proc: use seq_puts()/seq_putc() where possible
[linux-2.6/next.git] / drivers / net / atl1e / atl1e_hw.c
blob76cc043def8c481bcb2e479170cf0d5abbdc63a0
1 /*
2 * Copyright(c) 2007 Atheros Corporation. All rights reserved.
4 * Derived from Intel e1000 driver
5 * Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved.
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms of the GNU General Public License as published by the Free
9 * Software Foundation; either version 2 of the License, or (at your option)
10 * any later version.
12 * This program is distributed in the hope that it will be useful, but WITHOUT
13 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 * more details.
17 * You should have received a copy of the GNU General Public License along with
18 * this program; if not, write to the Free Software Foundation, Inc., 59
19 * Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21 #include <linux/pci.h>
22 #include <linux/delay.h>
23 #include <linux/mii.h>
24 #include <linux/crc32.h>
26 #include "atl1e.h"
29 * check_eeprom_exist
30 * return 0 if eeprom exist
32 int atl1e_check_eeprom_exist(struct atl1e_hw *hw)
34 u32 value;
36 value = AT_READ_REG(hw, REG_SPI_FLASH_CTRL);
37 if (value & SPI_FLASH_CTRL_EN_VPD) {
38 value &= ~SPI_FLASH_CTRL_EN_VPD;
39 AT_WRITE_REG(hw, REG_SPI_FLASH_CTRL, value);
41 value = AT_READ_REGW(hw, REG_PCIE_CAP_LIST);
42 return ((value & 0xFF00) == 0x6C00) ? 0 : 1;
45 void atl1e_hw_set_mac_addr(struct atl1e_hw *hw)
47 u32 value;
49 * 00-0B-6A-F6-00-DC
50 * 0: 6AF600DC 1: 000B
51 * low dword
53 value = (((u32)hw->mac_addr[2]) << 24) |
54 (((u32)hw->mac_addr[3]) << 16) |
55 (((u32)hw->mac_addr[4]) << 8) |
56 (((u32)hw->mac_addr[5])) ;
57 AT_WRITE_REG_ARRAY(hw, REG_MAC_STA_ADDR, 0, value);
58 /* hight dword */
59 value = (((u32)hw->mac_addr[0]) << 8) |
60 (((u32)hw->mac_addr[1])) ;
61 AT_WRITE_REG_ARRAY(hw, REG_MAC_STA_ADDR, 1, value);
65 * atl1e_get_permanent_address
66 * return 0 if get valid mac address,
68 static int atl1e_get_permanent_address(struct atl1e_hw *hw)
70 u32 addr[2];
71 u32 i;
72 u32 twsi_ctrl_data;
73 u8 eth_addr[ETH_ALEN];
75 if (is_valid_ether_addr(hw->perm_mac_addr))
76 return 0;
78 /* init */
79 addr[0] = addr[1] = 0;
81 if (!atl1e_check_eeprom_exist(hw)) {
82 /* eeprom exist */
83 twsi_ctrl_data = AT_READ_REG(hw, REG_TWSI_CTRL);
84 twsi_ctrl_data |= TWSI_CTRL_SW_LDSTART;
85 AT_WRITE_REG(hw, REG_TWSI_CTRL, twsi_ctrl_data);
86 for (i = 0; i < AT_TWSI_EEPROM_TIMEOUT; i++) {
87 msleep(10);
88 twsi_ctrl_data = AT_READ_REG(hw, REG_TWSI_CTRL);
89 if ((twsi_ctrl_data & TWSI_CTRL_SW_LDSTART) == 0)
90 break;
92 if (i >= AT_TWSI_EEPROM_TIMEOUT)
93 return AT_ERR_TIMEOUT;
96 /* maybe MAC-address is from BIOS */
97 addr[0] = AT_READ_REG(hw, REG_MAC_STA_ADDR);
98 addr[1] = AT_READ_REG(hw, REG_MAC_STA_ADDR + 4);
99 *(u32 *) &eth_addr[2] = swab32(addr[0]);
100 *(u16 *) &eth_addr[0] = swab16(*(u16 *)&addr[1]);
102 if (is_valid_ether_addr(eth_addr)) {
103 memcpy(hw->perm_mac_addr, eth_addr, ETH_ALEN);
104 return 0;
107 return AT_ERR_EEPROM;
110 bool atl1e_write_eeprom(struct atl1e_hw *hw, u32 offset, u32 value)
112 return true;
115 bool atl1e_read_eeprom(struct atl1e_hw *hw, u32 offset, u32 *p_value)
117 int i;
118 u32 control;
120 if (offset & 3)
121 return false; /* address do not align */
123 AT_WRITE_REG(hw, REG_VPD_DATA, 0);
124 control = (offset & VPD_CAP_VPD_ADDR_MASK) << VPD_CAP_VPD_ADDR_SHIFT;
125 AT_WRITE_REG(hw, REG_VPD_CAP, control);
127 for (i = 0; i < 10; i++) {
128 msleep(2);
129 control = AT_READ_REG(hw, REG_VPD_CAP);
130 if (control & VPD_CAP_VPD_FLAG)
131 break;
133 if (control & VPD_CAP_VPD_FLAG) {
134 *p_value = AT_READ_REG(hw, REG_VPD_DATA);
135 return true;
137 return false; /* timeout */
140 void atl1e_force_ps(struct atl1e_hw *hw)
142 AT_WRITE_REGW(hw, REG_GPHY_CTRL,
143 GPHY_CTRL_PW_WOL_DIS | GPHY_CTRL_EXT_RESET);
147 * Reads the adapter's MAC address from the EEPROM
149 * hw - Struct containing variables accessed by shared code
151 int atl1e_read_mac_addr(struct atl1e_hw *hw)
153 int err = 0;
155 err = atl1e_get_permanent_address(hw);
156 if (err)
157 return AT_ERR_EEPROM;
158 memcpy(hw->mac_addr, hw->perm_mac_addr, sizeof(hw->perm_mac_addr));
159 return 0;
163 * atl1e_hash_mc_addr
164 * purpose
165 * set hash value for a multicast address
167 u32 atl1e_hash_mc_addr(struct atl1e_hw *hw, u8 *mc_addr)
169 u32 crc32;
170 u32 value = 0;
171 int i;
173 crc32 = ether_crc_le(6, mc_addr);
174 for (i = 0; i < 32; i++)
175 value |= (((crc32 >> i) & 1) << (31 - i));
177 return value;
181 * Sets the bit in the multicast table corresponding to the hash value.
182 * hw - Struct containing variables accessed by shared code
183 * hash_value - Multicast address hash value
185 void atl1e_hash_set(struct atl1e_hw *hw, u32 hash_value)
187 u32 hash_bit, hash_reg;
188 u32 mta;
191 * The HASH Table is a register array of 2 32-bit registers.
192 * It is treated like an array of 64 bits. We want to set
193 * bit BitArray[hash_value]. So we figure out what register
194 * the bit is in, read it, OR in the new bit, then write
195 * back the new value. The register is determined by the
196 * upper 7 bits of the hash value and the bit within that
197 * register are determined by the lower 5 bits of the value.
199 hash_reg = (hash_value >> 31) & 0x1;
200 hash_bit = (hash_value >> 26) & 0x1F;
202 mta = AT_READ_REG_ARRAY(hw, REG_RX_HASH_TABLE, hash_reg);
204 mta |= (1 << hash_bit);
206 AT_WRITE_REG_ARRAY(hw, REG_RX_HASH_TABLE, hash_reg, mta);
209 * Reads the value from a PHY register
210 * hw - Struct containing variables accessed by shared code
211 * reg_addr - address of the PHY register to read
213 int atl1e_read_phy_reg(struct atl1e_hw *hw, u16 reg_addr, u16 *phy_data)
215 u32 val;
216 int i;
218 val = ((u32)(reg_addr & MDIO_REG_ADDR_MASK)) << MDIO_REG_ADDR_SHIFT |
219 MDIO_START | MDIO_SUP_PREAMBLE | MDIO_RW |
220 MDIO_CLK_25_4 << MDIO_CLK_SEL_SHIFT;
222 AT_WRITE_REG(hw, REG_MDIO_CTRL, val);
224 wmb();
226 for (i = 0; i < MDIO_WAIT_TIMES; i++) {
227 udelay(2);
228 val = AT_READ_REG(hw, REG_MDIO_CTRL);
229 if (!(val & (MDIO_START | MDIO_BUSY)))
230 break;
231 wmb();
233 if (!(val & (MDIO_START | MDIO_BUSY))) {
234 *phy_data = (u16)val;
235 return 0;
238 return AT_ERR_PHY;
242 * Writes a value to a PHY register
243 * hw - Struct containing variables accessed by shared code
244 * reg_addr - address of the PHY register to write
245 * data - data to write to the PHY
247 int atl1e_write_phy_reg(struct atl1e_hw *hw, u32 reg_addr, u16 phy_data)
249 int i;
250 u32 val;
252 val = ((u32)(phy_data & MDIO_DATA_MASK)) << MDIO_DATA_SHIFT |
253 (reg_addr&MDIO_REG_ADDR_MASK) << MDIO_REG_ADDR_SHIFT |
254 MDIO_SUP_PREAMBLE |
255 MDIO_START |
256 MDIO_CLK_25_4 << MDIO_CLK_SEL_SHIFT;
258 AT_WRITE_REG(hw, REG_MDIO_CTRL, val);
259 wmb();
261 for (i = 0; i < MDIO_WAIT_TIMES; i++) {
262 udelay(2);
263 val = AT_READ_REG(hw, REG_MDIO_CTRL);
264 if (!(val & (MDIO_START | MDIO_BUSY)))
265 break;
266 wmb();
269 if (!(val & (MDIO_START | MDIO_BUSY)))
270 return 0;
272 return AT_ERR_PHY;
276 * atl1e_init_pcie - init PCIE module
278 static void atl1e_init_pcie(struct atl1e_hw *hw)
280 u32 value;
281 /* comment 2lines below to save more power when sususpend
282 value = LTSSM_TEST_MODE_DEF;
283 AT_WRITE_REG(hw, REG_LTSSM_TEST_MODE, value);
286 /* pcie flow control mode change */
287 value = AT_READ_REG(hw, 0x1008);
288 value |= 0x8000;
289 AT_WRITE_REG(hw, 0x1008, value);
292 * Configures PHY autoneg and flow control advertisement settings
294 * hw - Struct containing variables accessed by shared code
296 static int atl1e_phy_setup_autoneg_adv(struct atl1e_hw *hw)
298 s32 ret_val;
299 u16 mii_autoneg_adv_reg;
300 u16 mii_1000t_ctrl_reg;
302 if (0 != hw->mii_autoneg_adv_reg)
303 return 0;
304 /* Read the MII Auto-Neg Advertisement Register (Address 4/9). */
305 mii_autoneg_adv_reg = MII_AR_DEFAULT_CAP_MASK;
306 mii_1000t_ctrl_reg = MII_AT001_CR_1000T_DEFAULT_CAP_MASK;
309 * Need to parse autoneg_advertised and set up
310 * the appropriate PHY registers. First we will parse for
311 * autoneg_advertised software override. Since we can advertise
312 * a plethora of combinations, we need to check each bit
313 * individually.
317 * First we clear all the 10/100 mb speed bits in the Auto-Neg
318 * Advertisement Register (Address 4) and the 1000 mb speed bits in
319 * the 1000Base-T control Register (Address 9).
321 mii_autoneg_adv_reg &= ~MII_AR_SPEED_MASK;
322 mii_1000t_ctrl_reg &= ~MII_AT001_CR_1000T_SPEED_MASK;
325 * Need to parse MediaType and setup the
326 * appropriate PHY registers.
328 switch (hw->media_type) {
329 case MEDIA_TYPE_AUTO_SENSOR:
330 mii_autoneg_adv_reg |= (MII_AR_10T_HD_CAPS |
331 MII_AR_10T_FD_CAPS |
332 MII_AR_100TX_HD_CAPS |
333 MII_AR_100TX_FD_CAPS);
334 hw->autoneg_advertised = ADVERTISE_10_HALF |
335 ADVERTISE_10_FULL |
336 ADVERTISE_100_HALF |
337 ADVERTISE_100_FULL;
338 if (hw->nic_type == athr_l1e) {
339 mii_1000t_ctrl_reg |=
340 MII_AT001_CR_1000T_FD_CAPS;
341 hw->autoneg_advertised |= ADVERTISE_1000_FULL;
343 break;
345 case MEDIA_TYPE_100M_FULL:
346 mii_autoneg_adv_reg |= MII_AR_100TX_FD_CAPS;
347 hw->autoneg_advertised = ADVERTISE_100_FULL;
348 break;
350 case MEDIA_TYPE_100M_HALF:
351 mii_autoneg_adv_reg |= MII_AR_100TX_HD_CAPS;
352 hw->autoneg_advertised = ADVERTISE_100_HALF;
353 break;
355 case MEDIA_TYPE_10M_FULL:
356 mii_autoneg_adv_reg |= MII_AR_10T_FD_CAPS;
357 hw->autoneg_advertised = ADVERTISE_10_FULL;
358 break;
360 default:
361 mii_autoneg_adv_reg |= MII_AR_10T_HD_CAPS;
362 hw->autoneg_advertised = ADVERTISE_10_HALF;
363 break;
366 /* flow control fixed to enable all */
367 mii_autoneg_adv_reg |= (MII_AR_ASM_DIR | MII_AR_PAUSE);
369 hw->mii_autoneg_adv_reg = mii_autoneg_adv_reg;
370 hw->mii_1000t_ctrl_reg = mii_1000t_ctrl_reg;
372 ret_val = atl1e_write_phy_reg(hw, MII_ADVERTISE, mii_autoneg_adv_reg);
373 if (ret_val)
374 return ret_val;
376 if (hw->nic_type == athr_l1e || hw->nic_type == athr_l2e_revA) {
377 ret_val = atl1e_write_phy_reg(hw, MII_AT001_CR,
378 mii_1000t_ctrl_reg);
379 if (ret_val)
380 return ret_val;
383 return 0;
388 * Resets the PHY and make all config validate
390 * hw - Struct containing variables accessed by shared code
392 * Sets bit 15 and 12 of the MII control regiser (for F001 bug)
394 int atl1e_phy_commit(struct atl1e_hw *hw)
396 struct atl1e_adapter *adapter = hw->adapter;
397 int ret_val;
398 u16 phy_data;
400 phy_data = MII_CR_RESET | MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG;
402 ret_val = atl1e_write_phy_reg(hw, MII_BMCR, phy_data);
403 if (ret_val) {
404 u32 val;
405 int i;
406 /**************************************
407 * pcie serdes link may be down !
408 **************************************/
409 for (i = 0; i < 25; i++) {
410 msleep(1);
411 val = AT_READ_REG(hw, REG_MDIO_CTRL);
412 if (!(val & (MDIO_START | MDIO_BUSY)))
413 break;
416 if (0 != (val & (MDIO_START | MDIO_BUSY))) {
417 netdev_err(adapter->netdev,
418 "pcie linkdown at least for 25ms\n");
419 return ret_val;
422 netdev_err(adapter->netdev, "pcie linkup after %d ms\n", i);
424 return 0;
427 int atl1e_phy_init(struct atl1e_hw *hw)
429 struct atl1e_adapter *adapter = hw->adapter;
430 s32 ret_val;
431 u16 phy_val;
433 if (hw->phy_configured) {
434 if (hw->re_autoneg) {
435 hw->re_autoneg = false;
436 return atl1e_restart_autoneg(hw);
438 return 0;
441 /* RESET GPHY Core */
442 AT_WRITE_REGW(hw, REG_GPHY_CTRL, GPHY_CTRL_DEFAULT);
443 msleep(2);
444 AT_WRITE_REGW(hw, REG_GPHY_CTRL, GPHY_CTRL_DEFAULT |
445 GPHY_CTRL_EXT_RESET);
446 msleep(2);
448 /* patches */
449 /* p1. eable hibernation mode */
450 ret_val = atl1e_write_phy_reg(hw, MII_DBG_ADDR, 0xB);
451 if (ret_val)
452 return ret_val;
453 ret_val = atl1e_write_phy_reg(hw, MII_DBG_DATA, 0xBC00);
454 if (ret_val)
455 return ret_val;
456 /* p2. set Class A/B for all modes */
457 ret_val = atl1e_write_phy_reg(hw, MII_DBG_ADDR, 0);
458 if (ret_val)
459 return ret_val;
460 phy_val = 0x02ef;
461 /* remove Class AB */
462 /* phy_val = hw->emi_ca ? 0x02ef : 0x02df; */
463 ret_val = atl1e_write_phy_reg(hw, MII_DBG_DATA, phy_val);
464 if (ret_val)
465 return ret_val;
466 /* p3. 10B ??? */
467 ret_val = atl1e_write_phy_reg(hw, MII_DBG_ADDR, 0x12);
468 if (ret_val)
469 return ret_val;
470 ret_val = atl1e_write_phy_reg(hw, MII_DBG_DATA, 0x4C04);
471 if (ret_val)
472 return ret_val;
473 /* p4. 1000T power */
474 ret_val = atl1e_write_phy_reg(hw, MII_DBG_ADDR, 0x4);
475 if (ret_val)
476 return ret_val;
477 ret_val = atl1e_write_phy_reg(hw, MII_DBG_DATA, 0x8BBB);
478 if (ret_val)
479 return ret_val;
481 ret_val = atl1e_write_phy_reg(hw, MII_DBG_ADDR, 0x5);
482 if (ret_val)
483 return ret_val;
484 ret_val = atl1e_write_phy_reg(hw, MII_DBG_DATA, 0x2C46);
485 if (ret_val)
486 return ret_val;
488 msleep(1);
490 /*Enable PHY LinkChange Interrupt */
491 ret_val = atl1e_write_phy_reg(hw, MII_INT_CTRL, 0xC00);
492 if (ret_val) {
493 netdev_err(adapter->netdev,
494 "Error enable PHY linkChange Interrupt\n");
495 return ret_val;
497 /* setup AutoNeg parameters */
498 ret_val = atl1e_phy_setup_autoneg_adv(hw);
499 if (ret_val) {
500 netdev_err(adapter->netdev,
501 "Error Setting up Auto-Negotiation\n");
502 return ret_val;
504 /* SW.Reset & En-Auto-Neg to restart Auto-Neg*/
505 netdev_dbg(adapter->netdev, "Restarting Auto-Negotiation\n");
506 ret_val = atl1e_phy_commit(hw);
507 if (ret_val) {
508 netdev_err(adapter->netdev, "Error resetting the phy\n");
509 return ret_val;
512 hw->phy_configured = true;
514 return 0;
518 * Reset the transmit and receive units; mask and clear all interrupts.
519 * hw - Struct containing variables accessed by shared code
520 * return : 0 or idle status (if error)
522 int atl1e_reset_hw(struct atl1e_hw *hw)
524 struct atl1e_adapter *adapter = hw->adapter;
525 struct pci_dev *pdev = adapter->pdev;
527 u32 idle_status_data = 0;
528 u16 pci_cfg_cmd_word = 0;
529 int timeout = 0;
531 /* Workaround for PCI problem when BIOS sets MMRBC incorrectly. */
532 pci_read_config_word(pdev, PCI_REG_COMMAND, &pci_cfg_cmd_word);
533 if ((pci_cfg_cmd_word & (CMD_IO_SPACE |
534 CMD_MEMORY_SPACE | CMD_BUS_MASTER))
535 != (CMD_IO_SPACE | CMD_MEMORY_SPACE | CMD_BUS_MASTER)) {
536 pci_cfg_cmd_word |= (CMD_IO_SPACE |
537 CMD_MEMORY_SPACE | CMD_BUS_MASTER);
538 pci_write_config_word(pdev, PCI_REG_COMMAND, pci_cfg_cmd_word);
542 * Issue Soft Reset to the MAC. This will reset the chip's
543 * transmit, receive, DMA. It will not effect
544 * the current PCI configuration. The global reset bit is self-
545 * clearing, and should clear within a microsecond.
547 AT_WRITE_REG(hw, REG_MASTER_CTRL,
548 MASTER_CTRL_LED_MODE | MASTER_CTRL_SOFT_RST);
549 wmb();
550 msleep(1);
552 /* Wait at least 10ms for All module to be Idle */
553 for (timeout = 0; timeout < AT_HW_MAX_IDLE_DELAY; timeout++) {
554 idle_status_data = AT_READ_REG(hw, REG_IDLE_STATUS);
555 if (idle_status_data == 0)
556 break;
557 msleep(1);
558 cpu_relax();
561 if (timeout >= AT_HW_MAX_IDLE_DELAY) {
562 netdev_err(adapter->netdev,
563 "MAC state machine can't be idle since disabled for 10ms second\n");
564 return AT_ERR_TIMEOUT;
567 return 0;
572 * Performs basic configuration of the adapter.
574 * hw - Struct containing variables accessed by shared code
575 * Assumes that the controller has previously been reset and is in a
576 * post-reset uninitialized state. Initializes multicast table,
577 * and Calls routines to setup link
578 * Leaves the transmit and receive units disabled and uninitialized.
580 int atl1e_init_hw(struct atl1e_hw *hw)
582 s32 ret_val = 0;
584 atl1e_init_pcie(hw);
586 /* Zero out the Multicast HASH table */
587 /* clear the old settings from the multicast hash table */
588 AT_WRITE_REG(hw, REG_RX_HASH_TABLE, 0);
589 AT_WRITE_REG_ARRAY(hw, REG_RX_HASH_TABLE, 1, 0);
591 ret_val = atl1e_phy_init(hw);
593 return ret_val;
597 * Detects the current speed and duplex settings of the hardware.
599 * hw - Struct containing variables accessed by shared code
600 * speed - Speed of the connection
601 * duplex - Duplex setting of the connection
603 int atl1e_get_speed_and_duplex(struct atl1e_hw *hw, u16 *speed, u16 *duplex)
605 int err;
606 u16 phy_data;
608 /* Read PHY Specific Status Register (17) */
609 err = atl1e_read_phy_reg(hw, MII_AT001_PSSR, &phy_data);
610 if (err)
611 return err;
613 if (!(phy_data & MII_AT001_PSSR_SPD_DPLX_RESOLVED))
614 return AT_ERR_PHY_RES;
616 switch (phy_data & MII_AT001_PSSR_SPEED) {
617 case MII_AT001_PSSR_1000MBS:
618 *speed = SPEED_1000;
619 break;
620 case MII_AT001_PSSR_100MBS:
621 *speed = SPEED_100;
622 break;
623 case MII_AT001_PSSR_10MBS:
624 *speed = SPEED_10;
625 break;
626 default:
627 return AT_ERR_PHY_SPEED;
628 break;
631 if (phy_data & MII_AT001_PSSR_DPLX)
632 *duplex = FULL_DUPLEX;
633 else
634 *duplex = HALF_DUPLEX;
636 return 0;
639 int atl1e_restart_autoneg(struct atl1e_hw *hw)
641 int err = 0;
643 err = atl1e_write_phy_reg(hw, MII_ADVERTISE, hw->mii_autoneg_adv_reg);
644 if (err)
645 return err;
647 if (hw->nic_type == athr_l1e || hw->nic_type == athr_l2e_revA) {
648 err = atl1e_write_phy_reg(hw, MII_AT001_CR,
649 hw->mii_1000t_ctrl_reg);
650 if (err)
651 return err;
654 err = atl1e_write_phy_reg(hw, MII_BMCR,
655 MII_CR_RESET | MII_CR_AUTO_NEG_EN |
656 MII_CR_RESTART_AUTO_NEG);
657 return err;