1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2010 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
32 e1000_mng_mode_none
= 0,
36 e1000_mng_mode_host_if_only
39 #define E1000_FACTPS_MNGCG 0x20000000
41 /* Intel(R) Active Management Technology signature */
42 #define E1000_IAMT_SIGNATURE 0x544D4149
45 * e1000e_get_bus_info_pcie - Get PCIe bus information
46 * @hw: pointer to the HW structure
48 * Determines and stores the system bus information for a particular
49 * network interface. The following bus information is determined and stored:
50 * bus speed, bus width, type (PCIe), and PCIe function.
52 s32
e1000e_get_bus_info_pcie(struct e1000_hw
*hw
)
54 struct e1000_mac_info
*mac
= &hw
->mac
;
55 struct e1000_bus_info
*bus
= &hw
->bus
;
56 struct e1000_adapter
*adapter
= hw
->adapter
;
57 u16 pcie_link_status
, cap_offset
;
59 cap_offset
= pci_find_capability(adapter
->pdev
, PCI_CAP_ID_EXP
);
61 bus
->width
= e1000_bus_width_unknown
;
63 pci_read_config_word(adapter
->pdev
,
64 cap_offset
+ PCIE_LINK_STATUS
,
66 bus
->width
= (enum e1000_bus_width
)((pcie_link_status
&
67 PCIE_LINK_WIDTH_MASK
) >>
68 PCIE_LINK_WIDTH_SHIFT
);
71 mac
->ops
.set_lan_id(hw
);
77 * e1000_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
79 * @hw: pointer to the HW structure
81 * Determines the LAN function id by reading memory-mapped registers
82 * and swaps the port value if requested.
84 void e1000_set_lan_id_multi_port_pcie(struct e1000_hw
*hw
)
86 struct e1000_bus_info
*bus
= &hw
->bus
;
90 * The status register reports the correct function number
91 * for the device regardless of function swap state.
94 bus
->func
= (reg
& E1000_STATUS_FUNC_MASK
) >> E1000_STATUS_FUNC_SHIFT
;
98 * e1000_set_lan_id_single_port - Set LAN id for a single port device
99 * @hw: pointer to the HW structure
101 * Sets the LAN function id to zero for a single port device.
103 void e1000_set_lan_id_single_port(struct e1000_hw
*hw
)
105 struct e1000_bus_info
*bus
= &hw
->bus
;
111 * e1000_clear_vfta_generic - Clear VLAN filter table
112 * @hw: pointer to the HW structure
114 * Clears the register array which contains the VLAN filter table by
115 * setting all the values to 0.
117 void e1000_clear_vfta_generic(struct e1000_hw
*hw
)
121 for (offset
= 0; offset
< E1000_VLAN_FILTER_TBL_SIZE
; offset
++) {
122 E1000_WRITE_REG_ARRAY(hw
, E1000_VFTA
, offset
, 0);
128 * e1000_write_vfta_generic - Write value to VLAN filter table
129 * @hw: pointer to the HW structure
130 * @offset: register offset in VLAN filter table
131 * @value: register value written to VLAN filter table
133 * Writes value at the given offset in the register array which stores
134 * the VLAN filter table.
136 void e1000_write_vfta_generic(struct e1000_hw
*hw
, u32 offset
, u32 value
)
138 E1000_WRITE_REG_ARRAY(hw
, E1000_VFTA
, offset
, value
);
143 * e1000e_init_rx_addrs - Initialize receive address's
144 * @hw: pointer to the HW structure
145 * @rar_count: receive address registers
147 * Setups the receive address registers by setting the base receive address
148 * register to the devices MAC address and clearing all the other receive
149 * address registers to 0.
151 void e1000e_init_rx_addrs(struct e1000_hw
*hw
, u16 rar_count
)
154 u8 mac_addr
[ETH_ALEN
] = {0};
156 /* Setup the receive address */
157 e_dbg("Programming MAC Address into RAR[0]\n");
159 e1000e_rar_set(hw
, hw
->mac
.addr
, 0);
161 /* Zero out the other (rar_entry_count - 1) receive addresses */
162 e_dbg("Clearing RAR[1-%u]\n", rar_count
-1);
163 for (i
= 1; i
< rar_count
; i
++)
164 e1000e_rar_set(hw
, mac_addr
, i
);
168 * e1000_check_alt_mac_addr_generic - Check for alternate MAC addr
169 * @hw: pointer to the HW structure
171 * Checks the nvm for an alternate MAC address. An alternate MAC address
172 * can be setup by pre-boot software and must be treated like a permanent
173 * address and must override the actual permanent MAC address. If an
174 * alternate MAC address is found it is programmed into RAR0, replacing
175 * the permanent address that was installed into RAR0 by the Si on reset.
176 * This function will return SUCCESS unless it encounters an error while
177 * reading the EEPROM.
179 s32
e1000_check_alt_mac_addr_generic(struct e1000_hw
*hw
)
183 u16 offset
, nvm_alt_mac_addr_offset
, nvm_data
;
184 u8 alt_mac_addr
[ETH_ALEN
];
186 ret_val
= e1000_read_nvm(hw
, NVM_COMPAT
, 1, &nvm_data
);
190 /* Check for LOM (vs. NIC) or one of two valid mezzanine cards */
191 if (!((nvm_data
& NVM_COMPAT_LOM
) ||
192 (hw
->adapter
->pdev
->device
== E1000_DEV_ID_82571EB_SERDES_DUAL
) ||
193 (hw
->adapter
->pdev
->device
== E1000_DEV_ID_82571EB_SERDES_QUAD
)))
196 ret_val
= e1000_read_nvm(hw
, NVM_ALT_MAC_ADDR_PTR
, 1,
197 &nvm_alt_mac_addr_offset
);
199 e_dbg("NVM Read Error\n");
203 if (nvm_alt_mac_addr_offset
== 0xFFFF) {
204 /* There is no Alternate MAC Address */
208 if (hw
->bus
.func
== E1000_FUNC_1
)
209 nvm_alt_mac_addr_offset
+= E1000_ALT_MAC_ADDRESS_OFFSET_LAN1
;
210 for (i
= 0; i
< ETH_ALEN
; i
+= 2) {
211 offset
= nvm_alt_mac_addr_offset
+ (i
>> 1);
212 ret_val
= e1000_read_nvm(hw
, offset
, 1, &nvm_data
);
214 e_dbg("NVM Read Error\n");
218 alt_mac_addr
[i
] = (u8
)(nvm_data
& 0xFF);
219 alt_mac_addr
[i
+ 1] = (u8
)(nvm_data
>> 8);
222 /* if multicast bit is set, the alternate address will not be used */
223 if (alt_mac_addr
[0] & 0x01) {
224 e_dbg("Ignoring Alternate Mac Address with MC bit set\n");
229 * We have a valid alternate MAC address, and we want to treat it the
230 * same as the normal permanent MAC address stored by the HW into the
231 * RAR. Do this by mapping this address into RAR0.
233 e1000e_rar_set(hw
, alt_mac_addr
, 0);
240 * e1000e_rar_set - Set receive address register
241 * @hw: pointer to the HW structure
242 * @addr: pointer to the receive address
243 * @index: receive address array register
245 * Sets the receive address array register at index to the address passed
248 void e1000e_rar_set(struct e1000_hw
*hw
, u8
*addr
, u32 index
)
250 u32 rar_low
, rar_high
;
253 * HW expects these in little endian so we reverse the byte order
254 * from network order (big endian) to little endian
256 rar_low
= ((u32
) addr
[0] |
257 ((u32
) addr
[1] << 8) |
258 ((u32
) addr
[2] << 16) | ((u32
) addr
[3] << 24));
260 rar_high
= ((u32
) addr
[4] | ((u32
) addr
[5] << 8));
262 /* If MAC address zero, no need to set the AV bit */
263 if (rar_low
|| rar_high
)
264 rar_high
|= E1000_RAH_AV
;
267 * Some bridges will combine consecutive 32-bit writes into
268 * a single burst write, which will malfunction on some parts.
269 * The flushes avoid this.
271 ew32(RAL(index
), rar_low
);
273 ew32(RAH(index
), rar_high
);
278 * e1000_hash_mc_addr - Generate a multicast hash value
279 * @hw: pointer to the HW structure
280 * @mc_addr: pointer to a multicast address
282 * Generates a multicast address hash value which is used to determine
283 * the multicast filter table array address and new table value. See
284 * e1000_mta_set_generic()
286 static u32
e1000_hash_mc_addr(struct e1000_hw
*hw
, u8
*mc_addr
)
288 u32 hash_value
, hash_mask
;
291 /* Register count multiplied by bits per register */
292 hash_mask
= (hw
->mac
.mta_reg_count
* 32) - 1;
295 * For a mc_filter_type of 0, bit_shift is the number of left-shifts
296 * where 0xFF would still fall within the hash mask.
298 while (hash_mask
>> bit_shift
!= 0xFF)
302 * The portion of the address that is used for the hash table
303 * is determined by the mc_filter_type setting.
304 * The algorithm is such that there is a total of 8 bits of shifting.
305 * The bit_shift for a mc_filter_type of 0 represents the number of
306 * left-shifts where the MSB of mc_addr[5] would still fall within
307 * the hash_mask. Case 0 does this exactly. Since there are a total
308 * of 8 bits of shifting, then mc_addr[4] will shift right the
309 * remaining number of bits. Thus 8 - bit_shift. The rest of the
310 * cases are a variation of this algorithm...essentially raising the
311 * number of bits to shift mc_addr[5] left, while still keeping the
312 * 8-bit shifting total.
314 * For example, given the following Destination MAC Address and an
315 * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask),
316 * we can see that the bit_shift for case 0 is 4. These are the hash
317 * values resulting from each mc_filter_type...
318 * [0] [1] [2] [3] [4] [5]
322 * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563
323 * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6
324 * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163
325 * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634
327 switch (hw
->mac
.mc_filter_type
) {
342 hash_value
= hash_mask
& (((mc_addr
[4] >> (8 - bit_shift
)) |
343 (((u16
) mc_addr
[5]) << bit_shift
)));
349 * e1000e_update_mc_addr_list_generic - Update Multicast addresses
350 * @hw: pointer to the HW structure
351 * @mc_addr_list: array of multicast addresses to program
352 * @mc_addr_count: number of multicast addresses to program
354 * Updates entire Multicast Table Array.
355 * The caller must have a packed mc_addr_list of multicast addresses.
357 void e1000e_update_mc_addr_list_generic(struct e1000_hw
*hw
,
358 u8
*mc_addr_list
, u32 mc_addr_count
)
360 u32 hash_value
, hash_bit
, hash_reg
;
363 /* clear mta_shadow */
364 memset(&hw
->mac
.mta_shadow
, 0, sizeof(hw
->mac
.mta_shadow
));
366 /* update mta_shadow from mc_addr_list */
367 for (i
= 0; (u32
) i
< mc_addr_count
; i
++) {
368 hash_value
= e1000_hash_mc_addr(hw
, mc_addr_list
);
370 hash_reg
= (hash_value
>> 5) & (hw
->mac
.mta_reg_count
- 1);
371 hash_bit
= hash_value
& 0x1F;
373 hw
->mac
.mta_shadow
[hash_reg
] |= (1 << hash_bit
);
374 mc_addr_list
+= (ETH_ALEN
);
377 /* replace the entire MTA table */
378 for (i
= hw
->mac
.mta_reg_count
- 1; i
>= 0; i
--)
379 E1000_WRITE_REG_ARRAY(hw
, E1000_MTA
, i
, hw
->mac
.mta_shadow
[i
]);
384 * e1000e_clear_hw_cntrs_base - Clear base hardware counters
385 * @hw: pointer to the HW structure
387 * Clears the base hardware counters by reading the counter registers.
389 void e1000e_clear_hw_cntrs_base(struct e1000_hw
*hw
)
431 * e1000e_check_for_copper_link - Check for link (Copper)
432 * @hw: pointer to the HW structure
434 * Checks to see of the link status of the hardware has changed. If a
435 * change in link status has been detected, then we read the PHY registers
436 * to get the current speed/duplex if link exists.
438 s32
e1000e_check_for_copper_link(struct e1000_hw
*hw
)
440 struct e1000_mac_info
*mac
= &hw
->mac
;
445 * We only want to go out to the PHY registers to see if Auto-Neg
446 * has completed and/or if our link status has changed. The
447 * get_link_status flag is set upon receiving a Link Status
448 * Change or Rx Sequence Error interrupt.
450 if (!mac
->get_link_status
)
454 * First we want to see if the MII Status Register reports
455 * link. If so, then we want to get the current speed/duplex
458 ret_val
= e1000e_phy_has_link_generic(hw
, 1, 0, &link
);
463 return ret_val
; /* No link detected */
465 mac
->get_link_status
= false;
468 * Check if there was DownShift, must be checked
469 * immediately after link-up
471 e1000e_check_downshift(hw
);
474 * If we are forcing speed/duplex, then we simply return since
475 * we have already determined whether we have link or not.
478 ret_val
= -E1000_ERR_CONFIG
;
483 * Auto-Neg is enabled. Auto Speed Detection takes care
484 * of MAC speed/duplex configuration. So we only need to
485 * configure Collision Distance in the MAC.
487 e1000e_config_collision_dist(hw
);
490 * Configure Flow Control now that Auto-Neg has completed.
491 * First, we need to restore the desired flow control
492 * settings because we may have had to re-autoneg with a
493 * different link partner.
495 ret_val
= e1000e_config_fc_after_link_up(hw
);
497 e_dbg("Error configuring flow control\n");
503 * e1000e_check_for_fiber_link - Check for link (Fiber)
504 * @hw: pointer to the HW structure
506 * Checks for link up on the hardware. If link is not up and we have
507 * a signal, then we need to force link up.
509 s32
e1000e_check_for_fiber_link(struct e1000_hw
*hw
)
511 struct e1000_mac_info
*mac
= &hw
->mac
;
518 status
= er32(STATUS
);
522 * If we don't have link (auto-negotiation failed or link partner
523 * cannot auto-negotiate), the cable is plugged in (we have signal),
524 * and our link partner is not trying to auto-negotiate with us (we
525 * are receiving idles or data), we need to force link up. We also
526 * need to give auto-negotiation time to complete, in case the cable
527 * was just plugged in. The autoneg_failed flag does this.
529 /* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
530 if ((ctrl
& E1000_CTRL_SWDPIN1
) && (!(status
& E1000_STATUS_LU
)) &&
531 (!(rxcw
& E1000_RXCW_C
))) {
532 if (mac
->autoneg_failed
== 0) {
533 mac
->autoneg_failed
= 1;
536 e_dbg("NOT RXing /C/, disable AutoNeg and force link.\n");
538 /* Disable auto-negotiation in the TXCW register */
539 ew32(TXCW
, (mac
->txcw
& ~E1000_TXCW_ANE
));
541 /* Force link-up and also force full-duplex. */
543 ctrl
|= (E1000_CTRL_SLU
| E1000_CTRL_FD
);
546 /* Configure Flow Control after forcing link up. */
547 ret_val
= e1000e_config_fc_after_link_up(hw
);
549 e_dbg("Error configuring flow control\n");
552 } else if ((ctrl
& E1000_CTRL_SLU
) && (rxcw
& E1000_RXCW_C
)) {
554 * If we are forcing link and we are receiving /C/ ordered
555 * sets, re-enable auto-negotiation in the TXCW register
556 * and disable forced link in the Device Control register
557 * in an attempt to auto-negotiate with our link partner.
559 e_dbg("RXing /C/, enable AutoNeg and stop forcing link.\n");
560 ew32(TXCW
, mac
->txcw
);
561 ew32(CTRL
, (ctrl
& ~E1000_CTRL_SLU
));
563 mac
->serdes_has_link
= true;
570 * e1000e_check_for_serdes_link - Check for link (Serdes)
571 * @hw: pointer to the HW structure
573 * Checks for link up on the hardware. If link is not up and we have
574 * a signal, then we need to force link up.
576 s32
e1000e_check_for_serdes_link(struct e1000_hw
*hw
)
578 struct e1000_mac_info
*mac
= &hw
->mac
;
585 status
= er32(STATUS
);
589 * If we don't have link (auto-negotiation failed or link partner
590 * cannot auto-negotiate), and our link partner is not trying to
591 * auto-negotiate with us (we are receiving idles or data),
592 * we need to force link up. We also need to give auto-negotiation
595 /* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
596 if ((!(status
& E1000_STATUS_LU
)) && (!(rxcw
& E1000_RXCW_C
))) {
597 if (mac
->autoneg_failed
== 0) {
598 mac
->autoneg_failed
= 1;
601 e_dbg("NOT RXing /C/, disable AutoNeg and force link.\n");
603 /* Disable auto-negotiation in the TXCW register */
604 ew32(TXCW
, (mac
->txcw
& ~E1000_TXCW_ANE
));
606 /* Force link-up and also force full-duplex. */
608 ctrl
|= (E1000_CTRL_SLU
| E1000_CTRL_FD
);
611 /* Configure Flow Control after forcing link up. */
612 ret_val
= e1000e_config_fc_after_link_up(hw
);
614 e_dbg("Error configuring flow control\n");
617 } else if ((ctrl
& E1000_CTRL_SLU
) && (rxcw
& E1000_RXCW_C
)) {
619 * If we are forcing link and we are receiving /C/ ordered
620 * sets, re-enable auto-negotiation in the TXCW register
621 * and disable forced link in the Device Control register
622 * in an attempt to auto-negotiate with our link partner.
624 e_dbg("RXing /C/, enable AutoNeg and stop forcing link.\n");
625 ew32(TXCW
, mac
->txcw
);
626 ew32(CTRL
, (ctrl
& ~E1000_CTRL_SLU
));
628 mac
->serdes_has_link
= true;
629 } else if (!(E1000_TXCW_ANE
& er32(TXCW
))) {
631 * If we force link for non-auto-negotiation switch, check
632 * link status based on MAC synchronization for internal
635 /* SYNCH bit and IV bit are sticky. */
638 if (rxcw
& E1000_RXCW_SYNCH
) {
639 if (!(rxcw
& E1000_RXCW_IV
)) {
640 mac
->serdes_has_link
= true;
641 e_dbg("SERDES: Link up - forced.\n");
644 mac
->serdes_has_link
= false;
645 e_dbg("SERDES: Link down - force failed.\n");
649 if (E1000_TXCW_ANE
& er32(TXCW
)) {
650 status
= er32(STATUS
);
651 if (status
& E1000_STATUS_LU
) {
652 /* SYNCH bit and IV bit are sticky, so reread rxcw. */
655 if (rxcw
& E1000_RXCW_SYNCH
) {
656 if (!(rxcw
& E1000_RXCW_IV
)) {
657 mac
->serdes_has_link
= true;
658 e_dbg("SERDES: Link up - autoneg "
659 "completed successfully.\n");
661 mac
->serdes_has_link
= false;
662 e_dbg("SERDES: Link down - invalid"
663 "codewords detected in autoneg.\n");
666 mac
->serdes_has_link
= false;
667 e_dbg("SERDES: Link down - no sync.\n");
670 mac
->serdes_has_link
= false;
671 e_dbg("SERDES: Link down - autoneg failed\n");
679 * e1000_set_default_fc_generic - Set flow control default values
680 * @hw: pointer to the HW structure
682 * Read the EEPROM for the default values for flow control and store the
685 static s32
e1000_set_default_fc_generic(struct e1000_hw
*hw
)
691 * Read and store word 0x0F of the EEPROM. This word contains bits
692 * that determine the hardware's default PAUSE (flow control) mode,
693 * a bit that determines whether the HW defaults to enabling or
694 * disabling auto-negotiation, and the direction of the
695 * SW defined pins. If there is no SW over-ride of the flow
696 * control setting, then the variable hw->fc will
697 * be initialized based on a value in the EEPROM.
699 ret_val
= e1000_read_nvm(hw
, NVM_INIT_CONTROL2_REG
, 1, &nvm_data
);
702 e_dbg("NVM Read Error\n");
706 if ((nvm_data
& NVM_WORD0F_PAUSE_MASK
) == 0)
707 hw
->fc
.requested_mode
= e1000_fc_none
;
708 else if ((nvm_data
& NVM_WORD0F_PAUSE_MASK
) ==
710 hw
->fc
.requested_mode
= e1000_fc_tx_pause
;
712 hw
->fc
.requested_mode
= e1000_fc_full
;
718 * e1000e_setup_link - Setup flow control and link settings
719 * @hw: pointer to the HW structure
721 * Determines which flow control settings to use, then configures flow
722 * control. Calls the appropriate media-specific link configuration
723 * function. Assuming the adapter has a valid link partner, a valid link
724 * should be established. Assumes the hardware has previously been reset
725 * and the transmitter and receiver are not enabled.
727 s32
e1000e_setup_link(struct e1000_hw
*hw
)
729 struct e1000_mac_info
*mac
= &hw
->mac
;
733 * In the case of the phy reset being blocked, we already have a link.
734 * We do not need to set it up again.
736 if (e1000_check_reset_block(hw
))
740 * If requested flow control is set to default, set flow control
741 * based on the EEPROM flow control settings.
743 if (hw
->fc
.requested_mode
== e1000_fc_default
) {
744 ret_val
= e1000_set_default_fc_generic(hw
);
750 * Save off the requested flow control mode for use later. Depending
751 * on the link partner's capabilities, we may or may not use this mode.
753 hw
->fc
.current_mode
= hw
->fc
.requested_mode
;
755 e_dbg("After fix-ups FlowControl is now = %x\n",
756 hw
->fc
.current_mode
);
758 /* Call the necessary media_type subroutine to configure the link. */
759 ret_val
= mac
->ops
.setup_physical_interface(hw
);
764 * Initialize the flow control address, type, and PAUSE timer
765 * registers to their default values. This is done even if flow
766 * control is disabled, because it does not hurt anything to
767 * initialize these registers.
769 e_dbg("Initializing the Flow Control address, type and timer regs\n");
770 ew32(FCT
, FLOW_CONTROL_TYPE
);
771 ew32(FCAH
, FLOW_CONTROL_ADDRESS_HIGH
);
772 ew32(FCAL
, FLOW_CONTROL_ADDRESS_LOW
);
774 ew32(FCTTV
, hw
->fc
.pause_time
);
776 return e1000e_set_fc_watermarks(hw
);
780 * e1000_commit_fc_settings_generic - Configure flow control
781 * @hw: pointer to the HW structure
783 * Write the flow control settings to the Transmit Config Word Register (TXCW)
784 * base on the flow control settings in e1000_mac_info.
786 static s32
e1000_commit_fc_settings_generic(struct e1000_hw
*hw
)
788 struct e1000_mac_info
*mac
= &hw
->mac
;
792 * Check for a software override of the flow control settings, and
793 * setup the device accordingly. If auto-negotiation is enabled, then
794 * software will have to set the "PAUSE" bits to the correct value in
795 * the Transmit Config Word Register (TXCW) and re-start auto-
796 * negotiation. However, if auto-negotiation is disabled, then
797 * software will have to manually configure the two flow control enable
798 * bits in the CTRL register.
800 * The possible values of the "fc" parameter are:
801 * 0: Flow control is completely disabled
802 * 1: Rx flow control is enabled (we can receive pause frames,
803 * but not send pause frames).
804 * 2: Tx flow control is enabled (we can send pause frames but we
805 * do not support receiving pause frames).
806 * 3: Both Rx and Tx flow control (symmetric) are enabled.
808 switch (hw
->fc
.current_mode
) {
810 /* Flow control completely disabled by a software over-ride. */
811 txcw
= (E1000_TXCW_ANE
| E1000_TXCW_FD
);
813 case e1000_fc_rx_pause
:
815 * Rx Flow control is enabled and Tx Flow control is disabled
816 * by a software over-ride. Since there really isn't a way to
817 * advertise that we are capable of Rx Pause ONLY, we will
818 * advertise that we support both symmetric and asymmetric Rx
819 * PAUSE. Later, we will disable the adapter's ability to send
822 txcw
= (E1000_TXCW_ANE
| E1000_TXCW_FD
| E1000_TXCW_PAUSE_MASK
);
824 case e1000_fc_tx_pause
:
826 * Tx Flow control is enabled, and Rx Flow control is disabled,
827 * by a software over-ride.
829 txcw
= (E1000_TXCW_ANE
| E1000_TXCW_FD
| E1000_TXCW_ASM_DIR
);
833 * Flow control (both Rx and Tx) is enabled by a software
836 txcw
= (E1000_TXCW_ANE
| E1000_TXCW_FD
| E1000_TXCW_PAUSE_MASK
);
839 e_dbg("Flow control param set incorrectly\n");
840 return -E1000_ERR_CONFIG
;
851 * e1000_poll_fiber_serdes_link_generic - Poll for link up
852 * @hw: pointer to the HW structure
854 * Polls for link up by reading the status register, if link fails to come
855 * up with auto-negotiation, then the link is forced if a signal is detected.
857 static s32
e1000_poll_fiber_serdes_link_generic(struct e1000_hw
*hw
)
859 struct e1000_mac_info
*mac
= &hw
->mac
;
864 * If we have a signal (the cable is plugged in, or assumed true for
865 * serdes media) then poll for a "Link-Up" indication in the Device
866 * Status Register. Time-out if a link isn't seen in 500 milliseconds
867 * seconds (Auto-negotiation should complete in less than 500
868 * milliseconds even if the other end is doing it in SW).
870 for (i
= 0; i
< FIBER_LINK_UP_LIMIT
; i
++) {
872 status
= er32(STATUS
);
873 if (status
& E1000_STATUS_LU
)
876 if (i
== FIBER_LINK_UP_LIMIT
) {
877 e_dbg("Never got a valid link from auto-neg!!!\n");
878 mac
->autoneg_failed
= 1;
880 * AutoNeg failed to achieve a link, so we'll call
881 * mac->check_for_link. This routine will force the
882 * link up if we detect a signal. This will allow us to
883 * communicate with non-autonegotiating link partners.
885 ret_val
= mac
->ops
.check_for_link(hw
);
887 e_dbg("Error while checking for link\n");
890 mac
->autoneg_failed
= 0;
892 mac
->autoneg_failed
= 0;
893 e_dbg("Valid Link Found\n");
900 * e1000e_setup_fiber_serdes_link - Setup link for fiber/serdes
901 * @hw: pointer to the HW structure
903 * Configures collision distance and flow control for fiber and serdes
904 * links. Upon successful setup, poll for link.
906 s32
e1000e_setup_fiber_serdes_link(struct e1000_hw
*hw
)
913 /* Take the link out of reset */
914 ctrl
&= ~E1000_CTRL_LRST
;
916 e1000e_config_collision_dist(hw
);
918 ret_val
= e1000_commit_fc_settings_generic(hw
);
923 * Since auto-negotiation is enabled, take the link out of reset (the
924 * link will be in reset, because we previously reset the chip). This
925 * will restart auto-negotiation. If auto-negotiation is successful
926 * then the link-up status bit will be set and the flow control enable
927 * bits (RFCE and TFCE) will be set according to their negotiated value.
929 e_dbg("Auto-negotiation enabled\n");
936 * For these adapters, the SW definable pin 1 is set when the optics
937 * detect a signal. If we have a signal, then poll for a "Link-Up"
940 if (hw
->phy
.media_type
== e1000_media_type_internal_serdes
||
941 (er32(CTRL
) & E1000_CTRL_SWDPIN1
)) {
942 ret_val
= e1000_poll_fiber_serdes_link_generic(hw
);
944 e_dbg("No signal detected\n");
951 * e1000e_config_collision_dist - Configure collision distance
952 * @hw: pointer to the HW structure
954 * Configures the collision distance to the default value and is used
955 * during link setup. Currently no func pointer exists and all
956 * implementations are handled in the generic version of this function.
958 void e1000e_config_collision_dist(struct e1000_hw
*hw
)
964 tctl
&= ~E1000_TCTL_COLD
;
965 tctl
|= E1000_COLLISION_DISTANCE
<< E1000_COLD_SHIFT
;
972 * e1000e_set_fc_watermarks - Set flow control high/low watermarks
973 * @hw: pointer to the HW structure
975 * Sets the flow control high/low threshold (watermark) registers. If
976 * flow control XON frame transmission is enabled, then set XON frame
977 * transmission as well.
979 s32
e1000e_set_fc_watermarks(struct e1000_hw
*hw
)
981 u32 fcrtl
= 0, fcrth
= 0;
984 * Set the flow control receive threshold registers. Normally,
985 * these registers will be set to a default threshold that may be
986 * adjusted later by the driver's runtime code. However, if the
987 * ability to transmit pause frames is not enabled, then these
988 * registers will be set to 0.
990 if (hw
->fc
.current_mode
& e1000_fc_tx_pause
) {
992 * We need to set up the Receive Threshold high and low water
993 * marks as well as (optionally) enabling the transmission of
996 fcrtl
= hw
->fc
.low_water
;
997 fcrtl
|= E1000_FCRTL_XONE
;
998 fcrth
= hw
->fc
.high_water
;
1007 * e1000e_force_mac_fc - Force the MAC's flow control settings
1008 * @hw: pointer to the HW structure
1010 * Force the MAC's flow control settings. Sets the TFCE and RFCE bits in the
1011 * device control register to reflect the adapter settings. TFCE and RFCE
1012 * need to be explicitly set by software when a copper PHY is used because
1013 * autonegotiation is managed by the PHY rather than the MAC. Software must
1014 * also configure these bits when link is forced on a fiber connection.
1016 s32
e1000e_force_mac_fc(struct e1000_hw
*hw
)
1023 * Because we didn't get link via the internal auto-negotiation
1024 * mechanism (we either forced link or we got link via PHY
1025 * auto-neg), we have to manually enable/disable transmit an
1026 * receive flow control.
1028 * The "Case" statement below enables/disable flow control
1029 * according to the "hw->fc.current_mode" parameter.
1031 * The possible values of the "fc" parameter are:
1032 * 0: Flow control is completely disabled
1033 * 1: Rx flow control is enabled (we can receive pause
1034 * frames but not send pause frames).
1035 * 2: Tx flow control is enabled (we can send pause frames
1036 * frames but we do not receive pause frames).
1037 * 3: Both Rx and Tx flow control (symmetric) is enabled.
1038 * other: No other values should be possible at this point.
1040 e_dbg("hw->fc.current_mode = %u\n", hw
->fc
.current_mode
);
1042 switch (hw
->fc
.current_mode
) {
1044 ctrl
&= (~(E1000_CTRL_TFCE
| E1000_CTRL_RFCE
));
1046 case e1000_fc_rx_pause
:
1047 ctrl
&= (~E1000_CTRL_TFCE
);
1048 ctrl
|= E1000_CTRL_RFCE
;
1050 case e1000_fc_tx_pause
:
1051 ctrl
&= (~E1000_CTRL_RFCE
);
1052 ctrl
|= E1000_CTRL_TFCE
;
1055 ctrl
|= (E1000_CTRL_TFCE
| E1000_CTRL_RFCE
);
1058 e_dbg("Flow control param set incorrectly\n");
1059 return -E1000_ERR_CONFIG
;
1068 * e1000e_config_fc_after_link_up - Configures flow control after link
1069 * @hw: pointer to the HW structure
1071 * Checks the status of auto-negotiation after link up to ensure that the
1072 * speed and duplex were not forced. If the link needed to be forced, then
1073 * flow control needs to be forced also. If auto-negotiation is enabled
1074 * and did not fail, then we configure flow control based on our link
1077 s32
e1000e_config_fc_after_link_up(struct e1000_hw
*hw
)
1079 struct e1000_mac_info
*mac
= &hw
->mac
;
1081 u16 mii_status_reg
, mii_nway_adv_reg
, mii_nway_lp_ability_reg
;
1085 * Check for the case where we have fiber media and auto-neg failed
1086 * so we had to force link. In this case, we need to force the
1087 * configuration of the MAC to match the "fc" parameter.
1089 if (mac
->autoneg_failed
) {
1090 if (hw
->phy
.media_type
== e1000_media_type_fiber
||
1091 hw
->phy
.media_type
== e1000_media_type_internal_serdes
)
1092 ret_val
= e1000e_force_mac_fc(hw
);
1094 if (hw
->phy
.media_type
== e1000_media_type_copper
)
1095 ret_val
= e1000e_force_mac_fc(hw
);
1099 e_dbg("Error forcing flow control settings\n");
1104 * Check for the case where we have copper media and auto-neg is
1105 * enabled. In this case, we need to check and see if Auto-Neg
1106 * has completed, and if so, how the PHY and link partner has
1107 * flow control configured.
1109 if ((hw
->phy
.media_type
== e1000_media_type_copper
) && mac
->autoneg
) {
1111 * Read the MII Status Register and check to see if AutoNeg
1112 * has completed. We read this twice because this reg has
1113 * some "sticky" (latched) bits.
1115 ret_val
= e1e_rphy(hw
, PHY_STATUS
, &mii_status_reg
);
1118 ret_val
= e1e_rphy(hw
, PHY_STATUS
, &mii_status_reg
);
1122 if (!(mii_status_reg
& MII_SR_AUTONEG_COMPLETE
)) {
1123 e_dbg("Copper PHY and Auto Neg "
1124 "has not completed.\n");
1129 * The AutoNeg process has completed, so we now need to
1130 * read both the Auto Negotiation Advertisement
1131 * Register (Address 4) and the Auto_Negotiation Base
1132 * Page Ability Register (Address 5) to determine how
1133 * flow control was negotiated.
1135 ret_val
= e1e_rphy(hw
, PHY_AUTONEG_ADV
, &mii_nway_adv_reg
);
1139 e1e_rphy(hw
, PHY_LP_ABILITY
, &mii_nway_lp_ability_reg
);
1144 * Two bits in the Auto Negotiation Advertisement Register
1145 * (Address 4) and two bits in the Auto Negotiation Base
1146 * Page Ability Register (Address 5) determine flow control
1147 * for both the PHY and the link partner. The following
1148 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
1149 * 1999, describes these PAUSE resolution bits and how flow
1150 * control is determined based upon these settings.
1151 * NOTE: DC = Don't Care
1153 * LOCAL DEVICE | LINK PARTNER
1154 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
1155 *-------|---------|-------|---------|--------------------
1156 * 0 | 0 | DC | DC | e1000_fc_none
1157 * 0 | 1 | 0 | DC | e1000_fc_none
1158 * 0 | 1 | 1 | 0 | e1000_fc_none
1159 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
1160 * 1 | 0 | 0 | DC | e1000_fc_none
1161 * 1 | DC | 1 | DC | e1000_fc_full
1162 * 1 | 1 | 0 | 0 | e1000_fc_none
1163 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
1165 * Are both PAUSE bits set to 1? If so, this implies
1166 * Symmetric Flow Control is enabled at both ends. The
1167 * ASM_DIR bits are irrelevant per the spec.
1169 * For Symmetric Flow Control:
1171 * LOCAL DEVICE | LINK PARTNER
1172 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1173 *-------|---------|-------|---------|--------------------
1174 * 1 | DC | 1 | DC | E1000_fc_full
1177 if ((mii_nway_adv_reg
& NWAY_AR_PAUSE
) &&
1178 (mii_nway_lp_ability_reg
& NWAY_LPAR_PAUSE
)) {
1180 * Now we need to check if the user selected Rx ONLY
1181 * of pause frames. In this case, we had to advertise
1182 * FULL flow control because we could not advertise Rx
1183 * ONLY. Hence, we must now check to see if we need to
1184 * turn OFF the TRANSMISSION of PAUSE frames.
1186 if (hw
->fc
.requested_mode
== e1000_fc_full
) {
1187 hw
->fc
.current_mode
= e1000_fc_full
;
1188 e_dbg("Flow Control = FULL.\r\n");
1190 hw
->fc
.current_mode
= e1000_fc_rx_pause
;
1191 e_dbg("Flow Control = "
1192 "RX PAUSE frames only.\r\n");
1196 * For receiving PAUSE frames ONLY.
1198 * LOCAL DEVICE | LINK PARTNER
1199 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1200 *-------|---------|-------|---------|--------------------
1201 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
1203 else if (!(mii_nway_adv_reg
& NWAY_AR_PAUSE
) &&
1204 (mii_nway_adv_reg
& NWAY_AR_ASM_DIR
) &&
1205 (mii_nway_lp_ability_reg
& NWAY_LPAR_PAUSE
) &&
1206 (mii_nway_lp_ability_reg
& NWAY_LPAR_ASM_DIR
)) {
1207 hw
->fc
.current_mode
= e1000_fc_tx_pause
;
1208 e_dbg("Flow Control = Tx PAUSE frames only.\r\n");
1211 * For transmitting PAUSE frames ONLY.
1213 * LOCAL DEVICE | LINK PARTNER
1214 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1215 *-------|---------|-------|---------|--------------------
1216 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
1218 else if ((mii_nway_adv_reg
& NWAY_AR_PAUSE
) &&
1219 (mii_nway_adv_reg
& NWAY_AR_ASM_DIR
) &&
1220 !(mii_nway_lp_ability_reg
& NWAY_LPAR_PAUSE
) &&
1221 (mii_nway_lp_ability_reg
& NWAY_LPAR_ASM_DIR
)) {
1222 hw
->fc
.current_mode
= e1000_fc_rx_pause
;
1223 e_dbg("Flow Control = Rx PAUSE frames only.\r\n");
1226 * Per the IEEE spec, at this point flow control
1227 * should be disabled.
1229 hw
->fc
.current_mode
= e1000_fc_none
;
1230 e_dbg("Flow Control = NONE.\r\n");
1234 * Now we need to do one last check... If we auto-
1235 * negotiated to HALF DUPLEX, flow control should not be
1236 * enabled per IEEE 802.3 spec.
1238 ret_val
= mac
->ops
.get_link_up_info(hw
, &speed
, &duplex
);
1240 e_dbg("Error getting link speed and duplex\n");
1244 if (duplex
== HALF_DUPLEX
)
1245 hw
->fc
.current_mode
= e1000_fc_none
;
1248 * Now we call a subroutine to actually force the MAC
1249 * controller to use the correct flow control settings.
1251 ret_val
= e1000e_force_mac_fc(hw
);
1253 e_dbg("Error forcing flow control settings\n");
1262 * e1000e_get_speed_and_duplex_copper - Retrieve current speed/duplex
1263 * @hw: pointer to the HW structure
1264 * @speed: stores the current speed
1265 * @duplex: stores the current duplex
1267 * Read the status register for the current speed/duplex and store the current
1268 * speed and duplex for copper connections.
1270 s32
e1000e_get_speed_and_duplex_copper(struct e1000_hw
*hw
, u16
*speed
, u16
*duplex
)
1274 status
= er32(STATUS
);
1275 if (status
& E1000_STATUS_SPEED_1000
)
1276 *speed
= SPEED_1000
;
1277 else if (status
& E1000_STATUS_SPEED_100
)
1282 if (status
& E1000_STATUS_FD
)
1283 *duplex
= FULL_DUPLEX
;
1285 *duplex
= HALF_DUPLEX
;
1287 e_dbg("%u Mbps, %s Duplex\n",
1288 *speed
== SPEED_1000
? 1000 : *speed
== SPEED_100
? 100 : 10,
1289 *duplex
== FULL_DUPLEX
? "Full" : "Half");
1295 * e1000e_get_speed_and_duplex_fiber_serdes - Retrieve current speed/duplex
1296 * @hw: pointer to the HW structure
1297 * @speed: stores the current speed
1298 * @duplex: stores the current duplex
1300 * Sets the speed and duplex to gigabit full duplex (the only possible option)
1301 * for fiber/serdes links.
1303 s32
e1000e_get_speed_and_duplex_fiber_serdes(struct e1000_hw
*hw
, u16
*speed
, u16
*duplex
)
1305 *speed
= SPEED_1000
;
1306 *duplex
= FULL_DUPLEX
;
1312 * e1000e_get_hw_semaphore - Acquire hardware semaphore
1313 * @hw: pointer to the HW structure
1315 * Acquire the HW semaphore to access the PHY or NVM
1317 s32
e1000e_get_hw_semaphore(struct e1000_hw
*hw
)
1320 s32 timeout
= hw
->nvm
.word_size
+ 1;
1323 /* Get the SW semaphore */
1324 while (i
< timeout
) {
1326 if (!(swsm
& E1000_SWSM_SMBI
))
1334 e_dbg("Driver can't access device - SMBI bit is set.\n");
1335 return -E1000_ERR_NVM
;
1338 /* Get the FW semaphore. */
1339 for (i
= 0; i
< timeout
; i
++) {
1341 ew32(SWSM
, swsm
| E1000_SWSM_SWESMBI
);
1343 /* Semaphore acquired if bit latched */
1344 if (er32(SWSM
) & E1000_SWSM_SWESMBI
)
1351 /* Release semaphores */
1352 e1000e_put_hw_semaphore(hw
);
1353 e_dbg("Driver can't access the NVM\n");
1354 return -E1000_ERR_NVM
;
1361 * e1000e_put_hw_semaphore - Release hardware semaphore
1362 * @hw: pointer to the HW structure
1364 * Release hardware semaphore used to access the PHY or NVM
1366 void e1000e_put_hw_semaphore(struct e1000_hw
*hw
)
1371 swsm
&= ~(E1000_SWSM_SMBI
| E1000_SWSM_SWESMBI
);
1376 * e1000e_get_auto_rd_done - Check for auto read completion
1377 * @hw: pointer to the HW structure
1379 * Check EEPROM for Auto Read done bit.
1381 s32
e1000e_get_auto_rd_done(struct e1000_hw
*hw
)
1385 while (i
< AUTO_READ_DONE_TIMEOUT
) {
1386 if (er32(EECD
) & E1000_EECD_AUTO_RD
)
1392 if (i
== AUTO_READ_DONE_TIMEOUT
) {
1393 e_dbg("Auto read by HW from NVM has not completed.\n");
1394 return -E1000_ERR_RESET
;
1401 * e1000e_valid_led_default - Verify a valid default LED config
1402 * @hw: pointer to the HW structure
1403 * @data: pointer to the NVM (EEPROM)
1405 * Read the EEPROM for the current default LED configuration. If the
1406 * LED configuration is not valid, set to a valid LED configuration.
1408 s32
e1000e_valid_led_default(struct e1000_hw
*hw
, u16
*data
)
1412 ret_val
= e1000_read_nvm(hw
, NVM_ID_LED_SETTINGS
, 1, data
);
1414 e_dbg("NVM Read Error\n");
1418 if (*data
== ID_LED_RESERVED_0000
|| *data
== ID_LED_RESERVED_FFFF
)
1419 *data
= ID_LED_DEFAULT
;
1425 * e1000e_id_led_init -
1426 * @hw: pointer to the HW structure
1429 s32
e1000e_id_led_init(struct e1000_hw
*hw
)
1431 struct e1000_mac_info
*mac
= &hw
->mac
;
1433 const u32 ledctl_mask
= 0x000000FF;
1434 const u32 ledctl_on
= E1000_LEDCTL_MODE_LED_ON
;
1435 const u32 ledctl_off
= E1000_LEDCTL_MODE_LED_OFF
;
1437 const u16 led_mask
= 0x0F;
1439 ret_val
= hw
->nvm
.ops
.valid_led_default(hw
, &data
);
1443 mac
->ledctl_default
= er32(LEDCTL
);
1444 mac
->ledctl_mode1
= mac
->ledctl_default
;
1445 mac
->ledctl_mode2
= mac
->ledctl_default
;
1447 for (i
= 0; i
< 4; i
++) {
1448 temp
= (data
>> (i
<< 2)) & led_mask
;
1450 case ID_LED_ON1_DEF2
:
1451 case ID_LED_ON1_ON2
:
1452 case ID_LED_ON1_OFF2
:
1453 mac
->ledctl_mode1
&= ~(ledctl_mask
<< (i
<< 3));
1454 mac
->ledctl_mode1
|= ledctl_on
<< (i
<< 3);
1456 case ID_LED_OFF1_DEF2
:
1457 case ID_LED_OFF1_ON2
:
1458 case ID_LED_OFF1_OFF2
:
1459 mac
->ledctl_mode1
&= ~(ledctl_mask
<< (i
<< 3));
1460 mac
->ledctl_mode1
|= ledctl_off
<< (i
<< 3);
1467 case ID_LED_DEF1_ON2
:
1468 case ID_LED_ON1_ON2
:
1469 case ID_LED_OFF1_ON2
:
1470 mac
->ledctl_mode2
&= ~(ledctl_mask
<< (i
<< 3));
1471 mac
->ledctl_mode2
|= ledctl_on
<< (i
<< 3);
1473 case ID_LED_DEF1_OFF2
:
1474 case ID_LED_ON1_OFF2
:
1475 case ID_LED_OFF1_OFF2
:
1476 mac
->ledctl_mode2
&= ~(ledctl_mask
<< (i
<< 3));
1477 mac
->ledctl_mode2
|= ledctl_off
<< (i
<< 3);
1489 * e1000e_setup_led_generic - Configures SW controllable LED
1490 * @hw: pointer to the HW structure
1492 * This prepares the SW controllable LED for use and saves the current state
1493 * of the LED so it can be later restored.
1495 s32
e1000e_setup_led_generic(struct e1000_hw
*hw
)
1499 if (hw
->mac
.ops
.setup_led
!= e1000e_setup_led_generic
)
1500 return -E1000_ERR_CONFIG
;
1502 if (hw
->phy
.media_type
== e1000_media_type_fiber
) {
1503 ledctl
= er32(LEDCTL
);
1504 hw
->mac
.ledctl_default
= ledctl
;
1506 ledctl
&= ~(E1000_LEDCTL_LED0_IVRT
|
1507 E1000_LEDCTL_LED0_BLINK
|
1508 E1000_LEDCTL_LED0_MODE_MASK
);
1509 ledctl
|= (E1000_LEDCTL_MODE_LED_OFF
<<
1510 E1000_LEDCTL_LED0_MODE_SHIFT
);
1511 ew32(LEDCTL
, ledctl
);
1512 } else if (hw
->phy
.media_type
== e1000_media_type_copper
) {
1513 ew32(LEDCTL
, hw
->mac
.ledctl_mode1
);
1520 * e1000e_cleanup_led_generic - Set LED config to default operation
1521 * @hw: pointer to the HW structure
1523 * Remove the current LED configuration and set the LED configuration
1524 * to the default value, saved from the EEPROM.
1526 s32
e1000e_cleanup_led_generic(struct e1000_hw
*hw
)
1528 ew32(LEDCTL
, hw
->mac
.ledctl_default
);
1533 * e1000e_blink_led - Blink LED
1534 * @hw: pointer to the HW structure
1536 * Blink the LEDs which are set to be on.
1538 s32
e1000e_blink_led(struct e1000_hw
*hw
)
1540 u32 ledctl_blink
= 0;
1543 if (hw
->phy
.media_type
== e1000_media_type_fiber
) {
1544 /* always blink LED0 for PCI-E fiber */
1545 ledctl_blink
= E1000_LEDCTL_LED0_BLINK
|
1546 (E1000_LEDCTL_MODE_LED_ON
<< E1000_LEDCTL_LED0_MODE_SHIFT
);
1549 * set the blink bit for each LED that's "on" (0x0E)
1552 ledctl_blink
= hw
->mac
.ledctl_mode2
;
1553 for (i
= 0; i
< 4; i
++)
1554 if (((hw
->mac
.ledctl_mode2
>> (i
* 8)) & 0xFF) ==
1555 E1000_LEDCTL_MODE_LED_ON
)
1556 ledctl_blink
|= (E1000_LEDCTL_LED0_BLINK
<<
1560 ew32(LEDCTL
, ledctl_blink
);
1566 * e1000e_led_on_generic - Turn LED on
1567 * @hw: pointer to the HW structure
1571 s32
e1000e_led_on_generic(struct e1000_hw
*hw
)
1575 switch (hw
->phy
.media_type
) {
1576 case e1000_media_type_fiber
:
1578 ctrl
&= ~E1000_CTRL_SWDPIN0
;
1579 ctrl
|= E1000_CTRL_SWDPIO0
;
1582 case e1000_media_type_copper
:
1583 ew32(LEDCTL
, hw
->mac
.ledctl_mode2
);
1593 * e1000e_led_off_generic - Turn LED off
1594 * @hw: pointer to the HW structure
1598 s32
e1000e_led_off_generic(struct e1000_hw
*hw
)
1602 switch (hw
->phy
.media_type
) {
1603 case e1000_media_type_fiber
:
1605 ctrl
|= E1000_CTRL_SWDPIN0
;
1606 ctrl
|= E1000_CTRL_SWDPIO0
;
1609 case e1000_media_type_copper
:
1610 ew32(LEDCTL
, hw
->mac
.ledctl_mode1
);
1620 * e1000e_set_pcie_no_snoop - Set PCI-express capabilities
1621 * @hw: pointer to the HW structure
1622 * @no_snoop: bitmap of snoop events
1624 * Set the PCI-express register to snoop for events enabled in 'no_snoop'.
1626 void e1000e_set_pcie_no_snoop(struct e1000_hw
*hw
, u32 no_snoop
)
1632 gcr
&= ~(PCIE_NO_SNOOP_ALL
);
1639 * e1000e_disable_pcie_master - Disables PCI-express master access
1640 * @hw: pointer to the HW structure
1642 * Returns 0 if successful, else returns -10
1643 * (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not caused
1644 * the master requests to be disabled.
1646 * Disables PCI-Express master access and verifies there are no pending
1649 s32
e1000e_disable_pcie_master(struct e1000_hw
*hw
)
1652 s32 timeout
= MASTER_DISABLE_TIMEOUT
;
1655 ctrl
|= E1000_CTRL_GIO_MASTER_DISABLE
;
1659 if (!(er32(STATUS
) &
1660 E1000_STATUS_GIO_MASTER_ENABLE
))
1667 e_dbg("Master requests are pending.\n");
1668 return -E1000_ERR_MASTER_REQUESTS_PENDING
;
1675 * e1000e_reset_adaptive - Reset Adaptive Interframe Spacing
1676 * @hw: pointer to the HW structure
1678 * Reset the Adaptive Interframe Spacing throttle to default values.
1680 void e1000e_reset_adaptive(struct e1000_hw
*hw
)
1682 struct e1000_mac_info
*mac
= &hw
->mac
;
1684 if (!mac
->adaptive_ifs
) {
1685 e_dbg("Not in Adaptive IFS mode!\n");
1689 mac
->current_ifs_val
= 0;
1690 mac
->ifs_min_val
= IFS_MIN
;
1691 mac
->ifs_max_val
= IFS_MAX
;
1692 mac
->ifs_step_size
= IFS_STEP
;
1693 mac
->ifs_ratio
= IFS_RATIO
;
1695 mac
->in_ifs_mode
= false;
1702 * e1000e_update_adaptive - Update Adaptive Interframe Spacing
1703 * @hw: pointer to the HW structure
1705 * Update the Adaptive Interframe Spacing Throttle value based on the
1706 * time between transmitted packets and time between collisions.
1708 void e1000e_update_adaptive(struct e1000_hw
*hw
)
1710 struct e1000_mac_info
*mac
= &hw
->mac
;
1712 if (!mac
->adaptive_ifs
) {
1713 e_dbg("Not in Adaptive IFS mode!\n");
1717 if ((mac
->collision_delta
* mac
->ifs_ratio
) > mac
->tx_packet_delta
) {
1718 if (mac
->tx_packet_delta
> MIN_NUM_XMITS
) {
1719 mac
->in_ifs_mode
= true;
1720 if (mac
->current_ifs_val
< mac
->ifs_max_val
) {
1721 if (!mac
->current_ifs_val
)
1722 mac
->current_ifs_val
= mac
->ifs_min_val
;
1724 mac
->current_ifs_val
+=
1726 ew32(AIT
, mac
->current_ifs_val
);
1730 if (mac
->in_ifs_mode
&&
1731 (mac
->tx_packet_delta
<= MIN_NUM_XMITS
)) {
1732 mac
->current_ifs_val
= 0;
1733 mac
->in_ifs_mode
= false;
1742 * e1000_raise_eec_clk - Raise EEPROM clock
1743 * @hw: pointer to the HW structure
1744 * @eecd: pointer to the EEPROM
1746 * Enable/Raise the EEPROM clock bit.
1748 static void e1000_raise_eec_clk(struct e1000_hw
*hw
, u32
*eecd
)
1750 *eecd
= *eecd
| E1000_EECD_SK
;
1753 udelay(hw
->nvm
.delay_usec
);
1757 * e1000_lower_eec_clk - Lower EEPROM clock
1758 * @hw: pointer to the HW structure
1759 * @eecd: pointer to the EEPROM
1761 * Clear/Lower the EEPROM clock bit.
1763 static void e1000_lower_eec_clk(struct e1000_hw
*hw
, u32
*eecd
)
1765 *eecd
= *eecd
& ~E1000_EECD_SK
;
1768 udelay(hw
->nvm
.delay_usec
);
1772 * e1000_shift_out_eec_bits - Shift data bits our to the EEPROM
1773 * @hw: pointer to the HW structure
1774 * @data: data to send to the EEPROM
1775 * @count: number of bits to shift out
1777 * We need to shift 'count' bits out to the EEPROM. So, the value in the
1778 * "data" parameter will be shifted out to the EEPROM one bit at a time.
1779 * In order to do this, "data" must be broken down into bits.
1781 static void e1000_shift_out_eec_bits(struct e1000_hw
*hw
, u16 data
, u16 count
)
1783 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
1784 u32 eecd
= er32(EECD
);
1787 mask
= 0x01 << (count
- 1);
1788 if (nvm
->type
== e1000_nvm_eeprom_spi
)
1789 eecd
|= E1000_EECD_DO
;
1792 eecd
&= ~E1000_EECD_DI
;
1795 eecd
|= E1000_EECD_DI
;
1800 udelay(nvm
->delay_usec
);
1802 e1000_raise_eec_clk(hw
, &eecd
);
1803 e1000_lower_eec_clk(hw
, &eecd
);
1808 eecd
&= ~E1000_EECD_DI
;
1813 * e1000_shift_in_eec_bits - Shift data bits in from the EEPROM
1814 * @hw: pointer to the HW structure
1815 * @count: number of bits to shift in
1817 * In order to read a register from the EEPROM, we need to shift 'count' bits
1818 * in from the EEPROM. Bits are "shifted in" by raising the clock input to
1819 * the EEPROM (setting the SK bit), and then reading the value of the data out
1820 * "DO" bit. During this "shifting in" process the data in "DI" bit should
1823 static u16
e1000_shift_in_eec_bits(struct e1000_hw
*hw
, u16 count
)
1831 eecd
&= ~(E1000_EECD_DO
| E1000_EECD_DI
);
1834 for (i
= 0; i
< count
; i
++) {
1836 e1000_raise_eec_clk(hw
, &eecd
);
1840 eecd
&= ~E1000_EECD_DI
;
1841 if (eecd
& E1000_EECD_DO
)
1844 e1000_lower_eec_clk(hw
, &eecd
);
1851 * e1000e_poll_eerd_eewr_done - Poll for EEPROM read/write completion
1852 * @hw: pointer to the HW structure
1853 * @ee_reg: EEPROM flag for polling
1855 * Polls the EEPROM status bit for either read or write completion based
1856 * upon the value of 'ee_reg'.
1858 s32
e1000e_poll_eerd_eewr_done(struct e1000_hw
*hw
, int ee_reg
)
1860 u32 attempts
= 100000;
1863 for (i
= 0; i
< attempts
; i
++) {
1864 if (ee_reg
== E1000_NVM_POLL_READ
)
1869 if (reg
& E1000_NVM_RW_REG_DONE
)
1875 return -E1000_ERR_NVM
;
1879 * e1000e_acquire_nvm - Generic request for access to EEPROM
1880 * @hw: pointer to the HW structure
1882 * Set the EEPROM access request bit and wait for EEPROM access grant bit.
1883 * Return successful if access grant bit set, else clear the request for
1884 * EEPROM access and return -E1000_ERR_NVM (-1).
1886 s32
e1000e_acquire_nvm(struct e1000_hw
*hw
)
1888 u32 eecd
= er32(EECD
);
1889 s32 timeout
= E1000_NVM_GRANT_ATTEMPTS
;
1891 ew32(EECD
, eecd
| E1000_EECD_REQ
);
1895 if (eecd
& E1000_EECD_GNT
)
1903 eecd
&= ~E1000_EECD_REQ
;
1905 e_dbg("Could not acquire NVM grant\n");
1906 return -E1000_ERR_NVM
;
1913 * e1000_standby_nvm - Return EEPROM to standby state
1914 * @hw: pointer to the HW structure
1916 * Return the EEPROM to a standby state.
1918 static void e1000_standby_nvm(struct e1000_hw
*hw
)
1920 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
1921 u32 eecd
= er32(EECD
);
1923 if (nvm
->type
== e1000_nvm_eeprom_spi
) {
1924 /* Toggle CS to flush commands */
1925 eecd
|= E1000_EECD_CS
;
1928 udelay(nvm
->delay_usec
);
1929 eecd
&= ~E1000_EECD_CS
;
1932 udelay(nvm
->delay_usec
);
1937 * e1000_stop_nvm - Terminate EEPROM command
1938 * @hw: pointer to the HW structure
1940 * Terminates the current command by inverting the EEPROM's chip select pin.
1942 static void e1000_stop_nvm(struct e1000_hw
*hw
)
1947 if (hw
->nvm
.type
== e1000_nvm_eeprom_spi
) {
1949 eecd
|= E1000_EECD_CS
;
1950 e1000_lower_eec_clk(hw
, &eecd
);
1955 * e1000e_release_nvm - Release exclusive access to EEPROM
1956 * @hw: pointer to the HW structure
1958 * Stop any current commands to the EEPROM and clear the EEPROM request bit.
1960 void e1000e_release_nvm(struct e1000_hw
*hw
)
1967 eecd
&= ~E1000_EECD_REQ
;
1972 * e1000_ready_nvm_eeprom - Prepares EEPROM for read/write
1973 * @hw: pointer to the HW structure
1975 * Setups the EEPROM for reading and writing.
1977 static s32
e1000_ready_nvm_eeprom(struct e1000_hw
*hw
)
1979 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
1980 u32 eecd
= er32(EECD
);
1984 if (nvm
->type
== e1000_nvm_eeprom_spi
) {
1985 /* Clear SK and CS */
1986 eecd
&= ~(E1000_EECD_CS
| E1000_EECD_SK
);
1989 timeout
= NVM_MAX_RETRY_SPI
;
1992 * Read "Status Register" repeatedly until the LSB is cleared.
1993 * The EEPROM will signal that the command has been completed
1994 * by clearing bit 0 of the internal status register. If it's
1995 * not cleared within 'timeout', then error out.
1998 e1000_shift_out_eec_bits(hw
, NVM_RDSR_OPCODE_SPI
,
1999 hw
->nvm
.opcode_bits
);
2000 spi_stat_reg
= (u8
)e1000_shift_in_eec_bits(hw
, 8);
2001 if (!(spi_stat_reg
& NVM_STATUS_RDY_SPI
))
2005 e1000_standby_nvm(hw
);
2010 e_dbg("SPI NVM Status error\n");
2011 return -E1000_ERR_NVM
;
2019 * e1000e_read_nvm_eerd - Reads EEPROM using EERD register
2020 * @hw: pointer to the HW structure
2021 * @offset: offset of word in the EEPROM to read
2022 * @words: number of words to read
2023 * @data: word read from the EEPROM
2025 * Reads a 16 bit word from the EEPROM using the EERD register.
2027 s32
e1000e_read_nvm_eerd(struct e1000_hw
*hw
, u16 offset
, u16 words
, u16
*data
)
2029 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
2034 * A check for invalid values: offset too large, too many words,
2035 * too many words for the offset, and not enough words.
2037 if ((offset
>= nvm
->word_size
) || (words
> (nvm
->word_size
- offset
)) ||
2039 e_dbg("nvm parameter(s) out of bounds\n");
2040 return -E1000_ERR_NVM
;
2043 for (i
= 0; i
< words
; i
++) {
2044 eerd
= ((offset
+i
) << E1000_NVM_RW_ADDR_SHIFT
) +
2045 E1000_NVM_RW_REG_START
;
2048 ret_val
= e1000e_poll_eerd_eewr_done(hw
, E1000_NVM_POLL_READ
);
2052 data
[i
] = (er32(EERD
) >> E1000_NVM_RW_REG_DATA
);
2059 * e1000e_write_nvm_spi - Write to EEPROM using SPI
2060 * @hw: pointer to the HW structure
2061 * @offset: offset within the EEPROM to be written to
2062 * @words: number of words to write
2063 * @data: 16 bit word(s) to be written to the EEPROM
2065 * Writes data to EEPROM at offset using SPI interface.
2067 * If e1000e_update_nvm_checksum is not called after this function , the
2068 * EEPROM will most likely contain an invalid checksum.
2070 s32
e1000e_write_nvm_spi(struct e1000_hw
*hw
, u16 offset
, u16 words
, u16
*data
)
2072 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
2077 * A check for invalid values: offset too large, too many words,
2078 * and not enough words.
2080 if ((offset
>= nvm
->word_size
) || (words
> (nvm
->word_size
- offset
)) ||
2082 e_dbg("nvm parameter(s) out of bounds\n");
2083 return -E1000_ERR_NVM
;
2086 ret_val
= nvm
->ops
.acquire(hw
);
2092 while (widx
< words
) {
2093 u8 write_opcode
= NVM_WRITE_OPCODE_SPI
;
2095 ret_val
= e1000_ready_nvm_eeprom(hw
);
2097 nvm
->ops
.release(hw
);
2101 e1000_standby_nvm(hw
);
2103 /* Send the WRITE ENABLE command (8 bit opcode) */
2104 e1000_shift_out_eec_bits(hw
, NVM_WREN_OPCODE_SPI
,
2107 e1000_standby_nvm(hw
);
2110 * Some SPI eeproms use the 8th address bit embedded in the
2113 if ((nvm
->address_bits
== 8) && (offset
>= 128))
2114 write_opcode
|= NVM_A8_OPCODE_SPI
;
2116 /* Send the Write command (8-bit opcode + addr) */
2117 e1000_shift_out_eec_bits(hw
, write_opcode
, nvm
->opcode_bits
);
2118 e1000_shift_out_eec_bits(hw
, (u16
)((offset
+ widx
) * 2),
2121 /* Loop to allow for up to whole page write of eeprom */
2122 while (widx
< words
) {
2123 u16 word_out
= data
[widx
];
2124 word_out
= (word_out
>> 8) | (word_out
<< 8);
2125 e1000_shift_out_eec_bits(hw
, word_out
, 16);
2128 if ((((offset
+ widx
) * 2) % nvm
->page_size
) == 0) {
2129 e1000_standby_nvm(hw
);
2136 nvm
->ops
.release(hw
);
2141 * e1000_read_pba_string_generic - Read device part number
2142 * @hw: pointer to the HW structure
2143 * @pba_num: pointer to device part number
2144 * @pba_num_size: size of part number buffer
2146 * Reads the product board assembly (PBA) number from the EEPROM and stores
2147 * the value in pba_num.
2149 s32
e1000_read_pba_string_generic(struct e1000_hw
*hw
, u8
*pba_num
,
2158 if (pba_num
== NULL
) {
2159 e_dbg("PBA string buffer was null\n");
2160 ret_val
= E1000_ERR_INVALID_ARGUMENT
;
2164 ret_val
= e1000_read_nvm(hw
, NVM_PBA_OFFSET_0
, 1, &nvm_data
);
2166 e_dbg("NVM Read Error\n");
2170 ret_val
= e1000_read_nvm(hw
, NVM_PBA_OFFSET_1
, 1, &pba_ptr
);
2172 e_dbg("NVM Read Error\n");
2177 * if nvm_data is not ptr guard the PBA must be in legacy format which
2178 * means pba_ptr is actually our second data word for the PBA number
2179 * and we can decode it into an ascii string
2181 if (nvm_data
!= NVM_PBA_PTR_GUARD
) {
2182 e_dbg("NVM PBA number is not stored as string\n");
2184 /* we will need 11 characters to store the PBA */
2185 if (pba_num_size
< 11) {
2186 e_dbg("PBA string buffer too small\n");
2187 return E1000_ERR_NO_SPACE
;
2190 /* extract hex string from data and pba_ptr */
2191 pba_num
[0] = (nvm_data
>> 12) & 0xF;
2192 pba_num
[1] = (nvm_data
>> 8) & 0xF;
2193 pba_num
[2] = (nvm_data
>> 4) & 0xF;
2194 pba_num
[3] = nvm_data
& 0xF;
2195 pba_num
[4] = (pba_ptr
>> 12) & 0xF;
2196 pba_num
[5] = (pba_ptr
>> 8) & 0xF;
2199 pba_num
[8] = (pba_ptr
>> 4) & 0xF;
2200 pba_num
[9] = pba_ptr
& 0xF;
2202 /* put a null character on the end of our string */
2205 /* switch all the data but the '-' to hex char */
2206 for (offset
= 0; offset
< 10; offset
++) {
2207 if (pba_num
[offset
] < 0xA)
2208 pba_num
[offset
] += '0';
2209 else if (pba_num
[offset
] < 0x10)
2210 pba_num
[offset
] += 'A' - 0xA;
2216 ret_val
= e1000_read_nvm(hw
, pba_ptr
, 1, &length
);
2218 e_dbg("NVM Read Error\n");
2222 if (length
== 0xFFFF || length
== 0) {
2223 e_dbg("NVM PBA number section invalid length\n");
2224 ret_val
= E1000_ERR_NVM_PBA_SECTION
;
2227 /* check if pba_num buffer is big enough */
2228 if (pba_num_size
< (((u32
)length
* 2) - 1)) {
2229 e_dbg("PBA string buffer too small\n");
2230 ret_val
= E1000_ERR_NO_SPACE
;
2234 /* trim pba length from start of string */
2238 for (offset
= 0; offset
< length
; offset
++) {
2239 ret_val
= e1000_read_nvm(hw
, pba_ptr
+ offset
, 1, &nvm_data
);
2241 e_dbg("NVM Read Error\n");
2244 pba_num
[offset
* 2] = (u8
)(nvm_data
>> 8);
2245 pba_num
[(offset
* 2) + 1] = (u8
)(nvm_data
& 0xFF);
2247 pba_num
[offset
* 2] = '\0';
2254 * e1000_read_mac_addr_generic - Read device MAC address
2255 * @hw: pointer to the HW structure
2257 * Reads the device MAC address from the EEPROM and stores the value.
2258 * Since devices with two ports use the same EEPROM, we increment the
2259 * last bit in the MAC address for the second port.
2261 s32
e1000_read_mac_addr_generic(struct e1000_hw
*hw
)
2267 rar_high
= er32(RAH(0));
2268 rar_low
= er32(RAL(0));
2270 for (i
= 0; i
< E1000_RAL_MAC_ADDR_LEN
; i
++)
2271 hw
->mac
.perm_addr
[i
] = (u8
)(rar_low
>> (i
*8));
2273 for (i
= 0; i
< E1000_RAH_MAC_ADDR_LEN
; i
++)
2274 hw
->mac
.perm_addr
[i
+4] = (u8
)(rar_high
>> (i
*8));
2276 for (i
= 0; i
< ETH_ALEN
; i
++)
2277 hw
->mac
.addr
[i
] = hw
->mac
.perm_addr
[i
];
2283 * e1000e_validate_nvm_checksum_generic - Validate EEPROM checksum
2284 * @hw: pointer to the HW structure
2286 * Calculates the EEPROM checksum by reading/adding each word of the EEPROM
2287 * and then verifies that the sum of the EEPROM is equal to 0xBABA.
2289 s32
e1000e_validate_nvm_checksum_generic(struct e1000_hw
*hw
)
2295 for (i
= 0; i
< (NVM_CHECKSUM_REG
+ 1); i
++) {
2296 ret_val
= e1000_read_nvm(hw
, i
, 1, &nvm_data
);
2298 e_dbg("NVM Read Error\n");
2301 checksum
+= nvm_data
;
2304 if (checksum
!= (u16
) NVM_SUM
) {
2305 e_dbg("NVM Checksum Invalid\n");
2306 return -E1000_ERR_NVM
;
2313 * e1000e_update_nvm_checksum_generic - Update EEPROM checksum
2314 * @hw: pointer to the HW structure
2316 * Updates the EEPROM checksum by reading/adding each word of the EEPROM
2317 * up to the checksum. Then calculates the EEPROM checksum and writes the
2318 * value to the EEPROM.
2320 s32
e1000e_update_nvm_checksum_generic(struct e1000_hw
*hw
)
2326 for (i
= 0; i
< NVM_CHECKSUM_REG
; i
++) {
2327 ret_val
= e1000_read_nvm(hw
, i
, 1, &nvm_data
);
2329 e_dbg("NVM Read Error while updating checksum.\n");
2332 checksum
+= nvm_data
;
2334 checksum
= (u16
) NVM_SUM
- checksum
;
2335 ret_val
= e1000_write_nvm(hw
, NVM_CHECKSUM_REG
, 1, &checksum
);
2337 e_dbg("NVM Write Error while updating checksum.\n");
2343 * e1000e_reload_nvm - Reloads EEPROM
2344 * @hw: pointer to the HW structure
2346 * Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the
2347 * extended control register.
2349 void e1000e_reload_nvm(struct e1000_hw
*hw
)
2354 ctrl_ext
= er32(CTRL_EXT
);
2355 ctrl_ext
|= E1000_CTRL_EXT_EE_RST
;
2356 ew32(CTRL_EXT
, ctrl_ext
);
2361 * e1000_calculate_checksum - Calculate checksum for buffer
2362 * @buffer: pointer to EEPROM
2363 * @length: size of EEPROM to calculate a checksum for
2365 * Calculates the checksum for some buffer on a specified length. The
2366 * checksum calculated is returned.
2368 static u8
e1000_calculate_checksum(u8
*buffer
, u32 length
)
2376 for (i
= 0; i
< length
; i
++)
2379 return (u8
) (0 - sum
);
2383 * e1000_mng_enable_host_if - Checks host interface is enabled
2384 * @hw: pointer to the HW structure
2386 * Returns E1000_success upon success, else E1000_ERR_HOST_INTERFACE_COMMAND
2388 * This function checks whether the HOST IF is enabled for command operation
2389 * and also checks whether the previous command is completed. It busy waits
2390 * in case of previous command is not completed.
2392 static s32
e1000_mng_enable_host_if(struct e1000_hw
*hw
)
2397 if (!(hw
->mac
.arc_subsystem_valid
)) {
2398 e_dbg("ARC subsystem not valid.\n");
2399 return -E1000_ERR_HOST_INTERFACE_COMMAND
;
2402 /* Check that the host interface is enabled. */
2404 if ((hicr
& E1000_HICR_EN
) == 0) {
2405 e_dbg("E1000_HOST_EN bit disabled.\n");
2406 return -E1000_ERR_HOST_INTERFACE_COMMAND
;
2408 /* check the previous command is completed */
2409 for (i
= 0; i
< E1000_MNG_DHCP_COMMAND_TIMEOUT
; i
++) {
2411 if (!(hicr
& E1000_HICR_C
))
2416 if (i
== E1000_MNG_DHCP_COMMAND_TIMEOUT
) {
2417 e_dbg("Previous command timeout failed .\n");
2418 return -E1000_ERR_HOST_INTERFACE_COMMAND
;
2425 * e1000e_check_mng_mode_generic - check management mode
2426 * @hw: pointer to the HW structure
2428 * Reads the firmware semaphore register and returns true (>0) if
2429 * manageability is enabled, else false (0).
2431 bool e1000e_check_mng_mode_generic(struct e1000_hw
*hw
)
2433 u32 fwsm
= er32(FWSM
);
2435 return (fwsm
& E1000_FWSM_MODE_MASK
) ==
2436 (E1000_MNG_IAMT_MODE
<< E1000_FWSM_MODE_SHIFT
);
2440 * e1000e_enable_tx_pkt_filtering - Enable packet filtering on Tx
2441 * @hw: pointer to the HW structure
2443 * Enables packet filtering on transmit packets if manageability is enabled
2444 * and host interface is enabled.
2446 bool e1000e_enable_tx_pkt_filtering(struct e1000_hw
*hw
)
2448 struct e1000_host_mng_dhcp_cookie
*hdr
= &hw
->mng_cookie
;
2449 u32
*buffer
= (u32
*)&hw
->mng_cookie
;
2451 s32 ret_val
, hdr_csum
, csum
;
2454 hw
->mac
.tx_pkt_filtering
= true;
2456 /* No manageability, no filtering */
2457 if (!e1000e_check_mng_mode(hw
)) {
2458 hw
->mac
.tx_pkt_filtering
= false;
2463 * If we can't read from the host interface for whatever
2464 * reason, disable filtering.
2466 ret_val
= e1000_mng_enable_host_if(hw
);
2468 hw
->mac
.tx_pkt_filtering
= false;
2472 /* Read in the header. Length and offset are in dwords. */
2473 len
= E1000_MNG_DHCP_COOKIE_LENGTH
>> 2;
2474 offset
= E1000_MNG_DHCP_COOKIE_OFFSET
>> 2;
2475 for (i
= 0; i
< len
; i
++)
2476 *(buffer
+ i
) = E1000_READ_REG_ARRAY(hw
, E1000_HOST_IF
, offset
+ i
);
2477 hdr_csum
= hdr
->checksum
;
2479 csum
= e1000_calculate_checksum((u8
*)hdr
,
2480 E1000_MNG_DHCP_COOKIE_LENGTH
);
2482 * If either the checksums or signature don't match, then
2483 * the cookie area isn't considered valid, in which case we
2484 * take the safe route of assuming Tx filtering is enabled.
2486 if ((hdr_csum
!= csum
) || (hdr
->signature
!= E1000_IAMT_SIGNATURE
)) {
2487 hw
->mac
.tx_pkt_filtering
= true;
2491 /* Cookie area is valid, make the final check for filtering. */
2492 if (!(hdr
->status
& E1000_MNG_DHCP_COOKIE_STATUS_PARSING
)) {
2493 hw
->mac
.tx_pkt_filtering
= false;
2498 return hw
->mac
.tx_pkt_filtering
;
2502 * e1000_mng_write_cmd_header - Writes manageability command header
2503 * @hw: pointer to the HW structure
2504 * @hdr: pointer to the host interface command header
2506 * Writes the command header after does the checksum calculation.
2508 static s32
e1000_mng_write_cmd_header(struct e1000_hw
*hw
,
2509 struct e1000_host_mng_command_header
*hdr
)
2511 u16 i
, length
= sizeof(struct e1000_host_mng_command_header
);
2513 /* Write the whole command header structure with new checksum. */
2515 hdr
->checksum
= e1000_calculate_checksum((u8
*)hdr
, length
);
2518 /* Write the relevant command block into the ram area. */
2519 for (i
= 0; i
< length
; i
++) {
2520 E1000_WRITE_REG_ARRAY(hw
, E1000_HOST_IF
, i
,
2521 *((u32
*) hdr
+ i
));
2529 * e1000_mng_host_if_write - Write to the manageability host interface
2530 * @hw: pointer to the HW structure
2531 * @buffer: pointer to the host interface buffer
2532 * @length: size of the buffer
2533 * @offset: location in the buffer to write to
2534 * @sum: sum of the data (not checksum)
2536 * This function writes the buffer content at the offset given on the host if.
2537 * It also does alignment considerations to do the writes in most efficient
2538 * way. Also fills up the sum of the buffer in *buffer parameter.
2540 static s32
e1000_mng_host_if_write(struct e1000_hw
*hw
, u8
*buffer
,
2541 u16 length
, u16 offset
, u8
*sum
)
2544 u8
*bufptr
= buffer
;
2546 u16 remaining
, i
, j
, prev_bytes
;
2548 /* sum = only sum of the data and it is not checksum */
2550 if (length
== 0 || offset
+ length
> E1000_HI_MAX_MNG_DATA_LENGTH
)
2551 return -E1000_ERR_PARAM
;
2554 prev_bytes
= offset
& 0x3;
2558 data
= E1000_READ_REG_ARRAY(hw
, E1000_HOST_IF
, offset
);
2559 for (j
= prev_bytes
; j
< sizeof(u32
); j
++) {
2560 *(tmp
+ j
) = *bufptr
++;
2563 E1000_WRITE_REG_ARRAY(hw
, E1000_HOST_IF
, offset
, data
);
2564 length
-= j
- prev_bytes
;
2568 remaining
= length
& 0x3;
2569 length
-= remaining
;
2571 /* Calculate length in DWORDs */
2575 * The device driver writes the relevant command block into the
2578 for (i
= 0; i
< length
; i
++) {
2579 for (j
= 0; j
< sizeof(u32
); j
++) {
2580 *(tmp
+ j
) = *bufptr
++;
2584 E1000_WRITE_REG_ARRAY(hw
, E1000_HOST_IF
, offset
+ i
, data
);
2587 for (j
= 0; j
< sizeof(u32
); j
++) {
2589 *(tmp
+ j
) = *bufptr
++;
2595 E1000_WRITE_REG_ARRAY(hw
, E1000_HOST_IF
, offset
+ i
, data
);
2602 * e1000e_mng_write_dhcp_info - Writes DHCP info to host interface
2603 * @hw: pointer to the HW structure
2604 * @buffer: pointer to the host interface
2605 * @length: size of the buffer
2607 * Writes the DHCP information to the host interface.
2609 s32
e1000e_mng_write_dhcp_info(struct e1000_hw
*hw
, u8
*buffer
, u16 length
)
2611 struct e1000_host_mng_command_header hdr
;
2615 hdr
.command_id
= E1000_MNG_DHCP_TX_PAYLOAD_CMD
;
2616 hdr
.command_length
= length
;
2621 /* Enable the host interface */
2622 ret_val
= e1000_mng_enable_host_if(hw
);
2626 /* Populate the host interface with the contents of "buffer". */
2627 ret_val
= e1000_mng_host_if_write(hw
, buffer
, length
,
2628 sizeof(hdr
), &(hdr
.checksum
));
2632 /* Write the manageability command header */
2633 ret_val
= e1000_mng_write_cmd_header(hw
, &hdr
);
2637 /* Tell the ARC a new command is pending. */
2639 ew32(HICR
, hicr
| E1000_HICR_C
);
2645 * e1000e_enable_mng_pass_thru - Check if management passthrough is needed
2646 * @hw: pointer to the HW structure
2648 * Verifies the hardware needs to leave interface enabled so that frames can
2649 * be directed to and from the management interface.
2651 bool e1000e_enable_mng_pass_thru(struct e1000_hw
*hw
)
2655 bool ret_val
= false;
2659 if (!(manc
& E1000_MANC_RCV_TCO_EN
))
2662 if (hw
->mac
.has_fwsm
) {
2664 factps
= er32(FACTPS
);
2666 if (!(factps
& E1000_FACTPS_MNGCG
) &&
2667 ((fwsm
& E1000_FWSM_MODE_MASK
) ==
2668 (e1000_mng_mode_pt
<< E1000_FWSM_MODE_SHIFT
))) {
2672 } else if ((hw
->mac
.type
== e1000_82574
) ||
2673 (hw
->mac
.type
== e1000_82583
)) {
2676 factps
= er32(FACTPS
);
2677 e1000_read_nvm(hw
, NVM_INIT_CONTROL2_REG
, 1, &data
);
2679 if (!(factps
& E1000_FACTPS_MNGCG
) &&
2680 ((data
& E1000_NVM_INIT_CTRL2_MNGM
) ==
2681 (e1000_mng_mode_pt
<< 13))) {
2685 } else if ((manc
& E1000_MANC_SMBUS_EN
) &&
2686 !(manc
& E1000_MANC_ASF_EN
)) {