1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2010 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
30 * 82571EB Gigabit Ethernet Controller
31 * 82571EB Gigabit Ethernet Controller (Copper)
32 * 82571EB Gigabit Ethernet Controller (Fiber)
33 * 82571EB Dual Port Gigabit Mezzanine Adapter
34 * 82571EB Quad Port Gigabit Mezzanine Adapter
35 * 82571PT Gigabit PT Quad Port Server ExpressModule
36 * 82572EI Gigabit Ethernet Controller (Copper)
37 * 82572EI Gigabit Ethernet Controller (Fiber)
38 * 82572EI Gigabit Ethernet Controller
39 * 82573V Gigabit Ethernet Controller (Copper)
40 * 82573E Gigabit Ethernet Controller (Copper)
41 * 82573L Gigabit Ethernet Controller
42 * 82574L Gigabit Network Connection
43 * 82583V Gigabit Network Connection
48 #define ID_LED_RESERVED_F746 0xF746
49 #define ID_LED_DEFAULT_82573 ((ID_LED_DEF1_DEF2 << 12) | \
50 (ID_LED_OFF1_ON2 << 8) | \
51 (ID_LED_DEF1_DEF2 << 4) | \
54 #define E1000_GCR_L1_ACT_WITHOUT_L0S_RX 0x08000000
55 #define AN_RETRY_COUNT 5 /* Autoneg Retry Count value */
56 #define E1000_BASE1000T_STATUS 10
57 #define E1000_IDLE_ERROR_COUNT_MASK 0xFF
58 #define E1000_RECEIVE_ERROR_COUNTER 21
59 #define E1000_RECEIVE_ERROR_MAX 0xFFFF
61 #define E1000_NVM_INIT_CTRL2_MNGM 0x6000 /* Manageability Operation Mode mask */
63 static s32
e1000_get_phy_id_82571(struct e1000_hw
*hw
);
64 static s32
e1000_setup_copper_link_82571(struct e1000_hw
*hw
);
65 static s32
e1000_setup_fiber_serdes_link_82571(struct e1000_hw
*hw
);
66 static s32
e1000_check_for_serdes_link_82571(struct e1000_hw
*hw
);
67 static s32
e1000_write_nvm_eewr_82571(struct e1000_hw
*hw
, u16 offset
,
68 u16 words
, u16
*data
);
69 static s32
e1000_fix_nvm_checksum_82571(struct e1000_hw
*hw
);
70 static void e1000_initialize_hw_bits_82571(struct e1000_hw
*hw
);
71 static s32
e1000_setup_link_82571(struct e1000_hw
*hw
);
72 static void e1000_clear_hw_cntrs_82571(struct e1000_hw
*hw
);
73 static void e1000_clear_vfta_82571(struct e1000_hw
*hw
);
74 static bool e1000_check_mng_mode_82574(struct e1000_hw
*hw
);
75 static s32
e1000_led_on_82574(struct e1000_hw
*hw
);
76 static void e1000_put_hw_semaphore_82571(struct e1000_hw
*hw
);
77 static void e1000_power_down_phy_copper_82571(struct e1000_hw
*hw
);
78 static void e1000_put_hw_semaphore_82573(struct e1000_hw
*hw
);
79 static s32
e1000_get_hw_semaphore_82574(struct e1000_hw
*hw
);
80 static void e1000_put_hw_semaphore_82574(struct e1000_hw
*hw
);
81 static s32
e1000_set_d0_lplu_state_82574(struct e1000_hw
*hw
, bool active
);
82 static s32
e1000_set_d3_lplu_state_82574(struct e1000_hw
*hw
, bool active
);
85 * e1000_init_phy_params_82571 - Init PHY func ptrs.
86 * @hw: pointer to the HW structure
88 static s32
e1000_init_phy_params_82571(struct e1000_hw
*hw
)
90 struct e1000_phy_info
*phy
= &hw
->phy
;
93 if (hw
->phy
.media_type
!= e1000_media_type_copper
) {
94 phy
->type
= e1000_phy_none
;
99 phy
->autoneg_mask
= AUTONEG_ADVERTISE_SPEED_DEFAULT
;
100 phy
->reset_delay_us
= 100;
102 phy
->ops
.power_up
= e1000_power_up_phy_copper
;
103 phy
->ops
.power_down
= e1000_power_down_phy_copper_82571
;
105 switch (hw
->mac
.type
) {
108 phy
->type
= e1000_phy_igp_2
;
111 phy
->type
= e1000_phy_m88
;
115 phy
->type
= e1000_phy_bm
;
116 phy
->ops
.acquire
= e1000_get_hw_semaphore_82574
;
117 phy
->ops
.release
= e1000_put_hw_semaphore_82574
;
118 phy
->ops
.set_d0_lplu_state
= e1000_set_d0_lplu_state_82574
;
119 phy
->ops
.set_d3_lplu_state
= e1000_set_d3_lplu_state_82574
;
122 return -E1000_ERR_PHY
;
126 /* This can only be done after all function pointers are setup. */
127 ret_val
= e1000_get_phy_id_82571(hw
);
129 e_dbg("Error getting PHY ID\n");
134 switch (hw
->mac
.type
) {
137 if (phy
->id
!= IGP01E1000_I_PHY_ID
)
138 ret_val
= -E1000_ERR_PHY
;
141 if (phy
->id
!= M88E1111_I_PHY_ID
)
142 ret_val
= -E1000_ERR_PHY
;
146 if (phy
->id
!= BME1000_E_PHY_ID_R2
)
147 ret_val
= -E1000_ERR_PHY
;
150 ret_val
= -E1000_ERR_PHY
;
155 e_dbg("PHY ID unknown: type = 0x%08x\n", phy
->id
);
161 * e1000_init_nvm_params_82571 - Init NVM func ptrs.
162 * @hw: pointer to the HW structure
164 static s32
e1000_init_nvm_params_82571(struct e1000_hw
*hw
)
166 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
167 u32 eecd
= er32(EECD
);
170 nvm
->opcode_bits
= 8;
172 switch (nvm
->override
) {
173 case e1000_nvm_override_spi_large
:
175 nvm
->address_bits
= 16;
177 case e1000_nvm_override_spi_small
:
179 nvm
->address_bits
= 8;
182 nvm
->page_size
= eecd
& E1000_EECD_ADDR_BITS
? 32 : 8;
183 nvm
->address_bits
= eecd
& E1000_EECD_ADDR_BITS
? 16 : 8;
187 switch (hw
->mac
.type
) {
191 if (((eecd
>> 15) & 0x3) == 0x3) {
192 nvm
->type
= e1000_nvm_flash_hw
;
193 nvm
->word_size
= 2048;
195 * Autonomous Flash update bit must be cleared due
196 * to Flash update issue.
198 eecd
&= ~E1000_EECD_AUPDEN
;
204 nvm
->type
= e1000_nvm_eeprom_spi
;
205 size
= (u16
)((eecd
& E1000_EECD_SIZE_EX_MASK
) >>
206 E1000_EECD_SIZE_EX_SHIFT
);
208 * Added to a constant, "size" becomes the left-shift value
209 * for setting word_size.
211 size
+= NVM_WORD_SIZE_BASE_SHIFT
;
213 /* EEPROM access above 16k is unsupported */
216 nvm
->word_size
= 1 << size
;
220 /* Function Pointers */
221 switch (hw
->mac
.type
) {
224 nvm
->ops
.acquire
= e1000_get_hw_semaphore_82574
;
225 nvm
->ops
.release
= e1000_put_hw_semaphore_82574
;
235 * e1000_init_mac_params_82571 - Init MAC func ptrs.
236 * @hw: pointer to the HW structure
238 static s32
e1000_init_mac_params_82571(struct e1000_adapter
*adapter
)
240 struct e1000_hw
*hw
= &adapter
->hw
;
241 struct e1000_mac_info
*mac
= &hw
->mac
;
242 struct e1000_mac_operations
*func
= &mac
->ops
;
245 bool force_clear_smbi
= false;
248 switch (adapter
->pdev
->device
) {
249 case E1000_DEV_ID_82571EB_FIBER
:
250 case E1000_DEV_ID_82572EI_FIBER
:
251 case E1000_DEV_ID_82571EB_QUAD_FIBER
:
252 hw
->phy
.media_type
= e1000_media_type_fiber
;
254 case E1000_DEV_ID_82571EB_SERDES
:
255 case E1000_DEV_ID_82572EI_SERDES
:
256 case E1000_DEV_ID_82571EB_SERDES_DUAL
:
257 case E1000_DEV_ID_82571EB_SERDES_QUAD
:
258 hw
->phy
.media_type
= e1000_media_type_internal_serdes
;
261 hw
->phy
.media_type
= e1000_media_type_copper
;
265 /* Set mta register count */
266 mac
->mta_reg_count
= 128;
267 /* Set rar entry count */
268 mac
->rar_entry_count
= E1000_RAR_ENTRIES
;
269 /* Adaptive IFS supported */
270 mac
->adaptive_ifs
= true;
273 switch (hw
->phy
.media_type
) {
274 case e1000_media_type_copper
:
275 func
->setup_physical_interface
= e1000_setup_copper_link_82571
;
276 func
->check_for_link
= e1000e_check_for_copper_link
;
277 func
->get_link_up_info
= e1000e_get_speed_and_duplex_copper
;
279 case e1000_media_type_fiber
:
280 func
->setup_physical_interface
=
281 e1000_setup_fiber_serdes_link_82571
;
282 func
->check_for_link
= e1000e_check_for_fiber_link
;
283 func
->get_link_up_info
=
284 e1000e_get_speed_and_duplex_fiber_serdes
;
286 case e1000_media_type_internal_serdes
:
287 func
->setup_physical_interface
=
288 e1000_setup_fiber_serdes_link_82571
;
289 func
->check_for_link
= e1000_check_for_serdes_link_82571
;
290 func
->get_link_up_info
=
291 e1000e_get_speed_and_duplex_fiber_serdes
;
294 return -E1000_ERR_CONFIG
;
298 switch (hw
->mac
.type
) {
300 func
->set_lan_id
= e1000_set_lan_id_single_port
;
301 func
->check_mng_mode
= e1000e_check_mng_mode_generic
;
302 func
->led_on
= e1000e_led_on_generic
;
305 mac
->has_fwsm
= true;
307 * ARC supported; valid only if manageability features are
310 mac
->arc_subsystem_valid
=
311 (er32(FWSM
) & E1000_FWSM_MODE_MASK
)
316 func
->set_lan_id
= e1000_set_lan_id_single_port
;
317 func
->check_mng_mode
= e1000_check_mng_mode_82574
;
318 func
->led_on
= e1000_led_on_82574
;
321 func
->check_mng_mode
= e1000e_check_mng_mode_generic
;
322 func
->led_on
= e1000e_led_on_generic
;
325 mac
->has_fwsm
= true;
330 * Ensure that the inter-port SWSM.SMBI lock bit is clear before
331 * first NVM or PHY acess. This should be done for single-port
332 * devices, and for one port only on dual-port devices so that
333 * for those devices we can still use the SMBI lock to synchronize
334 * inter-port accesses to the PHY & NVM.
336 switch (hw
->mac
.type
) {
341 if (!(swsm2
& E1000_SWSM2_LOCK
)) {
342 /* Only do this for the first interface on this card */
344 swsm2
| E1000_SWSM2_LOCK
);
345 force_clear_smbi
= true;
347 force_clear_smbi
= false;
350 force_clear_smbi
= true;
354 if (force_clear_smbi
) {
355 /* Make sure SWSM.SMBI is clear */
357 if (swsm
& E1000_SWSM_SMBI
) {
358 /* This bit should not be set on a first interface, and
359 * indicates that the bootagent or EFI code has
360 * improperly left this bit enabled
362 e_dbg("Please update your 82571 Bootagent\n");
364 ew32(SWSM
, swsm
& ~E1000_SWSM_SMBI
);
368 * Initialize device specific counter of SMBI acquisition
371 hw
->dev_spec
.e82571
.smb_counter
= 0;
376 static s32
e1000_get_variants_82571(struct e1000_adapter
*adapter
)
378 struct e1000_hw
*hw
= &adapter
->hw
;
379 static int global_quad_port_a
; /* global port a indication */
380 struct pci_dev
*pdev
= adapter
->pdev
;
381 int is_port_b
= er32(STATUS
) & E1000_STATUS_FUNC_1
;
384 rc
= e1000_init_mac_params_82571(adapter
);
388 rc
= e1000_init_nvm_params_82571(hw
);
392 rc
= e1000_init_phy_params_82571(hw
);
396 /* tag quad port adapters first, it's used below */
397 switch (pdev
->device
) {
398 case E1000_DEV_ID_82571EB_QUAD_COPPER
:
399 case E1000_DEV_ID_82571EB_QUAD_FIBER
:
400 case E1000_DEV_ID_82571EB_QUAD_COPPER_LP
:
401 case E1000_DEV_ID_82571PT_QUAD_COPPER
:
402 adapter
->flags
|= FLAG_IS_QUAD_PORT
;
403 /* mark the first port */
404 if (global_quad_port_a
== 0)
405 adapter
->flags
|= FLAG_IS_QUAD_PORT_A
;
406 /* Reset for multiple quad port adapters */
407 global_quad_port_a
++;
408 if (global_quad_port_a
== 4)
409 global_quad_port_a
= 0;
415 switch (adapter
->hw
.mac
.type
) {
417 /* these dual ports don't have WoL on port B at all */
418 if (((pdev
->device
== E1000_DEV_ID_82571EB_FIBER
) ||
419 (pdev
->device
== E1000_DEV_ID_82571EB_SERDES
) ||
420 (pdev
->device
== E1000_DEV_ID_82571EB_COPPER
)) &&
422 adapter
->flags
&= ~FLAG_HAS_WOL
;
423 /* quad ports only support WoL on port A */
424 if (adapter
->flags
& FLAG_IS_QUAD_PORT
&&
425 (!(adapter
->flags
& FLAG_IS_QUAD_PORT_A
)))
426 adapter
->flags
&= ~FLAG_HAS_WOL
;
427 /* Does not support WoL on any port */
428 if (pdev
->device
== E1000_DEV_ID_82571EB_SERDES_QUAD
)
429 adapter
->flags
&= ~FLAG_HAS_WOL
;
434 /* Disable ASPM L0s due to hardware errata */
435 e1000e_disable_aspm(adapter
->pdev
, PCIE_LINK_STATE_L0S
);
437 if (pdev
->device
== E1000_DEV_ID_82573L
) {
438 adapter
->flags
|= FLAG_HAS_JUMBO_FRAMES
;
439 adapter
->max_hw_frame_size
= DEFAULT_JUMBO
;
450 * e1000_get_phy_id_82571 - Retrieve the PHY ID and revision
451 * @hw: pointer to the HW structure
453 * Reads the PHY registers and stores the PHY ID and possibly the PHY
454 * revision in the hardware structure.
456 static s32
e1000_get_phy_id_82571(struct e1000_hw
*hw
)
458 struct e1000_phy_info
*phy
= &hw
->phy
;
462 switch (hw
->mac
.type
) {
466 * The 82571 firmware may still be configuring the PHY.
467 * In this case, we cannot access the PHY until the
468 * configuration is done. So we explicitly set the
471 phy
->id
= IGP01E1000_I_PHY_ID
;
474 return e1000e_get_phy_id(hw
);
478 ret_val
= e1e_rphy(hw
, PHY_ID1
, &phy_id
);
482 phy
->id
= (u32
)(phy_id
<< 16);
484 ret_val
= e1e_rphy(hw
, PHY_ID2
, &phy_id
);
488 phy
->id
|= (u32
)(phy_id
);
489 phy
->revision
= (u32
)(phy_id
& ~PHY_REVISION_MASK
);
492 return -E1000_ERR_PHY
;
500 * e1000_get_hw_semaphore_82571 - Acquire hardware semaphore
501 * @hw: pointer to the HW structure
503 * Acquire the HW semaphore to access the PHY or NVM
505 static s32
e1000_get_hw_semaphore_82571(struct e1000_hw
*hw
)
508 s32 sw_timeout
= hw
->nvm
.word_size
+ 1;
509 s32 fw_timeout
= hw
->nvm
.word_size
+ 1;
513 * If we have timedout 3 times on trying to acquire
514 * the inter-port SMBI semaphore, there is old code
515 * operating on the other port, and it is not
516 * releasing SMBI. Modify the number of times that
517 * we try for the semaphore to interwork with this
520 if (hw
->dev_spec
.e82571
.smb_counter
> 2)
523 /* Get the SW semaphore */
524 while (i
< sw_timeout
) {
526 if (!(swsm
& E1000_SWSM_SMBI
))
533 if (i
== sw_timeout
) {
534 e_dbg("Driver can't access device - SMBI bit is set.\n");
535 hw
->dev_spec
.e82571
.smb_counter
++;
537 /* Get the FW semaphore. */
538 for (i
= 0; i
< fw_timeout
; i
++) {
540 ew32(SWSM
, swsm
| E1000_SWSM_SWESMBI
);
542 /* Semaphore acquired if bit latched */
543 if (er32(SWSM
) & E1000_SWSM_SWESMBI
)
549 if (i
== fw_timeout
) {
550 /* Release semaphores */
551 e1000_put_hw_semaphore_82571(hw
);
552 e_dbg("Driver can't access the NVM\n");
553 return -E1000_ERR_NVM
;
560 * e1000_put_hw_semaphore_82571 - Release hardware semaphore
561 * @hw: pointer to the HW structure
563 * Release hardware semaphore used to access the PHY or NVM
565 static void e1000_put_hw_semaphore_82571(struct e1000_hw
*hw
)
570 swsm
&= ~(E1000_SWSM_SMBI
| E1000_SWSM_SWESMBI
);
574 * e1000_get_hw_semaphore_82573 - Acquire hardware semaphore
575 * @hw: pointer to the HW structure
577 * Acquire the HW semaphore during reset.
580 static s32
e1000_get_hw_semaphore_82573(struct e1000_hw
*hw
)
586 extcnf_ctrl
= er32(EXTCNF_CTRL
);
587 extcnf_ctrl
|= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP
;
589 ew32(EXTCNF_CTRL
, extcnf_ctrl
);
590 extcnf_ctrl
= er32(EXTCNF_CTRL
);
592 if (extcnf_ctrl
& E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP
)
595 extcnf_ctrl
|= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP
;
599 } while (i
< MDIO_OWNERSHIP_TIMEOUT
);
601 if (i
== MDIO_OWNERSHIP_TIMEOUT
) {
602 /* Release semaphores */
603 e1000_put_hw_semaphore_82573(hw
);
604 e_dbg("Driver can't access the PHY\n");
605 ret_val
= -E1000_ERR_PHY
;
614 * e1000_put_hw_semaphore_82573 - Release hardware semaphore
615 * @hw: pointer to the HW structure
617 * Release hardware semaphore used during reset.
620 static void e1000_put_hw_semaphore_82573(struct e1000_hw
*hw
)
624 extcnf_ctrl
= er32(EXTCNF_CTRL
);
625 extcnf_ctrl
&= ~E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP
;
626 ew32(EXTCNF_CTRL
, extcnf_ctrl
);
629 static DEFINE_MUTEX(swflag_mutex
);
632 * e1000_get_hw_semaphore_82574 - Acquire hardware semaphore
633 * @hw: pointer to the HW structure
635 * Acquire the HW semaphore to access the PHY or NVM.
638 static s32
e1000_get_hw_semaphore_82574(struct e1000_hw
*hw
)
642 mutex_lock(&swflag_mutex
);
643 ret_val
= e1000_get_hw_semaphore_82573(hw
);
645 mutex_unlock(&swflag_mutex
);
650 * e1000_put_hw_semaphore_82574 - Release hardware semaphore
651 * @hw: pointer to the HW structure
653 * Release hardware semaphore used to access the PHY or NVM
656 static void e1000_put_hw_semaphore_82574(struct e1000_hw
*hw
)
658 e1000_put_hw_semaphore_82573(hw
);
659 mutex_unlock(&swflag_mutex
);
663 * e1000_set_d0_lplu_state_82574 - Set Low Power Linkup D0 state
664 * @hw: pointer to the HW structure
665 * @active: true to enable LPLU, false to disable
667 * Sets the LPLU D0 state according to the active flag.
668 * LPLU will not be activated unless the
669 * device autonegotiation advertisement meets standards of
670 * either 10 or 10/100 or 10/100/1000 at all duplexes.
671 * This is a function pointer entry point only called by
672 * PHY setup routines.
674 static s32
e1000_set_d0_lplu_state_82574(struct e1000_hw
*hw
, bool active
)
676 u16 data
= er32(POEMB
);
679 data
|= E1000_PHY_CTRL_D0A_LPLU
;
681 data
&= ~E1000_PHY_CTRL_D0A_LPLU
;
688 * e1000_set_d3_lplu_state_82574 - Sets low power link up state for D3
689 * @hw: pointer to the HW structure
690 * @active: boolean used to enable/disable lplu
692 * The low power link up (lplu) state is set to the power management level D3
693 * when active is true, else clear lplu for D3. LPLU
694 * is used during Dx states where the power conservation is most important.
695 * During driver activity, SmartSpeed should be enabled so performance is
698 static s32
e1000_set_d3_lplu_state_82574(struct e1000_hw
*hw
, bool active
)
700 u16 data
= er32(POEMB
);
703 data
&= ~E1000_PHY_CTRL_NOND0A_LPLU
;
704 } else if ((hw
->phy
.autoneg_advertised
== E1000_ALL_SPEED_DUPLEX
) ||
705 (hw
->phy
.autoneg_advertised
== E1000_ALL_NOT_GIG
) ||
706 (hw
->phy
.autoneg_advertised
== E1000_ALL_10_SPEED
)) {
707 data
|= E1000_PHY_CTRL_NOND0A_LPLU
;
715 * e1000_acquire_nvm_82571 - Request for access to the EEPROM
716 * @hw: pointer to the HW structure
718 * To gain access to the EEPROM, first we must obtain a hardware semaphore.
719 * Then for non-82573 hardware, set the EEPROM access request bit and wait
720 * for EEPROM access grant bit. If the access grant bit is not set, release
721 * hardware semaphore.
723 static s32
e1000_acquire_nvm_82571(struct e1000_hw
*hw
)
727 ret_val
= e1000_get_hw_semaphore_82571(hw
);
731 switch (hw
->mac
.type
) {
735 ret_val
= e1000e_acquire_nvm(hw
);
740 e1000_put_hw_semaphore_82571(hw
);
746 * e1000_release_nvm_82571 - Release exclusive access to EEPROM
747 * @hw: pointer to the HW structure
749 * Stop any current commands to the EEPROM and clear the EEPROM request bit.
751 static void e1000_release_nvm_82571(struct e1000_hw
*hw
)
753 e1000e_release_nvm(hw
);
754 e1000_put_hw_semaphore_82571(hw
);
758 * e1000_write_nvm_82571 - Write to EEPROM using appropriate interface
759 * @hw: pointer to the HW structure
760 * @offset: offset within the EEPROM to be written to
761 * @words: number of words to write
762 * @data: 16 bit word(s) to be written to the EEPROM
764 * For non-82573 silicon, write data to EEPROM at offset using SPI interface.
766 * If e1000e_update_nvm_checksum is not called after this function, the
767 * EEPROM will most likely contain an invalid checksum.
769 static s32
e1000_write_nvm_82571(struct e1000_hw
*hw
, u16 offset
, u16 words
,
774 switch (hw
->mac
.type
) {
778 ret_val
= e1000_write_nvm_eewr_82571(hw
, offset
, words
, data
);
782 ret_val
= e1000e_write_nvm_spi(hw
, offset
, words
, data
);
785 ret_val
= -E1000_ERR_NVM
;
793 * e1000_update_nvm_checksum_82571 - Update EEPROM checksum
794 * @hw: pointer to the HW structure
796 * Updates the EEPROM checksum by reading/adding each word of the EEPROM
797 * up to the checksum. Then calculates the EEPROM checksum and writes the
798 * value to the EEPROM.
800 static s32
e1000_update_nvm_checksum_82571(struct e1000_hw
*hw
)
806 ret_val
= e1000e_update_nvm_checksum_generic(hw
);
811 * If our nvm is an EEPROM, then we're done
812 * otherwise, commit the checksum to the flash NVM.
814 if (hw
->nvm
.type
!= e1000_nvm_flash_hw
)
817 /* Check for pending operations. */
818 for (i
= 0; i
< E1000_FLASH_UPDATES
; i
++) {
820 if ((er32(EECD
) & E1000_EECD_FLUPD
) == 0)
824 if (i
== E1000_FLASH_UPDATES
)
825 return -E1000_ERR_NVM
;
827 /* Reset the firmware if using STM opcode. */
828 if ((er32(FLOP
) & 0xFF00) == E1000_STM_OPCODE
) {
830 * The enabling of and the actual reset must be done
831 * in two write cycles.
833 ew32(HICR
, E1000_HICR_FW_RESET_ENABLE
);
835 ew32(HICR
, E1000_HICR_FW_RESET
);
838 /* Commit the write to flash */
839 eecd
= er32(EECD
) | E1000_EECD_FLUPD
;
842 for (i
= 0; i
< E1000_FLASH_UPDATES
; i
++) {
844 if ((er32(EECD
) & E1000_EECD_FLUPD
) == 0)
848 if (i
== E1000_FLASH_UPDATES
)
849 return -E1000_ERR_NVM
;
855 * e1000_validate_nvm_checksum_82571 - Validate EEPROM checksum
856 * @hw: pointer to the HW structure
858 * Calculates the EEPROM checksum by reading/adding each word of the EEPROM
859 * and then verifies that the sum of the EEPROM is equal to 0xBABA.
861 static s32
e1000_validate_nvm_checksum_82571(struct e1000_hw
*hw
)
863 if (hw
->nvm
.type
== e1000_nvm_flash_hw
)
864 e1000_fix_nvm_checksum_82571(hw
);
866 return e1000e_validate_nvm_checksum_generic(hw
);
870 * e1000_write_nvm_eewr_82571 - Write to EEPROM for 82573 silicon
871 * @hw: pointer to the HW structure
872 * @offset: offset within the EEPROM to be written to
873 * @words: number of words to write
874 * @data: 16 bit word(s) to be written to the EEPROM
876 * After checking for invalid values, poll the EEPROM to ensure the previous
877 * command has completed before trying to write the next word. After write
878 * poll for completion.
880 * If e1000e_update_nvm_checksum is not called after this function, the
881 * EEPROM will most likely contain an invalid checksum.
883 static s32
e1000_write_nvm_eewr_82571(struct e1000_hw
*hw
, u16 offset
,
884 u16 words
, u16
*data
)
886 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
891 * A check for invalid values: offset too large, too many words,
892 * and not enough words.
894 if ((offset
>= nvm
->word_size
) || (words
> (nvm
->word_size
- offset
)) ||
896 e_dbg("nvm parameter(s) out of bounds\n");
897 return -E1000_ERR_NVM
;
900 for (i
= 0; i
< words
; i
++) {
901 eewr
= (data
[i
] << E1000_NVM_RW_REG_DATA
) |
902 ((offset
+i
) << E1000_NVM_RW_ADDR_SHIFT
) |
903 E1000_NVM_RW_REG_START
;
905 ret_val
= e1000e_poll_eerd_eewr_done(hw
, E1000_NVM_POLL_WRITE
);
911 ret_val
= e1000e_poll_eerd_eewr_done(hw
, E1000_NVM_POLL_WRITE
);
920 * e1000_get_cfg_done_82571 - Poll for configuration done
921 * @hw: pointer to the HW structure
923 * Reads the management control register for the config done bit to be set.
925 static s32
e1000_get_cfg_done_82571(struct e1000_hw
*hw
)
927 s32 timeout
= PHY_CFG_TIMEOUT
;
931 E1000_NVM_CFG_DONE_PORT_0
)
937 e_dbg("MNG configuration cycle has not completed.\n");
938 return -E1000_ERR_RESET
;
945 * e1000_set_d0_lplu_state_82571 - Set Low Power Linkup D0 state
946 * @hw: pointer to the HW structure
947 * @active: true to enable LPLU, false to disable
949 * Sets the LPLU D0 state according to the active flag. When activating LPLU
950 * this function also disables smart speed and vice versa. LPLU will not be
951 * activated unless the device autonegotiation advertisement meets standards
952 * of either 10 or 10/100 or 10/100/1000 at all duplexes. This is a function
953 * pointer entry point only called by PHY setup routines.
955 static s32
e1000_set_d0_lplu_state_82571(struct e1000_hw
*hw
, bool active
)
957 struct e1000_phy_info
*phy
= &hw
->phy
;
961 ret_val
= e1e_rphy(hw
, IGP02E1000_PHY_POWER_MGMT
, &data
);
966 data
|= IGP02E1000_PM_D0_LPLU
;
967 ret_val
= e1e_wphy(hw
, IGP02E1000_PHY_POWER_MGMT
, data
);
971 /* When LPLU is enabled, we should disable SmartSpeed */
972 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CONFIG
, &data
);
973 data
&= ~IGP01E1000_PSCFR_SMART_SPEED
;
974 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CONFIG
, data
);
978 data
&= ~IGP02E1000_PM_D0_LPLU
;
979 ret_val
= e1e_wphy(hw
, IGP02E1000_PHY_POWER_MGMT
, data
);
981 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
982 * during Dx states where the power conservation is most
983 * important. During driver activity we should enable
984 * SmartSpeed, so performance is maintained.
986 if (phy
->smart_speed
== e1000_smart_speed_on
) {
987 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
992 data
|= IGP01E1000_PSCFR_SMART_SPEED
;
993 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
997 } else if (phy
->smart_speed
== e1000_smart_speed_off
) {
998 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
1003 data
&= ~IGP01E1000_PSCFR_SMART_SPEED
;
1004 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
1015 * e1000_reset_hw_82571 - Reset hardware
1016 * @hw: pointer to the HW structure
1018 * This resets the hardware into a known state.
1020 static s32
e1000_reset_hw_82571(struct e1000_hw
*hw
)
1026 * Prevent the PCI-E bus from sticking if there is no TLP connection
1027 * on the last TLP read/write transaction when MAC is reset.
1029 ret_val
= e1000e_disable_pcie_master(hw
);
1031 e_dbg("PCI-E Master disable polling has failed.\n");
1033 e_dbg("Masking off all interrupts\n");
1034 ew32(IMC
, 0xffffffff);
1037 ew32(TCTL
, E1000_TCTL_PSP
);
1043 * Must acquire the MDIO ownership before MAC reset.
1044 * Ownership defaults to firmware after a reset.
1046 switch (hw
->mac
.type
) {
1048 ret_val
= e1000_get_hw_semaphore_82573(hw
);
1052 ret_val
= e1000_get_hw_semaphore_82574(hw
);
1058 e_dbg("Cannot acquire MDIO ownership\n");
1062 e_dbg("Issuing a global reset to MAC\n");
1063 ew32(CTRL
, ctrl
| E1000_CTRL_RST
);
1065 /* Must release MDIO ownership and mutex after MAC reset. */
1066 switch (hw
->mac
.type
) {
1069 e1000_put_hw_semaphore_82574(hw
);
1075 if (hw
->nvm
.type
== e1000_nvm_flash_hw
) {
1077 ctrl_ext
= er32(CTRL_EXT
);
1078 ctrl_ext
|= E1000_CTRL_EXT_EE_RST
;
1079 ew32(CTRL_EXT
, ctrl_ext
);
1083 ret_val
= e1000e_get_auto_rd_done(hw
);
1085 /* We don't want to continue accessing MAC registers. */
1089 * Phy configuration from NVM just starts after EECD_AUTO_RD is set.
1090 * Need to wait for Phy configuration completion before accessing
1094 switch (hw
->mac
.type
) {
1104 /* Clear any pending interrupt events. */
1105 ew32(IMC
, 0xffffffff);
1108 if (hw
->mac
.type
== e1000_82571
) {
1109 /* Install any alternate MAC address into RAR0 */
1110 ret_val
= e1000_check_alt_mac_addr_generic(hw
);
1114 e1000e_set_laa_state_82571(hw
, true);
1117 /* Reinitialize the 82571 serdes link state machine */
1118 if (hw
->phy
.media_type
== e1000_media_type_internal_serdes
)
1119 hw
->mac
.serdes_link_state
= e1000_serdes_link_down
;
1125 * e1000_init_hw_82571 - Initialize hardware
1126 * @hw: pointer to the HW structure
1128 * This inits the hardware readying it for operation.
1130 static s32
e1000_init_hw_82571(struct e1000_hw
*hw
)
1132 struct e1000_mac_info
*mac
= &hw
->mac
;
1135 u16 i
, rar_count
= mac
->rar_entry_count
;
1137 e1000_initialize_hw_bits_82571(hw
);
1139 /* Initialize identification LED */
1140 ret_val
= e1000e_id_led_init(hw
);
1142 e_dbg("Error initializing identification LED\n");
1143 /* This is not fatal and we should not stop init due to this */
1145 /* Disabling VLAN filtering */
1146 e_dbg("Initializing the IEEE VLAN\n");
1147 mac
->ops
.clear_vfta(hw
);
1149 /* Setup the receive address. */
1151 * If, however, a locally administered address was assigned to the
1152 * 82571, we must reserve a RAR for it to work around an issue where
1153 * resetting one port will reload the MAC on the other port.
1155 if (e1000e_get_laa_state_82571(hw
))
1157 e1000e_init_rx_addrs(hw
, rar_count
);
1159 /* Zero out the Multicast HASH table */
1160 e_dbg("Zeroing the MTA\n");
1161 for (i
= 0; i
< mac
->mta_reg_count
; i
++)
1162 E1000_WRITE_REG_ARRAY(hw
, E1000_MTA
, i
, 0);
1164 /* Setup link and flow control */
1165 ret_val
= e1000_setup_link_82571(hw
);
1167 /* Set the transmit descriptor write-back policy */
1168 reg_data
= er32(TXDCTL(0));
1169 reg_data
= (reg_data
& ~E1000_TXDCTL_WTHRESH
) |
1170 E1000_TXDCTL_FULL_TX_DESC_WB
|
1171 E1000_TXDCTL_COUNT_DESC
;
1172 ew32(TXDCTL(0), reg_data
);
1174 /* ...for both queues. */
1175 switch (mac
->type
) {
1177 e1000e_enable_tx_pkt_filtering(hw
);
1181 reg_data
= er32(GCR
);
1182 reg_data
|= E1000_GCR_L1_ACT_WITHOUT_L0S_RX
;
1183 ew32(GCR
, reg_data
);
1186 reg_data
= er32(TXDCTL(1));
1187 reg_data
= (reg_data
& ~E1000_TXDCTL_WTHRESH
) |
1188 E1000_TXDCTL_FULL_TX_DESC_WB
|
1189 E1000_TXDCTL_COUNT_DESC
;
1190 ew32(TXDCTL(1), reg_data
);
1195 * Clear all of the statistics registers (clear on read). It is
1196 * important that we do this after we have tried to establish link
1197 * because the symbol error count will increment wildly if there
1200 e1000_clear_hw_cntrs_82571(hw
);
1206 * e1000_initialize_hw_bits_82571 - Initialize hardware-dependent bits
1207 * @hw: pointer to the HW structure
1209 * Initializes required hardware-dependent bits needed for normal operation.
1211 static void e1000_initialize_hw_bits_82571(struct e1000_hw
*hw
)
1215 /* Transmit Descriptor Control 0 */
1216 reg
= er32(TXDCTL(0));
1218 ew32(TXDCTL(0), reg
);
1220 /* Transmit Descriptor Control 1 */
1221 reg
= er32(TXDCTL(1));
1223 ew32(TXDCTL(1), reg
);
1225 /* Transmit Arbitration Control 0 */
1226 reg
= er32(TARC(0));
1227 reg
&= ~(0xF << 27); /* 30:27 */
1228 switch (hw
->mac
.type
) {
1231 reg
|= (1 << 23) | (1 << 24) | (1 << 25) | (1 << 26);
1238 /* Transmit Arbitration Control 1 */
1239 reg
= er32(TARC(1));
1240 switch (hw
->mac
.type
) {
1243 reg
&= ~((1 << 29) | (1 << 30));
1244 reg
|= (1 << 22) | (1 << 24) | (1 << 25) | (1 << 26);
1245 if (er32(TCTL
) & E1000_TCTL_MULR
)
1255 /* Device Control */
1256 switch (hw
->mac
.type
) {
1268 /* Extended Device Control */
1269 switch (hw
->mac
.type
) {
1273 reg
= er32(CTRL_EXT
);
1276 ew32(CTRL_EXT
, reg
);
1282 if (hw
->mac
.type
== e1000_82571
) {
1283 reg
= er32(PBA_ECC
);
1284 reg
|= E1000_PBA_ECC_CORR_EN
;
1288 * Workaround for hardware errata.
1289 * Ensure that DMA Dynamic Clock gating is disabled on 82571 and 82572
1292 if ((hw
->mac
.type
== e1000_82571
) ||
1293 (hw
->mac
.type
== e1000_82572
)) {
1294 reg
= er32(CTRL_EXT
);
1295 reg
&= ~E1000_CTRL_EXT_DMA_DYN_CLK_EN
;
1296 ew32(CTRL_EXT
, reg
);
1300 /* PCI-Ex Control Registers */
1301 switch (hw
->mac
.type
) {
1309 * Workaround for hardware errata.
1310 * apply workaround for hardware errata documented in errata
1311 * docs Fixes issue where some error prone or unreliable PCIe
1312 * completions are occurring, particularly with ASPM enabled.
1313 * Without fix, issue can cause tx timeouts.
1325 * e1000_clear_vfta_82571 - Clear VLAN filter table
1326 * @hw: pointer to the HW structure
1328 * Clears the register array which contains the VLAN filter table by
1329 * setting all the values to 0.
1331 static void e1000_clear_vfta_82571(struct e1000_hw
*hw
)
1335 u32 vfta_offset
= 0;
1336 u32 vfta_bit_in_reg
= 0;
1338 switch (hw
->mac
.type
) {
1342 if (hw
->mng_cookie
.vlan_id
!= 0) {
1344 * The VFTA is a 4096b bit-field, each identifying
1345 * a single VLAN ID. The following operations
1346 * determine which 32b entry (i.e. offset) into the
1347 * array we want to set the VLAN ID (i.e. bit) of
1348 * the manageability unit.
1350 vfta_offset
= (hw
->mng_cookie
.vlan_id
>>
1351 E1000_VFTA_ENTRY_SHIFT
) &
1352 E1000_VFTA_ENTRY_MASK
;
1353 vfta_bit_in_reg
= 1 << (hw
->mng_cookie
.vlan_id
&
1354 E1000_VFTA_ENTRY_BIT_SHIFT_MASK
);
1360 for (offset
= 0; offset
< E1000_VLAN_FILTER_TBL_SIZE
; offset
++) {
1362 * If the offset we want to clear is the same offset of the
1363 * manageability VLAN ID, then clear all bits except that of
1364 * the manageability unit.
1366 vfta_value
= (offset
== vfta_offset
) ? vfta_bit_in_reg
: 0;
1367 E1000_WRITE_REG_ARRAY(hw
, E1000_VFTA
, offset
, vfta_value
);
1373 * e1000_check_mng_mode_82574 - Check manageability is enabled
1374 * @hw: pointer to the HW structure
1376 * Reads the NVM Initialization Control Word 2 and returns true
1377 * (>0) if any manageability is enabled, else false (0).
1379 static bool e1000_check_mng_mode_82574(struct e1000_hw
*hw
)
1383 e1000_read_nvm(hw
, NVM_INIT_CONTROL2_REG
, 1, &data
);
1384 return (data
& E1000_NVM_INIT_CTRL2_MNGM
) != 0;
1388 * e1000_led_on_82574 - Turn LED on
1389 * @hw: pointer to the HW structure
1393 static s32
e1000_led_on_82574(struct e1000_hw
*hw
)
1398 ctrl
= hw
->mac
.ledctl_mode2
;
1399 if (!(E1000_STATUS_LU
& er32(STATUS
))) {
1401 * If no link, then turn LED on by setting the invert bit
1402 * for each LED that's "on" (0x0E) in ledctl_mode2.
1404 for (i
= 0; i
< 4; i
++)
1405 if (((hw
->mac
.ledctl_mode2
>> (i
* 8)) & 0xFF) ==
1406 E1000_LEDCTL_MODE_LED_ON
)
1407 ctrl
|= (E1000_LEDCTL_LED0_IVRT
<< (i
* 8));
1415 * e1000_check_phy_82574 - check 82574 phy hung state
1416 * @hw: pointer to the HW structure
1418 * Returns whether phy is hung or not
1420 bool e1000_check_phy_82574(struct e1000_hw
*hw
)
1422 u16 status_1kbt
= 0;
1423 u16 receive_errors
= 0;
1424 bool phy_hung
= false;
1428 * Read PHY Receive Error counter first, if its is max - all F's then
1429 * read the Base1000T status register If both are max then PHY is hung.
1431 ret_val
= e1e_rphy(hw
, E1000_RECEIVE_ERROR_COUNTER
, &receive_errors
);
1435 if (receive_errors
== E1000_RECEIVE_ERROR_MAX
) {
1436 ret_val
= e1e_rphy(hw
, E1000_BASE1000T_STATUS
, &status_1kbt
);
1439 if ((status_1kbt
& E1000_IDLE_ERROR_COUNT_MASK
) ==
1440 E1000_IDLE_ERROR_COUNT_MASK
)
1448 * e1000_setup_link_82571 - Setup flow control and link settings
1449 * @hw: pointer to the HW structure
1451 * Determines which flow control settings to use, then configures flow
1452 * control. Calls the appropriate media-specific link configuration
1453 * function. Assuming the adapter has a valid link partner, a valid link
1454 * should be established. Assumes the hardware has previously been reset
1455 * and the transmitter and receiver are not enabled.
1457 static s32
e1000_setup_link_82571(struct e1000_hw
*hw
)
1460 * 82573 does not have a word in the NVM to determine
1461 * the default flow control setting, so we explicitly
1464 switch (hw
->mac
.type
) {
1468 if (hw
->fc
.requested_mode
== e1000_fc_default
)
1469 hw
->fc
.requested_mode
= e1000_fc_full
;
1475 return e1000e_setup_link(hw
);
1479 * e1000_setup_copper_link_82571 - Configure copper link settings
1480 * @hw: pointer to the HW structure
1482 * Configures the link for auto-neg or forced speed and duplex. Then we check
1483 * for link, once link is established calls to configure collision distance
1484 * and flow control are called.
1486 static s32
e1000_setup_copper_link_82571(struct e1000_hw
*hw
)
1492 ctrl
|= E1000_CTRL_SLU
;
1493 ctrl
&= ~(E1000_CTRL_FRCSPD
| E1000_CTRL_FRCDPX
);
1496 switch (hw
->phy
.type
) {
1499 ret_val
= e1000e_copper_link_setup_m88(hw
);
1501 case e1000_phy_igp_2
:
1502 ret_val
= e1000e_copper_link_setup_igp(hw
);
1505 return -E1000_ERR_PHY
;
1512 ret_val
= e1000e_setup_copper_link(hw
);
1518 * e1000_setup_fiber_serdes_link_82571 - Setup link for fiber/serdes
1519 * @hw: pointer to the HW structure
1521 * Configures collision distance and flow control for fiber and serdes links.
1522 * Upon successful setup, poll for link.
1524 static s32
e1000_setup_fiber_serdes_link_82571(struct e1000_hw
*hw
)
1526 switch (hw
->mac
.type
) {
1530 * If SerDes loopback mode is entered, there is no form
1531 * of reset to take the adapter out of that mode. So we
1532 * have to explicitly take the adapter out of loopback
1533 * mode. This prevents drivers from twiddling their thumbs
1534 * if another tool failed to take it out of loopback mode.
1536 ew32(SCTL
, E1000_SCTL_DISABLE_SERDES_LOOPBACK
);
1542 return e1000e_setup_fiber_serdes_link(hw
);
1546 * e1000_check_for_serdes_link_82571 - Check for link (Serdes)
1547 * @hw: pointer to the HW structure
1549 * Reports the link state as up or down.
1551 * If autonegotiation is supported by the link partner, the link state is
1552 * determined by the result of autonegotiation. This is the most likely case.
1553 * If autonegotiation is not supported by the link partner, and the link
1554 * has a valid signal, force the link up.
1556 * The link state is represented internally here by 4 states:
1559 * 2) autoneg_progress
1560 * 3) autoneg_complete (the link successfully autonegotiated)
1561 * 4) forced_up (the link has been forced up, it did not autonegotiate)
1564 static s32
e1000_check_for_serdes_link_82571(struct e1000_hw
*hw
)
1566 struct e1000_mac_info
*mac
= &hw
->mac
;
1575 status
= er32(STATUS
);
1578 if ((rxcw
& E1000_RXCW_SYNCH
) && !(rxcw
& E1000_RXCW_IV
)) {
1580 /* Receiver is synchronized with no invalid bits. */
1581 switch (mac
->serdes_link_state
) {
1582 case e1000_serdes_link_autoneg_complete
:
1583 if (!(status
& E1000_STATUS_LU
)) {
1585 * We have lost link, retry autoneg before
1586 * reporting link failure
1588 mac
->serdes_link_state
=
1589 e1000_serdes_link_autoneg_progress
;
1590 mac
->serdes_has_link
= false;
1591 e_dbg("AN_UP -> AN_PROG\n");
1593 mac
->serdes_has_link
= true;
1597 case e1000_serdes_link_forced_up
:
1599 * If we are receiving /C/ ordered sets, re-enable
1600 * auto-negotiation in the TXCW register and disable
1601 * forced link in the Device Control register in an
1602 * attempt to auto-negotiate with our link partner.
1603 * If the partner code word is null, stop forcing
1604 * and restart auto negotiation.
1606 if ((rxcw
& E1000_RXCW_C
) || !(rxcw
& E1000_RXCW_CW
)) {
1607 /* Enable autoneg, and unforce link up */
1608 ew32(TXCW
, mac
->txcw
);
1609 ew32(CTRL
, (ctrl
& ~E1000_CTRL_SLU
));
1610 mac
->serdes_link_state
=
1611 e1000_serdes_link_autoneg_progress
;
1612 mac
->serdes_has_link
= false;
1613 e_dbg("FORCED_UP -> AN_PROG\n");
1615 mac
->serdes_has_link
= true;
1619 case e1000_serdes_link_autoneg_progress
:
1620 if (rxcw
& E1000_RXCW_C
) {
1622 * We received /C/ ordered sets, meaning the
1623 * link partner has autonegotiated, and we can
1624 * trust the Link Up (LU) status bit.
1626 if (status
& E1000_STATUS_LU
) {
1627 mac
->serdes_link_state
=
1628 e1000_serdes_link_autoneg_complete
;
1629 e_dbg("AN_PROG -> AN_UP\n");
1630 mac
->serdes_has_link
= true;
1632 /* Autoneg completed, but failed. */
1633 mac
->serdes_link_state
=
1634 e1000_serdes_link_down
;
1635 e_dbg("AN_PROG -> DOWN\n");
1639 * The link partner did not autoneg.
1640 * Force link up and full duplex, and change
1643 ew32(TXCW
, (mac
->txcw
& ~E1000_TXCW_ANE
));
1644 ctrl
|= (E1000_CTRL_SLU
| E1000_CTRL_FD
);
1647 /* Configure Flow Control after link up. */
1648 ret_val
= e1000e_config_fc_after_link_up(hw
);
1650 e_dbg("Error config flow control\n");
1653 mac
->serdes_link_state
=
1654 e1000_serdes_link_forced_up
;
1655 mac
->serdes_has_link
= true;
1656 e_dbg("AN_PROG -> FORCED_UP\n");
1660 case e1000_serdes_link_down
:
1663 * The link was down but the receiver has now gained
1664 * valid sync, so lets see if we can bring the link
1667 ew32(TXCW
, mac
->txcw
);
1668 ew32(CTRL
, (ctrl
& ~E1000_CTRL_SLU
));
1669 mac
->serdes_link_state
=
1670 e1000_serdes_link_autoneg_progress
;
1671 mac
->serdes_has_link
= false;
1672 e_dbg("DOWN -> AN_PROG\n");
1676 if (!(rxcw
& E1000_RXCW_SYNCH
)) {
1677 mac
->serdes_has_link
= false;
1678 mac
->serdes_link_state
= e1000_serdes_link_down
;
1679 e_dbg("ANYSTATE -> DOWN\n");
1682 * Check several times, if Sync and Config
1683 * both are consistently 1 then simply ignore
1684 * the Invalid bit and restart Autoneg
1686 for (i
= 0; i
< AN_RETRY_COUNT
; i
++) {
1689 if ((rxcw
& E1000_RXCW_IV
) &&
1690 !((rxcw
& E1000_RXCW_SYNCH
) &&
1691 (rxcw
& E1000_RXCW_C
))) {
1692 mac
->serdes_has_link
= false;
1693 mac
->serdes_link_state
=
1694 e1000_serdes_link_down
;
1695 e_dbg("ANYSTATE -> DOWN\n");
1700 if (i
== AN_RETRY_COUNT
) {
1702 txcw
|= E1000_TXCW_ANE
;
1704 mac
->serdes_link_state
=
1705 e1000_serdes_link_autoneg_progress
;
1706 mac
->serdes_has_link
= false;
1707 e_dbg("ANYSTATE -> AN_PROG\n");
1716 * e1000_valid_led_default_82571 - Verify a valid default LED config
1717 * @hw: pointer to the HW structure
1718 * @data: pointer to the NVM (EEPROM)
1720 * Read the EEPROM for the current default LED configuration. If the
1721 * LED configuration is not valid, set to a valid LED configuration.
1723 static s32
e1000_valid_led_default_82571(struct e1000_hw
*hw
, u16
*data
)
1727 ret_val
= e1000_read_nvm(hw
, NVM_ID_LED_SETTINGS
, 1, data
);
1729 e_dbg("NVM Read Error\n");
1733 switch (hw
->mac
.type
) {
1737 if (*data
== ID_LED_RESERVED_F746
)
1738 *data
= ID_LED_DEFAULT_82573
;
1741 if (*data
== ID_LED_RESERVED_0000
||
1742 *data
== ID_LED_RESERVED_FFFF
)
1743 *data
= ID_LED_DEFAULT
;
1751 * e1000e_get_laa_state_82571 - Get locally administered address state
1752 * @hw: pointer to the HW structure
1754 * Retrieve and return the current locally administered address state.
1756 bool e1000e_get_laa_state_82571(struct e1000_hw
*hw
)
1758 if (hw
->mac
.type
!= e1000_82571
)
1761 return hw
->dev_spec
.e82571
.laa_is_present
;
1765 * e1000e_set_laa_state_82571 - Set locally administered address state
1766 * @hw: pointer to the HW structure
1767 * @state: enable/disable locally administered address
1769 * Enable/Disable the current locally administered address state.
1771 void e1000e_set_laa_state_82571(struct e1000_hw
*hw
, bool state
)
1773 if (hw
->mac
.type
!= e1000_82571
)
1776 hw
->dev_spec
.e82571
.laa_is_present
= state
;
1778 /* If workaround is activated... */
1781 * Hold a copy of the LAA in RAR[14] This is done so that
1782 * between the time RAR[0] gets clobbered and the time it
1783 * gets fixed, the actual LAA is in one of the RARs and no
1784 * incoming packets directed to this port are dropped.
1785 * Eventually the LAA will be in RAR[0] and RAR[14].
1787 e1000e_rar_set(hw
, hw
->mac
.addr
, hw
->mac
.rar_entry_count
- 1);
1791 * e1000_fix_nvm_checksum_82571 - Fix EEPROM checksum
1792 * @hw: pointer to the HW structure
1794 * Verifies that the EEPROM has completed the update. After updating the
1795 * EEPROM, we need to check bit 15 in work 0x23 for the checksum fix. If
1796 * the checksum fix is not implemented, we need to set the bit and update
1797 * the checksum. Otherwise, if bit 15 is set and the checksum is incorrect,
1798 * we need to return bad checksum.
1800 static s32
e1000_fix_nvm_checksum_82571(struct e1000_hw
*hw
)
1802 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
1806 if (nvm
->type
!= e1000_nvm_flash_hw
)
1810 * Check bit 4 of word 10h. If it is 0, firmware is done updating
1811 * 10h-12h. Checksum may need to be fixed.
1813 ret_val
= e1000_read_nvm(hw
, 0x10, 1, &data
);
1817 if (!(data
& 0x10)) {
1819 * Read 0x23 and check bit 15. This bit is a 1
1820 * when the checksum has already been fixed. If
1821 * the checksum is still wrong and this bit is a
1822 * 1, we need to return bad checksum. Otherwise,
1823 * we need to set this bit to a 1 and update the
1826 ret_val
= e1000_read_nvm(hw
, 0x23, 1, &data
);
1830 if (!(data
& 0x8000)) {
1832 ret_val
= e1000_write_nvm(hw
, 0x23, 1, &data
);
1835 ret_val
= e1000e_update_nvm_checksum(hw
);
1843 * e1000_read_mac_addr_82571 - Read device MAC address
1844 * @hw: pointer to the HW structure
1846 static s32
e1000_read_mac_addr_82571(struct e1000_hw
*hw
)
1850 if (hw
->mac
.type
== e1000_82571
) {
1852 * If there's an alternate MAC address place it in RAR0
1853 * so that it will override the Si installed default perm
1856 ret_val
= e1000_check_alt_mac_addr_generic(hw
);
1861 ret_val
= e1000_read_mac_addr_generic(hw
);
1868 * e1000_power_down_phy_copper_82571 - Remove link during PHY power down
1869 * @hw: pointer to the HW structure
1871 * In the case of a PHY power down to save power, or to turn off link during a
1872 * driver unload, or wake on lan is not enabled, remove the link.
1874 static void e1000_power_down_phy_copper_82571(struct e1000_hw
*hw
)
1876 struct e1000_phy_info
*phy
= &hw
->phy
;
1877 struct e1000_mac_info
*mac
= &hw
->mac
;
1879 if (!(phy
->ops
.check_reset_block
))
1882 /* If the management interface is not enabled, then power down */
1883 if (!(mac
->ops
.check_mng_mode(hw
) || phy
->ops
.check_reset_block(hw
)))
1884 e1000_power_down_phy_copper(hw
);
1888 * e1000_clear_hw_cntrs_82571 - Clear device specific hardware counters
1889 * @hw: pointer to the HW structure
1891 * Clears the hardware counters by reading the counter registers.
1893 static void e1000_clear_hw_cntrs_82571(struct e1000_hw
*hw
)
1895 e1000e_clear_hw_cntrs_base(hw
);
1933 static struct e1000_mac_operations e82571_mac_ops
= {
1934 /* .check_mng_mode: mac type dependent */
1935 /* .check_for_link: media type dependent */
1936 .id_led_init
= e1000e_id_led_init
,
1937 .cleanup_led
= e1000e_cleanup_led_generic
,
1938 .clear_hw_cntrs
= e1000_clear_hw_cntrs_82571
,
1939 .get_bus_info
= e1000e_get_bus_info_pcie
,
1940 .set_lan_id
= e1000_set_lan_id_multi_port_pcie
,
1941 /* .get_link_up_info: media type dependent */
1942 /* .led_on: mac type dependent */
1943 .led_off
= e1000e_led_off_generic
,
1944 .update_mc_addr_list
= e1000e_update_mc_addr_list_generic
,
1945 .write_vfta
= e1000_write_vfta_generic
,
1946 .clear_vfta
= e1000_clear_vfta_82571
,
1947 .reset_hw
= e1000_reset_hw_82571
,
1948 .init_hw
= e1000_init_hw_82571
,
1949 .setup_link
= e1000_setup_link_82571
,
1950 /* .setup_physical_interface: media type dependent */
1951 .setup_led
= e1000e_setup_led_generic
,
1952 .read_mac_addr
= e1000_read_mac_addr_82571
,
1955 static struct e1000_phy_operations e82_phy_ops_igp
= {
1956 .acquire
= e1000_get_hw_semaphore_82571
,
1957 .check_polarity
= e1000_check_polarity_igp
,
1958 .check_reset_block
= e1000e_check_reset_block_generic
,
1960 .force_speed_duplex
= e1000e_phy_force_speed_duplex_igp
,
1961 .get_cfg_done
= e1000_get_cfg_done_82571
,
1962 .get_cable_length
= e1000e_get_cable_length_igp_2
,
1963 .get_info
= e1000e_get_phy_info_igp
,
1964 .read_reg
= e1000e_read_phy_reg_igp
,
1965 .release
= e1000_put_hw_semaphore_82571
,
1966 .reset
= e1000e_phy_hw_reset_generic
,
1967 .set_d0_lplu_state
= e1000_set_d0_lplu_state_82571
,
1968 .set_d3_lplu_state
= e1000e_set_d3_lplu_state
,
1969 .write_reg
= e1000e_write_phy_reg_igp
,
1970 .cfg_on_link_up
= NULL
,
1973 static struct e1000_phy_operations e82_phy_ops_m88
= {
1974 .acquire
= e1000_get_hw_semaphore_82571
,
1975 .check_polarity
= e1000_check_polarity_m88
,
1976 .check_reset_block
= e1000e_check_reset_block_generic
,
1977 .commit
= e1000e_phy_sw_reset
,
1978 .force_speed_duplex
= e1000e_phy_force_speed_duplex_m88
,
1979 .get_cfg_done
= e1000e_get_cfg_done
,
1980 .get_cable_length
= e1000e_get_cable_length_m88
,
1981 .get_info
= e1000e_get_phy_info_m88
,
1982 .read_reg
= e1000e_read_phy_reg_m88
,
1983 .release
= e1000_put_hw_semaphore_82571
,
1984 .reset
= e1000e_phy_hw_reset_generic
,
1985 .set_d0_lplu_state
= e1000_set_d0_lplu_state_82571
,
1986 .set_d3_lplu_state
= e1000e_set_d3_lplu_state
,
1987 .write_reg
= e1000e_write_phy_reg_m88
,
1988 .cfg_on_link_up
= NULL
,
1991 static struct e1000_phy_operations e82_phy_ops_bm
= {
1992 .acquire
= e1000_get_hw_semaphore_82571
,
1993 .check_polarity
= e1000_check_polarity_m88
,
1994 .check_reset_block
= e1000e_check_reset_block_generic
,
1995 .commit
= e1000e_phy_sw_reset
,
1996 .force_speed_duplex
= e1000e_phy_force_speed_duplex_m88
,
1997 .get_cfg_done
= e1000e_get_cfg_done
,
1998 .get_cable_length
= e1000e_get_cable_length_m88
,
1999 .get_info
= e1000e_get_phy_info_m88
,
2000 .read_reg
= e1000e_read_phy_reg_bm2
,
2001 .release
= e1000_put_hw_semaphore_82571
,
2002 .reset
= e1000e_phy_hw_reset_generic
,
2003 .set_d0_lplu_state
= e1000_set_d0_lplu_state_82571
,
2004 .set_d3_lplu_state
= e1000e_set_d3_lplu_state
,
2005 .write_reg
= e1000e_write_phy_reg_bm2
,
2006 .cfg_on_link_up
= NULL
,
2009 static struct e1000_nvm_operations e82571_nvm_ops
= {
2010 .acquire
= e1000_acquire_nvm_82571
,
2011 .read
= e1000e_read_nvm_eerd
,
2012 .release
= e1000_release_nvm_82571
,
2013 .update
= e1000_update_nvm_checksum_82571
,
2014 .valid_led_default
= e1000_valid_led_default_82571
,
2015 .validate
= e1000_validate_nvm_checksum_82571
,
2016 .write
= e1000_write_nvm_82571
,
2019 struct e1000_info e1000_82571_info
= {
2021 .flags
= FLAG_HAS_HW_VLAN_FILTER
2022 | FLAG_HAS_JUMBO_FRAMES
2024 | FLAG_APME_IN_CTRL3
2025 | FLAG_RX_CSUM_ENABLED
2026 | FLAG_HAS_CTRLEXT_ON_LOAD
2027 | FLAG_HAS_SMART_POWER_DOWN
2028 | FLAG_RESET_OVERWRITES_LAA
/* errata */
2029 | FLAG_TARC_SPEED_MODE_BIT
/* errata */
2030 | FLAG_APME_CHECK_PORT_B
,
2031 .flags2
= FLAG2_DISABLE_ASPM_L1
/* errata 13 */
2034 .max_hw_frame_size
= DEFAULT_JUMBO
,
2035 .get_variants
= e1000_get_variants_82571
,
2036 .mac_ops
= &e82571_mac_ops
,
2037 .phy_ops
= &e82_phy_ops_igp
,
2038 .nvm_ops
= &e82571_nvm_ops
,
2041 struct e1000_info e1000_82572_info
= {
2043 .flags
= FLAG_HAS_HW_VLAN_FILTER
2044 | FLAG_HAS_JUMBO_FRAMES
2046 | FLAG_APME_IN_CTRL3
2047 | FLAG_RX_CSUM_ENABLED
2048 | FLAG_HAS_CTRLEXT_ON_LOAD
2049 | FLAG_TARC_SPEED_MODE_BIT
, /* errata */
2050 .flags2
= FLAG2_DISABLE_ASPM_L1
/* errata 13 */
2053 .max_hw_frame_size
= DEFAULT_JUMBO
,
2054 .get_variants
= e1000_get_variants_82571
,
2055 .mac_ops
= &e82571_mac_ops
,
2056 .phy_ops
= &e82_phy_ops_igp
,
2057 .nvm_ops
= &e82571_nvm_ops
,
2060 struct e1000_info e1000_82573_info
= {
2062 .flags
= FLAG_HAS_HW_VLAN_FILTER
2064 | FLAG_APME_IN_CTRL3
2065 | FLAG_RX_CSUM_ENABLED
2066 | FLAG_HAS_SMART_POWER_DOWN
2068 | FLAG_HAS_SWSM_ON_LOAD
,
2069 .flags2
= FLAG2_DISABLE_ASPM_L1
,
2071 .max_hw_frame_size
= ETH_FRAME_LEN
+ ETH_FCS_LEN
,
2072 .get_variants
= e1000_get_variants_82571
,
2073 .mac_ops
= &e82571_mac_ops
,
2074 .phy_ops
= &e82_phy_ops_m88
,
2075 .nvm_ops
= &e82571_nvm_ops
,
2078 struct e1000_info e1000_82574_info
= {
2080 .flags
= FLAG_HAS_HW_VLAN_FILTER
2082 | FLAG_HAS_JUMBO_FRAMES
2084 | FLAG_APME_IN_CTRL3
2085 | FLAG_RX_CSUM_ENABLED
2086 | FLAG_HAS_SMART_POWER_DOWN
2088 | FLAG_HAS_CTRLEXT_ON_LOAD
,
2089 .flags2
= FLAG2_CHECK_PHY_HANG
,
2091 .max_hw_frame_size
= DEFAULT_JUMBO
,
2092 .get_variants
= e1000_get_variants_82571
,
2093 .mac_ops
= &e82571_mac_ops
,
2094 .phy_ops
= &e82_phy_ops_bm
,
2095 .nvm_ops
= &e82571_nvm_ops
,
2098 struct e1000_info e1000_82583_info
= {
2100 .flags
= FLAG_HAS_HW_VLAN_FILTER
2102 | FLAG_APME_IN_CTRL3
2103 | FLAG_RX_CSUM_ENABLED
2104 | FLAG_HAS_SMART_POWER_DOWN
2106 | FLAG_HAS_CTRLEXT_ON_LOAD
,
2108 .max_hw_frame_size
= ETH_FRAME_LEN
+ ETH_FCS_LEN
,
2109 .get_variants
= e1000_get_variants_82571
,
2110 .mac_ops
= &e82571_mac_ops
,
2111 .phy_ops
= &e82_phy_ops_bm
,
2112 .nvm_ops
= &e82571_nvm_ops
,