[PATCH] orinoco: report more relevant data on startup
[linux-2.6/next.git] / fs / namespace.c
blob2c5f1f80bdc28b868cb81aabecdae71bc9c6b480
1 /*
2 * linux/fs/namespace.c
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
11 #include <linux/config.h>
12 #include <linux/syscalls.h>
13 #include <linux/slab.h>
14 #include <linux/sched.h>
15 #include <linux/smp_lock.h>
16 #include <linux/init.h>
17 #include <linux/quotaops.h>
18 #include <linux/acct.h>
19 #include <linux/capability.h>
20 #include <linux/module.h>
21 #include <linux/seq_file.h>
22 #include <linux/namespace.h>
23 #include <linux/namei.h>
24 #include <linux/security.h>
25 #include <linux/mount.h>
26 #include <asm/uaccess.h>
27 #include <asm/unistd.h>
28 #include "pnode.h"
30 extern int __init init_rootfs(void);
32 #ifdef CONFIG_SYSFS
33 extern int __init sysfs_init(void);
34 #else
35 static inline int sysfs_init(void)
37 return 0;
39 #endif
41 /* spinlock for vfsmount related operations, inplace of dcache_lock */
42 __cacheline_aligned_in_smp DEFINE_SPINLOCK(vfsmount_lock);
44 static int event;
46 static struct list_head *mount_hashtable __read_mostly;
47 static int hash_mask __read_mostly, hash_bits __read_mostly;
48 static kmem_cache_t *mnt_cache __read_mostly;
49 static struct rw_semaphore namespace_sem;
51 /* /sys/fs */
52 decl_subsys(fs, NULL, NULL);
53 EXPORT_SYMBOL_GPL(fs_subsys);
55 static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
57 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
58 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
59 tmp = tmp + (tmp >> hash_bits);
60 return tmp & hash_mask;
63 struct vfsmount *alloc_vfsmnt(const char *name)
65 struct vfsmount *mnt = kmem_cache_alloc(mnt_cache, GFP_KERNEL);
66 if (mnt) {
67 memset(mnt, 0, sizeof(struct vfsmount));
68 atomic_set(&mnt->mnt_count, 1);
69 INIT_LIST_HEAD(&mnt->mnt_hash);
70 INIT_LIST_HEAD(&mnt->mnt_child);
71 INIT_LIST_HEAD(&mnt->mnt_mounts);
72 INIT_LIST_HEAD(&mnt->mnt_list);
73 INIT_LIST_HEAD(&mnt->mnt_expire);
74 INIT_LIST_HEAD(&mnt->mnt_share);
75 INIT_LIST_HEAD(&mnt->mnt_slave_list);
76 INIT_LIST_HEAD(&mnt->mnt_slave);
77 if (name) {
78 int size = strlen(name) + 1;
79 char *newname = kmalloc(size, GFP_KERNEL);
80 if (newname) {
81 memcpy(newname, name, size);
82 mnt->mnt_devname = newname;
86 return mnt;
89 void free_vfsmnt(struct vfsmount *mnt)
91 kfree(mnt->mnt_devname);
92 kmem_cache_free(mnt_cache, mnt);
96 * find the first or last mount at @dentry on vfsmount @mnt depending on
97 * @dir. If @dir is set return the first mount else return the last mount.
99 struct vfsmount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry,
100 int dir)
102 struct list_head *head = mount_hashtable + hash(mnt, dentry);
103 struct list_head *tmp = head;
104 struct vfsmount *p, *found = NULL;
106 for (;;) {
107 tmp = dir ? tmp->next : tmp->prev;
108 p = NULL;
109 if (tmp == head)
110 break;
111 p = list_entry(tmp, struct vfsmount, mnt_hash);
112 if (p->mnt_parent == mnt && p->mnt_mountpoint == dentry) {
113 found = p;
114 break;
117 return found;
121 * lookup_mnt increments the ref count before returning
122 * the vfsmount struct.
124 struct vfsmount *lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
126 struct vfsmount *child_mnt;
127 spin_lock(&vfsmount_lock);
128 if ((child_mnt = __lookup_mnt(mnt, dentry, 1)))
129 mntget(child_mnt);
130 spin_unlock(&vfsmount_lock);
131 return child_mnt;
134 static inline int check_mnt(struct vfsmount *mnt)
136 return mnt->mnt_namespace == current->namespace;
139 static void touch_namespace(struct namespace *ns)
141 if (ns) {
142 ns->event = ++event;
143 wake_up_interruptible(&ns->poll);
147 static void __touch_namespace(struct namespace *ns)
149 if (ns && ns->event != event) {
150 ns->event = event;
151 wake_up_interruptible(&ns->poll);
155 static void detach_mnt(struct vfsmount *mnt, struct nameidata *old_nd)
157 old_nd->dentry = mnt->mnt_mountpoint;
158 old_nd->mnt = mnt->mnt_parent;
159 mnt->mnt_parent = mnt;
160 mnt->mnt_mountpoint = mnt->mnt_root;
161 list_del_init(&mnt->mnt_child);
162 list_del_init(&mnt->mnt_hash);
163 old_nd->dentry->d_mounted--;
166 void mnt_set_mountpoint(struct vfsmount *mnt, struct dentry *dentry,
167 struct vfsmount *child_mnt)
169 child_mnt->mnt_parent = mntget(mnt);
170 child_mnt->mnt_mountpoint = dget(dentry);
171 dentry->d_mounted++;
174 static void attach_mnt(struct vfsmount *mnt, struct nameidata *nd)
176 mnt_set_mountpoint(nd->mnt, nd->dentry, mnt);
177 list_add_tail(&mnt->mnt_hash, mount_hashtable +
178 hash(nd->mnt, nd->dentry));
179 list_add_tail(&mnt->mnt_child, &nd->mnt->mnt_mounts);
183 * the caller must hold vfsmount_lock
185 static void commit_tree(struct vfsmount *mnt)
187 struct vfsmount *parent = mnt->mnt_parent;
188 struct vfsmount *m;
189 LIST_HEAD(head);
190 struct namespace *n = parent->mnt_namespace;
192 BUG_ON(parent == mnt);
194 list_add_tail(&head, &mnt->mnt_list);
195 list_for_each_entry(m, &head, mnt_list)
196 m->mnt_namespace = n;
197 list_splice(&head, n->list.prev);
199 list_add_tail(&mnt->mnt_hash, mount_hashtable +
200 hash(parent, mnt->mnt_mountpoint));
201 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
202 touch_namespace(n);
205 static struct vfsmount *next_mnt(struct vfsmount *p, struct vfsmount *root)
207 struct list_head *next = p->mnt_mounts.next;
208 if (next == &p->mnt_mounts) {
209 while (1) {
210 if (p == root)
211 return NULL;
212 next = p->mnt_child.next;
213 if (next != &p->mnt_parent->mnt_mounts)
214 break;
215 p = p->mnt_parent;
218 return list_entry(next, struct vfsmount, mnt_child);
221 static struct vfsmount *skip_mnt_tree(struct vfsmount *p)
223 struct list_head *prev = p->mnt_mounts.prev;
224 while (prev != &p->mnt_mounts) {
225 p = list_entry(prev, struct vfsmount, mnt_child);
226 prev = p->mnt_mounts.prev;
228 return p;
231 static struct vfsmount *clone_mnt(struct vfsmount *old, struct dentry *root,
232 int flag)
234 struct super_block *sb = old->mnt_sb;
235 struct vfsmount *mnt = alloc_vfsmnt(old->mnt_devname);
237 if (mnt) {
238 mnt->mnt_flags = old->mnt_flags;
239 atomic_inc(&sb->s_active);
240 mnt->mnt_sb = sb;
241 mnt->mnt_root = dget(root);
242 mnt->mnt_mountpoint = mnt->mnt_root;
243 mnt->mnt_parent = mnt;
245 if (flag & CL_SLAVE) {
246 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
247 mnt->mnt_master = old;
248 CLEAR_MNT_SHARED(mnt);
249 } else {
250 if ((flag & CL_PROPAGATION) || IS_MNT_SHARED(old))
251 list_add(&mnt->mnt_share, &old->mnt_share);
252 if (IS_MNT_SLAVE(old))
253 list_add(&mnt->mnt_slave, &old->mnt_slave);
254 mnt->mnt_master = old->mnt_master;
256 if (flag & CL_MAKE_SHARED)
257 set_mnt_shared(mnt);
259 /* stick the duplicate mount on the same expiry list
260 * as the original if that was on one */
261 if (flag & CL_EXPIRE) {
262 spin_lock(&vfsmount_lock);
263 if (!list_empty(&old->mnt_expire))
264 list_add(&mnt->mnt_expire, &old->mnt_expire);
265 spin_unlock(&vfsmount_lock);
268 return mnt;
271 static inline void __mntput(struct vfsmount *mnt)
273 struct super_block *sb = mnt->mnt_sb;
274 dput(mnt->mnt_root);
275 free_vfsmnt(mnt);
276 deactivate_super(sb);
279 void mntput_no_expire(struct vfsmount *mnt)
281 repeat:
282 if (atomic_dec_and_lock(&mnt->mnt_count, &vfsmount_lock)) {
283 if (likely(!mnt->mnt_pinned)) {
284 spin_unlock(&vfsmount_lock);
285 __mntput(mnt);
286 return;
288 atomic_add(mnt->mnt_pinned + 1, &mnt->mnt_count);
289 mnt->mnt_pinned = 0;
290 spin_unlock(&vfsmount_lock);
291 acct_auto_close_mnt(mnt);
292 security_sb_umount_close(mnt);
293 goto repeat;
297 EXPORT_SYMBOL(mntput_no_expire);
299 void mnt_pin(struct vfsmount *mnt)
301 spin_lock(&vfsmount_lock);
302 mnt->mnt_pinned++;
303 spin_unlock(&vfsmount_lock);
306 EXPORT_SYMBOL(mnt_pin);
308 void mnt_unpin(struct vfsmount *mnt)
310 spin_lock(&vfsmount_lock);
311 if (mnt->mnt_pinned) {
312 atomic_inc(&mnt->mnt_count);
313 mnt->mnt_pinned--;
315 spin_unlock(&vfsmount_lock);
318 EXPORT_SYMBOL(mnt_unpin);
320 /* iterator */
321 static void *m_start(struct seq_file *m, loff_t *pos)
323 struct namespace *n = m->private;
324 struct list_head *p;
325 loff_t l = *pos;
327 down_read(&namespace_sem);
328 list_for_each(p, &n->list)
329 if (!l--)
330 return list_entry(p, struct vfsmount, mnt_list);
331 return NULL;
334 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
336 struct namespace *n = m->private;
337 struct list_head *p = ((struct vfsmount *)v)->mnt_list.next;
338 (*pos)++;
339 return p == &n->list ? NULL : list_entry(p, struct vfsmount, mnt_list);
342 static void m_stop(struct seq_file *m, void *v)
344 up_read(&namespace_sem);
347 static inline void mangle(struct seq_file *m, const char *s)
349 seq_escape(m, s, " \t\n\\");
352 static int show_vfsmnt(struct seq_file *m, void *v)
354 struct vfsmount *mnt = v;
355 int err = 0;
356 static struct proc_fs_info {
357 int flag;
358 char *str;
359 } fs_info[] = {
360 { MS_SYNCHRONOUS, ",sync" },
361 { MS_DIRSYNC, ",dirsync" },
362 { MS_MANDLOCK, ",mand" },
363 { 0, NULL }
365 static struct proc_fs_info mnt_info[] = {
366 { MNT_NOSUID, ",nosuid" },
367 { MNT_NODEV, ",nodev" },
368 { MNT_NOEXEC, ",noexec" },
369 { MNT_NOATIME, ",noatime" },
370 { MNT_NODIRATIME, ",nodiratime" },
371 { 0, NULL }
373 struct proc_fs_info *fs_infop;
375 mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
376 seq_putc(m, ' ');
377 seq_path(m, mnt, mnt->mnt_root, " \t\n\\");
378 seq_putc(m, ' ');
379 mangle(m, mnt->mnt_sb->s_type->name);
380 seq_puts(m, mnt->mnt_sb->s_flags & MS_RDONLY ? " ro" : " rw");
381 for (fs_infop = fs_info; fs_infop->flag; fs_infop++) {
382 if (mnt->mnt_sb->s_flags & fs_infop->flag)
383 seq_puts(m, fs_infop->str);
385 for (fs_infop = mnt_info; fs_infop->flag; fs_infop++) {
386 if (mnt->mnt_flags & fs_infop->flag)
387 seq_puts(m, fs_infop->str);
389 if (mnt->mnt_sb->s_op->show_options)
390 err = mnt->mnt_sb->s_op->show_options(m, mnt);
391 seq_puts(m, " 0 0\n");
392 return err;
395 struct seq_operations mounts_op = {
396 .start = m_start,
397 .next = m_next,
398 .stop = m_stop,
399 .show = show_vfsmnt
402 static int show_vfsstat(struct seq_file *m, void *v)
404 struct vfsmount *mnt = v;
405 int err = 0;
407 /* device */
408 if (mnt->mnt_devname) {
409 seq_puts(m, "device ");
410 mangle(m, mnt->mnt_devname);
411 } else
412 seq_puts(m, "no device");
414 /* mount point */
415 seq_puts(m, " mounted on ");
416 seq_path(m, mnt, mnt->mnt_root, " \t\n\\");
417 seq_putc(m, ' ');
419 /* file system type */
420 seq_puts(m, "with fstype ");
421 mangle(m, mnt->mnt_sb->s_type->name);
423 /* optional statistics */
424 if (mnt->mnt_sb->s_op->show_stats) {
425 seq_putc(m, ' ');
426 err = mnt->mnt_sb->s_op->show_stats(m, mnt);
429 seq_putc(m, '\n');
430 return err;
433 struct seq_operations mountstats_op = {
434 .start = m_start,
435 .next = m_next,
436 .stop = m_stop,
437 .show = show_vfsstat,
441 * may_umount_tree - check if a mount tree is busy
442 * @mnt: root of mount tree
444 * This is called to check if a tree of mounts has any
445 * open files, pwds, chroots or sub mounts that are
446 * busy.
448 int may_umount_tree(struct vfsmount *mnt)
450 int actual_refs = 0;
451 int minimum_refs = 0;
452 struct vfsmount *p;
454 spin_lock(&vfsmount_lock);
455 for (p = mnt; p; p = next_mnt(p, mnt)) {
456 actual_refs += atomic_read(&p->mnt_count);
457 minimum_refs += 2;
459 spin_unlock(&vfsmount_lock);
461 if (actual_refs > minimum_refs)
462 return 0;
464 return 1;
467 EXPORT_SYMBOL(may_umount_tree);
470 * may_umount - check if a mount point is busy
471 * @mnt: root of mount
473 * This is called to check if a mount point has any
474 * open files, pwds, chroots or sub mounts. If the
475 * mount has sub mounts this will return busy
476 * regardless of whether the sub mounts are busy.
478 * Doesn't take quota and stuff into account. IOW, in some cases it will
479 * give false negatives. The main reason why it's here is that we need
480 * a non-destructive way to look for easily umountable filesystems.
482 int may_umount(struct vfsmount *mnt)
484 int ret = 1;
485 spin_lock(&vfsmount_lock);
486 if (propagate_mount_busy(mnt, 2))
487 ret = 0;
488 spin_unlock(&vfsmount_lock);
489 return ret;
492 EXPORT_SYMBOL(may_umount);
494 void release_mounts(struct list_head *head)
496 struct vfsmount *mnt;
497 while (!list_empty(head)) {
498 mnt = list_entry(head->next, struct vfsmount, mnt_hash);
499 list_del_init(&mnt->mnt_hash);
500 if (mnt->mnt_parent != mnt) {
501 struct dentry *dentry;
502 struct vfsmount *m;
503 spin_lock(&vfsmount_lock);
504 dentry = mnt->mnt_mountpoint;
505 m = mnt->mnt_parent;
506 mnt->mnt_mountpoint = mnt->mnt_root;
507 mnt->mnt_parent = mnt;
508 spin_unlock(&vfsmount_lock);
509 dput(dentry);
510 mntput(m);
512 mntput(mnt);
516 void umount_tree(struct vfsmount *mnt, int propagate, struct list_head *kill)
518 struct vfsmount *p;
520 for (p = mnt; p; p = next_mnt(p, mnt)) {
521 list_del(&p->mnt_hash);
522 list_add(&p->mnt_hash, kill);
525 if (propagate)
526 propagate_umount(kill);
528 list_for_each_entry(p, kill, mnt_hash) {
529 list_del_init(&p->mnt_expire);
530 list_del_init(&p->mnt_list);
531 __touch_namespace(p->mnt_namespace);
532 p->mnt_namespace = NULL;
533 list_del_init(&p->mnt_child);
534 if (p->mnt_parent != p)
535 p->mnt_mountpoint->d_mounted--;
536 change_mnt_propagation(p, MS_PRIVATE);
540 static int do_umount(struct vfsmount *mnt, int flags)
542 struct super_block *sb = mnt->mnt_sb;
543 int retval;
544 LIST_HEAD(umount_list);
546 retval = security_sb_umount(mnt, flags);
547 if (retval)
548 return retval;
551 * Allow userspace to request a mountpoint be expired rather than
552 * unmounting unconditionally. Unmount only happens if:
553 * (1) the mark is already set (the mark is cleared by mntput())
554 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
556 if (flags & MNT_EXPIRE) {
557 if (mnt == current->fs->rootmnt ||
558 flags & (MNT_FORCE | MNT_DETACH))
559 return -EINVAL;
561 if (atomic_read(&mnt->mnt_count) != 2)
562 return -EBUSY;
564 if (!xchg(&mnt->mnt_expiry_mark, 1))
565 return -EAGAIN;
569 * If we may have to abort operations to get out of this
570 * mount, and they will themselves hold resources we must
571 * allow the fs to do things. In the Unix tradition of
572 * 'Gee thats tricky lets do it in userspace' the umount_begin
573 * might fail to complete on the first run through as other tasks
574 * must return, and the like. Thats for the mount program to worry
575 * about for the moment.
578 lock_kernel();
579 if ((flags & MNT_FORCE) && sb->s_op->umount_begin)
580 sb->s_op->umount_begin(sb);
581 unlock_kernel();
584 * No sense to grab the lock for this test, but test itself looks
585 * somewhat bogus. Suggestions for better replacement?
586 * Ho-hum... In principle, we might treat that as umount + switch
587 * to rootfs. GC would eventually take care of the old vfsmount.
588 * Actually it makes sense, especially if rootfs would contain a
589 * /reboot - static binary that would close all descriptors and
590 * call reboot(9). Then init(8) could umount root and exec /reboot.
592 if (mnt == current->fs->rootmnt && !(flags & MNT_DETACH)) {
594 * Special case for "unmounting" root ...
595 * we just try to remount it readonly.
597 down_write(&sb->s_umount);
598 if (!(sb->s_flags & MS_RDONLY)) {
599 lock_kernel();
600 DQUOT_OFF(sb);
601 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
602 unlock_kernel();
604 up_write(&sb->s_umount);
605 return retval;
608 down_write(&namespace_sem);
609 spin_lock(&vfsmount_lock);
610 event++;
612 retval = -EBUSY;
613 if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) {
614 if (!list_empty(&mnt->mnt_list))
615 umount_tree(mnt, 1, &umount_list);
616 retval = 0;
618 spin_unlock(&vfsmount_lock);
619 if (retval)
620 security_sb_umount_busy(mnt);
621 up_write(&namespace_sem);
622 release_mounts(&umount_list);
623 return retval;
627 * Now umount can handle mount points as well as block devices.
628 * This is important for filesystems which use unnamed block devices.
630 * We now support a flag for forced unmount like the other 'big iron'
631 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
634 asmlinkage long sys_umount(char __user * name, int flags)
636 struct nameidata nd;
637 int retval;
639 retval = __user_walk(name, LOOKUP_FOLLOW, &nd);
640 if (retval)
641 goto out;
642 retval = -EINVAL;
643 if (nd.dentry != nd.mnt->mnt_root)
644 goto dput_and_out;
645 if (!check_mnt(nd.mnt))
646 goto dput_and_out;
648 retval = -EPERM;
649 if (!capable(CAP_SYS_ADMIN))
650 goto dput_and_out;
652 retval = do_umount(nd.mnt, flags);
653 dput_and_out:
654 path_release_on_umount(&nd);
655 out:
656 return retval;
659 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
662 * The 2.0 compatible umount. No flags.
664 asmlinkage long sys_oldumount(char __user * name)
666 return sys_umount(name, 0);
669 #endif
671 static int mount_is_safe(struct nameidata *nd)
673 if (capable(CAP_SYS_ADMIN))
674 return 0;
675 return -EPERM;
676 #ifdef notyet
677 if (S_ISLNK(nd->dentry->d_inode->i_mode))
678 return -EPERM;
679 if (nd->dentry->d_inode->i_mode & S_ISVTX) {
680 if (current->uid != nd->dentry->d_inode->i_uid)
681 return -EPERM;
683 if (vfs_permission(nd, MAY_WRITE))
684 return -EPERM;
685 return 0;
686 #endif
689 static int lives_below_in_same_fs(struct dentry *d, struct dentry *dentry)
691 while (1) {
692 if (d == dentry)
693 return 1;
694 if (d == NULL || d == d->d_parent)
695 return 0;
696 d = d->d_parent;
700 struct vfsmount *copy_tree(struct vfsmount *mnt, struct dentry *dentry,
701 int flag)
703 struct vfsmount *res, *p, *q, *r, *s;
704 struct nameidata nd;
706 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt))
707 return NULL;
709 res = q = clone_mnt(mnt, dentry, flag);
710 if (!q)
711 goto Enomem;
712 q->mnt_mountpoint = mnt->mnt_mountpoint;
714 p = mnt;
715 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
716 if (!lives_below_in_same_fs(r->mnt_mountpoint, dentry))
717 continue;
719 for (s = r; s; s = next_mnt(s, r)) {
720 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(s)) {
721 s = skip_mnt_tree(s);
722 continue;
724 while (p != s->mnt_parent) {
725 p = p->mnt_parent;
726 q = q->mnt_parent;
728 p = s;
729 nd.mnt = q;
730 nd.dentry = p->mnt_mountpoint;
731 q = clone_mnt(p, p->mnt_root, flag);
732 if (!q)
733 goto Enomem;
734 spin_lock(&vfsmount_lock);
735 list_add_tail(&q->mnt_list, &res->mnt_list);
736 attach_mnt(q, &nd);
737 spin_unlock(&vfsmount_lock);
740 return res;
741 Enomem:
742 if (res) {
743 LIST_HEAD(umount_list);
744 spin_lock(&vfsmount_lock);
745 umount_tree(res, 0, &umount_list);
746 spin_unlock(&vfsmount_lock);
747 release_mounts(&umount_list);
749 return NULL;
753 * @source_mnt : mount tree to be attached
754 * @nd : place the mount tree @source_mnt is attached
755 * @parent_nd : if non-null, detach the source_mnt from its parent and
756 * store the parent mount and mountpoint dentry.
757 * (done when source_mnt is moved)
759 * NOTE: in the table below explains the semantics when a source mount
760 * of a given type is attached to a destination mount of a given type.
761 * ---------------------------------------------------------------------------
762 * | BIND MOUNT OPERATION |
763 * |**************************************************************************
764 * | source-->| shared | private | slave | unbindable |
765 * | dest | | | | |
766 * | | | | | | |
767 * | v | | | | |
768 * |**************************************************************************
769 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
770 * | | | | | |
771 * |non-shared| shared (+) | private | slave (*) | invalid |
772 * ***************************************************************************
773 * A bind operation clones the source mount and mounts the clone on the
774 * destination mount.
776 * (++) the cloned mount is propagated to all the mounts in the propagation
777 * tree of the destination mount and the cloned mount is added to
778 * the peer group of the source mount.
779 * (+) the cloned mount is created under the destination mount and is marked
780 * as shared. The cloned mount is added to the peer group of the source
781 * mount.
782 * (+++) the mount is propagated to all the mounts in the propagation tree
783 * of the destination mount and the cloned mount is made slave
784 * of the same master as that of the source mount. The cloned mount
785 * is marked as 'shared and slave'.
786 * (*) the cloned mount is made a slave of the same master as that of the
787 * source mount.
789 * ---------------------------------------------------------------------------
790 * | MOVE MOUNT OPERATION |
791 * |**************************************************************************
792 * | source-->| shared | private | slave | unbindable |
793 * | dest | | | | |
794 * | | | | | | |
795 * | v | | | | |
796 * |**************************************************************************
797 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
798 * | | | | | |
799 * |non-shared| shared (+*) | private | slave (*) | unbindable |
800 * ***************************************************************************
802 * (+) the mount is moved to the destination. And is then propagated to
803 * all the mounts in the propagation tree of the destination mount.
804 * (+*) the mount is moved to the destination.
805 * (+++) the mount is moved to the destination and is then propagated to
806 * all the mounts belonging to the destination mount's propagation tree.
807 * the mount is marked as 'shared and slave'.
808 * (*) the mount continues to be a slave at the new location.
810 * if the source mount is a tree, the operations explained above is
811 * applied to each mount in the tree.
812 * Must be called without spinlocks held, since this function can sleep
813 * in allocations.
815 static int attach_recursive_mnt(struct vfsmount *source_mnt,
816 struct nameidata *nd, struct nameidata *parent_nd)
818 LIST_HEAD(tree_list);
819 struct vfsmount *dest_mnt = nd->mnt;
820 struct dentry *dest_dentry = nd->dentry;
821 struct vfsmount *child, *p;
823 if (propagate_mnt(dest_mnt, dest_dentry, source_mnt, &tree_list))
824 return -EINVAL;
826 if (IS_MNT_SHARED(dest_mnt)) {
827 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
828 set_mnt_shared(p);
831 spin_lock(&vfsmount_lock);
832 if (parent_nd) {
833 detach_mnt(source_mnt, parent_nd);
834 attach_mnt(source_mnt, nd);
835 touch_namespace(current->namespace);
836 } else {
837 mnt_set_mountpoint(dest_mnt, dest_dentry, source_mnt);
838 commit_tree(source_mnt);
841 list_for_each_entry_safe(child, p, &tree_list, mnt_hash) {
842 list_del_init(&child->mnt_hash);
843 commit_tree(child);
845 spin_unlock(&vfsmount_lock);
846 return 0;
849 static int graft_tree(struct vfsmount *mnt, struct nameidata *nd)
851 int err;
852 if (mnt->mnt_sb->s_flags & MS_NOUSER)
853 return -EINVAL;
855 if (S_ISDIR(nd->dentry->d_inode->i_mode) !=
856 S_ISDIR(mnt->mnt_root->d_inode->i_mode))
857 return -ENOTDIR;
859 err = -ENOENT;
860 mutex_lock(&nd->dentry->d_inode->i_mutex);
861 if (IS_DEADDIR(nd->dentry->d_inode))
862 goto out_unlock;
864 err = security_sb_check_sb(mnt, nd);
865 if (err)
866 goto out_unlock;
868 err = -ENOENT;
869 if (IS_ROOT(nd->dentry) || !d_unhashed(nd->dentry))
870 err = attach_recursive_mnt(mnt, nd, NULL);
871 out_unlock:
872 mutex_unlock(&nd->dentry->d_inode->i_mutex);
873 if (!err)
874 security_sb_post_addmount(mnt, nd);
875 return err;
879 * recursively change the type of the mountpoint.
881 static int do_change_type(struct nameidata *nd, int flag)
883 struct vfsmount *m, *mnt = nd->mnt;
884 int recurse = flag & MS_REC;
885 int type = flag & ~MS_REC;
887 if (nd->dentry != nd->mnt->mnt_root)
888 return -EINVAL;
890 down_write(&namespace_sem);
891 spin_lock(&vfsmount_lock);
892 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
893 change_mnt_propagation(m, type);
894 spin_unlock(&vfsmount_lock);
895 up_write(&namespace_sem);
896 return 0;
900 * do loopback mount.
902 static int do_loopback(struct nameidata *nd, char *old_name, unsigned long flags, int mnt_flags)
904 struct nameidata old_nd;
905 struct vfsmount *mnt = NULL;
906 int recurse = flags & MS_REC;
907 int err = mount_is_safe(nd);
909 if (err)
910 return err;
911 if (!old_name || !*old_name)
912 return -EINVAL;
913 err = path_lookup(old_name, LOOKUP_FOLLOW, &old_nd);
914 if (err)
915 return err;
917 down_write(&namespace_sem);
918 err = -EINVAL;
919 if (IS_MNT_UNBINDABLE(old_nd.mnt))
920 goto out;
922 if (!check_mnt(nd->mnt) || !check_mnt(old_nd.mnt))
923 goto out;
925 err = -ENOMEM;
926 if (recurse)
927 mnt = copy_tree(old_nd.mnt, old_nd.dentry, 0);
928 else
929 mnt = clone_mnt(old_nd.mnt, old_nd.dentry, 0);
931 if (!mnt)
932 goto out;
934 err = graft_tree(mnt, nd);
935 if (err) {
936 LIST_HEAD(umount_list);
937 spin_lock(&vfsmount_lock);
938 umount_tree(mnt, 0, &umount_list);
939 spin_unlock(&vfsmount_lock);
940 release_mounts(&umount_list);
942 mnt->mnt_flags = mnt_flags;
944 out:
945 up_write(&namespace_sem);
946 path_release(&old_nd);
947 return err;
951 * change filesystem flags. dir should be a physical root of filesystem.
952 * If you've mounted a non-root directory somewhere and want to do remount
953 * on it - tough luck.
955 static int do_remount(struct nameidata *nd, int flags, int mnt_flags,
956 void *data)
958 int err;
959 struct super_block *sb = nd->mnt->mnt_sb;
961 if (!capable(CAP_SYS_ADMIN))
962 return -EPERM;
964 if (!check_mnt(nd->mnt))
965 return -EINVAL;
967 if (nd->dentry != nd->mnt->mnt_root)
968 return -EINVAL;
970 down_write(&sb->s_umount);
971 err = do_remount_sb(sb, flags, data, 0);
972 if (!err)
973 nd->mnt->mnt_flags = mnt_flags;
974 up_write(&sb->s_umount);
975 if (!err)
976 security_sb_post_remount(nd->mnt, flags, data);
977 return err;
980 static inline int tree_contains_unbindable(struct vfsmount *mnt)
982 struct vfsmount *p;
983 for (p = mnt; p; p = next_mnt(p, mnt)) {
984 if (IS_MNT_UNBINDABLE(p))
985 return 1;
987 return 0;
990 static int do_move_mount(struct nameidata *nd, char *old_name)
992 struct nameidata old_nd, parent_nd;
993 struct vfsmount *p;
994 int err = 0;
995 if (!capable(CAP_SYS_ADMIN))
996 return -EPERM;
997 if (!old_name || !*old_name)
998 return -EINVAL;
999 err = path_lookup(old_name, LOOKUP_FOLLOW, &old_nd);
1000 if (err)
1001 return err;
1003 down_write(&namespace_sem);
1004 while (d_mountpoint(nd->dentry) && follow_down(&nd->mnt, &nd->dentry))
1006 err = -EINVAL;
1007 if (!check_mnt(nd->mnt) || !check_mnt(old_nd.mnt))
1008 goto out;
1010 err = -ENOENT;
1011 mutex_lock(&nd->dentry->d_inode->i_mutex);
1012 if (IS_DEADDIR(nd->dentry->d_inode))
1013 goto out1;
1015 if (!IS_ROOT(nd->dentry) && d_unhashed(nd->dentry))
1016 goto out1;
1018 err = -EINVAL;
1019 if (old_nd.dentry != old_nd.mnt->mnt_root)
1020 goto out1;
1022 if (old_nd.mnt == old_nd.mnt->mnt_parent)
1023 goto out1;
1025 if (S_ISDIR(nd->dentry->d_inode->i_mode) !=
1026 S_ISDIR(old_nd.dentry->d_inode->i_mode))
1027 goto out1;
1029 * Don't move a mount residing in a shared parent.
1031 if (old_nd.mnt->mnt_parent && IS_MNT_SHARED(old_nd.mnt->mnt_parent))
1032 goto out1;
1034 * Don't move a mount tree containing unbindable mounts to a destination
1035 * mount which is shared.
1037 if (IS_MNT_SHARED(nd->mnt) && tree_contains_unbindable(old_nd.mnt))
1038 goto out1;
1039 err = -ELOOP;
1040 for (p = nd->mnt; p->mnt_parent != p; p = p->mnt_parent)
1041 if (p == old_nd.mnt)
1042 goto out1;
1044 if ((err = attach_recursive_mnt(old_nd.mnt, nd, &parent_nd)))
1045 goto out1;
1047 spin_lock(&vfsmount_lock);
1048 /* if the mount is moved, it should no longer be expire
1049 * automatically */
1050 list_del_init(&old_nd.mnt->mnt_expire);
1051 spin_unlock(&vfsmount_lock);
1052 out1:
1053 mutex_unlock(&nd->dentry->d_inode->i_mutex);
1054 out:
1055 up_write(&namespace_sem);
1056 if (!err)
1057 path_release(&parent_nd);
1058 path_release(&old_nd);
1059 return err;
1063 * create a new mount for userspace and request it to be added into the
1064 * namespace's tree
1066 static int do_new_mount(struct nameidata *nd, char *type, int flags,
1067 int mnt_flags, char *name, void *data)
1069 struct vfsmount *mnt;
1071 if (!type || !memchr(type, 0, PAGE_SIZE))
1072 return -EINVAL;
1074 /* we need capabilities... */
1075 if (!capable(CAP_SYS_ADMIN))
1076 return -EPERM;
1078 mnt = do_kern_mount(type, flags, name, data);
1079 if (IS_ERR(mnt))
1080 return PTR_ERR(mnt);
1082 return do_add_mount(mnt, nd, mnt_flags, NULL);
1086 * add a mount into a namespace's mount tree
1087 * - provide the option of adding the new mount to an expiration list
1089 int do_add_mount(struct vfsmount *newmnt, struct nameidata *nd,
1090 int mnt_flags, struct list_head *fslist)
1092 int err;
1094 down_write(&namespace_sem);
1095 /* Something was mounted here while we slept */
1096 while (d_mountpoint(nd->dentry) && follow_down(&nd->mnt, &nd->dentry))
1098 err = -EINVAL;
1099 if (!check_mnt(nd->mnt))
1100 goto unlock;
1102 /* Refuse the same filesystem on the same mount point */
1103 err = -EBUSY;
1104 if (nd->mnt->mnt_sb == newmnt->mnt_sb &&
1105 nd->mnt->mnt_root == nd->dentry)
1106 goto unlock;
1108 err = -EINVAL;
1109 if (S_ISLNK(newmnt->mnt_root->d_inode->i_mode))
1110 goto unlock;
1112 newmnt->mnt_flags = mnt_flags;
1113 if ((err = graft_tree(newmnt, nd)))
1114 goto unlock;
1116 if (fslist) {
1117 /* add to the specified expiration list */
1118 spin_lock(&vfsmount_lock);
1119 list_add_tail(&newmnt->mnt_expire, fslist);
1120 spin_unlock(&vfsmount_lock);
1122 up_write(&namespace_sem);
1123 return 0;
1125 unlock:
1126 up_write(&namespace_sem);
1127 mntput(newmnt);
1128 return err;
1131 EXPORT_SYMBOL_GPL(do_add_mount);
1133 static void expire_mount(struct vfsmount *mnt, struct list_head *mounts,
1134 struct list_head *umounts)
1136 spin_lock(&vfsmount_lock);
1139 * Check if mount is still attached, if not, let whoever holds it deal
1140 * with the sucker
1142 if (mnt->mnt_parent == mnt) {
1143 spin_unlock(&vfsmount_lock);
1144 return;
1148 * Check that it is still dead: the count should now be 2 - as
1149 * contributed by the vfsmount parent and the mntget above
1151 if (!propagate_mount_busy(mnt, 2)) {
1152 /* delete from the namespace */
1153 touch_namespace(mnt->mnt_namespace);
1154 list_del_init(&mnt->mnt_list);
1155 mnt->mnt_namespace = NULL;
1156 umount_tree(mnt, 1, umounts);
1157 spin_unlock(&vfsmount_lock);
1158 } else {
1160 * Someone brought it back to life whilst we didn't have any
1161 * locks held so return it to the expiration list
1163 list_add_tail(&mnt->mnt_expire, mounts);
1164 spin_unlock(&vfsmount_lock);
1169 * process a list of expirable mountpoints with the intent of discarding any
1170 * mountpoints that aren't in use and haven't been touched since last we came
1171 * here
1173 void mark_mounts_for_expiry(struct list_head *mounts)
1175 struct namespace *namespace;
1176 struct vfsmount *mnt, *next;
1177 LIST_HEAD(graveyard);
1179 if (list_empty(mounts))
1180 return;
1182 spin_lock(&vfsmount_lock);
1184 /* extract from the expiration list every vfsmount that matches the
1185 * following criteria:
1186 * - only referenced by its parent vfsmount
1187 * - still marked for expiry (marked on the last call here; marks are
1188 * cleared by mntput())
1190 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
1191 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
1192 atomic_read(&mnt->mnt_count) != 1)
1193 continue;
1195 mntget(mnt);
1196 list_move(&mnt->mnt_expire, &graveyard);
1200 * go through the vfsmounts we've just consigned to the graveyard to
1201 * - check that they're still dead
1202 * - delete the vfsmount from the appropriate namespace under lock
1203 * - dispose of the corpse
1205 while (!list_empty(&graveyard)) {
1206 LIST_HEAD(umounts);
1207 mnt = list_entry(graveyard.next, struct vfsmount, mnt_expire);
1208 list_del_init(&mnt->mnt_expire);
1210 /* don't do anything if the namespace is dead - all the
1211 * vfsmounts from it are going away anyway */
1212 namespace = mnt->mnt_namespace;
1213 if (!namespace || !namespace->root)
1214 continue;
1215 get_namespace(namespace);
1217 spin_unlock(&vfsmount_lock);
1218 down_write(&namespace_sem);
1219 expire_mount(mnt, mounts, &umounts);
1220 up_write(&namespace_sem);
1221 release_mounts(&umounts);
1222 mntput(mnt);
1223 put_namespace(namespace);
1224 spin_lock(&vfsmount_lock);
1227 spin_unlock(&vfsmount_lock);
1230 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
1233 * Some copy_from_user() implementations do not return the exact number of
1234 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
1235 * Note that this function differs from copy_from_user() in that it will oops
1236 * on bad values of `to', rather than returning a short copy.
1238 static long exact_copy_from_user(void *to, const void __user * from,
1239 unsigned long n)
1241 char *t = to;
1242 const char __user *f = from;
1243 char c;
1245 if (!access_ok(VERIFY_READ, from, n))
1246 return n;
1248 while (n) {
1249 if (__get_user(c, f)) {
1250 memset(t, 0, n);
1251 break;
1253 *t++ = c;
1254 f++;
1255 n--;
1257 return n;
1260 int copy_mount_options(const void __user * data, unsigned long *where)
1262 int i;
1263 unsigned long page;
1264 unsigned long size;
1266 *where = 0;
1267 if (!data)
1268 return 0;
1270 if (!(page = __get_free_page(GFP_KERNEL)))
1271 return -ENOMEM;
1273 /* We only care that *some* data at the address the user
1274 * gave us is valid. Just in case, we'll zero
1275 * the remainder of the page.
1277 /* copy_from_user cannot cross TASK_SIZE ! */
1278 size = TASK_SIZE - (unsigned long)data;
1279 if (size > PAGE_SIZE)
1280 size = PAGE_SIZE;
1282 i = size - exact_copy_from_user((void *)page, data, size);
1283 if (!i) {
1284 free_page(page);
1285 return -EFAULT;
1287 if (i != PAGE_SIZE)
1288 memset((char *)page + i, 0, PAGE_SIZE - i);
1289 *where = page;
1290 return 0;
1294 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
1295 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
1297 * data is a (void *) that can point to any structure up to
1298 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
1299 * information (or be NULL).
1301 * Pre-0.97 versions of mount() didn't have a flags word.
1302 * When the flags word was introduced its top half was required
1303 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
1304 * Therefore, if this magic number is present, it carries no information
1305 * and must be discarded.
1307 long do_mount(char *dev_name, char *dir_name, char *type_page,
1308 unsigned long flags, void *data_page)
1310 struct nameidata nd;
1311 int retval = 0;
1312 int mnt_flags = 0;
1314 /* Discard magic */
1315 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
1316 flags &= ~MS_MGC_MSK;
1318 /* Basic sanity checks */
1320 if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
1321 return -EINVAL;
1322 if (dev_name && !memchr(dev_name, 0, PAGE_SIZE))
1323 return -EINVAL;
1325 if (data_page)
1326 ((char *)data_page)[PAGE_SIZE - 1] = 0;
1328 /* Separate the per-mountpoint flags */
1329 if (flags & MS_NOSUID)
1330 mnt_flags |= MNT_NOSUID;
1331 if (flags & MS_NODEV)
1332 mnt_flags |= MNT_NODEV;
1333 if (flags & MS_NOEXEC)
1334 mnt_flags |= MNT_NOEXEC;
1335 if (flags & MS_NOATIME)
1336 mnt_flags |= MNT_NOATIME;
1337 if (flags & MS_NODIRATIME)
1338 mnt_flags |= MNT_NODIRATIME;
1340 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE |
1341 MS_NOATIME | MS_NODIRATIME);
1343 /* ... and get the mountpoint */
1344 retval = path_lookup(dir_name, LOOKUP_FOLLOW, &nd);
1345 if (retval)
1346 return retval;
1348 retval = security_sb_mount(dev_name, &nd, type_page, flags, data_page);
1349 if (retval)
1350 goto dput_out;
1352 if (flags & MS_REMOUNT)
1353 retval = do_remount(&nd, flags & ~MS_REMOUNT, mnt_flags,
1354 data_page);
1355 else if (flags & MS_BIND)
1356 retval = do_loopback(&nd, dev_name, flags, mnt_flags);
1357 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
1358 retval = do_change_type(&nd, flags);
1359 else if (flags & MS_MOVE)
1360 retval = do_move_mount(&nd, dev_name);
1361 else
1362 retval = do_new_mount(&nd, type_page, flags, mnt_flags,
1363 dev_name, data_page);
1364 dput_out:
1365 path_release(&nd);
1366 return retval;
1370 * Allocate a new namespace structure and populate it with contents
1371 * copied from the namespace of the passed in task structure.
1373 struct namespace *dup_namespace(struct task_struct *tsk, struct fs_struct *fs)
1375 struct namespace *namespace = tsk->namespace;
1376 struct namespace *new_ns;
1377 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL, *altrootmnt = NULL;
1378 struct vfsmount *p, *q;
1380 new_ns = kmalloc(sizeof(struct namespace), GFP_KERNEL);
1381 if (!new_ns)
1382 return NULL;
1384 atomic_set(&new_ns->count, 1);
1385 INIT_LIST_HEAD(&new_ns->list);
1386 init_waitqueue_head(&new_ns->poll);
1387 new_ns->event = 0;
1389 down_write(&namespace_sem);
1390 /* First pass: copy the tree topology */
1391 new_ns->root = copy_tree(namespace->root, namespace->root->mnt_root,
1392 CL_COPY_ALL | CL_EXPIRE);
1393 if (!new_ns->root) {
1394 up_write(&namespace_sem);
1395 kfree(new_ns);
1396 return NULL;
1398 spin_lock(&vfsmount_lock);
1399 list_add_tail(&new_ns->list, &new_ns->root->mnt_list);
1400 spin_unlock(&vfsmount_lock);
1403 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
1404 * as belonging to new namespace. We have already acquired a private
1405 * fs_struct, so tsk->fs->lock is not needed.
1407 p = namespace->root;
1408 q = new_ns->root;
1409 while (p) {
1410 q->mnt_namespace = new_ns;
1411 if (fs) {
1412 if (p == fs->rootmnt) {
1413 rootmnt = p;
1414 fs->rootmnt = mntget(q);
1416 if (p == fs->pwdmnt) {
1417 pwdmnt = p;
1418 fs->pwdmnt = mntget(q);
1420 if (p == fs->altrootmnt) {
1421 altrootmnt = p;
1422 fs->altrootmnt = mntget(q);
1425 p = next_mnt(p, namespace->root);
1426 q = next_mnt(q, new_ns->root);
1428 up_write(&namespace_sem);
1430 if (rootmnt)
1431 mntput(rootmnt);
1432 if (pwdmnt)
1433 mntput(pwdmnt);
1434 if (altrootmnt)
1435 mntput(altrootmnt);
1437 return new_ns;
1440 int copy_namespace(int flags, struct task_struct *tsk)
1442 struct namespace *namespace = tsk->namespace;
1443 struct namespace *new_ns;
1444 int err = 0;
1446 if (!namespace)
1447 return 0;
1449 get_namespace(namespace);
1451 if (!(flags & CLONE_NEWNS))
1452 return 0;
1454 if (!capable(CAP_SYS_ADMIN)) {
1455 err = -EPERM;
1456 goto out;
1459 new_ns = dup_namespace(tsk, tsk->fs);
1460 if (!new_ns) {
1461 err = -ENOMEM;
1462 goto out;
1465 tsk->namespace = new_ns;
1467 out:
1468 put_namespace(namespace);
1469 return err;
1472 asmlinkage long sys_mount(char __user * dev_name, char __user * dir_name,
1473 char __user * type, unsigned long flags,
1474 void __user * data)
1476 int retval;
1477 unsigned long data_page;
1478 unsigned long type_page;
1479 unsigned long dev_page;
1480 char *dir_page;
1482 retval = copy_mount_options(type, &type_page);
1483 if (retval < 0)
1484 return retval;
1486 dir_page = getname(dir_name);
1487 retval = PTR_ERR(dir_page);
1488 if (IS_ERR(dir_page))
1489 goto out1;
1491 retval = copy_mount_options(dev_name, &dev_page);
1492 if (retval < 0)
1493 goto out2;
1495 retval = copy_mount_options(data, &data_page);
1496 if (retval < 0)
1497 goto out3;
1499 lock_kernel();
1500 retval = do_mount((char *)dev_page, dir_page, (char *)type_page,
1501 flags, (void *)data_page);
1502 unlock_kernel();
1503 free_page(data_page);
1505 out3:
1506 free_page(dev_page);
1507 out2:
1508 putname(dir_page);
1509 out1:
1510 free_page(type_page);
1511 return retval;
1515 * Replace the fs->{rootmnt,root} with {mnt,dentry}. Put the old values.
1516 * It can block. Requires the big lock held.
1518 void set_fs_root(struct fs_struct *fs, struct vfsmount *mnt,
1519 struct dentry *dentry)
1521 struct dentry *old_root;
1522 struct vfsmount *old_rootmnt;
1523 write_lock(&fs->lock);
1524 old_root = fs->root;
1525 old_rootmnt = fs->rootmnt;
1526 fs->rootmnt = mntget(mnt);
1527 fs->root = dget(dentry);
1528 write_unlock(&fs->lock);
1529 if (old_root) {
1530 dput(old_root);
1531 mntput(old_rootmnt);
1536 * Replace the fs->{pwdmnt,pwd} with {mnt,dentry}. Put the old values.
1537 * It can block. Requires the big lock held.
1539 void set_fs_pwd(struct fs_struct *fs, struct vfsmount *mnt,
1540 struct dentry *dentry)
1542 struct dentry *old_pwd;
1543 struct vfsmount *old_pwdmnt;
1545 write_lock(&fs->lock);
1546 old_pwd = fs->pwd;
1547 old_pwdmnt = fs->pwdmnt;
1548 fs->pwdmnt = mntget(mnt);
1549 fs->pwd = dget(dentry);
1550 write_unlock(&fs->lock);
1552 if (old_pwd) {
1553 dput(old_pwd);
1554 mntput(old_pwdmnt);
1558 static void chroot_fs_refs(struct nameidata *old_nd, struct nameidata *new_nd)
1560 struct task_struct *g, *p;
1561 struct fs_struct *fs;
1563 read_lock(&tasklist_lock);
1564 do_each_thread(g, p) {
1565 task_lock(p);
1566 fs = p->fs;
1567 if (fs) {
1568 atomic_inc(&fs->count);
1569 task_unlock(p);
1570 if (fs->root == old_nd->dentry
1571 && fs->rootmnt == old_nd->mnt)
1572 set_fs_root(fs, new_nd->mnt, new_nd->dentry);
1573 if (fs->pwd == old_nd->dentry
1574 && fs->pwdmnt == old_nd->mnt)
1575 set_fs_pwd(fs, new_nd->mnt, new_nd->dentry);
1576 put_fs_struct(fs);
1577 } else
1578 task_unlock(p);
1579 } while_each_thread(g, p);
1580 read_unlock(&tasklist_lock);
1584 * pivot_root Semantics:
1585 * Moves the root file system of the current process to the directory put_old,
1586 * makes new_root as the new root file system of the current process, and sets
1587 * root/cwd of all processes which had them on the current root to new_root.
1589 * Restrictions:
1590 * The new_root and put_old must be directories, and must not be on the
1591 * same file system as the current process root. The put_old must be
1592 * underneath new_root, i.e. adding a non-zero number of /.. to the string
1593 * pointed to by put_old must yield the same directory as new_root. No other
1594 * file system may be mounted on put_old. After all, new_root is a mountpoint.
1596 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
1597 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
1598 * in this situation.
1600 * Notes:
1601 * - we don't move root/cwd if they are not at the root (reason: if something
1602 * cared enough to change them, it's probably wrong to force them elsewhere)
1603 * - it's okay to pick a root that isn't the root of a file system, e.g.
1604 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
1605 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
1606 * first.
1608 asmlinkage long sys_pivot_root(const char __user * new_root,
1609 const char __user * put_old)
1611 struct vfsmount *tmp;
1612 struct nameidata new_nd, old_nd, parent_nd, root_parent, user_nd;
1613 int error;
1615 if (!capable(CAP_SYS_ADMIN))
1616 return -EPERM;
1618 lock_kernel();
1620 error = __user_walk(new_root, LOOKUP_FOLLOW | LOOKUP_DIRECTORY,
1621 &new_nd);
1622 if (error)
1623 goto out0;
1624 error = -EINVAL;
1625 if (!check_mnt(new_nd.mnt))
1626 goto out1;
1628 error = __user_walk(put_old, LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &old_nd);
1629 if (error)
1630 goto out1;
1632 error = security_sb_pivotroot(&old_nd, &new_nd);
1633 if (error) {
1634 path_release(&old_nd);
1635 goto out1;
1638 read_lock(&current->fs->lock);
1639 user_nd.mnt = mntget(current->fs->rootmnt);
1640 user_nd.dentry = dget(current->fs->root);
1641 read_unlock(&current->fs->lock);
1642 down_write(&namespace_sem);
1643 mutex_lock(&old_nd.dentry->d_inode->i_mutex);
1644 error = -EINVAL;
1645 if (IS_MNT_SHARED(old_nd.mnt) ||
1646 IS_MNT_SHARED(new_nd.mnt->mnt_parent) ||
1647 IS_MNT_SHARED(user_nd.mnt->mnt_parent))
1648 goto out2;
1649 if (!check_mnt(user_nd.mnt))
1650 goto out2;
1651 error = -ENOENT;
1652 if (IS_DEADDIR(new_nd.dentry->d_inode))
1653 goto out2;
1654 if (d_unhashed(new_nd.dentry) && !IS_ROOT(new_nd.dentry))
1655 goto out2;
1656 if (d_unhashed(old_nd.dentry) && !IS_ROOT(old_nd.dentry))
1657 goto out2;
1658 error = -EBUSY;
1659 if (new_nd.mnt == user_nd.mnt || old_nd.mnt == user_nd.mnt)
1660 goto out2; /* loop, on the same file system */
1661 error = -EINVAL;
1662 if (user_nd.mnt->mnt_root != user_nd.dentry)
1663 goto out2; /* not a mountpoint */
1664 if (user_nd.mnt->mnt_parent == user_nd.mnt)
1665 goto out2; /* not attached */
1666 if (new_nd.mnt->mnt_root != new_nd.dentry)
1667 goto out2; /* not a mountpoint */
1668 if (new_nd.mnt->mnt_parent == new_nd.mnt)
1669 goto out2; /* not attached */
1670 tmp = old_nd.mnt; /* make sure we can reach put_old from new_root */
1671 spin_lock(&vfsmount_lock);
1672 if (tmp != new_nd.mnt) {
1673 for (;;) {
1674 if (tmp->mnt_parent == tmp)
1675 goto out3; /* already mounted on put_old */
1676 if (tmp->mnt_parent == new_nd.mnt)
1677 break;
1678 tmp = tmp->mnt_parent;
1680 if (!is_subdir(tmp->mnt_mountpoint, new_nd.dentry))
1681 goto out3;
1682 } else if (!is_subdir(old_nd.dentry, new_nd.dentry))
1683 goto out3;
1684 detach_mnt(new_nd.mnt, &parent_nd);
1685 detach_mnt(user_nd.mnt, &root_parent);
1686 attach_mnt(user_nd.mnt, &old_nd); /* mount old root on put_old */
1687 attach_mnt(new_nd.mnt, &root_parent); /* mount new_root on / */
1688 touch_namespace(current->namespace);
1689 spin_unlock(&vfsmount_lock);
1690 chroot_fs_refs(&user_nd, &new_nd);
1691 security_sb_post_pivotroot(&user_nd, &new_nd);
1692 error = 0;
1693 path_release(&root_parent);
1694 path_release(&parent_nd);
1695 out2:
1696 mutex_unlock(&old_nd.dentry->d_inode->i_mutex);
1697 up_write(&namespace_sem);
1698 path_release(&user_nd);
1699 path_release(&old_nd);
1700 out1:
1701 path_release(&new_nd);
1702 out0:
1703 unlock_kernel();
1704 return error;
1705 out3:
1706 spin_unlock(&vfsmount_lock);
1707 goto out2;
1710 static void __init init_mount_tree(void)
1712 struct vfsmount *mnt;
1713 struct namespace *namespace;
1714 struct task_struct *g, *p;
1716 mnt = do_kern_mount("rootfs", 0, "rootfs", NULL);
1717 if (IS_ERR(mnt))
1718 panic("Can't create rootfs");
1719 namespace = kmalloc(sizeof(*namespace), GFP_KERNEL);
1720 if (!namespace)
1721 panic("Can't allocate initial namespace");
1722 atomic_set(&namespace->count, 1);
1723 INIT_LIST_HEAD(&namespace->list);
1724 init_waitqueue_head(&namespace->poll);
1725 namespace->event = 0;
1726 list_add(&mnt->mnt_list, &namespace->list);
1727 namespace->root = mnt;
1728 mnt->mnt_namespace = namespace;
1730 init_task.namespace = namespace;
1731 read_lock(&tasklist_lock);
1732 do_each_thread(g, p) {
1733 get_namespace(namespace);
1734 p->namespace = namespace;
1735 } while_each_thread(g, p);
1736 read_unlock(&tasklist_lock);
1738 set_fs_pwd(current->fs, namespace->root, namespace->root->mnt_root);
1739 set_fs_root(current->fs, namespace->root, namespace->root->mnt_root);
1742 void __init mnt_init(unsigned long mempages)
1744 struct list_head *d;
1745 unsigned int nr_hash;
1746 int i;
1748 init_rwsem(&namespace_sem);
1750 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct vfsmount),
1751 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL, NULL);
1753 mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
1755 if (!mount_hashtable)
1756 panic("Failed to allocate mount hash table\n");
1759 * Find the power-of-two list-heads that can fit into the allocation..
1760 * We don't guarantee that "sizeof(struct list_head)" is necessarily
1761 * a power-of-two.
1763 nr_hash = PAGE_SIZE / sizeof(struct list_head);
1764 hash_bits = 0;
1765 do {
1766 hash_bits++;
1767 } while ((nr_hash >> hash_bits) != 0);
1768 hash_bits--;
1771 * Re-calculate the actual number of entries and the mask
1772 * from the number of bits we can fit.
1774 nr_hash = 1UL << hash_bits;
1775 hash_mask = nr_hash - 1;
1777 printk("Mount-cache hash table entries: %d\n", nr_hash);
1779 /* And initialize the newly allocated array */
1780 d = mount_hashtable;
1781 i = nr_hash;
1782 do {
1783 INIT_LIST_HEAD(d);
1784 d++;
1785 i--;
1786 } while (i);
1787 sysfs_init();
1788 subsystem_register(&fs_subsys);
1789 init_rootfs();
1790 init_mount_tree();
1793 void __put_namespace(struct namespace *namespace)
1795 struct vfsmount *root = namespace->root;
1796 LIST_HEAD(umount_list);
1797 namespace->root = NULL;
1798 spin_unlock(&vfsmount_lock);
1799 down_write(&namespace_sem);
1800 spin_lock(&vfsmount_lock);
1801 umount_tree(root, 0, &umount_list);
1802 spin_unlock(&vfsmount_lock);
1803 up_write(&namespace_sem);
1804 release_mounts(&umount_list);
1805 kfree(namespace);