4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
41 #include <linux/kernel_stat.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/module.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/writeback.h>
54 #include <linux/memcontrol.h>
55 #include <linux/mmu_notifier.h>
56 #include <linux/kallsyms.h>
57 #include <linux/swapops.h>
58 #include <linux/elf.h>
59 #include <linux/gfp.h>
62 #include <asm/pgalloc.h>
63 #include <asm/uaccess.h>
65 #include <asm/tlbflush.h>
66 #include <asm/pgtable.h>
70 #ifndef CONFIG_NEED_MULTIPLE_NODES
71 /* use the per-pgdat data instead for discontigmem - mbligh */
72 unsigned long max_mapnr
;
75 EXPORT_SYMBOL(max_mapnr
);
76 EXPORT_SYMBOL(mem_map
);
79 unsigned long num_physpages
;
81 * A number of key systems in x86 including ioremap() rely on the assumption
82 * that high_memory defines the upper bound on direct map memory, then end
83 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
84 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
89 EXPORT_SYMBOL(num_physpages
);
90 EXPORT_SYMBOL(high_memory
);
93 * Randomize the address space (stacks, mmaps, brk, etc.).
95 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
96 * as ancient (libc5 based) binaries can segfault. )
98 int randomize_va_space __read_mostly
=
99 #ifdef CONFIG_COMPAT_BRK
105 static int __init
disable_randmaps(char *s
)
107 randomize_va_space
= 0;
110 __setup("norandmaps", disable_randmaps
);
112 unsigned long zero_pfn __read_mostly
;
113 unsigned long highest_memmap_pfn __read_mostly
;
116 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
118 static int __init
init_zero_pfn(void)
120 zero_pfn
= page_to_pfn(ZERO_PAGE(0));
123 core_initcall(init_zero_pfn
);
126 #if defined(SPLIT_RSS_COUNTING)
128 void __sync_task_rss_stat(struct task_struct
*task
, struct mm_struct
*mm
)
132 for (i
= 0; i
< NR_MM_COUNTERS
; i
++) {
133 if (task
->rss_stat
.count
[i
]) {
135 add_mm_counter(mm
, i
, task
->rss_stat
.count
[i
]);
136 task
->rss_stat
.count
[i
] = 0;
139 task
->rss_stat
.events
= 0;
142 static void add_mm_counter_fast(struct mm_struct
*mm
, int member
, int val
)
144 struct task_struct
*task
= current
;
146 if (likely(task
->mm
== mm
))
147 task
->rss_stat
.count
[member
] += val
;
149 add_mm_counter(mm
, member
, val
);
151 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
152 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
154 /* sync counter once per 64 page faults */
155 #define TASK_RSS_EVENTS_THRESH (64)
156 static void check_sync_rss_stat(struct task_struct
*task
)
158 if (unlikely(task
!= current
))
160 if (unlikely(task
->rss_stat
.events
++ > TASK_RSS_EVENTS_THRESH
))
161 __sync_task_rss_stat(task
, task
->mm
);
164 unsigned long get_mm_counter(struct mm_struct
*mm
, int member
)
169 * Don't use task->mm here...for avoiding to use task_get_mm()..
170 * The caller must guarantee task->mm is not invalid.
172 val
= atomic_long_read(&mm
->rss_stat
.count
[member
]);
174 * counter is updated in asynchronous manner and may go to minus.
175 * But it's never be expected number for users.
179 return (unsigned long)val
;
182 void sync_mm_rss(struct task_struct
*task
, struct mm_struct
*mm
)
184 __sync_task_rss_stat(task
, mm
);
188 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
189 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
191 static void check_sync_rss_stat(struct task_struct
*task
)
198 * If a p?d_bad entry is found while walking page tables, report
199 * the error, before resetting entry to p?d_none. Usually (but
200 * very seldom) called out from the p?d_none_or_clear_bad macros.
203 void pgd_clear_bad(pgd_t
*pgd
)
209 void pud_clear_bad(pud_t
*pud
)
215 void pmd_clear_bad(pmd_t
*pmd
)
222 * Note: this doesn't free the actual pages themselves. That
223 * has been handled earlier when unmapping all the memory regions.
225 static void free_pte_range(struct mmu_gather
*tlb
, pmd_t
*pmd
,
228 pgtable_t token
= pmd_pgtable(*pmd
);
230 pte_free_tlb(tlb
, token
, addr
);
234 static inline void free_pmd_range(struct mmu_gather
*tlb
, pud_t
*pud
,
235 unsigned long addr
, unsigned long end
,
236 unsigned long floor
, unsigned long ceiling
)
243 pmd
= pmd_offset(pud
, addr
);
245 next
= pmd_addr_end(addr
, end
);
246 if (pmd_none_or_clear_bad(pmd
))
248 free_pte_range(tlb
, pmd
, addr
);
249 } while (pmd
++, addr
= next
, addr
!= end
);
259 if (end
- 1 > ceiling
- 1)
262 pmd
= pmd_offset(pud
, start
);
264 pmd_free_tlb(tlb
, pmd
, start
);
267 static inline void free_pud_range(struct mmu_gather
*tlb
, pgd_t
*pgd
,
268 unsigned long addr
, unsigned long end
,
269 unsigned long floor
, unsigned long ceiling
)
276 pud
= pud_offset(pgd
, addr
);
278 next
= pud_addr_end(addr
, end
);
279 if (pud_none_or_clear_bad(pud
))
281 free_pmd_range(tlb
, pud
, addr
, next
, floor
, ceiling
);
282 } while (pud
++, addr
= next
, addr
!= end
);
288 ceiling
&= PGDIR_MASK
;
292 if (end
- 1 > ceiling
- 1)
295 pud
= pud_offset(pgd
, start
);
297 pud_free_tlb(tlb
, pud
, start
);
301 * This function frees user-level page tables of a process.
303 * Must be called with pagetable lock held.
305 void free_pgd_range(struct mmu_gather
*tlb
,
306 unsigned long addr
, unsigned long end
,
307 unsigned long floor
, unsigned long ceiling
)
314 * The next few lines have given us lots of grief...
316 * Why are we testing PMD* at this top level? Because often
317 * there will be no work to do at all, and we'd prefer not to
318 * go all the way down to the bottom just to discover that.
320 * Why all these "- 1"s? Because 0 represents both the bottom
321 * of the address space and the top of it (using -1 for the
322 * top wouldn't help much: the masks would do the wrong thing).
323 * The rule is that addr 0 and floor 0 refer to the bottom of
324 * the address space, but end 0 and ceiling 0 refer to the top
325 * Comparisons need to use "end - 1" and "ceiling - 1" (though
326 * that end 0 case should be mythical).
328 * Wherever addr is brought up or ceiling brought down, we must
329 * be careful to reject "the opposite 0" before it confuses the
330 * subsequent tests. But what about where end is brought down
331 * by PMD_SIZE below? no, end can't go down to 0 there.
333 * Whereas we round start (addr) and ceiling down, by different
334 * masks at different levels, in order to test whether a table
335 * now has no other vmas using it, so can be freed, we don't
336 * bother to round floor or end up - the tests don't need that.
350 if (end
- 1 > ceiling
- 1)
356 pgd
= pgd_offset(tlb
->mm
, addr
);
358 next
= pgd_addr_end(addr
, end
);
359 if (pgd_none_or_clear_bad(pgd
))
361 free_pud_range(tlb
, pgd
, addr
, next
, floor
, ceiling
);
362 } while (pgd
++, addr
= next
, addr
!= end
);
365 void free_pgtables(struct mmu_gather
*tlb
, struct vm_area_struct
*vma
,
366 unsigned long floor
, unsigned long ceiling
)
369 struct vm_area_struct
*next
= vma
->vm_next
;
370 unsigned long addr
= vma
->vm_start
;
373 * Hide vma from rmap and truncate_pagecache before freeing
376 unlink_anon_vmas(vma
);
377 unlink_file_vma(vma
);
379 if (is_vm_hugetlb_page(vma
)) {
380 hugetlb_free_pgd_range(tlb
, addr
, vma
->vm_end
,
381 floor
, next
? next
->vm_start
: ceiling
);
384 * Optimization: gather nearby vmas into one call down
386 while (next
&& next
->vm_start
<= vma
->vm_end
+ PMD_SIZE
387 && !is_vm_hugetlb_page(next
)) {
390 unlink_anon_vmas(vma
);
391 unlink_file_vma(vma
);
393 free_pgd_range(tlb
, addr
, vma
->vm_end
,
394 floor
, next
? next
->vm_start
: ceiling
);
400 int __pte_alloc(struct mm_struct
*mm
, pmd_t
*pmd
, unsigned long address
)
402 pgtable_t
new = pte_alloc_one(mm
, address
);
407 * Ensure all pte setup (eg. pte page lock and page clearing) are
408 * visible before the pte is made visible to other CPUs by being
409 * put into page tables.
411 * The other side of the story is the pointer chasing in the page
412 * table walking code (when walking the page table without locking;
413 * ie. most of the time). Fortunately, these data accesses consist
414 * of a chain of data-dependent loads, meaning most CPUs (alpha
415 * being the notable exception) will already guarantee loads are
416 * seen in-order. See the alpha page table accessors for the
417 * smp_read_barrier_depends() barriers in page table walking code.
419 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
421 spin_lock(&mm
->page_table_lock
);
422 if (!pmd_present(*pmd
)) { /* Has another populated it ? */
424 pmd_populate(mm
, pmd
, new);
427 spin_unlock(&mm
->page_table_lock
);
433 int __pte_alloc_kernel(pmd_t
*pmd
, unsigned long address
)
435 pte_t
*new = pte_alloc_one_kernel(&init_mm
, address
);
439 smp_wmb(); /* See comment in __pte_alloc */
441 spin_lock(&init_mm
.page_table_lock
);
442 if (!pmd_present(*pmd
)) { /* Has another populated it ? */
443 pmd_populate_kernel(&init_mm
, pmd
, new);
446 spin_unlock(&init_mm
.page_table_lock
);
448 pte_free_kernel(&init_mm
, new);
452 static inline void init_rss_vec(int *rss
)
454 memset(rss
, 0, sizeof(int) * NR_MM_COUNTERS
);
457 static inline void add_mm_rss_vec(struct mm_struct
*mm
, int *rss
)
461 if (current
->mm
== mm
)
462 sync_mm_rss(current
, mm
);
463 for (i
= 0; i
< NR_MM_COUNTERS
; i
++)
465 add_mm_counter(mm
, i
, rss
[i
]);
469 * This function is called to print an error when a bad pte
470 * is found. For example, we might have a PFN-mapped pte in
471 * a region that doesn't allow it.
473 * The calling function must still handle the error.
475 static void print_bad_pte(struct vm_area_struct
*vma
, unsigned long addr
,
476 pte_t pte
, struct page
*page
)
478 pgd_t
*pgd
= pgd_offset(vma
->vm_mm
, addr
);
479 pud_t
*pud
= pud_offset(pgd
, addr
);
480 pmd_t
*pmd
= pmd_offset(pud
, addr
);
481 struct address_space
*mapping
;
483 static unsigned long resume
;
484 static unsigned long nr_shown
;
485 static unsigned long nr_unshown
;
488 * Allow a burst of 60 reports, then keep quiet for that minute;
489 * or allow a steady drip of one report per second.
491 if (nr_shown
== 60) {
492 if (time_before(jiffies
, resume
)) {
498 "BUG: Bad page map: %lu messages suppressed\n",
505 resume
= jiffies
+ 60 * HZ
;
507 mapping
= vma
->vm_file
? vma
->vm_file
->f_mapping
: NULL
;
508 index
= linear_page_index(vma
, addr
);
511 "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
513 (long long)pte_val(pte
), (long long)pmd_val(*pmd
));
517 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
518 (void *)addr
, vma
->vm_flags
, vma
->anon_vma
, mapping
, index
);
520 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
523 print_symbol(KERN_ALERT
"vma->vm_ops->fault: %s\n",
524 (unsigned long)vma
->vm_ops
->fault
);
525 if (vma
->vm_file
&& vma
->vm_file
->f_op
)
526 print_symbol(KERN_ALERT
"vma->vm_file->f_op->mmap: %s\n",
527 (unsigned long)vma
->vm_file
->f_op
->mmap
);
529 add_taint(TAINT_BAD_PAGE
);
532 static inline int is_cow_mapping(unsigned int flags
)
534 return (flags
& (VM_SHARED
| VM_MAYWRITE
)) == VM_MAYWRITE
;
538 static inline int is_zero_pfn(unsigned long pfn
)
540 return pfn
== zero_pfn
;
545 static inline unsigned long my_zero_pfn(unsigned long addr
)
552 * vm_normal_page -- This function gets the "struct page" associated with a pte.
554 * "Special" mappings do not wish to be associated with a "struct page" (either
555 * it doesn't exist, or it exists but they don't want to touch it). In this
556 * case, NULL is returned here. "Normal" mappings do have a struct page.
558 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
559 * pte bit, in which case this function is trivial. Secondly, an architecture
560 * may not have a spare pte bit, which requires a more complicated scheme,
563 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
564 * special mapping (even if there are underlying and valid "struct pages").
565 * COWed pages of a VM_PFNMAP are always normal.
567 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
568 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
569 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
570 * mapping will always honor the rule
572 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
574 * And for normal mappings this is false.
576 * This restricts such mappings to be a linear translation from virtual address
577 * to pfn. To get around this restriction, we allow arbitrary mappings so long
578 * as the vma is not a COW mapping; in that case, we know that all ptes are
579 * special (because none can have been COWed).
582 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
584 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
585 * page" backing, however the difference is that _all_ pages with a struct
586 * page (that is, those where pfn_valid is true) are refcounted and considered
587 * normal pages by the VM. The disadvantage is that pages are refcounted
588 * (which can be slower and simply not an option for some PFNMAP users). The
589 * advantage is that we don't have to follow the strict linearity rule of
590 * PFNMAP mappings in order to support COWable mappings.
593 #ifdef __HAVE_ARCH_PTE_SPECIAL
594 # define HAVE_PTE_SPECIAL 1
596 # define HAVE_PTE_SPECIAL 0
598 struct page
*vm_normal_page(struct vm_area_struct
*vma
, unsigned long addr
,
601 unsigned long pfn
= pte_pfn(pte
);
603 if (HAVE_PTE_SPECIAL
) {
604 if (likely(!pte_special(pte
)))
606 if (vma
->vm_flags
& (VM_PFNMAP
| VM_MIXEDMAP
))
608 if (!is_zero_pfn(pfn
))
609 print_bad_pte(vma
, addr
, pte
, NULL
);
613 /* !HAVE_PTE_SPECIAL case follows: */
615 if (unlikely(vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
))) {
616 if (vma
->vm_flags
& VM_MIXEDMAP
) {
622 off
= (addr
- vma
->vm_start
) >> PAGE_SHIFT
;
623 if (pfn
== vma
->vm_pgoff
+ off
)
625 if (!is_cow_mapping(vma
->vm_flags
))
630 if (is_zero_pfn(pfn
))
633 if (unlikely(pfn
> highest_memmap_pfn
)) {
634 print_bad_pte(vma
, addr
, pte
, NULL
);
639 * NOTE! We still have PageReserved() pages in the page tables.
640 * eg. VDSO mappings can cause them to exist.
643 return pfn_to_page(pfn
);
647 * copy one vm_area from one task to the other. Assumes the page tables
648 * already present in the new task to be cleared in the whole range
649 * covered by this vma.
652 static inline unsigned long
653 copy_one_pte(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
654 pte_t
*dst_pte
, pte_t
*src_pte
, struct vm_area_struct
*vma
,
655 unsigned long addr
, int *rss
)
657 unsigned long vm_flags
= vma
->vm_flags
;
658 pte_t pte
= *src_pte
;
661 /* pte contains position in swap or file, so copy. */
662 if (unlikely(!pte_present(pte
))) {
663 if (!pte_file(pte
)) {
664 swp_entry_t entry
= pte_to_swp_entry(pte
);
666 if (swap_duplicate(entry
) < 0)
669 /* make sure dst_mm is on swapoff's mmlist. */
670 if (unlikely(list_empty(&dst_mm
->mmlist
))) {
671 spin_lock(&mmlist_lock
);
672 if (list_empty(&dst_mm
->mmlist
))
673 list_add(&dst_mm
->mmlist
,
675 spin_unlock(&mmlist_lock
);
677 if (likely(!non_swap_entry(entry
)))
679 else if (is_write_migration_entry(entry
) &&
680 is_cow_mapping(vm_flags
)) {
682 * COW mappings require pages in both parent
683 * and child to be set to read.
685 make_migration_entry_read(&entry
);
686 pte
= swp_entry_to_pte(entry
);
687 set_pte_at(src_mm
, addr
, src_pte
, pte
);
694 * If it's a COW mapping, write protect it both
695 * in the parent and the child
697 if (is_cow_mapping(vm_flags
)) {
698 ptep_set_wrprotect(src_mm
, addr
, src_pte
);
699 pte
= pte_wrprotect(pte
);
703 * If it's a shared mapping, mark it clean in
706 if (vm_flags
& VM_SHARED
)
707 pte
= pte_mkclean(pte
);
708 pte
= pte_mkold(pte
);
710 page
= vm_normal_page(vma
, addr
, pte
);
721 set_pte_at(dst_mm
, addr
, dst_pte
, pte
);
725 static int copy_pte_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
726 pmd_t
*dst_pmd
, pmd_t
*src_pmd
, struct vm_area_struct
*vma
,
727 unsigned long addr
, unsigned long end
)
729 pte_t
*orig_src_pte
, *orig_dst_pte
;
730 pte_t
*src_pte
, *dst_pte
;
731 spinlock_t
*src_ptl
, *dst_ptl
;
733 int rss
[NR_MM_COUNTERS
];
734 swp_entry_t entry
= (swp_entry_t
){0};
739 dst_pte
= pte_alloc_map_lock(dst_mm
, dst_pmd
, addr
, &dst_ptl
);
742 src_pte
= pte_offset_map_nested(src_pmd
, addr
);
743 src_ptl
= pte_lockptr(src_mm
, src_pmd
);
744 spin_lock_nested(src_ptl
, SINGLE_DEPTH_NESTING
);
745 orig_src_pte
= src_pte
;
746 orig_dst_pte
= dst_pte
;
747 arch_enter_lazy_mmu_mode();
751 * We are holding two locks at this point - either of them
752 * could generate latencies in another task on another CPU.
754 if (progress
>= 32) {
756 if (need_resched() ||
757 spin_needbreak(src_ptl
) || spin_needbreak(dst_ptl
))
760 if (pte_none(*src_pte
)) {
764 entry
.val
= copy_one_pte(dst_mm
, src_mm
, dst_pte
, src_pte
,
769 } while (dst_pte
++, src_pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
771 arch_leave_lazy_mmu_mode();
772 spin_unlock(src_ptl
);
773 pte_unmap_nested(orig_src_pte
);
774 add_mm_rss_vec(dst_mm
, rss
);
775 pte_unmap_unlock(orig_dst_pte
, dst_ptl
);
779 if (add_swap_count_continuation(entry
, GFP_KERNEL
) < 0)
788 static inline int copy_pmd_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
789 pud_t
*dst_pud
, pud_t
*src_pud
, struct vm_area_struct
*vma
,
790 unsigned long addr
, unsigned long end
)
792 pmd_t
*src_pmd
, *dst_pmd
;
795 dst_pmd
= pmd_alloc(dst_mm
, dst_pud
, addr
);
798 src_pmd
= pmd_offset(src_pud
, addr
);
800 next
= pmd_addr_end(addr
, end
);
801 if (pmd_none_or_clear_bad(src_pmd
))
803 if (copy_pte_range(dst_mm
, src_mm
, dst_pmd
, src_pmd
,
806 } while (dst_pmd
++, src_pmd
++, addr
= next
, addr
!= end
);
810 static inline int copy_pud_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
811 pgd_t
*dst_pgd
, pgd_t
*src_pgd
, struct vm_area_struct
*vma
,
812 unsigned long addr
, unsigned long end
)
814 pud_t
*src_pud
, *dst_pud
;
817 dst_pud
= pud_alloc(dst_mm
, dst_pgd
, addr
);
820 src_pud
= pud_offset(src_pgd
, addr
);
822 next
= pud_addr_end(addr
, end
);
823 if (pud_none_or_clear_bad(src_pud
))
825 if (copy_pmd_range(dst_mm
, src_mm
, dst_pud
, src_pud
,
828 } while (dst_pud
++, src_pud
++, addr
= next
, addr
!= end
);
832 int copy_page_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
833 struct vm_area_struct
*vma
)
835 pgd_t
*src_pgd
, *dst_pgd
;
837 unsigned long addr
= vma
->vm_start
;
838 unsigned long end
= vma
->vm_end
;
842 * Don't copy ptes where a page fault will fill them correctly.
843 * Fork becomes much lighter when there are big shared or private
844 * readonly mappings. The tradeoff is that copy_page_range is more
845 * efficient than faulting.
847 if (!(vma
->vm_flags
& (VM_HUGETLB
|VM_NONLINEAR
|VM_PFNMAP
|VM_INSERTPAGE
))) {
852 if (is_vm_hugetlb_page(vma
))
853 return copy_hugetlb_page_range(dst_mm
, src_mm
, vma
);
855 if (unlikely(is_pfn_mapping(vma
))) {
857 * We do not free on error cases below as remove_vma
858 * gets called on error from higher level routine
860 ret
= track_pfn_vma_copy(vma
);
866 * We need to invalidate the secondary MMU mappings only when
867 * there could be a permission downgrade on the ptes of the
868 * parent mm. And a permission downgrade will only happen if
869 * is_cow_mapping() returns true.
871 if (is_cow_mapping(vma
->vm_flags
))
872 mmu_notifier_invalidate_range_start(src_mm
, addr
, end
);
875 dst_pgd
= pgd_offset(dst_mm
, addr
);
876 src_pgd
= pgd_offset(src_mm
, addr
);
878 next
= pgd_addr_end(addr
, end
);
879 if (pgd_none_or_clear_bad(src_pgd
))
881 if (unlikely(copy_pud_range(dst_mm
, src_mm
, dst_pgd
, src_pgd
,
886 } while (dst_pgd
++, src_pgd
++, addr
= next
, addr
!= end
);
888 if (is_cow_mapping(vma
->vm_flags
))
889 mmu_notifier_invalidate_range_end(src_mm
,
894 static unsigned long zap_pte_range(struct mmu_gather
*tlb
,
895 struct vm_area_struct
*vma
, pmd_t
*pmd
,
896 unsigned long addr
, unsigned long end
,
897 long *zap_work
, struct zap_details
*details
)
899 struct mm_struct
*mm
= tlb
->mm
;
902 int rss
[NR_MM_COUNTERS
];
906 pte
= pte_offset_map_lock(mm
, pmd
, addr
, &ptl
);
907 arch_enter_lazy_mmu_mode();
910 if (pte_none(ptent
)) {
915 (*zap_work
) -= PAGE_SIZE
;
917 if (pte_present(ptent
)) {
920 page
= vm_normal_page(vma
, addr
, ptent
);
921 if (unlikely(details
) && page
) {
923 * unmap_shared_mapping_pages() wants to
924 * invalidate cache without truncating:
925 * unmap shared but keep private pages.
927 if (details
->check_mapping
&&
928 details
->check_mapping
!= page
->mapping
)
931 * Each page->index must be checked when
932 * invalidating or truncating nonlinear.
934 if (details
->nonlinear_vma
&&
935 (page
->index
< details
->first_index
||
936 page
->index
> details
->last_index
))
939 ptent
= ptep_get_and_clear_full(mm
, addr
, pte
,
941 tlb_remove_tlb_entry(tlb
, pte
, addr
);
944 if (unlikely(details
) && details
->nonlinear_vma
945 && linear_page_index(details
->nonlinear_vma
,
946 addr
) != page
->index
)
947 set_pte_at(mm
, addr
, pte
,
948 pgoff_to_pte(page
->index
));
952 if (pte_dirty(ptent
))
953 set_page_dirty(page
);
954 if (pte_young(ptent
) &&
955 likely(!VM_SequentialReadHint(vma
)))
956 mark_page_accessed(page
);
959 page_remove_rmap(page
);
960 if (unlikely(page_mapcount(page
) < 0))
961 print_bad_pte(vma
, addr
, ptent
, page
);
962 tlb_remove_page(tlb
, page
);
966 * If details->check_mapping, we leave swap entries;
967 * if details->nonlinear_vma, we leave file entries.
969 if (unlikely(details
))
971 if (pte_file(ptent
)) {
972 if (unlikely(!(vma
->vm_flags
& VM_NONLINEAR
)))
973 print_bad_pte(vma
, addr
, ptent
, NULL
);
975 swp_entry_t entry
= pte_to_swp_entry(ptent
);
977 if (!non_swap_entry(entry
))
979 if (unlikely(!free_swap_and_cache(entry
)))
980 print_bad_pte(vma
, addr
, ptent
, NULL
);
982 pte_clear_not_present_full(mm
, addr
, pte
, tlb
->fullmm
);
983 } while (pte
++, addr
+= PAGE_SIZE
, (addr
!= end
&& *zap_work
> 0));
985 add_mm_rss_vec(mm
, rss
);
986 arch_leave_lazy_mmu_mode();
987 pte_unmap_unlock(pte
- 1, ptl
);
992 static inline unsigned long zap_pmd_range(struct mmu_gather
*tlb
,
993 struct vm_area_struct
*vma
, pud_t
*pud
,
994 unsigned long addr
, unsigned long end
,
995 long *zap_work
, struct zap_details
*details
)
1000 pmd
= pmd_offset(pud
, addr
);
1002 next
= pmd_addr_end(addr
, end
);
1003 if (pmd_none_or_clear_bad(pmd
)) {
1007 next
= zap_pte_range(tlb
, vma
, pmd
, addr
, next
,
1009 } while (pmd
++, addr
= next
, (addr
!= end
&& *zap_work
> 0));
1014 static inline unsigned long zap_pud_range(struct mmu_gather
*tlb
,
1015 struct vm_area_struct
*vma
, pgd_t
*pgd
,
1016 unsigned long addr
, unsigned long end
,
1017 long *zap_work
, struct zap_details
*details
)
1022 pud
= pud_offset(pgd
, addr
);
1024 next
= pud_addr_end(addr
, end
);
1025 if (pud_none_or_clear_bad(pud
)) {
1029 next
= zap_pmd_range(tlb
, vma
, pud
, addr
, next
,
1031 } while (pud
++, addr
= next
, (addr
!= end
&& *zap_work
> 0));
1036 static unsigned long unmap_page_range(struct mmu_gather
*tlb
,
1037 struct vm_area_struct
*vma
,
1038 unsigned long addr
, unsigned long end
,
1039 long *zap_work
, struct zap_details
*details
)
1044 if (details
&& !details
->check_mapping
&& !details
->nonlinear_vma
)
1047 BUG_ON(addr
>= end
);
1048 mem_cgroup_uncharge_start();
1049 tlb_start_vma(tlb
, vma
);
1050 pgd
= pgd_offset(vma
->vm_mm
, addr
);
1052 next
= pgd_addr_end(addr
, end
);
1053 if (pgd_none_or_clear_bad(pgd
)) {
1057 next
= zap_pud_range(tlb
, vma
, pgd
, addr
, next
,
1059 } while (pgd
++, addr
= next
, (addr
!= end
&& *zap_work
> 0));
1060 tlb_end_vma(tlb
, vma
);
1061 mem_cgroup_uncharge_end();
1066 #ifdef CONFIG_PREEMPT
1067 # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
1069 /* No preempt: go for improved straight-line efficiency */
1070 # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
1074 * unmap_vmas - unmap a range of memory covered by a list of vma's
1075 * @tlbp: address of the caller's struct mmu_gather
1076 * @vma: the starting vma
1077 * @start_addr: virtual address at which to start unmapping
1078 * @end_addr: virtual address at which to end unmapping
1079 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
1080 * @details: details of nonlinear truncation or shared cache invalidation
1082 * Returns the end address of the unmapping (restart addr if interrupted).
1084 * Unmap all pages in the vma list.
1086 * We aim to not hold locks for too long (for scheduling latency reasons).
1087 * So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to
1088 * return the ending mmu_gather to the caller.
1090 * Only addresses between `start' and `end' will be unmapped.
1092 * The VMA list must be sorted in ascending virtual address order.
1094 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1095 * range after unmap_vmas() returns. So the only responsibility here is to
1096 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1097 * drops the lock and schedules.
1099 unsigned long unmap_vmas(struct mmu_gather
**tlbp
,
1100 struct vm_area_struct
*vma
, unsigned long start_addr
,
1101 unsigned long end_addr
, unsigned long *nr_accounted
,
1102 struct zap_details
*details
)
1104 long zap_work
= ZAP_BLOCK_SIZE
;
1105 unsigned long tlb_start
= 0; /* For tlb_finish_mmu */
1106 int tlb_start_valid
= 0;
1107 unsigned long start
= start_addr
;
1108 spinlock_t
*i_mmap_lock
= details
? details
->i_mmap_lock
: NULL
;
1109 int fullmm
= (*tlbp
)->fullmm
;
1110 struct mm_struct
*mm
= vma
->vm_mm
;
1112 mmu_notifier_invalidate_range_start(mm
, start_addr
, end_addr
);
1113 for ( ; vma
&& vma
->vm_start
< end_addr
; vma
= vma
->vm_next
) {
1116 start
= max(vma
->vm_start
, start_addr
);
1117 if (start
>= vma
->vm_end
)
1119 end
= min(vma
->vm_end
, end_addr
);
1120 if (end
<= vma
->vm_start
)
1123 if (vma
->vm_flags
& VM_ACCOUNT
)
1124 *nr_accounted
+= (end
- start
) >> PAGE_SHIFT
;
1126 if (unlikely(is_pfn_mapping(vma
)))
1127 untrack_pfn_vma(vma
, 0, 0);
1129 while (start
!= end
) {
1130 if (!tlb_start_valid
) {
1132 tlb_start_valid
= 1;
1135 if (unlikely(is_vm_hugetlb_page(vma
))) {
1137 * It is undesirable to test vma->vm_file as it
1138 * should be non-null for valid hugetlb area.
1139 * However, vm_file will be NULL in the error
1140 * cleanup path of do_mmap_pgoff. When
1141 * hugetlbfs ->mmap method fails,
1142 * do_mmap_pgoff() nullifies vma->vm_file
1143 * before calling this function to clean up.
1144 * Since no pte has actually been setup, it is
1145 * safe to do nothing in this case.
1148 unmap_hugepage_range(vma
, start
, end
, NULL
);
1149 zap_work
-= (end
- start
) /
1150 pages_per_huge_page(hstate_vma(vma
));
1155 start
= unmap_page_range(*tlbp
, vma
,
1156 start
, end
, &zap_work
, details
);
1159 BUG_ON(start
!= end
);
1163 tlb_finish_mmu(*tlbp
, tlb_start
, start
);
1165 if (need_resched() ||
1166 (i_mmap_lock
&& spin_needbreak(i_mmap_lock
))) {
1174 *tlbp
= tlb_gather_mmu(vma
->vm_mm
, fullmm
);
1175 tlb_start_valid
= 0;
1176 zap_work
= ZAP_BLOCK_SIZE
;
1180 mmu_notifier_invalidate_range_end(mm
, start_addr
, end_addr
);
1181 return start
; /* which is now the end (or restart) address */
1185 * zap_page_range - remove user pages in a given range
1186 * @vma: vm_area_struct holding the applicable pages
1187 * @address: starting address of pages to zap
1188 * @size: number of bytes to zap
1189 * @details: details of nonlinear truncation or shared cache invalidation
1191 unsigned long zap_page_range(struct vm_area_struct
*vma
, unsigned long address
,
1192 unsigned long size
, struct zap_details
*details
)
1194 struct mm_struct
*mm
= vma
->vm_mm
;
1195 struct mmu_gather
*tlb
;
1196 unsigned long end
= address
+ size
;
1197 unsigned long nr_accounted
= 0;
1200 tlb
= tlb_gather_mmu(mm
, 0);
1201 update_hiwater_rss(mm
);
1202 end
= unmap_vmas(&tlb
, vma
, address
, end
, &nr_accounted
, details
);
1204 tlb_finish_mmu(tlb
, address
, end
);
1209 * zap_vma_ptes - remove ptes mapping the vma
1210 * @vma: vm_area_struct holding ptes to be zapped
1211 * @address: starting address of pages to zap
1212 * @size: number of bytes to zap
1214 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1216 * The entire address range must be fully contained within the vma.
1218 * Returns 0 if successful.
1220 int zap_vma_ptes(struct vm_area_struct
*vma
, unsigned long address
,
1223 if (address
< vma
->vm_start
|| address
+ size
> vma
->vm_end
||
1224 !(vma
->vm_flags
& VM_PFNMAP
))
1226 zap_page_range(vma
, address
, size
, NULL
);
1229 EXPORT_SYMBOL_GPL(zap_vma_ptes
);
1232 * Do a quick page-table lookup for a single page.
1234 struct page
*follow_page(struct vm_area_struct
*vma
, unsigned long address
,
1243 struct mm_struct
*mm
= vma
->vm_mm
;
1245 page
= follow_huge_addr(mm
, address
, flags
& FOLL_WRITE
);
1246 if (!IS_ERR(page
)) {
1247 BUG_ON(flags
& FOLL_GET
);
1252 pgd
= pgd_offset(mm
, address
);
1253 if (pgd_none(*pgd
) || unlikely(pgd_bad(*pgd
)))
1256 pud
= pud_offset(pgd
, address
);
1259 if (pud_huge(*pud
)) {
1260 BUG_ON(flags
& FOLL_GET
);
1261 page
= follow_huge_pud(mm
, address
, pud
, flags
& FOLL_WRITE
);
1264 if (unlikely(pud_bad(*pud
)))
1267 pmd
= pmd_offset(pud
, address
);
1270 if (pmd_huge(*pmd
)) {
1271 BUG_ON(flags
& FOLL_GET
);
1272 page
= follow_huge_pmd(mm
, address
, pmd
, flags
& FOLL_WRITE
);
1275 if (unlikely(pmd_bad(*pmd
)))
1278 ptep
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
1281 if (!pte_present(pte
))
1283 if ((flags
& FOLL_WRITE
) && !pte_write(pte
))
1286 page
= vm_normal_page(vma
, address
, pte
);
1287 if (unlikely(!page
)) {
1288 if ((flags
& FOLL_DUMP
) ||
1289 !is_zero_pfn(pte_pfn(pte
)))
1291 page
= pte_page(pte
);
1294 if (flags
& FOLL_GET
)
1296 if (flags
& FOLL_TOUCH
) {
1297 if ((flags
& FOLL_WRITE
) &&
1298 !pte_dirty(pte
) && !PageDirty(page
))
1299 set_page_dirty(page
);
1301 * pte_mkyoung() would be more correct here, but atomic care
1302 * is needed to avoid losing the dirty bit: it is easier to use
1303 * mark_page_accessed().
1305 mark_page_accessed(page
);
1308 pte_unmap_unlock(ptep
, ptl
);
1313 pte_unmap_unlock(ptep
, ptl
);
1314 return ERR_PTR(-EFAULT
);
1317 pte_unmap_unlock(ptep
, ptl
);
1323 * When core dumping an enormous anonymous area that nobody
1324 * has touched so far, we don't want to allocate unnecessary pages or
1325 * page tables. Return error instead of NULL to skip handle_mm_fault,
1326 * then get_dump_page() will return NULL to leave a hole in the dump.
1327 * But we can only make this optimization where a hole would surely
1328 * be zero-filled if handle_mm_fault() actually did handle it.
1330 if ((flags
& FOLL_DUMP
) &&
1331 (!vma
->vm_ops
|| !vma
->vm_ops
->fault
))
1332 return ERR_PTR(-EFAULT
);
1336 int __get_user_pages(struct task_struct
*tsk
, struct mm_struct
*mm
,
1337 unsigned long start
, int nr_pages
, unsigned int gup_flags
,
1338 struct page
**pages
, struct vm_area_struct
**vmas
)
1341 unsigned long vm_flags
;
1346 VM_BUG_ON(!!pages
!= !!(gup_flags
& FOLL_GET
));
1349 * Require read or write permissions.
1350 * If FOLL_FORCE is set, we only require the "MAY" flags.
1352 vm_flags
= (gup_flags
& FOLL_WRITE
) ?
1353 (VM_WRITE
| VM_MAYWRITE
) : (VM_READ
| VM_MAYREAD
);
1354 vm_flags
&= (gup_flags
& FOLL_FORCE
) ?
1355 (VM_MAYREAD
| VM_MAYWRITE
) : (VM_READ
| VM_WRITE
);
1359 struct vm_area_struct
*vma
;
1361 vma
= find_extend_vma(mm
, start
);
1362 if (!vma
&& in_gate_area(tsk
, start
)) {
1363 unsigned long pg
= start
& PAGE_MASK
;
1364 struct vm_area_struct
*gate_vma
= get_gate_vma(tsk
);
1370 /* user gate pages are read-only */
1371 if (gup_flags
& FOLL_WRITE
)
1372 return i
? : -EFAULT
;
1374 pgd
= pgd_offset_k(pg
);
1376 pgd
= pgd_offset_gate(mm
, pg
);
1377 BUG_ON(pgd_none(*pgd
));
1378 pud
= pud_offset(pgd
, pg
);
1379 BUG_ON(pud_none(*pud
));
1380 pmd
= pmd_offset(pud
, pg
);
1382 return i
? : -EFAULT
;
1383 pte
= pte_offset_map(pmd
, pg
);
1384 if (pte_none(*pte
)) {
1386 return i
? : -EFAULT
;
1389 struct page
*page
= vm_normal_page(gate_vma
, start
, *pte
);
1404 (vma
->vm_flags
& (VM_IO
| VM_PFNMAP
)) ||
1405 !(vm_flags
& vma
->vm_flags
))
1406 return i
? : -EFAULT
;
1408 if (is_vm_hugetlb_page(vma
)) {
1409 i
= follow_hugetlb_page(mm
, vma
, pages
, vmas
,
1410 &start
, &nr_pages
, i
, gup_flags
);
1416 unsigned int foll_flags
= gup_flags
;
1419 * If we have a pending SIGKILL, don't keep faulting
1420 * pages and potentially allocating memory.
1422 if (unlikely(fatal_signal_pending(current
)))
1423 return i
? i
: -ERESTARTSYS
;
1426 while (!(page
= follow_page(vma
, start
, foll_flags
))) {
1429 ret
= handle_mm_fault(mm
, vma
, start
,
1430 (foll_flags
& FOLL_WRITE
) ?
1431 FAULT_FLAG_WRITE
: 0);
1433 if (ret
& VM_FAULT_ERROR
) {
1434 if (ret
& VM_FAULT_OOM
)
1435 return i
? i
: -ENOMEM
;
1437 (VM_FAULT_HWPOISON
|VM_FAULT_SIGBUS
))
1438 return i
? i
: -EFAULT
;
1441 if (ret
& VM_FAULT_MAJOR
)
1447 * The VM_FAULT_WRITE bit tells us that
1448 * do_wp_page has broken COW when necessary,
1449 * even if maybe_mkwrite decided not to set
1450 * pte_write. We can thus safely do subsequent
1451 * page lookups as if they were reads. But only
1452 * do so when looping for pte_write is futile:
1453 * in some cases userspace may also be wanting
1454 * to write to the gotten user page, which a
1455 * read fault here might prevent (a readonly
1456 * page might get reCOWed by userspace write).
1458 if ((ret
& VM_FAULT_WRITE
) &&
1459 !(vma
->vm_flags
& VM_WRITE
))
1460 foll_flags
&= ~FOLL_WRITE
;
1465 return i
? i
: PTR_ERR(page
);
1469 flush_anon_page(vma
, page
, start
);
1470 flush_dcache_page(page
);
1477 } while (nr_pages
&& start
< vma
->vm_end
);
1483 * get_user_pages() - pin user pages in memory
1484 * @tsk: task_struct of target task
1485 * @mm: mm_struct of target mm
1486 * @start: starting user address
1487 * @nr_pages: number of pages from start to pin
1488 * @write: whether pages will be written to by the caller
1489 * @force: whether to force write access even if user mapping is
1490 * readonly. This will result in the page being COWed even
1491 * in MAP_SHARED mappings. You do not want this.
1492 * @pages: array that receives pointers to the pages pinned.
1493 * Should be at least nr_pages long. Or NULL, if caller
1494 * only intends to ensure the pages are faulted in.
1495 * @vmas: array of pointers to vmas corresponding to each page.
1496 * Or NULL if the caller does not require them.
1498 * Returns number of pages pinned. This may be fewer than the number
1499 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1500 * were pinned, returns -errno. Each page returned must be released
1501 * with a put_page() call when it is finished with. vmas will only
1502 * remain valid while mmap_sem is held.
1504 * Must be called with mmap_sem held for read or write.
1506 * get_user_pages walks a process's page tables and takes a reference to
1507 * each struct page that each user address corresponds to at a given
1508 * instant. That is, it takes the page that would be accessed if a user
1509 * thread accesses the given user virtual address at that instant.
1511 * This does not guarantee that the page exists in the user mappings when
1512 * get_user_pages returns, and there may even be a completely different
1513 * page there in some cases (eg. if mmapped pagecache has been invalidated
1514 * and subsequently re faulted). However it does guarantee that the page
1515 * won't be freed completely. And mostly callers simply care that the page
1516 * contains data that was valid *at some point in time*. Typically, an IO
1517 * or similar operation cannot guarantee anything stronger anyway because
1518 * locks can't be held over the syscall boundary.
1520 * If write=0, the page must not be written to. If the page is written to,
1521 * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
1522 * after the page is finished with, and before put_page is called.
1524 * get_user_pages is typically used for fewer-copy IO operations, to get a
1525 * handle on the memory by some means other than accesses via the user virtual
1526 * addresses. The pages may be submitted for DMA to devices or accessed via
1527 * their kernel linear mapping (via the kmap APIs). Care should be taken to
1528 * use the correct cache flushing APIs.
1530 * See also get_user_pages_fast, for performance critical applications.
1532 int get_user_pages(struct task_struct
*tsk
, struct mm_struct
*mm
,
1533 unsigned long start
, int nr_pages
, int write
, int force
,
1534 struct page
**pages
, struct vm_area_struct
**vmas
)
1536 int flags
= FOLL_TOUCH
;
1541 flags
|= FOLL_WRITE
;
1543 flags
|= FOLL_FORCE
;
1545 return __get_user_pages(tsk
, mm
, start
, nr_pages
, flags
, pages
, vmas
);
1547 EXPORT_SYMBOL(get_user_pages
);
1550 * get_dump_page() - pin user page in memory while writing it to core dump
1551 * @addr: user address
1553 * Returns struct page pointer of user page pinned for dump,
1554 * to be freed afterwards by page_cache_release() or put_page().
1556 * Returns NULL on any kind of failure - a hole must then be inserted into
1557 * the corefile, to preserve alignment with its headers; and also returns
1558 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1559 * allowing a hole to be left in the corefile to save diskspace.
1561 * Called without mmap_sem, but after all other threads have been killed.
1563 #ifdef CONFIG_ELF_CORE
1564 struct page
*get_dump_page(unsigned long addr
)
1566 struct vm_area_struct
*vma
;
1569 if (__get_user_pages(current
, current
->mm
, addr
, 1,
1570 FOLL_FORCE
| FOLL_DUMP
| FOLL_GET
, &page
, &vma
) < 1)
1572 flush_cache_page(vma
, addr
, page_to_pfn(page
));
1575 #endif /* CONFIG_ELF_CORE */
1577 pte_t
*get_locked_pte(struct mm_struct
*mm
, unsigned long addr
,
1580 pgd_t
* pgd
= pgd_offset(mm
, addr
);
1581 pud_t
* pud
= pud_alloc(mm
, pgd
, addr
);
1583 pmd_t
* pmd
= pmd_alloc(mm
, pud
, addr
);
1585 return pte_alloc_map_lock(mm
, pmd
, addr
, ptl
);
1591 * This is the old fallback for page remapping.
1593 * For historical reasons, it only allows reserved pages. Only
1594 * old drivers should use this, and they needed to mark their
1595 * pages reserved for the old functions anyway.
1597 static int insert_page(struct vm_area_struct
*vma
, unsigned long addr
,
1598 struct page
*page
, pgprot_t prot
)
1600 struct mm_struct
*mm
= vma
->vm_mm
;
1609 flush_dcache_page(page
);
1610 pte
= get_locked_pte(mm
, addr
, &ptl
);
1614 if (!pte_none(*pte
))
1617 /* Ok, finally just insert the thing.. */
1619 inc_mm_counter_fast(mm
, MM_FILEPAGES
);
1620 page_add_file_rmap(page
);
1621 set_pte_at(mm
, addr
, pte
, mk_pte(page
, prot
));
1624 pte_unmap_unlock(pte
, ptl
);
1627 pte_unmap_unlock(pte
, ptl
);
1633 * vm_insert_page - insert single page into user vma
1634 * @vma: user vma to map to
1635 * @addr: target user address of this page
1636 * @page: source kernel page
1638 * This allows drivers to insert individual pages they've allocated
1641 * The page has to be a nice clean _individual_ kernel allocation.
1642 * If you allocate a compound page, you need to have marked it as
1643 * such (__GFP_COMP), or manually just split the page up yourself
1644 * (see split_page()).
1646 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1647 * took an arbitrary page protection parameter. This doesn't allow
1648 * that. Your vma protection will have to be set up correctly, which
1649 * means that if you want a shared writable mapping, you'd better
1650 * ask for a shared writable mapping!
1652 * The page does not need to be reserved.
1654 int vm_insert_page(struct vm_area_struct
*vma
, unsigned long addr
,
1657 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
1659 if (!page_count(page
))
1661 vma
->vm_flags
|= VM_INSERTPAGE
;
1662 return insert_page(vma
, addr
, page
, vma
->vm_page_prot
);
1664 EXPORT_SYMBOL(vm_insert_page
);
1666 static int insert_pfn(struct vm_area_struct
*vma
, unsigned long addr
,
1667 unsigned long pfn
, pgprot_t prot
)
1669 struct mm_struct
*mm
= vma
->vm_mm
;
1675 pte
= get_locked_pte(mm
, addr
, &ptl
);
1679 if (!pte_none(*pte
))
1682 /* Ok, finally just insert the thing.. */
1683 entry
= pte_mkspecial(pfn_pte(pfn
, prot
));
1684 set_pte_at(mm
, addr
, pte
, entry
);
1685 update_mmu_cache(vma
, addr
, pte
); /* XXX: why not for insert_page? */
1689 pte_unmap_unlock(pte
, ptl
);
1695 * vm_insert_pfn - insert single pfn into user vma
1696 * @vma: user vma to map to
1697 * @addr: target user address of this page
1698 * @pfn: source kernel pfn
1700 * Similar to vm_inert_page, this allows drivers to insert individual pages
1701 * they've allocated into a user vma. Same comments apply.
1703 * This function should only be called from a vm_ops->fault handler, and
1704 * in that case the handler should return NULL.
1706 * vma cannot be a COW mapping.
1708 * As this is called only for pages that do not currently exist, we
1709 * do not need to flush old virtual caches or the TLB.
1711 int vm_insert_pfn(struct vm_area_struct
*vma
, unsigned long addr
,
1715 pgprot_t pgprot
= vma
->vm_page_prot
;
1717 * Technically, architectures with pte_special can avoid all these
1718 * restrictions (same for remap_pfn_range). However we would like
1719 * consistency in testing and feature parity among all, so we should
1720 * try to keep these invariants in place for everybody.
1722 BUG_ON(!(vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
)));
1723 BUG_ON((vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
)) ==
1724 (VM_PFNMAP
|VM_MIXEDMAP
));
1725 BUG_ON((vma
->vm_flags
& VM_PFNMAP
) && is_cow_mapping(vma
->vm_flags
));
1726 BUG_ON((vma
->vm_flags
& VM_MIXEDMAP
) && pfn_valid(pfn
));
1728 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
1730 if (track_pfn_vma_new(vma
, &pgprot
, pfn
, PAGE_SIZE
))
1733 ret
= insert_pfn(vma
, addr
, pfn
, pgprot
);
1736 untrack_pfn_vma(vma
, pfn
, PAGE_SIZE
);
1740 EXPORT_SYMBOL(vm_insert_pfn
);
1742 int vm_insert_mixed(struct vm_area_struct
*vma
, unsigned long addr
,
1745 BUG_ON(!(vma
->vm_flags
& VM_MIXEDMAP
));
1747 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
1751 * If we don't have pte special, then we have to use the pfn_valid()
1752 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1753 * refcount the page if pfn_valid is true (hence insert_page rather
1754 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
1755 * without pte special, it would there be refcounted as a normal page.
1757 if (!HAVE_PTE_SPECIAL
&& pfn_valid(pfn
)) {
1760 page
= pfn_to_page(pfn
);
1761 return insert_page(vma
, addr
, page
, vma
->vm_page_prot
);
1763 return insert_pfn(vma
, addr
, pfn
, vma
->vm_page_prot
);
1765 EXPORT_SYMBOL(vm_insert_mixed
);
1768 * maps a range of physical memory into the requested pages. the old
1769 * mappings are removed. any references to nonexistent pages results
1770 * in null mappings (currently treated as "copy-on-access")
1772 static int remap_pte_range(struct mm_struct
*mm
, pmd_t
*pmd
,
1773 unsigned long addr
, unsigned long end
,
1774 unsigned long pfn
, pgprot_t prot
)
1779 pte
= pte_alloc_map_lock(mm
, pmd
, addr
, &ptl
);
1782 arch_enter_lazy_mmu_mode();
1784 BUG_ON(!pte_none(*pte
));
1785 set_pte_at(mm
, addr
, pte
, pte_mkspecial(pfn_pte(pfn
, prot
)));
1787 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
1788 arch_leave_lazy_mmu_mode();
1789 pte_unmap_unlock(pte
- 1, ptl
);
1793 static inline int remap_pmd_range(struct mm_struct
*mm
, pud_t
*pud
,
1794 unsigned long addr
, unsigned long end
,
1795 unsigned long pfn
, pgprot_t prot
)
1800 pfn
-= addr
>> PAGE_SHIFT
;
1801 pmd
= pmd_alloc(mm
, pud
, addr
);
1805 next
= pmd_addr_end(addr
, end
);
1806 if (remap_pte_range(mm
, pmd
, addr
, next
,
1807 pfn
+ (addr
>> PAGE_SHIFT
), prot
))
1809 } while (pmd
++, addr
= next
, addr
!= end
);
1813 static inline int remap_pud_range(struct mm_struct
*mm
, pgd_t
*pgd
,
1814 unsigned long addr
, unsigned long end
,
1815 unsigned long pfn
, pgprot_t prot
)
1820 pfn
-= addr
>> PAGE_SHIFT
;
1821 pud
= pud_alloc(mm
, pgd
, addr
);
1825 next
= pud_addr_end(addr
, end
);
1826 if (remap_pmd_range(mm
, pud
, addr
, next
,
1827 pfn
+ (addr
>> PAGE_SHIFT
), prot
))
1829 } while (pud
++, addr
= next
, addr
!= end
);
1834 * remap_pfn_range - remap kernel memory to userspace
1835 * @vma: user vma to map to
1836 * @addr: target user address to start at
1837 * @pfn: physical address of kernel memory
1838 * @size: size of map area
1839 * @prot: page protection flags for this mapping
1841 * Note: this is only safe if the mm semaphore is held when called.
1843 int remap_pfn_range(struct vm_area_struct
*vma
, unsigned long addr
,
1844 unsigned long pfn
, unsigned long size
, pgprot_t prot
)
1848 unsigned long end
= addr
+ PAGE_ALIGN(size
);
1849 struct mm_struct
*mm
= vma
->vm_mm
;
1853 * Physically remapped pages are special. Tell the
1854 * rest of the world about it:
1855 * VM_IO tells people not to look at these pages
1856 * (accesses can have side effects).
1857 * VM_RESERVED is specified all over the place, because
1858 * in 2.4 it kept swapout's vma scan off this vma; but
1859 * in 2.6 the LRU scan won't even find its pages, so this
1860 * flag means no more than count its pages in reserved_vm,
1861 * and omit it from core dump, even when VM_IO turned off.
1862 * VM_PFNMAP tells the core MM that the base pages are just
1863 * raw PFN mappings, and do not have a "struct page" associated
1866 * There's a horrible special case to handle copy-on-write
1867 * behaviour that some programs depend on. We mark the "original"
1868 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1870 if (addr
== vma
->vm_start
&& end
== vma
->vm_end
) {
1871 vma
->vm_pgoff
= pfn
;
1872 vma
->vm_flags
|= VM_PFN_AT_MMAP
;
1873 } else if (is_cow_mapping(vma
->vm_flags
))
1876 vma
->vm_flags
|= VM_IO
| VM_RESERVED
| VM_PFNMAP
;
1878 err
= track_pfn_vma_new(vma
, &prot
, pfn
, PAGE_ALIGN(size
));
1881 * To indicate that track_pfn related cleanup is not
1882 * needed from higher level routine calling unmap_vmas
1884 vma
->vm_flags
&= ~(VM_IO
| VM_RESERVED
| VM_PFNMAP
);
1885 vma
->vm_flags
&= ~VM_PFN_AT_MMAP
;
1889 BUG_ON(addr
>= end
);
1890 pfn
-= addr
>> PAGE_SHIFT
;
1891 pgd
= pgd_offset(mm
, addr
);
1892 flush_cache_range(vma
, addr
, end
);
1894 next
= pgd_addr_end(addr
, end
);
1895 err
= remap_pud_range(mm
, pgd
, addr
, next
,
1896 pfn
+ (addr
>> PAGE_SHIFT
), prot
);
1899 } while (pgd
++, addr
= next
, addr
!= end
);
1902 untrack_pfn_vma(vma
, pfn
, PAGE_ALIGN(size
));
1906 EXPORT_SYMBOL(remap_pfn_range
);
1908 static int apply_to_pte_range(struct mm_struct
*mm
, pmd_t
*pmd
,
1909 unsigned long addr
, unsigned long end
,
1910 pte_fn_t fn
, void *data
)
1915 spinlock_t
*uninitialized_var(ptl
);
1917 pte
= (mm
== &init_mm
) ?
1918 pte_alloc_kernel(pmd
, addr
) :
1919 pte_alloc_map_lock(mm
, pmd
, addr
, &ptl
);
1923 BUG_ON(pmd_huge(*pmd
));
1925 arch_enter_lazy_mmu_mode();
1927 token
= pmd_pgtable(*pmd
);
1930 err
= fn(pte
++, token
, addr
, data
);
1933 } while (addr
+= PAGE_SIZE
, addr
!= end
);
1935 arch_leave_lazy_mmu_mode();
1938 pte_unmap_unlock(pte
-1, ptl
);
1942 static int apply_to_pmd_range(struct mm_struct
*mm
, pud_t
*pud
,
1943 unsigned long addr
, unsigned long end
,
1944 pte_fn_t fn
, void *data
)
1950 BUG_ON(pud_huge(*pud
));
1952 pmd
= pmd_alloc(mm
, pud
, addr
);
1956 next
= pmd_addr_end(addr
, end
);
1957 err
= apply_to_pte_range(mm
, pmd
, addr
, next
, fn
, data
);
1960 } while (pmd
++, addr
= next
, addr
!= end
);
1964 static int apply_to_pud_range(struct mm_struct
*mm
, pgd_t
*pgd
,
1965 unsigned long addr
, unsigned long end
,
1966 pte_fn_t fn
, void *data
)
1972 pud
= pud_alloc(mm
, pgd
, addr
);
1976 next
= pud_addr_end(addr
, end
);
1977 err
= apply_to_pmd_range(mm
, pud
, addr
, next
, fn
, data
);
1980 } while (pud
++, addr
= next
, addr
!= end
);
1985 * Scan a region of virtual memory, filling in page tables as necessary
1986 * and calling a provided function on each leaf page table.
1988 int apply_to_page_range(struct mm_struct
*mm
, unsigned long addr
,
1989 unsigned long size
, pte_fn_t fn
, void *data
)
1993 unsigned long start
= addr
, end
= addr
+ size
;
1996 BUG_ON(addr
>= end
);
1997 mmu_notifier_invalidate_range_start(mm
, start
, end
);
1998 pgd
= pgd_offset(mm
, addr
);
2000 next
= pgd_addr_end(addr
, end
);
2001 err
= apply_to_pud_range(mm
, pgd
, addr
, next
, fn
, data
);
2004 } while (pgd
++, addr
= next
, addr
!= end
);
2005 mmu_notifier_invalidate_range_end(mm
, start
, end
);
2008 EXPORT_SYMBOL_GPL(apply_to_page_range
);
2011 * handle_pte_fault chooses page fault handler according to an entry
2012 * which was read non-atomically. Before making any commitment, on
2013 * those architectures or configurations (e.g. i386 with PAE) which
2014 * might give a mix of unmatched parts, do_swap_page and do_file_page
2015 * must check under lock before unmapping the pte and proceeding
2016 * (but do_wp_page is only called after already making such a check;
2017 * and do_anonymous_page and do_no_page can safely check later on).
2019 static inline int pte_unmap_same(struct mm_struct
*mm
, pmd_t
*pmd
,
2020 pte_t
*page_table
, pte_t orig_pte
)
2023 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2024 if (sizeof(pte_t
) > sizeof(unsigned long)) {
2025 spinlock_t
*ptl
= pte_lockptr(mm
, pmd
);
2027 same
= pte_same(*page_table
, orig_pte
);
2031 pte_unmap(page_table
);
2036 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
2037 * servicing faults for write access. In the normal case, do always want
2038 * pte_mkwrite. But get_user_pages can cause write faults for mappings
2039 * that do not have writing enabled, when used by access_process_vm.
2041 static inline pte_t
maybe_mkwrite(pte_t pte
, struct vm_area_struct
*vma
)
2043 if (likely(vma
->vm_flags
& VM_WRITE
))
2044 pte
= pte_mkwrite(pte
);
2048 static inline void cow_user_page(struct page
*dst
, struct page
*src
, unsigned long va
, struct vm_area_struct
*vma
)
2051 * If the source page was a PFN mapping, we don't have
2052 * a "struct page" for it. We do a best-effort copy by
2053 * just copying from the original user address. If that
2054 * fails, we just zero-fill it. Live with it.
2056 if (unlikely(!src
)) {
2057 void *kaddr
= kmap_atomic(dst
, KM_USER0
);
2058 void __user
*uaddr
= (void __user
*)(va
& PAGE_MASK
);
2061 * This really shouldn't fail, because the page is there
2062 * in the page tables. But it might just be unreadable,
2063 * in which case we just give up and fill the result with
2066 if (__copy_from_user_inatomic(kaddr
, uaddr
, PAGE_SIZE
))
2067 memset(kaddr
, 0, PAGE_SIZE
);
2068 kunmap_atomic(kaddr
, KM_USER0
);
2069 flush_dcache_page(dst
);
2071 copy_user_highpage(dst
, src
, va
, vma
);
2075 * This routine handles present pages, when users try to write
2076 * to a shared page. It is done by copying the page to a new address
2077 * and decrementing the shared-page counter for the old page.
2079 * Note that this routine assumes that the protection checks have been
2080 * done by the caller (the low-level page fault routine in most cases).
2081 * Thus we can safely just mark it writable once we've done any necessary
2084 * We also mark the page dirty at this point even though the page will
2085 * change only once the write actually happens. This avoids a few races,
2086 * and potentially makes it more efficient.
2088 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2089 * but allow concurrent faults), with pte both mapped and locked.
2090 * We return with mmap_sem still held, but pte unmapped and unlocked.
2092 static int do_wp_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2093 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
2094 spinlock_t
*ptl
, pte_t orig_pte
)
2096 struct page
*old_page
, *new_page
;
2098 int reuse
= 0, ret
= 0;
2099 int page_mkwrite
= 0;
2100 struct page
*dirty_page
= NULL
;
2102 old_page
= vm_normal_page(vma
, address
, orig_pte
);
2105 * VM_MIXEDMAP !pfn_valid() case
2107 * We should not cow pages in a shared writeable mapping.
2108 * Just mark the pages writable as we can't do any dirty
2109 * accounting on raw pfn maps.
2111 if ((vma
->vm_flags
& (VM_WRITE
|VM_SHARED
)) ==
2112 (VM_WRITE
|VM_SHARED
))
2118 * Take out anonymous pages first, anonymous shared vmas are
2119 * not dirty accountable.
2121 if (PageAnon(old_page
) && !PageKsm(old_page
)) {
2122 if (!trylock_page(old_page
)) {
2123 page_cache_get(old_page
);
2124 pte_unmap_unlock(page_table
, ptl
);
2125 lock_page(old_page
);
2126 page_table
= pte_offset_map_lock(mm
, pmd
, address
,
2128 if (!pte_same(*page_table
, orig_pte
)) {
2129 unlock_page(old_page
);
2130 page_cache_release(old_page
);
2133 page_cache_release(old_page
);
2135 reuse
= reuse_swap_page(old_page
);
2138 * The page is all ours. Move it to our anon_vma so
2139 * the rmap code will not search our parent or siblings.
2140 * Protected against the rmap code by the page lock.
2142 page_move_anon_rmap(old_page
, vma
, address
);
2143 unlock_page(old_page
);
2144 } else if (unlikely((vma
->vm_flags
& (VM_WRITE
|VM_SHARED
)) ==
2145 (VM_WRITE
|VM_SHARED
))) {
2147 * Only catch write-faults on shared writable pages,
2148 * read-only shared pages can get COWed by
2149 * get_user_pages(.write=1, .force=1).
2151 if (vma
->vm_ops
&& vma
->vm_ops
->page_mkwrite
) {
2152 struct vm_fault vmf
;
2155 vmf
.virtual_address
= (void __user
*)(address
&
2157 vmf
.pgoff
= old_page
->index
;
2158 vmf
.flags
= FAULT_FLAG_WRITE
|FAULT_FLAG_MKWRITE
;
2159 vmf
.page
= old_page
;
2162 * Notify the address space that the page is about to
2163 * become writable so that it can prohibit this or wait
2164 * for the page to get into an appropriate state.
2166 * We do this without the lock held, so that it can
2167 * sleep if it needs to.
2169 page_cache_get(old_page
);
2170 pte_unmap_unlock(page_table
, ptl
);
2172 tmp
= vma
->vm_ops
->page_mkwrite(vma
, &vmf
);
2174 (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
))) {
2176 goto unwritable_page
;
2178 if (unlikely(!(tmp
& VM_FAULT_LOCKED
))) {
2179 lock_page(old_page
);
2180 if (!old_page
->mapping
) {
2181 ret
= 0; /* retry the fault */
2182 unlock_page(old_page
);
2183 goto unwritable_page
;
2186 VM_BUG_ON(!PageLocked(old_page
));
2189 * Since we dropped the lock we need to revalidate
2190 * the PTE as someone else may have changed it. If
2191 * they did, we just return, as we can count on the
2192 * MMU to tell us if they didn't also make it writable.
2194 page_table
= pte_offset_map_lock(mm
, pmd
, address
,
2196 if (!pte_same(*page_table
, orig_pte
)) {
2197 unlock_page(old_page
);
2198 page_cache_release(old_page
);
2204 dirty_page
= old_page
;
2205 get_page(dirty_page
);
2211 flush_cache_page(vma
, address
, pte_pfn(orig_pte
));
2212 entry
= pte_mkyoung(orig_pte
);
2213 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
2214 if (ptep_set_access_flags(vma
, address
, page_table
, entry
,1))
2215 update_mmu_cache(vma
, address
, page_table
);
2216 ret
|= VM_FAULT_WRITE
;
2221 * Ok, we need to copy. Oh, well..
2223 page_cache_get(old_page
);
2225 pte_unmap_unlock(page_table
, ptl
);
2227 if (unlikely(anon_vma_prepare(vma
)))
2230 if (is_zero_pfn(pte_pfn(orig_pte
))) {
2231 new_page
= alloc_zeroed_user_highpage_movable(vma
, address
);
2235 new_page
= alloc_page_vma(GFP_HIGHUSER_MOVABLE
, vma
, address
);
2238 cow_user_page(new_page
, old_page
, address
, vma
);
2240 __SetPageUptodate(new_page
);
2243 * Don't let another task, with possibly unlocked vma,
2244 * keep the mlocked page.
2246 if ((vma
->vm_flags
& VM_LOCKED
) && old_page
) {
2247 lock_page(old_page
); /* for LRU manipulation */
2248 clear_page_mlock(old_page
);
2249 unlock_page(old_page
);
2252 if (mem_cgroup_newpage_charge(new_page
, mm
, GFP_KERNEL
))
2256 * Re-check the pte - we dropped the lock
2258 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2259 if (likely(pte_same(*page_table
, orig_pte
))) {
2261 if (!PageAnon(old_page
)) {
2262 dec_mm_counter_fast(mm
, MM_FILEPAGES
);
2263 inc_mm_counter_fast(mm
, MM_ANONPAGES
);
2266 inc_mm_counter_fast(mm
, MM_ANONPAGES
);
2267 flush_cache_page(vma
, address
, pte_pfn(orig_pte
));
2268 entry
= mk_pte(new_page
, vma
->vm_page_prot
);
2269 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
2271 * Clear the pte entry and flush it first, before updating the
2272 * pte with the new entry. This will avoid a race condition
2273 * seen in the presence of one thread doing SMC and another
2276 ptep_clear_flush(vma
, address
, page_table
);
2277 page_add_new_anon_rmap(new_page
, vma
, address
);
2279 * We call the notify macro here because, when using secondary
2280 * mmu page tables (such as kvm shadow page tables), we want the
2281 * new page to be mapped directly into the secondary page table.
2283 set_pte_at_notify(mm
, address
, page_table
, entry
);
2284 update_mmu_cache(vma
, address
, page_table
);
2287 * Only after switching the pte to the new page may
2288 * we remove the mapcount here. Otherwise another
2289 * process may come and find the rmap count decremented
2290 * before the pte is switched to the new page, and
2291 * "reuse" the old page writing into it while our pte
2292 * here still points into it and can be read by other
2295 * The critical issue is to order this
2296 * page_remove_rmap with the ptp_clear_flush above.
2297 * Those stores are ordered by (if nothing else,)
2298 * the barrier present in the atomic_add_negative
2299 * in page_remove_rmap.
2301 * Then the TLB flush in ptep_clear_flush ensures that
2302 * no process can access the old page before the
2303 * decremented mapcount is visible. And the old page
2304 * cannot be reused until after the decremented
2305 * mapcount is visible. So transitively, TLBs to
2306 * old page will be flushed before it can be reused.
2308 page_remove_rmap(old_page
);
2311 /* Free the old page.. */
2312 new_page
= old_page
;
2313 ret
|= VM_FAULT_WRITE
;
2315 mem_cgroup_uncharge_page(new_page
);
2318 page_cache_release(new_page
);
2320 page_cache_release(old_page
);
2322 pte_unmap_unlock(page_table
, ptl
);
2325 * Yes, Virginia, this is actually required to prevent a race
2326 * with clear_page_dirty_for_io() from clearing the page dirty
2327 * bit after it clear all dirty ptes, but before a racing
2328 * do_wp_page installs a dirty pte.
2330 * do_no_page is protected similarly.
2332 if (!page_mkwrite
) {
2333 wait_on_page_locked(dirty_page
);
2334 set_page_dirty_balance(dirty_page
, page_mkwrite
);
2336 put_page(dirty_page
);
2338 struct address_space
*mapping
= dirty_page
->mapping
;
2340 set_page_dirty(dirty_page
);
2341 unlock_page(dirty_page
);
2342 page_cache_release(dirty_page
);
2345 * Some device drivers do not set page.mapping
2346 * but still dirty their pages
2348 balance_dirty_pages_ratelimited(mapping
);
2352 /* file_update_time outside page_lock */
2354 file_update_time(vma
->vm_file
);
2358 page_cache_release(new_page
);
2362 unlock_page(old_page
);
2363 page_cache_release(old_page
);
2365 page_cache_release(old_page
);
2367 return VM_FAULT_OOM
;
2370 page_cache_release(old_page
);
2375 * Helper functions for unmap_mapping_range().
2377 * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
2379 * We have to restart searching the prio_tree whenever we drop the lock,
2380 * since the iterator is only valid while the lock is held, and anyway
2381 * a later vma might be split and reinserted earlier while lock dropped.
2383 * The list of nonlinear vmas could be handled more efficiently, using
2384 * a placeholder, but handle it in the same way until a need is shown.
2385 * It is important to search the prio_tree before nonlinear list: a vma
2386 * may become nonlinear and be shifted from prio_tree to nonlinear list
2387 * while the lock is dropped; but never shifted from list to prio_tree.
2389 * In order to make forward progress despite restarting the search,
2390 * vm_truncate_count is used to mark a vma as now dealt with, so we can
2391 * quickly skip it next time around. Since the prio_tree search only
2392 * shows us those vmas affected by unmapping the range in question, we
2393 * can't efficiently keep all vmas in step with mapping->truncate_count:
2394 * so instead reset them all whenever it wraps back to 0 (then go to 1).
2395 * mapping->truncate_count and vma->vm_truncate_count are protected by
2398 * In order to make forward progress despite repeatedly restarting some
2399 * large vma, note the restart_addr from unmap_vmas when it breaks out:
2400 * and restart from that address when we reach that vma again. It might
2401 * have been split or merged, shrunk or extended, but never shifted: so
2402 * restart_addr remains valid so long as it remains in the vma's range.
2403 * unmap_mapping_range forces truncate_count to leap over page-aligned
2404 * values so we can save vma's restart_addr in its truncate_count field.
2406 #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
2408 static void reset_vma_truncate_counts(struct address_space
*mapping
)
2410 struct vm_area_struct
*vma
;
2411 struct prio_tree_iter iter
;
2413 vma_prio_tree_foreach(vma
, &iter
, &mapping
->i_mmap
, 0, ULONG_MAX
)
2414 vma
->vm_truncate_count
= 0;
2415 list_for_each_entry(vma
, &mapping
->i_mmap_nonlinear
, shared
.vm_set
.list
)
2416 vma
->vm_truncate_count
= 0;
2419 static int unmap_mapping_range_vma(struct vm_area_struct
*vma
,
2420 unsigned long start_addr
, unsigned long end_addr
,
2421 struct zap_details
*details
)
2423 unsigned long restart_addr
;
2427 * files that support invalidating or truncating portions of the
2428 * file from under mmaped areas must have their ->fault function
2429 * return a locked page (and set VM_FAULT_LOCKED in the return).
2430 * This provides synchronisation against concurrent unmapping here.
2434 restart_addr
= vma
->vm_truncate_count
;
2435 if (is_restart_addr(restart_addr
) && start_addr
< restart_addr
) {
2436 start_addr
= restart_addr
;
2437 if (start_addr
>= end_addr
) {
2438 /* Top of vma has been split off since last time */
2439 vma
->vm_truncate_count
= details
->truncate_count
;
2444 restart_addr
= zap_page_range(vma
, start_addr
,
2445 end_addr
- start_addr
, details
);
2446 need_break
= need_resched() || spin_needbreak(details
->i_mmap_lock
);
2448 if (restart_addr
>= end_addr
) {
2449 /* We have now completed this vma: mark it so */
2450 vma
->vm_truncate_count
= details
->truncate_count
;
2454 /* Note restart_addr in vma's truncate_count field */
2455 vma
->vm_truncate_count
= restart_addr
;
2460 spin_unlock(details
->i_mmap_lock
);
2462 spin_lock(details
->i_mmap_lock
);
2466 static inline void unmap_mapping_range_tree(struct prio_tree_root
*root
,
2467 struct zap_details
*details
)
2469 struct vm_area_struct
*vma
;
2470 struct prio_tree_iter iter
;
2471 pgoff_t vba
, vea
, zba
, zea
;
2474 vma_prio_tree_foreach(vma
, &iter
, root
,
2475 details
->first_index
, details
->last_index
) {
2476 /* Skip quickly over those we have already dealt with */
2477 if (vma
->vm_truncate_count
== details
->truncate_count
)
2480 vba
= vma
->vm_pgoff
;
2481 vea
= vba
+ ((vma
->vm_end
- vma
->vm_start
) >> PAGE_SHIFT
) - 1;
2482 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2483 zba
= details
->first_index
;
2486 zea
= details
->last_index
;
2490 if (unmap_mapping_range_vma(vma
,
2491 ((zba
- vba
) << PAGE_SHIFT
) + vma
->vm_start
,
2492 ((zea
- vba
+ 1) << PAGE_SHIFT
) + vma
->vm_start
,
2498 static inline void unmap_mapping_range_list(struct list_head
*head
,
2499 struct zap_details
*details
)
2501 struct vm_area_struct
*vma
;
2504 * In nonlinear VMAs there is no correspondence between virtual address
2505 * offset and file offset. So we must perform an exhaustive search
2506 * across *all* the pages in each nonlinear VMA, not just the pages
2507 * whose virtual address lies outside the file truncation point.
2510 list_for_each_entry(vma
, head
, shared
.vm_set
.list
) {
2511 /* Skip quickly over those we have already dealt with */
2512 if (vma
->vm_truncate_count
== details
->truncate_count
)
2514 details
->nonlinear_vma
= vma
;
2515 if (unmap_mapping_range_vma(vma
, vma
->vm_start
,
2516 vma
->vm_end
, details
) < 0)
2522 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2523 * @mapping: the address space containing mmaps to be unmapped.
2524 * @holebegin: byte in first page to unmap, relative to the start of
2525 * the underlying file. This will be rounded down to a PAGE_SIZE
2526 * boundary. Note that this is different from truncate_pagecache(), which
2527 * must keep the partial page. In contrast, we must get rid of
2529 * @holelen: size of prospective hole in bytes. This will be rounded
2530 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2532 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2533 * but 0 when invalidating pagecache, don't throw away private data.
2535 void unmap_mapping_range(struct address_space
*mapping
,
2536 loff_t
const holebegin
, loff_t
const holelen
, int even_cows
)
2538 struct zap_details details
;
2539 pgoff_t hba
= holebegin
>> PAGE_SHIFT
;
2540 pgoff_t hlen
= (holelen
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
2542 /* Check for overflow. */
2543 if (sizeof(holelen
) > sizeof(hlen
)) {
2545 (holebegin
+ holelen
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
2546 if (holeend
& ~(long long)ULONG_MAX
)
2547 hlen
= ULONG_MAX
- hba
+ 1;
2550 details
.check_mapping
= even_cows
? NULL
: mapping
;
2551 details
.nonlinear_vma
= NULL
;
2552 details
.first_index
= hba
;
2553 details
.last_index
= hba
+ hlen
- 1;
2554 if (details
.last_index
< details
.first_index
)
2555 details
.last_index
= ULONG_MAX
;
2556 details
.i_mmap_lock
= &mapping
->i_mmap_lock
;
2558 spin_lock(&mapping
->i_mmap_lock
);
2560 /* Protect against endless unmapping loops */
2561 mapping
->truncate_count
++;
2562 if (unlikely(is_restart_addr(mapping
->truncate_count
))) {
2563 if (mapping
->truncate_count
== 0)
2564 reset_vma_truncate_counts(mapping
);
2565 mapping
->truncate_count
++;
2567 details
.truncate_count
= mapping
->truncate_count
;
2569 if (unlikely(!prio_tree_empty(&mapping
->i_mmap
)))
2570 unmap_mapping_range_tree(&mapping
->i_mmap
, &details
);
2571 if (unlikely(!list_empty(&mapping
->i_mmap_nonlinear
)))
2572 unmap_mapping_range_list(&mapping
->i_mmap_nonlinear
, &details
);
2573 spin_unlock(&mapping
->i_mmap_lock
);
2575 EXPORT_SYMBOL(unmap_mapping_range
);
2577 int vmtruncate_range(struct inode
*inode
, loff_t offset
, loff_t end
)
2579 struct address_space
*mapping
= inode
->i_mapping
;
2582 * If the underlying filesystem is not going to provide
2583 * a way to truncate a range of blocks (punch a hole) -
2584 * we should return failure right now.
2586 if (!inode
->i_op
->truncate_range
)
2589 mutex_lock(&inode
->i_mutex
);
2590 down_write(&inode
->i_alloc_sem
);
2591 unmap_mapping_range(mapping
, offset
, (end
- offset
), 1);
2592 truncate_inode_pages_range(mapping
, offset
, end
);
2593 unmap_mapping_range(mapping
, offset
, (end
- offset
), 1);
2594 inode
->i_op
->truncate_range(inode
, offset
, end
);
2595 up_write(&inode
->i_alloc_sem
);
2596 mutex_unlock(&inode
->i_mutex
);
2602 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2603 * but allow concurrent faults), and pte mapped but not yet locked.
2604 * We return with mmap_sem still held, but pte unmapped and unlocked.
2606 static int do_swap_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2607 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
2608 unsigned int flags
, pte_t orig_pte
)
2614 struct mem_cgroup
*ptr
= NULL
;
2617 if (!pte_unmap_same(mm
, pmd
, page_table
, orig_pte
))
2620 entry
= pte_to_swp_entry(orig_pte
);
2621 if (unlikely(non_swap_entry(entry
))) {
2622 if (is_migration_entry(entry
)) {
2623 migration_entry_wait(mm
, pmd
, address
);
2624 } else if (is_hwpoison_entry(entry
)) {
2625 ret
= VM_FAULT_HWPOISON
;
2627 print_bad_pte(vma
, address
, orig_pte
, NULL
);
2628 ret
= VM_FAULT_SIGBUS
;
2632 delayacct_set_flag(DELAYACCT_PF_SWAPIN
);
2633 page
= lookup_swap_cache(entry
);
2635 grab_swap_token(mm
); /* Contend for token _before_ read-in */
2636 page
= swapin_readahead(entry
,
2637 GFP_HIGHUSER_MOVABLE
, vma
, address
);
2640 * Back out if somebody else faulted in this pte
2641 * while we released the pte lock.
2643 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2644 if (likely(pte_same(*page_table
, orig_pte
)))
2646 delayacct_clear_flag(DELAYACCT_PF_SWAPIN
);
2650 /* Had to read the page from swap area: Major fault */
2651 ret
= VM_FAULT_MAJOR
;
2652 count_vm_event(PGMAJFAULT
);
2653 } else if (PageHWPoison(page
)) {
2655 * hwpoisoned dirty swapcache pages are kept for killing
2656 * owner processes (which may be unknown at hwpoison time)
2658 ret
= VM_FAULT_HWPOISON
;
2659 delayacct_clear_flag(DELAYACCT_PF_SWAPIN
);
2664 delayacct_clear_flag(DELAYACCT_PF_SWAPIN
);
2666 page
= ksm_might_need_to_copy(page
, vma
, address
);
2672 if (mem_cgroup_try_charge_swapin(mm
, page
, GFP_KERNEL
, &ptr
)) {
2678 * Back out if somebody else already faulted in this pte.
2680 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2681 if (unlikely(!pte_same(*page_table
, orig_pte
)))
2684 if (unlikely(!PageUptodate(page
))) {
2685 ret
= VM_FAULT_SIGBUS
;
2690 * The page isn't present yet, go ahead with the fault.
2692 * Be careful about the sequence of operations here.
2693 * To get its accounting right, reuse_swap_page() must be called
2694 * while the page is counted on swap but not yet in mapcount i.e.
2695 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2696 * must be called after the swap_free(), or it will never succeed.
2697 * Because delete_from_swap_page() may be called by reuse_swap_page(),
2698 * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
2699 * in page->private. In this case, a record in swap_cgroup is silently
2700 * discarded at swap_free().
2703 inc_mm_counter_fast(mm
, MM_ANONPAGES
);
2704 dec_mm_counter_fast(mm
, MM_SWAPENTS
);
2705 pte
= mk_pte(page
, vma
->vm_page_prot
);
2706 if ((flags
& FAULT_FLAG_WRITE
) && reuse_swap_page(page
)) {
2707 pte
= maybe_mkwrite(pte_mkdirty(pte
), vma
);
2708 flags
&= ~FAULT_FLAG_WRITE
;
2710 flush_icache_page(vma
, page
);
2711 set_pte_at(mm
, address
, page_table
, pte
);
2712 page_add_anon_rmap(page
, vma
, address
);
2713 /* It's better to call commit-charge after rmap is established */
2714 mem_cgroup_commit_charge_swapin(page
, ptr
);
2717 if (vm_swap_full() || (vma
->vm_flags
& VM_LOCKED
) || PageMlocked(page
))
2718 try_to_free_swap(page
);
2721 if (flags
& FAULT_FLAG_WRITE
) {
2722 ret
|= do_wp_page(mm
, vma
, address
, page_table
, pmd
, ptl
, pte
);
2723 if (ret
& VM_FAULT_ERROR
)
2724 ret
&= VM_FAULT_ERROR
;
2728 /* No need to invalidate - it was non-present before */
2729 update_mmu_cache(vma
, address
, page_table
);
2731 pte_unmap_unlock(page_table
, ptl
);
2735 mem_cgroup_cancel_charge_swapin(ptr
);
2736 pte_unmap_unlock(page_table
, ptl
);
2740 page_cache_release(page
);
2745 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2746 * but allow concurrent faults), and pte mapped but not yet locked.
2747 * We return with mmap_sem still held, but pte unmapped and unlocked.
2749 static int do_anonymous_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2750 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
2757 if (!(flags
& FAULT_FLAG_WRITE
)) {
2758 entry
= pte_mkspecial(pfn_pte(my_zero_pfn(address
),
2759 vma
->vm_page_prot
));
2760 ptl
= pte_lockptr(mm
, pmd
);
2762 if (!pte_none(*page_table
))
2767 /* Allocate our own private page. */
2768 pte_unmap(page_table
);
2770 if (unlikely(anon_vma_prepare(vma
)))
2772 page
= alloc_zeroed_user_highpage_movable(vma
, address
);
2775 __SetPageUptodate(page
);
2777 if (mem_cgroup_newpage_charge(page
, mm
, GFP_KERNEL
))
2780 entry
= mk_pte(page
, vma
->vm_page_prot
);
2781 if (vma
->vm_flags
& VM_WRITE
)
2782 entry
= pte_mkwrite(pte_mkdirty(entry
));
2784 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2785 if (!pte_none(*page_table
))
2788 inc_mm_counter_fast(mm
, MM_ANONPAGES
);
2789 page_add_new_anon_rmap(page
, vma
, address
);
2791 set_pte_at(mm
, address
, page_table
, entry
);
2793 /* No need to invalidate - it was non-present before */
2794 update_mmu_cache(vma
, address
, page_table
);
2796 pte_unmap_unlock(page_table
, ptl
);
2799 mem_cgroup_uncharge_page(page
);
2800 page_cache_release(page
);
2803 page_cache_release(page
);
2805 return VM_FAULT_OOM
;
2809 * __do_fault() tries to create a new page mapping. It aggressively
2810 * tries to share with existing pages, but makes a separate copy if
2811 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
2812 * the next page fault.
2814 * As this is called only for pages that do not currently exist, we
2815 * do not need to flush old virtual caches or the TLB.
2817 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2818 * but allow concurrent faults), and pte neither mapped nor locked.
2819 * We return with mmap_sem still held, but pte unmapped and unlocked.
2821 static int __do_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2822 unsigned long address
, pmd_t
*pmd
,
2823 pgoff_t pgoff
, unsigned int flags
, pte_t orig_pte
)
2831 struct page
*dirty_page
= NULL
;
2832 struct vm_fault vmf
;
2834 int page_mkwrite
= 0;
2836 vmf
.virtual_address
= (void __user
*)(address
& PAGE_MASK
);
2841 ret
= vma
->vm_ops
->fault(vma
, &vmf
);
2842 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
)))
2845 if (unlikely(PageHWPoison(vmf
.page
))) {
2846 if (ret
& VM_FAULT_LOCKED
)
2847 unlock_page(vmf
.page
);
2848 return VM_FAULT_HWPOISON
;
2852 * For consistency in subsequent calls, make the faulted page always
2855 if (unlikely(!(ret
& VM_FAULT_LOCKED
)))
2856 lock_page(vmf
.page
);
2858 VM_BUG_ON(!PageLocked(vmf
.page
));
2861 * Should we do an early C-O-W break?
2864 if (flags
& FAULT_FLAG_WRITE
) {
2865 if (!(vma
->vm_flags
& VM_SHARED
)) {
2867 if (unlikely(anon_vma_prepare(vma
))) {
2871 page
= alloc_page_vma(GFP_HIGHUSER_MOVABLE
,
2877 if (mem_cgroup_newpage_charge(page
, mm
, GFP_KERNEL
)) {
2879 page_cache_release(page
);
2884 * Don't let another task, with possibly unlocked vma,
2885 * keep the mlocked page.
2887 if (vma
->vm_flags
& VM_LOCKED
)
2888 clear_page_mlock(vmf
.page
);
2889 copy_user_highpage(page
, vmf
.page
, address
, vma
);
2890 __SetPageUptodate(page
);
2893 * If the page will be shareable, see if the backing
2894 * address space wants to know that the page is about
2895 * to become writable
2897 if (vma
->vm_ops
->page_mkwrite
) {
2901 vmf
.flags
= FAULT_FLAG_WRITE
|FAULT_FLAG_MKWRITE
;
2902 tmp
= vma
->vm_ops
->page_mkwrite(vma
, &vmf
);
2904 (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
))) {
2906 goto unwritable_page
;
2908 if (unlikely(!(tmp
& VM_FAULT_LOCKED
))) {
2910 if (!page
->mapping
) {
2911 ret
= 0; /* retry the fault */
2913 goto unwritable_page
;
2916 VM_BUG_ON(!PageLocked(page
));
2923 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2926 * This silly early PAGE_DIRTY setting removes a race
2927 * due to the bad i386 page protection. But it's valid
2928 * for other architectures too.
2930 * Note that if FAULT_FLAG_WRITE is set, we either now have
2931 * an exclusive copy of the page, or this is a shared mapping,
2932 * so we can make it writable and dirty to avoid having to
2933 * handle that later.
2935 /* Only go through if we didn't race with anybody else... */
2936 if (likely(pte_same(*page_table
, orig_pte
))) {
2937 flush_icache_page(vma
, page
);
2938 entry
= mk_pte(page
, vma
->vm_page_prot
);
2939 if (flags
& FAULT_FLAG_WRITE
)
2940 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
2942 inc_mm_counter_fast(mm
, MM_ANONPAGES
);
2943 page_add_new_anon_rmap(page
, vma
, address
);
2945 inc_mm_counter_fast(mm
, MM_FILEPAGES
);
2946 page_add_file_rmap(page
);
2947 if (flags
& FAULT_FLAG_WRITE
) {
2949 get_page(dirty_page
);
2952 set_pte_at(mm
, address
, page_table
, entry
);
2954 /* no need to invalidate: a not-present page won't be cached */
2955 update_mmu_cache(vma
, address
, page_table
);
2958 mem_cgroup_uncharge_page(page
);
2960 page_cache_release(page
);
2962 anon
= 1; /* no anon but release faulted_page */
2965 pte_unmap_unlock(page_table
, ptl
);
2969 struct address_space
*mapping
= page
->mapping
;
2971 if (set_page_dirty(dirty_page
))
2973 unlock_page(dirty_page
);
2974 put_page(dirty_page
);
2975 if (page_mkwrite
&& mapping
) {
2977 * Some device drivers do not set page.mapping but still
2980 balance_dirty_pages_ratelimited(mapping
);
2983 /* file_update_time outside page_lock */
2985 file_update_time(vma
->vm_file
);
2987 unlock_page(vmf
.page
);
2989 page_cache_release(vmf
.page
);
2995 page_cache_release(page
);
2999 static int do_linear_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3000 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
3001 unsigned int flags
, pte_t orig_pte
)
3003 pgoff_t pgoff
= (((address
& PAGE_MASK
)
3004 - vma
->vm_start
) >> PAGE_SHIFT
) + vma
->vm_pgoff
;
3006 pte_unmap(page_table
);
3007 return __do_fault(mm
, vma
, address
, pmd
, pgoff
, flags
, orig_pte
);
3011 * Fault of a previously existing named mapping. Repopulate the pte
3012 * from the encoded file_pte if possible. This enables swappable
3015 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3016 * but allow concurrent faults), and pte mapped but not yet locked.
3017 * We return with mmap_sem still held, but pte unmapped and unlocked.
3019 static int do_nonlinear_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3020 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
3021 unsigned int flags
, pte_t orig_pte
)
3025 flags
|= FAULT_FLAG_NONLINEAR
;
3027 if (!pte_unmap_same(mm
, pmd
, page_table
, orig_pte
))
3030 if (unlikely(!(vma
->vm_flags
& VM_NONLINEAR
))) {
3032 * Page table corrupted: show pte and kill process.
3034 print_bad_pte(vma
, address
, orig_pte
, NULL
);
3035 return VM_FAULT_SIGBUS
;
3038 pgoff
= pte_to_pgoff(orig_pte
);
3039 return __do_fault(mm
, vma
, address
, pmd
, pgoff
, flags
, orig_pte
);
3043 * These routines also need to handle stuff like marking pages dirty
3044 * and/or accessed for architectures that don't do it in hardware (most
3045 * RISC architectures). The early dirtying is also good on the i386.
3047 * There is also a hook called "update_mmu_cache()" that architectures
3048 * with external mmu caches can use to update those (ie the Sparc or
3049 * PowerPC hashed page tables that act as extended TLBs).
3051 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3052 * but allow concurrent faults), and pte mapped but not yet locked.
3053 * We return with mmap_sem still held, but pte unmapped and unlocked.
3055 static inline int handle_pte_fault(struct mm_struct
*mm
,
3056 struct vm_area_struct
*vma
, unsigned long address
,
3057 pte_t
*pte
, pmd_t
*pmd
, unsigned int flags
)
3063 if (!pte_present(entry
)) {
3064 if (pte_none(entry
)) {
3066 if (likely(vma
->vm_ops
->fault
))
3067 return do_linear_fault(mm
, vma
, address
,
3068 pte
, pmd
, flags
, entry
);
3070 return do_anonymous_page(mm
, vma
, address
,
3073 if (pte_file(entry
))
3074 return do_nonlinear_fault(mm
, vma
, address
,
3075 pte
, pmd
, flags
, entry
);
3076 return do_swap_page(mm
, vma
, address
,
3077 pte
, pmd
, flags
, entry
);
3080 ptl
= pte_lockptr(mm
, pmd
);
3082 if (unlikely(!pte_same(*pte
, entry
)))
3084 if (flags
& FAULT_FLAG_WRITE
) {
3085 if (!pte_write(entry
))
3086 return do_wp_page(mm
, vma
, address
,
3087 pte
, pmd
, ptl
, entry
);
3088 entry
= pte_mkdirty(entry
);
3090 entry
= pte_mkyoung(entry
);
3091 if (ptep_set_access_flags(vma
, address
, pte
, entry
, flags
& FAULT_FLAG_WRITE
)) {
3092 update_mmu_cache(vma
, address
, pte
);
3095 * This is needed only for protection faults but the arch code
3096 * is not yet telling us if this is a protection fault or not.
3097 * This still avoids useless tlb flushes for .text page faults
3100 if (flags
& FAULT_FLAG_WRITE
)
3101 flush_tlb_page(vma
, address
);
3104 pte_unmap_unlock(pte
, ptl
);
3109 * By the time we get here, we already hold the mm semaphore
3111 int handle_mm_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3112 unsigned long address
, unsigned int flags
)
3119 __set_current_state(TASK_RUNNING
);
3121 count_vm_event(PGFAULT
);
3123 /* do counter updates before entering really critical section. */
3124 check_sync_rss_stat(current
);
3126 if (unlikely(is_vm_hugetlb_page(vma
)))
3127 return hugetlb_fault(mm
, vma
, address
, flags
);
3129 pgd
= pgd_offset(mm
, address
);
3130 pud
= pud_alloc(mm
, pgd
, address
);
3132 return VM_FAULT_OOM
;
3133 pmd
= pmd_alloc(mm
, pud
, address
);
3135 return VM_FAULT_OOM
;
3136 pte
= pte_alloc_map(mm
, pmd
, address
);
3138 return VM_FAULT_OOM
;
3140 return handle_pte_fault(mm
, vma
, address
, pte
, pmd
, flags
);
3143 #ifndef __PAGETABLE_PUD_FOLDED
3145 * Allocate page upper directory.
3146 * We've already handled the fast-path in-line.
3148 int __pud_alloc(struct mm_struct
*mm
, pgd_t
*pgd
, unsigned long address
)
3150 pud_t
*new = pud_alloc_one(mm
, address
);
3154 smp_wmb(); /* See comment in __pte_alloc */
3156 spin_lock(&mm
->page_table_lock
);
3157 if (pgd_present(*pgd
)) /* Another has populated it */
3160 pgd_populate(mm
, pgd
, new);
3161 spin_unlock(&mm
->page_table_lock
);
3164 #endif /* __PAGETABLE_PUD_FOLDED */
3166 #ifndef __PAGETABLE_PMD_FOLDED
3168 * Allocate page middle directory.
3169 * We've already handled the fast-path in-line.
3171 int __pmd_alloc(struct mm_struct
*mm
, pud_t
*pud
, unsigned long address
)
3173 pmd_t
*new = pmd_alloc_one(mm
, address
);
3177 smp_wmb(); /* See comment in __pte_alloc */
3179 spin_lock(&mm
->page_table_lock
);
3180 #ifndef __ARCH_HAS_4LEVEL_HACK
3181 if (pud_present(*pud
)) /* Another has populated it */
3184 pud_populate(mm
, pud
, new);
3186 if (pgd_present(*pud
)) /* Another has populated it */
3189 pgd_populate(mm
, pud
, new);
3190 #endif /* __ARCH_HAS_4LEVEL_HACK */
3191 spin_unlock(&mm
->page_table_lock
);
3194 #endif /* __PAGETABLE_PMD_FOLDED */
3196 int make_pages_present(unsigned long addr
, unsigned long end
)
3198 int ret
, len
, write
;
3199 struct vm_area_struct
* vma
;
3201 vma
= find_vma(current
->mm
, addr
);
3204 write
= (vma
->vm_flags
& VM_WRITE
) != 0;
3205 BUG_ON(addr
>= end
);
3206 BUG_ON(end
> vma
->vm_end
);
3207 len
= DIV_ROUND_UP(end
, PAGE_SIZE
) - addr
/PAGE_SIZE
;
3208 ret
= get_user_pages(current
, current
->mm
, addr
,
3209 len
, write
, 0, NULL
, NULL
);
3212 return ret
== len
? 0 : -EFAULT
;
3215 #if !defined(__HAVE_ARCH_GATE_AREA)
3217 #if defined(AT_SYSINFO_EHDR)
3218 static struct vm_area_struct gate_vma
;
3220 static int __init
gate_vma_init(void)
3222 gate_vma
.vm_mm
= NULL
;
3223 gate_vma
.vm_start
= FIXADDR_USER_START
;
3224 gate_vma
.vm_end
= FIXADDR_USER_END
;
3225 gate_vma
.vm_flags
= VM_READ
| VM_MAYREAD
| VM_EXEC
| VM_MAYEXEC
;
3226 gate_vma
.vm_page_prot
= __P101
;
3228 * Make sure the vDSO gets into every core dump.
3229 * Dumping its contents makes post-mortem fully interpretable later
3230 * without matching up the same kernel and hardware config to see
3231 * what PC values meant.
3233 gate_vma
.vm_flags
|= VM_ALWAYSDUMP
;
3236 __initcall(gate_vma_init
);
3239 struct vm_area_struct
*get_gate_vma(struct task_struct
*tsk
)
3241 #ifdef AT_SYSINFO_EHDR
3248 int in_gate_area_no_task(unsigned long addr
)
3250 #ifdef AT_SYSINFO_EHDR
3251 if ((addr
>= FIXADDR_USER_START
) && (addr
< FIXADDR_USER_END
))
3257 #endif /* __HAVE_ARCH_GATE_AREA */
3259 static int follow_pte(struct mm_struct
*mm
, unsigned long address
,
3260 pte_t
**ptepp
, spinlock_t
**ptlp
)
3267 pgd
= pgd_offset(mm
, address
);
3268 if (pgd_none(*pgd
) || unlikely(pgd_bad(*pgd
)))
3271 pud
= pud_offset(pgd
, address
);
3272 if (pud_none(*pud
) || unlikely(pud_bad(*pud
)))
3275 pmd
= pmd_offset(pud
, address
);
3276 if (pmd_none(*pmd
) || unlikely(pmd_bad(*pmd
)))
3279 /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3283 ptep
= pte_offset_map_lock(mm
, pmd
, address
, ptlp
);
3286 if (!pte_present(*ptep
))
3291 pte_unmap_unlock(ptep
, *ptlp
);
3297 * follow_pfn - look up PFN at a user virtual address
3298 * @vma: memory mapping
3299 * @address: user virtual address
3300 * @pfn: location to store found PFN
3302 * Only IO mappings and raw PFN mappings are allowed.
3304 * Returns zero and the pfn at @pfn on success, -ve otherwise.
3306 int follow_pfn(struct vm_area_struct
*vma
, unsigned long address
,
3313 if (!(vma
->vm_flags
& (VM_IO
| VM_PFNMAP
)))
3316 ret
= follow_pte(vma
->vm_mm
, address
, &ptep
, &ptl
);
3319 *pfn
= pte_pfn(*ptep
);
3320 pte_unmap_unlock(ptep
, ptl
);
3323 EXPORT_SYMBOL(follow_pfn
);
3325 #ifdef CONFIG_HAVE_IOREMAP_PROT
3326 int follow_phys(struct vm_area_struct
*vma
,
3327 unsigned long address
, unsigned int flags
,
3328 unsigned long *prot
, resource_size_t
*phys
)
3334 if (!(vma
->vm_flags
& (VM_IO
| VM_PFNMAP
)))
3337 if (follow_pte(vma
->vm_mm
, address
, &ptep
, &ptl
))
3341 if ((flags
& FOLL_WRITE
) && !pte_write(pte
))
3344 *prot
= pgprot_val(pte_pgprot(pte
));
3345 *phys
= (resource_size_t
)pte_pfn(pte
) << PAGE_SHIFT
;
3349 pte_unmap_unlock(ptep
, ptl
);
3354 int generic_access_phys(struct vm_area_struct
*vma
, unsigned long addr
,
3355 void *buf
, int len
, int write
)
3357 resource_size_t phys_addr
;
3358 unsigned long prot
= 0;
3359 void __iomem
*maddr
;
3360 int offset
= addr
& (PAGE_SIZE
-1);
3362 if (follow_phys(vma
, addr
, write
, &prot
, &phys_addr
))
3365 maddr
= ioremap_prot(phys_addr
, PAGE_SIZE
, prot
);
3367 memcpy_toio(maddr
+ offset
, buf
, len
);
3369 memcpy_fromio(buf
, maddr
+ offset
, len
);
3377 * Access another process' address space.
3378 * Source/target buffer must be kernel space,
3379 * Do not walk the page table directly, use get_user_pages
3381 int access_process_vm(struct task_struct
*tsk
, unsigned long addr
, void *buf
, int len
, int write
)
3383 struct mm_struct
*mm
;
3384 struct vm_area_struct
*vma
;
3385 void *old_buf
= buf
;
3387 mm
= get_task_mm(tsk
);
3391 down_read(&mm
->mmap_sem
);
3392 /* ignore errors, just check how much was successfully transferred */
3394 int bytes
, ret
, offset
;
3396 struct page
*page
= NULL
;
3398 ret
= get_user_pages(tsk
, mm
, addr
, 1,
3399 write
, 1, &page
, &vma
);
3402 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3403 * we can access using slightly different code.
3405 #ifdef CONFIG_HAVE_IOREMAP_PROT
3406 vma
= find_vma(mm
, addr
);
3409 if (vma
->vm_ops
&& vma
->vm_ops
->access
)
3410 ret
= vma
->vm_ops
->access(vma
, addr
, buf
,
3418 offset
= addr
& (PAGE_SIZE
-1);
3419 if (bytes
> PAGE_SIZE
-offset
)
3420 bytes
= PAGE_SIZE
-offset
;
3424 copy_to_user_page(vma
, page
, addr
,
3425 maddr
+ offset
, buf
, bytes
);
3426 set_page_dirty_lock(page
);
3428 copy_from_user_page(vma
, page
, addr
,
3429 buf
, maddr
+ offset
, bytes
);
3432 page_cache_release(page
);
3438 up_read(&mm
->mmap_sem
);
3441 return buf
- old_buf
;
3445 * Print the name of a VMA.
3447 void print_vma_addr(char *prefix
, unsigned long ip
)
3449 struct mm_struct
*mm
= current
->mm
;
3450 struct vm_area_struct
*vma
;
3453 * Do not print if we are in atomic
3454 * contexts (in exception stacks, etc.):
3456 if (preempt_count())
3459 down_read(&mm
->mmap_sem
);
3460 vma
= find_vma(mm
, ip
);
3461 if (vma
&& vma
->vm_file
) {
3462 struct file
*f
= vma
->vm_file
;
3463 char *buf
= (char *)__get_free_page(GFP_KERNEL
);
3467 p
= d_path(&f
->f_path
, buf
, PAGE_SIZE
);
3470 s
= strrchr(p
, '/');
3473 printk("%s%s[%lx+%lx]", prefix
, p
,
3475 vma
->vm_end
- vma
->vm_start
);
3476 free_page((unsigned long)buf
);
3479 up_read(¤t
->mm
->mmap_sem
);
3482 #ifdef CONFIG_PROVE_LOCKING
3483 void might_fault(void)
3486 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3487 * holding the mmap_sem, this is safe because kernel memory doesn't
3488 * get paged out, therefore we'll never actually fault, and the
3489 * below annotations will generate false positives.
3491 if (segment_eq(get_fs(), KERNEL_DS
))
3496 * it would be nicer only to annotate paths which are not under
3497 * pagefault_disable, however that requires a larger audit and
3498 * providing helpers like get_user_atomic.
3500 if (!in_atomic() && current
->mm
)
3501 might_lock_read(¤t
->mm
->mmap_sem
);
3503 EXPORT_SYMBOL(might_fault
);