2 * Generic address resolution entity
5 * Pedro Roque <roque@di.fc.ul.pt>
6 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
14 * Vitaly E. Lavrov releasing NULL neighbor in neigh_add.
15 * Harald Welte Add neighbour cache statistics like rtstat
18 #include <linux/config.h>
19 #include <linux/types.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/socket.h>
23 #include <linux/sched.h>
24 #include <linux/netdevice.h>
25 #include <linux/proc_fs.h>
27 #include <linux/sysctl.h>
29 #include <linux/times.h>
30 #include <net/neighbour.h>
33 #include <linux/rtnetlink.h>
34 #include <linux/random.h>
35 #include <linux/string.h>
39 #define NEIGH_PRINTK(x...) printk(x)
40 #define NEIGH_NOPRINTK(x...) do { ; } while(0)
41 #define NEIGH_PRINTK0 NEIGH_PRINTK
42 #define NEIGH_PRINTK1 NEIGH_NOPRINTK
43 #define NEIGH_PRINTK2 NEIGH_NOPRINTK
47 #define NEIGH_PRINTK1 NEIGH_PRINTK
51 #define NEIGH_PRINTK2 NEIGH_PRINTK
54 #define PNEIGH_HASHMASK 0xF
56 static void neigh_timer_handler(unsigned long arg
);
58 static void neigh_app_notify(struct neighbour
*n
);
60 static int pneigh_ifdown(struct neigh_table
*tbl
, struct net_device
*dev
);
61 void neigh_changeaddr(struct neigh_table
*tbl
, struct net_device
*dev
);
63 static struct neigh_table
*neigh_tables
;
65 static struct file_operations neigh_stat_seq_fops
;
69 Neighbour hash table buckets are protected with rwlock tbl->lock.
71 - All the scans/updates to hash buckets MUST be made under this lock.
72 - NOTHING clever should be made under this lock: no callbacks
73 to protocol backends, no attempts to send something to network.
74 It will result in deadlocks, if backend/driver wants to use neighbour
76 - If the entry requires some non-trivial actions, increase
77 its reference count and release table lock.
79 Neighbour entries are protected:
80 - with reference count.
81 - with rwlock neigh->lock
83 Reference count prevents destruction.
85 neigh->lock mainly serializes ll address data and its validity state.
86 However, the same lock is used to protect another entry fields:
90 Again, nothing clever shall be made under neigh->lock,
91 the most complicated procedure, which we allow is dev->hard_header.
92 It is supposed, that dev->hard_header is simplistic and does
93 not make callbacks to neighbour tables.
95 The last lock is neigh_tbl_lock. It is pure SMP lock, protecting
96 list of neighbour tables. This list is used only in process context,
99 static DEFINE_RWLOCK(neigh_tbl_lock
);
101 static int neigh_blackhole(struct sk_buff
*skb
)
108 * It is random distribution in the interval (1/2)*base...(3/2)*base.
109 * It corresponds to default IPv6 settings and is not overridable,
110 * because it is really reasonable choice.
113 unsigned long neigh_rand_reach_time(unsigned long base
)
115 return (base
? (net_random() % base
) + (base
>> 1) : 0);
119 static int neigh_forced_gc(struct neigh_table
*tbl
)
124 NEIGH_CACHE_STAT_INC(tbl
, forced_gc_runs
);
126 write_lock_bh(&tbl
->lock
);
127 for (i
= 0; i
<= tbl
->hash_mask
; i
++) {
128 struct neighbour
*n
, **np
;
130 np
= &tbl
->hash_buckets
[i
];
131 while ((n
= *np
) != NULL
) {
132 /* Neighbour record may be discarded if:
133 * - nobody refers to it.
134 * - it is not permanent
136 write_lock(&n
->lock
);
137 if (atomic_read(&n
->refcnt
) == 1 &&
138 !(n
->nud_state
& NUD_PERMANENT
)) {
142 write_unlock(&n
->lock
);
146 write_unlock(&n
->lock
);
151 tbl
->last_flush
= jiffies
;
153 write_unlock_bh(&tbl
->lock
);
158 static int neigh_del_timer(struct neighbour
*n
)
160 if ((n
->nud_state
& NUD_IN_TIMER
) &&
161 del_timer(&n
->timer
)) {
168 static void pneigh_queue_purge(struct sk_buff_head
*list
)
172 while ((skb
= skb_dequeue(list
)) != NULL
) {
178 static void neigh_flush_dev(struct neigh_table
*tbl
, struct net_device
*dev
)
182 for (i
= 0; i
<= tbl
->hash_mask
; i
++) {
183 struct neighbour
*n
, **np
= &tbl
->hash_buckets
[i
];
185 while ((n
= *np
) != NULL
) {
186 if (dev
&& n
->dev
!= dev
) {
191 write_lock(&n
->lock
);
195 if (atomic_read(&n
->refcnt
) != 1) {
196 /* The most unpleasant situation.
197 We must destroy neighbour entry,
198 but someone still uses it.
200 The destroy will be delayed until
201 the last user releases us, but
202 we must kill timers etc. and move
205 skb_queue_purge(&n
->arp_queue
);
206 n
->output
= neigh_blackhole
;
207 if (n
->nud_state
& NUD_VALID
)
208 n
->nud_state
= NUD_NOARP
;
210 n
->nud_state
= NUD_NONE
;
211 NEIGH_PRINTK2("neigh %p is stray.\n", n
);
213 write_unlock(&n
->lock
);
219 void neigh_changeaddr(struct neigh_table
*tbl
, struct net_device
*dev
)
221 write_lock_bh(&tbl
->lock
);
222 neigh_flush_dev(tbl
, dev
);
223 write_unlock_bh(&tbl
->lock
);
226 int neigh_ifdown(struct neigh_table
*tbl
, struct net_device
*dev
)
228 write_lock_bh(&tbl
->lock
);
229 neigh_flush_dev(tbl
, dev
);
230 pneigh_ifdown(tbl
, dev
);
231 write_unlock_bh(&tbl
->lock
);
233 del_timer_sync(&tbl
->proxy_timer
);
234 pneigh_queue_purge(&tbl
->proxy_queue
);
238 static struct neighbour
*neigh_alloc(struct neigh_table
*tbl
)
240 struct neighbour
*n
= NULL
;
241 unsigned long now
= jiffies
;
244 entries
= atomic_inc_return(&tbl
->entries
) - 1;
245 if (entries
>= tbl
->gc_thresh3
||
246 (entries
>= tbl
->gc_thresh2
&&
247 time_after(now
, tbl
->last_flush
+ 5 * HZ
))) {
248 if (!neigh_forced_gc(tbl
) &&
249 entries
>= tbl
->gc_thresh3
)
253 n
= kmem_cache_alloc(tbl
->kmem_cachep
, SLAB_ATOMIC
);
257 memset(n
, 0, tbl
->entry_size
);
259 skb_queue_head_init(&n
->arp_queue
);
260 rwlock_init(&n
->lock
);
261 n
->updated
= n
->used
= now
;
262 n
->nud_state
= NUD_NONE
;
263 n
->output
= neigh_blackhole
;
264 n
->parms
= neigh_parms_clone(&tbl
->parms
);
265 init_timer(&n
->timer
);
266 n
->timer
.function
= neigh_timer_handler
;
267 n
->timer
.data
= (unsigned long)n
;
269 NEIGH_CACHE_STAT_INC(tbl
, allocs
);
271 atomic_set(&n
->refcnt
, 1);
277 atomic_dec(&tbl
->entries
);
281 static struct neighbour
**neigh_hash_alloc(unsigned int entries
)
283 unsigned long size
= entries
* sizeof(struct neighbour
*);
284 struct neighbour
**ret
;
286 if (size
<= PAGE_SIZE
) {
287 ret
= kzalloc(size
, GFP_ATOMIC
);
289 ret
= (struct neighbour
**)
290 __get_free_pages(GFP_ATOMIC
|__GFP_ZERO
, get_order(size
));
295 static void neigh_hash_free(struct neighbour
**hash
, unsigned int entries
)
297 unsigned long size
= entries
* sizeof(struct neighbour
*);
299 if (size
<= PAGE_SIZE
)
302 free_pages((unsigned long)hash
, get_order(size
));
305 static void neigh_hash_grow(struct neigh_table
*tbl
, unsigned long new_entries
)
307 struct neighbour
**new_hash
, **old_hash
;
308 unsigned int i
, new_hash_mask
, old_entries
;
310 NEIGH_CACHE_STAT_INC(tbl
, hash_grows
);
312 BUG_ON(new_entries
& (new_entries
- 1));
313 new_hash
= neigh_hash_alloc(new_entries
);
317 old_entries
= tbl
->hash_mask
+ 1;
318 new_hash_mask
= new_entries
- 1;
319 old_hash
= tbl
->hash_buckets
;
321 get_random_bytes(&tbl
->hash_rnd
, sizeof(tbl
->hash_rnd
));
322 for (i
= 0; i
< old_entries
; i
++) {
323 struct neighbour
*n
, *next
;
325 for (n
= old_hash
[i
]; n
; n
= next
) {
326 unsigned int hash_val
= tbl
->hash(n
->primary_key
, n
->dev
);
328 hash_val
&= new_hash_mask
;
331 n
->next
= new_hash
[hash_val
];
332 new_hash
[hash_val
] = n
;
335 tbl
->hash_buckets
= new_hash
;
336 tbl
->hash_mask
= new_hash_mask
;
338 neigh_hash_free(old_hash
, old_entries
);
341 struct neighbour
*neigh_lookup(struct neigh_table
*tbl
, const void *pkey
,
342 struct net_device
*dev
)
345 int key_len
= tbl
->key_len
;
346 u32 hash_val
= tbl
->hash(pkey
, dev
) & tbl
->hash_mask
;
348 NEIGH_CACHE_STAT_INC(tbl
, lookups
);
350 read_lock_bh(&tbl
->lock
);
351 for (n
= tbl
->hash_buckets
[hash_val
]; n
; n
= n
->next
) {
352 if (dev
== n
->dev
&& !memcmp(n
->primary_key
, pkey
, key_len
)) {
354 NEIGH_CACHE_STAT_INC(tbl
, hits
);
358 read_unlock_bh(&tbl
->lock
);
362 struct neighbour
*neigh_lookup_nodev(struct neigh_table
*tbl
, const void *pkey
)
365 int key_len
= tbl
->key_len
;
366 u32 hash_val
= tbl
->hash(pkey
, NULL
) & tbl
->hash_mask
;
368 NEIGH_CACHE_STAT_INC(tbl
, lookups
);
370 read_lock_bh(&tbl
->lock
);
371 for (n
= tbl
->hash_buckets
[hash_val
]; n
; n
= n
->next
) {
372 if (!memcmp(n
->primary_key
, pkey
, key_len
)) {
374 NEIGH_CACHE_STAT_INC(tbl
, hits
);
378 read_unlock_bh(&tbl
->lock
);
382 struct neighbour
*neigh_create(struct neigh_table
*tbl
, const void *pkey
,
383 struct net_device
*dev
)
386 int key_len
= tbl
->key_len
;
388 struct neighbour
*n1
, *rc
, *n
= neigh_alloc(tbl
);
391 rc
= ERR_PTR(-ENOBUFS
);
395 memcpy(n
->primary_key
, pkey
, key_len
);
399 /* Protocol specific setup. */
400 if (tbl
->constructor
&& (error
= tbl
->constructor(n
)) < 0) {
402 goto out_neigh_release
;
405 /* Device specific setup. */
406 if (n
->parms
->neigh_setup
&&
407 (error
= n
->parms
->neigh_setup(n
)) < 0) {
409 goto out_neigh_release
;
412 n
->confirmed
= jiffies
- (n
->parms
->base_reachable_time
<< 1);
414 write_lock_bh(&tbl
->lock
);
416 if (atomic_read(&tbl
->entries
) > (tbl
->hash_mask
+ 1))
417 neigh_hash_grow(tbl
, (tbl
->hash_mask
+ 1) << 1);
419 hash_val
= tbl
->hash(pkey
, dev
) & tbl
->hash_mask
;
421 if (n
->parms
->dead
) {
422 rc
= ERR_PTR(-EINVAL
);
426 for (n1
= tbl
->hash_buckets
[hash_val
]; n1
; n1
= n1
->next
) {
427 if (dev
== n1
->dev
&& !memcmp(n1
->primary_key
, pkey
, key_len
)) {
434 n
->next
= tbl
->hash_buckets
[hash_val
];
435 tbl
->hash_buckets
[hash_val
] = n
;
438 write_unlock_bh(&tbl
->lock
);
439 NEIGH_PRINTK2("neigh %p is created.\n", n
);
444 write_unlock_bh(&tbl
->lock
);
450 struct pneigh_entry
* pneigh_lookup(struct neigh_table
*tbl
, const void *pkey
,
451 struct net_device
*dev
, int creat
)
453 struct pneigh_entry
*n
;
454 int key_len
= tbl
->key_len
;
455 u32 hash_val
= *(u32
*)(pkey
+ key_len
- 4);
457 hash_val
^= (hash_val
>> 16);
458 hash_val
^= hash_val
>> 8;
459 hash_val
^= hash_val
>> 4;
460 hash_val
&= PNEIGH_HASHMASK
;
462 read_lock_bh(&tbl
->lock
);
464 for (n
= tbl
->phash_buckets
[hash_val
]; n
; n
= n
->next
) {
465 if (!memcmp(n
->key
, pkey
, key_len
) &&
466 (n
->dev
== dev
|| !n
->dev
)) {
467 read_unlock_bh(&tbl
->lock
);
471 read_unlock_bh(&tbl
->lock
);
476 n
= kmalloc(sizeof(*n
) + key_len
, GFP_KERNEL
);
480 memcpy(n
->key
, pkey
, key_len
);
485 if (tbl
->pconstructor
&& tbl
->pconstructor(n
)) {
493 write_lock_bh(&tbl
->lock
);
494 n
->next
= tbl
->phash_buckets
[hash_val
];
495 tbl
->phash_buckets
[hash_val
] = n
;
496 write_unlock_bh(&tbl
->lock
);
502 int pneigh_delete(struct neigh_table
*tbl
, const void *pkey
,
503 struct net_device
*dev
)
505 struct pneigh_entry
*n
, **np
;
506 int key_len
= tbl
->key_len
;
507 u32 hash_val
= *(u32
*)(pkey
+ key_len
- 4);
509 hash_val
^= (hash_val
>> 16);
510 hash_val
^= hash_val
>> 8;
511 hash_val
^= hash_val
>> 4;
512 hash_val
&= PNEIGH_HASHMASK
;
514 write_lock_bh(&tbl
->lock
);
515 for (np
= &tbl
->phash_buckets
[hash_val
]; (n
= *np
) != NULL
;
517 if (!memcmp(n
->key
, pkey
, key_len
) && n
->dev
== dev
) {
519 write_unlock_bh(&tbl
->lock
);
520 if (tbl
->pdestructor
)
528 write_unlock_bh(&tbl
->lock
);
532 static int pneigh_ifdown(struct neigh_table
*tbl
, struct net_device
*dev
)
534 struct pneigh_entry
*n
, **np
;
537 for (h
= 0; h
<= PNEIGH_HASHMASK
; h
++) {
538 np
= &tbl
->phash_buckets
[h
];
539 while ((n
= *np
) != NULL
) {
540 if (!dev
|| n
->dev
== dev
) {
542 if (tbl
->pdestructor
)
557 * neighbour must already be out of the table;
560 void neigh_destroy(struct neighbour
*neigh
)
564 NEIGH_CACHE_STAT_INC(neigh
->tbl
, destroys
);
568 "Destroying alive neighbour %p\n", neigh
);
573 if (neigh_del_timer(neigh
))
574 printk(KERN_WARNING
"Impossible event.\n");
576 while ((hh
= neigh
->hh
) != NULL
) {
577 neigh
->hh
= hh
->hh_next
;
579 write_lock_bh(&hh
->hh_lock
);
580 hh
->hh_output
= neigh_blackhole
;
581 write_unlock_bh(&hh
->hh_lock
);
582 if (atomic_dec_and_test(&hh
->hh_refcnt
))
586 if (neigh
->parms
->neigh_destructor
)
587 (neigh
->parms
->neigh_destructor
)(neigh
);
589 skb_queue_purge(&neigh
->arp_queue
);
592 neigh_parms_put(neigh
->parms
);
594 NEIGH_PRINTK2("neigh %p is destroyed.\n", neigh
);
596 atomic_dec(&neigh
->tbl
->entries
);
597 kmem_cache_free(neigh
->tbl
->kmem_cachep
, neigh
);
600 /* Neighbour state is suspicious;
603 Called with write_locked neigh.
605 static void neigh_suspect(struct neighbour
*neigh
)
609 NEIGH_PRINTK2("neigh %p is suspected.\n", neigh
);
611 neigh
->output
= neigh
->ops
->output
;
613 for (hh
= neigh
->hh
; hh
; hh
= hh
->hh_next
)
614 hh
->hh_output
= neigh
->ops
->output
;
617 /* Neighbour state is OK;
620 Called with write_locked neigh.
622 static void neigh_connect(struct neighbour
*neigh
)
626 NEIGH_PRINTK2("neigh %p is connected.\n", neigh
);
628 neigh
->output
= neigh
->ops
->connected_output
;
630 for (hh
= neigh
->hh
; hh
; hh
= hh
->hh_next
)
631 hh
->hh_output
= neigh
->ops
->hh_output
;
634 static void neigh_periodic_timer(unsigned long arg
)
636 struct neigh_table
*tbl
= (struct neigh_table
*)arg
;
637 struct neighbour
*n
, **np
;
638 unsigned long expire
, now
= jiffies
;
640 NEIGH_CACHE_STAT_INC(tbl
, periodic_gc_runs
);
642 write_lock(&tbl
->lock
);
645 * periodically recompute ReachableTime from random function
648 if (time_after(now
, tbl
->last_rand
+ 300 * HZ
)) {
649 struct neigh_parms
*p
;
650 tbl
->last_rand
= now
;
651 for (p
= &tbl
->parms
; p
; p
= p
->next
)
653 neigh_rand_reach_time(p
->base_reachable_time
);
656 np
= &tbl
->hash_buckets
[tbl
->hash_chain_gc
];
657 tbl
->hash_chain_gc
= ((tbl
->hash_chain_gc
+ 1) & tbl
->hash_mask
);
659 while ((n
= *np
) != NULL
) {
662 write_lock(&n
->lock
);
664 state
= n
->nud_state
;
665 if (state
& (NUD_PERMANENT
| NUD_IN_TIMER
)) {
666 write_unlock(&n
->lock
);
670 if (time_before(n
->used
, n
->confirmed
))
671 n
->used
= n
->confirmed
;
673 if (atomic_read(&n
->refcnt
) == 1 &&
674 (state
== NUD_FAILED
||
675 time_after(now
, n
->used
+ n
->parms
->gc_staletime
))) {
678 write_unlock(&n
->lock
);
682 write_unlock(&n
->lock
);
688 /* Cycle through all hash buckets every base_reachable_time/2 ticks.
689 * ARP entry timeouts range from 1/2 base_reachable_time to 3/2
690 * base_reachable_time.
692 expire
= tbl
->parms
.base_reachable_time
>> 1;
693 expire
/= (tbl
->hash_mask
+ 1);
697 mod_timer(&tbl
->gc_timer
, now
+ expire
);
699 write_unlock(&tbl
->lock
);
702 static __inline__
int neigh_max_probes(struct neighbour
*n
)
704 struct neigh_parms
*p
= n
->parms
;
705 return (n
->nud_state
& NUD_PROBE
?
707 p
->ucast_probes
+ p
->app_probes
+ p
->mcast_probes
);
710 static inline void neigh_add_timer(struct neighbour
*n
, unsigned long when
)
712 if (unlikely(mod_timer(&n
->timer
, when
))) {
713 printk("NEIGH: BUG, double timer add, state is %x\n",
719 /* Called when a timer expires for a neighbour entry. */
721 static void neigh_timer_handler(unsigned long arg
)
723 unsigned long now
, next
;
724 struct neighbour
*neigh
= (struct neighbour
*)arg
;
728 write_lock(&neigh
->lock
);
730 state
= neigh
->nud_state
;
734 if (!(state
& NUD_IN_TIMER
)) {
736 printk(KERN_WARNING
"neigh: timer & !nud_in_timer\n");
741 if (state
& NUD_REACHABLE
) {
742 if (time_before_eq(now
,
743 neigh
->confirmed
+ neigh
->parms
->reachable_time
)) {
744 NEIGH_PRINTK2("neigh %p is still alive.\n", neigh
);
745 next
= neigh
->confirmed
+ neigh
->parms
->reachable_time
;
746 } else if (time_before_eq(now
,
747 neigh
->used
+ neigh
->parms
->delay_probe_time
)) {
748 NEIGH_PRINTK2("neigh %p is delayed.\n", neigh
);
749 neigh
->nud_state
= NUD_DELAY
;
750 neigh
->updated
= jiffies
;
751 neigh_suspect(neigh
);
752 next
= now
+ neigh
->parms
->delay_probe_time
;
754 NEIGH_PRINTK2("neigh %p is suspected.\n", neigh
);
755 neigh
->nud_state
= NUD_STALE
;
756 neigh
->updated
= jiffies
;
757 neigh_suspect(neigh
);
759 } else if (state
& NUD_DELAY
) {
760 if (time_before_eq(now
,
761 neigh
->confirmed
+ neigh
->parms
->delay_probe_time
)) {
762 NEIGH_PRINTK2("neigh %p is now reachable.\n", neigh
);
763 neigh
->nud_state
= NUD_REACHABLE
;
764 neigh
->updated
= jiffies
;
765 neigh_connect(neigh
);
766 next
= neigh
->confirmed
+ neigh
->parms
->reachable_time
;
768 NEIGH_PRINTK2("neigh %p is probed.\n", neigh
);
769 neigh
->nud_state
= NUD_PROBE
;
770 neigh
->updated
= jiffies
;
771 atomic_set(&neigh
->probes
, 0);
772 next
= now
+ neigh
->parms
->retrans_time
;
775 /* NUD_PROBE|NUD_INCOMPLETE */
776 next
= now
+ neigh
->parms
->retrans_time
;
779 if ((neigh
->nud_state
& (NUD_INCOMPLETE
| NUD_PROBE
)) &&
780 atomic_read(&neigh
->probes
) >= neigh_max_probes(neigh
)) {
783 neigh
->nud_state
= NUD_FAILED
;
784 neigh
->updated
= jiffies
;
786 NEIGH_CACHE_STAT_INC(neigh
->tbl
, res_failed
);
787 NEIGH_PRINTK2("neigh %p is failed.\n", neigh
);
789 /* It is very thin place. report_unreachable is very complicated
790 routine. Particularly, it can hit the same neighbour entry!
792 So that, we try to be accurate and avoid dead loop. --ANK
794 while (neigh
->nud_state
== NUD_FAILED
&&
795 (skb
= __skb_dequeue(&neigh
->arp_queue
)) != NULL
) {
796 write_unlock(&neigh
->lock
);
797 neigh
->ops
->error_report(neigh
, skb
);
798 write_lock(&neigh
->lock
);
800 skb_queue_purge(&neigh
->arp_queue
);
803 if (neigh
->nud_state
& NUD_IN_TIMER
) {
804 if (time_before(next
, jiffies
+ HZ
/2))
805 next
= jiffies
+ HZ
/2;
806 if (!mod_timer(&neigh
->timer
, next
))
809 if (neigh
->nud_state
& (NUD_INCOMPLETE
| NUD_PROBE
)) {
810 struct sk_buff
*skb
= skb_peek(&neigh
->arp_queue
);
811 /* keep skb alive even if arp_queue overflows */
814 write_unlock(&neigh
->lock
);
815 neigh
->ops
->solicit(neigh
, skb
);
816 atomic_inc(&neigh
->probes
);
821 write_unlock(&neigh
->lock
);
825 if (notify
&& neigh
->parms
->app_probes
)
826 neigh_app_notify(neigh
);
828 neigh_release(neigh
);
831 int __neigh_event_send(struct neighbour
*neigh
, struct sk_buff
*skb
)
836 write_lock_bh(&neigh
->lock
);
839 if (neigh
->nud_state
& (NUD_CONNECTED
| NUD_DELAY
| NUD_PROBE
))
844 if (!(neigh
->nud_state
& (NUD_STALE
| NUD_INCOMPLETE
))) {
845 if (neigh
->parms
->mcast_probes
+ neigh
->parms
->app_probes
) {
846 atomic_set(&neigh
->probes
, neigh
->parms
->ucast_probes
);
847 neigh
->nud_state
= NUD_INCOMPLETE
;
848 neigh
->updated
= jiffies
;
850 neigh_add_timer(neigh
, now
+ 1);
852 neigh
->nud_state
= NUD_FAILED
;
853 neigh
->updated
= jiffies
;
854 write_unlock_bh(&neigh
->lock
);
860 } else if (neigh
->nud_state
& NUD_STALE
) {
861 NEIGH_PRINTK2("neigh %p is delayed.\n", neigh
);
863 neigh
->nud_state
= NUD_DELAY
;
864 neigh
->updated
= jiffies
;
865 neigh_add_timer(neigh
,
866 jiffies
+ neigh
->parms
->delay_probe_time
);
869 if (neigh
->nud_state
== NUD_INCOMPLETE
) {
871 if (skb_queue_len(&neigh
->arp_queue
) >=
872 neigh
->parms
->queue_len
) {
873 struct sk_buff
*buff
;
874 buff
= neigh
->arp_queue
.next
;
875 __skb_unlink(buff
, &neigh
->arp_queue
);
878 __skb_queue_tail(&neigh
->arp_queue
, skb
);
883 write_unlock_bh(&neigh
->lock
);
887 static __inline__
void neigh_update_hhs(struct neighbour
*neigh
)
890 void (*update
)(struct hh_cache
*, struct net_device
*, unsigned char *) =
891 neigh
->dev
->header_cache_update
;
894 for (hh
= neigh
->hh
; hh
; hh
= hh
->hh_next
) {
895 write_lock_bh(&hh
->hh_lock
);
896 update(hh
, neigh
->dev
, neigh
->ha
);
897 write_unlock_bh(&hh
->hh_lock
);
904 /* Generic update routine.
905 -- lladdr is new lladdr or NULL, if it is not supplied.
908 NEIGH_UPDATE_F_OVERRIDE allows to override existing lladdr,
910 NEIGH_UPDATE_F_WEAK_OVERRIDE will suspect existing "connected"
911 lladdr instead of overriding it
913 It also allows to retain current state
914 if lladdr is unchanged.
915 NEIGH_UPDATE_F_ADMIN means that the change is administrative.
917 NEIGH_UPDATE_F_OVERRIDE_ISROUTER allows to override existing
919 NEIGH_UPDATE_F_ISROUTER indicates if the neighbour is known as
922 Caller MUST hold reference count on the entry.
925 int neigh_update(struct neighbour
*neigh
, const u8
*lladdr
, u8
new,
933 struct net_device
*dev
;
934 int update_isrouter
= 0;
936 write_lock_bh(&neigh
->lock
);
939 old
= neigh
->nud_state
;
942 if (!(flags
& NEIGH_UPDATE_F_ADMIN
) &&
943 (old
& (NUD_NOARP
| NUD_PERMANENT
)))
946 if (!(new & NUD_VALID
)) {
947 neigh_del_timer(neigh
);
948 if (old
& NUD_CONNECTED
)
949 neigh_suspect(neigh
);
950 neigh
->nud_state
= new;
953 notify
= old
& NUD_VALID
;
958 /* Compare new lladdr with cached one */
959 if (!dev
->addr_len
) {
960 /* First case: device needs no address. */
963 /* The second case: if something is already cached
964 and a new address is proposed:
966 - if they are different, check override flag
968 if ((old
& NUD_VALID
) &&
969 !memcmp(lladdr
, neigh
->ha
, dev
->addr_len
))
972 /* No address is supplied; if we know something,
973 use it, otherwise discard the request.
976 if (!(old
& NUD_VALID
))
981 if (new & NUD_CONNECTED
)
982 neigh
->confirmed
= jiffies
;
983 neigh
->updated
= jiffies
;
985 /* If entry was valid and address is not changed,
986 do not change entry state, if new one is STALE.
989 update_isrouter
= flags
& NEIGH_UPDATE_F_OVERRIDE_ISROUTER
;
990 if (old
& NUD_VALID
) {
991 if (lladdr
!= neigh
->ha
&& !(flags
& NEIGH_UPDATE_F_OVERRIDE
)) {
993 if ((flags
& NEIGH_UPDATE_F_WEAK_OVERRIDE
) &&
994 (old
& NUD_CONNECTED
)) {
1000 if (lladdr
== neigh
->ha
&& new == NUD_STALE
&&
1001 ((flags
& NEIGH_UPDATE_F_WEAK_OVERRIDE
) ||
1002 (old
& NUD_CONNECTED
))
1009 neigh_del_timer(neigh
);
1010 if (new & NUD_IN_TIMER
) {
1012 neigh_add_timer(neigh
, (jiffies
+
1013 ((new & NUD_REACHABLE
) ?
1014 neigh
->parms
->reachable_time
:
1017 neigh
->nud_state
= new;
1020 if (lladdr
!= neigh
->ha
) {
1021 memcpy(&neigh
->ha
, lladdr
, dev
->addr_len
);
1022 neigh_update_hhs(neigh
);
1023 if (!(new & NUD_CONNECTED
))
1024 neigh
->confirmed
= jiffies
-
1025 (neigh
->parms
->base_reachable_time
<< 1);
1032 if (new & NUD_CONNECTED
)
1033 neigh_connect(neigh
);
1035 neigh_suspect(neigh
);
1036 if (!(old
& NUD_VALID
)) {
1037 struct sk_buff
*skb
;
1039 /* Again: avoid dead loop if something went wrong */
1041 while (neigh
->nud_state
& NUD_VALID
&&
1042 (skb
= __skb_dequeue(&neigh
->arp_queue
)) != NULL
) {
1043 struct neighbour
*n1
= neigh
;
1044 write_unlock_bh(&neigh
->lock
);
1045 /* On shaper/eql skb->dst->neighbour != neigh :( */
1046 if (skb
->dst
&& skb
->dst
->neighbour
)
1047 n1
= skb
->dst
->neighbour
;
1049 write_lock_bh(&neigh
->lock
);
1051 skb_queue_purge(&neigh
->arp_queue
);
1054 if (update_isrouter
) {
1055 neigh
->flags
= (flags
& NEIGH_UPDATE_F_ISROUTER
) ?
1056 (neigh
->flags
| NTF_ROUTER
) :
1057 (neigh
->flags
& ~NTF_ROUTER
);
1059 write_unlock_bh(&neigh
->lock
);
1061 if (notify
&& neigh
->parms
->app_probes
)
1062 neigh_app_notify(neigh
);
1067 struct neighbour
*neigh_event_ns(struct neigh_table
*tbl
,
1068 u8
*lladdr
, void *saddr
,
1069 struct net_device
*dev
)
1071 struct neighbour
*neigh
= __neigh_lookup(tbl
, saddr
, dev
,
1072 lladdr
|| !dev
->addr_len
);
1074 neigh_update(neigh
, lladdr
, NUD_STALE
,
1075 NEIGH_UPDATE_F_OVERRIDE
);
1079 static void neigh_hh_init(struct neighbour
*n
, struct dst_entry
*dst
,
1082 struct hh_cache
*hh
;
1083 struct net_device
*dev
= dst
->dev
;
1085 for (hh
= n
->hh
; hh
; hh
= hh
->hh_next
)
1086 if (hh
->hh_type
== protocol
)
1089 if (!hh
&& (hh
= kzalloc(sizeof(*hh
), GFP_ATOMIC
)) != NULL
) {
1090 rwlock_init(&hh
->hh_lock
);
1091 hh
->hh_type
= protocol
;
1092 atomic_set(&hh
->hh_refcnt
, 0);
1094 if (dev
->hard_header_cache(n
, hh
)) {
1098 atomic_inc(&hh
->hh_refcnt
);
1099 hh
->hh_next
= n
->hh
;
1101 if (n
->nud_state
& NUD_CONNECTED
)
1102 hh
->hh_output
= n
->ops
->hh_output
;
1104 hh
->hh_output
= n
->ops
->output
;
1108 atomic_inc(&hh
->hh_refcnt
);
1113 /* This function can be used in contexts, where only old dev_queue_xmit
1114 worked, f.e. if you want to override normal output path (eql, shaper),
1115 but resolution is not made yet.
1118 int neigh_compat_output(struct sk_buff
*skb
)
1120 struct net_device
*dev
= skb
->dev
;
1122 __skb_pull(skb
, skb
->nh
.raw
- skb
->data
);
1124 if (dev
->hard_header
&&
1125 dev
->hard_header(skb
, dev
, ntohs(skb
->protocol
), NULL
, NULL
,
1127 dev
->rebuild_header(skb
))
1130 return dev_queue_xmit(skb
);
1133 /* Slow and careful. */
1135 int neigh_resolve_output(struct sk_buff
*skb
)
1137 struct dst_entry
*dst
= skb
->dst
;
1138 struct neighbour
*neigh
;
1141 if (!dst
|| !(neigh
= dst
->neighbour
))
1144 __skb_pull(skb
, skb
->nh
.raw
- skb
->data
);
1146 if (!neigh_event_send(neigh
, skb
)) {
1148 struct net_device
*dev
= neigh
->dev
;
1149 if (dev
->hard_header_cache
&& !dst
->hh
) {
1150 write_lock_bh(&neigh
->lock
);
1152 neigh_hh_init(neigh
, dst
, dst
->ops
->protocol
);
1153 err
= dev
->hard_header(skb
, dev
, ntohs(skb
->protocol
),
1154 neigh
->ha
, NULL
, skb
->len
);
1155 write_unlock_bh(&neigh
->lock
);
1157 read_lock_bh(&neigh
->lock
);
1158 err
= dev
->hard_header(skb
, dev
, ntohs(skb
->protocol
),
1159 neigh
->ha
, NULL
, skb
->len
);
1160 read_unlock_bh(&neigh
->lock
);
1163 rc
= neigh
->ops
->queue_xmit(skb
);
1170 NEIGH_PRINTK1("neigh_resolve_output: dst=%p neigh=%p\n",
1171 dst
, dst
? dst
->neighbour
: NULL
);
1178 /* As fast as possible without hh cache */
1180 int neigh_connected_output(struct sk_buff
*skb
)
1183 struct dst_entry
*dst
= skb
->dst
;
1184 struct neighbour
*neigh
= dst
->neighbour
;
1185 struct net_device
*dev
= neigh
->dev
;
1187 __skb_pull(skb
, skb
->nh
.raw
- skb
->data
);
1189 read_lock_bh(&neigh
->lock
);
1190 err
= dev
->hard_header(skb
, dev
, ntohs(skb
->protocol
),
1191 neigh
->ha
, NULL
, skb
->len
);
1192 read_unlock_bh(&neigh
->lock
);
1194 err
= neigh
->ops
->queue_xmit(skb
);
1202 static void neigh_proxy_process(unsigned long arg
)
1204 struct neigh_table
*tbl
= (struct neigh_table
*)arg
;
1205 long sched_next
= 0;
1206 unsigned long now
= jiffies
;
1207 struct sk_buff
*skb
;
1209 spin_lock(&tbl
->proxy_queue
.lock
);
1211 skb
= tbl
->proxy_queue
.next
;
1213 while (skb
!= (struct sk_buff
*)&tbl
->proxy_queue
) {
1214 struct sk_buff
*back
= skb
;
1215 long tdif
= NEIGH_CB(back
)->sched_next
- now
;
1219 struct net_device
*dev
= back
->dev
;
1220 __skb_unlink(back
, &tbl
->proxy_queue
);
1221 if (tbl
->proxy_redo
&& netif_running(dev
))
1222 tbl
->proxy_redo(back
);
1227 } else if (!sched_next
|| tdif
< sched_next
)
1230 del_timer(&tbl
->proxy_timer
);
1232 mod_timer(&tbl
->proxy_timer
, jiffies
+ sched_next
);
1233 spin_unlock(&tbl
->proxy_queue
.lock
);
1236 void pneigh_enqueue(struct neigh_table
*tbl
, struct neigh_parms
*p
,
1237 struct sk_buff
*skb
)
1239 unsigned long now
= jiffies
;
1240 unsigned long sched_next
= now
+ (net_random() % p
->proxy_delay
);
1242 if (tbl
->proxy_queue
.qlen
> p
->proxy_qlen
) {
1247 NEIGH_CB(skb
)->sched_next
= sched_next
;
1248 NEIGH_CB(skb
)->flags
|= LOCALLY_ENQUEUED
;
1250 spin_lock(&tbl
->proxy_queue
.lock
);
1251 if (del_timer(&tbl
->proxy_timer
)) {
1252 if (time_before(tbl
->proxy_timer
.expires
, sched_next
))
1253 sched_next
= tbl
->proxy_timer
.expires
;
1255 dst_release(skb
->dst
);
1258 __skb_queue_tail(&tbl
->proxy_queue
, skb
);
1259 mod_timer(&tbl
->proxy_timer
, sched_next
);
1260 spin_unlock(&tbl
->proxy_queue
.lock
);
1264 struct neigh_parms
*neigh_parms_alloc(struct net_device
*dev
,
1265 struct neigh_table
*tbl
)
1267 struct neigh_parms
*p
= kmalloc(sizeof(*p
), GFP_KERNEL
);
1270 memcpy(p
, &tbl
->parms
, sizeof(*p
));
1272 atomic_set(&p
->refcnt
, 1);
1273 INIT_RCU_HEAD(&p
->rcu_head
);
1275 neigh_rand_reach_time(p
->base_reachable_time
);
1277 if (dev
->neigh_setup
&& dev
->neigh_setup(dev
, p
)) {
1285 p
->sysctl_table
= NULL
;
1286 write_lock_bh(&tbl
->lock
);
1287 p
->next
= tbl
->parms
.next
;
1288 tbl
->parms
.next
= p
;
1289 write_unlock_bh(&tbl
->lock
);
1294 static void neigh_rcu_free_parms(struct rcu_head
*head
)
1296 struct neigh_parms
*parms
=
1297 container_of(head
, struct neigh_parms
, rcu_head
);
1299 neigh_parms_put(parms
);
1302 void neigh_parms_release(struct neigh_table
*tbl
, struct neigh_parms
*parms
)
1304 struct neigh_parms
**p
;
1306 if (!parms
|| parms
== &tbl
->parms
)
1308 write_lock_bh(&tbl
->lock
);
1309 for (p
= &tbl
->parms
.next
; *p
; p
= &(*p
)->next
) {
1313 write_unlock_bh(&tbl
->lock
);
1315 dev_put(parms
->dev
);
1316 call_rcu(&parms
->rcu_head
, neigh_rcu_free_parms
);
1320 write_unlock_bh(&tbl
->lock
);
1321 NEIGH_PRINTK1("neigh_parms_release: not found\n");
1324 void neigh_parms_destroy(struct neigh_parms
*parms
)
1330 void neigh_table_init(struct neigh_table
*tbl
)
1332 unsigned long now
= jiffies
;
1333 unsigned long phsize
;
1335 atomic_set(&tbl
->parms
.refcnt
, 1);
1336 INIT_RCU_HEAD(&tbl
->parms
.rcu_head
);
1337 tbl
->parms
.reachable_time
=
1338 neigh_rand_reach_time(tbl
->parms
.base_reachable_time
);
1340 if (!tbl
->kmem_cachep
)
1341 tbl
->kmem_cachep
= kmem_cache_create(tbl
->id
,
1343 0, SLAB_HWCACHE_ALIGN
,
1346 if (!tbl
->kmem_cachep
)
1347 panic("cannot create neighbour cache");
1349 tbl
->stats
= alloc_percpu(struct neigh_statistics
);
1351 panic("cannot create neighbour cache statistics");
1353 #ifdef CONFIG_PROC_FS
1354 tbl
->pde
= create_proc_entry(tbl
->id
, 0, proc_net_stat
);
1356 panic("cannot create neighbour proc dir entry");
1357 tbl
->pde
->proc_fops
= &neigh_stat_seq_fops
;
1358 tbl
->pde
->data
= tbl
;
1362 tbl
->hash_buckets
= neigh_hash_alloc(tbl
->hash_mask
+ 1);
1364 phsize
= (PNEIGH_HASHMASK
+ 1) * sizeof(struct pneigh_entry
*);
1365 tbl
->phash_buckets
= kzalloc(phsize
, GFP_KERNEL
);
1367 if (!tbl
->hash_buckets
|| !tbl
->phash_buckets
)
1368 panic("cannot allocate neighbour cache hashes");
1370 get_random_bytes(&tbl
->hash_rnd
, sizeof(tbl
->hash_rnd
));
1372 rwlock_init(&tbl
->lock
);
1373 init_timer(&tbl
->gc_timer
);
1374 tbl
->gc_timer
.data
= (unsigned long)tbl
;
1375 tbl
->gc_timer
.function
= neigh_periodic_timer
;
1376 tbl
->gc_timer
.expires
= now
+ 1;
1377 add_timer(&tbl
->gc_timer
);
1379 init_timer(&tbl
->proxy_timer
);
1380 tbl
->proxy_timer
.data
= (unsigned long)tbl
;
1381 tbl
->proxy_timer
.function
= neigh_proxy_process
;
1382 skb_queue_head_init(&tbl
->proxy_queue
);
1384 tbl
->last_flush
= now
;
1385 tbl
->last_rand
= now
+ tbl
->parms
.reachable_time
* 20;
1386 write_lock(&neigh_tbl_lock
);
1387 tbl
->next
= neigh_tables
;
1389 write_unlock(&neigh_tbl_lock
);
1392 int neigh_table_clear(struct neigh_table
*tbl
)
1394 struct neigh_table
**tp
;
1396 /* It is not clean... Fix it to unload IPv6 module safely */
1397 del_timer_sync(&tbl
->gc_timer
);
1398 del_timer_sync(&tbl
->proxy_timer
);
1399 pneigh_queue_purge(&tbl
->proxy_queue
);
1400 neigh_ifdown(tbl
, NULL
);
1401 if (atomic_read(&tbl
->entries
))
1402 printk(KERN_CRIT
"neighbour leakage\n");
1403 write_lock(&neigh_tbl_lock
);
1404 for (tp
= &neigh_tables
; *tp
; tp
= &(*tp
)->next
) {
1410 write_unlock(&neigh_tbl_lock
);
1412 neigh_hash_free(tbl
->hash_buckets
, tbl
->hash_mask
+ 1);
1413 tbl
->hash_buckets
= NULL
;
1415 kfree(tbl
->phash_buckets
);
1416 tbl
->phash_buckets
= NULL
;
1421 int neigh_delete(struct sk_buff
*skb
, struct nlmsghdr
*nlh
, void *arg
)
1423 struct ndmsg
*ndm
= NLMSG_DATA(nlh
);
1424 struct rtattr
**nda
= arg
;
1425 struct neigh_table
*tbl
;
1426 struct net_device
*dev
= NULL
;
1429 if (ndm
->ndm_ifindex
&&
1430 (dev
= dev_get_by_index(ndm
->ndm_ifindex
)) == NULL
)
1433 read_lock(&neigh_tbl_lock
);
1434 for (tbl
= neigh_tables
; tbl
; tbl
= tbl
->next
) {
1435 struct rtattr
*dst_attr
= nda
[NDA_DST
- 1];
1436 struct neighbour
*n
;
1438 if (tbl
->family
!= ndm
->ndm_family
)
1440 read_unlock(&neigh_tbl_lock
);
1443 if (!dst_attr
|| RTA_PAYLOAD(dst_attr
) < tbl
->key_len
)
1446 if (ndm
->ndm_flags
& NTF_PROXY
) {
1447 err
= pneigh_delete(tbl
, RTA_DATA(dst_attr
), dev
);
1454 n
= neigh_lookup(tbl
, RTA_DATA(dst_attr
), dev
);
1456 err
= neigh_update(n
, NULL
, NUD_FAILED
,
1457 NEIGH_UPDATE_F_OVERRIDE
|
1458 NEIGH_UPDATE_F_ADMIN
);
1463 read_unlock(&neigh_tbl_lock
);
1464 err
= -EADDRNOTAVAIL
;
1472 int neigh_add(struct sk_buff
*skb
, struct nlmsghdr
*nlh
, void *arg
)
1474 struct ndmsg
*ndm
= NLMSG_DATA(nlh
);
1475 struct rtattr
**nda
= arg
;
1476 struct neigh_table
*tbl
;
1477 struct net_device
*dev
= NULL
;
1480 if (ndm
->ndm_ifindex
&&
1481 (dev
= dev_get_by_index(ndm
->ndm_ifindex
)) == NULL
)
1484 read_lock(&neigh_tbl_lock
);
1485 for (tbl
= neigh_tables
; tbl
; tbl
= tbl
->next
) {
1486 struct rtattr
*lladdr_attr
= nda
[NDA_LLADDR
- 1];
1487 struct rtattr
*dst_attr
= nda
[NDA_DST
- 1];
1489 struct neighbour
*n
;
1491 if (tbl
->family
!= ndm
->ndm_family
)
1493 read_unlock(&neigh_tbl_lock
);
1496 if (!dst_attr
|| RTA_PAYLOAD(dst_attr
) < tbl
->key_len
)
1499 if (ndm
->ndm_flags
& NTF_PROXY
) {
1501 if (pneigh_lookup(tbl
, RTA_DATA(dst_attr
), dev
, 1))
1509 if (lladdr_attr
&& RTA_PAYLOAD(lladdr_attr
) < dev
->addr_len
)
1512 n
= neigh_lookup(tbl
, RTA_DATA(dst_attr
), dev
);
1514 if (nlh
->nlmsg_flags
& NLM_F_EXCL
) {
1520 override
= nlh
->nlmsg_flags
& NLM_F_REPLACE
;
1521 } else if (!(nlh
->nlmsg_flags
& NLM_F_CREATE
)) {
1525 n
= __neigh_lookup_errno(tbl
, RTA_DATA(dst_attr
), dev
);
1532 err
= neigh_update(n
,
1533 lladdr_attr
? RTA_DATA(lladdr_attr
) : NULL
,
1535 (override
? NEIGH_UPDATE_F_OVERRIDE
: 0) |
1536 NEIGH_UPDATE_F_ADMIN
);
1542 read_unlock(&neigh_tbl_lock
);
1543 err
= -EADDRNOTAVAIL
;
1551 static int neightbl_fill_parms(struct sk_buff
*skb
, struct neigh_parms
*parms
)
1553 struct rtattr
*nest
= NULL
;
1555 nest
= RTA_NEST(skb
, NDTA_PARMS
);
1558 RTA_PUT_U32(skb
, NDTPA_IFINDEX
, parms
->dev
->ifindex
);
1560 RTA_PUT_U32(skb
, NDTPA_REFCNT
, atomic_read(&parms
->refcnt
));
1561 RTA_PUT_U32(skb
, NDTPA_QUEUE_LEN
, parms
->queue_len
);
1562 RTA_PUT_U32(skb
, NDTPA_PROXY_QLEN
, parms
->proxy_qlen
);
1563 RTA_PUT_U32(skb
, NDTPA_APP_PROBES
, parms
->app_probes
);
1564 RTA_PUT_U32(skb
, NDTPA_UCAST_PROBES
, parms
->ucast_probes
);
1565 RTA_PUT_U32(skb
, NDTPA_MCAST_PROBES
, parms
->mcast_probes
);
1566 RTA_PUT_MSECS(skb
, NDTPA_REACHABLE_TIME
, parms
->reachable_time
);
1567 RTA_PUT_MSECS(skb
, NDTPA_BASE_REACHABLE_TIME
,
1568 parms
->base_reachable_time
);
1569 RTA_PUT_MSECS(skb
, NDTPA_GC_STALETIME
, parms
->gc_staletime
);
1570 RTA_PUT_MSECS(skb
, NDTPA_DELAY_PROBE_TIME
, parms
->delay_probe_time
);
1571 RTA_PUT_MSECS(skb
, NDTPA_RETRANS_TIME
, parms
->retrans_time
);
1572 RTA_PUT_MSECS(skb
, NDTPA_ANYCAST_DELAY
, parms
->anycast_delay
);
1573 RTA_PUT_MSECS(skb
, NDTPA_PROXY_DELAY
, parms
->proxy_delay
);
1574 RTA_PUT_MSECS(skb
, NDTPA_LOCKTIME
, parms
->locktime
);
1576 return RTA_NEST_END(skb
, nest
);
1579 return RTA_NEST_CANCEL(skb
, nest
);
1582 static int neightbl_fill_info(struct neigh_table
*tbl
, struct sk_buff
*skb
,
1583 struct netlink_callback
*cb
)
1585 struct nlmsghdr
*nlh
;
1586 struct ndtmsg
*ndtmsg
;
1588 nlh
= NLMSG_NEW_ANSWER(skb
, cb
, RTM_NEWNEIGHTBL
, sizeof(struct ndtmsg
),
1591 ndtmsg
= NLMSG_DATA(nlh
);
1593 read_lock_bh(&tbl
->lock
);
1594 ndtmsg
->ndtm_family
= tbl
->family
;
1595 ndtmsg
->ndtm_pad1
= 0;
1596 ndtmsg
->ndtm_pad2
= 0;
1598 RTA_PUT_STRING(skb
, NDTA_NAME
, tbl
->id
);
1599 RTA_PUT_MSECS(skb
, NDTA_GC_INTERVAL
, tbl
->gc_interval
);
1600 RTA_PUT_U32(skb
, NDTA_THRESH1
, tbl
->gc_thresh1
);
1601 RTA_PUT_U32(skb
, NDTA_THRESH2
, tbl
->gc_thresh2
);
1602 RTA_PUT_U32(skb
, NDTA_THRESH3
, tbl
->gc_thresh3
);
1605 unsigned long now
= jiffies
;
1606 unsigned int flush_delta
= now
- tbl
->last_flush
;
1607 unsigned int rand_delta
= now
- tbl
->last_rand
;
1609 struct ndt_config ndc
= {
1610 .ndtc_key_len
= tbl
->key_len
,
1611 .ndtc_entry_size
= tbl
->entry_size
,
1612 .ndtc_entries
= atomic_read(&tbl
->entries
),
1613 .ndtc_last_flush
= jiffies_to_msecs(flush_delta
),
1614 .ndtc_last_rand
= jiffies_to_msecs(rand_delta
),
1615 .ndtc_hash_rnd
= tbl
->hash_rnd
,
1616 .ndtc_hash_mask
= tbl
->hash_mask
,
1617 .ndtc_hash_chain_gc
= tbl
->hash_chain_gc
,
1618 .ndtc_proxy_qlen
= tbl
->proxy_queue
.qlen
,
1621 RTA_PUT(skb
, NDTA_CONFIG
, sizeof(ndc
), &ndc
);
1626 struct ndt_stats ndst
;
1628 memset(&ndst
, 0, sizeof(ndst
));
1630 for_each_possible_cpu(cpu
) {
1631 struct neigh_statistics
*st
;
1633 st
= per_cpu_ptr(tbl
->stats
, cpu
);
1634 ndst
.ndts_allocs
+= st
->allocs
;
1635 ndst
.ndts_destroys
+= st
->destroys
;
1636 ndst
.ndts_hash_grows
+= st
->hash_grows
;
1637 ndst
.ndts_res_failed
+= st
->res_failed
;
1638 ndst
.ndts_lookups
+= st
->lookups
;
1639 ndst
.ndts_hits
+= st
->hits
;
1640 ndst
.ndts_rcv_probes_mcast
+= st
->rcv_probes_mcast
;
1641 ndst
.ndts_rcv_probes_ucast
+= st
->rcv_probes_ucast
;
1642 ndst
.ndts_periodic_gc_runs
+= st
->periodic_gc_runs
;
1643 ndst
.ndts_forced_gc_runs
+= st
->forced_gc_runs
;
1646 RTA_PUT(skb
, NDTA_STATS
, sizeof(ndst
), &ndst
);
1649 BUG_ON(tbl
->parms
.dev
);
1650 if (neightbl_fill_parms(skb
, &tbl
->parms
) < 0)
1651 goto rtattr_failure
;
1653 read_unlock_bh(&tbl
->lock
);
1654 return NLMSG_END(skb
, nlh
);
1657 read_unlock_bh(&tbl
->lock
);
1658 return NLMSG_CANCEL(skb
, nlh
);
1664 static int neightbl_fill_param_info(struct neigh_table
*tbl
,
1665 struct neigh_parms
*parms
,
1666 struct sk_buff
*skb
,
1667 struct netlink_callback
*cb
)
1669 struct ndtmsg
*ndtmsg
;
1670 struct nlmsghdr
*nlh
;
1672 nlh
= NLMSG_NEW_ANSWER(skb
, cb
, RTM_NEWNEIGHTBL
, sizeof(struct ndtmsg
),
1675 ndtmsg
= NLMSG_DATA(nlh
);
1677 read_lock_bh(&tbl
->lock
);
1678 ndtmsg
->ndtm_family
= tbl
->family
;
1679 ndtmsg
->ndtm_pad1
= 0;
1680 ndtmsg
->ndtm_pad2
= 0;
1681 RTA_PUT_STRING(skb
, NDTA_NAME
, tbl
->id
);
1683 if (neightbl_fill_parms(skb
, parms
) < 0)
1684 goto rtattr_failure
;
1686 read_unlock_bh(&tbl
->lock
);
1687 return NLMSG_END(skb
, nlh
);
1690 read_unlock_bh(&tbl
->lock
);
1691 return NLMSG_CANCEL(skb
, nlh
);
1697 static inline struct neigh_parms
*lookup_neigh_params(struct neigh_table
*tbl
,
1700 struct neigh_parms
*p
;
1702 for (p
= &tbl
->parms
; p
; p
= p
->next
)
1703 if ((p
->dev
&& p
->dev
->ifindex
== ifindex
) ||
1704 (!p
->dev
&& !ifindex
))
1710 int neightbl_set(struct sk_buff
*skb
, struct nlmsghdr
*nlh
, void *arg
)
1712 struct neigh_table
*tbl
;
1713 struct ndtmsg
*ndtmsg
= NLMSG_DATA(nlh
);
1714 struct rtattr
**tb
= arg
;
1717 if (!tb
[NDTA_NAME
- 1] || !RTA_PAYLOAD(tb
[NDTA_NAME
- 1]))
1720 read_lock(&neigh_tbl_lock
);
1721 for (tbl
= neigh_tables
; tbl
; tbl
= tbl
->next
) {
1722 if (ndtmsg
->ndtm_family
&& tbl
->family
!= ndtmsg
->ndtm_family
)
1725 if (!rtattr_strcmp(tb
[NDTA_NAME
- 1], tbl
->id
))
1735 * We acquire tbl->lock to be nice to the periodic timers and
1736 * make sure they always see a consistent set of values.
1738 write_lock_bh(&tbl
->lock
);
1740 if (tb
[NDTA_THRESH1
- 1])
1741 tbl
->gc_thresh1
= RTA_GET_U32(tb
[NDTA_THRESH1
- 1]);
1743 if (tb
[NDTA_THRESH2
- 1])
1744 tbl
->gc_thresh2
= RTA_GET_U32(tb
[NDTA_THRESH2
- 1]);
1746 if (tb
[NDTA_THRESH3
- 1])
1747 tbl
->gc_thresh3
= RTA_GET_U32(tb
[NDTA_THRESH3
- 1]);
1749 if (tb
[NDTA_GC_INTERVAL
- 1])
1750 tbl
->gc_interval
= RTA_GET_MSECS(tb
[NDTA_GC_INTERVAL
- 1]);
1752 if (tb
[NDTA_PARMS
- 1]) {
1753 struct rtattr
*tbp
[NDTPA_MAX
];
1754 struct neigh_parms
*p
;
1757 if (rtattr_parse_nested(tbp
, NDTPA_MAX
, tb
[NDTA_PARMS
- 1]) < 0)
1758 goto rtattr_failure
;
1760 if (tbp
[NDTPA_IFINDEX
- 1])
1761 ifindex
= RTA_GET_U32(tbp
[NDTPA_IFINDEX
- 1]);
1763 p
= lookup_neigh_params(tbl
, ifindex
);
1766 goto rtattr_failure
;
1769 if (tbp
[NDTPA_QUEUE_LEN
- 1])
1770 p
->queue_len
= RTA_GET_U32(tbp
[NDTPA_QUEUE_LEN
- 1]);
1772 if (tbp
[NDTPA_PROXY_QLEN
- 1])
1773 p
->proxy_qlen
= RTA_GET_U32(tbp
[NDTPA_PROXY_QLEN
- 1]);
1775 if (tbp
[NDTPA_APP_PROBES
- 1])
1776 p
->app_probes
= RTA_GET_U32(tbp
[NDTPA_APP_PROBES
- 1]);
1778 if (tbp
[NDTPA_UCAST_PROBES
- 1])
1780 RTA_GET_U32(tbp
[NDTPA_UCAST_PROBES
- 1]);
1782 if (tbp
[NDTPA_MCAST_PROBES
- 1])
1784 RTA_GET_U32(tbp
[NDTPA_MCAST_PROBES
- 1]);
1786 if (tbp
[NDTPA_BASE_REACHABLE_TIME
- 1])
1787 p
->base_reachable_time
=
1788 RTA_GET_MSECS(tbp
[NDTPA_BASE_REACHABLE_TIME
- 1]);
1790 if (tbp
[NDTPA_GC_STALETIME
- 1])
1792 RTA_GET_MSECS(tbp
[NDTPA_GC_STALETIME
- 1]);
1794 if (tbp
[NDTPA_DELAY_PROBE_TIME
- 1])
1795 p
->delay_probe_time
=
1796 RTA_GET_MSECS(tbp
[NDTPA_DELAY_PROBE_TIME
- 1]);
1798 if (tbp
[NDTPA_RETRANS_TIME
- 1])
1800 RTA_GET_MSECS(tbp
[NDTPA_RETRANS_TIME
- 1]);
1802 if (tbp
[NDTPA_ANYCAST_DELAY
- 1])
1804 RTA_GET_MSECS(tbp
[NDTPA_ANYCAST_DELAY
- 1]);
1806 if (tbp
[NDTPA_PROXY_DELAY
- 1])
1808 RTA_GET_MSECS(tbp
[NDTPA_PROXY_DELAY
- 1]);
1810 if (tbp
[NDTPA_LOCKTIME
- 1])
1811 p
->locktime
= RTA_GET_MSECS(tbp
[NDTPA_LOCKTIME
- 1]);
1817 write_unlock_bh(&tbl
->lock
);
1819 read_unlock(&neigh_tbl_lock
);
1823 int neightbl_dump_info(struct sk_buff
*skb
, struct netlink_callback
*cb
)
1826 int s_idx
= cb
->args
[0];
1827 struct neigh_table
*tbl
;
1829 family
= ((struct rtgenmsg
*)NLMSG_DATA(cb
->nlh
))->rtgen_family
;
1831 read_lock(&neigh_tbl_lock
);
1832 for (tbl
= neigh_tables
, idx
= 0; tbl
; tbl
= tbl
->next
) {
1833 struct neigh_parms
*p
;
1835 if (idx
< s_idx
|| (family
&& tbl
->family
!= family
))
1838 if (neightbl_fill_info(tbl
, skb
, cb
) <= 0)
1841 for (++idx
, p
= tbl
->parms
.next
; p
; p
= p
->next
, idx
++) {
1845 if (neightbl_fill_param_info(tbl
, p
, skb
, cb
) <= 0)
1851 read_unlock(&neigh_tbl_lock
);
1857 static int neigh_fill_info(struct sk_buff
*skb
, struct neighbour
*n
,
1858 u32 pid
, u32 seq
, int event
, unsigned int flags
)
1860 unsigned long now
= jiffies
;
1861 unsigned char *b
= skb
->tail
;
1862 struct nda_cacheinfo ci
;
1865 struct nlmsghdr
*nlh
= NLMSG_NEW(skb
, pid
, seq
, event
,
1866 sizeof(struct ndmsg
), flags
);
1867 struct ndmsg
*ndm
= NLMSG_DATA(nlh
);
1869 ndm
->ndm_family
= n
->ops
->family
;
1872 ndm
->ndm_flags
= n
->flags
;
1873 ndm
->ndm_type
= n
->type
;
1874 ndm
->ndm_ifindex
= n
->dev
->ifindex
;
1875 RTA_PUT(skb
, NDA_DST
, n
->tbl
->key_len
, n
->primary_key
);
1876 read_lock_bh(&n
->lock
);
1878 ndm
->ndm_state
= n
->nud_state
;
1879 if (n
->nud_state
& NUD_VALID
)
1880 RTA_PUT(skb
, NDA_LLADDR
, n
->dev
->addr_len
, n
->ha
);
1881 ci
.ndm_used
= now
- n
->used
;
1882 ci
.ndm_confirmed
= now
- n
->confirmed
;
1883 ci
.ndm_updated
= now
- n
->updated
;
1884 ci
.ndm_refcnt
= atomic_read(&n
->refcnt
) - 1;
1885 probes
= atomic_read(&n
->probes
);
1886 read_unlock_bh(&n
->lock
);
1888 RTA_PUT(skb
, NDA_CACHEINFO
, sizeof(ci
), &ci
);
1889 RTA_PUT(skb
, NDA_PROBES
, sizeof(probes
), &probes
);
1890 nlh
->nlmsg_len
= skb
->tail
- b
;
1896 read_unlock_bh(&n
->lock
);
1897 skb_trim(skb
, b
- skb
->data
);
1902 static int neigh_dump_table(struct neigh_table
*tbl
, struct sk_buff
*skb
,
1903 struct netlink_callback
*cb
)
1905 struct neighbour
*n
;
1906 int rc
, h
, s_h
= cb
->args
[1];
1907 int idx
, s_idx
= idx
= cb
->args
[2];
1909 for (h
= 0; h
<= tbl
->hash_mask
; h
++) {
1914 read_lock_bh(&tbl
->lock
);
1915 for (n
= tbl
->hash_buckets
[h
], idx
= 0; n
; n
= n
->next
, idx
++) {
1918 if (neigh_fill_info(skb
, n
, NETLINK_CB(cb
->skb
).pid
,
1921 NLM_F_MULTI
) <= 0) {
1922 read_unlock_bh(&tbl
->lock
);
1927 read_unlock_bh(&tbl
->lock
);
1936 int neigh_dump_info(struct sk_buff
*skb
, struct netlink_callback
*cb
)
1938 struct neigh_table
*tbl
;
1941 read_lock(&neigh_tbl_lock
);
1942 family
= ((struct rtgenmsg
*)NLMSG_DATA(cb
->nlh
))->rtgen_family
;
1945 for (tbl
= neigh_tables
, t
= 0; tbl
; tbl
= tbl
->next
, t
++) {
1946 if (t
< s_t
|| (family
&& tbl
->family
!= family
))
1949 memset(&cb
->args
[1], 0, sizeof(cb
->args
) -
1950 sizeof(cb
->args
[0]));
1951 if (neigh_dump_table(tbl
, skb
, cb
) < 0)
1954 read_unlock(&neigh_tbl_lock
);
1960 void neigh_for_each(struct neigh_table
*tbl
, void (*cb
)(struct neighbour
*, void *), void *cookie
)
1964 read_lock_bh(&tbl
->lock
);
1965 for (chain
= 0; chain
<= tbl
->hash_mask
; chain
++) {
1966 struct neighbour
*n
;
1968 for (n
= tbl
->hash_buckets
[chain
]; n
; n
= n
->next
)
1971 read_unlock_bh(&tbl
->lock
);
1973 EXPORT_SYMBOL(neigh_for_each
);
1975 /* The tbl->lock must be held as a writer and BH disabled. */
1976 void __neigh_for_each_release(struct neigh_table
*tbl
,
1977 int (*cb
)(struct neighbour
*))
1981 for (chain
= 0; chain
<= tbl
->hash_mask
; chain
++) {
1982 struct neighbour
*n
, **np
;
1984 np
= &tbl
->hash_buckets
[chain
];
1985 while ((n
= *np
) != NULL
) {
1988 write_lock(&n
->lock
);
1995 write_unlock(&n
->lock
);
2001 EXPORT_SYMBOL(__neigh_for_each_release
);
2003 #ifdef CONFIG_PROC_FS
2005 static struct neighbour
*neigh_get_first(struct seq_file
*seq
)
2007 struct neigh_seq_state
*state
= seq
->private;
2008 struct neigh_table
*tbl
= state
->tbl
;
2009 struct neighbour
*n
= NULL
;
2010 int bucket
= state
->bucket
;
2012 state
->flags
&= ~NEIGH_SEQ_IS_PNEIGH
;
2013 for (bucket
= 0; bucket
<= tbl
->hash_mask
; bucket
++) {
2014 n
= tbl
->hash_buckets
[bucket
];
2017 if (state
->neigh_sub_iter
) {
2021 v
= state
->neigh_sub_iter(state
, n
, &fakep
);
2025 if (!(state
->flags
& NEIGH_SEQ_SKIP_NOARP
))
2027 if (n
->nud_state
& ~NUD_NOARP
)
2036 state
->bucket
= bucket
;
2041 static struct neighbour
*neigh_get_next(struct seq_file
*seq
,
2042 struct neighbour
*n
,
2045 struct neigh_seq_state
*state
= seq
->private;
2046 struct neigh_table
*tbl
= state
->tbl
;
2048 if (state
->neigh_sub_iter
) {
2049 void *v
= state
->neigh_sub_iter(state
, n
, pos
);
2057 if (state
->neigh_sub_iter
) {
2058 void *v
= state
->neigh_sub_iter(state
, n
, pos
);
2063 if (!(state
->flags
& NEIGH_SEQ_SKIP_NOARP
))
2066 if (n
->nud_state
& ~NUD_NOARP
)
2075 if (++state
->bucket
> tbl
->hash_mask
)
2078 n
= tbl
->hash_buckets
[state
->bucket
];
2086 static struct neighbour
*neigh_get_idx(struct seq_file
*seq
, loff_t
*pos
)
2088 struct neighbour
*n
= neigh_get_first(seq
);
2092 n
= neigh_get_next(seq
, n
, pos
);
2097 return *pos
? NULL
: n
;
2100 static struct pneigh_entry
*pneigh_get_first(struct seq_file
*seq
)
2102 struct neigh_seq_state
*state
= seq
->private;
2103 struct neigh_table
*tbl
= state
->tbl
;
2104 struct pneigh_entry
*pn
= NULL
;
2105 int bucket
= state
->bucket
;
2107 state
->flags
|= NEIGH_SEQ_IS_PNEIGH
;
2108 for (bucket
= 0; bucket
<= PNEIGH_HASHMASK
; bucket
++) {
2109 pn
= tbl
->phash_buckets
[bucket
];
2113 state
->bucket
= bucket
;
2118 static struct pneigh_entry
*pneigh_get_next(struct seq_file
*seq
,
2119 struct pneigh_entry
*pn
,
2122 struct neigh_seq_state
*state
= seq
->private;
2123 struct neigh_table
*tbl
= state
->tbl
;
2127 if (++state
->bucket
> PNEIGH_HASHMASK
)
2129 pn
= tbl
->phash_buckets
[state
->bucket
];
2140 static struct pneigh_entry
*pneigh_get_idx(struct seq_file
*seq
, loff_t
*pos
)
2142 struct pneigh_entry
*pn
= pneigh_get_first(seq
);
2146 pn
= pneigh_get_next(seq
, pn
, pos
);
2151 return *pos
? NULL
: pn
;
2154 static void *neigh_get_idx_any(struct seq_file
*seq
, loff_t
*pos
)
2156 struct neigh_seq_state
*state
= seq
->private;
2159 rc
= neigh_get_idx(seq
, pos
);
2160 if (!rc
&& !(state
->flags
& NEIGH_SEQ_NEIGH_ONLY
))
2161 rc
= pneigh_get_idx(seq
, pos
);
2166 void *neigh_seq_start(struct seq_file
*seq
, loff_t
*pos
, struct neigh_table
*tbl
, unsigned int neigh_seq_flags
)
2168 struct neigh_seq_state
*state
= seq
->private;
2169 loff_t pos_minus_one
;
2173 state
->flags
= (neigh_seq_flags
& ~NEIGH_SEQ_IS_PNEIGH
);
2175 read_lock_bh(&tbl
->lock
);
2177 pos_minus_one
= *pos
- 1;
2178 return *pos
? neigh_get_idx_any(seq
, &pos_minus_one
) : SEQ_START_TOKEN
;
2180 EXPORT_SYMBOL(neigh_seq_start
);
2182 void *neigh_seq_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
2184 struct neigh_seq_state
*state
;
2187 if (v
== SEQ_START_TOKEN
) {
2188 rc
= neigh_get_idx(seq
, pos
);
2192 state
= seq
->private;
2193 if (!(state
->flags
& NEIGH_SEQ_IS_PNEIGH
)) {
2194 rc
= neigh_get_next(seq
, v
, NULL
);
2197 if (!(state
->flags
& NEIGH_SEQ_NEIGH_ONLY
))
2198 rc
= pneigh_get_first(seq
);
2200 BUG_ON(state
->flags
& NEIGH_SEQ_NEIGH_ONLY
);
2201 rc
= pneigh_get_next(seq
, v
, NULL
);
2207 EXPORT_SYMBOL(neigh_seq_next
);
2209 void neigh_seq_stop(struct seq_file
*seq
, void *v
)
2211 struct neigh_seq_state
*state
= seq
->private;
2212 struct neigh_table
*tbl
= state
->tbl
;
2214 read_unlock_bh(&tbl
->lock
);
2216 EXPORT_SYMBOL(neigh_seq_stop
);
2218 /* statistics via seq_file */
2220 static void *neigh_stat_seq_start(struct seq_file
*seq
, loff_t
*pos
)
2222 struct proc_dir_entry
*pde
= seq
->private;
2223 struct neigh_table
*tbl
= pde
->data
;
2227 return SEQ_START_TOKEN
;
2229 for (cpu
= *pos
-1; cpu
< NR_CPUS
; ++cpu
) {
2230 if (!cpu_possible(cpu
))
2233 return per_cpu_ptr(tbl
->stats
, cpu
);
2238 static void *neigh_stat_seq_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
2240 struct proc_dir_entry
*pde
= seq
->private;
2241 struct neigh_table
*tbl
= pde
->data
;
2244 for (cpu
= *pos
; cpu
< NR_CPUS
; ++cpu
) {
2245 if (!cpu_possible(cpu
))
2248 return per_cpu_ptr(tbl
->stats
, cpu
);
2253 static void neigh_stat_seq_stop(struct seq_file
*seq
, void *v
)
2258 static int neigh_stat_seq_show(struct seq_file
*seq
, void *v
)
2260 struct proc_dir_entry
*pde
= seq
->private;
2261 struct neigh_table
*tbl
= pde
->data
;
2262 struct neigh_statistics
*st
= v
;
2264 if (v
== SEQ_START_TOKEN
) {
2265 seq_printf(seq
, "entries allocs destroys hash_grows lookups hits res_failed rcv_probes_mcast rcv_probes_ucast periodic_gc_runs forced_gc_runs\n");
2269 seq_printf(seq
, "%08x %08lx %08lx %08lx %08lx %08lx %08lx "
2270 "%08lx %08lx %08lx %08lx\n",
2271 atomic_read(&tbl
->entries
),
2282 st
->rcv_probes_mcast
,
2283 st
->rcv_probes_ucast
,
2285 st
->periodic_gc_runs
,
2292 static struct seq_operations neigh_stat_seq_ops
= {
2293 .start
= neigh_stat_seq_start
,
2294 .next
= neigh_stat_seq_next
,
2295 .stop
= neigh_stat_seq_stop
,
2296 .show
= neigh_stat_seq_show
,
2299 static int neigh_stat_seq_open(struct inode
*inode
, struct file
*file
)
2301 int ret
= seq_open(file
, &neigh_stat_seq_ops
);
2304 struct seq_file
*sf
= file
->private_data
;
2305 sf
->private = PDE(inode
);
2310 static struct file_operations neigh_stat_seq_fops
= {
2311 .owner
= THIS_MODULE
,
2312 .open
= neigh_stat_seq_open
,
2314 .llseek
= seq_lseek
,
2315 .release
= seq_release
,
2318 #endif /* CONFIG_PROC_FS */
2321 void neigh_app_ns(struct neighbour
*n
)
2323 struct nlmsghdr
*nlh
;
2324 int size
= NLMSG_SPACE(sizeof(struct ndmsg
) + 256);
2325 struct sk_buff
*skb
= alloc_skb(size
, GFP_ATOMIC
);
2330 if (neigh_fill_info(skb
, n
, 0, 0, RTM_GETNEIGH
, 0) < 0) {
2334 nlh
= (struct nlmsghdr
*)skb
->data
;
2335 nlh
->nlmsg_flags
= NLM_F_REQUEST
;
2336 NETLINK_CB(skb
).dst_group
= RTNLGRP_NEIGH
;
2337 netlink_broadcast(rtnl
, skb
, 0, RTNLGRP_NEIGH
, GFP_ATOMIC
);
2340 static void neigh_app_notify(struct neighbour
*n
)
2342 struct nlmsghdr
*nlh
;
2343 int size
= NLMSG_SPACE(sizeof(struct ndmsg
) + 256);
2344 struct sk_buff
*skb
= alloc_skb(size
, GFP_ATOMIC
);
2349 if (neigh_fill_info(skb
, n
, 0, 0, RTM_NEWNEIGH
, 0) < 0) {
2353 nlh
= (struct nlmsghdr
*)skb
->data
;
2354 NETLINK_CB(skb
).dst_group
= RTNLGRP_NEIGH
;
2355 netlink_broadcast(rtnl
, skb
, 0, RTNLGRP_NEIGH
, GFP_ATOMIC
);
2358 #endif /* CONFIG_ARPD */
2360 #ifdef CONFIG_SYSCTL
2362 static struct neigh_sysctl_table
{
2363 struct ctl_table_header
*sysctl_header
;
2364 ctl_table neigh_vars
[__NET_NEIGH_MAX
];
2365 ctl_table neigh_dev
[2];
2366 ctl_table neigh_neigh_dir
[2];
2367 ctl_table neigh_proto_dir
[2];
2368 ctl_table neigh_root_dir
[2];
2369 } neigh_sysctl_template
= {
2372 .ctl_name
= NET_NEIGH_MCAST_SOLICIT
,
2373 .procname
= "mcast_solicit",
2374 .maxlen
= sizeof(int),
2376 .proc_handler
= &proc_dointvec
,
2379 .ctl_name
= NET_NEIGH_UCAST_SOLICIT
,
2380 .procname
= "ucast_solicit",
2381 .maxlen
= sizeof(int),
2383 .proc_handler
= &proc_dointvec
,
2386 .ctl_name
= NET_NEIGH_APP_SOLICIT
,
2387 .procname
= "app_solicit",
2388 .maxlen
= sizeof(int),
2390 .proc_handler
= &proc_dointvec
,
2393 .ctl_name
= NET_NEIGH_RETRANS_TIME
,
2394 .procname
= "retrans_time",
2395 .maxlen
= sizeof(int),
2397 .proc_handler
= &proc_dointvec_userhz_jiffies
,
2400 .ctl_name
= NET_NEIGH_REACHABLE_TIME
,
2401 .procname
= "base_reachable_time",
2402 .maxlen
= sizeof(int),
2404 .proc_handler
= &proc_dointvec_jiffies
,
2405 .strategy
= &sysctl_jiffies
,
2408 .ctl_name
= NET_NEIGH_DELAY_PROBE_TIME
,
2409 .procname
= "delay_first_probe_time",
2410 .maxlen
= sizeof(int),
2412 .proc_handler
= &proc_dointvec_jiffies
,
2413 .strategy
= &sysctl_jiffies
,
2416 .ctl_name
= NET_NEIGH_GC_STALE_TIME
,
2417 .procname
= "gc_stale_time",
2418 .maxlen
= sizeof(int),
2420 .proc_handler
= &proc_dointvec_jiffies
,
2421 .strategy
= &sysctl_jiffies
,
2424 .ctl_name
= NET_NEIGH_UNRES_QLEN
,
2425 .procname
= "unres_qlen",
2426 .maxlen
= sizeof(int),
2428 .proc_handler
= &proc_dointvec
,
2431 .ctl_name
= NET_NEIGH_PROXY_QLEN
,
2432 .procname
= "proxy_qlen",
2433 .maxlen
= sizeof(int),
2435 .proc_handler
= &proc_dointvec
,
2438 .ctl_name
= NET_NEIGH_ANYCAST_DELAY
,
2439 .procname
= "anycast_delay",
2440 .maxlen
= sizeof(int),
2442 .proc_handler
= &proc_dointvec_userhz_jiffies
,
2445 .ctl_name
= NET_NEIGH_PROXY_DELAY
,
2446 .procname
= "proxy_delay",
2447 .maxlen
= sizeof(int),
2449 .proc_handler
= &proc_dointvec_userhz_jiffies
,
2452 .ctl_name
= NET_NEIGH_LOCKTIME
,
2453 .procname
= "locktime",
2454 .maxlen
= sizeof(int),
2456 .proc_handler
= &proc_dointvec_userhz_jiffies
,
2459 .ctl_name
= NET_NEIGH_GC_INTERVAL
,
2460 .procname
= "gc_interval",
2461 .maxlen
= sizeof(int),
2463 .proc_handler
= &proc_dointvec_jiffies
,
2464 .strategy
= &sysctl_jiffies
,
2467 .ctl_name
= NET_NEIGH_GC_THRESH1
,
2468 .procname
= "gc_thresh1",
2469 .maxlen
= sizeof(int),
2471 .proc_handler
= &proc_dointvec
,
2474 .ctl_name
= NET_NEIGH_GC_THRESH2
,
2475 .procname
= "gc_thresh2",
2476 .maxlen
= sizeof(int),
2478 .proc_handler
= &proc_dointvec
,
2481 .ctl_name
= NET_NEIGH_GC_THRESH3
,
2482 .procname
= "gc_thresh3",
2483 .maxlen
= sizeof(int),
2485 .proc_handler
= &proc_dointvec
,
2488 .ctl_name
= NET_NEIGH_RETRANS_TIME_MS
,
2489 .procname
= "retrans_time_ms",
2490 .maxlen
= sizeof(int),
2492 .proc_handler
= &proc_dointvec_ms_jiffies
,
2493 .strategy
= &sysctl_ms_jiffies
,
2496 .ctl_name
= NET_NEIGH_REACHABLE_TIME_MS
,
2497 .procname
= "base_reachable_time_ms",
2498 .maxlen
= sizeof(int),
2500 .proc_handler
= &proc_dointvec_ms_jiffies
,
2501 .strategy
= &sysctl_ms_jiffies
,
2506 .ctl_name
= NET_PROTO_CONF_DEFAULT
,
2507 .procname
= "default",
2511 .neigh_neigh_dir
= {
2513 .procname
= "neigh",
2517 .neigh_proto_dir
= {
2524 .ctl_name
= CTL_NET
,
2531 int neigh_sysctl_register(struct net_device
*dev
, struct neigh_parms
*p
,
2532 int p_id
, int pdev_id
, char *p_name
,
2533 proc_handler
*handler
, ctl_handler
*strategy
)
2535 struct neigh_sysctl_table
*t
= kmalloc(sizeof(*t
), GFP_KERNEL
);
2536 const char *dev_name_source
= NULL
;
2537 char *dev_name
= NULL
;
2542 memcpy(t
, &neigh_sysctl_template
, sizeof(*t
));
2543 t
->neigh_vars
[0].data
= &p
->mcast_probes
;
2544 t
->neigh_vars
[1].data
= &p
->ucast_probes
;
2545 t
->neigh_vars
[2].data
= &p
->app_probes
;
2546 t
->neigh_vars
[3].data
= &p
->retrans_time
;
2547 t
->neigh_vars
[4].data
= &p
->base_reachable_time
;
2548 t
->neigh_vars
[5].data
= &p
->delay_probe_time
;
2549 t
->neigh_vars
[6].data
= &p
->gc_staletime
;
2550 t
->neigh_vars
[7].data
= &p
->queue_len
;
2551 t
->neigh_vars
[8].data
= &p
->proxy_qlen
;
2552 t
->neigh_vars
[9].data
= &p
->anycast_delay
;
2553 t
->neigh_vars
[10].data
= &p
->proxy_delay
;
2554 t
->neigh_vars
[11].data
= &p
->locktime
;
2557 dev_name_source
= dev
->name
;
2558 t
->neigh_dev
[0].ctl_name
= dev
->ifindex
;
2559 t
->neigh_vars
[12].procname
= NULL
;
2560 t
->neigh_vars
[13].procname
= NULL
;
2561 t
->neigh_vars
[14].procname
= NULL
;
2562 t
->neigh_vars
[15].procname
= NULL
;
2564 dev_name_source
= t
->neigh_dev
[0].procname
;
2565 t
->neigh_vars
[12].data
= (int *)(p
+ 1);
2566 t
->neigh_vars
[13].data
= (int *)(p
+ 1) + 1;
2567 t
->neigh_vars
[14].data
= (int *)(p
+ 1) + 2;
2568 t
->neigh_vars
[15].data
= (int *)(p
+ 1) + 3;
2571 t
->neigh_vars
[16].data
= &p
->retrans_time
;
2572 t
->neigh_vars
[17].data
= &p
->base_reachable_time
;
2574 if (handler
|| strategy
) {
2576 t
->neigh_vars
[3].proc_handler
= handler
;
2577 t
->neigh_vars
[3].strategy
= strategy
;
2578 t
->neigh_vars
[3].extra1
= dev
;
2580 t
->neigh_vars
[4].proc_handler
= handler
;
2581 t
->neigh_vars
[4].strategy
= strategy
;
2582 t
->neigh_vars
[4].extra1
= dev
;
2583 /* RetransTime (in milliseconds)*/
2584 t
->neigh_vars
[16].proc_handler
= handler
;
2585 t
->neigh_vars
[16].strategy
= strategy
;
2586 t
->neigh_vars
[16].extra1
= dev
;
2587 /* ReachableTime (in milliseconds) */
2588 t
->neigh_vars
[17].proc_handler
= handler
;
2589 t
->neigh_vars
[17].strategy
= strategy
;
2590 t
->neigh_vars
[17].extra1
= dev
;
2593 dev_name
= kstrdup(dev_name_source
, GFP_KERNEL
);
2599 t
->neigh_dev
[0].procname
= dev_name
;
2601 t
->neigh_neigh_dir
[0].ctl_name
= pdev_id
;
2603 t
->neigh_proto_dir
[0].procname
= p_name
;
2604 t
->neigh_proto_dir
[0].ctl_name
= p_id
;
2606 t
->neigh_dev
[0].child
= t
->neigh_vars
;
2607 t
->neigh_neigh_dir
[0].child
= t
->neigh_dev
;
2608 t
->neigh_proto_dir
[0].child
= t
->neigh_neigh_dir
;
2609 t
->neigh_root_dir
[0].child
= t
->neigh_proto_dir
;
2611 t
->sysctl_header
= register_sysctl_table(t
->neigh_root_dir
, 0);
2612 if (!t
->sysctl_header
) {
2616 p
->sysctl_table
= t
;
2628 void neigh_sysctl_unregister(struct neigh_parms
*p
)
2630 if (p
->sysctl_table
) {
2631 struct neigh_sysctl_table
*t
= p
->sysctl_table
;
2632 p
->sysctl_table
= NULL
;
2633 unregister_sysctl_table(t
->sysctl_header
);
2634 kfree(t
->neigh_dev
[0].procname
);
2639 #endif /* CONFIG_SYSCTL */
2641 EXPORT_SYMBOL(__neigh_event_send
);
2642 EXPORT_SYMBOL(neigh_add
);
2643 EXPORT_SYMBOL(neigh_changeaddr
);
2644 EXPORT_SYMBOL(neigh_compat_output
);
2645 EXPORT_SYMBOL(neigh_connected_output
);
2646 EXPORT_SYMBOL(neigh_create
);
2647 EXPORT_SYMBOL(neigh_delete
);
2648 EXPORT_SYMBOL(neigh_destroy
);
2649 EXPORT_SYMBOL(neigh_dump_info
);
2650 EXPORT_SYMBOL(neigh_event_ns
);
2651 EXPORT_SYMBOL(neigh_ifdown
);
2652 EXPORT_SYMBOL(neigh_lookup
);
2653 EXPORT_SYMBOL(neigh_lookup_nodev
);
2654 EXPORT_SYMBOL(neigh_parms_alloc
);
2655 EXPORT_SYMBOL(neigh_parms_release
);
2656 EXPORT_SYMBOL(neigh_rand_reach_time
);
2657 EXPORT_SYMBOL(neigh_resolve_output
);
2658 EXPORT_SYMBOL(neigh_table_clear
);
2659 EXPORT_SYMBOL(neigh_table_init
);
2660 EXPORT_SYMBOL(neigh_update
);
2661 EXPORT_SYMBOL(neigh_update_hhs
);
2662 EXPORT_SYMBOL(pneigh_enqueue
);
2663 EXPORT_SYMBOL(pneigh_lookup
);
2664 EXPORT_SYMBOL(neightbl_dump_info
);
2665 EXPORT_SYMBOL(neightbl_set
);
2668 EXPORT_SYMBOL(neigh_app_ns
);
2670 #ifdef CONFIG_SYSCTL
2671 EXPORT_SYMBOL(neigh_sysctl_register
);
2672 EXPORT_SYMBOL(neigh_sysctl_unregister
);