/0x96 shortly and described them as reserved for
1243 * We follow the current spec and consider that 0x69/0x96
1244 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1245 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports
1246 * SEMB signature. This is worked around in
1247 * ata_dev_read_id().
1249 if ((tf
->lbam
== 0) && (tf
->lbah
== 0)) {
1250 DPRINTK("found ATA device by sig\n");
1254 if ((tf
->lbam
== 0x14) && (tf
->lbah
== 0xeb)) {
1255 DPRINTK("found ATAPI device by sig\n");
1256 return ATA_DEV_ATAPI
;
1259 if ((tf
->lbam
== 0x69) && (tf
->lbah
== 0x96)) {
1260 DPRINTK("found PMP device by sig\n");
1264 if ((tf
->lbam
== 0x3c) && (tf
->lbah
== 0xc3)) {
1265 DPRINTK("found SEMB device by sig (could be ATA device)\n");
1266 return ATA_DEV_SEMB
;
1269 DPRINTK("unknown device\n");
1270 return ATA_DEV_UNKNOWN
;
1274 * ata_id_string - Convert IDENTIFY DEVICE page into string
1275 * @id: IDENTIFY DEVICE results we will examine
1276 * @s: string into which data is output
1277 * @ofs: offset into identify device page
1278 * @len: length of string to return. must be an even number.
1280 * The strings in the IDENTIFY DEVICE page are broken up into
1281 * 16-bit chunks. Run through the string, and output each
1282 * 8-bit chunk linearly, regardless of platform.
1288 void ata_id_string(const u16
*id
, unsigned char *s
,
1289 unsigned int ofs
, unsigned int len
)
1310 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1311 * @id: IDENTIFY DEVICE results we will examine
1312 * @s: string into which data is output
1313 * @ofs: offset into identify device page
1314 * @len: length of string to return. must be an odd number.
1316 * This function is identical to ata_id_string except that it
1317 * trims trailing spaces and terminates the resulting string with
1318 * null. @len must be actual maximum length (even number) + 1.
1323 void ata_id_c_string(const u16
*id
, unsigned char *s
,
1324 unsigned int ofs
, unsigned int len
)
1328 ata_id_string(id
, s
, ofs
, len
- 1);
1330 p
= s
+ strnlen(s
, len
- 1);
1331 while (p
> s
&& p
[-1] == ' ')
1336 static u64
ata_id_n_sectors(const u16
*id
)
1338 if (ata_id_has_lba(id
)) {
1339 if (ata_id_has_lba48(id
))
1340 return ata_id_u64(id
, ATA_ID_LBA_CAPACITY_2
);
1342 return ata_id_u32(id
, ATA_ID_LBA_CAPACITY
);
1344 if (ata_id_current_chs_valid(id
))
1345 return id
[ATA_ID_CUR_CYLS
] * id
[ATA_ID_CUR_HEADS
] *
1346 id
[ATA_ID_CUR_SECTORS
];
1348 return id
[ATA_ID_CYLS
] * id
[ATA_ID_HEADS
] *
1353 u64
ata_tf_to_lba48(const struct ata_taskfile
*tf
)
1357 sectors
|= ((u64
)(tf
->hob_lbah
& 0xff)) << 40;
1358 sectors
|= ((u64
)(tf
->hob_lbam
& 0xff)) << 32;
1359 sectors
|= ((u64
)(tf
->hob_lbal
& 0xff)) << 24;
1360 sectors
|= (tf
->lbah
& 0xff) << 16;
1361 sectors
|= (tf
->lbam
& 0xff) << 8;
1362 sectors
|= (tf
->lbal
& 0xff);
1367 u64
ata_tf_to_lba(const struct ata_taskfile
*tf
)
1371 sectors
|= (tf
->device
& 0x0f) << 24;
1372 sectors
|= (tf
->lbah
& 0xff) << 16;
1373 sectors
|= (tf
->lbam
& 0xff) << 8;
1374 sectors
|= (tf
->lbal
& 0xff);
1380 * ata_read_native_max_address - Read native max address
1381 * @dev: target device
1382 * @max_sectors: out parameter for the result native max address
1384 * Perform an LBA48 or LBA28 native size query upon the device in
1388 * 0 on success, -EACCES if command is aborted by the drive.
1389 * -EIO on other errors.
1391 static int ata_read_native_max_address(struct ata_device
*dev
, u64
*max_sectors
)
1393 unsigned int err_mask
;
1394 struct ata_taskfile tf
;
1395 int lba48
= ata_id_has_lba48(dev
->id
);
1397 ata_tf_init(dev
, &tf
);
1399 /* always clear all address registers */
1400 tf
.flags
|= ATA_TFLAG_DEVICE
| ATA_TFLAG_ISADDR
;
1403 tf
.command
= ATA_CMD_READ_NATIVE_MAX_EXT
;
1404 tf
.flags
|= ATA_TFLAG_LBA48
;
1406 tf
.command
= ATA_CMD_READ_NATIVE_MAX
;
1408 tf
.protocol
|= ATA_PROT_NODATA
;
1409 tf
.device
|= ATA_LBA
;
1411 err_mask
= ata_exec_internal(dev
, &tf
, NULL
, DMA_NONE
, NULL
, 0, 0);
1413 ata_dev_printk(dev
, KERN_WARNING
, "failed to read native "
1414 "max address (err_mask=0x%x)\n", err_mask
);
1415 if (err_mask
== AC_ERR_DEV
&& (tf
.feature
& ATA_ABORTED
))
1421 *max_sectors
= ata_tf_to_lba48(&tf
) + 1;
1423 *max_sectors
= ata_tf_to_lba(&tf
) + 1;
1424 if (dev
->horkage
& ATA_HORKAGE_HPA_SIZE
)
1430 * ata_set_max_sectors - Set max sectors
1431 * @dev: target device
1432 * @new_sectors: new max sectors value to set for the device
1434 * Set max sectors of @dev to @new_sectors.
1437 * 0 on success, -EACCES if command is aborted or denied (due to
1438 * previous non-volatile SET_MAX) by the drive. -EIO on other
1441 static int ata_set_max_sectors(struct ata_device
*dev
, u64 new_sectors
)
1443 unsigned int err_mask
;
1444 struct ata_taskfile tf
;
1445 int lba48
= ata_id_has_lba48(dev
->id
);
1449 ata_tf_init(dev
, &tf
);
1451 tf
.flags
|= ATA_TFLAG_DEVICE
| ATA_TFLAG_ISADDR
;
1454 tf
.command
= ATA_CMD_SET_MAX_EXT
;
1455 tf
.flags
|= ATA_TFLAG_LBA48
;
1457 tf
.hob_lbal
= (new_sectors
>> 24) & 0xff;
1458 tf
.hob_lbam
= (new_sectors
>> 32) & 0xff;
1459 tf
.hob_lbah
= (new_sectors
>> 40) & 0xff;
1461 tf
.command
= ATA_CMD_SET_MAX
;
1463 tf
.device
|= (new_sectors
>> 24) & 0xf;
1466 tf
.protocol
|= ATA_PROT_NODATA
;
1467 tf
.device
|= ATA_LBA
;
1469 tf
.lbal
= (new_sectors
>> 0) & 0xff;
1470 tf
.lbam
= (new_sectors
>> 8) & 0xff;
1471 tf
.lbah
= (new_sectors
>> 16) & 0xff;
1473 err_mask
= ata_exec_internal(dev
, &tf
, NULL
, DMA_NONE
, NULL
, 0, 0);
1475 ata_dev_printk(dev
, KERN_WARNING
, "failed to set "
1476 "max address (err_mask=0x%x)\n", err_mask
);
1477 if (err_mask
== AC_ERR_DEV
&&
1478 (tf
.feature
& (ATA_ABORTED
| ATA_IDNF
)))
1487 * ata_hpa_resize - Resize a device with an HPA set
1488 * @dev: Device to resize
1490 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
1491 * it if required to the full size of the media. The caller must check
1492 * the drive has the HPA feature set enabled.
1495 * 0 on success, -errno on failure.
1497 static int ata_hpa_resize(struct ata_device
*dev
)
1499 struct ata_eh_context
*ehc
= &dev
->link
->eh_context
;
1500 int print_info
= ehc
->i
.flags
& ATA_EHI_PRINTINFO
;
1501 bool unlock_hpa
= ata_ignore_hpa
|| dev
->flags
& ATA_DFLAG_UNLOCK_HPA
;
1502 u64 sectors
= ata_id_n_sectors(dev
->id
);
1506 /* do we need to do it? */
1507 if (dev
->class != ATA_DEV_ATA
||
1508 !ata_id_has_lba(dev
->id
) || !ata_id_hpa_enabled(dev
->id
) ||
1509 (dev
->horkage
& ATA_HORKAGE_BROKEN_HPA
))
1512 /* read native max address */
1513 rc
= ata_read_native_max_address(dev
, &native_sectors
);
1515 /* If device aborted the command or HPA isn't going to
1516 * be unlocked, skip HPA resizing.
1518 if (rc
== -EACCES
|| !unlock_hpa
) {
1519 ata_dev_printk(dev
, KERN_WARNING
, "HPA support seems "
1520 "broken, skipping HPA handling\n");
1521 dev
->horkage
|= ATA_HORKAGE_BROKEN_HPA
;
1523 /* we can continue if device aborted the command */
1530 dev
->n_native_sectors
= native_sectors
;
1532 /* nothing to do? */
1533 if (native_sectors
<= sectors
|| !unlock_hpa
) {
1534 if (!print_info
|| native_sectors
== sectors
)
1537 if (native_sectors
> sectors
)
1538 ata_dev_printk(dev
, KERN_INFO
,
1539 "HPA detected: current %llu, native %llu\n",
1540 (unsigned long long)sectors
,
1541 (unsigned long long)native_sectors
);
1542 else if (native_sectors
< sectors
)
1543 ata_dev_printk(dev
, KERN_WARNING
,
1544 "native sectors (%llu) is smaller than "
1546 (unsigned long long)native_sectors
,
1547 (unsigned long long)sectors
);
1551 /* let's unlock HPA */
1552 rc
= ata_set_max_sectors(dev
, native_sectors
);
1553 if (rc
== -EACCES
) {
1554 /* if device aborted the command, skip HPA resizing */
1555 ata_dev_printk(dev
, KERN_WARNING
, "device aborted resize "
1556 "(%llu -> %llu), skipping HPA handling\n",
1557 (unsigned long long)sectors
,
1558 (unsigned long long)native_sectors
);
1559 dev
->horkage
|= ATA_HORKAGE_BROKEN_HPA
;
1564 /* re-read IDENTIFY data */
1565 rc
= ata_dev_reread_id(dev
, 0);
1567 ata_dev_printk(dev
, KERN_ERR
, "failed to re-read IDENTIFY "
1568 "data after HPA resizing\n");
1573 u64 new_sectors
= ata_id_n_sectors(dev
->id
);
1574 ata_dev_printk(dev
, KERN_INFO
,
1575 "HPA unlocked: %llu -> %llu, native %llu\n",
1576 (unsigned long long)sectors
,
1577 (unsigned long long)new_sectors
,
1578 (unsigned long long)native_sectors
);
1585 * ata_dump_id - IDENTIFY DEVICE info debugging output
1586 * @id: IDENTIFY DEVICE page to dump
1588 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1595 static inline void ata_dump_id(const u16
*id
)
1597 DPRINTK("49==0x%04x "
1607 DPRINTK("80==0x%04x "
1617 DPRINTK("88==0x%04x "
1624 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1625 * @id: IDENTIFY data to compute xfer mask from
1627 * Compute the xfermask for this device. This is not as trivial
1628 * as it seems if we must consider early devices correctly.
1630 * FIXME: pre IDE drive timing (do we care ?).
1638 unsigned long ata_id_xfermask(const u16
*id
)
1640 unsigned long pio_mask
, mwdma_mask
, udma_mask
;
1642 /* Usual case. Word 53 indicates word 64 is valid */
1643 if (id
[ATA_ID_FIELD_VALID
] & (1 << 1)) {
1644 pio_mask
= id
[ATA_ID_PIO_MODES
] & 0x03;
1648 /* If word 64 isn't valid then Word 51 high byte holds
1649 * the PIO timing number for the maximum. Turn it into
1652 u8 mode
= (id
[ATA_ID_OLD_PIO_MODES
] >> 8) & 0xFF;
1653 if (mode
< 5) /* Valid PIO range */
1654 pio_mask
= (2 << mode
) - 1;
1658 /* But wait.. there's more. Design your standards by
1659 * committee and you too can get a free iordy field to
1660 * process. However its the speeds not the modes that
1661 * are supported... Note drivers using the timing API
1662 * will get this right anyway
1666 mwdma_mask
= id
[ATA_ID_MWDMA_MODES
] & 0x07;
1668 if (ata_id_is_cfa(id
)) {
1670 * Process compact flash extended modes
1672 int pio
= (id
[ATA_ID_CFA_MODES
] >> 0) & 0x7;
1673 int dma
= (id
[ATA_ID_CFA_MODES
] >> 3) & 0x7;
1676 pio_mask
|= (1 << 5);
1678 pio_mask
|= (1 << 6);
1680 mwdma_mask
|= (1 << 3);
1682 mwdma_mask
|= (1 << 4);
1686 if (id
[ATA_ID_FIELD_VALID
] & (1 << 2))
1687 udma_mask
= id
[ATA_ID_UDMA_MODES
] & 0xff;
1689 return ata_pack_xfermask(pio_mask
, mwdma_mask
, udma_mask
);
1692 static void ata_qc_complete_internal(struct ata_queued_cmd
*qc
)
1694 struct completion
*waiting
= qc
->private_data
;
1700 * ata_exec_internal_sg - execute libata internal command
1701 * @dev: Device to which the command is sent
1702 * @tf: Taskfile registers for the command and the result
1703 * @cdb: CDB for packet command
1704 * @dma_dir: Data tranfer direction of the command
1705 * @sgl: sg list for the data buffer of the command
1706 * @n_elem: Number of sg entries
1707 * @timeout: Timeout in msecs (0 for default)
1709 * Executes libata internal command with timeout. @tf contains
1710 * command on entry and result on return. Timeout and error
1711 * conditions are reported via return value. No recovery action
1712 * is taken after a command times out. It's caller's duty to
1713 * clean up after timeout.
1716 * None. Should be called with kernel context, might sleep.
1719 * Zero on success, AC_ERR_* mask on failure
1721 unsigned ata_exec_internal_sg(struct ata_device
*dev
,
1722 struct ata_taskfile
*tf
, const u8
*cdb
,
1723 int dma_dir
, struct scatterlist
*sgl
,
1724 unsigned int n_elem
, unsigned long timeout
)
1726 struct ata_link
*link
= dev
->link
;
1727 struct ata_port
*ap
= link
->ap
;
1728 u8 command
= tf
->command
;
1729 int auto_timeout
= 0;
1730 struct ata_queued_cmd
*qc
;
1731 unsigned int tag
, preempted_tag
;
1732 u32 preempted_sactive
, preempted_qc_active
;
1733 int preempted_nr_active_links
;
1734 DECLARE_COMPLETION_ONSTACK(wait
);
1735 unsigned long flags
;
1736 unsigned int err_mask
;
1739 spin_lock_irqsave(ap
->lock
, flags
);
1741 /* no internal command while frozen */
1742 if (ap
->pflags
& ATA_PFLAG_FROZEN
) {
1743 spin_unlock_irqrestore(ap
->lock
, flags
);
1744 return AC_ERR_SYSTEM
;
1747 /* initialize internal qc */
1749 /* XXX: Tag 0 is used for drivers with legacy EH as some
1750 * drivers choke if any other tag is given. This breaks
1751 * ata_tag_internal() test for those drivers. Don't use new
1752 * EH stuff without converting to it.
1754 if (ap
->ops
->error_handler
)
1755 tag
= ATA_TAG_INTERNAL
;
1759 if (test_and_set_bit(tag
, &ap
->qc_allocated
))
1761 qc
= __ata_qc_from_tag(ap
, tag
);
1769 preempted_tag
= link
->active_tag
;
1770 preempted_sactive
= link
->sactive
;
1771 preempted_qc_active
= ap
->qc_active
;
1772 preempted_nr_active_links
= ap
->nr_active_links
;
1773 link
->active_tag
= ATA_TAG_POISON
;
1776 ap
->nr_active_links
= 0;
1778 /* prepare & issue qc */
1781 memcpy(qc
->cdb
, cdb
, ATAPI_CDB_LEN
);
1782 qc
->flags
|= ATA_QCFLAG_RESULT_TF
;
1783 qc
->dma_dir
= dma_dir
;
1784 if (dma_dir
!= DMA_NONE
) {
1785 unsigned int i
, buflen
= 0;
1786 struct scatterlist
*sg
;
1788 for_each_sg(sgl
, sg
, n_elem
, i
)
1789 buflen
+= sg
->length
;
1791 ata_sg_init(qc
, sgl
, n_elem
);
1792 qc
->nbytes
= buflen
;
1795 qc
->private_data
= &wait
;
1796 qc
->complete_fn
= ata_qc_complete_internal
;
1800 spin_unlock_irqrestore(ap
->lock
, flags
);
1803 if (ata_probe_timeout
)
1804 timeout
= ata_probe_timeout
* 1000;
1806 timeout
= ata_internal_cmd_timeout(dev
, command
);
1811 rc
= wait_for_completion_timeout(&wait
, msecs_to_jiffies(timeout
));
1813 ata_sff_flush_pio_task(ap
);
1816 spin_lock_irqsave(ap
->lock
, flags
);
1818 /* We're racing with irq here. If we lose, the
1819 * following test prevents us from completing the qc
1820 * twice. If we win, the port is frozen and will be
1821 * cleaned up by ->post_internal_cmd().
1823 if (qc
->flags
& ATA_QCFLAG_ACTIVE
) {
1824 qc
->err_mask
|= AC_ERR_TIMEOUT
;
1826 if (ap
->ops
->error_handler
)
1827 ata_port_freeze(ap
);
1829 ata_qc_complete(qc
);
1831 if (ata_msg_warn(ap
))
1832 ata_dev_printk(dev
, KERN_WARNING
,
1833 "qc timeout (cmd 0x%x)\n", command
);
1836 spin_unlock_irqrestore(ap
->lock
, flags
);
1839 /* do post_internal_cmd */
1840 if (ap
->ops
->post_internal_cmd
)
1841 ap
->ops
->post_internal_cmd(qc
);
1843 /* perform minimal error analysis */
1844 if (qc
->flags
& ATA_QCFLAG_FAILED
) {
1845 if (qc
->result_tf
.command
& (ATA_ERR
| ATA_DF
))
1846 qc
->err_mask
|= AC_ERR_DEV
;
1849 qc
->err_mask
|= AC_ERR_OTHER
;
1851 if (qc
->err_mask
& ~AC_ERR_OTHER
)
1852 qc
->err_mask
&= ~AC_ERR_OTHER
;
1856 spin_lock_irqsave(ap
->lock
, flags
);
1858 *tf
= qc
->result_tf
;
1859 err_mask
= qc
->err_mask
;
1862 link
->active_tag
= preempted_tag
;
1863 link
->sactive
= preempted_sactive
;
1864 ap
->qc_active
= preempted_qc_active
;
1865 ap
->nr_active_links
= preempted_nr_active_links
;
1867 spin_unlock_irqrestore(ap
->lock
, flags
);
1869 if ((err_mask
& AC_ERR_TIMEOUT
) && auto_timeout
)
1870 ata_internal_cmd_timed_out(dev
, command
);
1876 * ata_exec_internal - execute libata internal command
1877 * @dev: Device to which the command is sent
1878 * @tf: Taskfile registers for the command and the result
1879 * @cdb: CDB for packet command
1880 * @dma_dir: Data tranfer direction of the command
1881 * @buf: Data buffer of the command
1882 * @buflen: Length of data buffer
1883 * @timeout: Timeout in msecs (0 for default)
1885 * Wrapper around ata_exec_internal_sg() which takes simple
1886 * buffer instead of sg list.
1889 * None. Should be called with kernel context, might sleep.
1892 * Zero on success, AC_ERR_* mask on failure
1894 unsigned ata_exec_internal(struct ata_device
*dev
,
1895 struct ata_taskfile
*tf
, const u8
*cdb
,
1896 int dma_dir
, void *buf
, unsigned int buflen
,
1897 unsigned long timeout
)
1899 struct scatterlist
*psg
= NULL
, sg
;
1900 unsigned int n_elem
= 0;
1902 if (dma_dir
!= DMA_NONE
) {
1904 sg_init_one(&sg
, buf
, buflen
);
1909 return ata_exec_internal_sg(dev
, tf
, cdb
, dma_dir
, psg
, n_elem
,
1914 * ata_do_simple_cmd - execute simple internal command
1915 * @dev: Device to which the command is sent
1916 * @cmd: Opcode to execute
1918 * Execute a 'simple' command, that only consists of the opcode
1919 * 'cmd' itself, without filling any other registers
1922 * Kernel thread context (may sleep).
1925 * Zero on success, AC_ERR_* mask on failure
1927 unsigned int ata_do_simple_cmd(struct ata_device
*dev
, u8 cmd
)
1929 struct ata_taskfile tf
;
1931 ata_tf_init(dev
, &tf
);
1934 tf
.flags
|= ATA_TFLAG_DEVICE
;
1935 tf
.protocol
= ATA_PROT_NODATA
;
1937 return ata_exec_internal(dev
, &tf
, NULL
, DMA_NONE
, NULL
, 0, 0);
1941 * ata_pio_need_iordy - check if iordy needed
1944 * Check if the current speed of the device requires IORDY. Used
1945 * by various controllers for chip configuration.
1947 unsigned int ata_pio_need_iordy(const struct ata_device
*adev
)
1949 /* Don't set IORDY if we're preparing for reset. IORDY may
1950 * lead to controller lock up on certain controllers if the
1951 * port is not occupied. See bko#11703 for details.
1953 if (adev
->link
->ap
->pflags
& ATA_PFLAG_RESETTING
)
1955 /* Controller doesn't support IORDY. Probably a pointless
1956 * check as the caller should know this.
1958 if (adev
->link
->ap
->flags
& ATA_FLAG_NO_IORDY
)
1960 /* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6. */
1961 if (ata_id_is_cfa(adev
->id
)
1962 && (adev
->pio_mode
== XFER_PIO_5
|| adev
->pio_mode
== XFER_PIO_6
))
1964 /* PIO3 and higher it is mandatory */
1965 if (adev
->pio_mode
> XFER_PIO_2
)
1967 /* We turn it on when possible */
1968 if (ata_id_has_iordy(adev
->id
))
1974 * ata_pio_mask_no_iordy - Return the non IORDY mask
1977 * Compute the highest mode possible if we are not using iordy. Return
1978 * -1 if no iordy mode is available.
1980 static u32
ata_pio_mask_no_iordy(const struct ata_device
*adev
)
1982 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1983 if (adev
->id
[ATA_ID_FIELD_VALID
] & 2) { /* EIDE */
1984 u16 pio
= adev
->id
[ATA_ID_EIDE_PIO
];
1985 /* Is the speed faster than the drive allows non IORDY ? */
1987 /* This is cycle times not frequency - watch the logic! */
1988 if (pio
> 240) /* PIO2 is 240nS per cycle */
1989 return 3 << ATA_SHIFT_PIO
;
1990 return 7 << ATA_SHIFT_PIO
;
1993 return 3 << ATA_SHIFT_PIO
;
1997 * ata_do_dev_read_id - default ID read method
1999 * @tf: proposed taskfile
2002 * Issue the identify taskfile and hand back the buffer containing
2003 * identify data. For some RAID controllers and for pre ATA devices
2004 * this function is wrapped or replaced by the driver
2006 unsigned int ata_do_dev_read_id(struct ata_device
*dev
,
2007 struct ata_taskfile
*tf
, u16
*id
)
2009 return ata_exec_internal(dev
, tf
, NULL
, DMA_FROM_DEVICE
,
2010 id
, sizeof(id
[0]) * ATA_ID_WORDS
, 0);
2014 * ata_dev_read_id - Read ID data from the specified device
2015 * @dev: target device
2016 * @p_class: pointer to class of the target device (may be changed)
2017 * @flags: ATA_READID_* flags
2018 * @id: buffer to read IDENTIFY data into
2020 * Read ID data from the specified device. ATA_CMD_ID_ATA is
2021 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
2022 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
2023 * for pre-ATA4 drives.
2025 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right
2026 * now we abort if we hit that case.
2029 * Kernel thread context (may sleep)
2032 * 0 on success, -errno otherwise.
2034 int ata_dev_read_id(struct ata_device
*dev
, unsigned int *p_class
,
2035 unsigned int flags
, u16
*id
)
2037 struct ata_port
*ap
= dev
->link
->ap
;
2038 unsigned int class = *p_class
;
2039 struct ata_taskfile tf
;
2040 unsigned int err_mask
= 0;
2042 bool is_semb
= class == ATA_DEV_SEMB
;
2043 int may_fallback
= 1, tried_spinup
= 0;
2046 if (ata_msg_ctl(ap
))
2047 ata_dev_printk(dev
, KERN_DEBUG
, "%s: ENTER\n", __func__
);
2050 ata_tf_init(dev
, &tf
);
2054 class = ATA_DEV_ATA
; /* some hard drives report SEMB sig */
2056 tf
.command
= ATA_CMD_ID_ATA
;
2059 tf
.command
= ATA_CMD_ID_ATAPI
;
2063 reason
= "unsupported class";
2067 tf
.protocol
= ATA_PROT_PIO
;
2069 /* Some devices choke if TF registers contain garbage. Make
2070 * sure those are properly initialized.
2072 tf
.flags
|= ATA_TFLAG_ISADDR
| ATA_TFLAG_DEVICE
;
2074 /* Device presence detection is unreliable on some
2075 * controllers. Always poll IDENTIFY if available.
2077 tf
.flags
|= ATA_TFLAG_POLLING
;
2079 if (ap
->ops
->read_id
)
2080 err_mask
= ap
->ops
->read_id(dev
, &tf
, id
);
2082 err_mask
= ata_do_dev_read_id(dev
, &tf
, id
);
2085 if (err_mask
& AC_ERR_NODEV_HINT
) {
2086 ata_dev_printk(dev
, KERN_DEBUG
,
2087 "NODEV after polling detection\n");
2092 ata_dev_printk(dev
, KERN_INFO
, "IDENTIFY failed on "
2093 "device w/ SEMB sig, disabled\n");
2094 /* SEMB is not supported yet */
2095 *p_class
= ATA_DEV_SEMB_UNSUP
;
2099 if ((err_mask
== AC_ERR_DEV
) && (tf
.feature
& ATA_ABORTED
)) {
2100 /* Device or controller might have reported
2101 * the wrong device class. Give a shot at the
2102 * other IDENTIFY if the current one is
2103 * aborted by the device.
2108 if (class == ATA_DEV_ATA
)
2109 class = ATA_DEV_ATAPI
;
2111 class = ATA_DEV_ATA
;
2115 /* Control reaches here iff the device aborted
2116 * both flavors of IDENTIFYs which happens
2117 * sometimes with phantom devices.
2119 ata_dev_printk(dev
, KERN_DEBUG
,
2120 "both IDENTIFYs aborted, assuming NODEV\n");
2125 reason
= "I/O error";
2129 if (dev
->horkage
& ATA_HORKAGE_DUMP_ID
) {
2130 ata_dev_printk(dev
, KERN_DEBUG
, "dumping IDENTIFY data, "
2131 "class=%d may_fallback=%d tried_spinup=%d\n",
2132 class, may_fallback
, tried_spinup
);
2133 print_hex_dump(KERN_DEBUG
, "", DUMP_PREFIX_OFFSET
,
2134 16, 2, id
, ATA_ID_WORDS
* sizeof(*id
), true);
2137 /* Falling back doesn't make sense if ID data was read
2138 * successfully at least once.
2142 swap_buf_le16(id
, ATA_ID_WORDS
);
2146 reason
= "device reports invalid type";
2148 if (class == ATA_DEV_ATA
) {
2149 if (!ata_id_is_ata(id
) && !ata_id_is_cfa(id
))
2152 if (ata_id_is_ata(id
))
2156 if (!tried_spinup
&& (id
[2] == 0x37c8 || id
[2] == 0x738c)) {
2159 * Drive powered-up in standby mode, and requires a specific
2160 * SET_FEATURES spin-up subcommand before it will accept
2161 * anything other than the original IDENTIFY command.
2163 err_mask
= ata_dev_set_feature(dev
, SETFEATURES_SPINUP
, 0);
2164 if (err_mask
&& id
[2] != 0x738c) {
2166 reason
= "SPINUP failed";
2170 * If the drive initially returned incomplete IDENTIFY info,
2171 * we now must reissue the IDENTIFY command.
2173 if (id
[2] == 0x37c8)
2177 if ((flags
& ATA_READID_POSTRESET
) && class == ATA_DEV_ATA
) {
2179 * The exact sequence expected by certain pre-ATA4 drives is:
2181 * IDENTIFY (optional in early ATA)
2182 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
2184 * Some drives were very specific about that exact sequence.
2186 * Note that ATA4 says lba is mandatory so the second check
2187 * should never trigger.
2189 if (ata_id_major_version(id
) < 4 || !ata_id_has_lba(id
)) {
2190 err_mask
= ata_dev_init_params(dev
, id
[3], id
[6]);
2193 reason
= "INIT_DEV_PARAMS failed";
2197 /* current CHS translation info (id[53-58]) might be
2198 * changed. reread the identify device info.
2200 flags
&= ~ATA_READID_POSTRESET
;
2210 if (ata_msg_warn(ap
))
2211 ata_dev_printk(dev
, KERN_WARNING
, "failed to IDENTIFY "
2212 "(%s, err_mask=0x%x)\n", reason
, err_mask
);
2216 static int ata_do_link_spd_horkage(struct ata_device
*dev
)
2218 struct ata_link
*plink
= ata_dev_phys_link(dev
);
2219 u32 target
, target_limit
;
2221 if (!sata_scr_valid(plink
))
2224 if (dev
->horkage
& ATA_HORKAGE_1_5_GBPS
)
2229 target_limit
= (1 << target
) - 1;
2231 /* if already on stricter limit, no need to push further */
2232 if (plink
->sata_spd_limit
<= target_limit
)
2235 plink
->sata_spd_limit
= target_limit
;
2237 /* Request another EH round by returning -EAGAIN if link is
2238 * going faster than the target speed. Forward progress is
2239 * guaranteed by setting sata_spd_limit to target_limit above.
2241 if (plink
->sata_spd
> target
) {
2242 ata_dev_printk(dev
, KERN_INFO
,
2243 "applying link speed limit horkage to %s\n",
2244 sata_spd_string(target
));
2250 static inline u8
ata_dev_knobble(struct ata_device
*dev
)
2252 struct ata_port
*ap
= dev
->link
->ap
;
2254 if (ata_dev_blacklisted(dev
) & ATA_HORKAGE_BRIDGE_OK
)
2257 return ((ap
->cbl
== ATA_CBL_SATA
) && (!ata_id_is_sata(dev
->id
)));
2260 static int ata_dev_config_ncq(struct ata_device
*dev
,
2261 char *desc
, size_t desc_sz
)
2263 struct ata_port
*ap
= dev
->link
->ap
;
2264 int hdepth
= 0, ddepth
= ata_id_queue_depth(dev
->id
);
2265 unsigned int err_mask
;
2268 if (!ata_id_has_ncq(dev
->id
)) {
2272 if (dev
->horkage
& ATA_HORKAGE_NONCQ
) {
2273 snprintf(desc
, desc_sz
, "NCQ (not used)");
2276 if (ap
->flags
& ATA_FLAG_NCQ
) {
2277 hdepth
= min(ap
->scsi_host
->can_queue
, ATA_MAX_QUEUE
- 1);
2278 dev
->flags
|= ATA_DFLAG_NCQ
;
2281 if (!(dev
->horkage
& ATA_HORKAGE_BROKEN_FPDMA_AA
) &&
2282 (ap
->flags
& ATA_FLAG_FPDMA_AA
) &&
2283 ata_id_has_fpdma_aa(dev
->id
)) {
2284 err_mask
= ata_dev_set_feature(dev
, SETFEATURES_SATA_ENABLE
,
2287 ata_dev_printk(dev
, KERN_ERR
, "failed to enable AA"
2288 "(error_mask=0x%x)\n", err_mask
);
2289 if (err_mask
!= AC_ERR_DEV
) {
2290 dev
->horkage
|= ATA_HORKAGE_BROKEN_FPDMA_AA
;
2297 if (hdepth
>= ddepth
)
2298 snprintf(desc
, desc_sz
, "NCQ (depth %d)%s", ddepth
, aa_desc
);
2300 snprintf(desc
, desc_sz
, "NCQ (depth %d/%d)%s", hdepth
,
2306 * ata_dev_configure - Configure the specified ATA/ATAPI device
2307 * @dev: Target device to configure
2309 * Configure @dev according to @dev->id. Generic and low-level
2310 * driver specific fixups are also applied.
2313 * Kernel thread context (may sleep)
2316 * 0 on success, -errno otherwise
2318 int ata_dev_configure(struct ata_device
*dev
)
2320 struct ata_port
*ap
= dev
->link
->ap
;
2321 struct ata_eh_context
*ehc
= &dev
->link
->eh_context
;
2322 int print_info
= ehc
->i
.flags
& ATA_EHI_PRINTINFO
;
2323 const u16
*id
= dev
->id
;
2324 unsigned long xfer_mask
;
2325 char revbuf
[7]; /* XYZ-99\0 */
2326 char fwrevbuf
[ATA_ID_FW_REV_LEN
+1];
2327 char modelbuf
[ATA_ID_PROD_LEN
+1];
2330 if (!ata_dev_enabled(dev
) && ata_msg_info(ap
)) {
2331 ata_dev_printk(dev
, KERN_INFO
, "%s: ENTER/EXIT -- nodev\n",
2336 if (ata_msg_probe(ap
))
2337 ata_dev_printk(dev
, KERN_DEBUG
, "%s: ENTER\n", __func__
);
2340 dev
->horkage
|= ata_dev_blacklisted(dev
);
2341 ata_force_horkage(dev
);
2343 if (dev
->horkage
& ATA_HORKAGE_DISABLE
) {
2344 ata_dev_printk(dev
, KERN_INFO
,
2345 "unsupported device, disabling\n");
2346 ata_dev_disable(dev
);
2350 if ((!atapi_enabled
|| (ap
->flags
& ATA_FLAG_NO_ATAPI
)) &&
2351 dev
->class == ATA_DEV_ATAPI
) {
2352 ata_dev_printk(dev
, KERN_WARNING
,
2353 "WARNING: ATAPI is %s, device ignored.\n",
2354 atapi_enabled
? "not supported with this driver"
2356 ata_dev_disable(dev
);
2360 rc
= ata_do_link_spd_horkage(dev
);
2364 /* let ACPI work its magic */
2365 rc
= ata_acpi_on_devcfg(dev
);
2369 /* massage HPA, do it early as it might change IDENTIFY data */
2370 rc
= ata_hpa_resize(dev
);
2374 /* print device capabilities */
2375 if (ata_msg_probe(ap
))
2376 ata_dev_printk(dev
, KERN_DEBUG
,
2377 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2378 "85:%04x 86:%04x 87:%04x 88:%04x\n",
2380 id
[49], id
[82], id
[83], id
[84],
2381 id
[85], id
[86], id
[87], id
[88]);
2383 /* initialize to-be-configured parameters */
2384 dev
->flags
&= ~ATA_DFLAG_CFG_MASK
;
2385 dev
->max_sectors
= 0;
2391 dev
->multi_count
= 0;
2394 * common ATA, ATAPI feature tests
2397 /* find max transfer mode; for printk only */
2398 xfer_mask
= ata_id_xfermask(id
);
2400 if (ata_msg_probe(ap
))
2403 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2404 ata_id_c_string(dev
->id
, fwrevbuf
, ATA_ID_FW_REV
,
2407 ata_id_c_string(dev
->id
, modelbuf
, ATA_ID_PROD
,
2410 /* ATA-specific feature tests */
2411 if (dev
->class == ATA_DEV_ATA
) {
2412 if (ata_id_is_cfa(id
)) {
2413 /* CPRM may make this media unusable */
2414 if (id
[ATA_ID_CFA_KEY_MGMT
] & 1)
2415 ata_dev_printk(dev
, KERN_WARNING
,
2416 "supports DRM functions and may "
2417 "not be fully accessable.\n");
2418 snprintf(revbuf
, 7, "CFA");
2420 snprintf(revbuf
, 7, "ATA-%d", ata_id_major_version(id
));
2421 /* Warn the user if the device has TPM extensions */
2422 if (ata_id_has_tpm(id
))
2423 ata_dev_printk(dev
, KERN_WARNING
,
2424 "supports DRM functions and may "
2425 "not be fully accessable.\n");
2428 dev
->n_sectors
= ata_id_n_sectors(id
);
2430 /* get current R/W Multiple count setting */
2431 if ((dev
->id
[47] >> 8) == 0x80 && (dev
->id
[59] & 0x100)) {
2432 unsigned int max
= dev
->id
[47] & 0xff;
2433 unsigned int cnt
= dev
->id
[59] & 0xff;
2434 /* only recognize/allow powers of two here */
2435 if (is_power_of_2(max
) && is_power_of_2(cnt
))
2437 dev
->multi_count
= cnt
;
2440 if (ata_id_has_lba(id
)) {
2441 const char *lba_desc
;
2445 dev
->flags
|= ATA_DFLAG_LBA
;
2446 if (ata_id_has_lba48(id
)) {
2447 dev
->flags
|= ATA_DFLAG_LBA48
;
2450 if (dev
->n_sectors
>= (1UL << 28) &&
2451 ata_id_has_flush_ext(id
))
2452 dev
->flags
|= ATA_DFLAG_FLUSH_EXT
;
2456 rc
= ata_dev_config_ncq(dev
, ncq_desc
, sizeof(ncq_desc
));
2460 /* print device info to dmesg */
2461 if (ata_msg_drv(ap
) && print_info
) {
2462 ata_dev_printk(dev
, KERN_INFO
,
2463 "%s: %s, %s, max %s\n",
2464 revbuf
, modelbuf
, fwrevbuf
,
2465 ata_mode_string(xfer_mask
));
2466 ata_dev_printk(dev
, KERN_INFO
,
2467 "%Lu sectors, multi %u: %s %s\n",
2468 (unsigned long long)dev
->n_sectors
,
2469 dev
->multi_count
, lba_desc
, ncq_desc
);
2474 /* Default translation */
2475 dev
->cylinders
= id
[1];
2477 dev
->sectors
= id
[6];
2479 if (ata_id_current_chs_valid(id
)) {
2480 /* Current CHS translation is valid. */
2481 dev
->cylinders
= id
[54];
2482 dev
->heads
= id
[55];
2483 dev
->sectors
= id
[56];
2486 /* print device info to dmesg */
2487 if (ata_msg_drv(ap
) && print_info
) {
2488 ata_dev_printk(dev
, KERN_INFO
,
2489 "%s: %s, %s, max %s\n",
2490 revbuf
, modelbuf
, fwrevbuf
,
2491 ata_mode_string(xfer_mask
));
2492 ata_dev_printk(dev
, KERN_INFO
,
2493 "%Lu sectors, multi %u, CHS %u/%u/%u\n",
2494 (unsigned long long)dev
->n_sectors
,
2495 dev
->multi_count
, dev
->cylinders
,
2496 dev
->heads
, dev
->sectors
);
2503 /* ATAPI-specific feature tests */
2504 else if (dev
->class == ATA_DEV_ATAPI
) {
2505 const char *cdb_intr_string
= "";
2506 const char *atapi_an_string
= "";
2507 const char *dma_dir_string
= "";
2510 rc
= atapi_cdb_len(id
);
2511 if ((rc
< 12) || (rc
> ATAPI_CDB_LEN
)) {
2512 if (ata_msg_warn(ap
))
2513 ata_dev_printk(dev
, KERN_WARNING
,
2514 "unsupported CDB len\n");
2518 dev
->cdb_len
= (unsigned int) rc
;
2520 /* Enable ATAPI AN if both the host and device have
2521 * the support. If PMP is attached, SNTF is required
2522 * to enable ATAPI AN to discern between PHY status
2523 * changed notifications and ATAPI ANs.
2526 (ap
->flags
& ATA_FLAG_AN
) && ata_id_has_atapi_AN(id
) &&
2527 (!sata_pmp_attached(ap
) ||
2528 sata_scr_read(&ap
->link
, SCR_NOTIFICATION
, &sntf
) == 0)) {
2529 unsigned int err_mask
;
2531 /* issue SET feature command to turn this on */
2532 err_mask
= ata_dev_set_feature(dev
,
2533 SETFEATURES_SATA_ENABLE
, SATA_AN
);
2535 ata_dev_printk(dev
, KERN_ERR
,
2536 "failed to enable ATAPI AN "
2537 "(err_mask=0x%x)\n", err_mask
);
2539 dev
->flags
|= ATA_DFLAG_AN
;
2540 atapi_an_string
= ", ATAPI AN";
2544 if (ata_id_cdb_intr(dev
->id
)) {
2545 dev
->flags
|= ATA_DFLAG_CDB_INTR
;
2546 cdb_intr_string
= ", CDB intr";
2549 if (atapi_dmadir
|| atapi_id_dmadir(dev
->id
)) {
2550 dev
->flags
|= ATA_DFLAG_DMADIR
;
2551 dma_dir_string
= ", DMADIR";
2554 /* print device info to dmesg */
2555 if (ata_msg_drv(ap
) && print_info
)
2556 ata_dev_printk(dev
, KERN_INFO
,
2557 "ATAPI: %s, %s, max %s%s%s%s\n",
2559 ata_mode_string(xfer_mask
),
2560 cdb_intr_string
, atapi_an_string
,
2564 /* determine max_sectors */
2565 dev
->max_sectors
= ATA_MAX_SECTORS
;
2566 if (dev
->flags
& ATA_DFLAG_LBA48
)
2567 dev
->max_sectors
= ATA_MAX_SECTORS_LBA48
;
2569 if (!(dev
->horkage
& ATA_HORKAGE_IPM
)) {
2570 if (ata_id_has_hipm(dev
->id
))
2571 dev
->flags
|= ATA_DFLAG_HIPM
;
2572 if (ata_id_has_dipm(dev
->id
))
2573 dev
->flags
|= ATA_DFLAG_DIPM
;
2576 /* Limit PATA drive on SATA cable bridge transfers to udma5,
2578 if (ata_dev_knobble(dev
)) {
2579 if (ata_msg_drv(ap
) && print_info
)
2580 ata_dev_printk(dev
, KERN_INFO
,
2581 "applying bridge limits\n");
2582 dev
->udma_mask
&= ATA_UDMA5
;
2583 dev
->max_sectors
= ATA_MAX_SECTORS
;
2586 if ((dev
->class == ATA_DEV_ATAPI
) &&
2587 (atapi_command_packet_set(id
) == TYPE_TAPE
)) {
2588 dev
->max_sectors
= ATA_MAX_SECTORS_TAPE
;
2589 dev
->horkage
|= ATA_HORKAGE_STUCK_ERR
;
2592 if (dev
->horkage
& ATA_HORKAGE_MAX_SEC_128
)
2593 dev
->max_sectors
= min_t(unsigned int, ATA_MAX_SECTORS_128
,
2596 if (ata_dev_blacklisted(dev
) & ATA_HORKAGE_IPM
) {
2597 dev
->horkage
|= ATA_HORKAGE_IPM
;
2599 /* reset link pm_policy for this port to no pm */
2600 ap
->pm_policy
= MAX_PERFORMANCE
;
2603 if (ap
->ops
->dev_config
)
2604 ap
->ops
->dev_config(dev
);
2606 if (dev
->horkage
& ATA_HORKAGE_DIAGNOSTIC
) {
2607 /* Let the user know. We don't want to disallow opens for
2608 rescue purposes, or in case the vendor is just a blithering
2609 idiot. Do this after the dev_config call as some controllers
2610 with buggy firmware may want to avoid reporting false device
2614 ata_dev_printk(dev
, KERN_WARNING
,
2615 "Drive reports diagnostics failure. This may indicate a drive\n");
2616 ata_dev_printk(dev
, KERN_WARNING
,
2617 "fault or invalid emulation. Contact drive vendor for information.\n");
2621 if ((dev
->horkage
& ATA_HORKAGE_FIRMWARE_WARN
) && print_info
) {
2622 ata_dev_printk(dev
, KERN_WARNING
, "WARNING: device requires "
2623 "firmware update to be fully functional.\n");
2624 ata_dev_printk(dev
, KERN_WARNING
, " contact the vendor "
2625 "or visit http://ata.wiki.kernel.org.\n");
2631 if (ata_msg_probe(ap
))
2632 ata_dev_printk(dev
, KERN_DEBUG
,
2633 "%s: EXIT, err\n", __func__
);
2638 * ata_cable_40wire - return 40 wire cable type
2641 * Helper method for drivers which want to hardwire 40 wire cable
2645 int ata_cable_40wire(struct ata_port
*ap
)
2647 return ATA_CBL_PATA40
;
2651 * ata_cable_80wire - return 80 wire cable type
2654 * Helper method for drivers which want to hardwire 80 wire cable
2658 int ata_cable_80wire(struct ata_port
*ap
)
2660 return ATA_CBL_PATA80
;
2664 * ata_cable_unknown - return unknown PATA cable.
2667 * Helper method for drivers which have no PATA cable detection.
2670 int ata_cable_unknown(struct ata_port
*ap
)
2672 return ATA_CBL_PATA_UNK
;
2676 * ata_cable_ignore - return ignored PATA cable.
2679 * Helper method for drivers which don't use cable type to limit
2682 int ata_cable_ignore(struct ata_port
*ap
)
2684 return ATA_CBL_PATA_IGN
;
2688 * ata_cable_sata - return SATA cable type
2691 * Helper method for drivers which have SATA cables
2694 int ata_cable_sata(struct ata_port
*ap
)
2696 return ATA_CBL_SATA
;
2700 * ata_bus_probe - Reset and probe ATA bus
2703 * Master ATA bus probing function. Initiates a hardware-dependent
2704 * bus reset, then attempts to identify any devices found on
2708 * PCI/etc. bus probe sem.
2711 * Zero on success, negative errno otherwise.
2714 int ata_bus_probe(struct ata_port
*ap
)
2716 unsigned int classes
[ATA_MAX_DEVICES
];
2717 int tries
[ATA_MAX_DEVICES
];
2719 struct ata_device
*dev
;
2721 ata_for_each_dev(dev
, &ap
->link
, ALL
)
2722 tries
[dev
->devno
] = ATA_PROBE_MAX_TRIES
;
2725 ata_for_each_dev(dev
, &ap
->link
, ALL
) {
2726 /* If we issue an SRST then an ATA drive (not ATAPI)
2727 * may change configuration and be in PIO0 timing. If
2728 * we do a hard reset (or are coming from power on)
2729 * this is true for ATA or ATAPI. Until we've set a
2730 * suitable controller mode we should not touch the
2731 * bus as we may be talking too fast.
2733 dev
->pio_mode
= XFER_PIO_0
;
2735 /* If the controller has a pio mode setup function
2736 * then use it to set the chipset to rights. Don't
2737 * touch the DMA setup as that will be dealt with when
2738 * configuring devices.
2740 if (ap
->ops
->set_piomode
)
2741 ap
->ops
->set_piomode(ap
, dev
);
2744 /* reset and determine device classes */
2745 ap
->ops
->phy_reset(ap
);
2747 ata_for_each_dev(dev
, &ap
->link
, ALL
) {
2748 if (dev
->class != ATA_DEV_UNKNOWN
)
2749 classes
[dev
->devno
] = dev
->class;
2751 classes
[dev
->devno
] = ATA_DEV_NONE
;
2753 dev
->class = ATA_DEV_UNKNOWN
;
2756 /* read IDENTIFY page and configure devices. We have to do the identify
2757 specific sequence bass-ackwards so that PDIAG- is released by
2760 ata_for_each_dev(dev
, &ap
->link
, ALL_REVERSE
) {
2761 if (tries
[dev
->devno
])
2762 dev
->class = classes
[dev
->devno
];
2764 if (!ata_dev_enabled(dev
))
2767 rc
= ata_dev_read_id(dev
, &dev
->class, ATA_READID_POSTRESET
,
2773 /* Now ask for the cable type as PDIAG- should have been released */
2774 if (ap
->ops
->cable_detect
)
2775 ap
->cbl
= ap
->ops
->cable_detect(ap
);
2777 /* We may have SATA bridge glue hiding here irrespective of
2778 * the reported cable types and sensed types. When SATA
2779 * drives indicate we have a bridge, we don't know which end
2780 * of the link the bridge is which is a problem.
2782 ata_for_each_dev(dev
, &ap
->link
, ENABLED
)
2783 if (ata_id_is_sata(dev
->id
))
2784 ap
->cbl
= ATA_CBL_SATA
;
2786 /* After the identify sequence we can now set up the devices. We do
2787 this in the normal order so that the user doesn't get confused */
2789 ata_for_each_dev(dev
, &ap
->link
, ENABLED
) {
2790 ap
->link
.eh_context
.i
.flags
|= ATA_EHI_PRINTINFO
;
2791 rc
= ata_dev_configure(dev
);
2792 ap
->link
.eh_context
.i
.flags
&= ~ATA_EHI_PRINTINFO
;
2797 /* configure transfer mode */
2798 rc
= ata_set_mode(&ap
->link
, &dev
);
2802 ata_for_each_dev(dev
, &ap
->link
, ENABLED
)
2808 tries
[dev
->devno
]--;
2812 /* eeek, something went very wrong, give up */
2813 tries
[dev
->devno
] = 0;
2817 /* give it just one more chance */
2818 tries
[dev
->devno
] = min(tries
[dev
->devno
], 1);
2820 if (tries
[dev
->devno
] == 1) {
2821 /* This is the last chance, better to slow
2822 * down than lose it.
2824 sata_down_spd_limit(&ap
->link
, 0);
2825 ata_down_xfermask_limit(dev
, ATA_DNXFER_PIO
);
2829 if (!tries
[dev
->devno
])
2830 ata_dev_disable(dev
);
2836 * sata_print_link_status - Print SATA link status
2837 * @link: SATA link to printk link status about
2839 * This function prints link speed and status of a SATA link.
2844 static void sata_print_link_status(struct ata_link
*link
)
2846 u32 sstatus
, scontrol
, tmp
;
2848 if (sata_scr_read(link
, SCR_STATUS
, &sstatus
))
2850 sata_scr_read(link
, SCR_CONTROL
, &scontrol
);
2852 if (ata_phys_link_online(link
)) {
2853 tmp
= (sstatus
>> 4) & 0xf;
2854 ata_link_printk(link
, KERN_INFO
,
2855 "SATA link up %s (SStatus %X SControl %X)\n",
2856 sata_spd_string(tmp
), sstatus
, scontrol
);
2858 ata_link_printk(link
, KERN_INFO
,
2859 "SATA link down (SStatus %X SControl %X)\n",
2865 * ata_dev_pair - return other device on cable
2868 * Obtain the other device on the same cable, or if none is
2869 * present NULL is returned
2872 struct ata_device
*ata_dev_pair(struct ata_device
*adev
)
2874 struct ata_link
*link
= adev
->link
;
2875 struct ata_device
*pair
= &link
->device
[1 - adev
->devno
];
2876 if (!ata_dev_enabled(pair
))
2882 * sata_down_spd_limit - adjust SATA spd limit downward
2883 * @link: Link to adjust SATA spd limit for
2884 * @spd_limit: Additional limit
2886 * Adjust SATA spd limit of @link downward. Note that this
2887 * function only adjusts the limit. The change must be applied
2888 * using sata_set_spd().
2890 * If @spd_limit is non-zero, the speed is limited to equal to or
2891 * lower than @spd_limit if such speed is supported. If
2892 * @spd_limit is slower than any supported speed, only the lowest
2893 * supported speed is allowed.
2896 * Inherited from caller.
2899 * 0 on success, negative errno on failure
2901 int sata_down_spd_limit(struct ata_link
*link
, u32 spd_limit
)
2903 u32 sstatus
, spd
, mask
;
2906 if (!sata_scr_valid(link
))
2909 /* If SCR can be read, use it to determine the current SPD.
2910 * If not, use cached value in link->sata_spd.
2912 rc
= sata_scr_read(link
, SCR_STATUS
, &sstatus
);
2913 if (rc
== 0 && ata_sstatus_online(sstatus
))
2914 spd
= (sstatus
>> 4) & 0xf;
2916 spd
= link
->sata_spd
;
2918 mask
= link
->sata_spd_limit
;
2922 /* unconditionally mask off the highest bit */
2923 bit
= fls(mask
) - 1;
2924 mask
&= ~(1 << bit
);
2926 /* Mask off all speeds higher than or equal to the current
2927 * one. Force 1.5Gbps if current SPD is not available.
2930 mask
&= (1 << (spd
- 1)) - 1;
2934 /* were we already at the bottom? */
2939 if (mask
& ((1 << spd_limit
) - 1))
2940 mask
&= (1 << spd_limit
) - 1;
2942 bit
= ffs(mask
) - 1;
2947 link
->sata_spd_limit
= mask
;
2949 ata_link_printk(link
, KERN_WARNING
, "limiting SATA link speed to %s\n",
2950 sata_spd_string(fls(mask
)));
2955 static int __sata_set_spd_needed(struct ata_link
*link
, u32
*scontrol
)
2957 struct ata_link
*host_link
= &link
->ap
->link
;
2958 u32 limit
, target
, spd
;
2960 limit
= link
->sata_spd_limit
;
2962 /* Don't configure downstream link faster than upstream link.
2963 * It doesn't speed up anything and some PMPs choke on such
2966 if (!ata_is_host_link(link
) && host_link
->sata_spd
)
2967 limit
&= (1 << host_link
->sata_spd
) - 1;
2969 if (limit
== UINT_MAX
)
2972 target
= fls(limit
);
2974 spd
= (*scontrol
>> 4) & 0xf;
2975 *scontrol
= (*scontrol
& ~0xf0) | ((target
& 0xf) << 4);
2977 return spd
!= target
;
2981 * sata_set_spd_needed - is SATA spd configuration needed
2982 * @link: Link in question
2984 * Test whether the spd limit in SControl matches
2985 * @link->sata_spd_limit. This function is used to determine
2986 * whether hardreset is necessary to apply SATA spd
2990 * Inherited from caller.
2993 * 1 if SATA spd configuration is needed, 0 otherwise.
2995 static int sata_set_spd_needed(struct ata_link
*link
)
2999 if (sata_scr_read(link
, SCR_CONTROL
, &scontrol
))
3002 return __sata_set_spd_needed(link
, &scontrol
);
3006 * sata_set_spd - set SATA spd according to spd limit
3007 * @link: Link to set SATA spd for
3009 * Set SATA spd of @link according to sata_spd_limit.
3012 * Inherited from caller.
3015 * 0 if spd doesn't need to be changed, 1 if spd has been
3016 * changed. Negative errno if SCR registers are inaccessible.
3018 int sata_set_spd(struct ata_link
*link
)
3023 if ((rc
= sata_scr_read(link
, SCR_CONTROL
, &scontrol
)))
3026 if (!__sata_set_spd_needed(link
, &scontrol
))
3029 if ((rc
= sata_scr_write(link
, SCR_CONTROL
, scontrol
)))
3036 * This mode timing computation functionality is ported over from
3037 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
3040 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
3041 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
3042 * for UDMA6, which is currently supported only by Maxtor drives.
3044 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
3047 static const struct ata_timing ata_timing
[] = {
3048 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 0, 960, 0 }, */
3049 { XFER_PIO_0
, 70, 290, 240, 600, 165, 150, 0, 600, 0 },
3050 { XFER_PIO_1
, 50, 290, 93, 383, 125, 100, 0, 383, 0 },
3051 { XFER_PIO_2
, 30, 290, 40, 330, 100, 90, 0, 240, 0 },
3052 { XFER_PIO_3
, 30, 80, 70, 180, 80, 70, 0, 180, 0 },
3053 { XFER_PIO_4
, 25, 70, 25, 120, 70, 25, 0, 120, 0 },
3054 { XFER_PIO_5
, 15, 65, 25, 100, 65, 25, 0, 100, 0 },
3055 { XFER_PIO_6
, 10, 55, 20, 80, 55, 20, 0, 80, 0 },
3057 { XFER_SW_DMA_0
, 120, 0, 0, 0, 480, 480, 50, 960, 0 },
3058 { XFER_SW_DMA_1
, 90, 0, 0, 0, 240, 240, 30, 480, 0 },
3059 { XFER_SW_DMA_2
, 60, 0, 0, 0, 120, 120, 20, 240, 0 },
3061 { XFER_MW_DMA_0
, 60, 0, 0, 0, 215, 215, 20, 480, 0 },
3062 { XFER_MW_DMA_1
, 45, 0, 0, 0, 80, 50, 5, 150, 0 },
3063 { XFER_MW_DMA_2
, 25, 0, 0, 0, 70, 25, 5, 120, 0 },
3064 { XFER_MW_DMA_3
, 25, 0, 0, 0, 65, 25, 5, 100, 0 },
3065 { XFER_MW_DMA_4
, 25, 0, 0, 0, 55, 20, 5, 80, 0 },
3067 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 0, 150 }, */
3068 { XFER_UDMA_0
, 0, 0, 0, 0, 0, 0, 0, 0, 120 },
3069 { XFER_UDMA_1
, 0, 0, 0, 0, 0, 0, 0, 0, 80 },
3070 { XFER_UDMA_2
, 0, 0, 0, 0, 0, 0, 0, 0, 60 },
3071 { XFER_UDMA_3
, 0, 0, 0, 0, 0, 0, 0, 0, 45 },
3072 { XFER_UDMA_4
, 0, 0, 0, 0, 0, 0, 0, 0, 30 },
3073 { XFER_UDMA_5
, 0, 0, 0, 0, 0, 0, 0, 0, 20 },
3074 { XFER_UDMA_6
, 0, 0, 0, 0, 0, 0, 0, 0, 15 },
3079 #define ENOUGH(v, unit) (((v)-1)/(unit)+1)
3080 #define EZ(v, unit) ((v)?ENOUGH(v, unit):0)
3082 static void ata_timing_quantize(const struct ata_timing
*t
, struct ata_timing
*q
, int T
, int UT
)
3084 q
->setup
= EZ(t
->setup
* 1000, T
);
3085 q
->act8b
= EZ(t
->act8b
* 1000, T
);
3086 q
->rec8b
= EZ(t
->rec8b
* 1000, T
);
3087 q
->cyc8b
= EZ(t
->cyc8b
* 1000, T
);
3088 q
->active
= EZ(t
->active
* 1000, T
);
3089 q
->recover
= EZ(t
->recover
* 1000, T
);
3090 q
->dmack_hold
= EZ(t
->dmack_hold
* 1000, T
);
3091 q
->cycle
= EZ(t
->cycle
* 1000, T
);
3092 q
->udma
= EZ(t
->udma
* 1000, UT
);
3095 void ata_timing_merge(const struct ata_timing
*a
, const struct ata_timing
*b
,
3096 struct ata_timing
*m
, unsigned int what
)
3098 if (what
& ATA_TIMING_SETUP
) m
->setup
= max(a
->setup
, b
->setup
);
3099 if (what
& ATA_TIMING_ACT8B
) m
->act8b
= max(a
->act8b
, b
->act8b
);
3100 if (what
& ATA_TIMING_REC8B
) m
->rec8b
= max(a
->rec8b
, b
->rec8b
);
3101 if (what
& ATA_TIMING_CYC8B
) m
->cyc8b
= max(a
->cyc8b
, b
->cyc8b
);
3102 if (what
& ATA_TIMING_ACTIVE
) m
->active
= max(a
->active
, b
->active
);
3103 if (what
& ATA_TIMING_RECOVER
) m
->recover
= max(a
->recover
, b
->recover
);
3104 if (what
& ATA_TIMING_DMACK_HOLD
) m
->dmack_hold
= max(a
->dmack_hold
, b
->dmack_hold
);
3105 if (what
& ATA_TIMING_CYCLE
) m
->cycle
= max(a
->cycle
, b
->cycle
);
3106 if (what
& ATA_TIMING_UDMA
) m
->udma
= max(a
->udma
, b
->udma
);
3109 const struct ata_timing
*ata_timing_find_mode(u8 xfer_mode
)
3111 const struct ata_timing
*t
= ata_timing
;
3113 while (xfer_mode
> t
->mode
)
3116 if (xfer_mode
== t
->mode
)
3121 int ata_timing_compute(struct ata_device
*adev
, unsigned short speed
,
3122 struct ata_timing
*t
, int T
, int UT
)
3124 const u16
*id
= adev
->id
;
3125 const struct ata_timing
*s
;
3126 struct ata_timing p
;
3132 if (!(s
= ata_timing_find_mode(speed
)))
3135 memcpy(t
, s
, sizeof(*s
));
3138 * If the drive is an EIDE drive, it can tell us it needs extended
3139 * PIO/MW_DMA cycle timing.
3142 if (id
[ATA_ID_FIELD_VALID
] & 2) { /* EIDE drive */
3143 memset(&p
, 0, sizeof(p
));
3145 if (speed
>= XFER_PIO_0
&& speed
<= XFER_SW_DMA_0
) {
3146 if (speed
<= XFER_PIO_2
)
3147 p
.cycle
= p
.cyc8b
= id
[ATA_ID_EIDE_PIO
];
3148 else if ((speed
<= XFER_PIO_4
) ||
3149 (speed
== XFER_PIO_5
&& !ata_id_is_cfa(id
)))
3150 p
.cycle
= p
.cyc8b
= id
[ATA_ID_EIDE_PIO_IORDY
];
3151 } else if (speed
>= XFER_MW_DMA_0
&& speed
<= XFER_MW_DMA_2
)
3152 p
.cycle
= id
[ATA_ID_EIDE_DMA_MIN
];
3154 ata_timing_merge(&p
, t
, t
, ATA_TIMING_CYCLE
| ATA_TIMING_CYC8B
);
3158 * Convert the timing to bus clock counts.
3161 ata_timing_quantize(t
, t
, T
, UT
);
3164 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
3165 * S.M.A.R.T * and some other commands. We have to ensure that the
3166 * DMA cycle timing is slower/equal than the fastest PIO timing.
3169 if (speed
> XFER_PIO_6
) {
3170 ata_timing_compute(adev
, adev
->pio_mode
, &p
, T
, UT
);
3171 ata_timing_merge(&p
, t
, t
, ATA_TIMING_ALL
);
3175 * Lengthen active & recovery time so that cycle time is correct.
3178 if (t
->act8b
+ t
->rec8b
< t
->cyc8b
) {
3179 t
->act8b
+= (t
->cyc8b
- (t
->act8b
+ t
->rec8b
)) / 2;
3180 t
->rec8b
= t
->cyc8b
- t
->act8b
;
3183 if (t
->active
+ t
->recover
< t
->cycle
) {
3184 t
->active
+= (t
->cycle
- (t
->active
+ t
->recover
)) / 2;
3185 t
->recover
= t
->cycle
- t
->active
;
3188 /* In a few cases quantisation may produce enough errors to
3189 leave t->cycle too low for the sum of active and recovery
3190 if so we must correct this */
3191 if (t
->active
+ t
->recover
> t
->cycle
)
3192 t
->cycle
= t
->active
+ t
->recover
;
3198 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3199 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3200 * @cycle: cycle duration in ns
3202 * Return matching xfer mode for @cycle. The returned mode is of
3203 * the transfer type specified by @xfer_shift. If @cycle is too
3204 * slow for @xfer_shift, 0xff is returned. If @cycle is faster
3205 * than the fastest known mode, the fasted mode is returned.
3211 * Matching xfer_mode, 0xff if no match found.
3213 u8
ata_timing_cycle2mode(unsigned int xfer_shift
, int cycle
)
3215 u8 base_mode
= 0xff, last_mode
= 0xff;
3216 const struct ata_xfer_ent
*ent
;
3217 const struct ata_timing
*t
;
3219 for (ent
= ata_xfer_tbl
; ent
->shift
>= 0; ent
++)
3220 if (ent
->shift
== xfer_shift
)
3221 base_mode
= ent
->base
;
3223 for (t
= ata_timing_find_mode(base_mode
);
3224 t
&& ata_xfer_mode2shift(t
->mode
) == xfer_shift
; t
++) {
3225 unsigned short this_cycle
;
3227 switch (xfer_shift
) {
3229 case ATA_SHIFT_MWDMA
:
3230 this_cycle
= t
->cycle
;
3232 case ATA_SHIFT_UDMA
:
3233 this_cycle
= t
->udma
;
3239 if (cycle
> this_cycle
)
3242 last_mode
= t
->mode
;
3249 * ata_down_xfermask_limit - adjust dev xfer masks downward
3250 * @dev: Device to adjust xfer masks
3251 * @sel: ATA_DNXFER_* selector
3253 * Adjust xfer masks of @dev downward. Note that this function
3254 * does not apply the change. Invoking ata_set_mode() afterwards
3255 * will apply the limit.
3258 * Inherited from caller.
3261 * 0 on success, negative errno on failure
3263 int ata_down_xfermask_limit(struct ata_device
*dev
, unsigned int sel
)
3266 unsigned long orig_mask
, xfer_mask
;
3267 unsigned long pio_mask
, mwdma_mask
, udma_mask
;
3270 quiet
= !!(sel
& ATA_DNXFER_QUIET
);
3271 sel
&= ~ATA_DNXFER_QUIET
;
3273 xfer_mask
= orig_mask
= ata_pack_xfermask(dev
->pio_mask
,
3276 ata_unpack_xfermask(xfer_mask
, &pio_mask
, &mwdma_mask
, &udma_mask
);
3279 case ATA_DNXFER_PIO
:
3280 highbit
= fls(pio_mask
) - 1;
3281 pio_mask
&= ~(1 << highbit
);
3284 case ATA_DNXFER_DMA
:
3286 highbit
= fls(udma_mask
) - 1;
3287 udma_mask
&= ~(1 << highbit
);
3290 } else if (mwdma_mask
) {
3291 highbit
= fls(mwdma_mask
) - 1;
3292 mwdma_mask
&= ~(1 << highbit
);
3298 case ATA_DNXFER_40C
:
3299 udma_mask
&= ATA_UDMA_MASK_40C
;
3302 case ATA_DNXFER_FORCE_PIO0
:
3304 case ATA_DNXFER_FORCE_PIO
:
3313 xfer_mask
&= ata_pack_xfermask(pio_mask
, mwdma_mask
, udma_mask
);
3315 if (!(xfer_mask
& ATA_MASK_PIO
) || xfer_mask
== orig_mask
)
3319 if (xfer_mask
& (ATA_MASK_MWDMA
| ATA_MASK_UDMA
))
3320 snprintf(buf
, sizeof(buf
), "%s:%s",
3321 ata_mode_string(xfer_mask
),
3322 ata_mode_string(xfer_mask
& ATA_MASK_PIO
));
3324 snprintf(buf
, sizeof(buf
), "%s",
3325 ata_mode_string(xfer_mask
));
3327 ata_dev_printk(dev
, KERN_WARNING
,
3328 "limiting speed to %s\n", buf
);
3331 ata_unpack_xfermask(xfer_mask
, &dev
->pio_mask
, &dev
->mwdma_mask
,
3337 static int ata_dev_set_mode(struct ata_device
*dev
)
3339 struct ata_port
*ap
= dev
->link
->ap
;
3340 struct ata_eh_context
*ehc
= &dev
->link
->eh_context
;
3341 const bool nosetxfer
= dev
->horkage
& ATA_HORKAGE_NOSETXFER
;
3342 const char *dev_err_whine
= "";
3343 int ign_dev_err
= 0;
3344 unsigned int err_mask
= 0;
3347 dev
->flags
&= ~ATA_DFLAG_PIO
;
3348 if (dev
->xfer_shift
== ATA_SHIFT_PIO
)
3349 dev
->flags
|= ATA_DFLAG_PIO
;
3351 if (nosetxfer
&& ap
->flags
& ATA_FLAG_SATA
&& ata_id_is_sata(dev
->id
))
3352 dev_err_whine
= " (SET_XFERMODE skipped)";
3355 ata_dev_printk(dev
, KERN_WARNING
,
3356 "NOSETXFER but PATA detected - can't "
3357 "skip SETXFER, might malfunction\n");
3358 err_mask
= ata_dev_set_xfermode(dev
);
3361 if (err_mask
& ~AC_ERR_DEV
)
3365 ehc
->i
.flags
|= ATA_EHI_POST_SETMODE
;
3366 rc
= ata_dev_revalidate(dev
, ATA_DEV_UNKNOWN
, 0);
3367 ehc
->i
.flags
&= ~ATA_EHI_POST_SETMODE
;
3371 if (dev
->xfer_shift
== ATA_SHIFT_PIO
) {
3372 /* Old CFA may refuse this command, which is just fine */
3373 if (ata_id_is_cfa(dev
->id
))
3375 /* Catch several broken garbage emulations plus some pre
3377 if (ata_id_major_version(dev
->id
) == 0 &&
3378 dev
->pio_mode
<= XFER_PIO_2
)
3380 /* Some very old devices and some bad newer ones fail
3381 any kind of SET_XFERMODE request but support PIO0-2
3382 timings and no IORDY */
3383 if (!ata_id_has_iordy(dev
->id
) && dev
->pio_mode
<= XFER_PIO_2
)
3386 /* Early MWDMA devices do DMA but don't allow DMA mode setting.
3387 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3388 if (dev
->xfer_shift
== ATA_SHIFT_MWDMA
&&
3389 dev
->dma_mode
== XFER_MW_DMA_0
&&
3390 (dev
->id
[63] >> 8) & 1)
3393 /* if the device is actually configured correctly, ignore dev err */
3394 if (dev
->xfer_mode
== ata_xfer_mask2mode(ata_id_xfermask(dev
->id
)))
3397 if (err_mask
& AC_ERR_DEV
) {
3401 dev_err_whine
= " (device error ignored)";
3404 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3405 dev
->xfer_shift
, (int)dev
->xfer_mode
);
3407 ata_dev_printk(dev
, KERN_INFO
, "configured for %s%s\n",
3408 ata_mode_string(ata_xfer_mode2mask(dev
->xfer_mode
)),
3414 ata_dev_printk(dev
, KERN_ERR
, "failed to set xfermode "
3415 "(err_mask=0x%x)\n", err_mask
);
3420 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3421 * @link: link on which timings will be programmed
3422 * @r_failed_dev: out parameter for failed device
3424 * Standard implementation of the function used to tune and set
3425 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3426 * ata_dev_set_mode() fails, pointer to the failing device is
3427 * returned in @r_failed_dev.
3430 * PCI/etc. bus probe sem.
3433 * 0 on success, negative errno otherwise
3436 int ata_do_set_mode(struct ata_link
*link
, struct ata_device
**r_failed_dev
)
3438 struct ata_port
*ap
= link
->ap
;
3439 struct ata_device
*dev
;
3440 int rc
= 0, used_dma
= 0, found
= 0;
3442 /* step 1: calculate xfer_mask */
3443 ata_for_each_dev(dev
, link
, ENABLED
) {
3444 unsigned long pio_mask
, dma_mask
;
3445 unsigned int mode_mask
;
3447 mode_mask
= ATA_DMA_MASK_ATA
;
3448 if (dev
->class == ATA_DEV_ATAPI
)
3449 mode_mask
= ATA_DMA_MASK_ATAPI
;
3450 else if (ata_id_is_cfa(dev
->id
))
3451 mode_mask
= ATA_DMA_MASK_CFA
;
3453 ata_dev_xfermask(dev
);
3454 ata_force_xfermask(dev
);
3456 pio_mask
= ata_pack_xfermask(dev
->pio_mask
, 0, 0);
3457 dma_mask
= ata_pack_xfermask(0, dev
->mwdma_mask
, dev
->udma_mask
);
3459 if (libata_dma_mask
& mode_mask
)
3460 dma_mask
= ata_pack_xfermask(0, dev
->mwdma_mask
, dev
->udma_mask
);
3464 dev
->pio_mode
= ata_xfer_mask2mode(pio_mask
);
3465 dev
->dma_mode
= ata_xfer_mask2mode(dma_mask
);
3468 if (ata_dma_enabled(dev
))
3474 /* step 2: always set host PIO timings */
3475 ata_for_each_dev(dev
, link
, ENABLED
) {
3476 if (dev
->pio_mode
== 0xff) {
3477 ata_dev_printk(dev
, KERN_WARNING
, "no PIO support\n");
3482 dev
->xfer_mode
= dev
->pio_mode
;
3483 dev
->xfer_shift
= ATA_SHIFT_PIO
;
3484 if (ap
->ops
->set_piomode
)
3485 ap
->ops
->set_piomode(ap
, dev
);
3488 /* step 3: set host DMA timings */
3489 ata_for_each_dev(dev
, link
, ENABLED
) {
3490 if (!ata_dma_enabled(dev
))
3493 dev
->xfer_mode
= dev
->dma_mode
;
3494 dev
->xfer_shift
= ata_xfer_mode2shift(dev
->dma_mode
);
3495 if (ap
->ops
->set_dmamode
)
3496 ap
->ops
->set_dmamode(ap
, dev
);
3499 /* step 4: update devices' xfer mode */
3500 ata_for_each_dev(dev
, link
, ENABLED
) {
3501 rc
= ata_dev_set_mode(dev
);
3506 /* Record simplex status. If we selected DMA then the other
3507 * host channels are not permitted to do so.
3509 if (used_dma
&& (ap
->host
->flags
& ATA_HOST_SIMPLEX
))
3510 ap
->host
->simplex_claimed
= ap
;
3514 *r_failed_dev
= dev
;
3519 * ata_wait_ready - wait for link to become ready
3520 * @link: link to be waited on
3521 * @deadline: deadline jiffies for the operation
3522 * @check_ready: callback to check link readiness
3524 * Wait for @link to become ready. @check_ready should return
3525 * positive number if @link is ready, 0 if it isn't, -ENODEV if
3526 * link doesn't seem to be occupied, other errno for other error
3529 * Transient -ENODEV conditions are allowed for
3530 * ATA_TMOUT_FF_WAIT.
3536 * 0 if @linke is ready before @deadline; otherwise, -errno.
3538 int ata_wait_ready(struct ata_link
*link
, unsigned long deadline
,
3539 int (*check_ready
)(struct ata_link
*link
))
3541 unsigned long start
= jiffies
;
3542 unsigned long nodev_deadline
;
3545 /* choose which 0xff timeout to use, read comment in libata.h */
3546 if (link
->ap
->host
->flags
& ATA_HOST_PARALLEL_SCAN
)
3547 nodev_deadline
= ata_deadline(start
, ATA_TMOUT_FF_WAIT_LONG
);
3549 nodev_deadline
= ata_deadline(start
, ATA_TMOUT_FF_WAIT
);
3551 /* Slave readiness can't be tested separately from master. On
3552 * M/S emulation configuration, this function should be called
3553 * only on the master and it will handle both master and slave.
3555 WARN_ON(link
== link
->ap
->slave_link
);
3557 if (time_after(nodev_deadline
, deadline
))
3558 nodev_deadline
= deadline
;
3561 unsigned long now
= jiffies
;
3564 ready
= tmp
= check_ready(link
);
3569 * -ENODEV could be transient. Ignore -ENODEV if link
3570 * is online. Also, some SATA devices take a long
3571 * time to clear 0xff after reset. Wait for
3572 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't
3575 * Note that some PATA controllers (pata_ali) explode
3576 * if status register is read more than once when
3577 * there's no device attached.
3579 if (ready
== -ENODEV
) {
3580 if (ata_link_online(link
))
3582 else if ((link
->ap
->flags
& ATA_FLAG_SATA
) &&
3583 !ata_link_offline(link
) &&
3584 time_before(now
, nodev_deadline
))
3590 if (time_after(now
, deadline
))
3593 if (!warned
&& time_after(now
, start
+ 5 * HZ
) &&
3594 (deadline
- now
> 3 * HZ
)) {
3595 ata_link_printk(link
, KERN_WARNING
,
3596 "link is slow to respond, please be patient "
3597 "(ready=%d)\n", tmp
);
3606 * ata_wait_after_reset - wait for link to become ready after reset
3607 * @link: link to be waited on
3608 * @deadline: deadline jiffies for the operation
3609 * @check_ready: callback to check link readiness
3611 * Wait for @link to become ready after reset.
3617 * 0 if @linke is ready before @deadline; otherwise, -errno.
3619 int ata_wait_after_reset(struct ata_link
*link
, unsigned long deadline
,
3620 int (*check_ready
)(struct ata_link
*link
))
3622 msleep(ATA_WAIT_AFTER_RESET
);
3624 return ata_wait_ready(link
, deadline
, check_ready
);
3628 * sata_link_debounce - debounce SATA phy status
3629 * @link: ATA link to debounce SATA phy status for
3630 * @params: timing parameters { interval, duratinon, timeout } in msec
3631 * @deadline: deadline jiffies for the operation
3633 * Make sure SStatus of @link reaches stable state, determined by
3634 * holding the same value where DET is not 1 for @duration polled
3635 * every @interval, before @timeout. Timeout constraints the
3636 * beginning of the stable state. Because DET gets stuck at 1 on
3637 * some controllers after hot unplugging, this functions waits
3638 * until timeout then returns 0 if DET is stable at 1.
3640 * @timeout is further limited by @deadline. The sooner of the
3644 * Kernel thread context (may sleep)
3647 * 0 on success, -errno on failure.
3649 int sata_link_debounce(struct ata_link
*link
, const unsigned long *params
,
3650 unsigned long deadline
)
3652 unsigned long interval
= params
[0];
3653 unsigned long duration
= params
[1];
3654 unsigned long last_jiffies
, t
;
3658 t
= ata_deadline(jiffies
, params
[2]);
3659 if (time_before(t
, deadline
))
3662 if ((rc
= sata_scr_read(link
, SCR_STATUS
, &cur
)))
3667 last_jiffies
= jiffies
;
3671 if ((rc
= sata_scr_read(link
, SCR_STATUS
, &cur
)))
3677 if (cur
== 1 && time_before(jiffies
, deadline
))
3679 if (time_after(jiffies
,
3680 ata_deadline(last_jiffies
, duration
)))
3685 /* unstable, start over */
3687 last_jiffies
= jiffies
;
3689 /* Check deadline. If debouncing failed, return
3690 * -EPIPE to tell upper layer to lower link speed.
3692 if (time_after(jiffies
, deadline
))
3698 * sata_link_resume - resume SATA link
3699 * @link: ATA link to resume SATA
3700 * @params: timing parameters { interval, duratinon, timeout } in msec
3701 * @deadline: deadline jiffies for the operation
3703 * Resume SATA phy @link and debounce it.
3706 * Kernel thread context (may sleep)
3709 * 0 on success, -errno on failure.
3711 int sata_link_resume(struct ata_link
*link
, const unsigned long *params
,
3712 unsigned long deadline
)
3714 int tries
= ATA_LINK_RESUME_TRIES
;
3715 u32 scontrol
, serror
;
3718 if ((rc
= sata_scr_read(link
, SCR_CONTROL
, &scontrol
)))
3722 * Writes to SControl sometimes get ignored under certain
3723 * controllers (ata_piix SIDPR). Make sure DET actually is
3727 scontrol
= (scontrol
& 0x0f0) | 0x300;
3728 if ((rc
= sata_scr_write(link
, SCR_CONTROL
, scontrol
)))
3731 * Some PHYs react badly if SStatus is pounded
3732 * immediately after resuming. Delay 200ms before
3737 /* is SControl restored correctly? */
3738 if ((rc
= sata_scr_read(link
, SCR_CONTROL
, &scontrol
)))
3740 } while ((scontrol
& 0xf0f) != 0x300 && --tries
);
3742 if ((scontrol
& 0xf0f) != 0x300) {
3743 ata_link_printk(link
, KERN_ERR
,
3744 "failed to resume link (SControl %X)\n",
3749 if (tries
< ATA_LINK_RESUME_TRIES
)
3750 ata_link_printk(link
, KERN_WARNING
,
3751 "link resume succeeded after %d retries\n",
3752 ATA_LINK_RESUME_TRIES
- tries
);
3754 if ((rc
= sata_link_debounce(link
, params
, deadline
)))
3757 /* clear SError, some PHYs require this even for SRST to work */
3758 if (!(rc
= sata_scr_read(link
, SCR_ERROR
, &serror
)))
3759 rc
= sata_scr_write(link
, SCR_ERROR
, serror
);
3761 return rc
!= -EINVAL
? rc
: 0;
3765 * ata_std_prereset - prepare for reset
3766 * @link: ATA link to be reset
3767 * @deadline: deadline jiffies for the operation
3769 * @link is about to be reset. Initialize it. Failure from
3770 * prereset makes libata abort whole reset sequence and give up
3771 * that port, so prereset should be best-effort. It does its
3772 * best to prepare for reset sequence but if things go wrong, it
3773 * should just whine, not fail.
3776 * Kernel thread context (may sleep)
3779 * 0 on success, -errno otherwise.
3781 int ata_std_prereset(struct ata_link
*link
, unsigned long deadline
)
3783 struct ata_port
*ap
= link
->ap
;
3784 struct ata_eh_context
*ehc
= &link
->eh_context
;
3785 const unsigned long *timing
= sata_ehc_deb_timing(ehc
);
3788 /* if we're about to do hardreset, nothing more to do */
3789 if (ehc
->i
.action
& ATA_EH_HARDRESET
)
3792 /* if SATA, resume link */
3793 if (ap
->flags
& ATA_FLAG_SATA
) {
3794 rc
= sata_link_resume(link
, timing
, deadline
);
3795 /* whine about phy resume failure but proceed */
3796 if (rc
&& rc
!= -EOPNOTSUPP
)
3797 ata_link_printk(link
, KERN_WARNING
, "failed to resume "
3798 "link for reset (errno=%d)\n", rc
);
3801 /* no point in trying softreset on offline link */
3802 if (ata_phys_link_offline(link
))
3803 ehc
->i
.action
&= ~ATA_EH_SOFTRESET
;
3809 * sata_link_hardreset - reset link via SATA phy reset
3810 * @link: link to reset
3811 * @timing: timing parameters { interval, duratinon, timeout } in msec
3812 * @deadline: deadline jiffies for the operation
3813 * @online: optional out parameter indicating link onlineness
3814 * @check_ready: optional callback to check link readiness
3816 * SATA phy-reset @link using DET bits of SControl register.
3817 * After hardreset, link readiness is waited upon using
3818 * ata_wait_ready() if @check_ready is specified. LLDs are
3819 * allowed to not specify @check_ready and wait itself after this
3820 * function returns. Device classification is LLD's
3823 * *@online is set to one iff reset succeeded and @link is online
3827 * Kernel thread context (may sleep)
3830 * 0 on success, -errno otherwise.
3832 int sata_link_hardreset(struct ata_link
*link
, const unsigned long *timing
,
3833 unsigned long deadline
,
3834 bool *online
, int (*check_ready
)(struct ata_link
*))
3844 if (sata_set_spd_needed(link
)) {
3845 /* SATA spec says nothing about how to reconfigure
3846 * spd. To be on the safe side, turn off phy during
3847 * reconfiguration. This works for at least ICH7 AHCI
3850 if ((rc
= sata_scr_read(link
, SCR_CONTROL
, &scontrol
)))
3853 scontrol
= (scontrol
& 0x0f0) | 0x304;
3855 if ((rc
= sata_scr_write(link
, SCR_CONTROL
, scontrol
)))
3861 /* issue phy wake/reset */
3862 if ((rc
= sata_scr_read(link
, SCR_CONTROL
, &scontrol
)))
3865 scontrol
= (scontrol
& 0x0f0) | 0x301;
3867 if ((rc
= sata_scr_write_flush(link
, SCR_CONTROL
, scontrol
)))
3870 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
3871 * 10.4.2 says at least 1 ms.
3875 /* bring link back */
3876 rc
= sata_link_resume(link
, timing
, deadline
);
3879 /* if link is offline nothing more to do */
3880 if (ata_phys_link_offline(link
))
3883 /* Link is online. From this point, -ENODEV too is an error. */
3887 if (sata_pmp_supported(link
->ap
) && ata_is_host_link(link
)) {
3888 /* If PMP is supported, we have to do follow-up SRST.
3889 * Some PMPs don't send D2H Reg FIS after hardreset if
3890 * the first port is empty. Wait only for
3891 * ATA_TMOUT_PMP_SRST_WAIT.
3894 unsigned long pmp_deadline
;
3896 pmp_deadline
= ata_deadline(jiffies
,
3897 ATA_TMOUT_PMP_SRST_WAIT
);
3898 if (time_after(pmp_deadline
, deadline
))
3899 pmp_deadline
= deadline
;
3900 ata_wait_ready(link
, pmp_deadline
, check_ready
);
3908 rc
= ata_wait_ready(link
, deadline
, check_ready
);
3910 if (rc
&& rc
!= -EAGAIN
) {
3911 /* online is set iff link is online && reset succeeded */
3914 ata_link_printk(link
, KERN_ERR
,
3915 "COMRESET failed (errno=%d)\n", rc
);
3917 DPRINTK("EXIT, rc=%d\n", rc
);
3922 * sata_std_hardreset - COMRESET w/o waiting or classification
3923 * @link: link to reset
3924 * @class: resulting class of attached device
3925 * @deadline: deadline jiffies for the operation
3927 * Standard SATA COMRESET w/o waiting or classification.
3930 * Kernel thread context (may sleep)
3933 * 0 if link offline, -EAGAIN if link online, -errno on errors.
3935 int sata_std_hardreset(struct ata_link
*link
, unsigned int *class,
3936 unsigned long deadline
)
3938 const unsigned long *timing
= sata_ehc_deb_timing(&link
->eh_context
);
3943 rc
= sata_link_hardreset(link
, timing
, deadline
, &online
, NULL
);
3944 return online
? -EAGAIN
: rc
;
3948 * ata_std_postreset - standard postreset callback
3949 * @link: the target ata_link
3950 * @classes: classes of attached devices
3952 * This function is invoked after a successful reset. Note that
3953 * the device might have been reset more than once using
3954 * different reset methods before postreset is invoked.
3957 * Kernel thread context (may sleep)
3959 void ata_std_postreset(struct ata_link
*link
, unsigned int *classes
)
3965 /* reset complete, clear SError */
3966 if (!sata_scr_read(link
, SCR_ERROR
, &serror
))
3967 sata_scr_write(link
, SCR_ERROR
, serror
);
3969 /* print link status */
3970 sata_print_link_status(link
);
3976 * ata_dev_same_device - Determine whether new ID matches configured device
3977 * @dev: device to compare against
3978 * @new_class: class of the new device
3979 * @new_id: IDENTIFY page of the new device
3981 * Compare @new_class and @new_id against @dev and determine
3982 * whether @dev is the device indicated by @new_class and
3989 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3991 static int ata_dev_same_device(struct ata_device
*dev
, unsigned int new_class
,
3994 const u16
*old_id
= dev
->id
;
3995 unsigned char model
[2][ATA_ID_PROD_LEN
+ 1];
3996 unsigned char serial
[2][ATA_ID_SERNO_LEN
+ 1];
3998 if (dev
->class != new_class
) {
3999 ata_dev_printk(dev
, KERN_INFO
, "class mismatch %d != %d\n",
4000 dev
->class, new_class
);
4004 ata_id_c_string(old_id
, model
[0], ATA_ID_PROD
, sizeof(model
[0]));
4005 ata_id_c_string(new_id
, model
[1], ATA_ID_PROD
, sizeof(model
[1]));
4006 ata_id_c_string(old_id
, serial
[0], ATA_ID_SERNO
, sizeof(serial
[0]));
4007 ata_id_c_string(new_id
, serial
[1], ATA_ID_SERNO
, sizeof(serial
[1]));
4009 if (strcmp(model
[0], model
[1])) {
4010 ata_dev_printk(dev
, KERN_INFO
, "model number mismatch "
4011 "'%s' != '%s'\n", model
[0], model
[1]);
4015 if (strcmp(serial
[0], serial
[1])) {
4016 ata_dev_printk(dev
, KERN_INFO
, "serial number mismatch "
4017 "'%s' != '%s'\n", serial
[0], serial
[1]);
4025 * ata_dev_reread_id - Re-read IDENTIFY data
4026 * @dev: target ATA device
4027 * @readid_flags: read ID flags
4029 * Re-read IDENTIFY page and make sure @dev is still attached to
4033 * Kernel thread context (may sleep)
4036 * 0 on success, negative errno otherwise
4038 int ata_dev_reread_id(struct ata_device
*dev
, unsigned int readid_flags
)
4040 unsigned int class = dev
->class;
4041 u16
*id
= (void *)dev
->link
->ap
->sector_buf
;
4045 rc
= ata_dev_read_id(dev
, &class, readid_flags
, id
);
4049 /* is the device still there? */
4050 if (!ata_dev_same_device(dev
, class, id
))
4053 memcpy(dev
->id
, id
, sizeof(id
[0]) * ATA_ID_WORDS
);
4058 * ata_dev_revalidate - Revalidate ATA device
4059 * @dev: device to revalidate
4060 * @new_class: new class code
4061 * @readid_flags: read ID flags
4063 * Re-read IDENTIFY page, make sure @dev is still attached to the
4064 * port and reconfigure it according to the new IDENTIFY page.
4067 * Kernel thread context (may sleep)
4070 * 0 on success, negative errno otherwise
4072 int ata_dev_revalidate(struct ata_device
*dev
, unsigned int new_class
,
4073 unsigned int readid_flags
)
4075 u64 n_sectors
= dev
->n_sectors
;
4076 u64 n_native_sectors
= dev
->n_native_sectors
;
4079 if (!ata_dev_enabled(dev
))
4082 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
4083 if (ata_class_enabled(new_class
) &&
4084 new_class
!= ATA_DEV_ATA
&&
4085 new_class
!= ATA_DEV_ATAPI
&&
4086 new_class
!= ATA_DEV_SEMB
) {
4087 ata_dev_printk(dev
, KERN_INFO
, "class mismatch %u != %u\n",
4088 dev
->class, new_class
);
4094 rc
= ata_dev_reread_id(dev
, readid_flags
);
4098 /* configure device according to the new ID */
4099 rc
= ata_dev_configure(dev
);
4103 /* verify n_sectors hasn't changed */
4104 if (dev
->class != ATA_DEV_ATA
|| !n_sectors
||
4105 dev
->n_sectors
== n_sectors
)
4108 /* n_sectors has changed */
4109 ata_dev_printk(dev
, KERN_WARNING
, "n_sectors mismatch %llu != %llu\n",
4110 (unsigned long long)n_sectors
,
4111 (unsigned long long)dev
->n_sectors
);
4114 * Something could have caused HPA to be unlocked
4115 * involuntarily. If n_native_sectors hasn't changed and the
4116 * new size matches it, keep the device.
4118 if (dev
->n_native_sectors
== n_native_sectors
&&
4119 dev
->n_sectors
> n_sectors
&& dev
->n_sectors
== n_native_sectors
) {
4120 ata_dev_printk(dev
, KERN_WARNING
,
4121 "new n_sectors matches native, probably "
4122 "late HPA unlock, n_sectors updated\n");
4123 /* use the larger n_sectors */
4128 * Some BIOSes boot w/o HPA but resume w/ HPA locked. Try
4129 * unlocking HPA in those cases.
4131 * https://bugzilla.kernel.org/show_bug.cgi?id=15396
4133 if (dev
->n_native_sectors
== n_native_sectors
&&
4134 dev
->n_sectors
< n_sectors
&& n_sectors
== n_native_sectors
&&
4135 !(dev
->horkage
& ATA_HORKAGE_BROKEN_HPA
)) {
4136 ata_dev_printk(dev
, KERN_WARNING
,
4137 "old n_sectors matches native, probably "
4138 "late HPA lock, will try to unlock HPA\n");
4139 /* try unlocking HPA */
4140 dev
->flags
|= ATA_DFLAG_UNLOCK_HPA
;
4145 /* restore original n_[native_]sectors and fail */
4146 dev
->n_native_sectors
= n_native_sectors
;
4147 dev
->n_sectors
= n_sectors
;
4149 ata_dev_printk(dev
, KERN_ERR
, "revalidation failed (errno=%d)\n", rc
);
4153 struct ata_blacklist_entry
{
4154 const char *model_num
;
4155 const char *model_rev
;
4156 unsigned long horkage
;
4159 static const struct ata_blacklist_entry ata_device_blacklist
[] = {
4160 /* Devices with DMA related problems under Linux */
4161 { "WDC AC11000H", NULL
, ATA_HORKAGE_NODMA
},
4162 { "WDC AC22100H", NULL
, ATA_HORKAGE_NODMA
},
4163 { "WDC AC32500H", NULL
, ATA_HORKAGE_NODMA
},
4164 { "WDC AC33100H", NULL
, ATA_HORKAGE_NODMA
},
4165 { "WDC AC31600H", NULL
, ATA_HORKAGE_NODMA
},
4166 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA
},
4167 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA
},
4168 { "Compaq CRD-8241B", NULL
, ATA_HORKAGE_NODMA
},
4169 { "CRD-8400B", NULL
, ATA_HORKAGE_NODMA
},
4170 { "CRD-8480B", NULL
, ATA_HORKAGE_NODMA
},
4171 { "CRD-8482B", NULL
, ATA_HORKAGE_NODMA
},
4172 { "CRD-84", NULL
, ATA_HORKAGE_NODMA
},
4173 { "SanDisk SDP3B", NULL
, ATA_HORKAGE_NODMA
},
4174 { "SanDisk SDP3B-64", NULL
, ATA_HORKAGE_NODMA
},
4175 { "SANYO CD-ROM CRD", NULL
, ATA_HORKAGE_NODMA
},
4176 { "HITACHI CDR-8", NULL
, ATA_HORKAGE_NODMA
},
4177 { "HITACHI CDR-8335", NULL
, ATA_HORKAGE_NODMA
},
4178 { "HITACHI CDR-8435", NULL
, ATA_HORKAGE_NODMA
},
4179 { "Toshiba CD-ROM XM-6202B", NULL
, ATA_HORKAGE_NODMA
},
4180 { "TOSHIBA CD-ROM XM-1702BC", NULL
, ATA_HORKAGE_NODMA
},
4181 { "CD-532E-A", NULL
, ATA_HORKAGE_NODMA
},
4182 { "E-IDE CD-ROM CR-840",NULL
, ATA_HORKAGE_NODMA
},
4183 { "CD-ROM Drive/F5A", NULL
, ATA_HORKAGE_NODMA
},
4184 { "WPI CDD-820", NULL
, ATA_HORKAGE_NODMA
},
4185 { "SAMSUNG CD-ROM SC-148C", NULL
, ATA_HORKAGE_NODMA
},
4186 { "SAMSUNG CD-ROM SC", NULL
, ATA_HORKAGE_NODMA
},
4187 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL
,ATA_HORKAGE_NODMA
},
4188 { "_NEC DV5800A", NULL
, ATA_HORKAGE_NODMA
},
4189 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA
},
4190 { "Seagate STT20000A", NULL
, ATA_HORKAGE_NODMA
},
4191 /* Odd clown on sil3726/4726 PMPs */
4192 { "Config Disk", NULL
, ATA_HORKAGE_DISABLE
},
4194 /* Weird ATAPI devices */
4195 { "TORiSAN DVD-ROM DRD-N216", NULL
, ATA_HORKAGE_MAX_SEC_128
},
4196 { "QUANTUM DAT DAT72-000", NULL
, ATA_HORKAGE_ATAPI_MOD16_DMA
},
4198 /* Devices we expect to fail diagnostics */
4200 /* Devices where NCQ should be avoided */
4202 { "WDC WD740ADFD-00", NULL
, ATA_HORKAGE_NONCQ
},
4203 { "WDC WD740ADFD-00NLR1", NULL
, ATA_HORKAGE_NONCQ
, },
4204 /* http://thread.gmane.org/gmane.linux.ide/14907 */
4205 { "FUJITSU MHT2060BH", NULL
, ATA_HORKAGE_NONCQ
},
4207 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ
},
4208 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ
},
4209 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ
},
4210 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ
},
4211 { "OCZ CORE_SSD", "02.10104", ATA_HORKAGE_NONCQ
},
4213 /* Seagate NCQ + FLUSH CACHE firmware bug */
4214 { "ST31500341AS", "SD15", ATA_HORKAGE_NONCQ
|
4215 ATA_HORKAGE_FIRMWARE_WARN
},
4216 { "ST31500341AS", "SD16", ATA_HORKAGE_NONCQ
|
4217 ATA_HORKAGE_FIRMWARE_WARN
},
4218 { "ST31500341AS", "SD17", ATA_HORKAGE_NONCQ
|
4219 ATA_HORKAGE_FIRMWARE_WARN
},
4220 { "ST31500341AS", "SD18", ATA_HORKAGE_NONCQ
|
4221 ATA_HORKAGE_FIRMWARE_WARN
},
4222 { "ST31500341AS", "SD19", ATA_HORKAGE_NONCQ
|
4223 ATA_HORKAGE_FIRMWARE_WARN
},
4225 { "ST31000333AS", "SD15", ATA_HORKAGE_NONCQ
|
4226 ATA_HORKAGE_FIRMWARE_WARN
},
4227 { "ST31000333AS", "SD16", ATA_HORKAGE_NONCQ
|
4228 ATA_HORKAGE_FIRMWARE_WARN
},
4229 { "ST31000333AS", "SD17", ATA_HORKAGE_NONCQ
|
4230 ATA_HORKAGE_FIRMWARE_WARN
},
4231 { "ST31000333AS", "SD18", ATA_HORKAGE_NONCQ
|
4232 ATA_HORKAGE_FIRMWARE_WARN
},
4233 { "ST31000333AS", "SD19", ATA_HORKAGE_NONCQ
|
4234 ATA_HORKAGE_FIRMWARE_WARN
},
4236 { "ST3640623AS", "SD15", ATA_HORKAGE_NONCQ
|
4237 ATA_HORKAGE_FIRMWARE_WARN
},
4238 { "ST3640623AS", "SD16", ATA_HORKAGE_NONCQ
|
4239 ATA_HORKAGE_FIRMWARE_WARN
},
4240 { "ST3640623AS", "SD17", ATA_HORKAGE_NONCQ
|
4241 ATA_HORKAGE_FIRMWARE_WARN
},
4242 { "ST3640623AS", "SD18", ATA_HORKAGE_NONCQ
|
4243 ATA_HORKAGE_FIRMWARE_WARN
},
4244 { "ST3640623AS", "SD19", ATA_HORKAGE_NONCQ
|
4245 ATA_HORKAGE_FIRMWARE_WARN
},
4247 { "ST3640323AS", "SD15", ATA_HORKAGE_NONCQ
|
4248 ATA_HORKAGE_FIRMWARE_WARN
},
4249 { "ST3640323AS", "SD16", ATA_HORKAGE_NONCQ
|
4250 ATA_HORKAGE_FIRMWARE_WARN
},
4251 { "ST3640323AS", "SD17", ATA_HORKAGE_NONCQ
|
4252 ATA_HORKAGE_FIRMWARE_WARN
},
4253 { "ST3640323AS", "SD18", ATA_HORKAGE_NONCQ
|
4254 ATA_HORKAGE_FIRMWARE_WARN
},
4255 { "ST3640323AS", "SD19", ATA_HORKAGE_NONCQ
|
4256 ATA_HORKAGE_FIRMWARE_WARN
},
4258 { "ST3320813AS", "SD15", ATA_HORKAGE_NONCQ
|
4259 ATA_HORKAGE_FIRMWARE_WARN
},
4260 { "ST3320813AS", "SD16", ATA_HORKAGE_NONCQ
|
4261 ATA_HORKAGE_FIRMWARE_WARN
},
4262 { "ST3320813AS", "SD17", ATA_HORKAGE_NONCQ
|
4263 ATA_HORKAGE_FIRMWARE_WARN
},
4264 { "ST3320813AS", "SD18", ATA_HORKAGE_NONCQ
|
4265 ATA_HORKAGE_FIRMWARE_WARN
},
4266 { "ST3320813AS", "SD19", ATA_HORKAGE_NONCQ
|
4267 ATA_HORKAGE_FIRMWARE_WARN
},
4269 { "ST3320613AS", "SD15", ATA_HORKAGE_NONCQ
|
4270 ATA_HORKAGE_FIRMWARE_WARN
},
4271 { "ST3320613AS", "SD16", ATA_HORKAGE_NONCQ
|
4272 ATA_HORKAGE_FIRMWARE_WARN
},
4273 { "ST3320613AS", "SD17", ATA_HORKAGE_NONCQ
|
4274 ATA_HORKAGE_FIRMWARE_WARN
},
4275 { "ST3320613AS", "SD18", ATA_HORKAGE_NONCQ
|
4276 ATA_HORKAGE_FIRMWARE_WARN
},
4277 { "ST3320613AS", "SD19", ATA_HORKAGE_NONCQ
|
4278 ATA_HORKAGE_FIRMWARE_WARN
},
4280 /* Blacklist entries taken from Silicon Image 3124/3132
4281 Windows driver .inf file - also several Linux problem reports */
4282 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ
, },
4283 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ
, },
4284 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ
, },
4286 /* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */
4287 { "C300-CTFDDAC128MAG", "0001", ATA_HORKAGE_NONCQ
, },
4289 /* devices which puke on READ_NATIVE_MAX */
4290 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA
, },
4291 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA
},
4292 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA
},
4293 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA
},
4295 /* this one allows HPA unlocking but fails IOs on the area */
4296 { "OCZ-VERTEX", "1.30", ATA_HORKAGE_BROKEN_HPA
},
4298 /* Devices which report 1 sector over size HPA */
4299 { "ST340823A", NULL
, ATA_HORKAGE_HPA_SIZE
, },
4300 { "ST320413A", NULL
, ATA_HORKAGE_HPA_SIZE
, },
4301 { "ST310211A", NULL
, ATA_HORKAGE_HPA_SIZE
, },
4303 /* Devices which get the IVB wrong */
4304 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB
, },
4305 /* Maybe we should just blacklist TSSTcorp... */
4306 { "TSSTcorp CDDVDW SH-S202H", "SB00", ATA_HORKAGE_IVB
, },
4307 { "TSSTcorp CDDVDW SH-S202H", "SB01", ATA_HORKAGE_IVB
, },
4308 { "TSSTcorp CDDVDW SH-S202J", "SB00", ATA_HORKAGE_IVB
, },
4309 { "TSSTcorp CDDVDW SH-S202J", "SB01", ATA_HORKAGE_IVB
, },
4310 { "TSSTcorp CDDVDW SH-S202N", "SB00", ATA_HORKAGE_IVB
, },
4311 { "TSSTcorp CDDVDW SH-S202N", "SB01", ATA_HORKAGE_IVB
, },
4313 /* Devices that do not need bridging limits applied */
4314 { "MTRON MSP-SATA*", NULL
, ATA_HORKAGE_BRIDGE_OK
, },
4316 /* Devices which aren't very happy with higher link speeds */
4317 { "WD My Book", NULL
, ATA_HORKAGE_1_5_GBPS
, },
4320 * Devices which choke on SETXFER. Applies only if both the
4321 * device and controller are SATA.
4323 { "PIONEER DVD-RW DVRTD08", "1.00", ATA_HORKAGE_NOSETXFER
},
4329 static int strn_pattern_cmp(const char *patt
, const char *name
, int wildchar
)
4335 * check for trailing wildcard: *\0
4337 p
= strchr(patt
, wildchar
);
4338 if (p
&& ((*(p
+ 1)) == 0))
4349 return strncmp(patt
, name
, len
);
4352 static unsigned long ata_dev_blacklisted(const struct ata_device
*dev
)
4354 unsigned char model_num
[ATA_ID_PROD_LEN
+ 1];
4355 unsigned char model_rev
[ATA_ID_FW_REV_LEN
+ 1];
4356 const struct ata_blacklist_entry
*ad
= ata_device_blacklist
;
4358 ata_id_c_string(dev
->id
, model_num
, ATA_ID_PROD
, sizeof(model_num
));
4359 ata_id_c_string(dev
->id
, model_rev
, ATA_ID_FW_REV
, sizeof(model_rev
));
4361 while (ad
->model_num
) {
4362 if (!strn_pattern_cmp(ad
->model_num
, model_num
, '*')) {
4363 if (ad
->model_rev
== NULL
)
4365 if (!strn_pattern_cmp(ad
->model_rev
, model_rev
, '*'))
4373 static int ata_dma_blacklisted(const struct ata_device
*dev
)
4375 /* We don't support polling DMA.
4376 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4377 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4379 if ((dev
->link
->ap
->flags
& ATA_FLAG_PIO_POLLING
) &&
4380 (dev
->flags
& ATA_DFLAG_CDB_INTR
))
4382 return (dev
->horkage
& ATA_HORKAGE_NODMA
) ? 1 : 0;
4386 * ata_is_40wire - check drive side detection
4389 * Perform drive side detection decoding, allowing for device vendors
4390 * who can't follow the documentation.
4393 static int ata_is_40wire(struct ata_device
*dev
)
4395 if (dev
->horkage
& ATA_HORKAGE_IVB
)
4396 return ata_drive_40wire_relaxed(dev
->id
);
4397 return ata_drive_40wire(dev
->id
);
4401 * cable_is_40wire - 40/80/SATA decider
4402 * @ap: port to consider
4404 * This function encapsulates the policy for speed management
4405 * in one place. At the moment we don't cache the result but
4406 * there is a good case for setting ap->cbl to the result when
4407 * we are called with unknown cables (and figuring out if it
4408 * impacts hotplug at all).
4410 * Return 1 if the cable appears to be 40 wire.
4413 static int cable_is_40wire(struct ata_port
*ap
)
4415 struct ata_link
*link
;
4416 struct ata_device
*dev
;
4418 /* If the controller thinks we are 40 wire, we are. */
4419 if (ap
->cbl
== ATA_CBL_PATA40
)
4422 /* If the controller thinks we are 80 wire, we are. */
4423 if (ap
->cbl
== ATA_CBL_PATA80
|| ap
->cbl
== ATA_CBL_SATA
)
4426 /* If the system is known to be 40 wire short cable (eg
4427 * laptop), then we allow 80 wire modes even if the drive
4430 if (ap
->cbl
== ATA_CBL_PATA40_SHORT
)
4433 /* If the controller doesn't know, we scan.
4435 * Note: We look for all 40 wire detects at this point. Any
4436 * 80 wire detect is taken to be 80 wire cable because
4437 * - in many setups only the one drive (slave if present) will
4438 * give a valid detect
4439 * - if you have a non detect capable drive you don't want it
4440 * to colour the choice
4442 ata_for_each_link(link
, ap
, EDGE
) {
4443 ata_for_each_dev(dev
, link
, ENABLED
) {
4444 if (!ata_is_40wire(dev
))
4452 * ata_dev_xfermask - Compute supported xfermask of the given device
4453 * @dev: Device to compute xfermask for
4455 * Compute supported xfermask of @dev and store it in
4456 * dev->*_mask. This function is responsible for applying all
4457 * known limits including host controller limits, device
4463 static void ata_dev_xfermask(struct ata_device
*dev
)
4465 struct ata_link
*link
= dev
->link
;
4466 struct ata_port
*ap
= link
->ap
;
4467 struct ata_host
*host
= ap
->host
;
4468 unsigned long xfer_mask
;
4470 /* controller modes available */
4471 xfer_mask
= ata_pack_xfermask(ap
->pio_mask
,
4472 ap
->mwdma_mask
, ap
->udma_mask
);
4474 /* drive modes available */
4475 xfer_mask
&= ata_pack_xfermask(dev
->pio_mask
,
4476 dev
->mwdma_mask
, dev
->udma_mask
);
4477 xfer_mask
&= ata_id_xfermask(dev
->id
);
4480 * CFA Advanced TrueIDE timings are not allowed on a shared
4483 if (ata_dev_pair(dev
)) {
4484 /* No PIO5 or PIO6 */
4485 xfer_mask
&= ~(0x03 << (ATA_SHIFT_PIO
+ 5));
4486 /* No MWDMA3 or MWDMA 4 */
4487 xfer_mask
&= ~(0x03 << (ATA_SHIFT_MWDMA
+ 3));
4490 if (ata_dma_blacklisted(dev
)) {
4491 xfer_mask
&= ~(ATA_MASK_MWDMA
| ATA_MASK_UDMA
);
4492 ata_dev_printk(dev
, KERN_WARNING
,
4493 "device is on DMA blacklist, disabling DMA\n");
4496 if ((host
->flags
& ATA_HOST_SIMPLEX
) &&
4497 host
->simplex_claimed
&& host
->simplex_claimed
!= ap
) {
4498 xfer_mask
&= ~(ATA_MASK_MWDMA
| ATA_MASK_UDMA
);
4499 ata_dev_printk(dev
, KERN_WARNING
, "simplex DMA is claimed by "
4500 "other device, disabling DMA\n");
4503 if (ap
->flags
& ATA_FLAG_NO_IORDY
)
4504 xfer_mask
&= ata_pio_mask_no_iordy(dev
);
4506 if (ap
->ops
->mode_filter
)
4507 xfer_mask
= ap
->ops
->mode_filter(dev
, xfer_mask
);
4509 /* Apply cable rule here. Don't apply it early because when
4510 * we handle hot plug the cable type can itself change.
4511 * Check this last so that we know if the transfer rate was
4512 * solely limited by the cable.
4513 * Unknown or 80 wire cables reported host side are checked
4514 * drive side as well. Cases where we know a 40wire cable
4515 * is used safely for 80 are not checked here.
4517 if (xfer_mask
& (0xF8 << ATA_SHIFT_UDMA
))
4518 /* UDMA/44 or higher would be available */
4519 if (cable_is_40wire(ap
)) {
4520 ata_dev_printk(dev
, KERN_WARNING
,
4521 "limited to UDMA/33 due to 40-wire cable\n");
4522 xfer_mask
&= ~(0xF8 << ATA_SHIFT_UDMA
);
4525 ata_unpack_xfermask(xfer_mask
, &dev
->pio_mask
,
4526 &dev
->mwdma_mask
, &dev
->udma_mask
);
4530 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4531 * @dev: Device to which command will be sent
4533 * Issue SET FEATURES - XFER MODE command to device @dev
4537 * PCI/etc. bus probe sem.
4540 * 0 on success, AC_ERR_* mask otherwise.
4543 static unsigned int ata_dev_set_xfermode(struct ata_device
*dev
)
4545 struct ata_taskfile tf
;
4546 unsigned int err_mask
;
4548 /* set up set-features taskfile */
4549 DPRINTK("set features - xfer mode\n");
4551 /* Some controllers and ATAPI devices show flaky interrupt
4552 * behavior after setting xfer mode. Use polling instead.
4554 ata_tf_init(dev
, &tf
);
4555 tf
.command
= ATA_CMD_SET_FEATURES
;
4556 tf
.feature
= SETFEATURES_XFER
;
4557 tf
.flags
|= ATA_TFLAG_ISADDR
| ATA_TFLAG_DEVICE
| ATA_TFLAG_POLLING
;
4558 tf
.protocol
= ATA_PROT_NODATA
;
4559 /* If we are using IORDY we must send the mode setting command */
4560 if (ata_pio_need_iordy(dev
))
4561 tf
.nsect
= dev
->xfer_mode
;
4562 /* If the device has IORDY and the controller does not - turn it off */
4563 else if (ata_id_has_iordy(dev
->id
))
4565 else /* In the ancient relic department - skip all of this */
4568 err_mask
= ata_exec_internal(dev
, &tf
, NULL
, DMA_NONE
, NULL
, 0, 0);
4570 DPRINTK("EXIT, err_mask=%x\n", err_mask
);
4574 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
4575 * @dev: Device to which command will be sent
4576 * @enable: Whether to enable or disable the feature
4577 * @feature: The sector count represents the feature to set
4579 * Issue SET FEATURES - SATA FEATURES command to device @dev
4580 * on port @ap with sector count
4583 * PCI/etc. bus probe sem.
4586 * 0 on success, AC_ERR_* mask otherwise.
4588 static unsigned int ata_dev_set_feature(struct ata_device
*dev
, u8 enable
,
4591 struct ata_taskfile tf
;
4592 unsigned int err_mask
;
4594 /* set up set-features taskfile */
4595 DPRINTK("set features - SATA features\n");
4597 ata_tf_init(dev
, &tf
);
4598 tf
.command
= ATA_CMD_SET_FEATURES
;
4599 tf
.feature
= enable
;
4600 tf
.flags
|= ATA_TFLAG_ISADDR
| ATA_TFLAG_DEVICE
;
4601 tf
.protocol
= ATA_PROT_NODATA
;
4604 err_mask
= ata_exec_internal(dev
, &tf
, NULL
, DMA_NONE
, NULL
, 0, 0);
4606 DPRINTK("EXIT, err_mask=%x\n", err_mask
);
4611 * ata_dev_init_params - Issue INIT DEV PARAMS command
4612 * @dev: Device to which command will be sent
4613 * @heads: Number of heads (taskfile parameter)
4614 * @sectors: Number of sectors (taskfile parameter)
4617 * Kernel thread context (may sleep)
4620 * 0 on success, AC_ERR_* mask otherwise.
4622 static unsigned int ata_dev_init_params(struct ata_device
*dev
,
4623 u16 heads
, u16 sectors
)
4625 struct ata_taskfile tf
;
4626 unsigned int err_mask
;
4628 /* Number of sectors per track 1-255. Number of heads 1-16 */
4629 if (sectors
< 1 || sectors
> 255 || heads
< 1 || heads
> 16)
4630 return AC_ERR_INVALID
;
4632 /* set up init dev params taskfile */
4633 DPRINTK("init dev params \n");
4635 ata_tf_init(dev
, &tf
);
4636 tf
.command
= ATA_CMD_INIT_DEV_PARAMS
;
4637 tf
.flags
|= ATA_TFLAG_ISADDR
| ATA_TFLAG_DEVICE
;
4638 tf
.protocol
= ATA_PROT_NODATA
;
4640 tf
.device
|= (heads
- 1) & 0x0f; /* max head = num. of heads - 1 */
4642 err_mask
= ata_exec_internal(dev
, &tf
, NULL
, DMA_NONE
, NULL
, 0, 0);
4643 /* A clean abort indicates an original or just out of spec drive
4644 and we should continue as we issue the setup based on the
4645 drive reported working geometry */
4646 if (err_mask
== AC_ERR_DEV
&& (tf
.feature
& ATA_ABORTED
))
4649 DPRINTK("EXIT, err_mask=%x\n", err_mask
);
4654 * ata_sg_clean - Unmap DMA memory associated with command
4655 * @qc: Command containing DMA memory to be released
4657 * Unmap all mapped DMA memory associated with this command.
4660 * spin_lock_irqsave(host lock)
4662 void ata_sg_clean(struct ata_queued_cmd
*qc
)
4664 struct ata_port
*ap
= qc
->ap
;
4665 struct scatterlist
*sg
= qc
->sg
;
4666 int dir
= qc
->dma_dir
;
4668 WARN_ON_ONCE(sg
== NULL
);
4670 VPRINTK("unmapping %u sg elements\n", qc
->n_elem
);
4673 dma_unmap_sg(ap
->dev
, sg
, qc
->orig_n_elem
, dir
);
4675 qc
->flags
&= ~ATA_QCFLAG_DMAMAP
;
4680 * atapi_check_dma - Check whether ATAPI DMA can be supported
4681 * @qc: Metadata associated with taskfile to check
4683 * Allow low-level driver to filter ATA PACKET commands, returning
4684 * a status indicating whether or not it is OK to use DMA for the
4685 * supplied PACKET command.
4688 * spin_lock_irqsave(host lock)
4690 * RETURNS: 0 when ATAPI DMA can be used
4693 int atapi_check_dma(struct ata_queued_cmd
*qc
)
4695 struct ata_port
*ap
= qc
->ap
;
4697 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4698 * few ATAPI devices choke on such DMA requests.
4700 if (!(qc
->dev
->horkage
& ATA_HORKAGE_ATAPI_MOD16_DMA
) &&
4701 unlikely(qc
->nbytes
& 15))
4704 if (ap
->ops
->check_atapi_dma
)
4705 return ap
->ops
->check_atapi_dma(qc
);
4711 * ata_std_qc_defer - Check whether a qc needs to be deferred
4712 * @qc: ATA command in question
4714 * Non-NCQ commands cannot run with any other command, NCQ or
4715 * not. As upper layer only knows the queue depth, we are
4716 * responsible for maintaining exclusion. This function checks
4717 * whether a new command @qc can be issued.
4720 * spin_lock_irqsave(host lock)
4723 * ATA_DEFER_* if deferring is needed, 0 otherwise.
4725 int ata_std_qc_defer(struct ata_queued_cmd
*qc
)
4727 struct ata_link
*link
= qc
->dev
->link
;
4729 if (qc
->tf
.protocol
== ATA_PROT_NCQ
) {
4730 if (!ata_tag_valid(link
->active_tag
))
4733 if (!ata_tag_valid(link
->active_tag
) && !link
->sactive
)
4737 return ATA_DEFER_LINK
;
4740 void ata_noop_qc_prep(struct ata_queued_cmd
*qc
) { }
4743 * ata_sg_init - Associate command with scatter-gather table.
4744 * @qc: Command to be associated
4745 * @sg: Scatter-gather table.
4746 * @n_elem: Number of elements in s/g table.
4748 * Initialize the data-related elements of queued_cmd @qc
4749 * to point to a scatter-gather table @sg, containing @n_elem
4753 * spin_lock_irqsave(host lock)
4755 void ata_sg_init(struct ata_queued_cmd
*qc
, struct scatterlist
*sg
,
4756 unsigned int n_elem
)
4759 qc
->n_elem
= n_elem
;
4764 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4765 * @qc: Command with scatter-gather table to be mapped.
4767 * DMA-map the scatter-gather table associated with queued_cmd @qc.
4770 * spin_lock_irqsave(host lock)
4773 * Zero on success, negative on error.
4776 static int ata_sg_setup(struct ata_queued_cmd
*qc
)
4778 struct ata_port
*ap
= qc
->ap
;
4779 unsigned int n_elem
;
4781 VPRINTK("ENTER, ata%u\n", ap
->print_id
);
4783 n_elem
= dma_map_sg(ap
->dev
, qc
->sg
, qc
->n_elem
, qc
->dma_dir
);
4787 DPRINTK("%d sg elements mapped\n", n_elem
);
4788 qc
->orig_n_elem
= qc
->n_elem
;
4789 qc
->n_elem
= n_elem
;
4790 qc
->flags
|= ATA_QCFLAG_DMAMAP
;
4796 * swap_buf_le16 - swap halves of 16-bit words in place
4797 * @buf: Buffer to swap
4798 * @buf_words: Number of 16-bit words in buffer.
4800 * Swap halves of 16-bit words if needed to convert from
4801 * little-endian byte order to native cpu byte order, or
4805 * Inherited from caller.
4807 void swap_buf_le16(u16
*buf
, unsigned int buf_words
)
4812 for (i
= 0; i
< buf_words
; i
++)
4813 buf
[i
] = le16_to_cpu(buf
[i
]);
4814 #endif /* __BIG_ENDIAN */
4818 * ata_qc_new - Request an available ATA command, for queueing
4825 static struct ata_queued_cmd
*ata_qc_new(struct ata_port
*ap
)
4827 struct ata_queued_cmd
*qc
= NULL
;
4830 /* no command while frozen */
4831 if (unlikely(ap
->pflags
& ATA_PFLAG_FROZEN
))
4834 /* the last tag is reserved for internal command. */
4835 for (i
= 0; i
< ATA_MAX_QUEUE
- 1; i
++)
4836 if (!test_and_set_bit(i
, &ap
->qc_allocated
)) {
4837 qc
= __ata_qc_from_tag(ap
, i
);
4848 * ata_qc_new_init - Request an available ATA command, and initialize it
4849 * @dev: Device from whom we request an available command structure
4855 struct ata_queued_cmd
*ata_qc_new_init(struct ata_device
*dev
)
4857 struct ata_port
*ap
= dev
->link
->ap
;
4858 struct ata_queued_cmd
*qc
;
4860 qc
= ata_qc_new(ap
);
4873 * ata_qc_free - free unused ata_queued_cmd
4874 * @qc: Command to complete
4876 * Designed to free unused ata_queued_cmd object
4877 * in case something prevents using it.
4880 * spin_lock_irqsave(host lock)
4882 void ata_qc_free(struct ata_queued_cmd
*qc
)
4884 struct ata_port
*ap
;
4887 WARN_ON_ONCE(qc
== NULL
); /* ata_qc_from_tag _might_ return NULL */
4892 if (likely(ata_tag_valid(tag
))) {
4893 qc
->tag
= ATA_TAG_POISON
;
4894 clear_bit(tag
, &ap
->qc_allocated
);
4898 void __ata_qc_complete(struct ata_queued_cmd
*qc
)
4900 struct ata_port
*ap
;
4901 struct ata_link
*link
;
4903 WARN_ON_ONCE(qc
== NULL
); /* ata_qc_from_tag _might_ return NULL */
4904 WARN_ON_ONCE(!(qc
->flags
& ATA_QCFLAG_ACTIVE
));
4906 link
= qc
->dev
->link
;
4908 if (likely(qc
->flags
& ATA_QCFLAG_DMAMAP
))
4911 /* command should be marked inactive atomically with qc completion */
4912 if (qc
->tf
.protocol
== ATA_PROT_NCQ
) {
4913 link
->sactive
&= ~(1 << qc
->tag
);
4915 ap
->nr_active_links
--;
4917 link
->active_tag
= ATA_TAG_POISON
;
4918 ap
->nr_active_links
--;
4921 /* clear exclusive status */
4922 if (unlikely(qc
->flags
& ATA_QCFLAG_CLEAR_EXCL
&&
4923 ap
->excl_link
== link
))
4924 ap
->excl_link
= NULL
;
4926 /* atapi: mark qc as inactive to prevent the interrupt handler
4927 * from completing the command twice later, before the error handler
4928 * is called. (when rc != 0 and atapi request sense is needed)
4930 qc
->flags
&= ~ATA_QCFLAG_ACTIVE
;
4931 ap
->qc_active
&= ~(1 << qc
->tag
);
4933 /* call completion callback */
4934 qc
->complete_fn(qc
);
4937 static void fill_result_tf(struct ata_queued_cmd
*qc
)
4939 struct ata_port
*ap
= qc
->ap
;
4941 qc
->result_tf
.flags
= qc
->tf
.flags
;
4942 ap
->ops
->qc_fill_rtf(qc
);
4945 static void ata_verify_xfer(struct ata_queued_cmd
*qc
)
4947 struct ata_device
*dev
= qc
->dev
;
4949 if (ata_tag_internal(qc
->tag
))
4952 if (ata_is_nodata(qc
->tf
.protocol
))
4955 if ((dev
->mwdma_mask
|| dev
->udma_mask
) && ata_is_pio(qc
->tf
.protocol
))
4958 dev
->flags
&= ~ATA_DFLAG_DUBIOUS_XFER
;
4962 * ata_qc_complete - Complete an active ATA command
4963 * @qc: Command to complete
4965 * Indicate to the mid and upper layers that an ATA
4966 * command has completed, with either an ok or not-ok status.
4969 * spin_lock_irqsave(host lock)
4971 void ata_qc_complete(struct ata_queued_cmd
*qc
)
4973 struct ata_port
*ap
= qc
->ap
;
4975 /* XXX: New EH and old EH use different mechanisms to
4976 * synchronize EH with regular execution path.
4978 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4979 * Normal execution path is responsible for not accessing a
4980 * failed qc. libata core enforces the rule by returning NULL
4981 * from ata_qc_from_tag() for failed qcs.
4983 * Old EH depends on ata_qc_complete() nullifying completion
4984 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
4985 * not synchronize with interrupt handler. Only PIO task is
4988 if (ap
->ops
->error_handler
) {
4989 struct ata_device
*dev
= qc
->dev
;
4990 struct ata_eh_info
*ehi
= &dev
->link
->eh_info
;
4992 if (unlikely(qc
->err_mask
))
4993 qc
->flags
|= ATA_QCFLAG_FAILED
;
4995 if (unlikely(qc
->flags
& ATA_QCFLAG_FAILED
)) {
4996 /* always fill result TF for failed qc */
4999 if (!ata_tag_internal(qc
->tag
))
5000 ata_qc_schedule_eh(qc
);
5002 __ata_qc_complete(qc
);
5006 WARN_ON_ONCE(ap
->pflags
& ATA_PFLAG_FROZEN
);
5008 /* read result TF if requested */
5009 if (qc
->flags
& ATA_QCFLAG_RESULT_TF
)
5012 /* Some commands need post-processing after successful
5015 switch (qc
->tf
.command
) {
5016 case ATA_CMD_SET_FEATURES
:
5017 if (qc
->tf
.feature
!= SETFEATURES_WC_ON
&&
5018 qc
->tf
.feature
!= SETFEATURES_WC_OFF
)
5021 case ATA_CMD_INIT_DEV_PARAMS
: /* CHS translation changed */
5022 case ATA_CMD_SET_MULTI
: /* multi_count changed */
5023 /* revalidate device */
5024 ehi
->dev_action
[dev
->devno
] |= ATA_EH_REVALIDATE
;
5025 ata_port_schedule_eh(ap
);
5029 dev
->flags
|= ATA_DFLAG_SLEEPING
;
5033 if (unlikely(dev
->flags
& ATA_DFLAG_DUBIOUS_XFER
))
5034 ata_verify_xfer(qc
);
5036 __ata_qc_complete(qc
);
5038 if (qc
->flags
& ATA_QCFLAG_EH_SCHEDULED
)
5041 /* read result TF if failed or requested */
5042 if (qc
->err_mask
|| qc
->flags
& ATA_QCFLAG_RESULT_TF
)
5045 __ata_qc_complete(qc
);
5050 * ata_qc_complete_multiple - Complete multiple qcs successfully
5051 * @ap: port in question
5052 * @qc_active: new qc_active mask
5054 * Complete in-flight commands. This functions is meant to be
5055 * called from low-level driver's interrupt routine to complete
5056 * requests normally. ap->qc_active and @qc_active is compared
5057 * and commands are completed accordingly.
5060 * spin_lock_irqsave(host lock)
5063 * Number of completed commands on success, -errno otherwise.
5065 int ata_qc_complete_multiple(struct ata_port
*ap
, u32 qc_active
)
5070 done_mask
= ap
->qc_active
^ qc_active
;
5072 if (unlikely(done_mask
& qc_active
)) {
5073 ata_port_printk(ap
, KERN_ERR
, "illegal qc_active transition "
5074 "(%08x->%08x)\n", ap
->qc_active
, qc_active
);
5079 struct ata_queued_cmd
*qc
;
5080 unsigned int tag
= __ffs(done_mask
);
5082 qc
= ata_qc_from_tag(ap
, tag
);
5084 ata_qc_complete(qc
);
5087 done_mask
&= ~(1 << tag
);
5094 * ata_qc_issue - issue taskfile to device
5095 * @qc: command to issue to device
5097 * Prepare an ATA command to submission to device.
5098 * This includes mapping the data into a DMA-able
5099 * area, filling in the S/G table, and finally
5100 * writing the taskfile to hardware, starting the command.
5103 * spin_lock_irqsave(host lock)
5105 void ata_qc_issue(struct ata_queued_cmd
*qc
)
5107 struct ata_port
*ap
= qc
->ap
;
5108 struct ata_link
*link
= qc
->dev
->link
;
5109 u8 prot
= qc
->tf
.protocol
;
5111 /* Make sure only one non-NCQ command is outstanding. The
5112 * check is skipped for old EH because it reuses active qc to
5113 * request ATAPI sense.
5115 WARN_ON_ONCE(ap
->ops
->error_handler
&& ata_tag_valid(link
->active_tag
));
5117 if (ata_is_ncq(prot
)) {
5118 WARN_ON_ONCE(link
->sactive
& (1 << qc
->tag
));
5121 ap
->nr_active_links
++;
5122 link
->sactive
|= 1 << qc
->tag
;
5124 WARN_ON_ONCE(link
->sactive
);
5126 ap
->nr_active_links
++;
5127 link
->active_tag
= qc
->tag
;
5130 qc
->flags
|= ATA_QCFLAG_ACTIVE
;
5131 ap
->qc_active
|= 1 << qc
->tag
;
5133 /* We guarantee to LLDs that they will have at least one
5134 * non-zero sg if the command is a data command.
5136 BUG_ON(ata_is_data(prot
) && (!qc
->sg
|| !qc
->n_elem
|| !qc
->nbytes
));
5138 if (ata_is_dma(prot
) || (ata_is_pio(prot
) &&
5139 (ap
->flags
& ATA_FLAG_PIO_DMA
)))
5140 if (ata_sg_setup(qc
))
5143 /* if device is sleeping, schedule reset and abort the link */
5144 if (unlikely(qc
->dev
->flags
& ATA_DFLAG_SLEEPING
)) {
5145 link
->eh_info
.action
|= ATA_EH_RESET
;
5146 ata_ehi_push_desc(&link
->eh_info
, "waking up from sleep");
5147 ata_link_abort(link
);
5151 ap
->ops
->qc_prep(qc
);
5153 qc
->err_mask
|= ap
->ops
->qc_issue(qc
);
5154 if (unlikely(qc
->err_mask
))
5159 qc
->err_mask
|= AC_ERR_SYSTEM
;
5161 ata_qc_complete(qc
);
5165 * sata_scr_valid - test whether SCRs are accessible
5166 * @link: ATA link to test SCR accessibility for
5168 * Test whether SCRs are accessible for @link.
5174 * 1 if SCRs are accessible, 0 otherwise.
5176 int sata_scr_valid(struct ata_link
*link
)
5178 struct ata_port
*ap
= link
->ap
;
5180 return (ap
->flags
& ATA_FLAG_SATA
) && ap
->ops
->scr_read
;
5184 * sata_scr_read - read SCR register of the specified port
5185 * @link: ATA link to read SCR for
5187 * @val: Place to store read value
5189 * Read SCR register @reg of @link into *@val. This function is
5190 * guaranteed to succeed if @link is ap->link, the cable type of
5191 * the port is SATA and the port implements ->scr_read.
5194 * None if @link is ap->link. Kernel thread context otherwise.
5197 * 0 on success, negative errno on failure.
5199 int sata_scr_read(struct ata_link
*link
, int reg
, u32
*val
)
5201 if (ata_is_host_link(link
)) {
5202 if (sata_scr_valid(link
))
5203 return link
->ap
->ops
->scr_read(link
, reg
, val
);
5207 return sata_pmp_scr_read(link
, reg
, val
);
5211 * sata_scr_write - write SCR register of the specified port
5212 * @link: ATA link to write SCR for
5213 * @reg: SCR to write
5214 * @val: value to write
5216 * Write @val to SCR register @reg of @link. This function is
5217 * guaranteed to succeed if @link is ap->link, the cable type of
5218 * the port is SATA and the port implements ->scr_read.
5221 * None if @link is ap->link. Kernel thread context otherwise.
5224 * 0 on success, negative errno on failure.
5226 int sata_scr_write(struct ata_link
*link
, int reg
, u32 val
)
5228 if (ata_is_host_link(link
)) {
5229 if (sata_scr_valid(link
))
5230 return link
->ap
->ops
->scr_write(link
, reg
, val
);
5234 return sata_pmp_scr_write(link
, reg
, val
);
5238 * sata_scr_write_flush - write SCR register of the specified port and flush
5239 * @link: ATA link to write SCR for
5240 * @reg: SCR to write
5241 * @val: value to write
5243 * This function is identical to sata_scr_write() except that this
5244 * function performs flush after writing to the register.
5247 * None if @link is ap->link. Kernel thread context otherwise.
5250 * 0 on success, negative errno on failure.
5252 int sata_scr_write_flush(struct ata_link
*link
, int reg
, u32 val
)
5254 if (ata_is_host_link(link
)) {
5257 if (sata_scr_valid(link
)) {
5258 rc
= link
->ap
->ops
->scr_write(link
, reg
, val
);
5260 rc
= link
->ap
->ops
->scr_read(link
, reg
, &val
);
5266 return sata_pmp_scr_write(link
, reg
, val
);
5270 * ata_phys_link_online - test whether the given link is online
5271 * @link: ATA link to test
5273 * Test whether @link is online. Note that this function returns
5274 * 0 if online status of @link cannot be obtained, so
5275 * ata_link_online(link) != !ata_link_offline(link).
5281 * True if the port online status is available and online.
5283 bool ata_phys_link_online(struct ata_link
*link
)
5287 if (sata_scr_read(link
, SCR_STATUS
, &sstatus
) == 0 &&
5288 ata_sstatus_online(sstatus
))
5294 * ata_phys_link_offline - test whether the given link is offline
5295 * @link: ATA link to test
5297 * Test whether @link is offline. Note that this function
5298 * returns 0 if offline status of @link cannot be obtained, so
5299 * ata_link_online(link) != !ata_link_offline(link).
5305 * True if the port offline status is available and offline.
5307 bool ata_phys_link_offline(struct ata_link
*link
)
5311 if (sata_scr_read(link
, SCR_STATUS
, &sstatus
) == 0 &&
5312 !ata_sstatus_online(sstatus
))
5318 * ata_link_online - test whether the given link is online
5319 * @link: ATA link to test
5321 * Test whether @link is online. This is identical to
5322 * ata_phys_link_online() when there's no slave link. When
5323 * there's a slave link, this function should only be called on
5324 * the master link and will return true if any of M/S links is
5331 * True if the port online status is available and online.
5333 bool ata_link_online(struct ata_link
*link
)
5335 struct ata_link
*slave
= link
->ap
->slave_link
;
5337 WARN_ON(link
== slave
); /* shouldn't be called on slave link */
5339 return ata_phys_link_online(link
) ||
5340 (slave
&& ata_phys_link_online(slave
));
5344 * ata_link_offline - test whether the given link is offline
5345 * @link: ATA link to test
5347 * Test whether @link is offline. This is identical to
5348 * ata_phys_link_offline() when there's no slave link. When
5349 * there's a slave link, this function should only be called on
5350 * the master link and will return true if both M/S links are
5357 * True if the port offline status is available and offline.
5359 bool ata_link_offline(struct ata_link
*link
)
5361 struct ata_link
*slave
= link
->ap
->slave_link
;
5363 WARN_ON(link
== slave
); /* shouldn't be called on slave link */
5365 return ata_phys_link_offline(link
) &&
5366 (!slave
|| ata_phys_link_offline(slave
));
5370 static int ata_host_request_pm(struct ata_host
*host
, pm_message_t mesg
,
5371 unsigned int action
, unsigned int ehi_flags
,
5374 unsigned long flags
;
5377 for (i
= 0; i
< host
->n_ports
; i
++) {
5378 struct ata_port
*ap
= host
->ports
[i
];
5379 struct ata_link
*link
;
5381 /* Previous resume operation might still be in
5382 * progress. Wait for PM_PENDING to clear.
5384 if (ap
->pflags
& ATA_PFLAG_PM_PENDING
) {
5385 ata_port_wait_eh(ap
);
5386 WARN_ON(ap
->pflags
& ATA_PFLAG_PM_PENDING
);
5389 /* request PM ops to EH */
5390 spin_lock_irqsave(ap
->lock
, flags
);
5395 ap
->pm_result
= &rc
;
5398 ap
->pflags
|= ATA_PFLAG_PM_PENDING
;
5399 ata_for_each_link(link
, ap
, HOST_FIRST
) {
5400 link
->eh_info
.action
|= action
;
5401 link
->eh_info
.flags
|= ehi_flags
;
5404 ata_port_schedule_eh(ap
);
5406 spin_unlock_irqrestore(ap
->lock
, flags
);
5408 /* wait and check result */
5410 ata_port_wait_eh(ap
);
5411 WARN_ON(ap
->pflags
& ATA_PFLAG_PM_PENDING
);
5421 * ata_host_suspend - suspend host
5422 * @host: host to suspend
5425 * Suspend @host. Actual operation is performed by EH. This
5426 * function requests EH to perform PM operations and waits for EH
5430 * Kernel thread context (may sleep).
5433 * 0 on success, -errno on failure.
5435 int ata_host_suspend(struct ata_host
*host
, pm_message_t mesg
)
5440 * disable link pm on all ports before requesting
5443 ata_lpm_enable(host
);
5445 rc
= ata_host_request_pm(host
, mesg
, 0, ATA_EHI_QUIET
, 1);
5447 host
->dev
->power
.power_state
= mesg
;
5452 * ata_host_resume - resume host
5453 * @host: host to resume
5455 * Resume @host. Actual operation is performed by EH. This
5456 * function requests EH to perform PM operations and returns.
5457 * Note that all resume operations are performed parallely.
5460 * Kernel thread context (may sleep).
5462 void ata_host_resume(struct ata_host
*host
)
5464 ata_host_request_pm(host
, PMSG_ON
, ATA_EH_RESET
,
5465 ATA_EHI_NO_AUTOPSY
| ATA_EHI_QUIET
, 0);
5466 host
->dev
->power
.power_state
= PMSG_ON
;
5468 /* reenable link pm */
5469 ata_lpm_disable(host
);
5474 * ata_dev_init - Initialize an ata_device structure
5475 * @dev: Device structure to initialize
5477 * Initialize @dev in preparation for probing.
5480 * Inherited from caller.
5482 void ata_dev_init(struct ata_device
*dev
)
5484 struct ata_link
*link
= ata_dev_phys_link(dev
);
5485 struct ata_port
*ap
= link
->ap
;
5486 unsigned long flags
;
5488 /* SATA spd limit is bound to the attached device, reset together */
5489 link
->sata_spd_limit
= link
->hw_sata_spd_limit
;
5492 /* High bits of dev->flags are used to record warm plug
5493 * requests which occur asynchronously. Synchronize using
5496 spin_lock_irqsave(ap
->lock
, flags
);
5497 dev
->flags
&= ~ATA_DFLAG_INIT_MASK
;
5499 spin_unlock_irqrestore(ap
->lock
, flags
);
5501 memset((void *)dev
+ ATA_DEVICE_CLEAR_BEGIN
, 0,
5502 ATA_DEVICE_CLEAR_END
- ATA_DEVICE_CLEAR_BEGIN
);
5503 dev
->pio_mask
= UINT_MAX
;
5504 dev
->mwdma_mask
= UINT_MAX
;
5505 dev
->udma_mask
= UINT_MAX
;
5509 * ata_link_init - Initialize an ata_link structure
5510 * @ap: ATA port link is attached to
5511 * @link: Link structure to initialize
5512 * @pmp: Port multiplier port number
5517 * Kernel thread context (may sleep)
5519 void ata_link_init(struct ata_port
*ap
, struct ata_link
*link
, int pmp
)
5523 /* clear everything except for devices */
5524 memset(link
, 0, offsetof(struct ata_link
, device
[0]));
5528 link
->active_tag
= ATA_TAG_POISON
;
5529 link
->hw_sata_spd_limit
= UINT_MAX
;
5531 /* can't use iterator, ap isn't initialized yet */
5532 for (i
= 0; i
< ATA_MAX_DEVICES
; i
++) {
5533 struct ata_device
*dev
= &link
->device
[i
];
5536 dev
->devno
= dev
- link
->device
;
5537 #ifdef CONFIG_ATA_ACPI
5538 dev
->gtf_filter
= ata_acpi_gtf_filter
;
5545 * sata_link_init_spd - Initialize link->sata_spd_limit
5546 * @link: Link to configure sata_spd_limit for
5548 * Initialize @link->[hw_]sata_spd_limit to the currently
5552 * Kernel thread context (may sleep).
5555 * 0 on success, -errno on failure.
5557 int sata_link_init_spd(struct ata_link
*link
)
5562 rc
= sata_scr_read(link
, SCR_CONTROL
, &link
->saved_scontrol
);
5566 spd
= (link
->saved_scontrol
>> 4) & 0xf;
5568 link
->hw_sata_spd_limit
&= (1 << spd
) - 1;
5570 ata_force_link_limits(link
);
5572 link
->sata_spd_limit
= link
->hw_sata_spd_limit
;
5578 * ata_port_alloc - allocate and initialize basic ATA port resources
5579 * @host: ATA host this allocated port belongs to
5581 * Allocate and initialize basic ATA port resources.
5584 * Allocate ATA port on success, NULL on failure.
5587 * Inherited from calling layer (may sleep).
5589 struct ata_port
*ata_port_alloc(struct ata_host
*host
)
5591 struct ata_port
*ap
;
5595 ap
= kzalloc(sizeof(*ap
), GFP_KERNEL
);
5599 ap
->pflags
|= ATA_PFLAG_INITIALIZING
;
5600 ap
->lock
= &host
->lock
;
5603 ap
->dev
= host
->dev
;
5605 #if defined(ATA_VERBOSE_DEBUG)
5606 /* turn on all debugging levels */
5607 ap
->msg_enable
= 0x00FF;
5608 #elif defined(ATA_DEBUG)
5609 ap
->msg_enable
= ATA_MSG_DRV
| ATA_MSG_INFO
| ATA_MSG_CTL
| ATA_MSG_WARN
| ATA_MSG_ERR
;
5611 ap
->msg_enable
= ATA_MSG_DRV
| ATA_MSG_ERR
| ATA_MSG_WARN
;
5614 INIT_DELAYED_WORK(&ap
->hotplug_task
, ata_scsi_hotplug
);
5615 INIT_WORK(&ap
->scsi_rescan_task
, ata_scsi_dev_rescan
);
5616 INIT_LIST_HEAD(&ap
->eh_done_q
);
5617 init_waitqueue_head(&ap
->eh_wait_q
);
5618 init_completion(&ap
->park_req_pending
);
5619 init_timer_deferrable(&ap
->fastdrain_timer
);
5620 ap
->fastdrain_timer
.function
= ata_eh_fastdrain_timerfn
;
5621 ap
->fastdrain_timer
.data
= (unsigned long)ap
;
5623 ap
->cbl
= ATA_CBL_NONE
;
5625 ata_link_init(ap
, &ap
->link
, 0);
5628 ap
->stats
.unhandled_irq
= 1;
5629 ap
->stats
.idle_irq
= 1;
5631 ata_sff_port_init(ap
);
5636 static void ata_host_release(struct device
*gendev
, void *res
)
5638 struct ata_host
*host
= dev_get_drvdata(gendev
);
5641 for (i
= 0; i
< host
->n_ports
; i
++) {
5642 struct ata_port
*ap
= host
->ports
[i
];
5648 scsi_host_put(ap
->scsi_host
);
5650 kfree(ap
->pmp_link
);
5651 kfree(ap
->slave_link
);
5653 host
->ports
[i
] = NULL
;
5656 dev_set_drvdata(gendev
, NULL
);
5660 * ata_host_alloc - allocate and init basic ATA host resources
5661 * @dev: generic device this host is associated with
5662 * @max_ports: maximum number of ATA ports associated with this host
5664 * Allocate and initialize basic ATA host resources. LLD calls
5665 * this function to allocate a host, initializes it fully and
5666 * attaches it using ata_host_register().
5668 * @max_ports ports are allocated and host->n_ports is
5669 * initialized to @max_ports. The caller is allowed to decrease
5670 * host->n_ports before calling ata_host_register(). The unused
5671 * ports will be automatically freed on registration.
5674 * Allocate ATA host on success, NULL on failure.
5677 * Inherited from calling layer (may sleep).
5679 struct ata_host
*ata_host_alloc(struct device
*dev
, int max_ports
)
5681 struct ata_host
*host
;
5687 if (!devres_open_group(dev
, NULL
, GFP_KERNEL
))
5690 /* alloc a container for our list of ATA ports (buses) */
5691 sz
= sizeof(struct ata_host
) + (max_ports
+ 1) * sizeof(void *);
5692 /* alloc a container for our list of ATA ports (buses) */
5693 host
= devres_alloc(ata_host_release
, sz
, GFP_KERNEL
);
5697 devres_add(dev
, host
);
5698 dev_set_drvdata(dev
, host
);
5700 spin_lock_init(&host
->lock
);
5702 host
->n_ports
= max_ports
;
5704 /* allocate ports bound to this host */
5705 for (i
= 0; i
< max_ports
; i
++) {
5706 struct ata_port
*ap
;
5708 ap
= ata_port_alloc(host
);
5713 host
->ports
[i
] = ap
;
5716 devres_remove_group(dev
, NULL
);
5720 devres_release_group(dev
, NULL
);
5725 * ata_host_alloc_pinfo - alloc host and init with port_info array
5726 * @dev: generic device this host is associated with
5727 * @ppi: array of ATA port_info to initialize host with
5728 * @n_ports: number of ATA ports attached to this host
5730 * Allocate ATA host and initialize with info from @ppi. If NULL
5731 * terminated, @ppi may contain fewer entries than @n_ports. The
5732 * last entry will be used for the remaining ports.
5735 * Allocate ATA host on success, NULL on failure.
5738 * Inherited from calling layer (may sleep).
5740 struct ata_host
*ata_host_alloc_pinfo(struct device
*dev
,
5741 const struct ata_port_info
* const * ppi
,
5744 const struct ata_port_info
*pi
;
5745 struct ata_host
*host
;
5748 host
= ata_host_alloc(dev
, n_ports
);
5752 for (i
= 0, j
= 0, pi
= NULL
; i
< host
->n_ports
; i
++) {
5753 struct ata_port
*ap
= host
->ports
[i
];
5758 ap
->pio_mask
= pi
->pio_mask
;
5759 ap
->mwdma_mask
= pi
->mwdma_mask
;
5760 ap
->udma_mask
= pi
->udma_mask
;
5761 ap
->flags
|= pi
->flags
;
5762 ap
->link
.flags
|= pi
->link_flags
;
5763 ap
->ops
= pi
->port_ops
;
5765 if (!host
->ops
&& (pi
->port_ops
!= &ata_dummy_port_ops
))
5766 host
->ops
= pi
->port_ops
;
5773 * ata_slave_link_init - initialize slave link
5774 * @ap: port to initialize slave link for
5776 * Create and initialize slave link for @ap. This enables slave
5777 * link handling on the port.
5779 * In libata, a port contains links and a link contains devices.
5780 * There is single host link but if a PMP is attached to it,
5781 * there can be multiple fan-out links. On SATA, there's usually
5782 * a single device connected to a link but PATA and SATA
5783 * controllers emulating TF based interface can have two - master
5786 * However, there are a few controllers which don't fit into this
5787 * abstraction too well - SATA controllers which emulate TF
5788 * interface with both master and slave devices but also have
5789 * separate SCR register sets for each device. These controllers
5790 * need separate links for physical link handling
5791 * (e.g. onlineness, link speed) but should be treated like a
5792 * traditional M/S controller for everything else (e.g. command
5793 * issue, softreset).
5795 * slave_link is libata's way of handling this class of
5796 * controllers without impacting core layer too much. For
5797 * anything other than physical link handling, the default host
5798 * link is used for both master and slave. For physical link
5799 * handling, separate @ap->slave_link is used. All dirty details
5800 * are implemented inside libata core layer. From LLD's POV, the
5801 * only difference is that prereset, hardreset and postreset are
5802 * called once more for the slave link, so the reset sequence
5803 * looks like the following.
5805 * prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) ->
5806 * softreset(M) -> postreset(M) -> postreset(S)
5808 * Note that softreset is called only for the master. Softreset
5809 * resets both M/S by definition, so SRST on master should handle
5810 * both (the standard method will work just fine).
5813 * Should be called before host is registered.
5816 * 0 on success, -errno on failure.
5818 int ata_slave_link_init(struct ata_port
*ap
)
5820 struct ata_link
*link
;
5822 WARN_ON(ap
->slave_link
);
5823 WARN_ON(ap
->flags
& ATA_FLAG_PMP
);
5825 link
= kzalloc(sizeof(*link
), GFP_KERNEL
);
5829 ata_link_init(ap
, link
, 1);
5830 ap
->slave_link
= link
;
5834 static void ata_host_stop(struct device
*gendev
, void *res
)
5836 struct ata_host
*host
= dev_get_drvdata(gendev
);
5839 WARN_ON(!(host
->flags
& ATA_HOST_STARTED
));
5841 for (i
= 0; i
< host
->n_ports
; i
++) {
5842 struct ata_port
*ap
= host
->ports
[i
];
5844 if (ap
->ops
->port_stop
)
5845 ap
->ops
->port_stop(ap
);
5848 if (host
->ops
->host_stop
)
5849 host
->ops
->host_stop(host
);
5853 * ata_finalize_port_ops - finalize ata_port_operations
5854 * @ops: ata_port_operations to finalize
5856 * An ata_port_operations can inherit from another ops and that
5857 * ops can again inherit from another. This can go on as many
5858 * times as necessary as long as there is no loop in the
5859 * inheritance chain.
5861 * Ops tables are finalized when the host is started. NULL or
5862 * unspecified entries are inherited from the closet ancestor
5863 * which has the method and the entry is populated with it.
5864 * After finalization, the ops table directly points to all the
5865 * methods and ->inherits is no longer necessary and cleared.
5867 * Using ATA_OP_NULL, inheriting ops can force a method to NULL.
5872 static void ata_finalize_port_ops(struct ata_port_operations
*ops
)
5874 static DEFINE_SPINLOCK(lock
);
5875 const struct ata_port_operations
*cur
;
5876 void **begin
= (void **)ops
;
5877 void **end
= (void **)&ops
->inherits
;
5880 if (!ops
|| !ops
->inherits
)
5885 for (cur
= ops
->inherits
; cur
; cur
= cur
->inherits
) {
5886 void **inherit
= (void **)cur
;
5888 for (pp
= begin
; pp
< end
; pp
++, inherit
++)
5893 for (pp
= begin
; pp
< end
; pp
++)
5897 ops
->inherits
= NULL
;
5903 * ata_host_start - start and freeze ports of an ATA host
5904 * @host: ATA host to start ports for
5906 * Start and then freeze ports of @host. Started status is
5907 * recorded in host->flags, so this function can be called
5908 * multiple times. Ports are guaranteed to get started only
5909 * once. If host->ops isn't initialized yet, its set to the
5910 * first non-dummy port ops.
5913 * Inherited from calling layer (may sleep).
5916 * 0 if all ports are started successfully, -errno otherwise.
5918 int ata_host_start(struct ata_host
*host
)
5921 void *start_dr
= NULL
;
5924 if (host
->flags
& ATA_HOST_STARTED
)
5927 ata_finalize_port_ops(host
->ops
);
5929 for (i
= 0; i
< host
->n_ports
; i
++) {
5930 struct ata_port
*ap
= host
->ports
[i
];
5932 ata_finalize_port_ops(ap
->ops
);
5934 if (!host
->ops
&& !ata_port_is_dummy(ap
))
5935 host
->ops
= ap
->ops
;
5937 if (ap
->ops
->port_stop
)
5941 if (host
->ops
->host_stop
)
5945 start_dr
= devres_alloc(ata_host_stop
, 0, GFP_KERNEL
);
5950 for (i
= 0; i
< host
->n_ports
; i
++) {
5951 struct ata_port
*ap
= host
->ports
[i
];
5953 if (ap
->ops
->port_start
) {
5954 rc
= ap
->ops
->port_start(ap
);
5957 dev_printk(KERN_ERR
, host
->dev
,
5958 "failed to start port %d "
5959 "(errno=%d)\n", i
, rc
);
5963 ata_eh_freeze_port(ap
);
5967 devres_add(host
->dev
, start_dr
);
5968 host
->flags
|= ATA_HOST_STARTED
;
5973 struct ata_port
*ap
= host
->ports
[i
];
5975 if (ap
->ops
->port_stop
)
5976 ap
->ops
->port_stop(ap
);
5978 devres_free(start_dr
);
5983 * ata_sas_host_init - Initialize a host struct
5984 * @host: host to initialize
5985 * @dev: device host is attached to
5986 * @flags: host flags
5990 * PCI/etc. bus probe sem.
5993 /* KILLME - the only user left is ipr */
5994 void ata_host_init(struct ata_host
*host
, struct device
*dev
,
5995 unsigned long flags
, struct ata_port_operations
*ops
)
5997 spin_lock_init(&host
->lock
);
5999 host
->flags
= flags
;
6004 static void async_port_probe(void *data
, async_cookie_t cookie
)
6007 struct ata_port
*ap
= data
;
6010 * If we're not allowed to scan this host in parallel,
6011 * we need to wait until all previous scans have completed
6012 * before going further.
6013 * Jeff Garzik says this is only within a controller, so we
6014 * don't need to wait for port 0, only for later ports.
6016 if (!(ap
->host
->flags
& ATA_HOST_PARALLEL_SCAN
) && ap
->port_no
!= 0)
6017 async_synchronize_cookie(cookie
);
6020 if (ap
->ops
->error_handler
) {
6021 struct ata_eh_info
*ehi
= &ap
->link
.eh_info
;
6022 unsigned long flags
;
6024 /* kick EH for boot probing */
6025 spin_lock_irqsave(ap
->lock
, flags
);
6027 ehi
->probe_mask
|= ATA_ALL_DEVICES
;
6028 ehi
->action
|= ATA_EH_RESET
| ATA_EH_LPM
;
6029 ehi
->flags
|= ATA_EHI_NO_AUTOPSY
| ATA_EHI_QUIET
;
6031 ap
->pflags
&= ~ATA_PFLAG_INITIALIZING
;
6032 ap
->pflags
|= ATA_PFLAG_LOADING
;
6033 ata_port_schedule_eh(ap
);
6035 spin_unlock_irqrestore(ap
->lock
, flags
);
6037 /* wait for EH to finish */
6038 ata_port_wait_eh(ap
);
6040 DPRINTK("ata%u: bus probe begin\n", ap
->print_id
);
6041 rc
= ata_bus_probe(ap
);
6042 DPRINTK("ata%u: bus probe end\n", ap
->print_id
);
6045 /* FIXME: do something useful here?
6046 * Current libata behavior will
6047 * tear down everything when
6048 * the module is removed
6049 * or the h/w is unplugged.
6054 /* in order to keep device order, we need to synchronize at this point */
6055 async_synchronize_cookie(cookie
);
6057 ata_scsi_scan_host(ap
, 1);
6061 * ata_host_register - register initialized ATA host
6062 * @host: ATA host to register
6063 * @sht: template for SCSI host
6065 * Register initialized ATA host. @host is allocated using
6066 * ata_host_alloc() and fully initialized by LLD. This function
6067 * starts ports, registers @host with ATA and SCSI layers and
6068 * probe registered devices.
6071 * Inherited from calling layer (may sleep).
6074 * 0 on success, -errno otherwise.
6076 int ata_host_register(struct ata_host
*host
, struct scsi_host_template
*sht
)
6080 /* host must have been started */
6081 if (!(host
->flags
& ATA_HOST_STARTED
)) {
6082 dev_printk(KERN_ERR
, host
->dev
,
6083 "BUG: trying to register unstarted host\n");
6088 /* Blow away unused ports. This happens when LLD can't
6089 * determine the exact number of ports to allocate at
6092 for (i
= host
->n_ports
; host
->ports
[i
]; i
++)
6093 kfree(host
->ports
[i
]);
6095 /* give ports names and add SCSI hosts */
6096 for (i
= 0; i
< host
->n_ports
; i
++)
6097 host
->ports
[i
]->print_id
= ata_print_id
++;
6099 rc
= ata_scsi_add_hosts(host
, sht
);
6103 /* associate with ACPI nodes */
6104 ata_acpi_associate(host
);
6106 /* set cable, sata_spd_limit and report */
6107 for (i
= 0; i
< host
->n_ports
; i
++) {
6108 struct ata_port
*ap
= host
->ports
[i
];
6109 unsigned long xfer_mask
;
6111 /* set SATA cable type if still unset */
6112 if (ap
->cbl
== ATA_CBL_NONE
&& (ap
->flags
& ATA_FLAG_SATA
))
6113 ap
->cbl
= ATA_CBL_SATA
;
6115 /* init sata_spd_limit to the current value */
6116 sata_link_init_spd(&ap
->link
);
6118 sata_link_init_spd(ap
->slave_link
);
6120 /* print per-port info to dmesg */
6121 xfer_mask
= ata_pack_xfermask(ap
->pio_mask
, ap
->mwdma_mask
,
6124 if (!ata_port_is_dummy(ap
)) {
6125 ata_port_printk(ap
, KERN_INFO
,
6126 "%cATA max %s %s\n",
6127 (ap
->flags
& ATA_FLAG_SATA
) ? 'S' : 'P',
6128 ata_mode_string(xfer_mask
),
6129 ap
->link
.eh_info
.desc
);
6130 ata_ehi_clear_desc(&ap
->link
.eh_info
);
6132 ata_port_printk(ap
, KERN_INFO
, "DUMMY\n");
6135 /* perform each probe asynchronously */
6136 for (i
= 0; i
< host
->n_ports
; i
++) {
6137 struct ata_port
*ap
= host
->ports
[i
];
6138 async_schedule(async_port_probe
, ap
);
6145 * ata_host_activate - start host, request IRQ and register it
6146 * @host: target ATA host
6147 * @irq: IRQ to request
6148 * @irq_handler: irq_handler used when requesting IRQ
6149 * @irq_flags: irq_flags used when requesting IRQ
6150 * @sht: scsi_host_template to use when registering the host
6152 * After allocating an ATA host and initializing it, most libata
6153 * LLDs perform three steps to activate the host - start host,
6154 * request IRQ and register it. This helper takes necessasry
6155 * arguments and performs the three steps in one go.
6157 * An invalid IRQ skips the IRQ registration and expects the host to
6158 * have set polling mode on the port. In this case, @irq_handler
6162 * Inherited from calling layer (may sleep).
6165 * 0 on success, -errno otherwise.
6167 int ata_host_activate(struct ata_host
*host
, int irq
,
6168 irq_handler_t irq_handler
, unsigned long irq_flags
,
6169 struct scsi_host_template
*sht
)
6173 rc
= ata_host_start(host
);
6177 /* Special case for polling mode */
6179 WARN_ON(irq_handler
);
6180 return ata_host_register(host
, sht
);
6183 rc
= devm_request_irq(host
->dev
, irq
, irq_handler
, irq_flags
,
6184 dev_driver_string(host
->dev
), host
);
6188 for (i
= 0; i
< host
->n_ports
; i
++)
6189 ata_port_desc(host
->ports
[i
], "irq %d", irq
);
6191 rc
= ata_host_register(host
, sht
);
6192 /* if failed, just free the IRQ and leave ports alone */
6194 devm_free_irq(host
->dev
, irq
, host
);
6200 * ata_port_detach - Detach ATA port in prepration of device removal
6201 * @ap: ATA port to be detached
6203 * Detach all ATA devices and the associated SCSI devices of @ap;
6204 * then, remove the associated SCSI host. @ap is guaranteed to
6205 * be quiescent on return from this function.
6208 * Kernel thread context (may sleep).
6210 static void ata_port_detach(struct ata_port
*ap
)
6212 unsigned long flags
;
6214 if (!ap
->ops
->error_handler
)
6217 /* tell EH we're leaving & flush EH */
6218 spin_lock_irqsave(ap
->lock
, flags
);
6219 ap
->pflags
|= ATA_PFLAG_UNLOADING
;
6220 ata_port_schedule_eh(ap
);
6221 spin_unlock_irqrestore(ap
->lock
, flags
);
6223 /* wait till EH commits suicide */
6224 ata_port_wait_eh(ap
);
6226 /* it better be dead now */
6227 WARN_ON(!(ap
->pflags
& ATA_PFLAG_UNLOADED
));
6229 cancel_rearming_delayed_work(&ap
->hotplug_task
);
6232 /* remove the associated SCSI host */
6233 scsi_remove_host(ap
->scsi_host
);
6237 * ata_host_detach - Detach all ports of an ATA host
6238 * @host: Host to detach
6240 * Detach all ports of @host.
6243 * Kernel thread context (may sleep).
6245 void ata_host_detach(struct ata_host
*host
)
6249 for (i
= 0; i
< host
->n_ports
; i
++)
6250 ata_port_detach(host
->ports
[i
]);
6252 /* the host is dead now, dissociate ACPI */
6253 ata_acpi_dissociate(host
);
6259 * ata_pci_remove_one - PCI layer callback for device removal
6260 * @pdev: PCI device that was removed
6262 * PCI layer indicates to libata via this hook that hot-unplug or
6263 * module unload event has occurred. Detach all ports. Resource
6264 * release is handled via devres.
6267 * Inherited from PCI layer (may sleep).
6269 void ata_pci_remove_one(struct pci_dev
*pdev
)
6271 struct device
*dev
= &pdev
->dev
;
6272 struct ata_host
*host
= dev_get_drvdata(dev
);
6274 ata_host_detach(host
);
6277 /* move to PCI subsystem */
6278 int pci_test_config_bits(struct pci_dev
*pdev
, const struct pci_bits
*bits
)
6280 unsigned long tmp
= 0;
6282 switch (bits
->width
) {
6285 pci_read_config_byte(pdev
, bits
->reg
, &tmp8
);
6291 pci_read_config_word(pdev
, bits
->reg
, &tmp16
);
6297 pci_read_config_dword(pdev
, bits
->reg
, &tmp32
);
6308 return (tmp
== bits
->val
) ? 1 : 0;
6312 void ata_pci_device_do_suspend(struct pci_dev
*pdev
, pm_message_t mesg
)
6314 pci_save_state(pdev
);
6315 pci_disable_device(pdev
);
6317 if (mesg
.event
& PM_EVENT_SLEEP
)
6318 pci_set_power_state(pdev
, PCI_D3hot
);
6321 int ata_pci_device_do_resume(struct pci_dev
*pdev
)
6325 pci_set_power_state(pdev
, PCI_D0
);
6326 pci_restore_state(pdev
);
6328 rc
= pcim_enable_device(pdev
);
6330 dev_printk(KERN_ERR
, &pdev
->dev
,
6331 "failed to enable device after resume (%d)\n", rc
);
6335 pci_set_master(pdev
);
6339 int ata_pci_device_suspend(struct pci_dev
*pdev
, pm_message_t mesg
)
6341 struct ata_host
*host
= dev_get_drvdata(&pdev
->dev
);
6344 rc
= ata_host_suspend(host
, mesg
);
6348 ata_pci_device_do_suspend(pdev
, mesg
);
6353 int ata_pci_device_resume(struct pci_dev
*pdev
)
6355 struct ata_host
*host
= dev_get_drvdata(&pdev
->dev
);
6358 rc
= ata_pci_device_do_resume(pdev
);
6360 ata_host_resume(host
);
6363 #endif /* CONFIG_PM */
6365 #endif /* CONFIG_PCI */
6367 static int __init
ata_parse_force_one(char **cur
,
6368 struct ata_force_ent
*force_ent
,
6369 const char **reason
)
6371 /* FIXME: Currently, there's no way to tag init const data and
6372 * using __initdata causes build failure on some versions of
6373 * gcc. Once __initdataconst is implemented, add const to the
6374 * following structure.
6376 static struct ata_force_param force_tbl
[] __initdata
= {
6377 { "40c", .cbl
= ATA_CBL_PATA40
},
6378 { "80c", .cbl
= ATA_CBL_PATA80
},
6379 { "short40c", .cbl
= ATA_CBL_PATA40_SHORT
},
6380 { "unk", .cbl
= ATA_CBL_PATA_UNK
},
6381 { "ign", .cbl
= ATA_CBL_PATA_IGN
},
6382 { "sata", .cbl
= ATA_CBL_SATA
},
6383 { "1.5Gbps", .spd_limit
= 1 },
6384 { "3.0Gbps", .spd_limit
= 2 },
6385 { "noncq", .horkage_on
= ATA_HORKAGE_NONCQ
},
6386 { "ncq", .horkage_off
= ATA_HORKAGE_NONCQ
},
6387 { "dump_id", .horkage_on
= ATA_HORKAGE_DUMP_ID
},
6388 { "pio0", .xfer_mask
= 1 << (ATA_SHIFT_PIO
+ 0) },
6389 { "pio1", .xfer_mask
= 1 << (ATA_SHIFT_PIO
+ 1) },
6390 { "pio2", .xfer_mask
= 1 << (ATA_SHIFT_PIO
+ 2) },
6391 { "pio3", .xfer_mask
= 1 << (ATA_SHIFT_PIO
+ 3) },
6392 { "pio4", .xfer_mask
= 1 << (ATA_SHIFT_PIO
+ 4) },
6393 { "pio5", .xfer_mask
= 1 << (ATA_SHIFT_PIO
+ 5) },
6394 { "pio6", .xfer_mask
= 1 << (ATA_SHIFT_PIO
+ 6) },
6395 { "mwdma0", .xfer_mask
= 1 << (ATA_SHIFT_MWDMA
+ 0) },
6396 { "mwdma1", .xfer_mask
= 1 << (ATA_SHIFT_MWDMA
+ 1) },
6397 { "mwdma2", .xfer_mask
= 1 << (ATA_SHIFT_MWDMA
+ 2) },
6398 { "mwdma3", .xfer_mask
= 1 << (ATA_SHIFT_MWDMA
+ 3) },
6399 { "mwdma4", .xfer_mask
= 1 << (ATA_SHIFT_MWDMA
+ 4) },
6400 { "udma0", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 0) },
6401 { "udma16", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 0) },
6402 { "udma/16", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 0) },
6403 { "udma1", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 1) },
6404 { "udma25", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 1) },
6405 { "udma/25", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 1) },
6406 { "udma2", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 2) },
6407 { "udma33", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 2) },
6408 { "udma/33", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 2) },
6409 { "udma3", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 3) },
6410 { "udma44", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 3) },
6411 { "udma/44", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 3) },
6412 { "udma4", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 4) },
6413 { "udma66", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 4) },
6414 { "udma/66", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 4) },
6415 { "udma5", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 5) },
6416 { "udma100", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 5) },
6417 { "udma/100", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 5) },
6418 { "udma6", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 6) },
6419 { "udma133", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 6) },
6420 { "udma/133", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 6) },
6421 { "udma7", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 7) },
6422 { "nohrst", .lflags
= ATA_LFLAG_NO_HRST
},
6423 { "nosrst", .lflags
= ATA_LFLAG_NO_SRST
},
6424 { "norst", .lflags
= ATA_LFLAG_NO_HRST
| ATA_LFLAG_NO_SRST
},
6426 char *start
= *cur
, *p
= *cur
;
6427 char *id
, *val
, *endp
;
6428 const struct ata_force_param
*match_fp
= NULL
;
6429 int nr_matches
= 0, i
;
6431 /* find where this param ends and update *cur */
6432 while (*p
!= '\0' && *p
!= ',')
6443 p
= strchr(start
, ':');
6445 val
= strstrip(start
);
6450 id
= strstrip(start
);
6451 val
= strstrip(p
+ 1);
6454 p
= strchr(id
, '.');
6457 force_ent
->device
= simple_strtoul(p
, &endp
, 10);
6458 if (p
== endp
|| *endp
!= '\0') {
6459 *reason
= "invalid device";
6464 force_ent
->port
= simple_strtoul(id
, &endp
, 10);
6465 if (p
== endp
|| *endp
!= '\0') {
6466 *reason
= "invalid port/link";
6471 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
6472 for (i
= 0; i
< ARRAY_SIZE(force_tbl
); i
++) {
6473 const struct ata_force_param
*fp
= &force_tbl
[i
];
6475 if (strncasecmp(val
, fp
->name
, strlen(val
)))
6481 if (strcasecmp(val
, fp
->name
) == 0) {
6488 *reason
= "unknown value";
6491 if (nr_matches
> 1) {
6492 *reason
= "ambigious value";
6496 force_ent
->param
= *match_fp
;
6501 static void __init
ata_parse_force_param(void)
6503 int idx
= 0, size
= 1;
6504 int last_port
= -1, last_device
= -1;
6505 char *p
, *cur
, *next
;
6507 /* calculate maximum number of params and allocate force_tbl */
6508 for (p
= ata_force_param_buf
; *p
; p
++)
6512 ata_force_tbl
= kzalloc(sizeof(ata_force_tbl
[0]) * size
, GFP_KERNEL
);
6513 if (!ata_force_tbl
) {
6514 printk(KERN_WARNING
"ata: failed to extend force table, "
6515 "libata.force ignored\n");
6519 /* parse and populate the table */
6520 for (cur
= ata_force_param_buf
; *cur
!= '\0'; cur
= next
) {
6521 const char *reason
= "";
6522 struct ata_force_ent te
= { .port
= -1, .device
= -1 };
6525 if (ata_parse_force_one(&next
, &te
, &reason
)) {
6526 printk(KERN_WARNING
"ata: failed to parse force "
6527 "parameter \"%s\" (%s)\n",
6532 if (te
.port
== -1) {
6533 te
.port
= last_port
;
6534 te
.device
= last_device
;
6537 ata_force_tbl
[idx
++] = te
;
6539 last_port
= te
.port
;
6540 last_device
= te
.device
;
6543 ata_force_tbl_size
= idx
;
6546 static int __init
ata_init(void)
6550 ata_parse_force_param();
6552 ata_aux_wq
= create_singlethread_workqueue("ata_aux");
6556 rc
= ata_sff_init();
6560 printk(KERN_DEBUG
"libata version " DRV_VERSION
" loaded.\n");
6564 kfree(ata_force_tbl
);
6566 destroy_workqueue(ata_aux_wq
);
6570 static void __exit
ata_exit(void)
6573 kfree(ata_force_tbl
);
6574 destroy_workqueue(ata_aux_wq
);
6577 subsys_initcall(ata_init
);
6578 module_exit(ata_exit
);
6580 static DEFINE_RATELIMIT_STATE(ratelimit
, HZ
/ 5, 1);
6582 int ata_ratelimit(void)
6584 return __ratelimit(&ratelimit
);
6588 * ata_wait_register - wait until register value changes
6589 * @reg: IO-mapped register
6590 * @mask: Mask to apply to read register value
6591 * @val: Wait condition
6592 * @interval: polling interval in milliseconds
6593 * @timeout: timeout in milliseconds
6595 * Waiting for some bits of register to change is a common
6596 * operation for ATA controllers. This function reads 32bit LE
6597 * IO-mapped register @reg and tests for the following condition.
6599 * (*@reg & mask) != val
6601 * If the condition is met, it returns; otherwise, the process is
6602 * repeated after @interval_msec until timeout.
6605 * Kernel thread context (may sleep)
6608 * The final register value.
6610 u32
ata_wait_register(void __iomem
*reg
, u32 mask
, u32 val
,
6611 unsigned long interval
, unsigned long timeout
)
6613 unsigned long deadline
;
6616 tmp
= ioread32(reg
);
6618 /* Calculate timeout _after_ the first read to make sure
6619 * preceding writes reach the controller before starting to
6620 * eat away the timeout.
6622 deadline
= ata_deadline(jiffies
, timeout
);
6624 while ((tmp
& mask
) == val
&& time_before(jiffies
, deadline
)) {
6626 tmp
= ioread32(reg
);
6635 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd
*qc
)
6637 return AC_ERR_SYSTEM
;
6640 static void ata_dummy_error_handler(struct ata_port
*ap
)
6645 struct ata_port_operations ata_dummy_port_ops
= {
6646 .qc_prep
= ata_noop_qc_prep
,
6647 .qc_issue
= ata_dummy_qc_issue
,
6648 .error_handler
= ata_dummy_error_handler
,
6651 const struct ata_port_info ata_dummy_port_info
= {
6652 .port_ops
= &ata_dummy_port_ops
,
6656 * libata is essentially a library of internal helper functions for
6657 * low-level ATA host controller drivers. As such, the API/ABI is
6658 * likely to change as new drivers are added and updated.
6659 * Do not depend on ABI/API stability.
6661 EXPORT_SYMBOL_GPL(sata_deb_timing_normal
);
6662 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug
);
6663 EXPORT_SYMBOL_GPL(sata_deb_timing_long
);
6664 EXPORT_SYMBOL_GPL(ata_base_port_ops
);
6665 EXPORT_SYMBOL_GPL(sata_port_ops
);
6666 EXPORT_SYMBOL_GPL(ata_dummy_port_ops
);
6667 EXPORT_SYMBOL_GPL(ata_dummy_port_info
);
6668 EXPORT_SYMBOL_GPL(ata_link_next
);
6669 EXPORT_SYMBOL_GPL(ata_dev_next
);
6670 EXPORT_SYMBOL_GPL(ata_std_bios_param
);
6671 EXPORT_SYMBOL_GPL(ata_scsi_unlock_native_capacity
);
6672 EXPORT_SYMBOL_GPL(ata_host_init
);
6673 EXPORT_SYMBOL_GPL(ata_host_alloc
);
6674 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo
);
6675 EXPORT_SYMBOL_GPL(ata_slave_link_init
);
6676 EXPORT_SYMBOL_GPL(ata_host_start
);
6677 EXPORT_SYMBOL_GPL(ata_host_register
);
6678 EXPORT_SYMBOL_GPL(ata_host_activate
);
6679 EXPORT_SYMBOL_GPL(ata_host_detach
);
6680 EXPORT_SYMBOL_GPL(ata_sg_init
);
6681 EXPORT_SYMBOL_GPL(ata_qc_complete
);
6682 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple
);
6683 EXPORT_SYMBOL_GPL(atapi_cmd_type
);
6684 EXPORT_SYMBOL_GPL(ata_tf_to_fis
);
6685 EXPORT_SYMBOL_GPL(ata_tf_from_fis
);
6686 EXPORT_SYMBOL_GPL(ata_pack_xfermask
);
6687 EXPORT_SYMBOL_GPL(ata_unpack_xfermask
);
6688 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode
);
6689 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask
);
6690 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift
);
6691 EXPORT_SYMBOL_GPL(ata_mode_string
);
6692 EXPORT_SYMBOL_GPL(ata_id_xfermask
);
6693 EXPORT_SYMBOL_GPL(ata_do_set_mode
);
6694 EXPORT_SYMBOL_GPL(ata_std_qc_defer
);
6695 EXPORT_SYMBOL_GPL(ata_noop_qc_prep
);
6696 EXPORT_SYMBOL_GPL(ata_dev_disable
);
6697 EXPORT_SYMBOL_GPL(sata_set_spd
);
6698 EXPORT_SYMBOL_GPL(ata_wait_after_reset
);
6699 EXPORT_SYMBOL_GPL(sata_link_debounce
);
6700 EXPORT_SYMBOL_GPL(sata_link_resume
);
6701 EXPORT_SYMBOL_GPL(ata_std_prereset
);
6702 EXPORT_SYMBOL_GPL(sata_link_hardreset
);
6703 EXPORT_SYMBOL_GPL(sata_std_hardreset
);
6704 EXPORT_SYMBOL_GPL(ata_std_postreset
);
6705 EXPORT_SYMBOL_GPL(ata_dev_classify
);
6706 EXPORT_SYMBOL_GPL(ata_dev_pair
);
6707 EXPORT_SYMBOL_GPL(ata_ratelimit
);
6708 EXPORT_SYMBOL_GPL(ata_wait_register
);
6709 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd
);
6710 EXPORT_SYMBOL_GPL(ata_scsi_slave_config
);
6711 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy
);
6712 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth
);
6713 EXPORT_SYMBOL_GPL(sata_scr_valid
);
6714 EXPORT_SYMBOL_GPL(sata_scr_read
);
6715 EXPORT_SYMBOL_GPL(sata_scr_write
);
6716 EXPORT_SYMBOL_GPL(sata_scr_write_flush
);
6717 EXPORT_SYMBOL_GPL(ata_link_online
);
6718 EXPORT_SYMBOL_GPL(ata_link_offline
);
6720 EXPORT_SYMBOL_GPL(ata_host_suspend
);
6721 EXPORT_SYMBOL_GPL(ata_host_resume
);
6722 #endif /* CONFIG_PM */
6723 EXPORT_SYMBOL_GPL(ata_id_string
);
6724 EXPORT_SYMBOL_GPL(ata_id_c_string
);
6725 EXPORT_SYMBOL_GPL(ata_do_dev_read_id
);
6726 EXPORT_SYMBOL_GPL(ata_scsi_simulate
);
6728 EXPORT_SYMBOL_GPL(ata_pio_need_iordy
);
6729 EXPORT_SYMBOL_GPL(ata_timing_find_mode
);
6730 EXPORT_SYMBOL_GPL(ata_timing_compute
);
6731 EXPORT_SYMBOL_GPL(ata_timing_merge
);
6732 EXPORT_SYMBOL_GPL(ata_timing_cycle2mode
);
6735 EXPORT_SYMBOL_GPL(pci_test_config_bits
);
6736 EXPORT_SYMBOL_GPL(ata_pci_remove_one
);
6738 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend
);
6739 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume
);
6740 EXPORT_SYMBOL_GPL(ata_pci_device_suspend
);
6741 EXPORT_SYMBOL_GPL(ata_pci_device_resume
);
6742 #endif /* CONFIG_PM */
6743 #endif /* CONFIG_PCI */
6745 EXPORT_SYMBOL_GPL(__ata_ehi_push_desc
);
6746 EXPORT_SYMBOL_GPL(ata_ehi_push_desc
);
6747 EXPORT_SYMBOL_GPL(ata_ehi_clear_desc
);
6748 EXPORT_SYMBOL_GPL(ata_port_desc
);
6750 EXPORT_SYMBOL_GPL(ata_port_pbar_desc
);
6751 #endif /* CONFIG_PCI */
6752 EXPORT_SYMBOL_GPL(ata_port_schedule_eh
);
6753 EXPORT_SYMBOL_GPL(ata_link_abort
);
6754 EXPORT_SYMBOL_GPL(ata_port_abort
);
6755 EXPORT_SYMBOL_GPL(ata_port_freeze
);
6756 EXPORT_SYMBOL_GPL(sata_async_notification
);
6757 EXPORT_SYMBOL_GPL(ata_eh_freeze_port
);
6758 EXPORT_SYMBOL_GPL(ata_eh_thaw_port
);
6759 EXPORT_SYMBOL_GPL(ata_eh_qc_complete
);
6760 EXPORT_SYMBOL_GPL(ata_eh_qc_retry
);
6761 EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error
);
6762 EXPORT_SYMBOL_GPL(ata_do_eh
);
6763 EXPORT_SYMBOL_GPL(ata_std_error_handler
);
6765 EXPORT_SYMBOL_GPL(ata_cable_40wire
);
6766 EXPORT_SYMBOL_GPL(ata_cable_80wire
);
6767 EXPORT_SYMBOL_GPL(ata_cable_unknown
);
6768 EXPORT_SYMBOL_GPL(ata_cable_ignore
);
6769 EXPORT_SYMBOL_GPL(ata_cable_sata
);