1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2010 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
30 * 82562G 10/100 Network Connection
31 * 82562G-2 10/100 Network Connection
32 * 82562GT 10/100 Network Connection
33 * 82562GT-2 10/100 Network Connection
34 * 82562V 10/100 Network Connection
35 * 82562V-2 10/100 Network Connection
36 * 82566DC-2 Gigabit Network Connection
37 * 82566DC Gigabit Network Connection
38 * 82566DM-2 Gigabit Network Connection
39 * 82566DM Gigabit Network Connection
40 * 82566MC Gigabit Network Connection
41 * 82566MM Gigabit Network Connection
42 * 82567LM Gigabit Network Connection
43 * 82567LF Gigabit Network Connection
44 * 82567V Gigabit Network Connection
45 * 82567LM-2 Gigabit Network Connection
46 * 82567LF-2 Gigabit Network Connection
47 * 82567V-2 Gigabit Network Connection
48 * 82567LF-3 Gigabit Network Connection
49 * 82567LM-3 Gigabit Network Connection
50 * 82567LM-4 Gigabit Network Connection
51 * 82577LM Gigabit Network Connection
52 * 82577LC Gigabit Network Connection
53 * 82578DM Gigabit Network Connection
54 * 82578DC Gigabit Network Connection
55 * 82579LM Gigabit Network Connection
56 * 82579V Gigabit Network Connection
61 #define ICH_FLASH_GFPREG 0x0000
62 #define ICH_FLASH_HSFSTS 0x0004
63 #define ICH_FLASH_HSFCTL 0x0006
64 #define ICH_FLASH_FADDR 0x0008
65 #define ICH_FLASH_FDATA0 0x0010
66 #define ICH_FLASH_PR0 0x0074
68 #define ICH_FLASH_READ_COMMAND_TIMEOUT 500
69 #define ICH_FLASH_WRITE_COMMAND_TIMEOUT 500
70 #define ICH_FLASH_ERASE_COMMAND_TIMEOUT 3000000
71 #define ICH_FLASH_LINEAR_ADDR_MASK 0x00FFFFFF
72 #define ICH_FLASH_CYCLE_REPEAT_COUNT 10
74 #define ICH_CYCLE_READ 0
75 #define ICH_CYCLE_WRITE 2
76 #define ICH_CYCLE_ERASE 3
78 #define FLASH_GFPREG_BASE_MASK 0x1FFF
79 #define FLASH_SECTOR_ADDR_SHIFT 12
81 #define ICH_FLASH_SEG_SIZE_256 256
82 #define ICH_FLASH_SEG_SIZE_4K 4096
83 #define ICH_FLASH_SEG_SIZE_8K 8192
84 #define ICH_FLASH_SEG_SIZE_64K 65536
87 #define E1000_ICH_FWSM_RSPCIPHY 0x00000040 /* Reset PHY on PCI Reset */
88 /* FW established a valid mode */
89 #define E1000_ICH_FWSM_FW_VALID 0x00008000
91 #define E1000_ICH_MNG_IAMT_MODE 0x2
93 #define ID_LED_DEFAULT_ICH8LAN ((ID_LED_DEF1_DEF2 << 12) | \
94 (ID_LED_DEF1_OFF2 << 8) | \
95 (ID_LED_DEF1_ON2 << 4) | \
98 #define E1000_ICH_NVM_SIG_WORD 0x13
99 #define E1000_ICH_NVM_SIG_MASK 0xC000
100 #define E1000_ICH_NVM_VALID_SIG_MASK 0xC0
101 #define E1000_ICH_NVM_SIG_VALUE 0x80
103 #define E1000_ICH8_LAN_INIT_TIMEOUT 1500
105 #define E1000_FEXTNVM_SW_CONFIG 1
106 #define E1000_FEXTNVM_SW_CONFIG_ICH8M (1 << 27) /* Bit redefined for ICH8M :/ */
108 #define E1000_FEXTNVM4_BEACON_DURATION_MASK 0x7
109 #define E1000_FEXTNVM4_BEACON_DURATION_8USEC 0x7
110 #define E1000_FEXTNVM4_BEACON_DURATION_16USEC 0x3
112 #define PCIE_ICH8_SNOOP_ALL PCIE_NO_SNOOP_ALL
114 #define E1000_ICH_RAR_ENTRIES 7
116 #define PHY_PAGE_SHIFT 5
117 #define PHY_REG(page, reg) (((page) << PHY_PAGE_SHIFT) | \
118 ((reg) & MAX_PHY_REG_ADDRESS))
119 #define IGP3_KMRN_DIAG PHY_REG(770, 19) /* KMRN Diagnostic */
120 #define IGP3_VR_CTRL PHY_REG(776, 18) /* Voltage Regulator Control */
122 #define IGP3_KMRN_DIAG_PCS_LOCK_LOSS 0x0002
123 #define IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK 0x0300
124 #define IGP3_VR_CTRL_MODE_SHUTDOWN 0x0200
126 #define HV_LED_CONFIG PHY_REG(768, 30) /* LED Configuration */
128 #define SW_FLAG_TIMEOUT 1000 /* SW Semaphore flag timeout in milliseconds */
130 /* SMBus Address Phy Register */
131 #define HV_SMB_ADDR PHY_REG(768, 26)
132 #define HV_SMB_ADDR_MASK 0x007F
133 #define HV_SMB_ADDR_PEC_EN 0x0200
134 #define HV_SMB_ADDR_VALID 0x0080
136 /* PHY Power Management Control */
137 #define HV_PM_CTRL PHY_REG(770, 17)
139 /* PHY Low Power Idle Control */
140 #define I82579_LPI_CTRL PHY_REG(772, 20)
141 #define I82579_LPI_CTRL_ENABLE_MASK 0x6000
143 /* Strapping Option Register - RO */
144 #define E1000_STRAP 0x0000C
145 #define E1000_STRAP_SMBUS_ADDRESS_MASK 0x00FE0000
146 #define E1000_STRAP_SMBUS_ADDRESS_SHIFT 17
148 /* OEM Bits Phy Register */
149 #define HV_OEM_BITS PHY_REG(768, 25)
150 #define HV_OEM_BITS_LPLU 0x0004 /* Low Power Link Up */
151 #define HV_OEM_BITS_GBE_DIS 0x0040 /* Gigabit Disable */
152 #define HV_OEM_BITS_RESTART_AN 0x0400 /* Restart Auto-negotiation */
154 #define E1000_NVM_K1_CONFIG 0x1B /* NVM K1 Config Word */
155 #define E1000_NVM_K1_ENABLE 0x1 /* NVM Enable K1 bit */
157 /* KMRN Mode Control */
158 #define HV_KMRN_MODE_CTRL PHY_REG(769, 16)
159 #define HV_KMRN_MDIO_SLOW 0x0400
161 /* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
162 /* Offset 04h HSFSTS */
163 union ich8_hws_flash_status
{
165 u16 flcdone
:1; /* bit 0 Flash Cycle Done */
166 u16 flcerr
:1; /* bit 1 Flash Cycle Error */
167 u16 dael
:1; /* bit 2 Direct Access error Log */
168 u16 berasesz
:2; /* bit 4:3 Sector Erase Size */
169 u16 flcinprog
:1; /* bit 5 flash cycle in Progress */
170 u16 reserved1
:2; /* bit 13:6 Reserved */
171 u16 reserved2
:6; /* bit 13:6 Reserved */
172 u16 fldesvalid
:1; /* bit 14 Flash Descriptor Valid */
173 u16 flockdn
:1; /* bit 15 Flash Config Lock-Down */
178 /* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
179 /* Offset 06h FLCTL */
180 union ich8_hws_flash_ctrl
{
181 struct ich8_hsflctl
{
182 u16 flcgo
:1; /* 0 Flash Cycle Go */
183 u16 flcycle
:2; /* 2:1 Flash Cycle */
184 u16 reserved
:5; /* 7:3 Reserved */
185 u16 fldbcount
:2; /* 9:8 Flash Data Byte Count */
186 u16 flockdn
:6; /* 15:10 Reserved */
191 /* ICH Flash Region Access Permissions */
192 union ich8_hws_flash_regacc
{
194 u32 grra
:8; /* 0:7 GbE region Read Access */
195 u32 grwa
:8; /* 8:15 GbE region Write Access */
196 u32 gmrag
:8; /* 23:16 GbE Master Read Access Grant */
197 u32 gmwag
:8; /* 31:24 GbE Master Write Access Grant */
202 /* ICH Flash Protected Region */
203 union ich8_flash_protected_range
{
205 u32 base
:13; /* 0:12 Protected Range Base */
206 u32 reserved1
:2; /* 13:14 Reserved */
207 u32 rpe
:1; /* 15 Read Protection Enable */
208 u32 limit
:13; /* 16:28 Protected Range Limit */
209 u32 reserved2
:2; /* 29:30 Reserved */
210 u32 wpe
:1; /* 31 Write Protection Enable */
215 static s32
e1000_setup_link_ich8lan(struct e1000_hw
*hw
);
216 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw
*hw
);
217 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw
*hw
);
218 static s32
e1000_erase_flash_bank_ich8lan(struct e1000_hw
*hw
, u32 bank
);
219 static s32
e1000_retry_write_flash_byte_ich8lan(struct e1000_hw
*hw
,
220 u32 offset
, u8 byte
);
221 static s32
e1000_read_flash_byte_ich8lan(struct e1000_hw
*hw
, u32 offset
,
223 static s32
e1000_read_flash_word_ich8lan(struct e1000_hw
*hw
, u32 offset
,
225 static s32
e1000_read_flash_data_ich8lan(struct e1000_hw
*hw
, u32 offset
,
227 static s32
e1000_setup_copper_link_ich8lan(struct e1000_hw
*hw
);
228 static s32
e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw
*hw
);
229 static s32
e1000_get_cfg_done_ich8lan(struct e1000_hw
*hw
);
230 static s32
e1000_cleanup_led_ich8lan(struct e1000_hw
*hw
);
231 static s32
e1000_led_on_ich8lan(struct e1000_hw
*hw
);
232 static s32
e1000_led_off_ich8lan(struct e1000_hw
*hw
);
233 static s32
e1000_id_led_init_pchlan(struct e1000_hw
*hw
);
234 static s32
e1000_setup_led_pchlan(struct e1000_hw
*hw
);
235 static s32
e1000_cleanup_led_pchlan(struct e1000_hw
*hw
);
236 static s32
e1000_led_on_pchlan(struct e1000_hw
*hw
);
237 static s32
e1000_led_off_pchlan(struct e1000_hw
*hw
);
238 static s32
e1000_set_lplu_state_pchlan(struct e1000_hw
*hw
, bool active
);
239 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw
*hw
);
240 static void e1000_lan_init_done_ich8lan(struct e1000_hw
*hw
);
241 static s32
e1000_k1_gig_workaround_hv(struct e1000_hw
*hw
, bool link
);
242 static s32
e1000_set_mdio_slow_mode_hv(struct e1000_hw
*hw
);
243 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw
*hw
);
244 static bool e1000_check_mng_mode_pchlan(struct e1000_hw
*hw
);
245 static s32
e1000_k1_workaround_lv(struct e1000_hw
*hw
);
246 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw
*hw
, bool gate
);
248 static inline u16
__er16flash(struct e1000_hw
*hw
, unsigned long reg
)
250 return readw(hw
->flash_address
+ reg
);
253 static inline u32
__er32flash(struct e1000_hw
*hw
, unsigned long reg
)
255 return readl(hw
->flash_address
+ reg
);
258 static inline void __ew16flash(struct e1000_hw
*hw
, unsigned long reg
, u16 val
)
260 writew(val
, hw
->flash_address
+ reg
);
263 static inline void __ew32flash(struct e1000_hw
*hw
, unsigned long reg
, u32 val
)
265 writel(val
, hw
->flash_address
+ reg
);
268 #define er16flash(reg) __er16flash(hw, (reg))
269 #define er32flash(reg) __er32flash(hw, (reg))
270 #define ew16flash(reg,val) __ew16flash(hw, (reg), (val))
271 #define ew32flash(reg,val) __ew32flash(hw, (reg), (val))
274 * e1000_init_phy_params_pchlan - Initialize PHY function pointers
275 * @hw: pointer to the HW structure
277 * Initialize family-specific PHY parameters and function pointers.
279 static s32
e1000_init_phy_params_pchlan(struct e1000_hw
*hw
)
281 struct e1000_phy_info
*phy
= &hw
->phy
;
286 phy
->reset_delay_us
= 100;
288 phy
->ops
.read_reg
= e1000_read_phy_reg_hv
;
289 phy
->ops
.read_reg_locked
= e1000_read_phy_reg_hv_locked
;
290 phy
->ops
.set_d0_lplu_state
= e1000_set_lplu_state_pchlan
;
291 phy
->ops
.set_d3_lplu_state
= e1000_set_lplu_state_pchlan
;
292 phy
->ops
.write_reg
= e1000_write_phy_reg_hv
;
293 phy
->ops
.write_reg_locked
= e1000_write_phy_reg_hv_locked
;
294 phy
->ops
.power_up
= e1000_power_up_phy_copper
;
295 phy
->ops
.power_down
= e1000_power_down_phy_copper_ich8lan
;
296 phy
->autoneg_mask
= AUTONEG_ADVERTISE_SPEED_DEFAULT
;
299 * The MAC-PHY interconnect may still be in SMBus mode
300 * after Sx->S0. If the manageability engine (ME) is
301 * disabled, then toggle the LANPHYPC Value bit to force
302 * the interconnect to PCIe mode.
305 if (!(fwsm
& E1000_ICH_FWSM_FW_VALID
)) {
307 ctrl
|= E1000_CTRL_LANPHYPC_OVERRIDE
;
308 ctrl
&= ~E1000_CTRL_LANPHYPC_VALUE
;
311 ctrl
&= ~E1000_CTRL_LANPHYPC_OVERRIDE
;
316 * Gate automatic PHY configuration by hardware on
319 if (hw
->mac
.type
== e1000_pch2lan
)
320 e1000_gate_hw_phy_config_ich8lan(hw
, true);
324 * Reset the PHY before any acccess to it. Doing so, ensures that
325 * the PHY is in a known good state before we read/write PHY registers.
326 * The generic reset is sufficient here, because we haven't determined
329 ret_val
= e1000e_phy_hw_reset_generic(hw
);
333 /* Ungate automatic PHY configuration on non-managed 82579 */
334 if ((hw
->mac
.type
== e1000_pch2lan
) &&
335 !(fwsm
& E1000_ICH_FWSM_FW_VALID
)) {
337 e1000_gate_hw_phy_config_ich8lan(hw
, false);
340 phy
->id
= e1000_phy_unknown
;
341 switch (hw
->mac
.type
) {
343 ret_val
= e1000e_get_phy_id(hw
);
346 if ((phy
->id
!= 0) && (phy
->id
!= PHY_REVISION_MASK
))
351 * In case the PHY needs to be in mdio slow mode,
352 * set slow mode and try to get the PHY id again.
354 ret_val
= e1000_set_mdio_slow_mode_hv(hw
);
357 ret_val
= e1000e_get_phy_id(hw
);
362 phy
->type
= e1000e_get_phy_type_from_id(phy
->id
);
365 case e1000_phy_82577
:
366 case e1000_phy_82579
:
367 phy
->ops
.check_polarity
= e1000_check_polarity_82577
;
368 phy
->ops
.force_speed_duplex
=
369 e1000_phy_force_speed_duplex_82577
;
370 phy
->ops
.get_cable_length
= e1000_get_cable_length_82577
;
371 phy
->ops
.get_info
= e1000_get_phy_info_82577
;
372 phy
->ops
.commit
= e1000e_phy_sw_reset
;
374 case e1000_phy_82578
:
375 phy
->ops
.check_polarity
= e1000_check_polarity_m88
;
376 phy
->ops
.force_speed_duplex
= e1000e_phy_force_speed_duplex_m88
;
377 phy
->ops
.get_cable_length
= e1000e_get_cable_length_m88
;
378 phy
->ops
.get_info
= e1000e_get_phy_info_m88
;
381 ret_val
= -E1000_ERR_PHY
;
390 * e1000_init_phy_params_ich8lan - Initialize PHY function pointers
391 * @hw: pointer to the HW structure
393 * Initialize family-specific PHY parameters and function pointers.
395 static s32
e1000_init_phy_params_ich8lan(struct e1000_hw
*hw
)
397 struct e1000_phy_info
*phy
= &hw
->phy
;
402 phy
->reset_delay_us
= 100;
404 phy
->ops
.power_up
= e1000_power_up_phy_copper
;
405 phy
->ops
.power_down
= e1000_power_down_phy_copper_ich8lan
;
408 * We may need to do this twice - once for IGP and if that fails,
409 * we'll set BM func pointers and try again
411 ret_val
= e1000e_determine_phy_address(hw
);
413 phy
->ops
.write_reg
= e1000e_write_phy_reg_bm
;
414 phy
->ops
.read_reg
= e1000e_read_phy_reg_bm
;
415 ret_val
= e1000e_determine_phy_address(hw
);
417 e_dbg("Cannot determine PHY addr. Erroring out\n");
423 while ((e1000_phy_unknown
== e1000e_get_phy_type_from_id(phy
->id
)) &&
426 ret_val
= e1000e_get_phy_id(hw
);
433 case IGP03E1000_E_PHY_ID
:
434 phy
->type
= e1000_phy_igp_3
;
435 phy
->autoneg_mask
= AUTONEG_ADVERTISE_SPEED_DEFAULT
;
436 phy
->ops
.read_reg_locked
= e1000e_read_phy_reg_igp_locked
;
437 phy
->ops
.write_reg_locked
= e1000e_write_phy_reg_igp_locked
;
438 phy
->ops
.get_info
= e1000e_get_phy_info_igp
;
439 phy
->ops
.check_polarity
= e1000_check_polarity_igp
;
440 phy
->ops
.force_speed_duplex
= e1000e_phy_force_speed_duplex_igp
;
443 case IFE_PLUS_E_PHY_ID
:
445 phy
->type
= e1000_phy_ife
;
446 phy
->autoneg_mask
= E1000_ALL_NOT_GIG
;
447 phy
->ops
.get_info
= e1000_get_phy_info_ife
;
448 phy
->ops
.check_polarity
= e1000_check_polarity_ife
;
449 phy
->ops
.force_speed_duplex
= e1000_phy_force_speed_duplex_ife
;
451 case BME1000_E_PHY_ID
:
452 phy
->type
= e1000_phy_bm
;
453 phy
->autoneg_mask
= AUTONEG_ADVERTISE_SPEED_DEFAULT
;
454 phy
->ops
.read_reg
= e1000e_read_phy_reg_bm
;
455 phy
->ops
.write_reg
= e1000e_write_phy_reg_bm
;
456 phy
->ops
.commit
= e1000e_phy_sw_reset
;
457 phy
->ops
.get_info
= e1000e_get_phy_info_m88
;
458 phy
->ops
.check_polarity
= e1000_check_polarity_m88
;
459 phy
->ops
.force_speed_duplex
= e1000e_phy_force_speed_duplex_m88
;
462 return -E1000_ERR_PHY
;
470 * e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
471 * @hw: pointer to the HW structure
473 * Initialize family-specific NVM parameters and function
476 static s32
e1000_init_nvm_params_ich8lan(struct e1000_hw
*hw
)
478 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
479 struct e1000_dev_spec_ich8lan
*dev_spec
= &hw
->dev_spec
.ich8lan
;
480 u32 gfpreg
, sector_base_addr
, sector_end_addr
;
483 /* Can't read flash registers if the register set isn't mapped. */
484 if (!hw
->flash_address
) {
485 e_dbg("ERROR: Flash registers not mapped\n");
486 return -E1000_ERR_CONFIG
;
489 nvm
->type
= e1000_nvm_flash_sw
;
491 gfpreg
= er32flash(ICH_FLASH_GFPREG
);
494 * sector_X_addr is a "sector"-aligned address (4096 bytes)
495 * Add 1 to sector_end_addr since this sector is included in
498 sector_base_addr
= gfpreg
& FLASH_GFPREG_BASE_MASK
;
499 sector_end_addr
= ((gfpreg
>> 16) & FLASH_GFPREG_BASE_MASK
) + 1;
501 /* flash_base_addr is byte-aligned */
502 nvm
->flash_base_addr
= sector_base_addr
<< FLASH_SECTOR_ADDR_SHIFT
;
505 * find total size of the NVM, then cut in half since the total
506 * size represents two separate NVM banks.
508 nvm
->flash_bank_size
= (sector_end_addr
- sector_base_addr
)
509 << FLASH_SECTOR_ADDR_SHIFT
;
510 nvm
->flash_bank_size
/= 2;
511 /* Adjust to word count */
512 nvm
->flash_bank_size
/= sizeof(u16
);
514 nvm
->word_size
= E1000_ICH8_SHADOW_RAM_WORDS
;
516 /* Clear shadow ram */
517 for (i
= 0; i
< nvm
->word_size
; i
++) {
518 dev_spec
->shadow_ram
[i
].modified
= false;
519 dev_spec
->shadow_ram
[i
].value
= 0xFFFF;
526 * e1000_init_mac_params_ich8lan - Initialize MAC function pointers
527 * @hw: pointer to the HW structure
529 * Initialize family-specific MAC parameters and function
532 static s32
e1000_init_mac_params_ich8lan(struct e1000_adapter
*adapter
)
534 struct e1000_hw
*hw
= &adapter
->hw
;
535 struct e1000_mac_info
*mac
= &hw
->mac
;
537 /* Set media type function pointer */
538 hw
->phy
.media_type
= e1000_media_type_copper
;
540 /* Set mta register count */
541 mac
->mta_reg_count
= 32;
542 /* Set rar entry count */
543 mac
->rar_entry_count
= E1000_ICH_RAR_ENTRIES
;
544 if (mac
->type
== e1000_ich8lan
)
545 mac
->rar_entry_count
--;
547 mac
->has_fwsm
= true;
548 /* ARC subsystem not supported */
549 mac
->arc_subsystem_valid
= false;
550 /* Adaptive IFS supported */
551 mac
->adaptive_ifs
= true;
558 /* check management mode */
559 mac
->ops
.check_mng_mode
= e1000_check_mng_mode_ich8lan
;
561 mac
->ops
.id_led_init
= e1000e_id_led_init
;
563 mac
->ops
.setup_led
= e1000e_setup_led_generic
;
565 mac
->ops
.cleanup_led
= e1000_cleanup_led_ich8lan
;
566 /* turn on/off LED */
567 mac
->ops
.led_on
= e1000_led_on_ich8lan
;
568 mac
->ops
.led_off
= e1000_led_off_ich8lan
;
572 /* check management mode */
573 mac
->ops
.check_mng_mode
= e1000_check_mng_mode_pchlan
;
575 mac
->ops
.id_led_init
= e1000_id_led_init_pchlan
;
577 mac
->ops
.setup_led
= e1000_setup_led_pchlan
;
579 mac
->ops
.cleanup_led
= e1000_cleanup_led_pchlan
;
580 /* turn on/off LED */
581 mac
->ops
.led_on
= e1000_led_on_pchlan
;
582 mac
->ops
.led_off
= e1000_led_off_pchlan
;
588 /* Enable PCS Lock-loss workaround for ICH8 */
589 if (mac
->type
== e1000_ich8lan
)
590 e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw
, true);
592 /* Gate automatic PHY configuration by hardware on managed 82579 */
593 if ((mac
->type
== e1000_pch2lan
) &&
594 (er32(FWSM
) & E1000_ICH_FWSM_FW_VALID
))
595 e1000_gate_hw_phy_config_ich8lan(hw
, true);
601 * e1000_set_eee_pchlan - Enable/disable EEE support
602 * @hw: pointer to the HW structure
604 * Enable/disable EEE based on setting in dev_spec structure. The bits in
605 * the LPI Control register will remain set only if/when link is up.
607 static s32
e1000_set_eee_pchlan(struct e1000_hw
*hw
)
612 if (hw
->phy
.type
!= e1000_phy_82579
)
615 ret_val
= e1e_rphy(hw
, I82579_LPI_CTRL
, &phy_reg
);
619 if (hw
->dev_spec
.ich8lan
.eee_disable
)
620 phy_reg
&= ~I82579_LPI_CTRL_ENABLE_MASK
;
622 phy_reg
|= I82579_LPI_CTRL_ENABLE_MASK
;
624 ret_val
= e1e_wphy(hw
, I82579_LPI_CTRL
, phy_reg
);
630 * e1000_check_for_copper_link_ich8lan - Check for link (Copper)
631 * @hw: pointer to the HW structure
633 * Checks to see of the link status of the hardware has changed. If a
634 * change in link status has been detected, then we read the PHY registers
635 * to get the current speed/duplex if link exists.
637 static s32
e1000_check_for_copper_link_ich8lan(struct e1000_hw
*hw
)
639 struct e1000_mac_info
*mac
= &hw
->mac
;
644 * We only want to go out to the PHY registers to see if Auto-Neg
645 * has completed and/or if our link status has changed. The
646 * get_link_status flag is set upon receiving a Link Status
647 * Change or Rx Sequence Error interrupt.
649 if (!mac
->get_link_status
) {
655 * First we want to see if the MII Status Register reports
656 * link. If so, then we want to get the current speed/duplex
659 ret_val
= e1000e_phy_has_link_generic(hw
, 1, 0, &link
);
663 if (hw
->mac
.type
== e1000_pchlan
) {
664 ret_val
= e1000_k1_gig_workaround_hv(hw
, link
);
670 goto out
; /* No link detected */
672 mac
->get_link_status
= false;
674 if (hw
->phy
.type
== e1000_phy_82578
) {
675 ret_val
= e1000_link_stall_workaround_hv(hw
);
680 if (hw
->mac
.type
== e1000_pch2lan
) {
681 ret_val
= e1000_k1_workaround_lv(hw
);
687 * Check if there was DownShift, must be checked
688 * immediately after link-up
690 e1000e_check_downshift(hw
);
692 /* Enable/Disable EEE after link up */
693 ret_val
= e1000_set_eee_pchlan(hw
);
698 * If we are forcing speed/duplex, then we simply return since
699 * we have already determined whether we have link or not.
702 ret_val
= -E1000_ERR_CONFIG
;
707 * Auto-Neg is enabled. Auto Speed Detection takes care
708 * of MAC speed/duplex configuration. So we only need to
709 * configure Collision Distance in the MAC.
711 e1000e_config_collision_dist(hw
);
714 * Configure Flow Control now that Auto-Neg has completed.
715 * First, we need to restore the desired flow control
716 * settings because we may have had to re-autoneg with a
717 * different link partner.
719 ret_val
= e1000e_config_fc_after_link_up(hw
);
721 e_dbg("Error configuring flow control\n");
727 static s32
e1000_get_variants_ich8lan(struct e1000_adapter
*adapter
)
729 struct e1000_hw
*hw
= &adapter
->hw
;
732 rc
= e1000_init_mac_params_ich8lan(adapter
);
736 rc
= e1000_init_nvm_params_ich8lan(hw
);
740 switch (hw
->mac
.type
) {
744 rc
= e1000_init_phy_params_ich8lan(hw
);
748 rc
= e1000_init_phy_params_pchlan(hw
);
756 if (adapter
->hw
.phy
.type
== e1000_phy_ife
) {
757 adapter
->flags
&= ~FLAG_HAS_JUMBO_FRAMES
;
758 adapter
->max_hw_frame_size
= ETH_FRAME_LEN
+ ETH_FCS_LEN
;
761 if ((adapter
->hw
.mac
.type
== e1000_ich8lan
) &&
762 (adapter
->hw
.phy
.type
== e1000_phy_igp_3
))
763 adapter
->flags
|= FLAG_LSC_GIG_SPEED_DROP
;
765 /* Disable EEE by default until IEEE802.3az spec is finalized */
766 if (adapter
->flags2
& FLAG2_HAS_EEE
)
767 adapter
->hw
.dev_spec
.ich8lan
.eee_disable
= true;
772 static DEFINE_MUTEX(nvm_mutex
);
775 * e1000_acquire_nvm_ich8lan - Acquire NVM mutex
776 * @hw: pointer to the HW structure
778 * Acquires the mutex for performing NVM operations.
780 static s32
e1000_acquire_nvm_ich8lan(struct e1000_hw
*hw
)
782 mutex_lock(&nvm_mutex
);
788 * e1000_release_nvm_ich8lan - Release NVM mutex
789 * @hw: pointer to the HW structure
791 * Releases the mutex used while performing NVM operations.
793 static void e1000_release_nvm_ich8lan(struct e1000_hw
*hw
)
795 mutex_unlock(&nvm_mutex
);
798 static DEFINE_MUTEX(swflag_mutex
);
801 * e1000_acquire_swflag_ich8lan - Acquire software control flag
802 * @hw: pointer to the HW structure
804 * Acquires the software control flag for performing PHY and select
807 static s32
e1000_acquire_swflag_ich8lan(struct e1000_hw
*hw
)
809 u32 extcnf_ctrl
, timeout
= PHY_CFG_TIMEOUT
;
812 mutex_lock(&swflag_mutex
);
815 extcnf_ctrl
= er32(EXTCNF_CTRL
);
816 if (!(extcnf_ctrl
& E1000_EXTCNF_CTRL_SWFLAG
))
824 e_dbg("SW/FW/HW has locked the resource for too long.\n");
825 ret_val
= -E1000_ERR_CONFIG
;
829 timeout
= SW_FLAG_TIMEOUT
;
831 extcnf_ctrl
|= E1000_EXTCNF_CTRL_SWFLAG
;
832 ew32(EXTCNF_CTRL
, extcnf_ctrl
);
835 extcnf_ctrl
= er32(EXTCNF_CTRL
);
836 if (extcnf_ctrl
& E1000_EXTCNF_CTRL_SWFLAG
)
844 e_dbg("Failed to acquire the semaphore.\n");
845 extcnf_ctrl
&= ~E1000_EXTCNF_CTRL_SWFLAG
;
846 ew32(EXTCNF_CTRL
, extcnf_ctrl
);
847 ret_val
= -E1000_ERR_CONFIG
;
853 mutex_unlock(&swflag_mutex
);
859 * e1000_release_swflag_ich8lan - Release software control flag
860 * @hw: pointer to the HW structure
862 * Releases the software control flag for performing PHY and select
865 static void e1000_release_swflag_ich8lan(struct e1000_hw
*hw
)
869 extcnf_ctrl
= er32(EXTCNF_CTRL
);
870 extcnf_ctrl
&= ~E1000_EXTCNF_CTRL_SWFLAG
;
871 ew32(EXTCNF_CTRL
, extcnf_ctrl
);
873 mutex_unlock(&swflag_mutex
);
877 * e1000_check_mng_mode_ich8lan - Checks management mode
878 * @hw: pointer to the HW structure
880 * This checks if the adapter has any manageability enabled.
881 * This is a function pointer entry point only called by read/write
882 * routines for the PHY and NVM parts.
884 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw
*hw
)
889 return (fwsm
& E1000_ICH_FWSM_FW_VALID
) &&
890 ((fwsm
& E1000_FWSM_MODE_MASK
) ==
891 (E1000_ICH_MNG_IAMT_MODE
<< E1000_FWSM_MODE_SHIFT
));
895 * e1000_check_mng_mode_pchlan - Checks management mode
896 * @hw: pointer to the HW structure
898 * This checks if the adapter has iAMT enabled.
899 * This is a function pointer entry point only called by read/write
900 * routines for the PHY and NVM parts.
902 static bool e1000_check_mng_mode_pchlan(struct e1000_hw
*hw
)
907 return (fwsm
& E1000_ICH_FWSM_FW_VALID
) &&
908 (fwsm
& (E1000_ICH_MNG_IAMT_MODE
<< E1000_FWSM_MODE_SHIFT
));
912 * e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
913 * @hw: pointer to the HW structure
915 * Checks if firmware is blocking the reset of the PHY.
916 * This is a function pointer entry point only called by
919 static s32
e1000_check_reset_block_ich8lan(struct e1000_hw
*hw
)
925 return (fwsm
& E1000_ICH_FWSM_RSPCIPHY
) ? 0 : E1000_BLK_PHY_RESET
;
929 * e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
930 * @hw: pointer to the HW structure
932 * Assumes semaphore already acquired.
935 static s32
e1000_write_smbus_addr(struct e1000_hw
*hw
)
938 u32 strap
= er32(STRAP
);
941 strap
&= E1000_STRAP_SMBUS_ADDRESS_MASK
;
943 ret_val
= e1000_read_phy_reg_hv_locked(hw
, HV_SMB_ADDR
, &phy_data
);
947 phy_data
&= ~HV_SMB_ADDR_MASK
;
948 phy_data
|= (strap
>> E1000_STRAP_SMBUS_ADDRESS_SHIFT
);
949 phy_data
|= HV_SMB_ADDR_PEC_EN
| HV_SMB_ADDR_VALID
;
950 ret_val
= e1000_write_phy_reg_hv_locked(hw
, HV_SMB_ADDR
, phy_data
);
957 * e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
958 * @hw: pointer to the HW structure
960 * SW should configure the LCD from the NVM extended configuration region
961 * as a workaround for certain parts.
963 static s32
e1000_sw_lcd_config_ich8lan(struct e1000_hw
*hw
)
965 struct e1000_phy_info
*phy
= &hw
->phy
;
966 u32 i
, data
, cnf_size
, cnf_base_addr
, sw_cfg_mask
;
968 u16 word_addr
, reg_data
, reg_addr
, phy_page
= 0;
971 * Initialize the PHY from the NVM on ICH platforms. This
972 * is needed due to an issue where the NVM configuration is
973 * not properly autoloaded after power transitions.
974 * Therefore, after each PHY reset, we will load the
975 * configuration data out of the NVM manually.
977 switch (hw
->mac
.type
) {
979 if (phy
->type
!= e1000_phy_igp_3
)
982 if ((hw
->adapter
->pdev
->device
== E1000_DEV_ID_ICH8_IGP_AMT
) ||
983 (hw
->adapter
->pdev
->device
== E1000_DEV_ID_ICH8_IGP_C
)) {
984 sw_cfg_mask
= E1000_FEXTNVM_SW_CONFIG
;
990 sw_cfg_mask
= E1000_FEXTNVM_SW_CONFIG_ICH8M
;
996 ret_val
= hw
->phy
.ops
.acquire(hw
);
1000 data
= er32(FEXTNVM
);
1001 if (!(data
& sw_cfg_mask
))
1005 * Make sure HW does not configure LCD from PHY
1006 * extended configuration before SW configuration
1008 data
= er32(EXTCNF_CTRL
);
1009 if (!(hw
->mac
.type
== e1000_pch2lan
)) {
1010 if (data
& E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE
)
1014 cnf_size
= er32(EXTCNF_SIZE
);
1015 cnf_size
&= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK
;
1016 cnf_size
>>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT
;
1020 cnf_base_addr
= data
& E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK
;
1021 cnf_base_addr
>>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT
;
1023 if ((!(data
& E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE
) &&
1024 (hw
->mac
.type
== e1000_pchlan
)) ||
1025 (hw
->mac
.type
== e1000_pch2lan
)) {
1027 * HW configures the SMBus address and LEDs when the
1028 * OEM and LCD Write Enable bits are set in the NVM.
1029 * When both NVM bits are cleared, SW will configure
1032 ret_val
= e1000_write_smbus_addr(hw
);
1036 data
= er32(LEDCTL
);
1037 ret_val
= e1000_write_phy_reg_hv_locked(hw
, HV_LED_CONFIG
,
1043 /* Configure LCD from extended configuration region. */
1045 /* cnf_base_addr is in DWORD */
1046 word_addr
= (u16
)(cnf_base_addr
<< 1);
1048 for (i
= 0; i
< cnf_size
; i
++) {
1049 ret_val
= e1000_read_nvm(hw
, (word_addr
+ i
* 2), 1,
1054 ret_val
= e1000_read_nvm(hw
, (word_addr
+ i
* 2 + 1),
1059 /* Save off the PHY page for future writes. */
1060 if (reg_addr
== IGP01E1000_PHY_PAGE_SELECT
) {
1061 phy_page
= reg_data
;
1065 reg_addr
&= PHY_REG_MASK
;
1066 reg_addr
|= phy_page
;
1068 ret_val
= phy
->ops
.write_reg_locked(hw
, (u32
)reg_addr
,
1075 hw
->phy
.ops
.release(hw
);
1080 * e1000_k1_gig_workaround_hv - K1 Si workaround
1081 * @hw: pointer to the HW structure
1082 * @link: link up bool flag
1084 * If K1 is enabled for 1Gbps, the MAC might stall when transitioning
1085 * from a lower speed. This workaround disables K1 whenever link is at 1Gig
1086 * If link is down, the function will restore the default K1 setting located
1089 static s32
e1000_k1_gig_workaround_hv(struct e1000_hw
*hw
, bool link
)
1093 bool k1_enable
= hw
->dev_spec
.ich8lan
.nvm_k1_enabled
;
1095 if (hw
->mac
.type
!= e1000_pchlan
)
1098 /* Wrap the whole flow with the sw flag */
1099 ret_val
= hw
->phy
.ops
.acquire(hw
);
1103 /* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
1105 if (hw
->phy
.type
== e1000_phy_82578
) {
1106 ret_val
= hw
->phy
.ops
.read_reg_locked(hw
, BM_CS_STATUS
,
1111 status_reg
&= BM_CS_STATUS_LINK_UP
|
1112 BM_CS_STATUS_RESOLVED
|
1113 BM_CS_STATUS_SPEED_MASK
;
1115 if (status_reg
== (BM_CS_STATUS_LINK_UP
|
1116 BM_CS_STATUS_RESOLVED
|
1117 BM_CS_STATUS_SPEED_1000
))
1121 if (hw
->phy
.type
== e1000_phy_82577
) {
1122 ret_val
= hw
->phy
.ops
.read_reg_locked(hw
, HV_M_STATUS
,
1127 status_reg
&= HV_M_STATUS_LINK_UP
|
1128 HV_M_STATUS_AUTONEG_COMPLETE
|
1129 HV_M_STATUS_SPEED_MASK
;
1131 if (status_reg
== (HV_M_STATUS_LINK_UP
|
1132 HV_M_STATUS_AUTONEG_COMPLETE
|
1133 HV_M_STATUS_SPEED_1000
))
1137 /* Link stall fix for link up */
1138 ret_val
= hw
->phy
.ops
.write_reg_locked(hw
, PHY_REG(770, 19),
1144 /* Link stall fix for link down */
1145 ret_val
= hw
->phy
.ops
.write_reg_locked(hw
, PHY_REG(770, 19),
1151 ret_val
= e1000_configure_k1_ich8lan(hw
, k1_enable
);
1154 hw
->phy
.ops
.release(hw
);
1160 * e1000_configure_k1_ich8lan - Configure K1 power state
1161 * @hw: pointer to the HW structure
1162 * @enable: K1 state to configure
1164 * Configure the K1 power state based on the provided parameter.
1165 * Assumes semaphore already acquired.
1167 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1169 s32
e1000_configure_k1_ich8lan(struct e1000_hw
*hw
, bool k1_enable
)
1177 ret_val
= e1000e_read_kmrn_reg_locked(hw
,
1178 E1000_KMRNCTRLSTA_K1_CONFIG
,
1184 kmrn_reg
|= E1000_KMRNCTRLSTA_K1_ENABLE
;
1186 kmrn_reg
&= ~E1000_KMRNCTRLSTA_K1_ENABLE
;
1188 ret_val
= e1000e_write_kmrn_reg_locked(hw
,
1189 E1000_KMRNCTRLSTA_K1_CONFIG
,
1195 ctrl_ext
= er32(CTRL_EXT
);
1196 ctrl_reg
= er32(CTRL
);
1198 reg
= ctrl_reg
& ~(E1000_CTRL_SPD_1000
| E1000_CTRL_SPD_100
);
1199 reg
|= E1000_CTRL_FRCSPD
;
1202 ew32(CTRL_EXT
, ctrl_ext
| E1000_CTRL_EXT_SPD_BYPS
);
1204 ew32(CTRL
, ctrl_reg
);
1205 ew32(CTRL_EXT
, ctrl_ext
);
1213 * e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
1214 * @hw: pointer to the HW structure
1215 * @d0_state: boolean if entering d0 or d3 device state
1217 * SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
1218 * collectively called OEM bits. The OEM Write Enable bit and SW Config bit
1219 * in NVM determines whether HW should configure LPLU and Gbe Disable.
1221 static s32
e1000_oem_bits_config_ich8lan(struct e1000_hw
*hw
, bool d0_state
)
1227 if ((hw
->mac
.type
!= e1000_pch2lan
) && (hw
->mac
.type
!= e1000_pchlan
))
1230 ret_val
= hw
->phy
.ops
.acquire(hw
);
1234 if (!(hw
->mac
.type
== e1000_pch2lan
)) {
1235 mac_reg
= er32(EXTCNF_CTRL
);
1236 if (mac_reg
& E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE
)
1240 mac_reg
= er32(FEXTNVM
);
1241 if (!(mac_reg
& E1000_FEXTNVM_SW_CONFIG_ICH8M
))
1244 mac_reg
= er32(PHY_CTRL
);
1246 ret_val
= hw
->phy
.ops
.read_reg_locked(hw
, HV_OEM_BITS
, &oem_reg
);
1250 oem_reg
&= ~(HV_OEM_BITS_GBE_DIS
| HV_OEM_BITS_LPLU
);
1253 if (mac_reg
& E1000_PHY_CTRL_GBE_DISABLE
)
1254 oem_reg
|= HV_OEM_BITS_GBE_DIS
;
1256 if (mac_reg
& E1000_PHY_CTRL_D0A_LPLU
)
1257 oem_reg
|= HV_OEM_BITS_LPLU
;
1259 if (mac_reg
& E1000_PHY_CTRL_NOND0A_GBE_DISABLE
)
1260 oem_reg
|= HV_OEM_BITS_GBE_DIS
;
1262 if (mac_reg
& E1000_PHY_CTRL_NOND0A_LPLU
)
1263 oem_reg
|= HV_OEM_BITS_LPLU
;
1265 /* Restart auto-neg to activate the bits */
1266 if (!e1000_check_reset_block(hw
))
1267 oem_reg
|= HV_OEM_BITS_RESTART_AN
;
1268 ret_val
= hw
->phy
.ops
.write_reg_locked(hw
, HV_OEM_BITS
, oem_reg
);
1271 hw
->phy
.ops
.release(hw
);
1278 * e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
1279 * @hw: pointer to the HW structure
1281 static s32
e1000_set_mdio_slow_mode_hv(struct e1000_hw
*hw
)
1286 ret_val
= e1e_rphy(hw
, HV_KMRN_MODE_CTRL
, &data
);
1290 data
|= HV_KMRN_MDIO_SLOW
;
1292 ret_val
= e1e_wphy(hw
, HV_KMRN_MODE_CTRL
, data
);
1298 * e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be
1299 * done after every PHY reset.
1301 static s32
e1000_hv_phy_workarounds_ich8lan(struct e1000_hw
*hw
)
1306 if (hw
->mac
.type
!= e1000_pchlan
)
1309 /* Set MDIO slow mode before any other MDIO access */
1310 if (hw
->phy
.type
== e1000_phy_82577
) {
1311 ret_val
= e1000_set_mdio_slow_mode_hv(hw
);
1316 if (((hw
->phy
.type
== e1000_phy_82577
) &&
1317 ((hw
->phy
.revision
== 1) || (hw
->phy
.revision
== 2))) ||
1318 ((hw
->phy
.type
== e1000_phy_82578
) && (hw
->phy
.revision
== 1))) {
1319 /* Disable generation of early preamble */
1320 ret_val
= e1e_wphy(hw
, PHY_REG(769, 25), 0x4431);
1324 /* Preamble tuning for SSC */
1325 ret_val
= e1e_wphy(hw
, PHY_REG(770, 16), 0xA204);
1330 if (hw
->phy
.type
== e1000_phy_82578
) {
1332 * Return registers to default by doing a soft reset then
1333 * writing 0x3140 to the control register.
1335 if (hw
->phy
.revision
< 2) {
1336 e1000e_phy_sw_reset(hw
);
1337 ret_val
= e1e_wphy(hw
, PHY_CONTROL
, 0x3140);
1342 ret_val
= hw
->phy
.ops
.acquire(hw
);
1347 ret_val
= e1000e_write_phy_reg_mdic(hw
, IGP01E1000_PHY_PAGE_SELECT
, 0);
1348 hw
->phy
.ops
.release(hw
);
1353 * Configure the K1 Si workaround during phy reset assuming there is
1354 * link so that it disables K1 if link is in 1Gbps.
1356 ret_val
= e1000_k1_gig_workaround_hv(hw
, true);
1360 /* Workaround for link disconnects on a busy hub in half duplex */
1361 ret_val
= hw
->phy
.ops
.acquire(hw
);
1364 ret_val
= hw
->phy
.ops
.read_reg_locked(hw
,
1365 PHY_REG(BM_PORT_CTRL_PAGE
, 17),
1369 ret_val
= hw
->phy
.ops
.write_reg_locked(hw
,
1370 PHY_REG(BM_PORT_CTRL_PAGE
, 17),
1373 hw
->phy
.ops
.release(hw
);
1379 * e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
1380 * @hw: pointer to the HW structure
1382 void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw
*hw
)
1387 /* Copy both RAL/H (rar_entry_count) and SHRAL/H (+4) to PHY */
1388 for (i
= 0; i
< (hw
->mac
.rar_entry_count
+ 4); i
++) {
1389 mac_reg
= er32(RAL(i
));
1390 e1e_wphy(hw
, BM_RAR_L(i
), (u16
)(mac_reg
& 0xFFFF));
1391 e1e_wphy(hw
, BM_RAR_M(i
), (u16
)((mac_reg
>> 16) & 0xFFFF));
1392 mac_reg
= er32(RAH(i
));
1393 e1e_wphy(hw
, BM_RAR_H(i
), (u16
)(mac_reg
& 0xFFFF));
1394 e1e_wphy(hw
, BM_RAR_CTRL(i
), (u16
)((mac_reg
>> 16) & 0x8000));
1399 * e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
1401 * @hw: pointer to the HW structure
1402 * @enable: flag to enable/disable workaround when enabling/disabling jumbos
1404 s32
e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw
*hw
, bool enable
)
1411 if (hw
->mac
.type
!= e1000_pch2lan
)
1414 /* disable Rx path while enabling/disabling workaround */
1415 e1e_rphy(hw
, PHY_REG(769, 20), &phy_reg
);
1416 ret_val
= e1e_wphy(hw
, PHY_REG(769, 20), phy_reg
| (1 << 14));
1422 * Write Rx addresses (rar_entry_count for RAL/H, +4 for
1423 * SHRAL/H) and initial CRC values to the MAC
1425 for (i
= 0; i
< (hw
->mac
.rar_entry_count
+ 4); i
++) {
1426 u8 mac_addr
[ETH_ALEN
] = {0};
1427 u32 addr_high
, addr_low
;
1429 addr_high
= er32(RAH(i
));
1430 if (!(addr_high
& E1000_RAH_AV
))
1432 addr_low
= er32(RAL(i
));
1433 mac_addr
[0] = (addr_low
& 0xFF);
1434 mac_addr
[1] = ((addr_low
>> 8) & 0xFF);
1435 mac_addr
[2] = ((addr_low
>> 16) & 0xFF);
1436 mac_addr
[3] = ((addr_low
>> 24) & 0xFF);
1437 mac_addr
[4] = (addr_high
& 0xFF);
1438 mac_addr
[5] = ((addr_high
>> 8) & 0xFF);
1440 ew32(PCH_RAICC(i
), ~ether_crc_le(ETH_ALEN
, mac_addr
));
1443 /* Write Rx addresses to the PHY */
1444 e1000_copy_rx_addrs_to_phy_ich8lan(hw
);
1446 /* Enable jumbo frame workaround in the MAC */
1447 mac_reg
= er32(FFLT_DBG
);
1448 mac_reg
&= ~(1 << 14);
1449 mac_reg
|= (7 << 15);
1450 ew32(FFLT_DBG
, mac_reg
);
1452 mac_reg
= er32(RCTL
);
1453 mac_reg
|= E1000_RCTL_SECRC
;
1454 ew32(RCTL
, mac_reg
);
1456 ret_val
= e1000e_read_kmrn_reg(hw
,
1457 E1000_KMRNCTRLSTA_CTRL_OFFSET
,
1461 ret_val
= e1000e_write_kmrn_reg(hw
,
1462 E1000_KMRNCTRLSTA_CTRL_OFFSET
,
1466 ret_val
= e1000e_read_kmrn_reg(hw
,
1467 E1000_KMRNCTRLSTA_HD_CTRL
,
1471 data
&= ~(0xF << 8);
1473 ret_val
= e1000e_write_kmrn_reg(hw
,
1474 E1000_KMRNCTRLSTA_HD_CTRL
,
1479 /* Enable jumbo frame workaround in the PHY */
1480 e1e_rphy(hw
, PHY_REG(769, 23), &data
);
1481 data
&= ~(0x7F << 5);
1482 data
|= (0x37 << 5);
1483 ret_val
= e1e_wphy(hw
, PHY_REG(769, 23), data
);
1486 e1e_rphy(hw
, PHY_REG(769, 16), &data
);
1488 ret_val
= e1e_wphy(hw
, PHY_REG(769, 16), data
);
1491 e1e_rphy(hw
, PHY_REG(776, 20), &data
);
1492 data
&= ~(0x3FF << 2);
1493 data
|= (0x1A << 2);
1494 ret_val
= e1e_wphy(hw
, PHY_REG(776, 20), data
);
1497 ret_val
= e1e_wphy(hw
, PHY_REG(776, 23), 0xFE00);
1500 e1e_rphy(hw
, HV_PM_CTRL
, &data
);
1501 ret_val
= e1e_wphy(hw
, HV_PM_CTRL
, data
| (1 << 10));
1505 /* Write MAC register values back to h/w defaults */
1506 mac_reg
= er32(FFLT_DBG
);
1507 mac_reg
&= ~(0xF << 14);
1508 ew32(FFLT_DBG
, mac_reg
);
1510 mac_reg
= er32(RCTL
);
1511 mac_reg
&= ~E1000_RCTL_SECRC
;
1512 ew32(RCTL
, mac_reg
);
1514 ret_val
= e1000e_read_kmrn_reg(hw
,
1515 E1000_KMRNCTRLSTA_CTRL_OFFSET
,
1519 ret_val
= e1000e_write_kmrn_reg(hw
,
1520 E1000_KMRNCTRLSTA_CTRL_OFFSET
,
1524 ret_val
= e1000e_read_kmrn_reg(hw
,
1525 E1000_KMRNCTRLSTA_HD_CTRL
,
1529 data
&= ~(0xF << 8);
1531 ret_val
= e1000e_write_kmrn_reg(hw
,
1532 E1000_KMRNCTRLSTA_HD_CTRL
,
1537 /* Write PHY register values back to h/w defaults */
1538 e1e_rphy(hw
, PHY_REG(769, 23), &data
);
1539 data
&= ~(0x7F << 5);
1540 ret_val
= e1e_wphy(hw
, PHY_REG(769, 23), data
);
1543 e1e_rphy(hw
, PHY_REG(769, 16), &data
);
1545 ret_val
= e1e_wphy(hw
, PHY_REG(769, 16), data
);
1548 e1e_rphy(hw
, PHY_REG(776, 20), &data
);
1549 data
&= ~(0x3FF << 2);
1551 ret_val
= e1e_wphy(hw
, PHY_REG(776, 20), data
);
1554 ret_val
= e1e_wphy(hw
, PHY_REG(776, 23), 0x7E00);
1557 e1e_rphy(hw
, HV_PM_CTRL
, &data
);
1558 ret_val
= e1e_wphy(hw
, HV_PM_CTRL
, data
& ~(1 << 10));
1563 /* re-enable Rx path after enabling/disabling workaround */
1564 ret_val
= e1e_wphy(hw
, PHY_REG(769, 20), phy_reg
& ~(1 << 14));
1571 * e1000_lv_phy_workarounds_ich8lan - A series of Phy workarounds to be
1572 * done after every PHY reset.
1574 static s32
e1000_lv_phy_workarounds_ich8lan(struct e1000_hw
*hw
)
1578 if (hw
->mac
.type
!= e1000_pch2lan
)
1581 /* Set MDIO slow mode before any other MDIO access */
1582 ret_val
= e1000_set_mdio_slow_mode_hv(hw
);
1589 * e1000_k1_gig_workaround_lv - K1 Si workaround
1590 * @hw: pointer to the HW structure
1592 * Workaround to set the K1 beacon duration for 82579 parts
1594 static s32
e1000_k1_workaround_lv(struct e1000_hw
*hw
)
1600 if (hw
->mac
.type
!= e1000_pch2lan
)
1603 /* Set K1 beacon duration based on 1Gbps speed or otherwise */
1604 ret_val
= e1e_rphy(hw
, HV_M_STATUS
, &status_reg
);
1608 if ((status_reg
& (HV_M_STATUS_LINK_UP
| HV_M_STATUS_AUTONEG_COMPLETE
))
1609 == (HV_M_STATUS_LINK_UP
| HV_M_STATUS_AUTONEG_COMPLETE
)) {
1610 mac_reg
= er32(FEXTNVM4
);
1611 mac_reg
&= ~E1000_FEXTNVM4_BEACON_DURATION_MASK
;
1613 if (status_reg
& HV_M_STATUS_SPEED_1000
)
1614 mac_reg
|= E1000_FEXTNVM4_BEACON_DURATION_8USEC
;
1616 mac_reg
|= E1000_FEXTNVM4_BEACON_DURATION_16USEC
;
1618 ew32(FEXTNVM4
, mac_reg
);
1626 * e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
1627 * @hw: pointer to the HW structure
1628 * @gate: boolean set to true to gate, false to ungate
1630 * Gate/ungate the automatic PHY configuration via hardware; perform
1631 * the configuration via software instead.
1633 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw
*hw
, bool gate
)
1637 if (hw
->mac
.type
!= e1000_pch2lan
)
1640 extcnf_ctrl
= er32(EXTCNF_CTRL
);
1643 extcnf_ctrl
|= E1000_EXTCNF_CTRL_GATE_PHY_CFG
;
1645 extcnf_ctrl
&= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG
;
1647 ew32(EXTCNF_CTRL
, extcnf_ctrl
);
1652 * e1000_lan_init_done_ich8lan - Check for PHY config completion
1653 * @hw: pointer to the HW structure
1655 * Check the appropriate indication the MAC has finished configuring the
1656 * PHY after a software reset.
1658 static void e1000_lan_init_done_ich8lan(struct e1000_hw
*hw
)
1660 u32 data
, loop
= E1000_ICH8_LAN_INIT_TIMEOUT
;
1662 /* Wait for basic configuration completes before proceeding */
1664 data
= er32(STATUS
);
1665 data
&= E1000_STATUS_LAN_INIT_DONE
;
1667 } while ((!data
) && --loop
);
1670 * If basic configuration is incomplete before the above loop
1671 * count reaches 0, loading the configuration from NVM will
1672 * leave the PHY in a bad state possibly resulting in no link.
1675 e_dbg("LAN_INIT_DONE not set, increase timeout\n");
1677 /* Clear the Init Done bit for the next init event */
1678 data
= er32(STATUS
);
1679 data
&= ~E1000_STATUS_LAN_INIT_DONE
;
1684 * e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
1685 * @hw: pointer to the HW structure
1687 static s32
e1000_post_phy_reset_ich8lan(struct e1000_hw
*hw
)
1692 if (e1000_check_reset_block(hw
))
1695 /* Allow time for h/w to get to quiescent state after reset */
1698 /* Perform any necessary post-reset workarounds */
1699 switch (hw
->mac
.type
) {
1701 ret_val
= e1000_hv_phy_workarounds_ich8lan(hw
);
1706 ret_val
= e1000_lv_phy_workarounds_ich8lan(hw
);
1714 /* Dummy read to clear the phy wakeup bit after lcd reset */
1715 if (hw
->mac
.type
>= e1000_pchlan
)
1716 e1e_rphy(hw
, BM_WUC
, ®
);
1718 /* Configure the LCD with the extended configuration region in NVM */
1719 ret_val
= e1000_sw_lcd_config_ich8lan(hw
);
1723 /* Configure the LCD with the OEM bits in NVM */
1724 ret_val
= e1000_oem_bits_config_ich8lan(hw
, true);
1726 /* Ungate automatic PHY configuration on non-managed 82579 */
1727 if ((hw
->mac
.type
== e1000_pch2lan
) &&
1728 !(er32(FWSM
) & E1000_ICH_FWSM_FW_VALID
)) {
1730 e1000_gate_hw_phy_config_ich8lan(hw
, false);
1738 * e1000_phy_hw_reset_ich8lan - Performs a PHY reset
1739 * @hw: pointer to the HW structure
1742 * This is a function pointer entry point called by drivers
1743 * or other shared routines.
1745 static s32
e1000_phy_hw_reset_ich8lan(struct e1000_hw
*hw
)
1749 /* Gate automatic PHY configuration by hardware on non-managed 82579 */
1750 if ((hw
->mac
.type
== e1000_pch2lan
) &&
1751 !(er32(FWSM
) & E1000_ICH_FWSM_FW_VALID
))
1752 e1000_gate_hw_phy_config_ich8lan(hw
, true);
1754 ret_val
= e1000e_phy_hw_reset_generic(hw
);
1758 ret_val
= e1000_post_phy_reset_ich8lan(hw
);
1765 * e1000_set_lplu_state_pchlan - Set Low Power Link Up state
1766 * @hw: pointer to the HW structure
1767 * @active: true to enable LPLU, false to disable
1769 * Sets the LPLU state according to the active flag. For PCH, if OEM write
1770 * bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
1771 * the phy speed. This function will manually set the LPLU bit and restart
1772 * auto-neg as hw would do. D3 and D0 LPLU will call the same function
1773 * since it configures the same bit.
1775 static s32
e1000_set_lplu_state_pchlan(struct e1000_hw
*hw
, bool active
)
1780 ret_val
= e1e_rphy(hw
, HV_OEM_BITS
, &oem_reg
);
1785 oem_reg
|= HV_OEM_BITS_LPLU
;
1787 oem_reg
&= ~HV_OEM_BITS_LPLU
;
1789 oem_reg
|= HV_OEM_BITS_RESTART_AN
;
1790 ret_val
= e1e_wphy(hw
, HV_OEM_BITS
, oem_reg
);
1797 * e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
1798 * @hw: pointer to the HW structure
1799 * @active: true to enable LPLU, false to disable
1801 * Sets the LPLU D0 state according to the active flag. When
1802 * activating LPLU this function also disables smart speed
1803 * and vice versa. LPLU will not be activated unless the
1804 * device autonegotiation advertisement meets standards of
1805 * either 10 or 10/100 or 10/100/1000 at all duplexes.
1806 * This is a function pointer entry point only called by
1807 * PHY setup routines.
1809 static s32
e1000_set_d0_lplu_state_ich8lan(struct e1000_hw
*hw
, bool active
)
1811 struct e1000_phy_info
*phy
= &hw
->phy
;
1816 if (phy
->type
== e1000_phy_ife
)
1819 phy_ctrl
= er32(PHY_CTRL
);
1822 phy_ctrl
|= E1000_PHY_CTRL_D0A_LPLU
;
1823 ew32(PHY_CTRL
, phy_ctrl
);
1825 if (phy
->type
!= e1000_phy_igp_3
)
1829 * Call gig speed drop workaround on LPLU before accessing
1832 if (hw
->mac
.type
== e1000_ich8lan
)
1833 e1000e_gig_downshift_workaround_ich8lan(hw
);
1835 /* When LPLU is enabled, we should disable SmartSpeed */
1836 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CONFIG
, &data
);
1837 data
&= ~IGP01E1000_PSCFR_SMART_SPEED
;
1838 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CONFIG
, data
);
1842 phy_ctrl
&= ~E1000_PHY_CTRL_D0A_LPLU
;
1843 ew32(PHY_CTRL
, phy_ctrl
);
1845 if (phy
->type
!= e1000_phy_igp_3
)
1849 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
1850 * during Dx states where the power conservation is most
1851 * important. During driver activity we should enable
1852 * SmartSpeed, so performance is maintained.
1854 if (phy
->smart_speed
== e1000_smart_speed_on
) {
1855 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
1860 data
|= IGP01E1000_PSCFR_SMART_SPEED
;
1861 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
1865 } else if (phy
->smart_speed
== e1000_smart_speed_off
) {
1866 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
1871 data
&= ~IGP01E1000_PSCFR_SMART_SPEED
;
1872 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
1883 * e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
1884 * @hw: pointer to the HW structure
1885 * @active: true to enable LPLU, false to disable
1887 * Sets the LPLU D3 state according to the active flag. When
1888 * activating LPLU this function also disables smart speed
1889 * and vice versa. LPLU will not be activated unless the
1890 * device autonegotiation advertisement meets standards of
1891 * either 10 or 10/100 or 10/100/1000 at all duplexes.
1892 * This is a function pointer entry point only called by
1893 * PHY setup routines.
1895 static s32
e1000_set_d3_lplu_state_ich8lan(struct e1000_hw
*hw
, bool active
)
1897 struct e1000_phy_info
*phy
= &hw
->phy
;
1902 phy_ctrl
= er32(PHY_CTRL
);
1905 phy_ctrl
&= ~E1000_PHY_CTRL_NOND0A_LPLU
;
1906 ew32(PHY_CTRL
, phy_ctrl
);
1908 if (phy
->type
!= e1000_phy_igp_3
)
1912 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
1913 * during Dx states where the power conservation is most
1914 * important. During driver activity we should enable
1915 * SmartSpeed, so performance is maintained.
1917 if (phy
->smart_speed
== e1000_smart_speed_on
) {
1918 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
1923 data
|= IGP01E1000_PSCFR_SMART_SPEED
;
1924 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
1928 } else if (phy
->smart_speed
== e1000_smart_speed_off
) {
1929 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
1934 data
&= ~IGP01E1000_PSCFR_SMART_SPEED
;
1935 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
1940 } else if ((phy
->autoneg_advertised
== E1000_ALL_SPEED_DUPLEX
) ||
1941 (phy
->autoneg_advertised
== E1000_ALL_NOT_GIG
) ||
1942 (phy
->autoneg_advertised
== E1000_ALL_10_SPEED
)) {
1943 phy_ctrl
|= E1000_PHY_CTRL_NOND0A_LPLU
;
1944 ew32(PHY_CTRL
, phy_ctrl
);
1946 if (phy
->type
!= e1000_phy_igp_3
)
1950 * Call gig speed drop workaround on LPLU before accessing
1953 if (hw
->mac
.type
== e1000_ich8lan
)
1954 e1000e_gig_downshift_workaround_ich8lan(hw
);
1956 /* When LPLU is enabled, we should disable SmartSpeed */
1957 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CONFIG
, &data
);
1961 data
&= ~IGP01E1000_PSCFR_SMART_SPEED
;
1962 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CONFIG
, data
);
1969 * e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
1970 * @hw: pointer to the HW structure
1971 * @bank: pointer to the variable that returns the active bank
1973 * Reads signature byte from the NVM using the flash access registers.
1974 * Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
1976 static s32
e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw
*hw
, u32
*bank
)
1979 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
1980 u32 bank1_offset
= nvm
->flash_bank_size
* sizeof(u16
);
1981 u32 act_offset
= E1000_ICH_NVM_SIG_WORD
* 2 + 1;
1985 switch (hw
->mac
.type
) {
1989 if ((eecd
& E1000_EECD_SEC1VAL_VALID_MASK
) ==
1990 E1000_EECD_SEC1VAL_VALID_MASK
) {
1991 if (eecd
& E1000_EECD_SEC1VAL
)
1998 e_dbg("Unable to determine valid NVM bank via EEC - "
1999 "reading flash signature\n");
2002 /* set bank to 0 in case flash read fails */
2006 ret_val
= e1000_read_flash_byte_ich8lan(hw
, act_offset
,
2010 if ((sig_byte
& E1000_ICH_NVM_VALID_SIG_MASK
) ==
2011 E1000_ICH_NVM_SIG_VALUE
) {
2017 ret_val
= e1000_read_flash_byte_ich8lan(hw
, act_offset
+
2022 if ((sig_byte
& E1000_ICH_NVM_VALID_SIG_MASK
) ==
2023 E1000_ICH_NVM_SIG_VALUE
) {
2028 e_dbg("ERROR: No valid NVM bank present\n");
2029 return -E1000_ERR_NVM
;
2036 * e1000_read_nvm_ich8lan - Read word(s) from the NVM
2037 * @hw: pointer to the HW structure
2038 * @offset: The offset (in bytes) of the word(s) to read.
2039 * @words: Size of data to read in words
2040 * @data: Pointer to the word(s) to read at offset.
2042 * Reads a word(s) from the NVM using the flash access registers.
2044 static s32
e1000_read_nvm_ich8lan(struct e1000_hw
*hw
, u16 offset
, u16 words
,
2047 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
2048 struct e1000_dev_spec_ich8lan
*dev_spec
= &hw
->dev_spec
.ich8lan
;
2054 if ((offset
>= nvm
->word_size
) || (words
> nvm
->word_size
- offset
) ||
2056 e_dbg("nvm parameter(s) out of bounds\n");
2057 ret_val
= -E1000_ERR_NVM
;
2061 nvm
->ops
.acquire(hw
);
2063 ret_val
= e1000_valid_nvm_bank_detect_ich8lan(hw
, &bank
);
2065 e_dbg("Could not detect valid bank, assuming bank 0\n");
2069 act_offset
= (bank
) ? nvm
->flash_bank_size
: 0;
2070 act_offset
+= offset
;
2073 for (i
= 0; i
< words
; i
++) {
2074 if ((dev_spec
->shadow_ram
) &&
2075 (dev_spec
->shadow_ram
[offset
+i
].modified
)) {
2076 data
[i
] = dev_spec
->shadow_ram
[offset
+i
].value
;
2078 ret_val
= e1000_read_flash_word_ich8lan(hw
,
2087 nvm
->ops
.release(hw
);
2091 e_dbg("NVM read error: %d\n", ret_val
);
2097 * e1000_flash_cycle_init_ich8lan - Initialize flash
2098 * @hw: pointer to the HW structure
2100 * This function does initial flash setup so that a new read/write/erase cycle
2103 static s32
e1000_flash_cycle_init_ich8lan(struct e1000_hw
*hw
)
2105 union ich8_hws_flash_status hsfsts
;
2106 s32 ret_val
= -E1000_ERR_NVM
;
2109 hsfsts
.regval
= er16flash(ICH_FLASH_HSFSTS
);
2111 /* Check if the flash descriptor is valid */
2112 if (hsfsts
.hsf_status
.fldesvalid
== 0) {
2113 e_dbg("Flash descriptor invalid. "
2114 "SW Sequencing must be used.\n");
2115 return -E1000_ERR_NVM
;
2118 /* Clear FCERR and DAEL in hw status by writing 1 */
2119 hsfsts
.hsf_status
.flcerr
= 1;
2120 hsfsts
.hsf_status
.dael
= 1;
2122 ew16flash(ICH_FLASH_HSFSTS
, hsfsts
.regval
);
2125 * Either we should have a hardware SPI cycle in progress
2126 * bit to check against, in order to start a new cycle or
2127 * FDONE bit should be changed in the hardware so that it
2128 * is 1 after hardware reset, which can then be used as an
2129 * indication whether a cycle is in progress or has been
2133 if (hsfsts
.hsf_status
.flcinprog
== 0) {
2135 * There is no cycle running at present,
2136 * so we can start a cycle.
2137 * Begin by setting Flash Cycle Done.
2139 hsfsts
.hsf_status
.flcdone
= 1;
2140 ew16flash(ICH_FLASH_HSFSTS
, hsfsts
.regval
);
2144 * Otherwise poll for sometime so the current
2145 * cycle has a chance to end before giving up.
2147 for (i
= 0; i
< ICH_FLASH_READ_COMMAND_TIMEOUT
; i
++) {
2148 hsfsts
.regval
= __er16flash(hw
, ICH_FLASH_HSFSTS
);
2149 if (hsfsts
.hsf_status
.flcinprog
== 0) {
2157 * Successful in waiting for previous cycle to timeout,
2158 * now set the Flash Cycle Done.
2160 hsfsts
.hsf_status
.flcdone
= 1;
2161 ew16flash(ICH_FLASH_HSFSTS
, hsfsts
.regval
);
2163 e_dbg("Flash controller busy, cannot get access\n");
2171 * e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
2172 * @hw: pointer to the HW structure
2173 * @timeout: maximum time to wait for completion
2175 * This function starts a flash cycle and waits for its completion.
2177 static s32
e1000_flash_cycle_ich8lan(struct e1000_hw
*hw
, u32 timeout
)
2179 union ich8_hws_flash_ctrl hsflctl
;
2180 union ich8_hws_flash_status hsfsts
;
2181 s32 ret_val
= -E1000_ERR_NVM
;
2184 /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
2185 hsflctl
.regval
= er16flash(ICH_FLASH_HSFCTL
);
2186 hsflctl
.hsf_ctrl
.flcgo
= 1;
2187 ew16flash(ICH_FLASH_HSFCTL
, hsflctl
.regval
);
2189 /* wait till FDONE bit is set to 1 */
2191 hsfsts
.regval
= er16flash(ICH_FLASH_HSFSTS
);
2192 if (hsfsts
.hsf_status
.flcdone
== 1)
2195 } while (i
++ < timeout
);
2197 if (hsfsts
.hsf_status
.flcdone
== 1 && hsfsts
.hsf_status
.flcerr
== 0)
2204 * e1000_read_flash_word_ich8lan - Read word from flash
2205 * @hw: pointer to the HW structure
2206 * @offset: offset to data location
2207 * @data: pointer to the location for storing the data
2209 * Reads the flash word at offset into data. Offset is converted
2210 * to bytes before read.
2212 static s32
e1000_read_flash_word_ich8lan(struct e1000_hw
*hw
, u32 offset
,
2215 /* Must convert offset into bytes. */
2218 return e1000_read_flash_data_ich8lan(hw
, offset
, 2, data
);
2222 * e1000_read_flash_byte_ich8lan - Read byte from flash
2223 * @hw: pointer to the HW structure
2224 * @offset: The offset of the byte to read.
2225 * @data: Pointer to a byte to store the value read.
2227 * Reads a single byte from the NVM using the flash access registers.
2229 static s32
e1000_read_flash_byte_ich8lan(struct e1000_hw
*hw
, u32 offset
,
2235 ret_val
= e1000_read_flash_data_ich8lan(hw
, offset
, 1, &word
);
2245 * e1000_read_flash_data_ich8lan - Read byte or word from NVM
2246 * @hw: pointer to the HW structure
2247 * @offset: The offset (in bytes) of the byte or word to read.
2248 * @size: Size of data to read, 1=byte 2=word
2249 * @data: Pointer to the word to store the value read.
2251 * Reads a byte or word from the NVM using the flash access registers.
2253 static s32
e1000_read_flash_data_ich8lan(struct e1000_hw
*hw
, u32 offset
,
2256 union ich8_hws_flash_status hsfsts
;
2257 union ich8_hws_flash_ctrl hsflctl
;
2258 u32 flash_linear_addr
;
2260 s32 ret_val
= -E1000_ERR_NVM
;
2263 if (size
< 1 || size
> 2 || offset
> ICH_FLASH_LINEAR_ADDR_MASK
)
2264 return -E1000_ERR_NVM
;
2266 flash_linear_addr
= (ICH_FLASH_LINEAR_ADDR_MASK
& offset
) +
2267 hw
->nvm
.flash_base_addr
;
2272 ret_val
= e1000_flash_cycle_init_ich8lan(hw
);
2276 hsflctl
.regval
= er16flash(ICH_FLASH_HSFCTL
);
2277 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
2278 hsflctl
.hsf_ctrl
.fldbcount
= size
- 1;
2279 hsflctl
.hsf_ctrl
.flcycle
= ICH_CYCLE_READ
;
2280 ew16flash(ICH_FLASH_HSFCTL
, hsflctl
.regval
);
2282 ew32flash(ICH_FLASH_FADDR
, flash_linear_addr
);
2284 ret_val
= e1000_flash_cycle_ich8lan(hw
,
2285 ICH_FLASH_READ_COMMAND_TIMEOUT
);
2288 * Check if FCERR is set to 1, if set to 1, clear it
2289 * and try the whole sequence a few more times, else
2290 * read in (shift in) the Flash Data0, the order is
2291 * least significant byte first msb to lsb
2294 flash_data
= er32flash(ICH_FLASH_FDATA0
);
2296 *data
= (u8
)(flash_data
& 0x000000FF);
2298 *data
= (u16
)(flash_data
& 0x0000FFFF);
2302 * If we've gotten here, then things are probably
2303 * completely hosed, but if the error condition is
2304 * detected, it won't hurt to give it another try...
2305 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
2307 hsfsts
.regval
= er16flash(ICH_FLASH_HSFSTS
);
2308 if (hsfsts
.hsf_status
.flcerr
== 1) {
2309 /* Repeat for some time before giving up. */
2311 } else if (hsfsts
.hsf_status
.flcdone
== 0) {
2312 e_dbg("Timeout error - flash cycle "
2313 "did not complete.\n");
2317 } while (count
++ < ICH_FLASH_CYCLE_REPEAT_COUNT
);
2323 * e1000_write_nvm_ich8lan - Write word(s) to the NVM
2324 * @hw: pointer to the HW structure
2325 * @offset: The offset (in bytes) of the word(s) to write.
2326 * @words: Size of data to write in words
2327 * @data: Pointer to the word(s) to write at offset.
2329 * Writes a byte or word to the NVM using the flash access registers.
2331 static s32
e1000_write_nvm_ich8lan(struct e1000_hw
*hw
, u16 offset
, u16 words
,
2334 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
2335 struct e1000_dev_spec_ich8lan
*dev_spec
= &hw
->dev_spec
.ich8lan
;
2338 if ((offset
>= nvm
->word_size
) || (words
> nvm
->word_size
- offset
) ||
2340 e_dbg("nvm parameter(s) out of bounds\n");
2341 return -E1000_ERR_NVM
;
2344 nvm
->ops
.acquire(hw
);
2346 for (i
= 0; i
< words
; i
++) {
2347 dev_spec
->shadow_ram
[offset
+i
].modified
= true;
2348 dev_spec
->shadow_ram
[offset
+i
].value
= data
[i
];
2351 nvm
->ops
.release(hw
);
2357 * e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
2358 * @hw: pointer to the HW structure
2360 * The NVM checksum is updated by calling the generic update_nvm_checksum,
2361 * which writes the checksum to the shadow ram. The changes in the shadow
2362 * ram are then committed to the EEPROM by processing each bank at a time
2363 * checking for the modified bit and writing only the pending changes.
2364 * After a successful commit, the shadow ram is cleared and is ready for
2367 static s32
e1000_update_nvm_checksum_ich8lan(struct e1000_hw
*hw
)
2369 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
2370 struct e1000_dev_spec_ich8lan
*dev_spec
= &hw
->dev_spec
.ich8lan
;
2371 u32 i
, act_offset
, new_bank_offset
, old_bank_offset
, bank
;
2375 ret_val
= e1000e_update_nvm_checksum_generic(hw
);
2379 if (nvm
->type
!= e1000_nvm_flash_sw
)
2382 nvm
->ops
.acquire(hw
);
2385 * We're writing to the opposite bank so if we're on bank 1,
2386 * write to bank 0 etc. We also need to erase the segment that
2387 * is going to be written
2389 ret_val
= e1000_valid_nvm_bank_detect_ich8lan(hw
, &bank
);
2391 e_dbg("Could not detect valid bank, assuming bank 0\n");
2396 new_bank_offset
= nvm
->flash_bank_size
;
2397 old_bank_offset
= 0;
2398 ret_val
= e1000_erase_flash_bank_ich8lan(hw
, 1);
2402 old_bank_offset
= nvm
->flash_bank_size
;
2403 new_bank_offset
= 0;
2404 ret_val
= e1000_erase_flash_bank_ich8lan(hw
, 0);
2409 for (i
= 0; i
< E1000_ICH8_SHADOW_RAM_WORDS
; i
++) {
2411 * Determine whether to write the value stored
2412 * in the other NVM bank or a modified value stored
2415 if (dev_spec
->shadow_ram
[i
].modified
) {
2416 data
= dev_spec
->shadow_ram
[i
].value
;
2418 ret_val
= e1000_read_flash_word_ich8lan(hw
, i
+
2426 * If the word is 0x13, then make sure the signature bits
2427 * (15:14) are 11b until the commit has completed.
2428 * This will allow us to write 10b which indicates the
2429 * signature is valid. We want to do this after the write
2430 * has completed so that we don't mark the segment valid
2431 * while the write is still in progress
2433 if (i
== E1000_ICH_NVM_SIG_WORD
)
2434 data
|= E1000_ICH_NVM_SIG_MASK
;
2436 /* Convert offset to bytes. */
2437 act_offset
= (i
+ new_bank_offset
) << 1;
2440 /* Write the bytes to the new bank. */
2441 ret_val
= e1000_retry_write_flash_byte_ich8lan(hw
,
2448 ret_val
= e1000_retry_write_flash_byte_ich8lan(hw
,
2456 * Don't bother writing the segment valid bits if sector
2457 * programming failed.
2460 /* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
2461 e_dbg("Flash commit failed.\n");
2466 * Finally validate the new segment by setting bit 15:14
2467 * to 10b in word 0x13 , this can be done without an
2468 * erase as well since these bits are 11 to start with
2469 * and we need to change bit 14 to 0b
2471 act_offset
= new_bank_offset
+ E1000_ICH_NVM_SIG_WORD
;
2472 ret_val
= e1000_read_flash_word_ich8lan(hw
, act_offset
, &data
);
2477 ret_val
= e1000_retry_write_flash_byte_ich8lan(hw
,
2484 * And invalidate the previously valid segment by setting
2485 * its signature word (0x13) high_byte to 0b. This can be
2486 * done without an erase because flash erase sets all bits
2487 * to 1's. We can write 1's to 0's without an erase
2489 act_offset
= (old_bank_offset
+ E1000_ICH_NVM_SIG_WORD
) * 2 + 1;
2490 ret_val
= e1000_retry_write_flash_byte_ich8lan(hw
, act_offset
, 0);
2494 /* Great! Everything worked, we can now clear the cached entries. */
2495 for (i
= 0; i
< E1000_ICH8_SHADOW_RAM_WORDS
; i
++) {
2496 dev_spec
->shadow_ram
[i
].modified
= false;
2497 dev_spec
->shadow_ram
[i
].value
= 0xFFFF;
2501 nvm
->ops
.release(hw
);
2504 * Reload the EEPROM, or else modifications will not appear
2505 * until after the next adapter reset.
2508 e1000e_reload_nvm(hw
);
2514 e_dbg("NVM update error: %d\n", ret_val
);
2520 * e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
2521 * @hw: pointer to the HW structure
2523 * Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
2524 * If the bit is 0, that the EEPROM had been modified, but the checksum was not
2525 * calculated, in which case we need to calculate the checksum and set bit 6.
2527 static s32
e1000_validate_nvm_checksum_ich8lan(struct e1000_hw
*hw
)
2533 * Read 0x19 and check bit 6. If this bit is 0, the checksum
2534 * needs to be fixed. This bit is an indication that the NVM
2535 * was prepared by OEM software and did not calculate the
2536 * checksum...a likely scenario.
2538 ret_val
= e1000_read_nvm(hw
, 0x19, 1, &data
);
2542 if ((data
& 0x40) == 0) {
2544 ret_val
= e1000_write_nvm(hw
, 0x19, 1, &data
);
2547 ret_val
= e1000e_update_nvm_checksum(hw
);
2552 return e1000e_validate_nvm_checksum_generic(hw
);
2556 * e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
2557 * @hw: pointer to the HW structure
2559 * To prevent malicious write/erase of the NVM, set it to be read-only
2560 * so that the hardware ignores all write/erase cycles of the NVM via
2561 * the flash control registers. The shadow-ram copy of the NVM will
2562 * still be updated, however any updates to this copy will not stick
2563 * across driver reloads.
2565 void e1000e_write_protect_nvm_ich8lan(struct e1000_hw
*hw
)
2567 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
2568 union ich8_flash_protected_range pr0
;
2569 union ich8_hws_flash_status hsfsts
;
2572 nvm
->ops
.acquire(hw
);
2574 gfpreg
= er32flash(ICH_FLASH_GFPREG
);
2576 /* Write-protect GbE Sector of NVM */
2577 pr0
.regval
= er32flash(ICH_FLASH_PR0
);
2578 pr0
.range
.base
= gfpreg
& FLASH_GFPREG_BASE_MASK
;
2579 pr0
.range
.limit
= ((gfpreg
>> 16) & FLASH_GFPREG_BASE_MASK
);
2580 pr0
.range
.wpe
= true;
2581 ew32flash(ICH_FLASH_PR0
, pr0
.regval
);
2584 * Lock down a subset of GbE Flash Control Registers, e.g.
2585 * PR0 to prevent the write-protection from being lifted.
2586 * Once FLOCKDN is set, the registers protected by it cannot
2587 * be written until FLOCKDN is cleared by a hardware reset.
2589 hsfsts
.regval
= er16flash(ICH_FLASH_HSFSTS
);
2590 hsfsts
.hsf_status
.flockdn
= true;
2591 ew32flash(ICH_FLASH_HSFSTS
, hsfsts
.regval
);
2593 nvm
->ops
.release(hw
);
2597 * e1000_write_flash_data_ich8lan - Writes bytes to the NVM
2598 * @hw: pointer to the HW structure
2599 * @offset: The offset (in bytes) of the byte/word to read.
2600 * @size: Size of data to read, 1=byte 2=word
2601 * @data: The byte(s) to write to the NVM.
2603 * Writes one/two bytes to the NVM using the flash access registers.
2605 static s32
e1000_write_flash_data_ich8lan(struct e1000_hw
*hw
, u32 offset
,
2608 union ich8_hws_flash_status hsfsts
;
2609 union ich8_hws_flash_ctrl hsflctl
;
2610 u32 flash_linear_addr
;
2615 if (size
< 1 || size
> 2 || data
> size
* 0xff ||
2616 offset
> ICH_FLASH_LINEAR_ADDR_MASK
)
2617 return -E1000_ERR_NVM
;
2619 flash_linear_addr
= (ICH_FLASH_LINEAR_ADDR_MASK
& offset
) +
2620 hw
->nvm
.flash_base_addr
;
2625 ret_val
= e1000_flash_cycle_init_ich8lan(hw
);
2629 hsflctl
.regval
= er16flash(ICH_FLASH_HSFCTL
);
2630 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
2631 hsflctl
.hsf_ctrl
.fldbcount
= size
-1;
2632 hsflctl
.hsf_ctrl
.flcycle
= ICH_CYCLE_WRITE
;
2633 ew16flash(ICH_FLASH_HSFCTL
, hsflctl
.regval
);
2635 ew32flash(ICH_FLASH_FADDR
, flash_linear_addr
);
2638 flash_data
= (u32
)data
& 0x00FF;
2640 flash_data
= (u32
)data
;
2642 ew32flash(ICH_FLASH_FDATA0
, flash_data
);
2645 * check if FCERR is set to 1 , if set to 1, clear it
2646 * and try the whole sequence a few more times else done
2648 ret_val
= e1000_flash_cycle_ich8lan(hw
,
2649 ICH_FLASH_WRITE_COMMAND_TIMEOUT
);
2654 * If we're here, then things are most likely
2655 * completely hosed, but if the error condition
2656 * is detected, it won't hurt to give it another
2657 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
2659 hsfsts
.regval
= er16flash(ICH_FLASH_HSFSTS
);
2660 if (hsfsts
.hsf_status
.flcerr
== 1)
2661 /* Repeat for some time before giving up. */
2663 if (hsfsts
.hsf_status
.flcdone
== 0) {
2664 e_dbg("Timeout error - flash cycle "
2665 "did not complete.");
2668 } while (count
++ < ICH_FLASH_CYCLE_REPEAT_COUNT
);
2674 * e1000_write_flash_byte_ich8lan - Write a single byte to NVM
2675 * @hw: pointer to the HW structure
2676 * @offset: The index of the byte to read.
2677 * @data: The byte to write to the NVM.
2679 * Writes a single byte to the NVM using the flash access registers.
2681 static s32
e1000_write_flash_byte_ich8lan(struct e1000_hw
*hw
, u32 offset
,
2684 u16 word
= (u16
)data
;
2686 return e1000_write_flash_data_ich8lan(hw
, offset
, 1, word
);
2690 * e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
2691 * @hw: pointer to the HW structure
2692 * @offset: The offset of the byte to write.
2693 * @byte: The byte to write to the NVM.
2695 * Writes a single byte to the NVM using the flash access registers.
2696 * Goes through a retry algorithm before giving up.
2698 static s32
e1000_retry_write_flash_byte_ich8lan(struct e1000_hw
*hw
,
2699 u32 offset
, u8 byte
)
2702 u16 program_retries
;
2704 ret_val
= e1000_write_flash_byte_ich8lan(hw
, offset
, byte
);
2708 for (program_retries
= 0; program_retries
< 100; program_retries
++) {
2709 e_dbg("Retrying Byte %2.2X at offset %u\n", byte
, offset
);
2711 ret_val
= e1000_write_flash_byte_ich8lan(hw
, offset
, byte
);
2715 if (program_retries
== 100)
2716 return -E1000_ERR_NVM
;
2722 * e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
2723 * @hw: pointer to the HW structure
2724 * @bank: 0 for first bank, 1 for second bank, etc.
2726 * Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
2727 * bank N is 4096 * N + flash_reg_addr.
2729 static s32
e1000_erase_flash_bank_ich8lan(struct e1000_hw
*hw
, u32 bank
)
2731 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
2732 union ich8_hws_flash_status hsfsts
;
2733 union ich8_hws_flash_ctrl hsflctl
;
2734 u32 flash_linear_addr
;
2735 /* bank size is in 16bit words - adjust to bytes */
2736 u32 flash_bank_size
= nvm
->flash_bank_size
* 2;
2739 s32 j
, iteration
, sector_size
;
2741 hsfsts
.regval
= er16flash(ICH_FLASH_HSFSTS
);
2744 * Determine HW Sector size: Read BERASE bits of hw flash status
2746 * 00: The Hw sector is 256 bytes, hence we need to erase 16
2747 * consecutive sectors. The start index for the nth Hw sector
2748 * can be calculated as = bank * 4096 + n * 256
2749 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
2750 * The start index for the nth Hw sector can be calculated
2752 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
2753 * (ich9 only, otherwise error condition)
2754 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
2756 switch (hsfsts
.hsf_status
.berasesz
) {
2758 /* Hw sector size 256 */
2759 sector_size
= ICH_FLASH_SEG_SIZE_256
;
2760 iteration
= flash_bank_size
/ ICH_FLASH_SEG_SIZE_256
;
2763 sector_size
= ICH_FLASH_SEG_SIZE_4K
;
2767 sector_size
= ICH_FLASH_SEG_SIZE_8K
;
2771 sector_size
= ICH_FLASH_SEG_SIZE_64K
;
2775 return -E1000_ERR_NVM
;
2778 /* Start with the base address, then add the sector offset. */
2779 flash_linear_addr
= hw
->nvm
.flash_base_addr
;
2780 flash_linear_addr
+= (bank
) ? flash_bank_size
: 0;
2782 for (j
= 0; j
< iteration
; j
++) {
2785 ret_val
= e1000_flash_cycle_init_ich8lan(hw
);
2790 * Write a value 11 (block Erase) in Flash
2791 * Cycle field in hw flash control
2793 hsflctl
.regval
= er16flash(ICH_FLASH_HSFCTL
);
2794 hsflctl
.hsf_ctrl
.flcycle
= ICH_CYCLE_ERASE
;
2795 ew16flash(ICH_FLASH_HSFCTL
, hsflctl
.regval
);
2798 * Write the last 24 bits of an index within the
2799 * block into Flash Linear address field in Flash
2802 flash_linear_addr
+= (j
* sector_size
);
2803 ew32flash(ICH_FLASH_FADDR
, flash_linear_addr
);
2805 ret_val
= e1000_flash_cycle_ich8lan(hw
,
2806 ICH_FLASH_ERASE_COMMAND_TIMEOUT
);
2811 * Check if FCERR is set to 1. If 1,
2812 * clear it and try the whole sequence
2813 * a few more times else Done
2815 hsfsts
.regval
= er16flash(ICH_FLASH_HSFSTS
);
2816 if (hsfsts
.hsf_status
.flcerr
== 1)
2817 /* repeat for some time before giving up */
2819 else if (hsfsts
.hsf_status
.flcdone
== 0)
2821 } while (++count
< ICH_FLASH_CYCLE_REPEAT_COUNT
);
2828 * e1000_valid_led_default_ich8lan - Set the default LED settings
2829 * @hw: pointer to the HW structure
2830 * @data: Pointer to the LED settings
2832 * Reads the LED default settings from the NVM to data. If the NVM LED
2833 * settings is all 0's or F's, set the LED default to a valid LED default
2836 static s32
e1000_valid_led_default_ich8lan(struct e1000_hw
*hw
, u16
*data
)
2840 ret_val
= e1000_read_nvm(hw
, NVM_ID_LED_SETTINGS
, 1, data
);
2842 e_dbg("NVM Read Error\n");
2846 if (*data
== ID_LED_RESERVED_0000
||
2847 *data
== ID_LED_RESERVED_FFFF
)
2848 *data
= ID_LED_DEFAULT_ICH8LAN
;
2854 * e1000_id_led_init_pchlan - store LED configurations
2855 * @hw: pointer to the HW structure
2857 * PCH does not control LEDs via the LEDCTL register, rather it uses
2858 * the PHY LED configuration register.
2860 * PCH also does not have an "always on" or "always off" mode which
2861 * complicates the ID feature. Instead of using the "on" mode to indicate
2862 * in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init()),
2863 * use "link_up" mode. The LEDs will still ID on request if there is no
2864 * link based on logic in e1000_led_[on|off]_pchlan().
2866 static s32
e1000_id_led_init_pchlan(struct e1000_hw
*hw
)
2868 struct e1000_mac_info
*mac
= &hw
->mac
;
2870 const u32 ledctl_on
= E1000_LEDCTL_MODE_LINK_UP
;
2871 const u32 ledctl_off
= E1000_LEDCTL_MODE_LINK_UP
| E1000_PHY_LED0_IVRT
;
2872 u16 data
, i
, temp
, shift
;
2874 /* Get default ID LED modes */
2875 ret_val
= hw
->nvm
.ops
.valid_led_default(hw
, &data
);
2879 mac
->ledctl_default
= er32(LEDCTL
);
2880 mac
->ledctl_mode1
= mac
->ledctl_default
;
2881 mac
->ledctl_mode2
= mac
->ledctl_default
;
2883 for (i
= 0; i
< 4; i
++) {
2884 temp
= (data
>> (i
<< 2)) & E1000_LEDCTL_LED0_MODE_MASK
;
2887 case ID_LED_ON1_DEF2
:
2888 case ID_LED_ON1_ON2
:
2889 case ID_LED_ON1_OFF2
:
2890 mac
->ledctl_mode1
&= ~(E1000_PHY_LED0_MASK
<< shift
);
2891 mac
->ledctl_mode1
|= (ledctl_on
<< shift
);
2893 case ID_LED_OFF1_DEF2
:
2894 case ID_LED_OFF1_ON2
:
2895 case ID_LED_OFF1_OFF2
:
2896 mac
->ledctl_mode1
&= ~(E1000_PHY_LED0_MASK
<< shift
);
2897 mac
->ledctl_mode1
|= (ledctl_off
<< shift
);
2904 case ID_LED_DEF1_ON2
:
2905 case ID_LED_ON1_ON2
:
2906 case ID_LED_OFF1_ON2
:
2907 mac
->ledctl_mode2
&= ~(E1000_PHY_LED0_MASK
<< shift
);
2908 mac
->ledctl_mode2
|= (ledctl_on
<< shift
);
2910 case ID_LED_DEF1_OFF2
:
2911 case ID_LED_ON1_OFF2
:
2912 case ID_LED_OFF1_OFF2
:
2913 mac
->ledctl_mode2
&= ~(E1000_PHY_LED0_MASK
<< shift
);
2914 mac
->ledctl_mode2
|= (ledctl_off
<< shift
);
2927 * e1000_get_bus_info_ich8lan - Get/Set the bus type and width
2928 * @hw: pointer to the HW structure
2930 * ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
2931 * register, so the the bus width is hard coded.
2933 static s32
e1000_get_bus_info_ich8lan(struct e1000_hw
*hw
)
2935 struct e1000_bus_info
*bus
= &hw
->bus
;
2938 ret_val
= e1000e_get_bus_info_pcie(hw
);
2941 * ICH devices are "PCI Express"-ish. They have
2942 * a configuration space, but do not contain
2943 * PCI Express Capability registers, so bus width
2944 * must be hardcoded.
2946 if (bus
->width
== e1000_bus_width_unknown
)
2947 bus
->width
= e1000_bus_width_pcie_x1
;
2953 * e1000_reset_hw_ich8lan - Reset the hardware
2954 * @hw: pointer to the HW structure
2956 * Does a full reset of the hardware which includes a reset of the PHY and
2959 static s32
e1000_reset_hw_ich8lan(struct e1000_hw
*hw
)
2961 struct e1000_dev_spec_ich8lan
*dev_spec
= &hw
->dev_spec
.ich8lan
;
2967 * Prevent the PCI-E bus from sticking if there is no TLP connection
2968 * on the last TLP read/write transaction when MAC is reset.
2970 ret_val
= e1000e_disable_pcie_master(hw
);
2972 e_dbg("PCI-E Master disable polling has failed.\n");
2974 e_dbg("Masking off all interrupts\n");
2975 ew32(IMC
, 0xffffffff);
2978 * Disable the Transmit and Receive units. Then delay to allow
2979 * any pending transactions to complete before we hit the MAC
2980 * with the global reset.
2983 ew32(TCTL
, E1000_TCTL_PSP
);
2988 /* Workaround for ICH8 bit corruption issue in FIFO memory */
2989 if (hw
->mac
.type
== e1000_ich8lan
) {
2990 /* Set Tx and Rx buffer allocation to 8k apiece. */
2991 ew32(PBA
, E1000_PBA_8K
);
2992 /* Set Packet Buffer Size to 16k. */
2993 ew32(PBS
, E1000_PBS_16K
);
2996 if (hw
->mac
.type
== e1000_pchlan
) {
2997 /* Save the NVM K1 bit setting*/
2998 ret_val
= e1000_read_nvm(hw
, E1000_NVM_K1_CONFIG
, 1, ®
);
3002 if (reg
& E1000_NVM_K1_ENABLE
)
3003 dev_spec
->nvm_k1_enabled
= true;
3005 dev_spec
->nvm_k1_enabled
= false;
3010 if (!e1000_check_reset_block(hw
)) {
3012 * Full-chip reset requires MAC and PHY reset at the same
3013 * time to make sure the interface between MAC and the
3014 * external PHY is reset.
3016 ctrl
|= E1000_CTRL_PHY_RST
;
3019 * Gate automatic PHY configuration by hardware on
3022 if ((hw
->mac
.type
== e1000_pch2lan
) &&
3023 !(er32(FWSM
) & E1000_ICH_FWSM_FW_VALID
))
3024 e1000_gate_hw_phy_config_ich8lan(hw
, true);
3026 ret_val
= e1000_acquire_swflag_ich8lan(hw
);
3027 e_dbg("Issuing a global reset to ich8lan\n");
3028 ew32(CTRL
, (ctrl
| E1000_CTRL_RST
));
3032 e1000_release_swflag_ich8lan(hw
);
3034 if (ctrl
& E1000_CTRL_PHY_RST
) {
3035 ret_val
= hw
->phy
.ops
.get_cfg_done(hw
);
3039 ret_val
= e1000_post_phy_reset_ich8lan(hw
);
3045 * For PCH, this write will make sure that any noise
3046 * will be detected as a CRC error and be dropped rather than show up
3047 * as a bad packet to the DMA engine.
3049 if (hw
->mac
.type
== e1000_pchlan
)
3050 ew32(CRC_OFFSET
, 0x65656565);
3052 ew32(IMC
, 0xffffffff);
3055 kab
= er32(KABGTXD
);
3056 kab
|= E1000_KABGTXD_BGSQLBIAS
;
3064 * e1000_init_hw_ich8lan - Initialize the hardware
3065 * @hw: pointer to the HW structure
3067 * Prepares the hardware for transmit and receive by doing the following:
3068 * - initialize hardware bits
3069 * - initialize LED identification
3070 * - setup receive address registers
3071 * - setup flow control
3072 * - setup transmit descriptors
3073 * - clear statistics
3075 static s32
e1000_init_hw_ich8lan(struct e1000_hw
*hw
)
3077 struct e1000_mac_info
*mac
= &hw
->mac
;
3078 u32 ctrl_ext
, txdctl
, snoop
;
3082 e1000_initialize_hw_bits_ich8lan(hw
);
3084 /* Initialize identification LED */
3085 ret_val
= mac
->ops
.id_led_init(hw
);
3087 e_dbg("Error initializing identification LED\n");
3088 /* This is not fatal and we should not stop init due to this */
3090 /* Setup the receive address. */
3091 e1000e_init_rx_addrs(hw
, mac
->rar_entry_count
);
3093 /* Zero out the Multicast HASH table */
3094 e_dbg("Zeroing the MTA\n");
3095 for (i
= 0; i
< mac
->mta_reg_count
; i
++)
3096 E1000_WRITE_REG_ARRAY(hw
, E1000_MTA
, i
, 0);
3099 * The 82578 Rx buffer will stall if wakeup is enabled in host and
3100 * the ME. Reading the BM_WUC register will clear the host wakeup bit.
3101 * Reset the phy after disabling host wakeup to reset the Rx buffer.
3103 if (hw
->phy
.type
== e1000_phy_82578
) {
3104 e1e_rphy(hw
, BM_WUC
, &i
);
3105 ret_val
= e1000_phy_hw_reset_ich8lan(hw
);
3110 /* Setup link and flow control */
3111 ret_val
= e1000_setup_link_ich8lan(hw
);
3113 /* Set the transmit descriptor write-back policy for both queues */
3114 txdctl
= er32(TXDCTL(0));
3115 txdctl
= (txdctl
& ~E1000_TXDCTL_WTHRESH
) |
3116 E1000_TXDCTL_FULL_TX_DESC_WB
;
3117 txdctl
= (txdctl
& ~E1000_TXDCTL_PTHRESH
) |
3118 E1000_TXDCTL_MAX_TX_DESC_PREFETCH
;
3119 ew32(TXDCTL(0), txdctl
);
3120 txdctl
= er32(TXDCTL(1));
3121 txdctl
= (txdctl
& ~E1000_TXDCTL_WTHRESH
) |
3122 E1000_TXDCTL_FULL_TX_DESC_WB
;
3123 txdctl
= (txdctl
& ~E1000_TXDCTL_PTHRESH
) |
3124 E1000_TXDCTL_MAX_TX_DESC_PREFETCH
;
3125 ew32(TXDCTL(1), txdctl
);
3128 * ICH8 has opposite polarity of no_snoop bits.
3129 * By default, we should use snoop behavior.
3131 if (mac
->type
== e1000_ich8lan
)
3132 snoop
= PCIE_ICH8_SNOOP_ALL
;
3134 snoop
= (u32
) ~(PCIE_NO_SNOOP_ALL
);
3135 e1000e_set_pcie_no_snoop(hw
, snoop
);
3137 ctrl_ext
= er32(CTRL_EXT
);
3138 ctrl_ext
|= E1000_CTRL_EXT_RO_DIS
;
3139 ew32(CTRL_EXT
, ctrl_ext
);
3142 * Clear all of the statistics registers (clear on read). It is
3143 * important that we do this after we have tried to establish link
3144 * because the symbol error count will increment wildly if there
3147 e1000_clear_hw_cntrs_ich8lan(hw
);
3152 * e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
3153 * @hw: pointer to the HW structure
3155 * Sets/Clears required hardware bits necessary for correctly setting up the
3156 * hardware for transmit and receive.
3158 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw
*hw
)
3162 /* Extended Device Control */
3163 reg
= er32(CTRL_EXT
);
3165 /* Enable PHY low-power state when MAC is at D3 w/o WoL */
3166 if (hw
->mac
.type
>= e1000_pchlan
)
3167 reg
|= E1000_CTRL_EXT_PHYPDEN
;
3168 ew32(CTRL_EXT
, reg
);
3170 /* Transmit Descriptor Control 0 */
3171 reg
= er32(TXDCTL(0));
3173 ew32(TXDCTL(0), reg
);
3175 /* Transmit Descriptor Control 1 */
3176 reg
= er32(TXDCTL(1));
3178 ew32(TXDCTL(1), reg
);
3180 /* Transmit Arbitration Control 0 */
3181 reg
= er32(TARC(0));
3182 if (hw
->mac
.type
== e1000_ich8lan
)
3183 reg
|= (1 << 28) | (1 << 29);
3184 reg
|= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27);
3187 /* Transmit Arbitration Control 1 */
3188 reg
= er32(TARC(1));
3189 if (er32(TCTL
) & E1000_TCTL_MULR
)
3193 reg
|= (1 << 24) | (1 << 26) | (1 << 30);
3197 if (hw
->mac
.type
== e1000_ich8lan
) {
3204 * work-around descriptor data corruption issue during nfs v2 udp
3205 * traffic, just disable the nfs filtering capability
3208 reg
|= (E1000_RFCTL_NFSW_DIS
| E1000_RFCTL_NFSR_DIS
);
3213 * e1000_setup_link_ich8lan - Setup flow control and link settings
3214 * @hw: pointer to the HW structure
3216 * Determines which flow control settings to use, then configures flow
3217 * control. Calls the appropriate media-specific link configuration
3218 * function. Assuming the adapter has a valid link partner, a valid link
3219 * should be established. Assumes the hardware has previously been reset
3220 * and the transmitter and receiver are not enabled.
3222 static s32
e1000_setup_link_ich8lan(struct e1000_hw
*hw
)
3226 if (e1000_check_reset_block(hw
))
3230 * ICH parts do not have a word in the NVM to determine
3231 * the default flow control setting, so we explicitly
3234 if (hw
->fc
.requested_mode
== e1000_fc_default
) {
3235 /* Workaround h/w hang when Tx flow control enabled */
3236 if (hw
->mac
.type
== e1000_pchlan
)
3237 hw
->fc
.requested_mode
= e1000_fc_rx_pause
;
3239 hw
->fc
.requested_mode
= e1000_fc_full
;
3243 * Save off the requested flow control mode for use later. Depending
3244 * on the link partner's capabilities, we may or may not use this mode.
3246 hw
->fc
.current_mode
= hw
->fc
.requested_mode
;
3248 e_dbg("After fix-ups FlowControl is now = %x\n",
3249 hw
->fc
.current_mode
);
3251 /* Continue to configure the copper link. */
3252 ret_val
= e1000_setup_copper_link_ich8lan(hw
);
3256 ew32(FCTTV
, hw
->fc
.pause_time
);
3257 if ((hw
->phy
.type
== e1000_phy_82578
) ||
3258 (hw
->phy
.type
== e1000_phy_82579
) ||
3259 (hw
->phy
.type
== e1000_phy_82577
)) {
3260 ew32(FCRTV_PCH
, hw
->fc
.refresh_time
);
3262 ret_val
= e1e_wphy(hw
, PHY_REG(BM_PORT_CTRL_PAGE
, 27),
3268 return e1000e_set_fc_watermarks(hw
);
3272 * e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
3273 * @hw: pointer to the HW structure
3275 * Configures the kumeran interface to the PHY to wait the appropriate time
3276 * when polling the PHY, then call the generic setup_copper_link to finish
3277 * configuring the copper link.
3279 static s32
e1000_setup_copper_link_ich8lan(struct e1000_hw
*hw
)
3286 ctrl
|= E1000_CTRL_SLU
;
3287 ctrl
&= ~(E1000_CTRL_FRCSPD
| E1000_CTRL_FRCDPX
);
3291 * Set the mac to wait the maximum time between each iteration
3292 * and increase the max iterations when polling the phy;
3293 * this fixes erroneous timeouts at 10Mbps.
3295 ret_val
= e1000e_write_kmrn_reg(hw
, E1000_KMRNCTRLSTA_TIMEOUTS
, 0xFFFF);
3298 ret_val
= e1000e_read_kmrn_reg(hw
, E1000_KMRNCTRLSTA_INBAND_PARAM
,
3303 ret_val
= e1000e_write_kmrn_reg(hw
, E1000_KMRNCTRLSTA_INBAND_PARAM
,
3308 switch (hw
->phy
.type
) {
3309 case e1000_phy_igp_3
:
3310 ret_val
= e1000e_copper_link_setup_igp(hw
);
3315 case e1000_phy_82578
:
3316 ret_val
= e1000e_copper_link_setup_m88(hw
);
3320 case e1000_phy_82577
:
3321 case e1000_phy_82579
:
3322 ret_val
= e1000_copper_link_setup_82577(hw
);
3327 ret_val
= e1e_rphy(hw
, IFE_PHY_MDIX_CONTROL
, ®_data
);
3331 reg_data
&= ~IFE_PMC_AUTO_MDIX
;
3333 switch (hw
->phy
.mdix
) {
3335 reg_data
&= ~IFE_PMC_FORCE_MDIX
;
3338 reg_data
|= IFE_PMC_FORCE_MDIX
;
3342 reg_data
|= IFE_PMC_AUTO_MDIX
;
3345 ret_val
= e1e_wphy(hw
, IFE_PHY_MDIX_CONTROL
, reg_data
);
3352 return e1000e_setup_copper_link(hw
);
3356 * e1000_get_link_up_info_ich8lan - Get current link speed and duplex
3357 * @hw: pointer to the HW structure
3358 * @speed: pointer to store current link speed
3359 * @duplex: pointer to store the current link duplex
3361 * Calls the generic get_speed_and_duplex to retrieve the current link
3362 * information and then calls the Kumeran lock loss workaround for links at
3365 static s32
e1000_get_link_up_info_ich8lan(struct e1000_hw
*hw
, u16
*speed
,
3370 ret_val
= e1000e_get_speed_and_duplex_copper(hw
, speed
, duplex
);
3374 if ((hw
->mac
.type
== e1000_ich8lan
) &&
3375 (hw
->phy
.type
== e1000_phy_igp_3
) &&
3376 (*speed
== SPEED_1000
)) {
3377 ret_val
= e1000_kmrn_lock_loss_workaround_ich8lan(hw
);
3384 * e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
3385 * @hw: pointer to the HW structure
3387 * Work-around for 82566 Kumeran PCS lock loss:
3388 * On link status change (i.e. PCI reset, speed change) and link is up and
3390 * 0) if workaround is optionally disabled do nothing
3391 * 1) wait 1ms for Kumeran link to come up
3392 * 2) check Kumeran Diagnostic register PCS lock loss bit
3393 * 3) if not set the link is locked (all is good), otherwise...
3395 * 5) repeat up to 10 times
3396 * Note: this is only called for IGP3 copper when speed is 1gb.
3398 static s32
e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw
*hw
)
3400 struct e1000_dev_spec_ich8lan
*dev_spec
= &hw
->dev_spec
.ich8lan
;
3406 if (!dev_spec
->kmrn_lock_loss_workaround_enabled
)
3410 * Make sure link is up before proceeding. If not just return.
3411 * Attempting this while link is negotiating fouled up link
3414 ret_val
= e1000e_phy_has_link_generic(hw
, 1, 0, &link
);
3418 for (i
= 0; i
< 10; i
++) {
3419 /* read once to clear */
3420 ret_val
= e1e_rphy(hw
, IGP3_KMRN_DIAG
, &data
);
3423 /* and again to get new status */
3424 ret_val
= e1e_rphy(hw
, IGP3_KMRN_DIAG
, &data
);
3428 /* check for PCS lock */
3429 if (!(data
& IGP3_KMRN_DIAG_PCS_LOCK_LOSS
))
3432 /* Issue PHY reset */
3433 e1000_phy_hw_reset(hw
);
3436 /* Disable GigE link negotiation */
3437 phy_ctrl
= er32(PHY_CTRL
);
3438 phy_ctrl
|= (E1000_PHY_CTRL_GBE_DISABLE
|
3439 E1000_PHY_CTRL_NOND0A_GBE_DISABLE
);
3440 ew32(PHY_CTRL
, phy_ctrl
);
3443 * Call gig speed drop workaround on Gig disable before accessing
3446 e1000e_gig_downshift_workaround_ich8lan(hw
);
3448 /* unable to acquire PCS lock */
3449 return -E1000_ERR_PHY
;
3453 * e1000_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
3454 * @hw: pointer to the HW structure
3455 * @state: boolean value used to set the current Kumeran workaround state
3457 * If ICH8, set the current Kumeran workaround state (enabled - true
3458 * /disabled - false).
3460 void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw
*hw
,
3463 struct e1000_dev_spec_ich8lan
*dev_spec
= &hw
->dev_spec
.ich8lan
;
3465 if (hw
->mac
.type
!= e1000_ich8lan
) {
3466 e_dbg("Workaround applies to ICH8 only.\n");
3470 dev_spec
->kmrn_lock_loss_workaround_enabled
= state
;
3474 * e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
3475 * @hw: pointer to the HW structure
3477 * Workaround for 82566 power-down on D3 entry:
3478 * 1) disable gigabit link
3479 * 2) write VR power-down enable
3481 * Continue if successful, else issue LCD reset and repeat
3483 void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw
*hw
)
3489 if (hw
->phy
.type
!= e1000_phy_igp_3
)
3492 /* Try the workaround twice (if needed) */
3495 reg
= er32(PHY_CTRL
);
3496 reg
|= (E1000_PHY_CTRL_GBE_DISABLE
|
3497 E1000_PHY_CTRL_NOND0A_GBE_DISABLE
);
3498 ew32(PHY_CTRL
, reg
);
3501 * Call gig speed drop workaround on Gig disable before
3502 * accessing any PHY registers
3504 if (hw
->mac
.type
== e1000_ich8lan
)
3505 e1000e_gig_downshift_workaround_ich8lan(hw
);
3507 /* Write VR power-down enable */
3508 e1e_rphy(hw
, IGP3_VR_CTRL
, &data
);
3509 data
&= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK
;
3510 e1e_wphy(hw
, IGP3_VR_CTRL
, data
| IGP3_VR_CTRL_MODE_SHUTDOWN
);
3512 /* Read it back and test */
3513 e1e_rphy(hw
, IGP3_VR_CTRL
, &data
);
3514 data
&= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK
;
3515 if ((data
== IGP3_VR_CTRL_MODE_SHUTDOWN
) || retry
)
3518 /* Issue PHY reset and repeat at most one more time */
3520 ew32(CTRL
, reg
| E1000_CTRL_PHY_RST
);
3526 * e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
3527 * @hw: pointer to the HW structure
3529 * Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
3530 * LPLU, Gig disable, MDIC PHY reset):
3531 * 1) Set Kumeran Near-end loopback
3532 * 2) Clear Kumeran Near-end loopback
3533 * Should only be called for ICH8[m] devices with IGP_3 Phy.
3535 void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw
*hw
)
3540 if ((hw
->mac
.type
!= e1000_ich8lan
) ||
3541 (hw
->phy
.type
!= e1000_phy_igp_3
))
3544 ret_val
= e1000e_read_kmrn_reg(hw
, E1000_KMRNCTRLSTA_DIAG_OFFSET
,
3548 reg_data
|= E1000_KMRNCTRLSTA_DIAG_NELPBK
;
3549 ret_val
= e1000e_write_kmrn_reg(hw
, E1000_KMRNCTRLSTA_DIAG_OFFSET
,
3553 reg_data
&= ~E1000_KMRNCTRLSTA_DIAG_NELPBK
;
3554 ret_val
= e1000e_write_kmrn_reg(hw
, E1000_KMRNCTRLSTA_DIAG_OFFSET
,
3559 * e1000e_disable_gig_wol_ich8lan - disable gig during WoL
3560 * @hw: pointer to the HW structure
3562 * During S0 to Sx transition, it is possible the link remains at gig
3563 * instead of negotiating to a lower speed. Before going to Sx, set
3564 * 'LPLU Enabled' and 'Gig Disable' to force link speed negotiation
3567 * Should only be called for applicable parts.
3569 void e1000e_disable_gig_wol_ich8lan(struct e1000_hw
*hw
)
3574 phy_ctrl
= er32(PHY_CTRL
);
3575 phy_ctrl
|= E1000_PHY_CTRL_D0A_LPLU
| E1000_PHY_CTRL_GBE_DISABLE
;
3576 ew32(PHY_CTRL
, phy_ctrl
);
3578 if (hw
->mac
.type
>= e1000_pchlan
) {
3579 e1000_oem_bits_config_ich8lan(hw
, false);
3580 ret_val
= hw
->phy
.ops
.acquire(hw
);
3583 e1000_write_smbus_addr(hw
);
3584 hw
->phy
.ops
.release(hw
);
3589 * e1000_cleanup_led_ich8lan - Restore the default LED operation
3590 * @hw: pointer to the HW structure
3592 * Return the LED back to the default configuration.
3594 static s32
e1000_cleanup_led_ich8lan(struct e1000_hw
*hw
)
3596 if (hw
->phy
.type
== e1000_phy_ife
)
3597 return e1e_wphy(hw
, IFE_PHY_SPECIAL_CONTROL_LED
, 0);
3599 ew32(LEDCTL
, hw
->mac
.ledctl_default
);
3604 * e1000_led_on_ich8lan - Turn LEDs on
3605 * @hw: pointer to the HW structure
3609 static s32
e1000_led_on_ich8lan(struct e1000_hw
*hw
)
3611 if (hw
->phy
.type
== e1000_phy_ife
)
3612 return e1e_wphy(hw
, IFE_PHY_SPECIAL_CONTROL_LED
,
3613 (IFE_PSCL_PROBE_MODE
| IFE_PSCL_PROBE_LEDS_ON
));
3615 ew32(LEDCTL
, hw
->mac
.ledctl_mode2
);
3620 * e1000_led_off_ich8lan - Turn LEDs off
3621 * @hw: pointer to the HW structure
3623 * Turn off the LEDs.
3625 static s32
e1000_led_off_ich8lan(struct e1000_hw
*hw
)
3627 if (hw
->phy
.type
== e1000_phy_ife
)
3628 return e1e_wphy(hw
, IFE_PHY_SPECIAL_CONTROL_LED
,
3629 (IFE_PSCL_PROBE_MODE
|
3630 IFE_PSCL_PROBE_LEDS_OFF
));
3632 ew32(LEDCTL
, hw
->mac
.ledctl_mode1
);
3637 * e1000_setup_led_pchlan - Configures SW controllable LED
3638 * @hw: pointer to the HW structure
3640 * This prepares the SW controllable LED for use.
3642 static s32
e1000_setup_led_pchlan(struct e1000_hw
*hw
)
3644 return e1e_wphy(hw
, HV_LED_CONFIG
, (u16
)hw
->mac
.ledctl_mode1
);
3648 * e1000_cleanup_led_pchlan - Restore the default LED operation
3649 * @hw: pointer to the HW structure
3651 * Return the LED back to the default configuration.
3653 static s32
e1000_cleanup_led_pchlan(struct e1000_hw
*hw
)
3655 return e1e_wphy(hw
, HV_LED_CONFIG
, (u16
)hw
->mac
.ledctl_default
);
3659 * e1000_led_on_pchlan - Turn LEDs on
3660 * @hw: pointer to the HW structure
3664 static s32
e1000_led_on_pchlan(struct e1000_hw
*hw
)
3666 u16 data
= (u16
)hw
->mac
.ledctl_mode2
;
3670 * If no link, then turn LED on by setting the invert bit
3671 * for each LED that's mode is "link_up" in ledctl_mode2.
3673 if (!(er32(STATUS
) & E1000_STATUS_LU
)) {
3674 for (i
= 0; i
< 3; i
++) {
3675 led
= (data
>> (i
* 5)) & E1000_PHY_LED0_MASK
;
3676 if ((led
& E1000_PHY_LED0_MODE_MASK
) !=
3677 E1000_LEDCTL_MODE_LINK_UP
)
3679 if (led
& E1000_PHY_LED0_IVRT
)
3680 data
&= ~(E1000_PHY_LED0_IVRT
<< (i
* 5));
3682 data
|= (E1000_PHY_LED0_IVRT
<< (i
* 5));
3686 return e1e_wphy(hw
, HV_LED_CONFIG
, data
);
3690 * e1000_led_off_pchlan - Turn LEDs off
3691 * @hw: pointer to the HW structure
3693 * Turn off the LEDs.
3695 static s32
e1000_led_off_pchlan(struct e1000_hw
*hw
)
3697 u16 data
= (u16
)hw
->mac
.ledctl_mode1
;
3701 * If no link, then turn LED off by clearing the invert bit
3702 * for each LED that's mode is "link_up" in ledctl_mode1.
3704 if (!(er32(STATUS
) & E1000_STATUS_LU
)) {
3705 for (i
= 0; i
< 3; i
++) {
3706 led
= (data
>> (i
* 5)) & E1000_PHY_LED0_MASK
;
3707 if ((led
& E1000_PHY_LED0_MODE_MASK
) !=
3708 E1000_LEDCTL_MODE_LINK_UP
)
3710 if (led
& E1000_PHY_LED0_IVRT
)
3711 data
&= ~(E1000_PHY_LED0_IVRT
<< (i
* 5));
3713 data
|= (E1000_PHY_LED0_IVRT
<< (i
* 5));
3717 return e1e_wphy(hw
, HV_LED_CONFIG
, data
);
3721 * e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
3722 * @hw: pointer to the HW structure
3724 * Read appropriate register for the config done bit for completion status
3725 * and configure the PHY through s/w for EEPROM-less parts.
3727 * NOTE: some silicon which is EEPROM-less will fail trying to read the
3728 * config done bit, so only an error is logged and continues. If we were
3729 * to return with error, EEPROM-less silicon would not be able to be reset
3732 static s32
e1000_get_cfg_done_ich8lan(struct e1000_hw
*hw
)
3738 e1000e_get_cfg_done(hw
);
3740 /* Wait for indication from h/w that it has completed basic config */
3741 if (hw
->mac
.type
>= e1000_ich10lan
) {
3742 e1000_lan_init_done_ich8lan(hw
);
3744 ret_val
= e1000e_get_auto_rd_done(hw
);
3747 * When auto config read does not complete, do not
3748 * return with an error. This can happen in situations
3749 * where there is no eeprom and prevents getting link.
3751 e_dbg("Auto Read Done did not complete\n");
3756 /* Clear PHY Reset Asserted bit */
3757 status
= er32(STATUS
);
3758 if (status
& E1000_STATUS_PHYRA
)
3759 ew32(STATUS
, status
& ~E1000_STATUS_PHYRA
);
3761 e_dbg("PHY Reset Asserted not set - needs delay\n");
3763 /* If EEPROM is not marked present, init the IGP 3 PHY manually */
3764 if (hw
->mac
.type
<= e1000_ich9lan
) {
3765 if (((er32(EECD
) & E1000_EECD_PRES
) == 0) &&
3766 (hw
->phy
.type
== e1000_phy_igp_3
)) {
3767 e1000e_phy_init_script_igp3(hw
);
3770 if (e1000_valid_nvm_bank_detect_ich8lan(hw
, &bank
)) {
3771 /* Maybe we should do a basic PHY config */
3772 e_dbg("EEPROM not present\n");
3773 ret_val
= -E1000_ERR_CONFIG
;
3781 * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
3782 * @hw: pointer to the HW structure
3784 * In the case of a PHY power down to save power, or to turn off link during a
3785 * driver unload, or wake on lan is not enabled, remove the link.
3787 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw
*hw
)
3789 /* If the management interface is not enabled, then power down */
3790 if (!(hw
->mac
.ops
.check_mng_mode(hw
) ||
3791 hw
->phy
.ops
.check_reset_block(hw
)))
3792 e1000_power_down_phy_copper(hw
);
3796 * e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
3797 * @hw: pointer to the HW structure
3799 * Clears hardware counters specific to the silicon family and calls
3800 * clear_hw_cntrs_generic to clear all general purpose counters.
3802 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw
*hw
)
3806 e1000e_clear_hw_cntrs_base(hw
);
3822 /* Clear PHY statistics registers */
3823 if ((hw
->phy
.type
== e1000_phy_82578
) ||
3824 (hw
->phy
.type
== e1000_phy_82579
) ||
3825 (hw
->phy
.type
== e1000_phy_82577
)) {
3826 e1e_rphy(hw
, HV_SCC_UPPER
, &phy_data
);
3827 e1e_rphy(hw
, HV_SCC_LOWER
, &phy_data
);
3828 e1e_rphy(hw
, HV_ECOL_UPPER
, &phy_data
);
3829 e1e_rphy(hw
, HV_ECOL_LOWER
, &phy_data
);
3830 e1e_rphy(hw
, HV_MCC_UPPER
, &phy_data
);
3831 e1e_rphy(hw
, HV_MCC_LOWER
, &phy_data
);
3832 e1e_rphy(hw
, HV_LATECOL_UPPER
, &phy_data
);
3833 e1e_rphy(hw
, HV_LATECOL_LOWER
, &phy_data
);
3834 e1e_rphy(hw
, HV_COLC_UPPER
, &phy_data
);
3835 e1e_rphy(hw
, HV_COLC_LOWER
, &phy_data
);
3836 e1e_rphy(hw
, HV_DC_UPPER
, &phy_data
);
3837 e1e_rphy(hw
, HV_DC_LOWER
, &phy_data
);
3838 e1e_rphy(hw
, HV_TNCRS_UPPER
, &phy_data
);
3839 e1e_rphy(hw
, HV_TNCRS_LOWER
, &phy_data
);
3843 static struct e1000_mac_operations ich8_mac_ops
= {
3844 .id_led_init
= e1000e_id_led_init
,
3845 /* check_mng_mode dependent on mac type */
3846 .check_for_link
= e1000_check_for_copper_link_ich8lan
,
3847 /* cleanup_led dependent on mac type */
3848 .clear_hw_cntrs
= e1000_clear_hw_cntrs_ich8lan
,
3849 .get_bus_info
= e1000_get_bus_info_ich8lan
,
3850 .set_lan_id
= e1000_set_lan_id_single_port
,
3851 .get_link_up_info
= e1000_get_link_up_info_ich8lan
,
3852 /* led_on dependent on mac type */
3853 /* led_off dependent on mac type */
3854 .update_mc_addr_list
= e1000e_update_mc_addr_list_generic
,
3855 .reset_hw
= e1000_reset_hw_ich8lan
,
3856 .init_hw
= e1000_init_hw_ich8lan
,
3857 .setup_link
= e1000_setup_link_ich8lan
,
3858 .setup_physical_interface
= e1000_setup_copper_link_ich8lan
,
3859 /* id_led_init dependent on mac type */
3862 static struct e1000_phy_operations ich8_phy_ops
= {
3863 .acquire
= e1000_acquire_swflag_ich8lan
,
3864 .check_reset_block
= e1000_check_reset_block_ich8lan
,
3866 .get_cfg_done
= e1000_get_cfg_done_ich8lan
,
3867 .get_cable_length
= e1000e_get_cable_length_igp_2
,
3868 .read_reg
= e1000e_read_phy_reg_igp
,
3869 .release
= e1000_release_swflag_ich8lan
,
3870 .reset
= e1000_phy_hw_reset_ich8lan
,
3871 .set_d0_lplu_state
= e1000_set_d0_lplu_state_ich8lan
,
3872 .set_d3_lplu_state
= e1000_set_d3_lplu_state_ich8lan
,
3873 .write_reg
= e1000e_write_phy_reg_igp
,
3876 static struct e1000_nvm_operations ich8_nvm_ops
= {
3877 .acquire
= e1000_acquire_nvm_ich8lan
,
3878 .read
= e1000_read_nvm_ich8lan
,
3879 .release
= e1000_release_nvm_ich8lan
,
3880 .update
= e1000_update_nvm_checksum_ich8lan
,
3881 .valid_led_default
= e1000_valid_led_default_ich8lan
,
3882 .validate
= e1000_validate_nvm_checksum_ich8lan
,
3883 .write
= e1000_write_nvm_ich8lan
,
3886 struct e1000_info e1000_ich8_info
= {
3887 .mac
= e1000_ich8lan
,
3888 .flags
= FLAG_HAS_WOL
3890 | FLAG_RX_CSUM_ENABLED
3891 | FLAG_HAS_CTRLEXT_ON_LOAD
3896 .max_hw_frame_size
= ETH_FRAME_LEN
+ ETH_FCS_LEN
,
3897 .get_variants
= e1000_get_variants_ich8lan
,
3898 .mac_ops
= &ich8_mac_ops
,
3899 .phy_ops
= &ich8_phy_ops
,
3900 .nvm_ops
= &ich8_nvm_ops
,
3903 struct e1000_info e1000_ich9_info
= {
3904 .mac
= e1000_ich9lan
,
3905 .flags
= FLAG_HAS_JUMBO_FRAMES
3908 | FLAG_RX_CSUM_ENABLED
3909 | FLAG_HAS_CTRLEXT_ON_LOAD
3915 .max_hw_frame_size
= DEFAULT_JUMBO
,
3916 .get_variants
= e1000_get_variants_ich8lan
,
3917 .mac_ops
= &ich8_mac_ops
,
3918 .phy_ops
= &ich8_phy_ops
,
3919 .nvm_ops
= &ich8_nvm_ops
,
3922 struct e1000_info e1000_ich10_info
= {
3923 .mac
= e1000_ich10lan
,
3924 .flags
= FLAG_HAS_JUMBO_FRAMES
3927 | FLAG_RX_CSUM_ENABLED
3928 | FLAG_HAS_CTRLEXT_ON_LOAD
3934 .max_hw_frame_size
= DEFAULT_JUMBO
,
3935 .get_variants
= e1000_get_variants_ich8lan
,
3936 .mac_ops
= &ich8_mac_ops
,
3937 .phy_ops
= &ich8_phy_ops
,
3938 .nvm_ops
= &ich8_nvm_ops
,
3941 struct e1000_info e1000_pch_info
= {
3942 .mac
= e1000_pchlan
,
3943 .flags
= FLAG_IS_ICH
3945 | FLAG_RX_CSUM_ENABLED
3946 | FLAG_HAS_CTRLEXT_ON_LOAD
3949 | FLAG_HAS_JUMBO_FRAMES
3950 | FLAG_DISABLE_FC_PAUSE_TIME
/* errata */
3952 .flags2
= FLAG2_HAS_PHY_STATS
,
3954 .max_hw_frame_size
= 4096,
3955 .get_variants
= e1000_get_variants_ich8lan
,
3956 .mac_ops
= &ich8_mac_ops
,
3957 .phy_ops
= &ich8_phy_ops
,
3958 .nvm_ops
= &ich8_nvm_ops
,
3961 struct e1000_info e1000_pch2_info
= {
3962 .mac
= e1000_pch2lan
,
3963 .flags
= FLAG_IS_ICH
3965 | FLAG_RX_CSUM_ENABLED
3966 | FLAG_HAS_CTRLEXT_ON_LOAD
3969 | FLAG_HAS_JUMBO_FRAMES
3971 .flags2
= FLAG2_HAS_PHY_STATS
3974 .max_hw_frame_size
= DEFAULT_JUMBO
,
3975 .get_variants
= e1000_get_variants_ich8lan
,
3976 .mac_ops
= &ich8_mac_ops
,
3977 .phy_ops
= &ich8_phy_ops
,
3978 .nvm_ops
= &ich8_nvm_ops
,