2 * Implementation of the security services.
4 * Authors : Stephen Smalley, <sds@epoch.ncsc.mil>
5 * James Morris <jmorris@redhat.com>
7 * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
9 * Support for enhanced MLS infrastructure.
10 * Support for context based audit filters.
12 * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
14 * Added conditional policy language extensions
16 * Updated: Hewlett-Packard <paul.moore@hp.com>
18 * Added support for NetLabel
19 * Added support for the policy capability bitmap
21 * Updated: Chad Sellers <csellers@tresys.com>
23 * Added validation of kernel classes and permissions
25 * Updated: KaiGai Kohei <kaigai@ak.jp.nec.com>
27 * Added support for bounds domain and audit messaged on masked permissions
29 * Updated: Guido Trentalancia <guido@trentalancia.com>
31 * Added support for runtime switching of the policy type
33 * Copyright (C) 2008, 2009 NEC Corporation
34 * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
35 * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc.
36 * Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC
37 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
38 * This program is free software; you can redistribute it and/or modify
39 * it under the terms of the GNU General Public License as published by
40 * the Free Software Foundation, version 2.
42 #include <linux/kernel.h>
43 #include <linux/slab.h>
44 #include <linux/string.h>
45 #include <linux/spinlock.h>
46 #include <linux/rcupdate.h>
47 #include <linux/errno.h>
49 #include <linux/sched.h>
50 #include <linux/audit.h>
51 #include <linux/mutex.h>
52 #include <linux/selinux.h>
53 #include <linux/flex_array.h>
54 #include <linux/vmalloc.h>
55 #include <net/netlabel.h>
65 #include "conditional.h"
73 extern void selnl_notify_policyload(u32 seqno
);
75 int selinux_policycap_netpeer
;
76 int selinux_policycap_openperm
;
78 static DEFINE_RWLOCK(policy_rwlock
);
80 static struct sidtab sidtab
;
81 struct policydb policydb
;
85 * The largest sequence number that has been used when
86 * providing an access decision to the access vector cache.
87 * The sequence number only changes when a policy change
90 static u32 latest_granting
;
92 /* Forward declaration. */
93 static int context_struct_to_string(struct context
*context
, char **scontext
,
96 static void context_struct_compute_av(struct context
*scontext
,
97 struct context
*tcontext
,
99 struct av_decision
*avd
);
101 struct selinux_mapping
{
102 u16 value
; /* policy value */
104 u32 perms
[sizeof(u32
) * 8];
107 static struct selinux_mapping
*current_mapping
;
108 static u16 current_mapping_size
;
110 static int selinux_set_mapping(struct policydb
*pol
,
111 struct security_class_mapping
*map
,
112 struct selinux_mapping
**out_map_p
,
115 struct selinux_mapping
*out_map
= NULL
;
116 size_t size
= sizeof(struct selinux_mapping
);
119 bool print_unknown_handle
= false;
121 /* Find number of classes in the input mapping */
128 /* Allocate space for the class records, plus one for class zero */
129 out_map
= kcalloc(++i
, size
, GFP_ATOMIC
);
133 /* Store the raw class and permission values */
135 while (map
[j
].name
) {
136 struct security_class_mapping
*p_in
= map
+ (j
++);
137 struct selinux_mapping
*p_out
= out_map
+ j
;
139 /* An empty class string skips ahead */
140 if (!strcmp(p_in
->name
, "")) {
141 p_out
->num_perms
= 0;
145 p_out
->value
= string_to_security_class(pol
, p_in
->name
);
148 "SELinux: Class %s not defined in policy.\n",
150 if (pol
->reject_unknown
)
152 p_out
->num_perms
= 0;
153 print_unknown_handle
= true;
158 while (p_in
->perms
&& p_in
->perms
[k
]) {
159 /* An empty permission string skips ahead */
160 if (!*p_in
->perms
[k
]) {
164 p_out
->perms
[k
] = string_to_av_perm(pol
, p_out
->value
,
166 if (!p_out
->perms
[k
]) {
168 "SELinux: Permission %s in class %s not defined in policy.\n",
169 p_in
->perms
[k
], p_in
->name
);
170 if (pol
->reject_unknown
)
172 print_unknown_handle
= true;
177 p_out
->num_perms
= k
;
180 if (print_unknown_handle
)
181 printk(KERN_INFO
"SELinux: the above unknown classes and permissions will be %s\n",
182 pol
->allow_unknown
? "allowed" : "denied");
184 *out_map_p
= out_map
;
193 * Get real, policy values from mapped values
196 static u16
unmap_class(u16 tclass
)
198 if (tclass
< current_mapping_size
)
199 return current_mapping
[tclass
].value
;
204 static void map_decision(u16 tclass
, struct av_decision
*avd
,
207 if (tclass
< current_mapping_size
) {
208 unsigned i
, n
= current_mapping
[tclass
].num_perms
;
211 for (i
= 0, result
= 0; i
< n
; i
++) {
212 if (avd
->allowed
& current_mapping
[tclass
].perms
[i
])
214 if (allow_unknown
&& !current_mapping
[tclass
].perms
[i
])
217 avd
->allowed
= result
;
219 for (i
= 0, result
= 0; i
< n
; i
++)
220 if (avd
->auditallow
& current_mapping
[tclass
].perms
[i
])
222 avd
->auditallow
= result
;
224 for (i
= 0, result
= 0; i
< n
; i
++) {
225 if (avd
->auditdeny
& current_mapping
[tclass
].perms
[i
])
227 if (!allow_unknown
&& !current_mapping
[tclass
].perms
[i
])
231 * In case the kernel has a bug and requests a permission
232 * between num_perms and the maximum permission number, we
233 * should audit that denial
235 for (; i
< (sizeof(u32
)*8); i
++)
237 avd
->auditdeny
= result
;
241 int security_mls_enabled(void)
243 return policydb
.mls_enabled
;
247 * Return the boolean value of a constraint expression
248 * when it is applied to the specified source and target
251 * xcontext is a special beast... It is used by the validatetrans rules
252 * only. For these rules, scontext is the context before the transition,
253 * tcontext is the context after the transition, and xcontext is the context
254 * of the process performing the transition. All other callers of
255 * constraint_expr_eval should pass in NULL for xcontext.
257 static int constraint_expr_eval(struct context
*scontext
,
258 struct context
*tcontext
,
259 struct context
*xcontext
,
260 struct constraint_expr
*cexpr
)
264 struct role_datum
*r1
, *r2
;
265 struct mls_level
*l1
, *l2
;
266 struct constraint_expr
*e
;
267 int s
[CEXPR_MAXDEPTH
];
270 for (e
= cexpr
; e
; e
= e
->next
) {
271 switch (e
->expr_type
) {
287 if (sp
== (CEXPR_MAXDEPTH
- 1))
291 val1
= scontext
->user
;
292 val2
= tcontext
->user
;
295 val1
= scontext
->type
;
296 val2
= tcontext
->type
;
299 val1
= scontext
->role
;
300 val2
= tcontext
->role
;
301 r1
= policydb
.role_val_to_struct
[val1
- 1];
302 r2
= policydb
.role_val_to_struct
[val2
- 1];
305 s
[++sp
] = ebitmap_get_bit(&r1
->dominates
,
309 s
[++sp
] = ebitmap_get_bit(&r2
->dominates
,
313 s
[++sp
] = (!ebitmap_get_bit(&r1
->dominates
,
315 !ebitmap_get_bit(&r2
->dominates
,
323 l1
= &(scontext
->range
.level
[0]);
324 l2
= &(tcontext
->range
.level
[0]);
327 l1
= &(scontext
->range
.level
[0]);
328 l2
= &(tcontext
->range
.level
[1]);
331 l1
= &(scontext
->range
.level
[1]);
332 l2
= &(tcontext
->range
.level
[0]);
335 l1
= &(scontext
->range
.level
[1]);
336 l2
= &(tcontext
->range
.level
[1]);
339 l1
= &(scontext
->range
.level
[0]);
340 l2
= &(scontext
->range
.level
[1]);
343 l1
= &(tcontext
->range
.level
[0]);
344 l2
= &(tcontext
->range
.level
[1]);
349 s
[++sp
] = mls_level_eq(l1
, l2
);
352 s
[++sp
] = !mls_level_eq(l1
, l2
);
355 s
[++sp
] = mls_level_dom(l1
, l2
);
358 s
[++sp
] = mls_level_dom(l2
, l1
);
361 s
[++sp
] = mls_level_incomp(l2
, l1
);
375 s
[++sp
] = (val1
== val2
);
378 s
[++sp
] = (val1
!= val2
);
386 if (sp
== (CEXPR_MAXDEPTH
-1))
389 if (e
->attr
& CEXPR_TARGET
)
391 else if (e
->attr
& CEXPR_XTARGET
) {
398 if (e
->attr
& CEXPR_USER
)
400 else if (e
->attr
& CEXPR_ROLE
)
402 else if (e
->attr
& CEXPR_TYPE
)
411 s
[++sp
] = ebitmap_get_bit(&e
->names
, val1
- 1);
414 s
[++sp
] = !ebitmap_get_bit(&e
->names
, val1
- 1);
432 * security_dump_masked_av - dumps masked permissions during
433 * security_compute_av due to RBAC, MLS/Constraint and Type bounds.
435 static int dump_masked_av_helper(void *k
, void *d
, void *args
)
437 struct perm_datum
*pdatum
= d
;
438 char **permission_names
= args
;
440 BUG_ON(pdatum
->value
< 1 || pdatum
->value
> 32);
442 permission_names
[pdatum
->value
- 1] = (char *)k
;
447 static void security_dump_masked_av(struct context
*scontext
,
448 struct context
*tcontext
,
453 struct common_datum
*common_dat
;
454 struct class_datum
*tclass_dat
;
455 struct audit_buffer
*ab
;
457 char *scontext_name
= NULL
;
458 char *tcontext_name
= NULL
;
459 char *permission_names
[32];
462 bool need_comma
= false;
467 tclass_name
= sym_name(&policydb
, SYM_CLASSES
, tclass
- 1);
468 tclass_dat
= policydb
.class_val_to_struct
[tclass
- 1];
469 common_dat
= tclass_dat
->comdatum
;
471 /* init permission_names */
473 hashtab_map(common_dat
->permissions
.table
,
474 dump_masked_av_helper
, permission_names
) < 0)
477 if (hashtab_map(tclass_dat
->permissions
.table
,
478 dump_masked_av_helper
, permission_names
) < 0)
481 /* get scontext/tcontext in text form */
482 if (context_struct_to_string(scontext
,
483 &scontext_name
, &length
) < 0)
486 if (context_struct_to_string(tcontext
,
487 &tcontext_name
, &length
) < 0)
490 /* audit a message */
491 ab
= audit_log_start(current
->audit_context
,
492 GFP_ATOMIC
, AUDIT_SELINUX_ERR
);
496 audit_log_format(ab
, "op=security_compute_av reason=%s "
497 "scontext=%s tcontext=%s tclass=%s perms=",
498 reason
, scontext_name
, tcontext_name
, tclass_name
);
500 for (index
= 0; index
< 32; index
++) {
501 u32 mask
= (1 << index
);
503 if ((mask
& permissions
) == 0)
506 audit_log_format(ab
, "%s%s",
507 need_comma
? "," : "",
508 permission_names
[index
]
509 ? permission_names
[index
] : "????");
514 /* release scontext/tcontext */
515 kfree(tcontext_name
);
516 kfree(scontext_name
);
522 * security_boundary_permission - drops violated permissions
523 * on boundary constraint.
525 static void type_attribute_bounds_av(struct context
*scontext
,
526 struct context
*tcontext
,
528 struct av_decision
*avd
)
530 struct context lo_scontext
;
531 struct context lo_tcontext
;
532 struct av_decision lo_avd
;
533 struct type_datum
*source
;
534 struct type_datum
*target
;
537 source
= flex_array_get_ptr(policydb
.type_val_to_struct_array
,
541 target
= flex_array_get_ptr(policydb
.type_val_to_struct_array
,
545 if (source
->bounds
) {
546 memset(&lo_avd
, 0, sizeof(lo_avd
));
548 memcpy(&lo_scontext
, scontext
, sizeof(lo_scontext
));
549 lo_scontext
.type
= source
->bounds
;
551 context_struct_compute_av(&lo_scontext
,
555 if ((lo_avd
.allowed
& avd
->allowed
) == avd
->allowed
)
556 return; /* no masked permission */
557 masked
= ~lo_avd
.allowed
& avd
->allowed
;
560 if (target
->bounds
) {
561 memset(&lo_avd
, 0, sizeof(lo_avd
));
563 memcpy(&lo_tcontext
, tcontext
, sizeof(lo_tcontext
));
564 lo_tcontext
.type
= target
->bounds
;
566 context_struct_compute_av(scontext
,
570 if ((lo_avd
.allowed
& avd
->allowed
) == avd
->allowed
)
571 return; /* no masked permission */
572 masked
= ~lo_avd
.allowed
& avd
->allowed
;
575 if (source
->bounds
&& target
->bounds
) {
576 memset(&lo_avd
, 0, sizeof(lo_avd
));
578 * lo_scontext and lo_tcontext are already
582 context_struct_compute_av(&lo_scontext
,
586 if ((lo_avd
.allowed
& avd
->allowed
) == avd
->allowed
)
587 return; /* no masked permission */
588 masked
= ~lo_avd
.allowed
& avd
->allowed
;
592 /* mask violated permissions */
593 avd
->allowed
&= ~masked
;
595 /* audit masked permissions */
596 security_dump_masked_av(scontext
, tcontext
,
597 tclass
, masked
, "bounds");
602 * Compute access vectors based on a context structure pair for
603 * the permissions in a particular class.
605 static void context_struct_compute_av(struct context
*scontext
,
606 struct context
*tcontext
,
608 struct av_decision
*avd
)
610 struct constraint_node
*constraint
;
611 struct role_allow
*ra
;
612 struct avtab_key avkey
;
613 struct avtab_node
*node
;
614 struct class_datum
*tclass_datum
;
615 struct ebitmap
*sattr
, *tattr
;
616 struct ebitmap_node
*snode
, *tnode
;
621 avd
->auditdeny
= 0xffffffff;
623 if (unlikely(!tclass
|| tclass
> policydb
.p_classes
.nprim
)) {
624 if (printk_ratelimit())
625 printk(KERN_WARNING
"SELinux: Invalid class %hu\n", tclass
);
629 tclass_datum
= policydb
.class_val_to_struct
[tclass
- 1];
632 * If a specific type enforcement rule was defined for
633 * this permission check, then use it.
635 avkey
.target_class
= tclass
;
636 avkey
.specified
= AVTAB_AV
;
637 sattr
= flex_array_get(policydb
.type_attr_map_array
, scontext
->type
- 1);
639 tattr
= flex_array_get(policydb
.type_attr_map_array
, tcontext
->type
- 1);
641 ebitmap_for_each_positive_bit(sattr
, snode
, i
) {
642 ebitmap_for_each_positive_bit(tattr
, tnode
, j
) {
643 avkey
.source_type
= i
+ 1;
644 avkey
.target_type
= j
+ 1;
645 for (node
= avtab_search_node(&policydb
.te_avtab
, &avkey
);
647 node
= avtab_search_node_next(node
, avkey
.specified
)) {
648 if (node
->key
.specified
== AVTAB_ALLOWED
)
649 avd
->allowed
|= node
->datum
.data
;
650 else if (node
->key
.specified
== AVTAB_AUDITALLOW
)
651 avd
->auditallow
|= node
->datum
.data
;
652 else if (node
->key
.specified
== AVTAB_AUDITDENY
)
653 avd
->auditdeny
&= node
->datum
.data
;
656 /* Check conditional av table for additional permissions */
657 cond_compute_av(&policydb
.te_cond_avtab
, &avkey
, avd
);
663 * Remove any permissions prohibited by a constraint (this includes
666 constraint
= tclass_datum
->constraints
;
668 if ((constraint
->permissions
& (avd
->allowed
)) &&
669 !constraint_expr_eval(scontext
, tcontext
, NULL
,
671 avd
->allowed
&= ~(constraint
->permissions
);
673 constraint
= constraint
->next
;
677 * If checking process transition permission and the
678 * role is changing, then check the (current_role, new_role)
681 if (tclass
== policydb
.process_class
&&
682 (avd
->allowed
& policydb
.process_trans_perms
) &&
683 scontext
->role
!= tcontext
->role
) {
684 for (ra
= policydb
.role_allow
; ra
; ra
= ra
->next
) {
685 if (scontext
->role
== ra
->role
&&
686 tcontext
->role
== ra
->new_role
)
690 avd
->allowed
&= ~policydb
.process_trans_perms
;
694 * If the given source and target types have boundary
695 * constraint, lazy checks have to mask any violated
696 * permission and notice it to userspace via audit.
698 type_attribute_bounds_av(scontext
, tcontext
,
702 static int security_validtrans_handle_fail(struct context
*ocontext
,
703 struct context
*ncontext
,
704 struct context
*tcontext
,
707 char *o
= NULL
, *n
= NULL
, *t
= NULL
;
708 u32 olen
, nlen
, tlen
;
710 if (context_struct_to_string(ocontext
, &o
, &olen
))
712 if (context_struct_to_string(ncontext
, &n
, &nlen
))
714 if (context_struct_to_string(tcontext
, &t
, &tlen
))
716 audit_log(current
->audit_context
, GFP_ATOMIC
, AUDIT_SELINUX_ERR
,
717 "security_validate_transition: denied for"
718 " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s",
719 o
, n
, t
, sym_name(&policydb
, SYM_CLASSES
, tclass
-1));
725 if (!selinux_enforcing
)
730 int security_validate_transition(u32 oldsid
, u32 newsid
, u32 tasksid
,
733 struct context
*ocontext
;
734 struct context
*ncontext
;
735 struct context
*tcontext
;
736 struct class_datum
*tclass_datum
;
737 struct constraint_node
*constraint
;
744 read_lock(&policy_rwlock
);
746 tclass
= unmap_class(orig_tclass
);
748 if (!tclass
|| tclass
> policydb
.p_classes
.nprim
) {
749 printk(KERN_ERR
"SELinux: %s: unrecognized class %d\n",
754 tclass_datum
= policydb
.class_val_to_struct
[tclass
- 1];
756 ocontext
= sidtab_search(&sidtab
, oldsid
);
758 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
764 ncontext
= sidtab_search(&sidtab
, newsid
);
766 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
772 tcontext
= sidtab_search(&sidtab
, tasksid
);
774 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
780 constraint
= tclass_datum
->validatetrans
;
782 if (!constraint_expr_eval(ocontext
, ncontext
, tcontext
,
784 rc
= security_validtrans_handle_fail(ocontext
, ncontext
,
788 constraint
= constraint
->next
;
792 read_unlock(&policy_rwlock
);
797 * security_bounded_transition - check whether the given
798 * transition is directed to bounded, or not.
799 * It returns 0, if @newsid is bounded by @oldsid.
800 * Otherwise, it returns error code.
802 * @oldsid : current security identifier
803 * @newsid : destinated security identifier
805 int security_bounded_transition(u32 old_sid
, u32 new_sid
)
807 struct context
*old_context
, *new_context
;
808 struct type_datum
*type
;
812 read_lock(&policy_rwlock
);
815 old_context
= sidtab_search(&sidtab
, old_sid
);
817 printk(KERN_ERR
"SELinux: %s: unrecognized SID %u\n",
823 new_context
= sidtab_search(&sidtab
, new_sid
);
825 printk(KERN_ERR
"SELinux: %s: unrecognized SID %u\n",
831 /* type/domain unchanged */
832 if (old_context
->type
== new_context
->type
)
835 index
= new_context
->type
;
837 type
= flex_array_get_ptr(policydb
.type_val_to_struct_array
,
841 /* not bounded anymore */
846 /* @newsid is bounded by @oldsid */
848 if (type
->bounds
== old_context
->type
)
851 index
= type
->bounds
;
855 char *old_name
= NULL
;
856 char *new_name
= NULL
;
859 if (!context_struct_to_string(old_context
,
860 &old_name
, &length
) &&
861 !context_struct_to_string(new_context
,
862 &new_name
, &length
)) {
863 audit_log(current
->audit_context
,
864 GFP_ATOMIC
, AUDIT_SELINUX_ERR
,
865 "op=security_bounded_transition "
867 "oldcontext=%s newcontext=%s",
874 read_unlock(&policy_rwlock
);
879 static void avd_init(struct av_decision
*avd
)
883 avd
->auditdeny
= 0xffffffff;
884 avd
->seqno
= latest_granting
;
890 * security_compute_av - Compute access vector decisions.
891 * @ssid: source security identifier
892 * @tsid: target security identifier
893 * @tclass: target security class
894 * @avd: access vector decisions
896 * Compute a set of access vector decisions based on the
897 * SID pair (@ssid, @tsid) for the permissions in @tclass.
899 void security_compute_av(u32 ssid
,
902 struct av_decision
*avd
)
905 struct context
*scontext
= NULL
, *tcontext
= NULL
;
907 read_lock(&policy_rwlock
);
912 scontext
= sidtab_search(&sidtab
, ssid
);
914 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
919 /* permissive domain? */
920 if (ebitmap_get_bit(&policydb
.permissive_map
, scontext
->type
))
921 avd
->flags
|= AVD_FLAGS_PERMISSIVE
;
923 tcontext
= sidtab_search(&sidtab
, tsid
);
925 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
930 tclass
= unmap_class(orig_tclass
);
931 if (unlikely(orig_tclass
&& !tclass
)) {
932 if (policydb
.allow_unknown
)
936 context_struct_compute_av(scontext
, tcontext
, tclass
, avd
);
937 map_decision(orig_tclass
, avd
, policydb
.allow_unknown
);
939 read_unlock(&policy_rwlock
);
942 avd
->allowed
= 0xffffffff;
946 void security_compute_av_user(u32 ssid
,
949 struct av_decision
*avd
)
951 struct context
*scontext
= NULL
, *tcontext
= NULL
;
953 read_lock(&policy_rwlock
);
958 scontext
= sidtab_search(&sidtab
, ssid
);
960 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
965 /* permissive domain? */
966 if (ebitmap_get_bit(&policydb
.permissive_map
, scontext
->type
))
967 avd
->flags
|= AVD_FLAGS_PERMISSIVE
;
969 tcontext
= sidtab_search(&sidtab
, tsid
);
971 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
976 if (unlikely(!tclass
)) {
977 if (policydb
.allow_unknown
)
982 context_struct_compute_av(scontext
, tcontext
, tclass
, avd
);
984 read_unlock(&policy_rwlock
);
987 avd
->allowed
= 0xffffffff;
992 * Write the security context string representation of
993 * the context structure `context' into a dynamically
994 * allocated string of the correct size. Set `*scontext'
995 * to point to this string and set `*scontext_len' to
996 * the length of the string.
998 static int context_struct_to_string(struct context
*context
, char **scontext
, u32
*scontext_len
)
1007 *scontext_len
= context
->len
;
1008 *scontext
= kstrdup(context
->str
, GFP_ATOMIC
);
1014 /* Compute the size of the context. */
1015 *scontext_len
+= strlen(sym_name(&policydb
, SYM_USERS
, context
->user
- 1)) + 1;
1016 *scontext_len
+= strlen(sym_name(&policydb
, SYM_ROLES
, context
->role
- 1)) + 1;
1017 *scontext_len
+= strlen(sym_name(&policydb
, SYM_TYPES
, context
->type
- 1)) + 1;
1018 *scontext_len
+= mls_compute_context_len(context
);
1023 /* Allocate space for the context; caller must free this space. */
1024 scontextp
= kmalloc(*scontext_len
, GFP_ATOMIC
);
1027 *scontext
= scontextp
;
1030 * Copy the user name, role name and type name into the context.
1032 sprintf(scontextp
, "%s:%s:%s",
1033 sym_name(&policydb
, SYM_USERS
, context
->user
- 1),
1034 sym_name(&policydb
, SYM_ROLES
, context
->role
- 1),
1035 sym_name(&policydb
, SYM_TYPES
, context
->type
- 1));
1036 scontextp
+= strlen(sym_name(&policydb
, SYM_USERS
, context
->user
- 1)) +
1037 1 + strlen(sym_name(&policydb
, SYM_ROLES
, context
->role
- 1)) +
1038 1 + strlen(sym_name(&policydb
, SYM_TYPES
, context
->type
- 1));
1040 mls_sid_to_context(context
, &scontextp
);
1047 #include "initial_sid_to_string.h"
1049 const char *security_get_initial_sid_context(u32 sid
)
1051 if (unlikely(sid
> SECINITSID_NUM
))
1053 return initial_sid_to_string
[sid
];
1056 static int security_sid_to_context_core(u32 sid
, char **scontext
,
1057 u32
*scontext_len
, int force
)
1059 struct context
*context
;
1066 if (!ss_initialized
) {
1067 if (sid
<= SECINITSID_NUM
) {
1070 *scontext_len
= strlen(initial_sid_to_string
[sid
]) + 1;
1073 scontextp
= kmalloc(*scontext_len
, GFP_ATOMIC
);
1078 strcpy(scontextp
, initial_sid_to_string
[sid
]);
1079 *scontext
= scontextp
;
1082 printk(KERN_ERR
"SELinux: %s: called before initial "
1083 "load_policy on unknown SID %d\n", __func__
, sid
);
1087 read_lock(&policy_rwlock
);
1089 context
= sidtab_search_force(&sidtab
, sid
);
1091 context
= sidtab_search(&sidtab
, sid
);
1093 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
1098 rc
= context_struct_to_string(context
, scontext
, scontext_len
);
1100 read_unlock(&policy_rwlock
);
1107 * security_sid_to_context - Obtain a context for a given SID.
1108 * @sid: security identifier, SID
1109 * @scontext: security context
1110 * @scontext_len: length in bytes
1112 * Write the string representation of the context associated with @sid
1113 * into a dynamically allocated string of the correct size. Set @scontext
1114 * to point to this string and set @scontext_len to the length of the string.
1116 int security_sid_to_context(u32 sid
, char **scontext
, u32
*scontext_len
)
1118 return security_sid_to_context_core(sid
, scontext
, scontext_len
, 0);
1121 int security_sid_to_context_force(u32 sid
, char **scontext
, u32
*scontext_len
)
1123 return security_sid_to_context_core(sid
, scontext
, scontext_len
, 1);
1127 * Caveat: Mutates scontext.
1129 static int string_to_context_struct(struct policydb
*pol
,
1130 struct sidtab
*sidtabp
,
1133 struct context
*ctx
,
1136 struct role_datum
*role
;
1137 struct type_datum
*typdatum
;
1138 struct user_datum
*usrdatum
;
1139 char *scontextp
, *p
, oldc
;
1144 /* Parse the security context. */
1147 scontextp
= (char *) scontext
;
1149 /* Extract the user. */
1151 while (*p
&& *p
!= ':')
1159 usrdatum
= hashtab_search(pol
->p_users
.table
, scontextp
);
1163 ctx
->user
= usrdatum
->value
;
1167 while (*p
&& *p
!= ':')
1175 role
= hashtab_search(pol
->p_roles
.table
, scontextp
);
1178 ctx
->role
= role
->value
;
1182 while (*p
&& *p
!= ':')
1187 typdatum
= hashtab_search(pol
->p_types
.table
, scontextp
);
1188 if (!typdatum
|| typdatum
->attribute
)
1191 ctx
->type
= typdatum
->value
;
1193 rc
= mls_context_to_sid(pol
, oldc
, &p
, ctx
, sidtabp
, def_sid
);
1198 if ((p
- scontext
) < scontext_len
)
1201 /* Check the validity of the new context. */
1202 if (!policydb_context_isvalid(pol
, ctx
))
1207 context_destroy(ctx
);
1211 static int security_context_to_sid_core(const char *scontext
, u32 scontext_len
,
1212 u32
*sid
, u32 def_sid
, gfp_t gfp_flags
,
1215 char *scontext2
, *str
= NULL
;
1216 struct context context
;
1219 if (!ss_initialized
) {
1222 for (i
= 1; i
< SECINITSID_NUM
; i
++) {
1223 if (!strcmp(initial_sid_to_string
[i
], scontext
)) {
1228 *sid
= SECINITSID_KERNEL
;
1233 /* Copy the string so that we can modify the copy as we parse it. */
1234 scontext2
= kmalloc(scontext_len
+ 1, gfp_flags
);
1237 memcpy(scontext2
, scontext
, scontext_len
);
1238 scontext2
[scontext_len
] = 0;
1241 /* Save another copy for storing in uninterpreted form */
1243 str
= kstrdup(scontext2
, gfp_flags
);
1248 read_lock(&policy_rwlock
);
1249 rc
= string_to_context_struct(&policydb
, &sidtab
, scontext2
,
1250 scontext_len
, &context
, def_sid
);
1251 if (rc
== -EINVAL
&& force
) {
1253 context
.len
= scontext_len
;
1257 rc
= sidtab_context_to_sid(&sidtab
, &context
, sid
);
1258 context_destroy(&context
);
1260 read_unlock(&policy_rwlock
);
1268 * security_context_to_sid - Obtain a SID for a given security context.
1269 * @scontext: security context
1270 * @scontext_len: length in bytes
1271 * @sid: security identifier, SID
1273 * Obtains a SID associated with the security context that
1274 * has the string representation specified by @scontext.
1275 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1276 * memory is available, or 0 on success.
1278 int security_context_to_sid(const char *scontext
, u32 scontext_len
, u32
*sid
)
1280 return security_context_to_sid_core(scontext
, scontext_len
,
1281 sid
, SECSID_NULL
, GFP_KERNEL
, 0);
1285 * security_context_to_sid_default - Obtain a SID for a given security context,
1286 * falling back to specified default if needed.
1288 * @scontext: security context
1289 * @scontext_len: length in bytes
1290 * @sid: security identifier, SID
1291 * @def_sid: default SID to assign on error
1293 * Obtains a SID associated with the security context that
1294 * has the string representation specified by @scontext.
1295 * The default SID is passed to the MLS layer to be used to allow
1296 * kernel labeling of the MLS field if the MLS field is not present
1297 * (for upgrading to MLS without full relabel).
1298 * Implicitly forces adding of the context even if it cannot be mapped yet.
1299 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1300 * memory is available, or 0 on success.
1302 int security_context_to_sid_default(const char *scontext
, u32 scontext_len
,
1303 u32
*sid
, u32 def_sid
, gfp_t gfp_flags
)
1305 return security_context_to_sid_core(scontext
, scontext_len
,
1306 sid
, def_sid
, gfp_flags
, 1);
1309 int security_context_to_sid_force(const char *scontext
, u32 scontext_len
,
1312 return security_context_to_sid_core(scontext
, scontext_len
,
1313 sid
, SECSID_NULL
, GFP_KERNEL
, 1);
1316 static int compute_sid_handle_invalid_context(
1317 struct context
*scontext
,
1318 struct context
*tcontext
,
1320 struct context
*newcontext
)
1322 char *s
= NULL
, *t
= NULL
, *n
= NULL
;
1323 u32 slen
, tlen
, nlen
;
1325 if (context_struct_to_string(scontext
, &s
, &slen
))
1327 if (context_struct_to_string(tcontext
, &t
, &tlen
))
1329 if (context_struct_to_string(newcontext
, &n
, &nlen
))
1331 audit_log(current
->audit_context
, GFP_ATOMIC
, AUDIT_SELINUX_ERR
,
1332 "security_compute_sid: invalid context %s"
1336 n
, s
, t
, sym_name(&policydb
, SYM_CLASSES
, tclass
-1));
1341 if (!selinux_enforcing
)
1346 static int security_compute_sid(u32 ssid
,
1353 struct context
*scontext
= NULL
, *tcontext
= NULL
, newcontext
;
1354 struct role_trans
*roletr
= NULL
;
1355 struct avtab_key avkey
;
1356 struct avtab_datum
*avdatum
;
1357 struct avtab_node
*node
;
1361 if (!ss_initialized
) {
1362 switch (orig_tclass
) {
1363 case SECCLASS_PROCESS
: /* kernel value */
1373 context_init(&newcontext
);
1375 read_lock(&policy_rwlock
);
1378 tclass
= unmap_class(orig_tclass
);
1380 tclass
= orig_tclass
;
1382 scontext
= sidtab_search(&sidtab
, ssid
);
1384 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
1389 tcontext
= sidtab_search(&sidtab
, tsid
);
1391 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
1397 /* Set the user identity. */
1398 switch (specified
) {
1399 case AVTAB_TRANSITION
:
1401 /* Use the process user identity. */
1402 newcontext
.user
= scontext
->user
;
1405 /* Use the related object owner. */
1406 newcontext
.user
= tcontext
->user
;
1410 /* Set the role and type to default values. */
1411 if (tclass
== policydb
.process_class
) {
1412 /* Use the current role and type of process. */
1413 newcontext
.role
= scontext
->role
;
1414 newcontext
.type
= scontext
->type
;
1416 /* Use the well-defined object role. */
1417 newcontext
.role
= OBJECT_R_VAL
;
1418 /* Use the type of the related object. */
1419 newcontext
.type
= tcontext
->type
;
1422 /* Look for a type transition/member/change rule. */
1423 avkey
.source_type
= scontext
->type
;
1424 avkey
.target_type
= tcontext
->type
;
1425 avkey
.target_class
= tclass
;
1426 avkey
.specified
= specified
;
1427 avdatum
= avtab_search(&policydb
.te_avtab
, &avkey
);
1429 /* If no permanent rule, also check for enabled conditional rules */
1431 node
= avtab_search_node(&policydb
.te_cond_avtab
, &avkey
);
1432 for (; node
; node
= avtab_search_node_next(node
, specified
)) {
1433 if (node
->key
.specified
& AVTAB_ENABLED
) {
1434 avdatum
= &node
->datum
;
1441 /* Use the type from the type transition/member/change rule. */
1442 newcontext
.type
= avdatum
->data
;
1445 /* Check for class-specific changes. */
1446 if (tclass
== policydb
.process_class
) {
1447 if (specified
& AVTAB_TRANSITION
) {
1448 /* Look for a role transition rule. */
1449 for (roletr
= policydb
.role_tr
; roletr
;
1450 roletr
= roletr
->next
) {
1451 if (roletr
->role
== scontext
->role
&&
1452 roletr
->type
== tcontext
->type
) {
1453 /* Use the role transition rule. */
1454 newcontext
.role
= roletr
->new_role
;
1461 /* Set the MLS attributes.
1462 This is done last because it may allocate memory. */
1463 rc
= mls_compute_sid(scontext
, tcontext
, tclass
, specified
, &newcontext
);
1467 /* Check the validity of the context. */
1468 if (!policydb_context_isvalid(&policydb
, &newcontext
)) {
1469 rc
= compute_sid_handle_invalid_context(scontext
,
1476 /* Obtain the sid for the context. */
1477 rc
= sidtab_context_to_sid(&sidtab
, &newcontext
, out_sid
);
1479 read_unlock(&policy_rwlock
);
1480 context_destroy(&newcontext
);
1486 * security_transition_sid - Compute the SID for a new subject/object.
1487 * @ssid: source security identifier
1488 * @tsid: target security identifier
1489 * @tclass: target security class
1490 * @out_sid: security identifier for new subject/object
1492 * Compute a SID to use for labeling a new subject or object in the
1493 * class @tclass based on a SID pair (@ssid, @tsid).
1494 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1495 * if insufficient memory is available, or %0 if the new SID was
1496 * computed successfully.
1498 int security_transition_sid(u32 ssid
,
1503 return security_compute_sid(ssid
, tsid
, tclass
, AVTAB_TRANSITION
,
1507 int security_transition_sid_user(u32 ssid
,
1512 return security_compute_sid(ssid
, tsid
, tclass
, AVTAB_TRANSITION
,
1517 * security_member_sid - Compute the SID for member selection.
1518 * @ssid: source security identifier
1519 * @tsid: target security identifier
1520 * @tclass: target security class
1521 * @out_sid: security identifier for selected member
1523 * Compute a SID to use when selecting a member of a polyinstantiated
1524 * object of class @tclass based on a SID pair (@ssid, @tsid).
1525 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1526 * if insufficient memory is available, or %0 if the SID was
1527 * computed successfully.
1529 int security_member_sid(u32 ssid
,
1534 return security_compute_sid(ssid
, tsid
, tclass
, AVTAB_MEMBER
, out_sid
,
1539 * security_change_sid - Compute the SID for object relabeling.
1540 * @ssid: source security identifier
1541 * @tsid: target security identifier
1542 * @tclass: target security class
1543 * @out_sid: security identifier for selected member
1545 * Compute a SID to use for relabeling an object of class @tclass
1546 * based on a SID pair (@ssid, @tsid).
1547 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1548 * if insufficient memory is available, or %0 if the SID was
1549 * computed successfully.
1551 int security_change_sid(u32 ssid
,
1556 return security_compute_sid(ssid
, tsid
, tclass
, AVTAB_CHANGE
, out_sid
,
1560 /* Clone the SID into the new SID table. */
1561 static int clone_sid(u32 sid
,
1562 struct context
*context
,
1565 struct sidtab
*s
= arg
;
1567 if (sid
> SECINITSID_NUM
)
1568 return sidtab_insert(s
, sid
, context
);
1573 static inline int convert_context_handle_invalid_context(struct context
*context
)
1578 if (selinux_enforcing
)
1581 if (!context_struct_to_string(context
, &s
, &len
)) {
1582 printk(KERN_WARNING
"SELinux: Context %s would be invalid if enforcing\n", s
);
1588 struct convert_context_args
{
1589 struct policydb
*oldp
;
1590 struct policydb
*newp
;
1594 * Convert the values in the security context
1595 * structure `c' from the values specified
1596 * in the policy `p->oldp' to the values specified
1597 * in the policy `p->newp'. Verify that the
1598 * context is valid under the new policy.
1600 static int convert_context(u32 key
,
1604 struct convert_context_args
*args
;
1605 struct context oldc
;
1606 struct ocontext
*oc
;
1607 struct mls_range
*range
;
1608 struct role_datum
*role
;
1609 struct type_datum
*typdatum
;
1610 struct user_datum
*usrdatum
;
1615 if (key
<= SECINITSID_NUM
)
1624 s
= kstrdup(c
->str
, GFP_KERNEL
);
1628 rc
= string_to_context_struct(args
->newp
, NULL
, s
,
1629 c
->len
, &ctx
, SECSID_NULL
);
1632 printk(KERN_INFO
"SELinux: Context %s became valid (mapped).\n",
1634 /* Replace string with mapped representation. */
1636 memcpy(c
, &ctx
, sizeof(*c
));
1638 } else if (rc
== -EINVAL
) {
1639 /* Retain string representation for later mapping. */
1643 /* Other error condition, e.g. ENOMEM. */
1644 printk(KERN_ERR
"SELinux: Unable to map context %s, rc = %d.\n",
1650 rc
= context_cpy(&oldc
, c
);
1654 /* Convert the user. */
1656 usrdatum
= hashtab_search(args
->newp
->p_users
.table
,
1657 sym_name(args
->oldp
, SYM_USERS
, c
->user
- 1));
1660 c
->user
= usrdatum
->value
;
1662 /* Convert the role. */
1664 role
= hashtab_search(args
->newp
->p_roles
.table
,
1665 sym_name(args
->oldp
, SYM_ROLES
, c
->role
- 1));
1668 c
->role
= role
->value
;
1670 /* Convert the type. */
1672 typdatum
= hashtab_search(args
->newp
->p_types
.table
,
1673 sym_name(args
->oldp
, SYM_TYPES
, c
->type
- 1));
1676 c
->type
= typdatum
->value
;
1678 /* Convert the MLS fields if dealing with MLS policies */
1679 if (args
->oldp
->mls_enabled
&& args
->newp
->mls_enabled
) {
1680 rc
= mls_convert_context(args
->oldp
, args
->newp
, c
);
1683 } else if (args
->oldp
->mls_enabled
&& !args
->newp
->mls_enabled
) {
1685 * Switching between MLS and non-MLS policy:
1686 * free any storage used by the MLS fields in the
1687 * context for all existing entries in the sidtab.
1689 mls_context_destroy(c
);
1690 } else if (!args
->oldp
->mls_enabled
&& args
->newp
->mls_enabled
) {
1692 * Switching between non-MLS and MLS policy:
1693 * ensure that the MLS fields of the context for all
1694 * existing entries in the sidtab are filled in with a
1695 * suitable default value, likely taken from one of the
1698 oc
= args
->newp
->ocontexts
[OCON_ISID
];
1699 while (oc
&& oc
->sid
[0] != SECINITSID_UNLABELED
)
1703 printk(KERN_ERR
"SELinux: unable to look up"
1704 " the initial SIDs list\n");
1707 range
= &oc
->context
[0].range
;
1708 rc
= mls_range_set(c
, range
);
1713 /* Check the validity of the new context. */
1714 if (!policydb_context_isvalid(args
->newp
, c
)) {
1715 rc
= convert_context_handle_invalid_context(&oldc
);
1720 context_destroy(&oldc
);
1726 /* Map old representation to string and save it. */
1727 rc
= context_struct_to_string(&oldc
, &s
, &len
);
1730 context_destroy(&oldc
);
1734 printk(KERN_INFO
"SELinux: Context %s became invalid (unmapped).\n",
1740 static void security_load_policycaps(void)
1742 selinux_policycap_netpeer
= ebitmap_get_bit(&policydb
.policycaps
,
1743 POLICYDB_CAPABILITY_NETPEER
);
1744 selinux_policycap_openperm
= ebitmap_get_bit(&policydb
.policycaps
,
1745 POLICYDB_CAPABILITY_OPENPERM
);
1748 extern void selinux_complete_init(void);
1749 static int security_preserve_bools(struct policydb
*p
);
1752 * security_load_policy - Load a security policy configuration.
1753 * @data: binary policy data
1754 * @len: length of data in bytes
1756 * Load a new set of security policy configuration data,
1757 * validate it and convert the SID table as necessary.
1758 * This function will flush the access vector cache after
1759 * loading the new policy.
1761 int security_load_policy(void *data
, size_t len
)
1763 struct policydb oldpolicydb
, newpolicydb
;
1764 struct sidtab oldsidtab
, newsidtab
;
1765 struct selinux_mapping
*oldmap
, *map
= NULL
;
1766 struct convert_context_args args
;
1770 struct policy_file file
= { data
, len
}, *fp
= &file
;
1772 if (!ss_initialized
) {
1774 rc
= policydb_read(&policydb
, fp
);
1776 avtab_cache_destroy();
1781 rc
= selinux_set_mapping(&policydb
, secclass_map
,
1783 ¤t_mapping_size
);
1785 policydb_destroy(&policydb
);
1786 avtab_cache_destroy();
1790 rc
= policydb_load_isids(&policydb
, &sidtab
);
1792 policydb_destroy(&policydb
);
1793 avtab_cache_destroy();
1797 security_load_policycaps();
1799 seqno
= ++latest_granting
;
1800 selinux_complete_init();
1801 avc_ss_reset(seqno
);
1802 selnl_notify_policyload(seqno
);
1803 selinux_status_update_policyload(seqno
);
1804 selinux_netlbl_cache_invalidate();
1805 selinux_xfrm_notify_policyload();
1810 sidtab_hash_eval(&sidtab
, "sids");
1813 rc
= policydb_read(&newpolicydb
, fp
);
1817 newpolicydb
.len
= len
;
1818 /* If switching between different policy types, log MLS status */
1819 if (policydb
.mls_enabled
&& !newpolicydb
.mls_enabled
)
1820 printk(KERN_INFO
"SELinux: Disabling MLS support...\n");
1821 else if (!policydb
.mls_enabled
&& newpolicydb
.mls_enabled
)
1822 printk(KERN_INFO
"SELinux: Enabling MLS support...\n");
1824 rc
= policydb_load_isids(&newpolicydb
, &newsidtab
);
1826 printk(KERN_ERR
"SELinux: unable to load the initial SIDs\n");
1827 policydb_destroy(&newpolicydb
);
1831 rc
= selinux_set_mapping(&newpolicydb
, secclass_map
, &map
, &map_size
);
1835 rc
= security_preserve_bools(&newpolicydb
);
1837 printk(KERN_ERR
"SELinux: unable to preserve booleans\n");
1841 /* Clone the SID table. */
1842 sidtab_shutdown(&sidtab
);
1844 rc
= sidtab_map(&sidtab
, clone_sid
, &newsidtab
);
1849 * Convert the internal representations of contexts
1850 * in the new SID table.
1852 args
.oldp
= &policydb
;
1853 args
.newp
= &newpolicydb
;
1854 rc
= sidtab_map(&newsidtab
, convert_context
, &args
);
1856 printk(KERN_ERR
"SELinux: unable to convert the internal"
1857 " representation of contexts in the new SID"
1862 /* Save the old policydb and SID table to free later. */
1863 memcpy(&oldpolicydb
, &policydb
, sizeof policydb
);
1864 sidtab_set(&oldsidtab
, &sidtab
);
1866 /* Install the new policydb and SID table. */
1867 write_lock_irq(&policy_rwlock
);
1868 memcpy(&policydb
, &newpolicydb
, sizeof policydb
);
1869 sidtab_set(&sidtab
, &newsidtab
);
1870 security_load_policycaps();
1871 oldmap
= current_mapping
;
1872 current_mapping
= map
;
1873 current_mapping_size
= map_size
;
1874 seqno
= ++latest_granting
;
1875 write_unlock_irq(&policy_rwlock
);
1877 /* Free the old policydb and SID table. */
1878 policydb_destroy(&oldpolicydb
);
1879 sidtab_destroy(&oldsidtab
);
1882 avc_ss_reset(seqno
);
1883 selnl_notify_policyload(seqno
);
1884 selinux_status_update_policyload(seqno
);
1885 selinux_netlbl_cache_invalidate();
1886 selinux_xfrm_notify_policyload();
1892 sidtab_destroy(&newsidtab
);
1893 policydb_destroy(&newpolicydb
);
1898 size_t security_policydb_len(void)
1902 read_lock(&policy_rwlock
);
1904 read_unlock(&policy_rwlock
);
1910 * security_port_sid - Obtain the SID for a port.
1911 * @protocol: protocol number
1912 * @port: port number
1913 * @out_sid: security identifier
1915 int security_port_sid(u8 protocol
, u16 port
, u32
*out_sid
)
1920 read_lock(&policy_rwlock
);
1922 c
= policydb
.ocontexts
[OCON_PORT
];
1924 if (c
->u
.port
.protocol
== protocol
&&
1925 c
->u
.port
.low_port
<= port
&&
1926 c
->u
.port
.high_port
>= port
)
1933 rc
= sidtab_context_to_sid(&sidtab
,
1939 *out_sid
= c
->sid
[0];
1941 *out_sid
= SECINITSID_PORT
;
1945 read_unlock(&policy_rwlock
);
1950 * security_netif_sid - Obtain the SID for a network interface.
1951 * @name: interface name
1952 * @if_sid: interface SID
1954 int security_netif_sid(char *name
, u32
*if_sid
)
1959 read_lock(&policy_rwlock
);
1961 c
= policydb
.ocontexts
[OCON_NETIF
];
1963 if (strcmp(name
, c
->u
.name
) == 0)
1969 if (!c
->sid
[0] || !c
->sid
[1]) {
1970 rc
= sidtab_context_to_sid(&sidtab
,
1975 rc
= sidtab_context_to_sid(&sidtab
,
1981 *if_sid
= c
->sid
[0];
1983 *if_sid
= SECINITSID_NETIF
;
1986 read_unlock(&policy_rwlock
);
1990 static int match_ipv6_addrmask(u32
*input
, u32
*addr
, u32
*mask
)
1994 for (i
= 0; i
< 4; i
++)
1995 if (addr
[i
] != (input
[i
] & mask
[i
])) {
2004 * security_node_sid - Obtain the SID for a node (host).
2005 * @domain: communication domain aka address family
2007 * @addrlen: address length in bytes
2008 * @out_sid: security identifier
2010 int security_node_sid(u16 domain
,
2018 read_lock(&policy_rwlock
);
2025 if (addrlen
!= sizeof(u32
))
2028 addr
= *((u32
*)addrp
);
2030 c
= policydb
.ocontexts
[OCON_NODE
];
2032 if (c
->u
.node
.addr
== (addr
& c
->u
.node
.mask
))
2041 if (addrlen
!= sizeof(u64
) * 2)
2043 c
= policydb
.ocontexts
[OCON_NODE6
];
2045 if (match_ipv6_addrmask(addrp
, c
->u
.node6
.addr
,
2054 *out_sid
= SECINITSID_NODE
;
2060 rc
= sidtab_context_to_sid(&sidtab
,
2066 *out_sid
= c
->sid
[0];
2068 *out_sid
= SECINITSID_NODE
;
2073 read_unlock(&policy_rwlock
);
2080 * security_get_user_sids - Obtain reachable SIDs for a user.
2081 * @fromsid: starting SID
2082 * @username: username
2083 * @sids: array of reachable SIDs for user
2084 * @nel: number of elements in @sids
2086 * Generate the set of SIDs for legal security contexts
2087 * for a given user that can be reached by @fromsid.
2088 * Set *@sids to point to a dynamically allocated
2089 * array containing the set of SIDs. Set *@nel to the
2090 * number of elements in the array.
2093 int security_get_user_sids(u32 fromsid
,
2098 struct context
*fromcon
, usercon
;
2099 u32
*mysids
= NULL
, *mysids2
, sid
;
2100 u32 mynel
= 0, maxnel
= SIDS_NEL
;
2101 struct user_datum
*user
;
2102 struct role_datum
*role
;
2103 struct ebitmap_node
*rnode
, *tnode
;
2109 if (!ss_initialized
)
2112 read_lock(&policy_rwlock
);
2114 context_init(&usercon
);
2117 fromcon
= sidtab_search(&sidtab
, fromsid
);
2122 user
= hashtab_search(policydb
.p_users
.table
, username
);
2126 usercon
.user
= user
->value
;
2129 mysids
= kcalloc(maxnel
, sizeof(*mysids
), GFP_ATOMIC
);
2133 ebitmap_for_each_positive_bit(&user
->roles
, rnode
, i
) {
2134 role
= policydb
.role_val_to_struct
[i
];
2135 usercon
.role
= i
+ 1;
2136 ebitmap_for_each_positive_bit(&role
->types
, tnode
, j
) {
2137 usercon
.type
= j
+ 1;
2139 if (mls_setup_user_range(fromcon
, user
, &usercon
))
2142 rc
= sidtab_context_to_sid(&sidtab
, &usercon
, &sid
);
2145 if (mynel
< maxnel
) {
2146 mysids
[mynel
++] = sid
;
2150 mysids2
= kcalloc(maxnel
, sizeof(*mysids2
), GFP_ATOMIC
);
2153 memcpy(mysids2
, mysids
, mynel
* sizeof(*mysids2
));
2156 mysids
[mynel
++] = sid
;
2162 read_unlock(&policy_rwlock
);
2169 mysids2
= kcalloc(mynel
, sizeof(*mysids2
), GFP_KERNEL
);
2174 for (i
= 0, j
= 0; i
< mynel
; i
++) {
2175 rc
= avc_has_perm_noaudit(fromsid
, mysids
[i
],
2176 SECCLASS_PROCESS
, /* kernel value */
2177 PROCESS__TRANSITION
, AVC_STRICT
,
2180 mysids2
[j
++] = mysids
[i
];
2192 * security_genfs_sid - Obtain a SID for a file in a filesystem
2193 * @fstype: filesystem type
2194 * @path: path from root of mount
2195 * @sclass: file security class
2196 * @sid: SID for path
2198 * Obtain a SID to use for a file in a filesystem that
2199 * cannot support xattr or use a fixed labeling behavior like
2200 * transition SIDs or task SIDs.
2202 int security_genfs_sid(const char *fstype
,
2209 struct genfs
*genfs
;
2213 while (path
[0] == '/' && path
[1] == '/')
2216 read_lock(&policy_rwlock
);
2218 sclass
= unmap_class(orig_sclass
);
2219 *sid
= SECINITSID_UNLABELED
;
2221 for (genfs
= policydb
.genfs
; genfs
; genfs
= genfs
->next
) {
2222 cmp
= strcmp(fstype
, genfs
->fstype
);
2231 for (c
= genfs
->head
; c
; c
= c
->next
) {
2232 len
= strlen(c
->u
.name
);
2233 if ((!c
->v
.sclass
|| sclass
== c
->v
.sclass
) &&
2234 (strncmp(c
->u
.name
, path
, len
) == 0))
2243 rc
= sidtab_context_to_sid(&sidtab
, &c
->context
[0], &c
->sid
[0]);
2251 read_unlock(&policy_rwlock
);
2256 * security_fs_use - Determine how to handle labeling for a filesystem.
2257 * @fstype: filesystem type
2258 * @behavior: labeling behavior
2259 * @sid: SID for filesystem (superblock)
2261 int security_fs_use(
2263 unsigned int *behavior
,
2269 read_lock(&policy_rwlock
);
2271 c
= policydb
.ocontexts
[OCON_FSUSE
];
2273 if (strcmp(fstype
, c
->u
.name
) == 0)
2279 *behavior
= c
->v
.behavior
;
2281 rc
= sidtab_context_to_sid(&sidtab
, &c
->context
[0],
2288 rc
= security_genfs_sid(fstype
, "/", SECCLASS_DIR
, sid
);
2290 *behavior
= SECURITY_FS_USE_NONE
;
2293 *behavior
= SECURITY_FS_USE_GENFS
;
2298 read_unlock(&policy_rwlock
);
2302 int security_get_bools(int *len
, char ***names
, int **values
)
2306 read_lock(&policy_rwlock
);
2311 *len
= policydb
.p_bools
.nprim
;
2316 *names
= kcalloc(*len
, sizeof(char *), GFP_ATOMIC
);
2321 *values
= kcalloc(*len
, sizeof(int), GFP_ATOMIC
);
2325 for (i
= 0; i
< *len
; i
++) {
2328 (*values
)[i
] = policydb
.bool_val_to_struct
[i
]->state
;
2329 name_len
= strlen(sym_name(&policydb
, SYM_BOOLS
, i
)) + 1;
2332 (*names
)[i
] = kmalloc(sizeof(char) * name_len
, GFP_ATOMIC
);
2336 strncpy((*names
)[i
], sym_name(&policydb
, SYM_BOOLS
, i
), name_len
);
2337 (*names
)[i
][name_len
- 1] = 0;
2341 read_unlock(&policy_rwlock
);
2345 for (i
= 0; i
< *len
; i
++)
2353 int security_set_bools(int len
, int *values
)
2356 int lenp
, seqno
= 0;
2357 struct cond_node
*cur
;
2359 write_lock_irq(&policy_rwlock
);
2362 lenp
= policydb
.p_bools
.nprim
;
2366 for (i
= 0; i
< len
; i
++) {
2367 if (!!values
[i
] != policydb
.bool_val_to_struct
[i
]->state
) {
2368 audit_log(current
->audit_context
, GFP_ATOMIC
,
2369 AUDIT_MAC_CONFIG_CHANGE
,
2370 "bool=%s val=%d old_val=%d auid=%u ses=%u",
2371 sym_name(&policydb
, SYM_BOOLS
, i
),
2373 policydb
.bool_val_to_struct
[i
]->state
,
2374 audit_get_loginuid(current
),
2375 audit_get_sessionid(current
));
2378 policydb
.bool_val_to_struct
[i
]->state
= 1;
2380 policydb
.bool_val_to_struct
[i
]->state
= 0;
2383 for (cur
= policydb
.cond_list
; cur
; cur
= cur
->next
) {
2384 rc
= evaluate_cond_node(&policydb
, cur
);
2389 seqno
= ++latest_granting
;
2392 write_unlock_irq(&policy_rwlock
);
2394 avc_ss_reset(seqno
);
2395 selnl_notify_policyload(seqno
);
2396 selinux_status_update_policyload(seqno
);
2397 selinux_xfrm_notify_policyload();
2402 int security_get_bool_value(int bool)
2407 read_lock(&policy_rwlock
);
2410 len
= policydb
.p_bools
.nprim
;
2414 rc
= policydb
.bool_val_to_struct
[bool]->state
;
2416 read_unlock(&policy_rwlock
);
2420 static int security_preserve_bools(struct policydb
*p
)
2422 int rc
, nbools
= 0, *bvalues
= NULL
, i
;
2423 char **bnames
= NULL
;
2424 struct cond_bool_datum
*booldatum
;
2425 struct cond_node
*cur
;
2427 rc
= security_get_bools(&nbools
, &bnames
, &bvalues
);
2430 for (i
= 0; i
< nbools
; i
++) {
2431 booldatum
= hashtab_search(p
->p_bools
.table
, bnames
[i
]);
2433 booldatum
->state
= bvalues
[i
];
2435 for (cur
= p
->cond_list
; cur
; cur
= cur
->next
) {
2436 rc
= evaluate_cond_node(p
, cur
);
2443 for (i
= 0; i
< nbools
; i
++)
2452 * security_sid_mls_copy() - computes a new sid based on the given
2453 * sid and the mls portion of mls_sid.
2455 int security_sid_mls_copy(u32 sid
, u32 mls_sid
, u32
*new_sid
)
2457 struct context
*context1
;
2458 struct context
*context2
;
2459 struct context newcon
;
2465 if (!ss_initialized
|| !policydb
.mls_enabled
) {
2470 context_init(&newcon
);
2472 read_lock(&policy_rwlock
);
2475 context1
= sidtab_search(&sidtab
, sid
);
2477 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
2483 context2
= sidtab_search(&sidtab
, mls_sid
);
2485 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
2490 newcon
.user
= context1
->user
;
2491 newcon
.role
= context1
->role
;
2492 newcon
.type
= context1
->type
;
2493 rc
= mls_context_cpy(&newcon
, context2
);
2497 /* Check the validity of the new context. */
2498 if (!policydb_context_isvalid(&policydb
, &newcon
)) {
2499 rc
= convert_context_handle_invalid_context(&newcon
);
2501 if (!context_struct_to_string(&newcon
, &s
, &len
)) {
2502 audit_log(current
->audit_context
, GFP_ATOMIC
, AUDIT_SELINUX_ERR
,
2503 "security_sid_mls_copy: invalid context %s", s
);
2510 rc
= sidtab_context_to_sid(&sidtab
, &newcon
, new_sid
);
2512 read_unlock(&policy_rwlock
);
2513 context_destroy(&newcon
);
2519 * security_net_peersid_resolve - Compare and resolve two network peer SIDs
2520 * @nlbl_sid: NetLabel SID
2521 * @nlbl_type: NetLabel labeling protocol type
2522 * @xfrm_sid: XFRM SID
2525 * Compare the @nlbl_sid and @xfrm_sid values and if the two SIDs can be
2526 * resolved into a single SID it is returned via @peer_sid and the function
2527 * returns zero. Otherwise @peer_sid is set to SECSID_NULL and the function
2528 * returns a negative value. A table summarizing the behavior is below:
2530 * | function return | @sid
2531 * ------------------------------+-----------------+-----------------
2532 * no peer labels | 0 | SECSID_NULL
2533 * single peer label | 0 | <peer_label>
2534 * multiple, consistent labels | 0 | <peer_label>
2535 * multiple, inconsistent labels | -<errno> | SECSID_NULL
2538 int security_net_peersid_resolve(u32 nlbl_sid
, u32 nlbl_type
,
2543 struct context
*nlbl_ctx
;
2544 struct context
*xfrm_ctx
;
2546 *peer_sid
= SECSID_NULL
;
2548 /* handle the common (which also happens to be the set of easy) cases
2549 * right away, these two if statements catch everything involving a
2550 * single or absent peer SID/label */
2551 if (xfrm_sid
== SECSID_NULL
) {
2552 *peer_sid
= nlbl_sid
;
2555 /* NOTE: an nlbl_type == NETLBL_NLTYPE_UNLABELED is a "fallback" label
2556 * and is treated as if nlbl_sid == SECSID_NULL when a XFRM SID/label
2558 if (nlbl_sid
== SECSID_NULL
|| nlbl_type
== NETLBL_NLTYPE_UNLABELED
) {
2559 *peer_sid
= xfrm_sid
;
2563 /* we don't need to check ss_initialized here since the only way both
2564 * nlbl_sid and xfrm_sid are not equal to SECSID_NULL would be if the
2565 * security server was initialized and ss_initialized was true */
2566 if (!policydb
.mls_enabled
)
2569 read_lock(&policy_rwlock
);
2572 nlbl_ctx
= sidtab_search(&sidtab
, nlbl_sid
);
2574 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
2575 __func__
, nlbl_sid
);
2579 xfrm_ctx
= sidtab_search(&sidtab
, xfrm_sid
);
2581 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
2582 __func__
, xfrm_sid
);
2585 rc
= (mls_context_cmp(nlbl_ctx
, xfrm_ctx
) ? 0 : -EACCES
);
2589 /* at present NetLabel SIDs/labels really only carry MLS
2590 * information so if the MLS portion of the NetLabel SID
2591 * matches the MLS portion of the labeled XFRM SID/label
2592 * then pass along the XFRM SID as it is the most
2594 *peer_sid
= xfrm_sid
;
2596 read_unlock(&policy_rwlock
);
2600 static int get_classes_callback(void *k
, void *d
, void *args
)
2602 struct class_datum
*datum
= d
;
2603 char *name
= k
, **classes
= args
;
2604 int value
= datum
->value
- 1;
2606 classes
[value
] = kstrdup(name
, GFP_ATOMIC
);
2607 if (!classes
[value
])
2613 int security_get_classes(char ***classes
, int *nclasses
)
2617 read_lock(&policy_rwlock
);
2620 *nclasses
= policydb
.p_classes
.nprim
;
2621 *classes
= kcalloc(*nclasses
, sizeof(**classes
), GFP_ATOMIC
);
2625 rc
= hashtab_map(policydb
.p_classes
.table
, get_classes_callback
,
2629 for (i
= 0; i
< *nclasses
; i
++)
2630 kfree((*classes
)[i
]);
2635 read_unlock(&policy_rwlock
);
2639 static int get_permissions_callback(void *k
, void *d
, void *args
)
2641 struct perm_datum
*datum
= d
;
2642 char *name
= k
, **perms
= args
;
2643 int value
= datum
->value
- 1;
2645 perms
[value
] = kstrdup(name
, GFP_ATOMIC
);
2652 int security_get_permissions(char *class, char ***perms
, int *nperms
)
2655 struct class_datum
*match
;
2657 read_lock(&policy_rwlock
);
2660 match
= hashtab_search(policydb
.p_classes
.table
, class);
2662 printk(KERN_ERR
"SELinux: %s: unrecognized class %s\n",
2668 *nperms
= match
->permissions
.nprim
;
2669 *perms
= kcalloc(*nperms
, sizeof(**perms
), GFP_ATOMIC
);
2673 if (match
->comdatum
) {
2674 rc
= hashtab_map(match
->comdatum
->permissions
.table
,
2675 get_permissions_callback
, *perms
);
2680 rc
= hashtab_map(match
->permissions
.table
, get_permissions_callback
,
2686 read_unlock(&policy_rwlock
);
2690 read_unlock(&policy_rwlock
);
2691 for (i
= 0; i
< *nperms
; i
++)
2697 int security_get_reject_unknown(void)
2699 return policydb
.reject_unknown
;
2702 int security_get_allow_unknown(void)
2704 return policydb
.allow_unknown
;
2708 * security_policycap_supported - Check for a specific policy capability
2709 * @req_cap: capability
2712 * This function queries the currently loaded policy to see if it supports the
2713 * capability specified by @req_cap. Returns true (1) if the capability is
2714 * supported, false (0) if it isn't supported.
2717 int security_policycap_supported(unsigned int req_cap
)
2721 read_lock(&policy_rwlock
);
2722 rc
= ebitmap_get_bit(&policydb
.policycaps
, req_cap
);
2723 read_unlock(&policy_rwlock
);
2728 struct selinux_audit_rule
{
2730 struct context au_ctxt
;
2733 void selinux_audit_rule_free(void *vrule
)
2735 struct selinux_audit_rule
*rule
= vrule
;
2738 context_destroy(&rule
->au_ctxt
);
2743 int selinux_audit_rule_init(u32 field
, u32 op
, char *rulestr
, void **vrule
)
2745 struct selinux_audit_rule
*tmprule
;
2746 struct role_datum
*roledatum
;
2747 struct type_datum
*typedatum
;
2748 struct user_datum
*userdatum
;
2749 struct selinux_audit_rule
**rule
= (struct selinux_audit_rule
**)vrule
;
2754 if (!ss_initialized
)
2758 case AUDIT_SUBJ_USER
:
2759 case AUDIT_SUBJ_ROLE
:
2760 case AUDIT_SUBJ_TYPE
:
2761 case AUDIT_OBJ_USER
:
2762 case AUDIT_OBJ_ROLE
:
2763 case AUDIT_OBJ_TYPE
:
2764 /* only 'equals' and 'not equals' fit user, role, and type */
2765 if (op
!= Audit_equal
&& op
!= Audit_not_equal
)
2768 case AUDIT_SUBJ_SEN
:
2769 case AUDIT_SUBJ_CLR
:
2770 case AUDIT_OBJ_LEV_LOW
:
2771 case AUDIT_OBJ_LEV_HIGH
:
2772 /* we do not allow a range, indicated by the presense of '-' */
2773 if (strchr(rulestr
, '-'))
2777 /* only the above fields are valid */
2781 tmprule
= kzalloc(sizeof(struct selinux_audit_rule
), GFP_KERNEL
);
2785 context_init(&tmprule
->au_ctxt
);
2787 read_lock(&policy_rwlock
);
2789 tmprule
->au_seqno
= latest_granting
;
2792 case AUDIT_SUBJ_USER
:
2793 case AUDIT_OBJ_USER
:
2795 userdatum
= hashtab_search(policydb
.p_users
.table
, rulestr
);
2798 tmprule
->au_ctxt
.user
= userdatum
->value
;
2800 case AUDIT_SUBJ_ROLE
:
2801 case AUDIT_OBJ_ROLE
:
2803 roledatum
= hashtab_search(policydb
.p_roles
.table
, rulestr
);
2806 tmprule
->au_ctxt
.role
= roledatum
->value
;
2808 case AUDIT_SUBJ_TYPE
:
2809 case AUDIT_OBJ_TYPE
:
2811 typedatum
= hashtab_search(policydb
.p_types
.table
, rulestr
);
2814 tmprule
->au_ctxt
.type
= typedatum
->value
;
2816 case AUDIT_SUBJ_SEN
:
2817 case AUDIT_SUBJ_CLR
:
2818 case AUDIT_OBJ_LEV_LOW
:
2819 case AUDIT_OBJ_LEV_HIGH
:
2820 rc
= mls_from_string(rulestr
, &tmprule
->au_ctxt
, GFP_ATOMIC
);
2827 read_unlock(&policy_rwlock
);
2830 selinux_audit_rule_free(tmprule
);
2839 /* Check to see if the rule contains any selinux fields */
2840 int selinux_audit_rule_known(struct audit_krule
*rule
)
2844 for (i
= 0; i
< rule
->field_count
; i
++) {
2845 struct audit_field
*f
= &rule
->fields
[i
];
2847 case AUDIT_SUBJ_USER
:
2848 case AUDIT_SUBJ_ROLE
:
2849 case AUDIT_SUBJ_TYPE
:
2850 case AUDIT_SUBJ_SEN
:
2851 case AUDIT_SUBJ_CLR
:
2852 case AUDIT_OBJ_USER
:
2853 case AUDIT_OBJ_ROLE
:
2854 case AUDIT_OBJ_TYPE
:
2855 case AUDIT_OBJ_LEV_LOW
:
2856 case AUDIT_OBJ_LEV_HIGH
:
2864 int selinux_audit_rule_match(u32 sid
, u32 field
, u32 op
, void *vrule
,
2865 struct audit_context
*actx
)
2867 struct context
*ctxt
;
2868 struct mls_level
*level
;
2869 struct selinux_audit_rule
*rule
= vrule
;
2873 audit_log(actx
, GFP_ATOMIC
, AUDIT_SELINUX_ERR
,
2874 "selinux_audit_rule_match: missing rule\n");
2878 read_lock(&policy_rwlock
);
2880 if (rule
->au_seqno
< latest_granting
) {
2881 audit_log(actx
, GFP_ATOMIC
, AUDIT_SELINUX_ERR
,
2882 "selinux_audit_rule_match: stale rule\n");
2887 ctxt
= sidtab_search(&sidtab
, sid
);
2889 audit_log(actx
, GFP_ATOMIC
, AUDIT_SELINUX_ERR
,
2890 "selinux_audit_rule_match: unrecognized SID %d\n",
2896 /* a field/op pair that is not caught here will simply fall through
2899 case AUDIT_SUBJ_USER
:
2900 case AUDIT_OBJ_USER
:
2903 match
= (ctxt
->user
== rule
->au_ctxt
.user
);
2905 case Audit_not_equal
:
2906 match
= (ctxt
->user
!= rule
->au_ctxt
.user
);
2910 case AUDIT_SUBJ_ROLE
:
2911 case AUDIT_OBJ_ROLE
:
2914 match
= (ctxt
->role
== rule
->au_ctxt
.role
);
2916 case Audit_not_equal
:
2917 match
= (ctxt
->role
!= rule
->au_ctxt
.role
);
2921 case AUDIT_SUBJ_TYPE
:
2922 case AUDIT_OBJ_TYPE
:
2925 match
= (ctxt
->type
== rule
->au_ctxt
.type
);
2927 case Audit_not_equal
:
2928 match
= (ctxt
->type
!= rule
->au_ctxt
.type
);
2932 case AUDIT_SUBJ_SEN
:
2933 case AUDIT_SUBJ_CLR
:
2934 case AUDIT_OBJ_LEV_LOW
:
2935 case AUDIT_OBJ_LEV_HIGH
:
2936 level
= ((field
== AUDIT_SUBJ_SEN
||
2937 field
== AUDIT_OBJ_LEV_LOW
) ?
2938 &ctxt
->range
.level
[0] : &ctxt
->range
.level
[1]);
2941 match
= mls_level_eq(&rule
->au_ctxt
.range
.level
[0],
2944 case Audit_not_equal
:
2945 match
= !mls_level_eq(&rule
->au_ctxt
.range
.level
[0],
2949 match
= (mls_level_dom(&rule
->au_ctxt
.range
.level
[0],
2951 !mls_level_eq(&rule
->au_ctxt
.range
.level
[0],
2955 match
= mls_level_dom(&rule
->au_ctxt
.range
.level
[0],
2959 match
= (mls_level_dom(level
,
2960 &rule
->au_ctxt
.range
.level
[0]) &&
2961 !mls_level_eq(level
,
2962 &rule
->au_ctxt
.range
.level
[0]));
2965 match
= mls_level_dom(level
,
2966 &rule
->au_ctxt
.range
.level
[0]);
2972 read_unlock(&policy_rwlock
);
2976 static int (*aurule_callback
)(void) = audit_update_lsm_rules
;
2978 static int aurule_avc_callback(u32 event
, u32 ssid
, u32 tsid
,
2979 u16
class, u32 perms
, u32
*retained
)
2983 if (event
== AVC_CALLBACK_RESET
&& aurule_callback
)
2984 err
= aurule_callback();
2988 static int __init
aurule_init(void)
2992 err
= avc_add_callback(aurule_avc_callback
, AVC_CALLBACK_RESET
,
2993 SECSID_NULL
, SECSID_NULL
, SECCLASS_NULL
, 0);
2995 panic("avc_add_callback() failed, error %d\n", err
);
2999 __initcall(aurule_init
);
3001 #ifdef CONFIG_NETLABEL
3003 * security_netlbl_cache_add - Add an entry to the NetLabel cache
3004 * @secattr: the NetLabel packet security attributes
3005 * @sid: the SELinux SID
3008 * Attempt to cache the context in @ctx, which was derived from the packet in
3009 * @skb, in the NetLabel subsystem cache. This function assumes @secattr has
3010 * already been initialized.
3013 static void security_netlbl_cache_add(struct netlbl_lsm_secattr
*secattr
,
3018 sid_cache
= kmalloc(sizeof(*sid_cache
), GFP_ATOMIC
);
3019 if (sid_cache
== NULL
)
3021 secattr
->cache
= netlbl_secattr_cache_alloc(GFP_ATOMIC
);
3022 if (secattr
->cache
== NULL
) {
3028 secattr
->cache
->free
= kfree
;
3029 secattr
->cache
->data
= sid_cache
;
3030 secattr
->flags
|= NETLBL_SECATTR_CACHE
;
3034 * security_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID
3035 * @secattr: the NetLabel packet security attributes
3036 * @sid: the SELinux SID
3039 * Convert the given NetLabel security attributes in @secattr into a
3040 * SELinux SID. If the @secattr field does not contain a full SELinux
3041 * SID/context then use SECINITSID_NETMSG as the foundation. If possibile the
3042 * 'cache' field of @secattr is set and the CACHE flag is set; this is to
3043 * allow the @secattr to be used by NetLabel to cache the secattr to SID
3044 * conversion for future lookups. Returns zero on success, negative values on
3048 int security_netlbl_secattr_to_sid(struct netlbl_lsm_secattr
*secattr
,
3052 struct context
*ctx
;
3053 struct context ctx_new
;
3055 if (!ss_initialized
) {
3060 read_lock(&policy_rwlock
);
3062 if (secattr
->flags
& NETLBL_SECATTR_CACHE
)
3063 *sid
= *(u32
*)secattr
->cache
->data
;
3064 else if (secattr
->flags
& NETLBL_SECATTR_SECID
)
3065 *sid
= secattr
->attr
.secid
;
3066 else if (secattr
->flags
& NETLBL_SECATTR_MLS_LVL
) {
3068 ctx
= sidtab_search(&sidtab
, SECINITSID_NETMSG
);
3072 context_init(&ctx_new
);
3073 ctx_new
.user
= ctx
->user
;
3074 ctx_new
.role
= ctx
->role
;
3075 ctx_new
.type
= ctx
->type
;
3076 mls_import_netlbl_lvl(&ctx_new
, secattr
);
3077 if (secattr
->flags
& NETLBL_SECATTR_MLS_CAT
) {
3078 rc
= ebitmap_netlbl_import(&ctx_new
.range
.level
[0].cat
,
3079 secattr
->attr
.mls
.cat
);
3082 memcpy(&ctx_new
.range
.level
[1].cat
,
3083 &ctx_new
.range
.level
[0].cat
,
3084 sizeof(ctx_new
.range
.level
[0].cat
));
3087 if (!mls_context_isvalid(&policydb
, &ctx_new
))
3090 rc
= sidtab_context_to_sid(&sidtab
, &ctx_new
, sid
);
3094 security_netlbl_cache_add(secattr
, *sid
);
3096 ebitmap_destroy(&ctx_new
.range
.level
[0].cat
);
3100 read_unlock(&policy_rwlock
);
3103 ebitmap_destroy(&ctx_new
.range
.level
[0].cat
);
3105 read_unlock(&policy_rwlock
);
3110 * security_netlbl_sid_to_secattr - Convert a SELinux SID to a NetLabel secattr
3111 * @sid: the SELinux SID
3112 * @secattr: the NetLabel packet security attributes
3115 * Convert the given SELinux SID in @sid into a NetLabel security attribute.
3116 * Returns zero on success, negative values on failure.
3119 int security_netlbl_sid_to_secattr(u32 sid
, struct netlbl_lsm_secattr
*secattr
)
3122 struct context
*ctx
;
3124 if (!ss_initialized
)
3127 read_lock(&policy_rwlock
);
3130 ctx
= sidtab_search(&sidtab
, sid
);
3135 secattr
->domain
= kstrdup(sym_name(&policydb
, SYM_TYPES
, ctx
->type
- 1),
3137 if (secattr
->domain
== NULL
)
3140 secattr
->attr
.secid
= sid
;
3141 secattr
->flags
|= NETLBL_SECATTR_DOMAIN_CPY
| NETLBL_SECATTR_SECID
;
3142 mls_export_netlbl_lvl(ctx
, secattr
);
3143 rc
= mls_export_netlbl_cat(ctx
, secattr
);
3145 read_unlock(&policy_rwlock
);
3148 #endif /* CONFIG_NETLABEL */
3151 * security_read_policy - read the policy.
3152 * @data: binary policy data
3153 * @len: length of data in bytes
3156 int security_read_policy(void **data
, ssize_t
*len
)
3159 struct policy_file fp
;
3161 if (!ss_initialized
)
3164 *len
= security_policydb_len();
3166 *data
= vmalloc_user(*len
);
3173 read_lock(&policy_rwlock
);
3174 rc
= policydb_write(&policydb
, &fp
);
3175 read_unlock(&policy_rwlock
);
3180 *len
= (unsigned long)fp
.data
- (unsigned long)*data
;