1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2010 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
31 #include <linux/module.h>
32 #include <linux/types.h>
33 #include <linux/init.h>
34 #include <linux/pci.h>
35 #include <linux/vmalloc.h>
36 #include <linux/pagemap.h>
37 #include <linux/delay.h>
38 #include <linux/netdevice.h>
39 #include <linux/tcp.h>
40 #include <linux/ipv6.h>
41 #include <linux/slab.h>
42 #include <net/checksum.h>
43 #include <net/ip6_checksum.h>
44 #include <linux/mii.h>
45 #include <linux/ethtool.h>
46 #include <linux/if_vlan.h>
47 #include <linux/cpu.h>
48 #include <linux/smp.h>
49 #include <linux/pm_qos_params.h>
50 #include <linux/pm_runtime.h>
51 #include <linux/aer.h>
55 #define DRV_EXTRAVERSION "-k2"
57 #define DRV_VERSION "1.2.20" DRV_EXTRAVERSION
58 char e1000e_driver_name
[] = "e1000e";
59 const char e1000e_driver_version
[] = DRV_VERSION
;
61 static const struct e1000_info
*e1000_info_tbl
[] = {
62 [board_82571
] = &e1000_82571_info
,
63 [board_82572
] = &e1000_82572_info
,
64 [board_82573
] = &e1000_82573_info
,
65 [board_82574
] = &e1000_82574_info
,
66 [board_82583
] = &e1000_82583_info
,
67 [board_80003es2lan
] = &e1000_es2_info
,
68 [board_ich8lan
] = &e1000_ich8_info
,
69 [board_ich9lan
] = &e1000_ich9_info
,
70 [board_ich10lan
] = &e1000_ich10_info
,
71 [board_pchlan
] = &e1000_pch_info
,
72 [board_pch2lan
] = &e1000_pch2_info
,
75 struct e1000_reg_info
{
80 #define E1000_RDFH 0x02410 /* Rx Data FIFO Head - RW */
81 #define E1000_RDFT 0x02418 /* Rx Data FIFO Tail - RW */
82 #define E1000_RDFHS 0x02420 /* Rx Data FIFO Head Saved - RW */
83 #define E1000_RDFTS 0x02428 /* Rx Data FIFO Tail Saved - RW */
84 #define E1000_RDFPC 0x02430 /* Rx Data FIFO Packet Count - RW */
86 #define E1000_TDFH 0x03410 /* Tx Data FIFO Head - RW */
87 #define E1000_TDFT 0x03418 /* Tx Data FIFO Tail - RW */
88 #define E1000_TDFHS 0x03420 /* Tx Data FIFO Head Saved - RW */
89 #define E1000_TDFTS 0x03428 /* Tx Data FIFO Tail Saved - RW */
90 #define E1000_TDFPC 0x03430 /* Tx Data FIFO Packet Count - RW */
92 static const struct e1000_reg_info e1000_reg_info_tbl
[] = {
94 /* General Registers */
96 {E1000_STATUS
, "STATUS"},
97 {E1000_CTRL_EXT
, "CTRL_EXT"},
99 /* Interrupt Registers */
103 {E1000_RCTL
, "RCTL"},
104 {E1000_RDLEN
, "RDLEN"},
107 {E1000_RDTR
, "RDTR"},
108 {E1000_RXDCTL(0), "RXDCTL"},
110 {E1000_RDBAL
, "RDBAL"},
111 {E1000_RDBAH
, "RDBAH"},
112 {E1000_RDFH
, "RDFH"},
113 {E1000_RDFT
, "RDFT"},
114 {E1000_RDFHS
, "RDFHS"},
115 {E1000_RDFTS
, "RDFTS"},
116 {E1000_RDFPC
, "RDFPC"},
119 {E1000_TCTL
, "TCTL"},
120 {E1000_TDBAL
, "TDBAL"},
121 {E1000_TDBAH
, "TDBAH"},
122 {E1000_TDLEN
, "TDLEN"},
125 {E1000_TIDV
, "TIDV"},
126 {E1000_TXDCTL(0), "TXDCTL"},
127 {E1000_TADV
, "TADV"},
128 {E1000_TARC(0), "TARC"},
129 {E1000_TDFH
, "TDFH"},
130 {E1000_TDFT
, "TDFT"},
131 {E1000_TDFHS
, "TDFHS"},
132 {E1000_TDFTS
, "TDFTS"},
133 {E1000_TDFPC
, "TDFPC"},
135 /* List Terminator */
140 * e1000_regdump - register printout routine
142 static void e1000_regdump(struct e1000_hw
*hw
, struct e1000_reg_info
*reginfo
)
148 switch (reginfo
->ofs
) {
149 case E1000_RXDCTL(0):
150 for (n
= 0; n
< 2; n
++)
151 regs
[n
] = __er32(hw
, E1000_RXDCTL(n
));
153 case E1000_TXDCTL(0):
154 for (n
= 0; n
< 2; n
++)
155 regs
[n
] = __er32(hw
, E1000_TXDCTL(n
));
158 for (n
= 0; n
< 2; n
++)
159 regs
[n
] = __er32(hw
, E1000_TARC(n
));
162 printk(KERN_INFO
"%-15s %08x\n",
163 reginfo
->name
, __er32(hw
, reginfo
->ofs
));
167 snprintf(rname
, 16, "%s%s", reginfo
->name
, "[0-1]");
168 printk(KERN_INFO
"%-15s ", rname
);
169 for (n
= 0; n
< 2; n
++)
170 printk(KERN_CONT
"%08x ", regs
[n
]);
171 printk(KERN_CONT
"\n");
176 * e1000e_dump - Print registers, tx-ring and rx-ring
178 static void e1000e_dump(struct e1000_adapter
*adapter
)
180 struct net_device
*netdev
= adapter
->netdev
;
181 struct e1000_hw
*hw
= &adapter
->hw
;
182 struct e1000_reg_info
*reginfo
;
183 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
184 struct e1000_tx_desc
*tx_desc
;
185 struct my_u0
{ u64 a
; u64 b
; } *u0
;
186 struct e1000_buffer
*buffer_info
;
187 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
188 union e1000_rx_desc_packet_split
*rx_desc_ps
;
189 struct e1000_rx_desc
*rx_desc
;
190 struct my_u1
{ u64 a
; u64 b
; u64 c
; u64 d
; } *u1
;
194 if (!netif_msg_hw(adapter
))
197 /* Print netdevice Info */
199 dev_info(&adapter
->pdev
->dev
, "Net device Info\n");
200 printk(KERN_INFO
"Device Name state "
201 "trans_start last_rx\n");
202 printk(KERN_INFO
"%-15s %016lX %016lX %016lX\n",
209 /* Print Registers */
210 dev_info(&adapter
->pdev
->dev
, "Register Dump\n");
211 printk(KERN_INFO
" Register Name Value\n");
212 for (reginfo
= (struct e1000_reg_info
*)e1000_reg_info_tbl
;
213 reginfo
->name
; reginfo
++) {
214 e1000_regdump(hw
, reginfo
);
217 /* Print TX Ring Summary */
218 if (!netdev
|| !netif_running(netdev
))
221 dev_info(&adapter
->pdev
->dev
, "TX Rings Summary\n");
222 printk(KERN_INFO
"Queue [NTU] [NTC] [bi(ntc)->dma ]"
223 " leng ntw timestamp\n");
224 buffer_info
= &tx_ring
->buffer_info
[tx_ring
->next_to_clean
];
225 printk(KERN_INFO
" %5d %5X %5X %016llX %04X %3X %016llX\n",
226 0, tx_ring
->next_to_use
, tx_ring
->next_to_clean
,
227 (unsigned long long)buffer_info
->dma
,
229 buffer_info
->next_to_watch
,
230 (unsigned long long)buffer_info
->time_stamp
);
233 if (!netif_msg_tx_done(adapter
))
234 goto rx_ring_summary
;
236 dev_info(&adapter
->pdev
->dev
, "TX Rings Dump\n");
238 /* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
240 * Legacy Transmit Descriptor
241 * +--------------------------------------------------------------+
242 * 0 | Buffer Address [63:0] (Reserved on Write Back) |
243 * +--------------------------------------------------------------+
244 * 8 | Special | CSS | Status | CMD | CSO | Length |
245 * +--------------------------------------------------------------+
246 * 63 48 47 36 35 32 31 24 23 16 15 0
248 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
249 * 63 48 47 40 39 32 31 16 15 8 7 0
250 * +----------------------------------------------------------------+
251 * 0 | TUCSE | TUCS0 | TUCSS | IPCSE | IPCS0 | IPCSS |
252 * +----------------------------------------------------------------+
253 * 8 | MSS | HDRLEN | RSV | STA | TUCMD | DTYP | PAYLEN |
254 * +----------------------------------------------------------------+
255 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0
257 * Extended Data Descriptor (DTYP=0x1)
258 * +----------------------------------------------------------------+
259 * 0 | Buffer Address [63:0] |
260 * +----------------------------------------------------------------+
261 * 8 | VLAN tag | POPTS | Rsvd | Status | Command | DTYP | DTALEN |
262 * +----------------------------------------------------------------+
263 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0
265 printk(KERN_INFO
"Tl[desc] [address 63:0 ] [SpeCssSCmCsLen]"
266 " [bi->dma ] leng ntw timestamp bi->skb "
267 "<-- Legacy format\n");
268 printk(KERN_INFO
"Tc[desc] [Ce CoCsIpceCoS] [MssHlRSCm0Plen]"
269 " [bi->dma ] leng ntw timestamp bi->skb "
270 "<-- Ext Context format\n");
271 printk(KERN_INFO
"Td[desc] [address 63:0 ] [VlaPoRSCm1Dlen]"
272 " [bi->dma ] leng ntw timestamp bi->skb "
273 "<-- Ext Data format\n");
274 for (i
= 0; tx_ring
->desc
&& (i
< tx_ring
->count
); i
++) {
275 tx_desc
= E1000_TX_DESC(*tx_ring
, i
);
276 buffer_info
= &tx_ring
->buffer_info
[i
];
277 u0
= (struct my_u0
*)tx_desc
;
278 printk(KERN_INFO
"T%c[0x%03X] %016llX %016llX %016llX "
279 "%04X %3X %016llX %p",
280 (!(le64_to_cpu(u0
->b
) & (1<<29)) ? 'l' :
281 ((le64_to_cpu(u0
->b
) & (1<<20)) ? 'd' : 'c')), i
,
282 (unsigned long long)le64_to_cpu(u0
->a
),
283 (unsigned long long)le64_to_cpu(u0
->b
),
284 (unsigned long long)buffer_info
->dma
,
285 buffer_info
->length
, buffer_info
->next_to_watch
,
286 (unsigned long long)buffer_info
->time_stamp
,
288 if (i
== tx_ring
->next_to_use
&& i
== tx_ring
->next_to_clean
)
289 printk(KERN_CONT
" NTC/U\n");
290 else if (i
== tx_ring
->next_to_use
)
291 printk(KERN_CONT
" NTU\n");
292 else if (i
== tx_ring
->next_to_clean
)
293 printk(KERN_CONT
" NTC\n");
295 printk(KERN_CONT
"\n");
297 if (netif_msg_pktdata(adapter
) && buffer_info
->dma
!= 0)
298 print_hex_dump(KERN_INFO
, "", DUMP_PREFIX_ADDRESS
,
299 16, 1, phys_to_virt(buffer_info
->dma
),
300 buffer_info
->length
, true);
303 /* Print RX Rings Summary */
305 dev_info(&adapter
->pdev
->dev
, "RX Rings Summary\n");
306 printk(KERN_INFO
"Queue [NTU] [NTC]\n");
307 printk(KERN_INFO
" %5d %5X %5X\n", 0,
308 rx_ring
->next_to_use
, rx_ring
->next_to_clean
);
311 if (!netif_msg_rx_status(adapter
))
314 dev_info(&adapter
->pdev
->dev
, "RX Rings Dump\n");
315 switch (adapter
->rx_ps_pages
) {
319 /* [Extended] Packet Split Receive Descriptor Format
321 * +-----------------------------------------------------+
322 * 0 | Buffer Address 0 [63:0] |
323 * +-----------------------------------------------------+
324 * 8 | Buffer Address 1 [63:0] |
325 * +-----------------------------------------------------+
326 * 16 | Buffer Address 2 [63:0] |
327 * +-----------------------------------------------------+
328 * 24 | Buffer Address 3 [63:0] |
329 * +-----------------------------------------------------+
331 printk(KERN_INFO
"R [desc] [buffer 0 63:0 ] "
333 "[buffer 2 63:0 ] [buffer 3 63:0 ] [bi->dma ] "
334 "[bi->skb] <-- Ext Pkt Split format\n");
335 /* [Extended] Receive Descriptor (Write-Back) Format
337 * 63 48 47 32 31 13 12 8 7 4 3 0
338 * +------------------------------------------------------+
339 * 0 | Packet | IP | Rsvd | MRQ | Rsvd | MRQ RSS |
340 * | Checksum | Ident | | Queue | | Type |
341 * +------------------------------------------------------+
342 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
343 * +------------------------------------------------------+
344 * 63 48 47 32 31 20 19 0
346 printk(KERN_INFO
"RWB[desc] [ck ipid mrqhsh] "
348 "[ l3 l2 l1 hs] [reserved ] ---------------- "
349 "[bi->skb] <-- Ext Rx Write-Back format\n");
350 for (i
= 0; i
< rx_ring
->count
; i
++) {
351 buffer_info
= &rx_ring
->buffer_info
[i
];
352 rx_desc_ps
= E1000_RX_DESC_PS(*rx_ring
, i
);
353 u1
= (struct my_u1
*)rx_desc_ps
;
355 le32_to_cpu(rx_desc_ps
->wb
.middle
.status_error
);
356 if (staterr
& E1000_RXD_STAT_DD
) {
357 /* Descriptor Done */
358 printk(KERN_INFO
"RWB[0x%03X] %016llX "
359 "%016llX %016llX %016llX "
360 "---------------- %p", i
,
361 (unsigned long long)le64_to_cpu(u1
->a
),
362 (unsigned long long)le64_to_cpu(u1
->b
),
363 (unsigned long long)le64_to_cpu(u1
->c
),
364 (unsigned long long)le64_to_cpu(u1
->d
),
367 printk(KERN_INFO
"R [0x%03X] %016llX "
368 "%016llX %016llX %016llX %016llX %p", i
,
369 (unsigned long long)le64_to_cpu(u1
->a
),
370 (unsigned long long)le64_to_cpu(u1
->b
),
371 (unsigned long long)le64_to_cpu(u1
->c
),
372 (unsigned long long)le64_to_cpu(u1
->d
),
373 (unsigned long long)buffer_info
->dma
,
376 if (netif_msg_pktdata(adapter
))
377 print_hex_dump(KERN_INFO
, "",
378 DUMP_PREFIX_ADDRESS
, 16, 1,
379 phys_to_virt(buffer_info
->dma
),
380 adapter
->rx_ps_bsize0
, true);
383 if (i
== rx_ring
->next_to_use
)
384 printk(KERN_CONT
" NTU\n");
385 else if (i
== rx_ring
->next_to_clean
)
386 printk(KERN_CONT
" NTC\n");
388 printk(KERN_CONT
"\n");
393 /* Legacy Receive Descriptor Format
395 * +-----------------------------------------------------+
396 * | Buffer Address [63:0] |
397 * +-----------------------------------------------------+
398 * | VLAN Tag | Errors | Status 0 | Packet csum | Length |
399 * +-----------------------------------------------------+
400 * 63 48 47 40 39 32 31 16 15 0
402 printk(KERN_INFO
"Rl[desc] [address 63:0 ] "
403 "[vl er S cks ln] [bi->dma ] [bi->skb] "
404 "<-- Legacy format\n");
405 for (i
= 0; rx_ring
->desc
&& (i
< rx_ring
->count
); i
++) {
406 rx_desc
= E1000_RX_DESC(*rx_ring
, i
);
407 buffer_info
= &rx_ring
->buffer_info
[i
];
408 u0
= (struct my_u0
*)rx_desc
;
409 printk(KERN_INFO
"Rl[0x%03X] %016llX %016llX "
411 (unsigned long long)le64_to_cpu(u0
->a
),
412 (unsigned long long)le64_to_cpu(u0
->b
),
413 (unsigned long long)buffer_info
->dma
,
415 if (i
== rx_ring
->next_to_use
)
416 printk(KERN_CONT
" NTU\n");
417 else if (i
== rx_ring
->next_to_clean
)
418 printk(KERN_CONT
" NTC\n");
420 printk(KERN_CONT
"\n");
422 if (netif_msg_pktdata(adapter
))
423 print_hex_dump(KERN_INFO
, "",
425 16, 1, phys_to_virt(buffer_info
->dma
),
426 adapter
->rx_buffer_len
, true);
435 * e1000_desc_unused - calculate if we have unused descriptors
437 static int e1000_desc_unused(struct e1000_ring
*ring
)
439 if (ring
->next_to_clean
> ring
->next_to_use
)
440 return ring
->next_to_clean
- ring
->next_to_use
- 1;
442 return ring
->count
+ ring
->next_to_clean
- ring
->next_to_use
- 1;
446 * e1000_receive_skb - helper function to handle Rx indications
447 * @adapter: board private structure
448 * @status: descriptor status field as written by hardware
449 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
450 * @skb: pointer to sk_buff to be indicated to stack
452 static void e1000_receive_skb(struct e1000_adapter
*adapter
,
453 struct net_device
*netdev
,
455 u8 status
, __le16 vlan
)
457 skb
->protocol
= eth_type_trans(skb
, netdev
);
459 if (adapter
->vlgrp
&& (status
& E1000_RXD_STAT_VP
))
460 vlan_gro_receive(&adapter
->napi
, adapter
->vlgrp
,
461 le16_to_cpu(vlan
), skb
);
463 napi_gro_receive(&adapter
->napi
, skb
);
467 * e1000_rx_checksum - Receive Checksum Offload for 82543
468 * @adapter: board private structure
469 * @status_err: receive descriptor status and error fields
470 * @csum: receive descriptor csum field
471 * @sk_buff: socket buffer with received data
473 static void e1000_rx_checksum(struct e1000_adapter
*adapter
, u32 status_err
,
474 u32 csum
, struct sk_buff
*skb
)
476 u16 status
= (u16
)status_err
;
477 u8 errors
= (u8
)(status_err
>> 24);
479 skb_checksum_none_assert(skb
);
481 /* Ignore Checksum bit is set */
482 if (status
& E1000_RXD_STAT_IXSM
)
484 /* TCP/UDP checksum error bit is set */
485 if (errors
& E1000_RXD_ERR_TCPE
) {
486 /* let the stack verify checksum errors */
487 adapter
->hw_csum_err
++;
491 /* TCP/UDP Checksum has not been calculated */
492 if (!(status
& (E1000_RXD_STAT_TCPCS
| E1000_RXD_STAT_UDPCS
)))
495 /* It must be a TCP or UDP packet with a valid checksum */
496 if (status
& E1000_RXD_STAT_TCPCS
) {
497 /* TCP checksum is good */
498 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
501 * IP fragment with UDP payload
502 * Hardware complements the payload checksum, so we undo it
503 * and then put the value in host order for further stack use.
505 __sum16 sum
= (__force __sum16
)htons(csum
);
506 skb
->csum
= csum_unfold(~sum
);
507 skb
->ip_summed
= CHECKSUM_COMPLETE
;
509 adapter
->hw_csum_good
++;
513 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
514 * @adapter: address of board private structure
516 static void e1000_alloc_rx_buffers(struct e1000_adapter
*adapter
,
519 struct net_device
*netdev
= adapter
->netdev
;
520 struct pci_dev
*pdev
= adapter
->pdev
;
521 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
522 struct e1000_rx_desc
*rx_desc
;
523 struct e1000_buffer
*buffer_info
;
526 unsigned int bufsz
= adapter
->rx_buffer_len
;
528 i
= rx_ring
->next_to_use
;
529 buffer_info
= &rx_ring
->buffer_info
[i
];
531 while (cleaned_count
--) {
532 skb
= buffer_info
->skb
;
538 skb
= netdev_alloc_skb_ip_align(netdev
, bufsz
);
540 /* Better luck next round */
541 adapter
->alloc_rx_buff_failed
++;
545 buffer_info
->skb
= skb
;
547 buffer_info
->dma
= dma_map_single(&pdev
->dev
, skb
->data
,
548 adapter
->rx_buffer_len
,
550 if (dma_mapping_error(&pdev
->dev
, buffer_info
->dma
)) {
551 dev_err(&pdev
->dev
, "RX DMA map failed\n");
552 adapter
->rx_dma_failed
++;
556 rx_desc
= E1000_RX_DESC(*rx_ring
, i
);
557 rx_desc
->buffer_addr
= cpu_to_le64(buffer_info
->dma
);
559 if (unlikely(!(i
& (E1000_RX_BUFFER_WRITE
- 1)))) {
561 * Force memory writes to complete before letting h/w
562 * know there are new descriptors to fetch. (Only
563 * applicable for weak-ordered memory model archs,
567 writel(i
, adapter
->hw
.hw_addr
+ rx_ring
->tail
);
570 if (i
== rx_ring
->count
)
572 buffer_info
= &rx_ring
->buffer_info
[i
];
575 rx_ring
->next_to_use
= i
;
579 * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
580 * @adapter: address of board private structure
582 static void e1000_alloc_rx_buffers_ps(struct e1000_adapter
*adapter
,
585 struct net_device
*netdev
= adapter
->netdev
;
586 struct pci_dev
*pdev
= adapter
->pdev
;
587 union e1000_rx_desc_packet_split
*rx_desc
;
588 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
589 struct e1000_buffer
*buffer_info
;
590 struct e1000_ps_page
*ps_page
;
594 i
= rx_ring
->next_to_use
;
595 buffer_info
= &rx_ring
->buffer_info
[i
];
597 while (cleaned_count
--) {
598 rx_desc
= E1000_RX_DESC_PS(*rx_ring
, i
);
600 for (j
= 0; j
< PS_PAGE_BUFFERS
; j
++) {
601 ps_page
= &buffer_info
->ps_pages
[j
];
602 if (j
>= adapter
->rx_ps_pages
) {
603 /* all unused desc entries get hw null ptr */
604 rx_desc
->read
.buffer_addr
[j
+1] = ~cpu_to_le64(0);
607 if (!ps_page
->page
) {
608 ps_page
->page
= alloc_page(GFP_ATOMIC
);
609 if (!ps_page
->page
) {
610 adapter
->alloc_rx_buff_failed
++;
613 ps_page
->dma
= dma_map_page(&pdev
->dev
,
617 if (dma_mapping_error(&pdev
->dev
,
619 dev_err(&adapter
->pdev
->dev
,
620 "RX DMA page map failed\n");
621 adapter
->rx_dma_failed
++;
626 * Refresh the desc even if buffer_addrs
627 * didn't change because each write-back
630 rx_desc
->read
.buffer_addr
[j
+1] =
631 cpu_to_le64(ps_page
->dma
);
634 skb
= netdev_alloc_skb_ip_align(netdev
,
635 adapter
->rx_ps_bsize0
);
638 adapter
->alloc_rx_buff_failed
++;
642 buffer_info
->skb
= skb
;
643 buffer_info
->dma
= dma_map_single(&pdev
->dev
, skb
->data
,
644 adapter
->rx_ps_bsize0
,
646 if (dma_mapping_error(&pdev
->dev
, buffer_info
->dma
)) {
647 dev_err(&pdev
->dev
, "RX DMA map failed\n");
648 adapter
->rx_dma_failed
++;
650 dev_kfree_skb_any(skb
);
651 buffer_info
->skb
= NULL
;
655 rx_desc
->read
.buffer_addr
[0] = cpu_to_le64(buffer_info
->dma
);
657 if (unlikely(!(i
& (E1000_RX_BUFFER_WRITE
- 1)))) {
659 * Force memory writes to complete before letting h/w
660 * know there are new descriptors to fetch. (Only
661 * applicable for weak-ordered memory model archs,
665 writel(i
<<1, adapter
->hw
.hw_addr
+ rx_ring
->tail
);
669 if (i
== rx_ring
->count
)
671 buffer_info
= &rx_ring
->buffer_info
[i
];
675 rx_ring
->next_to_use
= i
;
679 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
680 * @adapter: address of board private structure
681 * @cleaned_count: number of buffers to allocate this pass
684 static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter
*adapter
,
687 struct net_device
*netdev
= adapter
->netdev
;
688 struct pci_dev
*pdev
= adapter
->pdev
;
689 struct e1000_rx_desc
*rx_desc
;
690 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
691 struct e1000_buffer
*buffer_info
;
694 unsigned int bufsz
= 256 - 16 /* for skb_reserve */;
696 i
= rx_ring
->next_to_use
;
697 buffer_info
= &rx_ring
->buffer_info
[i
];
699 while (cleaned_count
--) {
700 skb
= buffer_info
->skb
;
706 skb
= netdev_alloc_skb_ip_align(netdev
, bufsz
);
707 if (unlikely(!skb
)) {
708 /* Better luck next round */
709 adapter
->alloc_rx_buff_failed
++;
713 buffer_info
->skb
= skb
;
715 /* allocate a new page if necessary */
716 if (!buffer_info
->page
) {
717 buffer_info
->page
= alloc_page(GFP_ATOMIC
);
718 if (unlikely(!buffer_info
->page
)) {
719 adapter
->alloc_rx_buff_failed
++;
724 if (!buffer_info
->dma
)
725 buffer_info
->dma
= dma_map_page(&pdev
->dev
,
726 buffer_info
->page
, 0,
730 rx_desc
= E1000_RX_DESC(*rx_ring
, i
);
731 rx_desc
->buffer_addr
= cpu_to_le64(buffer_info
->dma
);
733 if (unlikely(++i
== rx_ring
->count
))
735 buffer_info
= &rx_ring
->buffer_info
[i
];
738 if (likely(rx_ring
->next_to_use
!= i
)) {
739 rx_ring
->next_to_use
= i
;
740 if (unlikely(i
-- == 0))
741 i
= (rx_ring
->count
- 1);
743 /* Force memory writes to complete before letting h/w
744 * know there are new descriptors to fetch. (Only
745 * applicable for weak-ordered memory model archs,
748 writel(i
, adapter
->hw
.hw_addr
+ rx_ring
->tail
);
753 * e1000_clean_rx_irq - Send received data up the network stack; legacy
754 * @adapter: board private structure
756 * the return value indicates whether actual cleaning was done, there
757 * is no guarantee that everything was cleaned
759 static bool e1000_clean_rx_irq(struct e1000_adapter
*adapter
,
760 int *work_done
, int work_to_do
)
762 struct net_device
*netdev
= adapter
->netdev
;
763 struct pci_dev
*pdev
= adapter
->pdev
;
764 struct e1000_hw
*hw
= &adapter
->hw
;
765 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
766 struct e1000_rx_desc
*rx_desc
, *next_rxd
;
767 struct e1000_buffer
*buffer_info
, *next_buffer
;
770 int cleaned_count
= 0;
772 unsigned int total_rx_bytes
= 0, total_rx_packets
= 0;
774 i
= rx_ring
->next_to_clean
;
775 rx_desc
= E1000_RX_DESC(*rx_ring
, i
);
776 buffer_info
= &rx_ring
->buffer_info
[i
];
778 while (rx_desc
->status
& E1000_RXD_STAT_DD
) {
782 if (*work_done
>= work_to_do
)
785 rmb(); /* read descriptor and rx_buffer_info after status DD */
787 status
= rx_desc
->status
;
788 skb
= buffer_info
->skb
;
789 buffer_info
->skb
= NULL
;
791 prefetch(skb
->data
- NET_IP_ALIGN
);
794 if (i
== rx_ring
->count
)
796 next_rxd
= E1000_RX_DESC(*rx_ring
, i
);
799 next_buffer
= &rx_ring
->buffer_info
[i
];
803 dma_unmap_single(&pdev
->dev
,
805 adapter
->rx_buffer_len
,
807 buffer_info
->dma
= 0;
809 length
= le16_to_cpu(rx_desc
->length
);
812 * !EOP means multiple descriptors were used to store a single
813 * packet, if that's the case we need to toss it. In fact, we
814 * need to toss every packet with the EOP bit clear and the
815 * next frame that _does_ have the EOP bit set, as it is by
816 * definition only a frame fragment
818 if (unlikely(!(status
& E1000_RXD_STAT_EOP
)))
819 adapter
->flags2
|= FLAG2_IS_DISCARDING
;
821 if (adapter
->flags2
& FLAG2_IS_DISCARDING
) {
822 /* All receives must fit into a single buffer */
823 e_dbg("Receive packet consumed multiple buffers\n");
825 buffer_info
->skb
= skb
;
826 if (status
& E1000_RXD_STAT_EOP
)
827 adapter
->flags2
&= ~FLAG2_IS_DISCARDING
;
831 if (rx_desc
->errors
& E1000_RXD_ERR_FRAME_ERR_MASK
) {
833 buffer_info
->skb
= skb
;
837 /* adjust length to remove Ethernet CRC */
838 if (!(adapter
->flags2
& FLAG2_CRC_STRIPPING
))
841 total_rx_bytes
+= length
;
845 * code added for copybreak, this should improve
846 * performance for small packets with large amounts
847 * of reassembly being done in the stack
849 if (length
< copybreak
) {
850 struct sk_buff
*new_skb
=
851 netdev_alloc_skb_ip_align(netdev
, length
);
853 skb_copy_to_linear_data_offset(new_skb
,
859 /* save the skb in buffer_info as good */
860 buffer_info
->skb
= skb
;
863 /* else just continue with the old one */
865 /* end copybreak code */
866 skb_put(skb
, length
);
868 /* Receive Checksum Offload */
869 e1000_rx_checksum(adapter
,
871 ((u32
)(rx_desc
->errors
) << 24),
872 le16_to_cpu(rx_desc
->csum
), skb
);
874 e1000_receive_skb(adapter
, netdev
, skb
,status
,rx_desc
->special
);
879 /* return some buffers to hardware, one at a time is too slow */
880 if (cleaned_count
>= E1000_RX_BUFFER_WRITE
) {
881 adapter
->alloc_rx_buf(adapter
, cleaned_count
);
885 /* use prefetched values */
887 buffer_info
= next_buffer
;
889 rx_ring
->next_to_clean
= i
;
891 cleaned_count
= e1000_desc_unused(rx_ring
);
893 adapter
->alloc_rx_buf(adapter
, cleaned_count
);
895 adapter
->total_rx_bytes
+= total_rx_bytes
;
896 adapter
->total_rx_packets
+= total_rx_packets
;
897 netdev
->stats
.rx_bytes
+= total_rx_bytes
;
898 netdev
->stats
.rx_packets
+= total_rx_packets
;
902 static void e1000_put_txbuf(struct e1000_adapter
*adapter
,
903 struct e1000_buffer
*buffer_info
)
905 if (buffer_info
->dma
) {
906 if (buffer_info
->mapped_as_page
)
907 dma_unmap_page(&adapter
->pdev
->dev
, buffer_info
->dma
,
908 buffer_info
->length
, DMA_TO_DEVICE
);
910 dma_unmap_single(&adapter
->pdev
->dev
, buffer_info
->dma
,
911 buffer_info
->length
, DMA_TO_DEVICE
);
912 buffer_info
->dma
= 0;
914 if (buffer_info
->skb
) {
915 dev_kfree_skb_any(buffer_info
->skb
);
916 buffer_info
->skb
= NULL
;
918 buffer_info
->time_stamp
= 0;
921 static void e1000_print_hw_hang(struct work_struct
*work
)
923 struct e1000_adapter
*adapter
= container_of(work
,
924 struct e1000_adapter
,
926 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
927 unsigned int i
= tx_ring
->next_to_clean
;
928 unsigned int eop
= tx_ring
->buffer_info
[i
].next_to_watch
;
929 struct e1000_tx_desc
*eop_desc
= E1000_TX_DESC(*tx_ring
, eop
);
930 struct e1000_hw
*hw
= &adapter
->hw
;
931 u16 phy_status
, phy_1000t_status
, phy_ext_status
;
934 e1e_rphy(hw
, PHY_STATUS
, &phy_status
);
935 e1e_rphy(hw
, PHY_1000T_STATUS
, &phy_1000t_status
);
936 e1e_rphy(hw
, PHY_EXT_STATUS
, &phy_ext_status
);
938 pci_read_config_word(adapter
->pdev
, PCI_STATUS
, &pci_status
);
940 /* detected Hardware unit hang */
941 e_err("Detected Hardware Unit Hang:\n"
944 " next_to_use <%x>\n"
945 " next_to_clean <%x>\n"
946 "buffer_info[next_to_clean]:\n"
947 " time_stamp <%lx>\n"
948 " next_to_watch <%x>\n"
950 " next_to_watch.status <%x>\n"
953 "PHY 1000BASE-T Status <%x>\n"
954 "PHY Extended Status <%x>\n"
956 readl(adapter
->hw
.hw_addr
+ tx_ring
->head
),
957 readl(adapter
->hw
.hw_addr
+ tx_ring
->tail
),
958 tx_ring
->next_to_use
,
959 tx_ring
->next_to_clean
,
960 tx_ring
->buffer_info
[eop
].time_stamp
,
963 eop_desc
->upper
.fields
.status
,
972 * e1000_clean_tx_irq - Reclaim resources after transmit completes
973 * @adapter: board private structure
975 * the return value indicates whether actual cleaning was done, there
976 * is no guarantee that everything was cleaned
978 static bool e1000_clean_tx_irq(struct e1000_adapter
*adapter
)
980 struct net_device
*netdev
= adapter
->netdev
;
981 struct e1000_hw
*hw
= &adapter
->hw
;
982 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
983 struct e1000_tx_desc
*tx_desc
, *eop_desc
;
984 struct e1000_buffer
*buffer_info
;
986 unsigned int count
= 0;
987 unsigned int total_tx_bytes
= 0, total_tx_packets
= 0;
989 i
= tx_ring
->next_to_clean
;
990 eop
= tx_ring
->buffer_info
[i
].next_to_watch
;
991 eop_desc
= E1000_TX_DESC(*tx_ring
, eop
);
993 while ((eop_desc
->upper
.data
& cpu_to_le32(E1000_TXD_STAT_DD
)) &&
994 (count
< tx_ring
->count
)) {
995 bool cleaned
= false;
996 rmb(); /* read buffer_info after eop_desc */
997 for (; !cleaned
; count
++) {
998 tx_desc
= E1000_TX_DESC(*tx_ring
, i
);
999 buffer_info
= &tx_ring
->buffer_info
[i
];
1000 cleaned
= (i
== eop
);
1003 total_tx_packets
+= buffer_info
->segs
;
1004 total_tx_bytes
+= buffer_info
->bytecount
;
1007 e1000_put_txbuf(adapter
, buffer_info
);
1008 tx_desc
->upper
.data
= 0;
1011 if (i
== tx_ring
->count
)
1015 if (i
== tx_ring
->next_to_use
)
1017 eop
= tx_ring
->buffer_info
[i
].next_to_watch
;
1018 eop_desc
= E1000_TX_DESC(*tx_ring
, eop
);
1021 tx_ring
->next_to_clean
= i
;
1023 #define TX_WAKE_THRESHOLD 32
1024 if (count
&& netif_carrier_ok(netdev
) &&
1025 e1000_desc_unused(tx_ring
) >= TX_WAKE_THRESHOLD
) {
1026 /* Make sure that anybody stopping the queue after this
1027 * sees the new next_to_clean.
1031 if (netif_queue_stopped(netdev
) &&
1032 !(test_bit(__E1000_DOWN
, &adapter
->state
))) {
1033 netif_wake_queue(netdev
);
1034 ++adapter
->restart_queue
;
1038 if (adapter
->detect_tx_hung
) {
1040 * Detect a transmit hang in hardware, this serializes the
1041 * check with the clearing of time_stamp and movement of i
1043 adapter
->detect_tx_hung
= 0;
1044 if (tx_ring
->buffer_info
[i
].time_stamp
&&
1045 time_after(jiffies
, tx_ring
->buffer_info
[i
].time_stamp
1046 + (adapter
->tx_timeout_factor
* HZ
)) &&
1047 !(er32(STATUS
) & E1000_STATUS_TXOFF
)) {
1048 schedule_work(&adapter
->print_hang_task
);
1049 netif_stop_queue(netdev
);
1052 adapter
->total_tx_bytes
+= total_tx_bytes
;
1053 adapter
->total_tx_packets
+= total_tx_packets
;
1054 netdev
->stats
.tx_bytes
+= total_tx_bytes
;
1055 netdev
->stats
.tx_packets
+= total_tx_packets
;
1056 return count
< tx_ring
->count
;
1060 * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
1061 * @adapter: board private structure
1063 * the return value indicates whether actual cleaning was done, there
1064 * is no guarantee that everything was cleaned
1066 static bool e1000_clean_rx_irq_ps(struct e1000_adapter
*adapter
,
1067 int *work_done
, int work_to_do
)
1069 struct e1000_hw
*hw
= &adapter
->hw
;
1070 union e1000_rx_desc_packet_split
*rx_desc
, *next_rxd
;
1071 struct net_device
*netdev
= adapter
->netdev
;
1072 struct pci_dev
*pdev
= adapter
->pdev
;
1073 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
1074 struct e1000_buffer
*buffer_info
, *next_buffer
;
1075 struct e1000_ps_page
*ps_page
;
1076 struct sk_buff
*skb
;
1078 u32 length
, staterr
;
1079 int cleaned_count
= 0;
1081 unsigned int total_rx_bytes
= 0, total_rx_packets
= 0;
1083 i
= rx_ring
->next_to_clean
;
1084 rx_desc
= E1000_RX_DESC_PS(*rx_ring
, i
);
1085 staterr
= le32_to_cpu(rx_desc
->wb
.middle
.status_error
);
1086 buffer_info
= &rx_ring
->buffer_info
[i
];
1088 while (staterr
& E1000_RXD_STAT_DD
) {
1089 if (*work_done
>= work_to_do
)
1092 skb
= buffer_info
->skb
;
1093 rmb(); /* read descriptor and rx_buffer_info after status DD */
1095 /* in the packet split case this is header only */
1096 prefetch(skb
->data
- NET_IP_ALIGN
);
1099 if (i
== rx_ring
->count
)
1101 next_rxd
= E1000_RX_DESC_PS(*rx_ring
, i
);
1104 next_buffer
= &rx_ring
->buffer_info
[i
];
1108 dma_unmap_single(&pdev
->dev
, buffer_info
->dma
,
1109 adapter
->rx_ps_bsize0
,
1111 buffer_info
->dma
= 0;
1113 /* see !EOP comment in other rx routine */
1114 if (!(staterr
& E1000_RXD_STAT_EOP
))
1115 adapter
->flags2
|= FLAG2_IS_DISCARDING
;
1117 if (adapter
->flags2
& FLAG2_IS_DISCARDING
) {
1118 e_dbg("Packet Split buffers didn't pick up the full "
1120 dev_kfree_skb_irq(skb
);
1121 if (staterr
& E1000_RXD_STAT_EOP
)
1122 adapter
->flags2
&= ~FLAG2_IS_DISCARDING
;
1126 if (staterr
& E1000_RXDEXT_ERR_FRAME_ERR_MASK
) {
1127 dev_kfree_skb_irq(skb
);
1131 length
= le16_to_cpu(rx_desc
->wb
.middle
.length0
);
1134 e_dbg("Last part of the packet spanning multiple "
1136 dev_kfree_skb_irq(skb
);
1141 skb_put(skb
, length
);
1145 * this looks ugly, but it seems compiler issues make it
1146 * more efficient than reusing j
1148 int l1
= le16_to_cpu(rx_desc
->wb
.upper
.length
[0]);
1151 * page alloc/put takes too long and effects small packet
1152 * throughput, so unsplit small packets and save the alloc/put
1153 * only valid in softirq (napi) context to call kmap_*
1155 if (l1
&& (l1
<= copybreak
) &&
1156 ((length
+ l1
) <= adapter
->rx_ps_bsize0
)) {
1159 ps_page
= &buffer_info
->ps_pages
[0];
1162 * there is no documentation about how to call
1163 * kmap_atomic, so we can't hold the mapping
1166 dma_sync_single_for_cpu(&pdev
->dev
, ps_page
->dma
,
1167 PAGE_SIZE
, DMA_FROM_DEVICE
);
1168 vaddr
= kmap_atomic(ps_page
->page
, KM_SKB_DATA_SOFTIRQ
);
1169 memcpy(skb_tail_pointer(skb
), vaddr
, l1
);
1170 kunmap_atomic(vaddr
, KM_SKB_DATA_SOFTIRQ
);
1171 dma_sync_single_for_device(&pdev
->dev
, ps_page
->dma
,
1172 PAGE_SIZE
, DMA_FROM_DEVICE
);
1174 /* remove the CRC */
1175 if (!(adapter
->flags2
& FLAG2_CRC_STRIPPING
))
1183 for (j
= 0; j
< PS_PAGE_BUFFERS
; j
++) {
1184 length
= le16_to_cpu(rx_desc
->wb
.upper
.length
[j
]);
1188 ps_page
= &buffer_info
->ps_pages
[j
];
1189 dma_unmap_page(&pdev
->dev
, ps_page
->dma
, PAGE_SIZE
,
1192 skb_fill_page_desc(skb
, j
, ps_page
->page
, 0, length
);
1193 ps_page
->page
= NULL
;
1195 skb
->data_len
+= length
;
1196 skb
->truesize
+= length
;
1199 /* strip the ethernet crc, problem is we're using pages now so
1200 * this whole operation can get a little cpu intensive
1202 if (!(adapter
->flags2
& FLAG2_CRC_STRIPPING
))
1203 pskb_trim(skb
, skb
->len
- 4);
1206 total_rx_bytes
+= skb
->len
;
1209 e1000_rx_checksum(adapter
, staterr
, le16_to_cpu(
1210 rx_desc
->wb
.lower
.hi_dword
.csum_ip
.csum
), skb
);
1212 if (rx_desc
->wb
.upper
.header_status
&
1213 cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP
))
1214 adapter
->rx_hdr_split
++;
1216 e1000_receive_skb(adapter
, netdev
, skb
,
1217 staterr
, rx_desc
->wb
.middle
.vlan
);
1220 rx_desc
->wb
.middle
.status_error
&= cpu_to_le32(~0xFF);
1221 buffer_info
->skb
= NULL
;
1223 /* return some buffers to hardware, one at a time is too slow */
1224 if (cleaned_count
>= E1000_RX_BUFFER_WRITE
) {
1225 adapter
->alloc_rx_buf(adapter
, cleaned_count
);
1229 /* use prefetched values */
1231 buffer_info
= next_buffer
;
1233 staterr
= le32_to_cpu(rx_desc
->wb
.middle
.status_error
);
1235 rx_ring
->next_to_clean
= i
;
1237 cleaned_count
= e1000_desc_unused(rx_ring
);
1239 adapter
->alloc_rx_buf(adapter
, cleaned_count
);
1241 adapter
->total_rx_bytes
+= total_rx_bytes
;
1242 adapter
->total_rx_packets
+= total_rx_packets
;
1243 netdev
->stats
.rx_bytes
+= total_rx_bytes
;
1244 netdev
->stats
.rx_packets
+= total_rx_packets
;
1249 * e1000_consume_page - helper function
1251 static void e1000_consume_page(struct e1000_buffer
*bi
, struct sk_buff
*skb
,
1256 skb
->data_len
+= length
;
1257 skb
->truesize
+= length
;
1261 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
1262 * @adapter: board private structure
1264 * the return value indicates whether actual cleaning was done, there
1265 * is no guarantee that everything was cleaned
1268 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter
*adapter
,
1269 int *work_done
, int work_to_do
)
1271 struct net_device
*netdev
= adapter
->netdev
;
1272 struct pci_dev
*pdev
= adapter
->pdev
;
1273 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
1274 struct e1000_rx_desc
*rx_desc
, *next_rxd
;
1275 struct e1000_buffer
*buffer_info
, *next_buffer
;
1278 int cleaned_count
= 0;
1279 bool cleaned
= false;
1280 unsigned int total_rx_bytes
=0, total_rx_packets
=0;
1282 i
= rx_ring
->next_to_clean
;
1283 rx_desc
= E1000_RX_DESC(*rx_ring
, i
);
1284 buffer_info
= &rx_ring
->buffer_info
[i
];
1286 while (rx_desc
->status
& E1000_RXD_STAT_DD
) {
1287 struct sk_buff
*skb
;
1290 if (*work_done
>= work_to_do
)
1293 rmb(); /* read descriptor and rx_buffer_info after status DD */
1295 status
= rx_desc
->status
;
1296 skb
= buffer_info
->skb
;
1297 buffer_info
->skb
= NULL
;
1300 if (i
== rx_ring
->count
)
1302 next_rxd
= E1000_RX_DESC(*rx_ring
, i
);
1305 next_buffer
= &rx_ring
->buffer_info
[i
];
1309 dma_unmap_page(&pdev
->dev
, buffer_info
->dma
, PAGE_SIZE
,
1311 buffer_info
->dma
= 0;
1313 length
= le16_to_cpu(rx_desc
->length
);
1315 /* errors is only valid for DD + EOP descriptors */
1316 if (unlikely((status
& E1000_RXD_STAT_EOP
) &&
1317 (rx_desc
->errors
& E1000_RXD_ERR_FRAME_ERR_MASK
))) {
1318 /* recycle both page and skb */
1319 buffer_info
->skb
= skb
;
1320 /* an error means any chain goes out the window
1322 if (rx_ring
->rx_skb_top
)
1323 dev_kfree_skb(rx_ring
->rx_skb_top
);
1324 rx_ring
->rx_skb_top
= NULL
;
1328 #define rxtop (rx_ring->rx_skb_top)
1329 if (!(status
& E1000_RXD_STAT_EOP
)) {
1330 /* this descriptor is only the beginning (or middle) */
1332 /* this is the beginning of a chain */
1334 skb_fill_page_desc(rxtop
, 0, buffer_info
->page
,
1337 /* this is the middle of a chain */
1338 skb_fill_page_desc(rxtop
,
1339 skb_shinfo(rxtop
)->nr_frags
,
1340 buffer_info
->page
, 0, length
);
1341 /* re-use the skb, only consumed the page */
1342 buffer_info
->skb
= skb
;
1344 e1000_consume_page(buffer_info
, rxtop
, length
);
1348 /* end of the chain */
1349 skb_fill_page_desc(rxtop
,
1350 skb_shinfo(rxtop
)->nr_frags
,
1351 buffer_info
->page
, 0, length
);
1352 /* re-use the current skb, we only consumed the
1354 buffer_info
->skb
= skb
;
1357 e1000_consume_page(buffer_info
, skb
, length
);
1359 /* no chain, got EOP, this buf is the packet
1360 * copybreak to save the put_page/alloc_page */
1361 if (length
<= copybreak
&&
1362 skb_tailroom(skb
) >= length
) {
1364 vaddr
= kmap_atomic(buffer_info
->page
,
1365 KM_SKB_DATA_SOFTIRQ
);
1366 memcpy(skb_tail_pointer(skb
), vaddr
,
1368 kunmap_atomic(vaddr
,
1369 KM_SKB_DATA_SOFTIRQ
);
1370 /* re-use the page, so don't erase
1371 * buffer_info->page */
1372 skb_put(skb
, length
);
1374 skb_fill_page_desc(skb
, 0,
1375 buffer_info
->page
, 0,
1377 e1000_consume_page(buffer_info
, skb
,
1383 /* Receive Checksum Offload XXX recompute due to CRC strip? */
1384 e1000_rx_checksum(adapter
,
1386 ((u32
)(rx_desc
->errors
) << 24),
1387 le16_to_cpu(rx_desc
->csum
), skb
);
1389 /* probably a little skewed due to removing CRC */
1390 total_rx_bytes
+= skb
->len
;
1393 /* eth type trans needs skb->data to point to something */
1394 if (!pskb_may_pull(skb
, ETH_HLEN
)) {
1395 e_err("pskb_may_pull failed.\n");
1400 e1000_receive_skb(adapter
, netdev
, skb
, status
,
1404 rx_desc
->status
= 0;
1406 /* return some buffers to hardware, one at a time is too slow */
1407 if (unlikely(cleaned_count
>= E1000_RX_BUFFER_WRITE
)) {
1408 adapter
->alloc_rx_buf(adapter
, cleaned_count
);
1412 /* use prefetched values */
1414 buffer_info
= next_buffer
;
1416 rx_ring
->next_to_clean
= i
;
1418 cleaned_count
= e1000_desc_unused(rx_ring
);
1420 adapter
->alloc_rx_buf(adapter
, cleaned_count
);
1422 adapter
->total_rx_bytes
+= total_rx_bytes
;
1423 adapter
->total_rx_packets
+= total_rx_packets
;
1424 netdev
->stats
.rx_bytes
+= total_rx_bytes
;
1425 netdev
->stats
.rx_packets
+= total_rx_packets
;
1430 * e1000_clean_rx_ring - Free Rx Buffers per Queue
1431 * @adapter: board private structure
1433 static void e1000_clean_rx_ring(struct e1000_adapter
*adapter
)
1435 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
1436 struct e1000_buffer
*buffer_info
;
1437 struct e1000_ps_page
*ps_page
;
1438 struct pci_dev
*pdev
= adapter
->pdev
;
1441 /* Free all the Rx ring sk_buffs */
1442 for (i
= 0; i
< rx_ring
->count
; i
++) {
1443 buffer_info
= &rx_ring
->buffer_info
[i
];
1444 if (buffer_info
->dma
) {
1445 if (adapter
->clean_rx
== e1000_clean_rx_irq
)
1446 dma_unmap_single(&pdev
->dev
, buffer_info
->dma
,
1447 adapter
->rx_buffer_len
,
1449 else if (adapter
->clean_rx
== e1000_clean_jumbo_rx_irq
)
1450 dma_unmap_page(&pdev
->dev
, buffer_info
->dma
,
1453 else if (adapter
->clean_rx
== e1000_clean_rx_irq_ps
)
1454 dma_unmap_single(&pdev
->dev
, buffer_info
->dma
,
1455 adapter
->rx_ps_bsize0
,
1457 buffer_info
->dma
= 0;
1460 if (buffer_info
->page
) {
1461 put_page(buffer_info
->page
);
1462 buffer_info
->page
= NULL
;
1465 if (buffer_info
->skb
) {
1466 dev_kfree_skb(buffer_info
->skb
);
1467 buffer_info
->skb
= NULL
;
1470 for (j
= 0; j
< PS_PAGE_BUFFERS
; j
++) {
1471 ps_page
= &buffer_info
->ps_pages
[j
];
1474 dma_unmap_page(&pdev
->dev
, ps_page
->dma
, PAGE_SIZE
,
1477 put_page(ps_page
->page
);
1478 ps_page
->page
= NULL
;
1482 /* there also may be some cached data from a chained receive */
1483 if (rx_ring
->rx_skb_top
) {
1484 dev_kfree_skb(rx_ring
->rx_skb_top
);
1485 rx_ring
->rx_skb_top
= NULL
;
1488 /* Zero out the descriptor ring */
1489 memset(rx_ring
->desc
, 0, rx_ring
->size
);
1491 rx_ring
->next_to_clean
= 0;
1492 rx_ring
->next_to_use
= 0;
1493 adapter
->flags2
&= ~FLAG2_IS_DISCARDING
;
1495 writel(0, adapter
->hw
.hw_addr
+ rx_ring
->head
);
1496 writel(0, adapter
->hw
.hw_addr
+ rx_ring
->tail
);
1499 static void e1000e_downshift_workaround(struct work_struct
*work
)
1501 struct e1000_adapter
*adapter
= container_of(work
,
1502 struct e1000_adapter
, downshift_task
);
1504 e1000e_gig_downshift_workaround_ich8lan(&adapter
->hw
);
1508 * e1000_intr_msi - Interrupt Handler
1509 * @irq: interrupt number
1510 * @data: pointer to a network interface device structure
1512 static irqreturn_t
e1000_intr_msi(int irq
, void *data
)
1514 struct net_device
*netdev
= data
;
1515 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1516 struct e1000_hw
*hw
= &adapter
->hw
;
1517 u32 icr
= er32(ICR
);
1520 * read ICR disables interrupts using IAM
1523 if (icr
& E1000_ICR_LSC
) {
1524 hw
->mac
.get_link_status
= 1;
1526 * ICH8 workaround-- Call gig speed drop workaround on cable
1527 * disconnect (LSC) before accessing any PHY registers
1529 if ((adapter
->flags
& FLAG_LSC_GIG_SPEED_DROP
) &&
1530 (!(er32(STATUS
) & E1000_STATUS_LU
)))
1531 schedule_work(&adapter
->downshift_task
);
1534 * 80003ES2LAN workaround-- For packet buffer work-around on
1535 * link down event; disable receives here in the ISR and reset
1536 * adapter in watchdog
1538 if (netif_carrier_ok(netdev
) &&
1539 adapter
->flags
& FLAG_RX_NEEDS_RESTART
) {
1540 /* disable receives */
1541 u32 rctl
= er32(RCTL
);
1542 ew32(RCTL
, rctl
& ~E1000_RCTL_EN
);
1543 adapter
->flags
|= FLAG_RX_RESTART_NOW
;
1545 /* guard against interrupt when we're going down */
1546 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
1547 mod_timer(&adapter
->watchdog_timer
, jiffies
+ 1);
1550 if (napi_schedule_prep(&adapter
->napi
)) {
1551 adapter
->total_tx_bytes
= 0;
1552 adapter
->total_tx_packets
= 0;
1553 adapter
->total_rx_bytes
= 0;
1554 adapter
->total_rx_packets
= 0;
1555 __napi_schedule(&adapter
->napi
);
1562 * e1000_intr - Interrupt Handler
1563 * @irq: interrupt number
1564 * @data: pointer to a network interface device structure
1566 static irqreturn_t
e1000_intr(int irq
, void *data
)
1568 struct net_device
*netdev
= data
;
1569 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1570 struct e1000_hw
*hw
= &adapter
->hw
;
1571 u32 rctl
, icr
= er32(ICR
);
1573 if (!icr
|| test_bit(__E1000_DOWN
, &adapter
->state
))
1574 return IRQ_NONE
; /* Not our interrupt */
1577 * IMS will not auto-mask if INT_ASSERTED is not set, and if it is
1578 * not set, then the adapter didn't send an interrupt
1580 if (!(icr
& E1000_ICR_INT_ASSERTED
))
1584 * Interrupt Auto-Mask...upon reading ICR,
1585 * interrupts are masked. No need for the
1589 if (icr
& E1000_ICR_LSC
) {
1590 hw
->mac
.get_link_status
= 1;
1592 * ICH8 workaround-- Call gig speed drop workaround on cable
1593 * disconnect (LSC) before accessing any PHY registers
1595 if ((adapter
->flags
& FLAG_LSC_GIG_SPEED_DROP
) &&
1596 (!(er32(STATUS
) & E1000_STATUS_LU
)))
1597 schedule_work(&adapter
->downshift_task
);
1600 * 80003ES2LAN workaround--
1601 * For packet buffer work-around on link down event;
1602 * disable receives here in the ISR and
1603 * reset adapter in watchdog
1605 if (netif_carrier_ok(netdev
) &&
1606 (adapter
->flags
& FLAG_RX_NEEDS_RESTART
)) {
1607 /* disable receives */
1609 ew32(RCTL
, rctl
& ~E1000_RCTL_EN
);
1610 adapter
->flags
|= FLAG_RX_RESTART_NOW
;
1612 /* guard against interrupt when we're going down */
1613 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
1614 mod_timer(&adapter
->watchdog_timer
, jiffies
+ 1);
1617 if (napi_schedule_prep(&adapter
->napi
)) {
1618 adapter
->total_tx_bytes
= 0;
1619 adapter
->total_tx_packets
= 0;
1620 adapter
->total_rx_bytes
= 0;
1621 adapter
->total_rx_packets
= 0;
1622 __napi_schedule(&adapter
->napi
);
1628 static irqreturn_t
e1000_msix_other(int irq
, void *data
)
1630 struct net_device
*netdev
= data
;
1631 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1632 struct e1000_hw
*hw
= &adapter
->hw
;
1633 u32 icr
= er32(ICR
);
1635 if (!(icr
& E1000_ICR_INT_ASSERTED
)) {
1636 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
1637 ew32(IMS
, E1000_IMS_OTHER
);
1641 if (icr
& adapter
->eiac_mask
)
1642 ew32(ICS
, (icr
& adapter
->eiac_mask
));
1644 if (icr
& E1000_ICR_OTHER
) {
1645 if (!(icr
& E1000_ICR_LSC
))
1646 goto no_link_interrupt
;
1647 hw
->mac
.get_link_status
= 1;
1648 /* guard against interrupt when we're going down */
1649 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
1650 mod_timer(&adapter
->watchdog_timer
, jiffies
+ 1);
1654 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
1655 ew32(IMS
, E1000_IMS_LSC
| E1000_IMS_OTHER
);
1661 static irqreturn_t
e1000_intr_msix_tx(int irq
, void *data
)
1663 struct net_device
*netdev
= data
;
1664 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1665 struct e1000_hw
*hw
= &adapter
->hw
;
1666 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
1669 adapter
->total_tx_bytes
= 0;
1670 adapter
->total_tx_packets
= 0;
1672 if (!e1000_clean_tx_irq(adapter
))
1673 /* Ring was not completely cleaned, so fire another interrupt */
1674 ew32(ICS
, tx_ring
->ims_val
);
1679 static irqreturn_t
e1000_intr_msix_rx(int irq
, void *data
)
1681 struct net_device
*netdev
= data
;
1682 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1684 /* Write the ITR value calculated at the end of the
1685 * previous interrupt.
1687 if (adapter
->rx_ring
->set_itr
) {
1688 writel(1000000000 / (adapter
->rx_ring
->itr_val
* 256),
1689 adapter
->hw
.hw_addr
+ adapter
->rx_ring
->itr_register
);
1690 adapter
->rx_ring
->set_itr
= 0;
1693 if (napi_schedule_prep(&adapter
->napi
)) {
1694 adapter
->total_rx_bytes
= 0;
1695 adapter
->total_rx_packets
= 0;
1696 __napi_schedule(&adapter
->napi
);
1702 * e1000_configure_msix - Configure MSI-X hardware
1704 * e1000_configure_msix sets up the hardware to properly
1705 * generate MSI-X interrupts.
1707 static void e1000_configure_msix(struct e1000_adapter
*adapter
)
1709 struct e1000_hw
*hw
= &adapter
->hw
;
1710 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
1711 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
1713 u32 ctrl_ext
, ivar
= 0;
1715 adapter
->eiac_mask
= 0;
1717 /* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
1718 if (hw
->mac
.type
== e1000_82574
) {
1719 u32 rfctl
= er32(RFCTL
);
1720 rfctl
|= E1000_RFCTL_ACK_DIS
;
1724 #define E1000_IVAR_INT_ALLOC_VALID 0x8
1725 /* Configure Rx vector */
1726 rx_ring
->ims_val
= E1000_IMS_RXQ0
;
1727 adapter
->eiac_mask
|= rx_ring
->ims_val
;
1728 if (rx_ring
->itr_val
)
1729 writel(1000000000 / (rx_ring
->itr_val
* 256),
1730 hw
->hw_addr
+ rx_ring
->itr_register
);
1732 writel(1, hw
->hw_addr
+ rx_ring
->itr_register
);
1733 ivar
= E1000_IVAR_INT_ALLOC_VALID
| vector
;
1735 /* Configure Tx vector */
1736 tx_ring
->ims_val
= E1000_IMS_TXQ0
;
1738 if (tx_ring
->itr_val
)
1739 writel(1000000000 / (tx_ring
->itr_val
* 256),
1740 hw
->hw_addr
+ tx_ring
->itr_register
);
1742 writel(1, hw
->hw_addr
+ tx_ring
->itr_register
);
1743 adapter
->eiac_mask
|= tx_ring
->ims_val
;
1744 ivar
|= ((E1000_IVAR_INT_ALLOC_VALID
| vector
) << 8);
1746 /* set vector for Other Causes, e.g. link changes */
1748 ivar
|= ((E1000_IVAR_INT_ALLOC_VALID
| vector
) << 16);
1749 if (rx_ring
->itr_val
)
1750 writel(1000000000 / (rx_ring
->itr_val
* 256),
1751 hw
->hw_addr
+ E1000_EITR_82574(vector
));
1753 writel(1, hw
->hw_addr
+ E1000_EITR_82574(vector
));
1755 /* Cause Tx interrupts on every write back */
1760 /* enable MSI-X PBA support */
1761 ctrl_ext
= er32(CTRL_EXT
);
1762 ctrl_ext
|= E1000_CTRL_EXT_PBA_CLR
;
1764 /* Auto-Mask Other interrupts upon ICR read */
1765 #define E1000_EIAC_MASK_82574 0x01F00000
1766 ew32(IAM
, ~E1000_EIAC_MASK_82574
| E1000_IMS_OTHER
);
1767 ctrl_ext
|= E1000_CTRL_EXT_EIAME
;
1768 ew32(CTRL_EXT
, ctrl_ext
);
1772 void e1000e_reset_interrupt_capability(struct e1000_adapter
*adapter
)
1774 if (adapter
->msix_entries
) {
1775 pci_disable_msix(adapter
->pdev
);
1776 kfree(adapter
->msix_entries
);
1777 adapter
->msix_entries
= NULL
;
1778 } else if (adapter
->flags
& FLAG_MSI_ENABLED
) {
1779 pci_disable_msi(adapter
->pdev
);
1780 adapter
->flags
&= ~FLAG_MSI_ENABLED
;
1785 * e1000e_set_interrupt_capability - set MSI or MSI-X if supported
1787 * Attempt to configure interrupts using the best available
1788 * capabilities of the hardware and kernel.
1790 void e1000e_set_interrupt_capability(struct e1000_adapter
*adapter
)
1795 switch (adapter
->int_mode
) {
1796 case E1000E_INT_MODE_MSIX
:
1797 if (adapter
->flags
& FLAG_HAS_MSIX
) {
1798 adapter
->num_vectors
= 3; /* RxQ0, TxQ0 and other */
1799 adapter
->msix_entries
= kcalloc(adapter
->num_vectors
,
1800 sizeof(struct msix_entry
),
1802 if (adapter
->msix_entries
) {
1803 for (i
= 0; i
< adapter
->num_vectors
; i
++)
1804 adapter
->msix_entries
[i
].entry
= i
;
1806 err
= pci_enable_msix(adapter
->pdev
,
1807 adapter
->msix_entries
,
1808 adapter
->num_vectors
);
1812 /* MSI-X failed, so fall through and try MSI */
1813 e_err("Failed to initialize MSI-X interrupts. "
1814 "Falling back to MSI interrupts.\n");
1815 e1000e_reset_interrupt_capability(adapter
);
1817 adapter
->int_mode
= E1000E_INT_MODE_MSI
;
1819 case E1000E_INT_MODE_MSI
:
1820 if (!pci_enable_msi(adapter
->pdev
)) {
1821 adapter
->flags
|= FLAG_MSI_ENABLED
;
1823 adapter
->int_mode
= E1000E_INT_MODE_LEGACY
;
1824 e_err("Failed to initialize MSI interrupts. Falling "
1825 "back to legacy interrupts.\n");
1828 case E1000E_INT_MODE_LEGACY
:
1829 /* Don't do anything; this is the system default */
1833 /* store the number of vectors being used */
1834 adapter
->num_vectors
= 1;
1838 * e1000_request_msix - Initialize MSI-X interrupts
1840 * e1000_request_msix allocates MSI-X vectors and requests interrupts from the
1843 static int e1000_request_msix(struct e1000_adapter
*adapter
)
1845 struct net_device
*netdev
= adapter
->netdev
;
1846 int err
= 0, vector
= 0;
1848 if (strlen(netdev
->name
) < (IFNAMSIZ
- 5))
1849 sprintf(adapter
->rx_ring
->name
, "%s-rx-0", netdev
->name
);
1851 memcpy(adapter
->rx_ring
->name
, netdev
->name
, IFNAMSIZ
);
1852 err
= request_irq(adapter
->msix_entries
[vector
].vector
,
1853 e1000_intr_msix_rx
, 0, adapter
->rx_ring
->name
,
1857 adapter
->rx_ring
->itr_register
= E1000_EITR_82574(vector
);
1858 adapter
->rx_ring
->itr_val
= adapter
->itr
;
1861 if (strlen(netdev
->name
) < (IFNAMSIZ
- 5))
1862 sprintf(adapter
->tx_ring
->name
, "%s-tx-0", netdev
->name
);
1864 memcpy(adapter
->tx_ring
->name
, netdev
->name
, IFNAMSIZ
);
1865 err
= request_irq(adapter
->msix_entries
[vector
].vector
,
1866 e1000_intr_msix_tx
, 0, adapter
->tx_ring
->name
,
1870 adapter
->tx_ring
->itr_register
= E1000_EITR_82574(vector
);
1871 adapter
->tx_ring
->itr_val
= adapter
->itr
;
1874 err
= request_irq(adapter
->msix_entries
[vector
].vector
,
1875 e1000_msix_other
, 0, netdev
->name
, netdev
);
1879 e1000_configure_msix(adapter
);
1886 * e1000_request_irq - initialize interrupts
1888 * Attempts to configure interrupts using the best available
1889 * capabilities of the hardware and kernel.
1891 static int e1000_request_irq(struct e1000_adapter
*adapter
)
1893 struct net_device
*netdev
= adapter
->netdev
;
1896 if (adapter
->msix_entries
) {
1897 err
= e1000_request_msix(adapter
);
1900 /* fall back to MSI */
1901 e1000e_reset_interrupt_capability(adapter
);
1902 adapter
->int_mode
= E1000E_INT_MODE_MSI
;
1903 e1000e_set_interrupt_capability(adapter
);
1905 if (adapter
->flags
& FLAG_MSI_ENABLED
) {
1906 err
= request_irq(adapter
->pdev
->irq
, e1000_intr_msi
, 0,
1907 netdev
->name
, netdev
);
1911 /* fall back to legacy interrupt */
1912 e1000e_reset_interrupt_capability(adapter
);
1913 adapter
->int_mode
= E1000E_INT_MODE_LEGACY
;
1916 err
= request_irq(adapter
->pdev
->irq
, e1000_intr
, IRQF_SHARED
,
1917 netdev
->name
, netdev
);
1919 e_err("Unable to allocate interrupt, Error: %d\n", err
);
1924 static void e1000_free_irq(struct e1000_adapter
*adapter
)
1926 struct net_device
*netdev
= adapter
->netdev
;
1928 if (adapter
->msix_entries
) {
1931 free_irq(adapter
->msix_entries
[vector
].vector
, netdev
);
1934 free_irq(adapter
->msix_entries
[vector
].vector
, netdev
);
1937 /* Other Causes interrupt vector */
1938 free_irq(adapter
->msix_entries
[vector
].vector
, netdev
);
1942 free_irq(adapter
->pdev
->irq
, netdev
);
1946 * e1000_irq_disable - Mask off interrupt generation on the NIC
1948 static void e1000_irq_disable(struct e1000_adapter
*adapter
)
1950 struct e1000_hw
*hw
= &adapter
->hw
;
1953 if (adapter
->msix_entries
)
1954 ew32(EIAC_82574
, 0);
1957 if (adapter
->msix_entries
) {
1959 for (i
= 0; i
< adapter
->num_vectors
; i
++)
1960 synchronize_irq(adapter
->msix_entries
[i
].vector
);
1962 synchronize_irq(adapter
->pdev
->irq
);
1967 * e1000_irq_enable - Enable default interrupt generation settings
1969 static void e1000_irq_enable(struct e1000_adapter
*adapter
)
1971 struct e1000_hw
*hw
= &adapter
->hw
;
1973 if (adapter
->msix_entries
) {
1974 ew32(EIAC_82574
, adapter
->eiac_mask
& E1000_EIAC_MASK_82574
);
1975 ew32(IMS
, adapter
->eiac_mask
| E1000_IMS_OTHER
| E1000_IMS_LSC
);
1977 ew32(IMS
, IMS_ENABLE_MASK
);
1983 * e1000e_get_hw_control - get control of the h/w from f/w
1984 * @adapter: address of board private structure
1986 * e1000e_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
1987 * For ASF and Pass Through versions of f/w this means that
1988 * the driver is loaded. For AMT version (only with 82573)
1989 * of the f/w this means that the network i/f is open.
1991 void e1000e_get_hw_control(struct e1000_adapter
*adapter
)
1993 struct e1000_hw
*hw
= &adapter
->hw
;
1997 /* Let firmware know the driver has taken over */
1998 if (adapter
->flags
& FLAG_HAS_SWSM_ON_LOAD
) {
2000 ew32(SWSM
, swsm
| E1000_SWSM_DRV_LOAD
);
2001 } else if (adapter
->flags
& FLAG_HAS_CTRLEXT_ON_LOAD
) {
2002 ctrl_ext
= er32(CTRL_EXT
);
2003 ew32(CTRL_EXT
, ctrl_ext
| E1000_CTRL_EXT_DRV_LOAD
);
2008 * e1000e_release_hw_control - release control of the h/w to f/w
2009 * @adapter: address of board private structure
2011 * e1000e_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2012 * For ASF and Pass Through versions of f/w this means that the
2013 * driver is no longer loaded. For AMT version (only with 82573) i
2014 * of the f/w this means that the network i/f is closed.
2017 void e1000e_release_hw_control(struct e1000_adapter
*adapter
)
2019 struct e1000_hw
*hw
= &adapter
->hw
;
2023 /* Let firmware taken over control of h/w */
2024 if (adapter
->flags
& FLAG_HAS_SWSM_ON_LOAD
) {
2026 ew32(SWSM
, swsm
& ~E1000_SWSM_DRV_LOAD
);
2027 } else if (adapter
->flags
& FLAG_HAS_CTRLEXT_ON_LOAD
) {
2028 ctrl_ext
= er32(CTRL_EXT
);
2029 ew32(CTRL_EXT
, ctrl_ext
& ~E1000_CTRL_EXT_DRV_LOAD
);
2034 * @e1000_alloc_ring - allocate memory for a ring structure
2036 static int e1000_alloc_ring_dma(struct e1000_adapter
*adapter
,
2037 struct e1000_ring
*ring
)
2039 struct pci_dev
*pdev
= adapter
->pdev
;
2041 ring
->desc
= dma_alloc_coherent(&pdev
->dev
, ring
->size
, &ring
->dma
,
2050 * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
2051 * @adapter: board private structure
2053 * Return 0 on success, negative on failure
2055 int e1000e_setup_tx_resources(struct e1000_adapter
*adapter
)
2057 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
2058 int err
= -ENOMEM
, size
;
2060 size
= sizeof(struct e1000_buffer
) * tx_ring
->count
;
2061 tx_ring
->buffer_info
= vzalloc(size
);
2062 if (!tx_ring
->buffer_info
)
2065 /* round up to nearest 4K */
2066 tx_ring
->size
= tx_ring
->count
* sizeof(struct e1000_tx_desc
);
2067 tx_ring
->size
= ALIGN(tx_ring
->size
, 4096);
2069 err
= e1000_alloc_ring_dma(adapter
, tx_ring
);
2073 tx_ring
->next_to_use
= 0;
2074 tx_ring
->next_to_clean
= 0;
2078 vfree(tx_ring
->buffer_info
);
2079 e_err("Unable to allocate memory for the transmit descriptor ring\n");
2084 * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
2085 * @adapter: board private structure
2087 * Returns 0 on success, negative on failure
2089 int e1000e_setup_rx_resources(struct e1000_adapter
*adapter
)
2091 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
2092 struct e1000_buffer
*buffer_info
;
2093 int i
, size
, desc_len
, err
= -ENOMEM
;
2095 size
= sizeof(struct e1000_buffer
) * rx_ring
->count
;
2096 rx_ring
->buffer_info
= vzalloc(size
);
2097 if (!rx_ring
->buffer_info
)
2100 for (i
= 0; i
< rx_ring
->count
; i
++) {
2101 buffer_info
= &rx_ring
->buffer_info
[i
];
2102 buffer_info
->ps_pages
= kcalloc(PS_PAGE_BUFFERS
,
2103 sizeof(struct e1000_ps_page
),
2105 if (!buffer_info
->ps_pages
)
2109 desc_len
= sizeof(union e1000_rx_desc_packet_split
);
2111 /* Round up to nearest 4K */
2112 rx_ring
->size
= rx_ring
->count
* desc_len
;
2113 rx_ring
->size
= ALIGN(rx_ring
->size
, 4096);
2115 err
= e1000_alloc_ring_dma(adapter
, rx_ring
);
2119 rx_ring
->next_to_clean
= 0;
2120 rx_ring
->next_to_use
= 0;
2121 rx_ring
->rx_skb_top
= NULL
;
2126 for (i
= 0; i
< rx_ring
->count
; i
++) {
2127 buffer_info
= &rx_ring
->buffer_info
[i
];
2128 kfree(buffer_info
->ps_pages
);
2131 vfree(rx_ring
->buffer_info
);
2132 e_err("Unable to allocate memory for the receive descriptor ring\n");
2137 * e1000_clean_tx_ring - Free Tx Buffers
2138 * @adapter: board private structure
2140 static void e1000_clean_tx_ring(struct e1000_adapter
*adapter
)
2142 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
2143 struct e1000_buffer
*buffer_info
;
2147 for (i
= 0; i
< tx_ring
->count
; i
++) {
2148 buffer_info
= &tx_ring
->buffer_info
[i
];
2149 e1000_put_txbuf(adapter
, buffer_info
);
2152 size
= sizeof(struct e1000_buffer
) * tx_ring
->count
;
2153 memset(tx_ring
->buffer_info
, 0, size
);
2155 memset(tx_ring
->desc
, 0, tx_ring
->size
);
2157 tx_ring
->next_to_use
= 0;
2158 tx_ring
->next_to_clean
= 0;
2160 writel(0, adapter
->hw
.hw_addr
+ tx_ring
->head
);
2161 writel(0, adapter
->hw
.hw_addr
+ tx_ring
->tail
);
2165 * e1000e_free_tx_resources - Free Tx Resources per Queue
2166 * @adapter: board private structure
2168 * Free all transmit software resources
2170 void e1000e_free_tx_resources(struct e1000_adapter
*adapter
)
2172 struct pci_dev
*pdev
= adapter
->pdev
;
2173 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
2175 e1000_clean_tx_ring(adapter
);
2177 vfree(tx_ring
->buffer_info
);
2178 tx_ring
->buffer_info
= NULL
;
2180 dma_free_coherent(&pdev
->dev
, tx_ring
->size
, tx_ring
->desc
,
2182 tx_ring
->desc
= NULL
;
2186 * e1000e_free_rx_resources - Free Rx Resources
2187 * @adapter: board private structure
2189 * Free all receive software resources
2192 void e1000e_free_rx_resources(struct e1000_adapter
*adapter
)
2194 struct pci_dev
*pdev
= adapter
->pdev
;
2195 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
2198 e1000_clean_rx_ring(adapter
);
2200 for (i
= 0; i
< rx_ring
->count
; i
++)
2201 kfree(rx_ring
->buffer_info
[i
].ps_pages
);
2203 vfree(rx_ring
->buffer_info
);
2204 rx_ring
->buffer_info
= NULL
;
2206 dma_free_coherent(&pdev
->dev
, rx_ring
->size
, rx_ring
->desc
,
2208 rx_ring
->desc
= NULL
;
2212 * e1000_update_itr - update the dynamic ITR value based on statistics
2213 * @adapter: pointer to adapter
2214 * @itr_setting: current adapter->itr
2215 * @packets: the number of packets during this measurement interval
2216 * @bytes: the number of bytes during this measurement interval
2218 * Stores a new ITR value based on packets and byte
2219 * counts during the last interrupt. The advantage of per interrupt
2220 * computation is faster updates and more accurate ITR for the current
2221 * traffic pattern. Constants in this function were computed
2222 * based on theoretical maximum wire speed and thresholds were set based
2223 * on testing data as well as attempting to minimize response time
2224 * while increasing bulk throughput. This functionality is controlled
2225 * by the InterruptThrottleRate module parameter.
2227 static unsigned int e1000_update_itr(struct e1000_adapter
*adapter
,
2228 u16 itr_setting
, int packets
,
2231 unsigned int retval
= itr_setting
;
2234 goto update_itr_done
;
2236 switch (itr_setting
) {
2237 case lowest_latency
:
2238 /* handle TSO and jumbo frames */
2239 if (bytes
/packets
> 8000)
2240 retval
= bulk_latency
;
2241 else if ((packets
< 5) && (bytes
> 512))
2242 retval
= low_latency
;
2244 case low_latency
: /* 50 usec aka 20000 ints/s */
2245 if (bytes
> 10000) {
2246 /* this if handles the TSO accounting */
2247 if (bytes
/packets
> 8000)
2248 retval
= bulk_latency
;
2249 else if ((packets
< 10) || ((bytes
/packets
) > 1200))
2250 retval
= bulk_latency
;
2251 else if ((packets
> 35))
2252 retval
= lowest_latency
;
2253 } else if (bytes
/packets
> 2000) {
2254 retval
= bulk_latency
;
2255 } else if (packets
<= 2 && bytes
< 512) {
2256 retval
= lowest_latency
;
2259 case bulk_latency
: /* 250 usec aka 4000 ints/s */
2260 if (bytes
> 25000) {
2262 retval
= low_latency
;
2263 } else if (bytes
< 6000) {
2264 retval
= low_latency
;
2273 static void e1000_set_itr(struct e1000_adapter
*adapter
)
2275 struct e1000_hw
*hw
= &adapter
->hw
;
2277 u32 new_itr
= adapter
->itr
;
2279 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2280 if (adapter
->link_speed
!= SPEED_1000
) {
2286 if (adapter
->flags2
& FLAG2_DISABLE_AIM
) {
2291 adapter
->tx_itr
= e1000_update_itr(adapter
,
2293 adapter
->total_tx_packets
,
2294 adapter
->total_tx_bytes
);
2295 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2296 if (adapter
->itr_setting
== 3 && adapter
->tx_itr
== lowest_latency
)
2297 adapter
->tx_itr
= low_latency
;
2299 adapter
->rx_itr
= e1000_update_itr(adapter
,
2301 adapter
->total_rx_packets
,
2302 adapter
->total_rx_bytes
);
2303 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2304 if (adapter
->itr_setting
== 3 && adapter
->rx_itr
== lowest_latency
)
2305 adapter
->rx_itr
= low_latency
;
2307 current_itr
= max(adapter
->rx_itr
, adapter
->tx_itr
);
2309 switch (current_itr
) {
2310 /* counts and packets in update_itr are dependent on these numbers */
2311 case lowest_latency
:
2315 new_itr
= 20000; /* aka hwitr = ~200 */
2325 if (new_itr
!= adapter
->itr
) {
2327 * this attempts to bias the interrupt rate towards Bulk
2328 * by adding intermediate steps when interrupt rate is
2331 new_itr
= new_itr
> adapter
->itr
?
2332 min(adapter
->itr
+ (new_itr
>> 2), new_itr
) :
2334 adapter
->itr
= new_itr
;
2335 adapter
->rx_ring
->itr_val
= new_itr
;
2336 if (adapter
->msix_entries
)
2337 adapter
->rx_ring
->set_itr
= 1;
2340 ew32(ITR
, 1000000000 / (new_itr
* 256));
2347 * e1000_alloc_queues - Allocate memory for all rings
2348 * @adapter: board private structure to initialize
2350 static int __devinit
e1000_alloc_queues(struct e1000_adapter
*adapter
)
2352 adapter
->tx_ring
= kzalloc(sizeof(struct e1000_ring
), GFP_KERNEL
);
2353 if (!adapter
->tx_ring
)
2356 adapter
->rx_ring
= kzalloc(sizeof(struct e1000_ring
), GFP_KERNEL
);
2357 if (!adapter
->rx_ring
)
2362 e_err("Unable to allocate memory for queues\n");
2363 kfree(adapter
->rx_ring
);
2364 kfree(adapter
->tx_ring
);
2369 * e1000_clean - NAPI Rx polling callback
2370 * @napi: struct associated with this polling callback
2371 * @budget: amount of packets driver is allowed to process this poll
2373 static int e1000_clean(struct napi_struct
*napi
, int budget
)
2375 struct e1000_adapter
*adapter
= container_of(napi
, struct e1000_adapter
, napi
);
2376 struct e1000_hw
*hw
= &adapter
->hw
;
2377 struct net_device
*poll_dev
= adapter
->netdev
;
2378 int tx_cleaned
= 1, work_done
= 0;
2380 adapter
= netdev_priv(poll_dev
);
2382 if (adapter
->msix_entries
&&
2383 !(adapter
->rx_ring
->ims_val
& adapter
->tx_ring
->ims_val
))
2386 tx_cleaned
= e1000_clean_tx_irq(adapter
);
2389 adapter
->clean_rx(adapter
, &work_done
, budget
);
2394 /* If budget not fully consumed, exit the polling mode */
2395 if (work_done
< budget
) {
2396 if (adapter
->itr_setting
& 3)
2397 e1000_set_itr(adapter
);
2398 napi_complete(napi
);
2399 if (!test_bit(__E1000_DOWN
, &adapter
->state
)) {
2400 if (adapter
->msix_entries
)
2401 ew32(IMS
, adapter
->rx_ring
->ims_val
);
2403 e1000_irq_enable(adapter
);
2410 static void e1000_vlan_rx_add_vid(struct net_device
*netdev
, u16 vid
)
2412 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
2413 struct e1000_hw
*hw
= &adapter
->hw
;
2416 /* don't update vlan cookie if already programmed */
2417 if ((adapter
->hw
.mng_cookie
.status
&
2418 E1000_MNG_DHCP_COOKIE_STATUS_VLAN
) &&
2419 (vid
== adapter
->mng_vlan_id
))
2422 /* add VID to filter table */
2423 if (adapter
->flags
& FLAG_HAS_HW_VLAN_FILTER
) {
2424 index
= (vid
>> 5) & 0x7F;
2425 vfta
= E1000_READ_REG_ARRAY(hw
, E1000_VFTA
, index
);
2426 vfta
|= (1 << (vid
& 0x1F));
2427 hw
->mac
.ops
.write_vfta(hw
, index
, vfta
);
2431 static void e1000_vlan_rx_kill_vid(struct net_device
*netdev
, u16 vid
)
2433 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
2434 struct e1000_hw
*hw
= &adapter
->hw
;
2437 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
2438 e1000_irq_disable(adapter
);
2439 vlan_group_set_device(adapter
->vlgrp
, vid
, NULL
);
2441 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
2442 e1000_irq_enable(adapter
);
2444 if ((adapter
->hw
.mng_cookie
.status
&
2445 E1000_MNG_DHCP_COOKIE_STATUS_VLAN
) &&
2446 (vid
== adapter
->mng_vlan_id
)) {
2447 /* release control to f/w */
2448 e1000e_release_hw_control(adapter
);
2452 /* remove VID from filter table */
2453 if (adapter
->flags
& FLAG_HAS_HW_VLAN_FILTER
) {
2454 index
= (vid
>> 5) & 0x7F;
2455 vfta
= E1000_READ_REG_ARRAY(hw
, E1000_VFTA
, index
);
2456 vfta
&= ~(1 << (vid
& 0x1F));
2457 hw
->mac
.ops
.write_vfta(hw
, index
, vfta
);
2461 static void e1000_update_mng_vlan(struct e1000_adapter
*adapter
)
2463 struct net_device
*netdev
= adapter
->netdev
;
2464 u16 vid
= adapter
->hw
.mng_cookie
.vlan_id
;
2465 u16 old_vid
= adapter
->mng_vlan_id
;
2467 if (!adapter
->vlgrp
)
2470 if (!vlan_group_get_device(adapter
->vlgrp
, vid
)) {
2471 adapter
->mng_vlan_id
= E1000_MNG_VLAN_NONE
;
2472 if (adapter
->hw
.mng_cookie
.status
&
2473 E1000_MNG_DHCP_COOKIE_STATUS_VLAN
) {
2474 e1000_vlan_rx_add_vid(netdev
, vid
);
2475 adapter
->mng_vlan_id
= vid
;
2478 if ((old_vid
!= (u16
)E1000_MNG_VLAN_NONE
) &&
2480 !vlan_group_get_device(adapter
->vlgrp
, old_vid
))
2481 e1000_vlan_rx_kill_vid(netdev
, old_vid
);
2483 adapter
->mng_vlan_id
= vid
;
2488 static void e1000_vlan_rx_register(struct net_device
*netdev
,
2489 struct vlan_group
*grp
)
2491 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
2492 struct e1000_hw
*hw
= &adapter
->hw
;
2495 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
2496 e1000_irq_disable(adapter
);
2497 adapter
->vlgrp
= grp
;
2500 /* enable VLAN tag insert/strip */
2502 ctrl
|= E1000_CTRL_VME
;
2505 if (adapter
->flags
& FLAG_HAS_HW_VLAN_FILTER
) {
2506 /* enable VLAN receive filtering */
2508 rctl
&= ~E1000_RCTL_CFIEN
;
2510 e1000_update_mng_vlan(adapter
);
2513 /* disable VLAN tag insert/strip */
2515 ctrl
&= ~E1000_CTRL_VME
;
2518 if (adapter
->flags
& FLAG_HAS_HW_VLAN_FILTER
) {
2519 if (adapter
->mng_vlan_id
!=
2520 (u16
)E1000_MNG_VLAN_NONE
) {
2521 e1000_vlan_rx_kill_vid(netdev
,
2522 adapter
->mng_vlan_id
);
2523 adapter
->mng_vlan_id
= E1000_MNG_VLAN_NONE
;
2528 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
2529 e1000_irq_enable(adapter
);
2532 static void e1000_restore_vlan(struct e1000_adapter
*adapter
)
2536 e1000_vlan_rx_register(adapter
->netdev
, adapter
->vlgrp
);
2538 if (!adapter
->vlgrp
)
2541 for (vid
= 0; vid
< VLAN_N_VID
; vid
++) {
2542 if (!vlan_group_get_device(adapter
->vlgrp
, vid
))
2544 e1000_vlan_rx_add_vid(adapter
->netdev
, vid
);
2548 static void e1000_init_manageability_pt(struct e1000_adapter
*adapter
)
2550 struct e1000_hw
*hw
= &adapter
->hw
;
2551 u32 manc
, manc2h
, mdef
, i
, j
;
2553 if (!(adapter
->flags
& FLAG_MNG_PT_ENABLED
))
2559 * enable receiving management packets to the host. this will probably
2560 * generate destination unreachable messages from the host OS, but
2561 * the packets will be handled on SMBUS
2563 manc
|= E1000_MANC_EN_MNG2HOST
;
2564 manc2h
= er32(MANC2H
);
2566 switch (hw
->mac
.type
) {
2568 manc2h
|= (E1000_MANC2H_PORT_623
| E1000_MANC2H_PORT_664
);
2573 * Check if IPMI pass-through decision filter already exists;
2576 for (i
= 0, j
= 0; i
< 8; i
++) {
2577 mdef
= er32(MDEF(i
));
2579 /* Ignore filters with anything other than IPMI ports */
2580 if (mdef
& ~(E1000_MDEF_PORT_623
| E1000_MDEF_PORT_664
))
2583 /* Enable this decision filter in MANC2H */
2590 if (j
== (E1000_MDEF_PORT_623
| E1000_MDEF_PORT_664
))
2593 /* Create new decision filter in an empty filter */
2594 for (i
= 0, j
= 0; i
< 8; i
++)
2595 if (er32(MDEF(i
)) == 0) {
2596 ew32(MDEF(i
), (E1000_MDEF_PORT_623
|
2597 E1000_MDEF_PORT_664
));
2604 e_warn("Unable to create IPMI pass-through filter\n");
2608 ew32(MANC2H
, manc2h
);
2613 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
2614 * @adapter: board private structure
2616 * Configure the Tx unit of the MAC after a reset.
2618 static void e1000_configure_tx(struct e1000_adapter
*adapter
)
2620 struct e1000_hw
*hw
= &adapter
->hw
;
2621 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
2623 u32 tdlen
, tctl
, tipg
, tarc
;
2626 /* Setup the HW Tx Head and Tail descriptor pointers */
2627 tdba
= tx_ring
->dma
;
2628 tdlen
= tx_ring
->count
* sizeof(struct e1000_tx_desc
);
2629 ew32(TDBAL
, (tdba
& DMA_BIT_MASK(32)));
2630 ew32(TDBAH
, (tdba
>> 32));
2634 tx_ring
->head
= E1000_TDH
;
2635 tx_ring
->tail
= E1000_TDT
;
2637 /* Set the default values for the Tx Inter Packet Gap timer */
2638 tipg
= DEFAULT_82543_TIPG_IPGT_COPPER
; /* 8 */
2639 ipgr1
= DEFAULT_82543_TIPG_IPGR1
; /* 8 */
2640 ipgr2
= DEFAULT_82543_TIPG_IPGR2
; /* 6 */
2642 if (adapter
->flags
& FLAG_TIPG_MEDIUM_FOR_80003ESLAN
)
2643 ipgr2
= DEFAULT_80003ES2LAN_TIPG_IPGR2
; /* 7 */
2645 tipg
|= ipgr1
<< E1000_TIPG_IPGR1_SHIFT
;
2646 tipg
|= ipgr2
<< E1000_TIPG_IPGR2_SHIFT
;
2649 /* Set the Tx Interrupt Delay register */
2650 ew32(TIDV
, adapter
->tx_int_delay
);
2651 /* Tx irq moderation */
2652 ew32(TADV
, adapter
->tx_abs_int_delay
);
2654 if (adapter
->flags2
& FLAG2_DMA_BURST
) {
2655 u32 txdctl
= er32(TXDCTL(0));
2656 txdctl
&= ~(E1000_TXDCTL_PTHRESH
| E1000_TXDCTL_HTHRESH
|
2657 E1000_TXDCTL_WTHRESH
);
2659 * set up some performance related parameters to encourage the
2660 * hardware to use the bus more efficiently in bursts, depends
2661 * on the tx_int_delay to be enabled,
2662 * wthresh = 5 ==> burst write a cacheline (64 bytes) at a time
2663 * hthresh = 1 ==> prefetch when one or more available
2664 * pthresh = 0x1f ==> prefetch if internal cache 31 or less
2665 * BEWARE: this seems to work but should be considered first if
2666 * there are tx hangs or other tx related bugs
2668 txdctl
|= E1000_TXDCTL_DMA_BURST_ENABLE
;
2669 ew32(TXDCTL(0), txdctl
);
2670 /* erratum work around: set txdctl the same for both queues */
2671 ew32(TXDCTL(1), txdctl
);
2674 /* Program the Transmit Control Register */
2676 tctl
&= ~E1000_TCTL_CT
;
2677 tctl
|= E1000_TCTL_PSP
| E1000_TCTL_RTLC
|
2678 (E1000_COLLISION_THRESHOLD
<< E1000_CT_SHIFT
);
2680 if (adapter
->flags
& FLAG_TARC_SPEED_MODE_BIT
) {
2681 tarc
= er32(TARC(0));
2683 * set the speed mode bit, we'll clear it if we're not at
2684 * gigabit link later
2686 #define SPEED_MODE_BIT (1 << 21)
2687 tarc
|= SPEED_MODE_BIT
;
2688 ew32(TARC(0), tarc
);
2691 /* errata: program both queues to unweighted RR */
2692 if (adapter
->flags
& FLAG_TARC_SET_BIT_ZERO
) {
2693 tarc
= er32(TARC(0));
2695 ew32(TARC(0), tarc
);
2696 tarc
= er32(TARC(1));
2698 ew32(TARC(1), tarc
);
2701 /* Setup Transmit Descriptor Settings for eop descriptor */
2702 adapter
->txd_cmd
= E1000_TXD_CMD_EOP
| E1000_TXD_CMD_IFCS
;
2704 /* only set IDE if we are delaying interrupts using the timers */
2705 if (adapter
->tx_int_delay
)
2706 adapter
->txd_cmd
|= E1000_TXD_CMD_IDE
;
2708 /* enable Report Status bit */
2709 adapter
->txd_cmd
|= E1000_TXD_CMD_RS
;
2713 e1000e_config_collision_dist(hw
);
2717 * e1000_setup_rctl - configure the receive control registers
2718 * @adapter: Board private structure
2720 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
2721 (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
2722 static void e1000_setup_rctl(struct e1000_adapter
*adapter
)
2724 struct e1000_hw
*hw
= &adapter
->hw
;
2729 /* Workaround Si errata on 82579 - configure jumbo frame flow */
2730 if (hw
->mac
.type
== e1000_pch2lan
) {
2733 if (adapter
->netdev
->mtu
> ETH_DATA_LEN
)
2734 ret_val
= e1000_lv_jumbo_workaround_ich8lan(hw
, true);
2736 ret_val
= e1000_lv_jumbo_workaround_ich8lan(hw
, false);
2739 e_dbg("failed to enable jumbo frame workaround mode\n");
2742 /* Program MC offset vector base */
2744 rctl
&= ~(3 << E1000_RCTL_MO_SHIFT
);
2745 rctl
|= E1000_RCTL_EN
| E1000_RCTL_BAM
|
2746 E1000_RCTL_LBM_NO
| E1000_RCTL_RDMTS_HALF
|
2747 (adapter
->hw
.mac
.mc_filter_type
<< E1000_RCTL_MO_SHIFT
);
2749 /* Do not Store bad packets */
2750 rctl
&= ~E1000_RCTL_SBP
;
2752 /* Enable Long Packet receive */
2753 if (adapter
->netdev
->mtu
<= ETH_DATA_LEN
)
2754 rctl
&= ~E1000_RCTL_LPE
;
2756 rctl
|= E1000_RCTL_LPE
;
2758 /* Some systems expect that the CRC is included in SMBUS traffic. The
2759 * hardware strips the CRC before sending to both SMBUS (BMC) and to
2760 * host memory when this is enabled
2762 if (adapter
->flags2
& FLAG2_CRC_STRIPPING
)
2763 rctl
|= E1000_RCTL_SECRC
;
2765 /* Workaround Si errata on 82577 PHY - configure IPG for jumbos */
2766 if ((hw
->phy
.type
== e1000_phy_82577
) && (rctl
& E1000_RCTL_LPE
)) {
2769 e1e_rphy(hw
, PHY_REG(770, 26), &phy_data
);
2771 phy_data
|= (1 << 2);
2772 e1e_wphy(hw
, PHY_REG(770, 26), phy_data
);
2774 e1e_rphy(hw
, 22, &phy_data
);
2776 phy_data
|= (1 << 14);
2777 e1e_wphy(hw
, 0x10, 0x2823);
2778 e1e_wphy(hw
, 0x11, 0x0003);
2779 e1e_wphy(hw
, 22, phy_data
);
2782 /* Setup buffer sizes */
2783 rctl
&= ~E1000_RCTL_SZ_4096
;
2784 rctl
|= E1000_RCTL_BSEX
;
2785 switch (adapter
->rx_buffer_len
) {
2788 rctl
|= E1000_RCTL_SZ_2048
;
2789 rctl
&= ~E1000_RCTL_BSEX
;
2792 rctl
|= E1000_RCTL_SZ_4096
;
2795 rctl
|= E1000_RCTL_SZ_8192
;
2798 rctl
|= E1000_RCTL_SZ_16384
;
2803 * 82571 and greater support packet-split where the protocol
2804 * header is placed in skb->data and the packet data is
2805 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
2806 * In the case of a non-split, skb->data is linearly filled,
2807 * followed by the page buffers. Therefore, skb->data is
2808 * sized to hold the largest protocol header.
2810 * allocations using alloc_page take too long for regular MTU
2811 * so only enable packet split for jumbo frames
2813 * Using pages when the page size is greater than 16k wastes
2814 * a lot of memory, since we allocate 3 pages at all times
2817 pages
= PAGE_USE_COUNT(adapter
->netdev
->mtu
);
2818 if (!(adapter
->flags
& FLAG_HAS_ERT
) && (pages
<= 3) &&
2819 (PAGE_SIZE
<= 16384) && (rctl
& E1000_RCTL_LPE
))
2820 adapter
->rx_ps_pages
= pages
;
2822 adapter
->rx_ps_pages
= 0;
2824 if (adapter
->rx_ps_pages
) {
2825 /* Configure extra packet-split registers */
2826 rfctl
= er32(RFCTL
);
2827 rfctl
|= E1000_RFCTL_EXTEN
;
2829 * disable packet split support for IPv6 extension headers,
2830 * because some malformed IPv6 headers can hang the Rx
2832 rfctl
|= (E1000_RFCTL_IPV6_EX_DIS
|
2833 E1000_RFCTL_NEW_IPV6_EXT_DIS
);
2837 /* Enable Packet split descriptors */
2838 rctl
|= E1000_RCTL_DTYP_PS
;
2840 psrctl
|= adapter
->rx_ps_bsize0
>>
2841 E1000_PSRCTL_BSIZE0_SHIFT
;
2843 switch (adapter
->rx_ps_pages
) {
2845 psrctl
|= PAGE_SIZE
<<
2846 E1000_PSRCTL_BSIZE3_SHIFT
;
2848 psrctl
|= PAGE_SIZE
<<
2849 E1000_PSRCTL_BSIZE2_SHIFT
;
2851 psrctl
|= PAGE_SIZE
>>
2852 E1000_PSRCTL_BSIZE1_SHIFT
;
2856 ew32(PSRCTL
, psrctl
);
2860 /* just started the receive unit, no need to restart */
2861 adapter
->flags
&= ~FLAG_RX_RESTART_NOW
;
2865 * e1000_configure_rx - Configure Receive Unit after Reset
2866 * @adapter: board private structure
2868 * Configure the Rx unit of the MAC after a reset.
2870 static void e1000_configure_rx(struct e1000_adapter
*adapter
)
2872 struct e1000_hw
*hw
= &adapter
->hw
;
2873 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
2875 u32 rdlen
, rctl
, rxcsum
, ctrl_ext
;
2877 if (adapter
->rx_ps_pages
) {
2878 /* this is a 32 byte descriptor */
2879 rdlen
= rx_ring
->count
*
2880 sizeof(union e1000_rx_desc_packet_split
);
2881 adapter
->clean_rx
= e1000_clean_rx_irq_ps
;
2882 adapter
->alloc_rx_buf
= e1000_alloc_rx_buffers_ps
;
2883 } else if (adapter
->netdev
->mtu
> ETH_FRAME_LEN
+ ETH_FCS_LEN
) {
2884 rdlen
= rx_ring
->count
* sizeof(struct e1000_rx_desc
);
2885 adapter
->clean_rx
= e1000_clean_jumbo_rx_irq
;
2886 adapter
->alloc_rx_buf
= e1000_alloc_jumbo_rx_buffers
;
2888 rdlen
= rx_ring
->count
* sizeof(struct e1000_rx_desc
);
2889 adapter
->clean_rx
= e1000_clean_rx_irq
;
2890 adapter
->alloc_rx_buf
= e1000_alloc_rx_buffers
;
2893 /* disable receives while setting up the descriptors */
2895 ew32(RCTL
, rctl
& ~E1000_RCTL_EN
);
2899 if (adapter
->flags2
& FLAG2_DMA_BURST
) {
2901 * set the writeback threshold (only takes effect if the RDTR
2902 * is set). set GRAN=1 and write back up to 0x4 worth, and
2903 * enable prefetching of 0x20 rx descriptors
2909 ew32(RXDCTL(0), E1000_RXDCTL_DMA_BURST_ENABLE
);
2910 ew32(RXDCTL(1), E1000_RXDCTL_DMA_BURST_ENABLE
);
2913 * override the delay timers for enabling bursting, only if
2914 * the value was not set by the user via module options
2916 if (adapter
->rx_int_delay
== DEFAULT_RDTR
)
2917 adapter
->rx_int_delay
= BURST_RDTR
;
2918 if (adapter
->rx_abs_int_delay
== DEFAULT_RADV
)
2919 adapter
->rx_abs_int_delay
= BURST_RADV
;
2922 /* set the Receive Delay Timer Register */
2923 ew32(RDTR
, adapter
->rx_int_delay
);
2925 /* irq moderation */
2926 ew32(RADV
, adapter
->rx_abs_int_delay
);
2927 if ((adapter
->itr_setting
!= 0) && (adapter
->itr
!= 0))
2928 ew32(ITR
, 1000000000 / (adapter
->itr
* 256));
2930 ctrl_ext
= er32(CTRL_EXT
);
2931 /* Auto-Mask interrupts upon ICR access */
2932 ctrl_ext
|= E1000_CTRL_EXT_IAME
;
2933 ew32(IAM
, 0xffffffff);
2934 ew32(CTRL_EXT
, ctrl_ext
);
2938 * Setup the HW Rx Head and Tail Descriptor Pointers and
2939 * the Base and Length of the Rx Descriptor Ring
2941 rdba
= rx_ring
->dma
;
2942 ew32(RDBAL
, (rdba
& DMA_BIT_MASK(32)));
2943 ew32(RDBAH
, (rdba
>> 32));
2947 rx_ring
->head
= E1000_RDH
;
2948 rx_ring
->tail
= E1000_RDT
;
2950 /* Enable Receive Checksum Offload for TCP and UDP */
2951 rxcsum
= er32(RXCSUM
);
2952 if (adapter
->flags
& FLAG_RX_CSUM_ENABLED
) {
2953 rxcsum
|= E1000_RXCSUM_TUOFL
;
2956 * IPv4 payload checksum for UDP fragments must be
2957 * used in conjunction with packet-split.
2959 if (adapter
->rx_ps_pages
)
2960 rxcsum
|= E1000_RXCSUM_IPPCSE
;
2962 rxcsum
&= ~E1000_RXCSUM_TUOFL
;
2963 /* no need to clear IPPCSE as it defaults to 0 */
2965 ew32(RXCSUM
, rxcsum
);
2968 * Enable early receives on supported devices, only takes effect when
2969 * packet size is equal or larger than the specified value (in 8 byte
2970 * units), e.g. using jumbo frames when setting to E1000_ERT_2048
2972 if ((adapter
->flags
& FLAG_HAS_ERT
) ||
2973 (adapter
->hw
.mac
.type
== e1000_pch2lan
)) {
2974 if (adapter
->netdev
->mtu
> ETH_DATA_LEN
) {
2975 u32 rxdctl
= er32(RXDCTL(0));
2976 ew32(RXDCTL(0), rxdctl
| 0x3);
2977 if (adapter
->flags
& FLAG_HAS_ERT
)
2978 ew32(ERT
, E1000_ERT_2048
| (1 << 13));
2980 * With jumbo frames and early-receive enabled,
2981 * excessive C-state transition latencies result in
2982 * dropped transactions.
2984 pm_qos_update_request(
2985 &adapter
->netdev
->pm_qos_req
, 55);
2987 pm_qos_update_request(
2988 &adapter
->netdev
->pm_qos_req
,
2989 PM_QOS_DEFAULT_VALUE
);
2993 /* Enable Receives */
2998 * e1000_update_mc_addr_list - Update Multicast addresses
2999 * @hw: pointer to the HW structure
3000 * @mc_addr_list: array of multicast addresses to program
3001 * @mc_addr_count: number of multicast addresses to program
3003 * Updates the Multicast Table Array.
3004 * The caller must have a packed mc_addr_list of multicast addresses.
3006 static void e1000_update_mc_addr_list(struct e1000_hw
*hw
, u8
*mc_addr_list
,
3009 hw
->mac
.ops
.update_mc_addr_list(hw
, mc_addr_list
, mc_addr_count
);
3013 * e1000_set_multi - Multicast and Promiscuous mode set
3014 * @netdev: network interface device structure
3016 * The set_multi entry point is called whenever the multicast address
3017 * list or the network interface flags are updated. This routine is
3018 * responsible for configuring the hardware for proper multicast,
3019 * promiscuous mode, and all-multi behavior.
3021 static void e1000_set_multi(struct net_device
*netdev
)
3023 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3024 struct e1000_hw
*hw
= &adapter
->hw
;
3025 struct netdev_hw_addr
*ha
;
3030 /* Check for Promiscuous and All Multicast modes */
3034 if (netdev
->flags
& IFF_PROMISC
) {
3035 rctl
|= (E1000_RCTL_UPE
| E1000_RCTL_MPE
);
3036 rctl
&= ~E1000_RCTL_VFE
;
3038 if (netdev
->flags
& IFF_ALLMULTI
) {
3039 rctl
|= E1000_RCTL_MPE
;
3040 rctl
&= ~E1000_RCTL_UPE
;
3042 rctl
&= ~(E1000_RCTL_UPE
| E1000_RCTL_MPE
);
3044 if (adapter
->flags
& FLAG_HAS_HW_VLAN_FILTER
)
3045 rctl
|= E1000_RCTL_VFE
;
3050 if (!netdev_mc_empty(netdev
)) {
3051 mta_list
= kmalloc(netdev_mc_count(netdev
) * 6, GFP_ATOMIC
);
3055 /* prepare a packed array of only addresses. */
3057 netdev_for_each_mc_addr(ha
, netdev
)
3058 memcpy(mta_list
+ (i
++ * ETH_ALEN
), ha
->addr
, ETH_ALEN
);
3060 e1000_update_mc_addr_list(hw
, mta_list
, i
);
3064 * if we're called from probe, we might not have
3065 * anything to do here, so clear out the list
3067 e1000_update_mc_addr_list(hw
, NULL
, 0);
3072 * e1000_configure - configure the hardware for Rx and Tx
3073 * @adapter: private board structure
3075 static void e1000_configure(struct e1000_adapter
*adapter
)
3077 e1000_set_multi(adapter
->netdev
);
3079 e1000_restore_vlan(adapter
);
3080 e1000_init_manageability_pt(adapter
);
3082 e1000_configure_tx(adapter
);
3083 e1000_setup_rctl(adapter
);
3084 e1000_configure_rx(adapter
);
3085 adapter
->alloc_rx_buf(adapter
, e1000_desc_unused(adapter
->rx_ring
));
3089 * e1000e_power_up_phy - restore link in case the phy was powered down
3090 * @adapter: address of board private structure
3092 * The phy may be powered down to save power and turn off link when the
3093 * driver is unloaded and wake on lan is not enabled (among others)
3094 * *** this routine MUST be followed by a call to e1000e_reset ***
3096 void e1000e_power_up_phy(struct e1000_adapter
*adapter
)
3098 if (adapter
->hw
.phy
.ops
.power_up
)
3099 adapter
->hw
.phy
.ops
.power_up(&adapter
->hw
);
3101 adapter
->hw
.mac
.ops
.setup_link(&adapter
->hw
);
3105 * e1000_power_down_phy - Power down the PHY
3107 * Power down the PHY so no link is implied when interface is down.
3108 * The PHY cannot be powered down if management or WoL is active.
3110 static void e1000_power_down_phy(struct e1000_adapter
*adapter
)
3112 /* WoL is enabled */
3116 if (adapter
->hw
.phy
.ops
.power_down
)
3117 adapter
->hw
.phy
.ops
.power_down(&adapter
->hw
);
3121 * e1000e_reset - bring the hardware into a known good state
3123 * This function boots the hardware and enables some settings that
3124 * require a configuration cycle of the hardware - those cannot be
3125 * set/changed during runtime. After reset the device needs to be
3126 * properly configured for Rx, Tx etc.
3128 void e1000e_reset(struct e1000_adapter
*adapter
)
3130 struct e1000_mac_info
*mac
= &adapter
->hw
.mac
;
3131 struct e1000_fc_info
*fc
= &adapter
->hw
.fc
;
3132 struct e1000_hw
*hw
= &adapter
->hw
;
3133 u32 tx_space
, min_tx_space
, min_rx_space
;
3134 u32 pba
= adapter
->pba
;
3137 /* reset Packet Buffer Allocation to default */
3140 if (adapter
->max_frame_size
> ETH_FRAME_LEN
+ ETH_FCS_LEN
) {
3142 * To maintain wire speed transmits, the Tx FIFO should be
3143 * large enough to accommodate two full transmit packets,
3144 * rounded up to the next 1KB and expressed in KB. Likewise,
3145 * the Rx FIFO should be large enough to accommodate at least
3146 * one full receive packet and is similarly rounded up and
3150 /* upper 16 bits has Tx packet buffer allocation size in KB */
3151 tx_space
= pba
>> 16;
3152 /* lower 16 bits has Rx packet buffer allocation size in KB */
3155 * the Tx fifo also stores 16 bytes of information about the tx
3156 * but don't include ethernet FCS because hardware appends it
3158 min_tx_space
= (adapter
->max_frame_size
+
3159 sizeof(struct e1000_tx_desc
) -
3161 min_tx_space
= ALIGN(min_tx_space
, 1024);
3162 min_tx_space
>>= 10;
3163 /* software strips receive CRC, so leave room for it */
3164 min_rx_space
= adapter
->max_frame_size
;
3165 min_rx_space
= ALIGN(min_rx_space
, 1024);
3166 min_rx_space
>>= 10;
3169 * If current Tx allocation is less than the min Tx FIFO size,
3170 * and the min Tx FIFO size is less than the current Rx FIFO
3171 * allocation, take space away from current Rx allocation
3173 if ((tx_space
< min_tx_space
) &&
3174 ((min_tx_space
- tx_space
) < pba
)) {
3175 pba
-= min_tx_space
- tx_space
;
3178 * if short on Rx space, Rx wins and must trump tx
3179 * adjustment or use Early Receive if available
3181 if ((pba
< min_rx_space
) &&
3182 (!(adapter
->flags
& FLAG_HAS_ERT
)))
3183 /* ERT enabled in e1000_configure_rx */
3191 * flow control settings
3193 * The high water mark must be low enough to fit one full frame
3194 * (or the size used for early receive) above it in the Rx FIFO.
3195 * Set it to the lower of:
3196 * - 90% of the Rx FIFO size, and
3197 * - the full Rx FIFO size minus the early receive size (for parts
3198 * with ERT support assuming ERT set to E1000_ERT_2048), or
3199 * - the full Rx FIFO size minus one full frame
3201 if (adapter
->flags
& FLAG_DISABLE_FC_PAUSE_TIME
)
3202 fc
->pause_time
= 0xFFFF;
3204 fc
->pause_time
= E1000_FC_PAUSE_TIME
;
3206 fc
->current_mode
= fc
->requested_mode
;
3208 switch (hw
->mac
.type
) {
3210 if ((adapter
->flags
& FLAG_HAS_ERT
) &&
3211 (adapter
->netdev
->mtu
> ETH_DATA_LEN
))
3212 hwm
= min(((pba
<< 10) * 9 / 10),
3213 ((pba
<< 10) - (E1000_ERT_2048
<< 3)));
3215 hwm
= min(((pba
<< 10) * 9 / 10),
3216 ((pba
<< 10) - adapter
->max_frame_size
));
3218 fc
->high_water
= hwm
& E1000_FCRTH_RTH
; /* 8-byte granularity */
3219 fc
->low_water
= fc
->high_water
- 8;
3223 * Workaround PCH LOM adapter hangs with certain network
3224 * loads. If hangs persist, try disabling Tx flow control.
3226 if (adapter
->netdev
->mtu
> ETH_DATA_LEN
) {
3227 fc
->high_water
= 0x3500;
3228 fc
->low_water
= 0x1500;
3230 fc
->high_water
= 0x5000;
3231 fc
->low_water
= 0x3000;
3233 fc
->refresh_time
= 0x1000;
3236 fc
->high_water
= 0x05C20;
3237 fc
->low_water
= 0x05048;
3238 fc
->pause_time
= 0x0650;
3239 fc
->refresh_time
= 0x0400;
3240 if (adapter
->netdev
->mtu
> ETH_DATA_LEN
) {
3248 * Disable Adaptive Interrupt Moderation if 2 full packets cannot
3249 * fit in receive buffer and early-receive not supported.
3251 if (adapter
->itr_setting
& 0x3) {
3252 if (((adapter
->max_frame_size
* 2) > (pba
<< 10)) &&
3253 !(adapter
->flags
& FLAG_HAS_ERT
)) {
3254 if (!(adapter
->flags2
& FLAG2_DISABLE_AIM
)) {
3255 dev_info(&adapter
->pdev
->dev
,
3256 "Interrupt Throttle Rate turned off\n");
3257 adapter
->flags2
|= FLAG2_DISABLE_AIM
;
3260 } else if (adapter
->flags2
& FLAG2_DISABLE_AIM
) {
3261 dev_info(&adapter
->pdev
->dev
,
3262 "Interrupt Throttle Rate turned on\n");
3263 adapter
->flags2
&= ~FLAG2_DISABLE_AIM
;
3264 adapter
->itr
= 20000;
3265 ew32(ITR
, 1000000000 / (adapter
->itr
* 256));
3269 /* Allow time for pending master requests to run */
3270 mac
->ops
.reset_hw(hw
);
3273 * For parts with AMT enabled, let the firmware know
3274 * that the network interface is in control
3276 if (adapter
->flags
& FLAG_HAS_AMT
)
3277 e1000e_get_hw_control(adapter
);
3281 if (mac
->ops
.init_hw(hw
))
3282 e_err("Hardware Error\n");
3284 e1000_update_mng_vlan(adapter
);
3286 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
3287 ew32(VET
, ETH_P_8021Q
);
3289 e1000e_reset_adaptive(hw
);
3291 if (!netif_running(adapter
->netdev
) &&
3292 !test_bit(__E1000_TESTING
, &adapter
->state
)) {
3293 e1000_power_down_phy(adapter
);
3297 e1000_get_phy_info(hw
);
3299 if ((adapter
->flags
& FLAG_HAS_SMART_POWER_DOWN
) &&
3300 !(adapter
->flags
& FLAG_SMART_POWER_DOWN
)) {
3303 * speed up time to link by disabling smart power down, ignore
3304 * the return value of this function because there is nothing
3305 * different we would do if it failed
3307 e1e_rphy(hw
, IGP02E1000_PHY_POWER_MGMT
, &phy_data
);
3308 phy_data
&= ~IGP02E1000_PM_SPD
;
3309 e1e_wphy(hw
, IGP02E1000_PHY_POWER_MGMT
, phy_data
);
3313 int e1000e_up(struct e1000_adapter
*adapter
)
3315 struct e1000_hw
*hw
= &adapter
->hw
;
3317 /* hardware has been reset, we need to reload some things */
3318 e1000_configure(adapter
);
3320 clear_bit(__E1000_DOWN
, &adapter
->state
);
3322 napi_enable(&adapter
->napi
);
3323 if (adapter
->msix_entries
)
3324 e1000_configure_msix(adapter
);
3325 e1000_irq_enable(adapter
);
3327 netif_wake_queue(adapter
->netdev
);
3329 /* fire a link change interrupt to start the watchdog */
3330 if (adapter
->msix_entries
)
3331 ew32(ICS
, E1000_ICS_LSC
| E1000_ICR_OTHER
);
3333 ew32(ICS
, E1000_ICS_LSC
);
3338 void e1000e_down(struct e1000_adapter
*adapter
)
3340 struct net_device
*netdev
= adapter
->netdev
;
3341 struct e1000_hw
*hw
= &adapter
->hw
;
3345 * signal that we're down so the interrupt handler does not
3346 * reschedule our watchdog timer
3348 set_bit(__E1000_DOWN
, &adapter
->state
);
3350 /* disable receives in the hardware */
3352 ew32(RCTL
, rctl
& ~E1000_RCTL_EN
);
3353 /* flush and sleep below */
3355 netif_stop_queue(netdev
);
3357 /* disable transmits in the hardware */
3359 tctl
&= ~E1000_TCTL_EN
;
3361 /* flush both disables and wait for them to finish */
3365 napi_disable(&adapter
->napi
);
3366 e1000_irq_disable(adapter
);
3368 del_timer_sync(&adapter
->watchdog_timer
);
3369 del_timer_sync(&adapter
->phy_info_timer
);
3371 netif_carrier_off(netdev
);
3372 adapter
->link_speed
= 0;
3373 adapter
->link_duplex
= 0;
3375 if (!pci_channel_offline(adapter
->pdev
))
3376 e1000e_reset(adapter
);
3377 e1000_clean_tx_ring(adapter
);
3378 e1000_clean_rx_ring(adapter
);
3381 * TODO: for power management, we could drop the link and
3382 * pci_disable_device here.
3386 void e1000e_reinit_locked(struct e1000_adapter
*adapter
)
3389 while (test_and_set_bit(__E1000_RESETTING
, &adapter
->state
))
3391 e1000e_down(adapter
);
3393 clear_bit(__E1000_RESETTING
, &adapter
->state
);
3397 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
3398 * @adapter: board private structure to initialize
3400 * e1000_sw_init initializes the Adapter private data structure.
3401 * Fields are initialized based on PCI device information and
3402 * OS network device settings (MTU size).
3404 static int __devinit
e1000_sw_init(struct e1000_adapter
*adapter
)
3406 struct net_device
*netdev
= adapter
->netdev
;
3408 adapter
->rx_buffer_len
= ETH_FRAME_LEN
+ VLAN_HLEN
+ ETH_FCS_LEN
;
3409 adapter
->rx_ps_bsize0
= 128;
3410 adapter
->max_frame_size
= netdev
->mtu
+ ETH_HLEN
+ ETH_FCS_LEN
;
3411 adapter
->min_frame_size
= ETH_ZLEN
+ ETH_FCS_LEN
;
3413 e1000e_set_interrupt_capability(adapter
);
3415 if (e1000_alloc_queues(adapter
))
3418 /* Explicitly disable IRQ since the NIC can be in any state. */
3419 e1000_irq_disable(adapter
);
3421 set_bit(__E1000_DOWN
, &adapter
->state
);
3426 * e1000_intr_msi_test - Interrupt Handler
3427 * @irq: interrupt number
3428 * @data: pointer to a network interface device structure
3430 static irqreturn_t
e1000_intr_msi_test(int irq
, void *data
)
3432 struct net_device
*netdev
= data
;
3433 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3434 struct e1000_hw
*hw
= &adapter
->hw
;
3435 u32 icr
= er32(ICR
);
3437 e_dbg("icr is %08X\n", icr
);
3438 if (icr
& E1000_ICR_RXSEQ
) {
3439 adapter
->flags
&= ~FLAG_MSI_TEST_FAILED
;
3447 * e1000_test_msi_interrupt - Returns 0 for successful test
3448 * @adapter: board private struct
3450 * code flow taken from tg3.c
3452 static int e1000_test_msi_interrupt(struct e1000_adapter
*adapter
)
3454 struct net_device
*netdev
= adapter
->netdev
;
3455 struct e1000_hw
*hw
= &adapter
->hw
;
3458 /* poll_enable hasn't been called yet, so don't need disable */
3459 /* clear any pending events */
3462 /* free the real vector and request a test handler */
3463 e1000_free_irq(adapter
);
3464 e1000e_reset_interrupt_capability(adapter
);
3466 /* Assume that the test fails, if it succeeds then the test
3467 * MSI irq handler will unset this flag */
3468 adapter
->flags
|= FLAG_MSI_TEST_FAILED
;
3470 err
= pci_enable_msi(adapter
->pdev
);
3472 goto msi_test_failed
;
3474 err
= request_irq(adapter
->pdev
->irq
, e1000_intr_msi_test
, 0,
3475 netdev
->name
, netdev
);
3477 pci_disable_msi(adapter
->pdev
);
3478 goto msi_test_failed
;
3483 e1000_irq_enable(adapter
);
3485 /* fire an unusual interrupt on the test handler */
3486 ew32(ICS
, E1000_ICS_RXSEQ
);
3490 e1000_irq_disable(adapter
);
3494 if (adapter
->flags
& FLAG_MSI_TEST_FAILED
) {
3495 adapter
->int_mode
= E1000E_INT_MODE_LEGACY
;
3496 e_info("MSI interrupt test failed, using legacy interrupt.\n");
3498 e_dbg("MSI interrupt test succeeded!\n");
3500 free_irq(adapter
->pdev
->irq
, netdev
);
3501 pci_disable_msi(adapter
->pdev
);
3504 e1000e_set_interrupt_capability(adapter
);
3505 return e1000_request_irq(adapter
);
3509 * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
3510 * @adapter: board private struct
3512 * code flow taken from tg3.c, called with e1000 interrupts disabled.
3514 static int e1000_test_msi(struct e1000_adapter
*adapter
)
3519 if (!(adapter
->flags
& FLAG_MSI_ENABLED
))
3522 /* disable SERR in case the MSI write causes a master abort */
3523 pci_read_config_word(adapter
->pdev
, PCI_COMMAND
, &pci_cmd
);
3524 if (pci_cmd
& PCI_COMMAND_SERR
)
3525 pci_write_config_word(adapter
->pdev
, PCI_COMMAND
,
3526 pci_cmd
& ~PCI_COMMAND_SERR
);
3528 err
= e1000_test_msi_interrupt(adapter
);
3530 /* re-enable SERR */
3531 if (pci_cmd
& PCI_COMMAND_SERR
) {
3532 pci_read_config_word(adapter
->pdev
, PCI_COMMAND
, &pci_cmd
);
3533 pci_cmd
|= PCI_COMMAND_SERR
;
3534 pci_write_config_word(adapter
->pdev
, PCI_COMMAND
, pci_cmd
);
3541 * e1000_open - Called when a network interface is made active
3542 * @netdev: network interface device structure
3544 * Returns 0 on success, negative value on failure
3546 * The open entry point is called when a network interface is made
3547 * active by the system (IFF_UP). At this point all resources needed
3548 * for transmit and receive operations are allocated, the interrupt
3549 * handler is registered with the OS, the watchdog timer is started,
3550 * and the stack is notified that the interface is ready.
3552 static int e1000_open(struct net_device
*netdev
)
3554 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3555 struct e1000_hw
*hw
= &adapter
->hw
;
3556 struct pci_dev
*pdev
= adapter
->pdev
;
3559 /* disallow open during test */
3560 if (test_bit(__E1000_TESTING
, &adapter
->state
))
3563 pm_runtime_get_sync(&pdev
->dev
);
3565 netif_carrier_off(netdev
);
3567 /* allocate transmit descriptors */
3568 err
= e1000e_setup_tx_resources(adapter
);
3572 /* allocate receive descriptors */
3573 err
= e1000e_setup_rx_resources(adapter
);
3578 * If AMT is enabled, let the firmware know that the network
3579 * interface is now open and reset the part to a known state.
3581 if (adapter
->flags
& FLAG_HAS_AMT
) {
3582 e1000e_get_hw_control(adapter
);
3583 e1000e_reset(adapter
);
3586 e1000e_power_up_phy(adapter
);
3588 adapter
->mng_vlan_id
= E1000_MNG_VLAN_NONE
;
3589 if ((adapter
->hw
.mng_cookie
.status
&
3590 E1000_MNG_DHCP_COOKIE_STATUS_VLAN
))
3591 e1000_update_mng_vlan(adapter
);
3593 /* DMA latency requirement to workaround early-receive/jumbo issue */
3594 if ((adapter
->flags
& FLAG_HAS_ERT
) ||
3595 (adapter
->hw
.mac
.type
== e1000_pch2lan
))
3596 pm_qos_add_request(&adapter
->netdev
->pm_qos_req
,
3597 PM_QOS_CPU_DMA_LATENCY
,
3598 PM_QOS_DEFAULT_VALUE
);
3601 * before we allocate an interrupt, we must be ready to handle it.
3602 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
3603 * as soon as we call pci_request_irq, so we have to setup our
3604 * clean_rx handler before we do so.
3606 e1000_configure(adapter
);
3608 err
= e1000_request_irq(adapter
);
3613 * Work around PCIe errata with MSI interrupts causing some chipsets to
3614 * ignore e1000e MSI messages, which means we need to test our MSI
3617 if (adapter
->int_mode
!= E1000E_INT_MODE_LEGACY
) {
3618 err
= e1000_test_msi(adapter
);
3620 e_err("Interrupt allocation failed\n");
3625 /* From here on the code is the same as e1000e_up() */
3626 clear_bit(__E1000_DOWN
, &adapter
->state
);
3628 napi_enable(&adapter
->napi
);
3630 e1000_irq_enable(adapter
);
3632 netif_start_queue(netdev
);
3634 adapter
->idle_check
= true;
3635 pm_runtime_put(&pdev
->dev
);
3637 /* fire a link status change interrupt to start the watchdog */
3638 if (adapter
->msix_entries
)
3639 ew32(ICS
, E1000_ICS_LSC
| E1000_ICR_OTHER
);
3641 ew32(ICS
, E1000_ICS_LSC
);
3646 e1000e_release_hw_control(adapter
);
3647 e1000_power_down_phy(adapter
);
3648 e1000e_free_rx_resources(adapter
);
3650 e1000e_free_tx_resources(adapter
);
3652 e1000e_reset(adapter
);
3653 pm_runtime_put_sync(&pdev
->dev
);
3659 * e1000_close - Disables a network interface
3660 * @netdev: network interface device structure
3662 * Returns 0, this is not allowed to fail
3664 * The close entry point is called when an interface is de-activated
3665 * by the OS. The hardware is still under the drivers control, but
3666 * needs to be disabled. A global MAC reset is issued to stop the
3667 * hardware, and all transmit and receive resources are freed.
3669 static int e1000_close(struct net_device
*netdev
)
3671 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3672 struct pci_dev
*pdev
= adapter
->pdev
;
3674 WARN_ON(test_bit(__E1000_RESETTING
, &adapter
->state
));
3676 pm_runtime_get_sync(&pdev
->dev
);
3678 if (!test_bit(__E1000_DOWN
, &adapter
->state
)) {
3679 e1000e_down(adapter
);
3680 e1000_free_irq(adapter
);
3682 e1000_power_down_phy(adapter
);
3684 e1000e_free_tx_resources(adapter
);
3685 e1000e_free_rx_resources(adapter
);
3688 * kill manageability vlan ID if supported, but not if a vlan with
3689 * the same ID is registered on the host OS (let 8021q kill it)
3691 if ((adapter
->hw
.mng_cookie
.status
&
3692 E1000_MNG_DHCP_COOKIE_STATUS_VLAN
) &&
3694 vlan_group_get_device(adapter
->vlgrp
, adapter
->mng_vlan_id
)))
3695 e1000_vlan_rx_kill_vid(netdev
, adapter
->mng_vlan_id
);
3698 * If AMT is enabled, let the firmware know that the network
3699 * interface is now closed
3701 if ((adapter
->flags
& FLAG_HAS_AMT
) &&
3702 !test_bit(__E1000_TESTING
, &adapter
->state
))
3703 e1000e_release_hw_control(adapter
);
3705 if ((adapter
->flags
& FLAG_HAS_ERT
) ||
3706 (adapter
->hw
.mac
.type
== e1000_pch2lan
))
3707 pm_qos_remove_request(&adapter
->netdev
->pm_qos_req
);
3709 pm_runtime_put_sync(&pdev
->dev
);
3714 * e1000_set_mac - Change the Ethernet Address of the NIC
3715 * @netdev: network interface device structure
3716 * @p: pointer to an address structure
3718 * Returns 0 on success, negative on failure
3720 static int e1000_set_mac(struct net_device
*netdev
, void *p
)
3722 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3723 struct sockaddr
*addr
= p
;
3725 if (!is_valid_ether_addr(addr
->sa_data
))
3726 return -EADDRNOTAVAIL
;
3728 memcpy(netdev
->dev_addr
, addr
->sa_data
, netdev
->addr_len
);
3729 memcpy(adapter
->hw
.mac
.addr
, addr
->sa_data
, netdev
->addr_len
);
3731 e1000e_rar_set(&adapter
->hw
, adapter
->hw
.mac
.addr
, 0);
3733 if (adapter
->flags
& FLAG_RESET_OVERWRITES_LAA
) {
3734 /* activate the work around */
3735 e1000e_set_laa_state_82571(&adapter
->hw
, 1);
3738 * Hold a copy of the LAA in RAR[14] This is done so that
3739 * between the time RAR[0] gets clobbered and the time it
3740 * gets fixed (in e1000_watchdog), the actual LAA is in one
3741 * of the RARs and no incoming packets directed to this port
3742 * are dropped. Eventually the LAA will be in RAR[0] and
3745 e1000e_rar_set(&adapter
->hw
,
3746 adapter
->hw
.mac
.addr
,
3747 adapter
->hw
.mac
.rar_entry_count
- 1);
3754 * e1000e_update_phy_task - work thread to update phy
3755 * @work: pointer to our work struct
3757 * this worker thread exists because we must acquire a
3758 * semaphore to read the phy, which we could msleep while
3759 * waiting for it, and we can't msleep in a timer.
3761 static void e1000e_update_phy_task(struct work_struct
*work
)
3763 struct e1000_adapter
*adapter
= container_of(work
,
3764 struct e1000_adapter
, update_phy_task
);
3765 e1000_get_phy_info(&adapter
->hw
);
3769 * Need to wait a few seconds after link up to get diagnostic information from
3772 static void e1000_update_phy_info(unsigned long data
)
3774 struct e1000_adapter
*adapter
= (struct e1000_adapter
*) data
;
3775 schedule_work(&adapter
->update_phy_task
);
3779 * e1000e_update_phy_stats - Update the PHY statistics counters
3780 * @adapter: board private structure
3782 static void e1000e_update_phy_stats(struct e1000_adapter
*adapter
)
3784 struct e1000_hw
*hw
= &adapter
->hw
;
3788 ret_val
= hw
->phy
.ops
.acquire(hw
);
3794 #define HV_PHY_STATS_PAGE 778
3796 * A page set is expensive so check if already on desired page.
3797 * If not, set to the page with the PHY status registers.
3799 ret_val
= e1000e_read_phy_reg_mdic(hw
, IGP01E1000_PHY_PAGE_SELECT
,
3803 if (phy_data
!= (HV_PHY_STATS_PAGE
<< IGP_PAGE_SHIFT
)) {
3804 ret_val
= e1000e_write_phy_reg_mdic(hw
,
3805 IGP01E1000_PHY_PAGE_SELECT
,
3806 (HV_PHY_STATS_PAGE
<<
3812 /* Read/clear the upper 16-bit registers and read/accumulate lower */
3814 /* Single Collision Count */
3815 e1000e_read_phy_reg_mdic(hw
, HV_SCC_UPPER
& MAX_PHY_REG_ADDRESS
,
3817 ret_val
= e1000e_read_phy_reg_mdic(hw
,
3818 HV_SCC_LOWER
& MAX_PHY_REG_ADDRESS
,
3821 adapter
->stats
.scc
+= phy_data
;
3823 /* Excessive Collision Count */
3824 e1000e_read_phy_reg_mdic(hw
, HV_ECOL_UPPER
& MAX_PHY_REG_ADDRESS
,
3826 ret_val
= e1000e_read_phy_reg_mdic(hw
,
3827 HV_ECOL_LOWER
& MAX_PHY_REG_ADDRESS
,
3830 adapter
->stats
.ecol
+= phy_data
;
3832 /* Multiple Collision Count */
3833 e1000e_read_phy_reg_mdic(hw
, HV_MCC_UPPER
& MAX_PHY_REG_ADDRESS
,
3835 ret_val
= e1000e_read_phy_reg_mdic(hw
,
3836 HV_MCC_LOWER
& MAX_PHY_REG_ADDRESS
,
3839 adapter
->stats
.mcc
+= phy_data
;
3841 /* Late Collision Count */
3842 e1000e_read_phy_reg_mdic(hw
, HV_LATECOL_UPPER
& MAX_PHY_REG_ADDRESS
,
3844 ret_val
= e1000e_read_phy_reg_mdic(hw
,
3846 MAX_PHY_REG_ADDRESS
,
3849 adapter
->stats
.latecol
+= phy_data
;
3851 /* Collision Count - also used for adaptive IFS */
3852 e1000e_read_phy_reg_mdic(hw
, HV_COLC_UPPER
& MAX_PHY_REG_ADDRESS
,
3854 ret_val
= e1000e_read_phy_reg_mdic(hw
,
3855 HV_COLC_LOWER
& MAX_PHY_REG_ADDRESS
,
3858 hw
->mac
.collision_delta
= phy_data
;
3861 e1000e_read_phy_reg_mdic(hw
, HV_DC_UPPER
& MAX_PHY_REG_ADDRESS
,
3863 ret_val
= e1000e_read_phy_reg_mdic(hw
,
3864 HV_DC_LOWER
& MAX_PHY_REG_ADDRESS
,
3867 adapter
->stats
.dc
+= phy_data
;
3869 /* Transmit with no CRS */
3870 e1000e_read_phy_reg_mdic(hw
, HV_TNCRS_UPPER
& MAX_PHY_REG_ADDRESS
,
3872 ret_val
= e1000e_read_phy_reg_mdic(hw
,
3873 HV_TNCRS_LOWER
& MAX_PHY_REG_ADDRESS
,
3876 adapter
->stats
.tncrs
+= phy_data
;
3879 hw
->phy
.ops
.release(hw
);
3883 * e1000e_update_stats - Update the board statistics counters
3884 * @adapter: board private structure
3886 void e1000e_update_stats(struct e1000_adapter
*adapter
)
3888 struct net_device
*netdev
= adapter
->netdev
;
3889 struct e1000_hw
*hw
= &adapter
->hw
;
3890 struct pci_dev
*pdev
= adapter
->pdev
;
3893 * Prevent stats update while adapter is being reset, or if the pci
3894 * connection is down.
3896 if (adapter
->link_speed
== 0)
3898 if (pci_channel_offline(pdev
))
3901 adapter
->stats
.crcerrs
+= er32(CRCERRS
);
3902 adapter
->stats
.gprc
+= er32(GPRC
);
3903 adapter
->stats
.gorc
+= er32(GORCL
);
3904 er32(GORCH
); /* Clear gorc */
3905 adapter
->stats
.bprc
+= er32(BPRC
);
3906 adapter
->stats
.mprc
+= er32(MPRC
);
3907 adapter
->stats
.roc
+= er32(ROC
);
3909 adapter
->stats
.mpc
+= er32(MPC
);
3911 /* Half-duplex statistics */
3912 if (adapter
->link_duplex
== HALF_DUPLEX
) {
3913 if (adapter
->flags2
& FLAG2_HAS_PHY_STATS
) {
3914 e1000e_update_phy_stats(adapter
);
3916 adapter
->stats
.scc
+= er32(SCC
);
3917 adapter
->stats
.ecol
+= er32(ECOL
);
3918 adapter
->stats
.mcc
+= er32(MCC
);
3919 adapter
->stats
.latecol
+= er32(LATECOL
);
3920 adapter
->stats
.dc
+= er32(DC
);
3922 hw
->mac
.collision_delta
= er32(COLC
);
3924 if ((hw
->mac
.type
!= e1000_82574
) &&
3925 (hw
->mac
.type
!= e1000_82583
))
3926 adapter
->stats
.tncrs
+= er32(TNCRS
);
3928 adapter
->stats
.colc
+= hw
->mac
.collision_delta
;
3931 adapter
->stats
.xonrxc
+= er32(XONRXC
);
3932 adapter
->stats
.xontxc
+= er32(XONTXC
);
3933 adapter
->stats
.xoffrxc
+= er32(XOFFRXC
);
3934 adapter
->stats
.xofftxc
+= er32(XOFFTXC
);
3935 adapter
->stats
.gptc
+= er32(GPTC
);
3936 adapter
->stats
.gotc
+= er32(GOTCL
);
3937 er32(GOTCH
); /* Clear gotc */
3938 adapter
->stats
.rnbc
+= er32(RNBC
);
3939 adapter
->stats
.ruc
+= er32(RUC
);
3941 adapter
->stats
.mptc
+= er32(MPTC
);
3942 adapter
->stats
.bptc
+= er32(BPTC
);
3944 /* used for adaptive IFS */
3946 hw
->mac
.tx_packet_delta
= er32(TPT
);
3947 adapter
->stats
.tpt
+= hw
->mac
.tx_packet_delta
;
3949 adapter
->stats
.algnerrc
+= er32(ALGNERRC
);
3950 adapter
->stats
.rxerrc
+= er32(RXERRC
);
3951 adapter
->stats
.cexterr
+= er32(CEXTERR
);
3952 adapter
->stats
.tsctc
+= er32(TSCTC
);
3953 adapter
->stats
.tsctfc
+= er32(TSCTFC
);
3955 /* Fill out the OS statistics structure */
3956 netdev
->stats
.multicast
= adapter
->stats
.mprc
;
3957 netdev
->stats
.collisions
= adapter
->stats
.colc
;
3962 * RLEC on some newer hardware can be incorrect so build
3963 * our own version based on RUC and ROC
3965 netdev
->stats
.rx_errors
= adapter
->stats
.rxerrc
+
3966 adapter
->stats
.crcerrs
+ adapter
->stats
.algnerrc
+
3967 adapter
->stats
.ruc
+ adapter
->stats
.roc
+
3968 adapter
->stats
.cexterr
;
3969 netdev
->stats
.rx_length_errors
= adapter
->stats
.ruc
+
3971 netdev
->stats
.rx_crc_errors
= adapter
->stats
.crcerrs
;
3972 netdev
->stats
.rx_frame_errors
= adapter
->stats
.algnerrc
;
3973 netdev
->stats
.rx_missed_errors
= adapter
->stats
.mpc
;
3976 netdev
->stats
.tx_errors
= adapter
->stats
.ecol
+
3977 adapter
->stats
.latecol
;
3978 netdev
->stats
.tx_aborted_errors
= adapter
->stats
.ecol
;
3979 netdev
->stats
.tx_window_errors
= adapter
->stats
.latecol
;
3980 netdev
->stats
.tx_carrier_errors
= adapter
->stats
.tncrs
;
3982 /* Tx Dropped needs to be maintained elsewhere */
3984 /* Management Stats */
3985 adapter
->stats
.mgptc
+= er32(MGTPTC
);
3986 adapter
->stats
.mgprc
+= er32(MGTPRC
);
3987 adapter
->stats
.mgpdc
+= er32(MGTPDC
);
3991 * e1000_phy_read_status - Update the PHY register status snapshot
3992 * @adapter: board private structure
3994 static void e1000_phy_read_status(struct e1000_adapter
*adapter
)
3996 struct e1000_hw
*hw
= &adapter
->hw
;
3997 struct e1000_phy_regs
*phy
= &adapter
->phy_regs
;
4000 if ((er32(STATUS
) & E1000_STATUS_LU
) &&
4001 (adapter
->hw
.phy
.media_type
== e1000_media_type_copper
)) {
4002 ret_val
= e1e_rphy(hw
, PHY_CONTROL
, &phy
->bmcr
);
4003 ret_val
|= e1e_rphy(hw
, PHY_STATUS
, &phy
->bmsr
);
4004 ret_val
|= e1e_rphy(hw
, PHY_AUTONEG_ADV
, &phy
->advertise
);
4005 ret_val
|= e1e_rphy(hw
, PHY_LP_ABILITY
, &phy
->lpa
);
4006 ret_val
|= e1e_rphy(hw
, PHY_AUTONEG_EXP
, &phy
->expansion
);
4007 ret_val
|= e1e_rphy(hw
, PHY_1000T_CTRL
, &phy
->ctrl1000
);
4008 ret_val
|= e1e_rphy(hw
, PHY_1000T_STATUS
, &phy
->stat1000
);
4009 ret_val
|= e1e_rphy(hw
, PHY_EXT_STATUS
, &phy
->estatus
);
4011 e_warn("Error reading PHY register\n");
4014 * Do not read PHY registers if link is not up
4015 * Set values to typical power-on defaults
4017 phy
->bmcr
= (BMCR_SPEED1000
| BMCR_ANENABLE
| BMCR_FULLDPLX
);
4018 phy
->bmsr
= (BMSR_100FULL
| BMSR_100HALF
| BMSR_10FULL
|
4019 BMSR_10HALF
| BMSR_ESTATEN
| BMSR_ANEGCAPABLE
|
4021 phy
->advertise
= (ADVERTISE_PAUSE_ASYM
| ADVERTISE_PAUSE_CAP
|
4022 ADVERTISE_ALL
| ADVERTISE_CSMA
);
4024 phy
->expansion
= EXPANSION_ENABLENPAGE
;
4025 phy
->ctrl1000
= ADVERTISE_1000FULL
;
4027 phy
->estatus
= (ESTATUS_1000_TFULL
| ESTATUS_1000_THALF
);
4031 static void e1000_print_link_info(struct e1000_adapter
*adapter
)
4033 struct e1000_hw
*hw
= &adapter
->hw
;
4034 u32 ctrl
= er32(CTRL
);
4036 /* Link status message must follow this format for user tools */
4037 printk(KERN_INFO
"e1000e: %s NIC Link is Up %d Mbps %s, "
4038 "Flow Control: %s\n",
4039 adapter
->netdev
->name
,
4040 adapter
->link_speed
,
4041 (adapter
->link_duplex
== FULL_DUPLEX
) ?
4042 "Full Duplex" : "Half Duplex",
4043 ((ctrl
& E1000_CTRL_TFCE
) && (ctrl
& E1000_CTRL_RFCE
)) ?
4045 ((ctrl
& E1000_CTRL_RFCE
) ? "RX" :
4046 ((ctrl
& E1000_CTRL_TFCE
) ? "TX" : "None" )));
4049 static bool e1000e_has_link(struct e1000_adapter
*adapter
)
4051 struct e1000_hw
*hw
= &adapter
->hw
;
4052 bool link_active
= 0;
4056 * get_link_status is set on LSC (link status) interrupt or
4057 * Rx sequence error interrupt. get_link_status will stay
4058 * false until the check_for_link establishes link
4059 * for copper adapters ONLY
4061 switch (hw
->phy
.media_type
) {
4062 case e1000_media_type_copper
:
4063 if (hw
->mac
.get_link_status
) {
4064 ret_val
= hw
->mac
.ops
.check_for_link(hw
);
4065 link_active
= !hw
->mac
.get_link_status
;
4070 case e1000_media_type_fiber
:
4071 ret_val
= hw
->mac
.ops
.check_for_link(hw
);
4072 link_active
= !!(er32(STATUS
) & E1000_STATUS_LU
);
4074 case e1000_media_type_internal_serdes
:
4075 ret_val
= hw
->mac
.ops
.check_for_link(hw
);
4076 link_active
= adapter
->hw
.mac
.serdes_has_link
;
4079 case e1000_media_type_unknown
:
4083 if ((ret_val
== E1000_ERR_PHY
) && (hw
->phy
.type
== e1000_phy_igp_3
) &&
4084 (er32(CTRL
) & E1000_PHY_CTRL_GBE_DISABLE
)) {
4085 /* See e1000_kmrn_lock_loss_workaround_ich8lan() */
4086 e_info("Gigabit has been disabled, downgrading speed\n");
4092 static void e1000e_enable_receives(struct e1000_adapter
*adapter
)
4094 /* make sure the receive unit is started */
4095 if ((adapter
->flags
& FLAG_RX_NEEDS_RESTART
) &&
4096 (adapter
->flags
& FLAG_RX_RESTART_NOW
)) {
4097 struct e1000_hw
*hw
= &adapter
->hw
;
4098 u32 rctl
= er32(RCTL
);
4099 ew32(RCTL
, rctl
| E1000_RCTL_EN
);
4100 adapter
->flags
&= ~FLAG_RX_RESTART_NOW
;
4104 static void e1000e_check_82574_phy_workaround(struct e1000_adapter
*adapter
)
4106 struct e1000_hw
*hw
= &adapter
->hw
;
4109 * With 82574 controllers, PHY needs to be checked periodically
4110 * for hung state and reset, if two calls return true
4112 if (e1000_check_phy_82574(hw
))
4113 adapter
->phy_hang_count
++;
4115 adapter
->phy_hang_count
= 0;
4117 if (adapter
->phy_hang_count
> 1) {
4118 adapter
->phy_hang_count
= 0;
4119 schedule_work(&adapter
->reset_task
);
4124 * e1000_watchdog - Timer Call-back
4125 * @data: pointer to adapter cast into an unsigned long
4127 static void e1000_watchdog(unsigned long data
)
4129 struct e1000_adapter
*adapter
= (struct e1000_adapter
*) data
;
4131 /* Do the rest outside of interrupt context */
4132 schedule_work(&adapter
->watchdog_task
);
4134 /* TODO: make this use queue_delayed_work() */
4137 static void e1000_watchdog_task(struct work_struct
*work
)
4139 struct e1000_adapter
*adapter
= container_of(work
,
4140 struct e1000_adapter
, watchdog_task
);
4141 struct net_device
*netdev
= adapter
->netdev
;
4142 struct e1000_mac_info
*mac
= &adapter
->hw
.mac
;
4143 struct e1000_phy_info
*phy
= &adapter
->hw
.phy
;
4144 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
4145 struct e1000_hw
*hw
= &adapter
->hw
;
4149 link
= e1000e_has_link(adapter
);
4150 if ((netif_carrier_ok(netdev
)) && link
) {
4151 /* Cancel scheduled suspend requests. */
4152 pm_runtime_resume(netdev
->dev
.parent
);
4154 e1000e_enable_receives(adapter
);
4158 if ((e1000e_enable_tx_pkt_filtering(hw
)) &&
4159 (adapter
->mng_vlan_id
!= adapter
->hw
.mng_cookie
.vlan_id
))
4160 e1000_update_mng_vlan(adapter
);
4163 if (!netif_carrier_ok(netdev
)) {
4166 /* Cancel scheduled suspend requests. */
4167 pm_runtime_resume(netdev
->dev
.parent
);
4169 /* update snapshot of PHY registers on LSC */
4170 e1000_phy_read_status(adapter
);
4171 mac
->ops
.get_link_up_info(&adapter
->hw
,
4172 &adapter
->link_speed
,
4173 &adapter
->link_duplex
);
4174 e1000_print_link_info(adapter
);
4176 * On supported PHYs, check for duplex mismatch only
4177 * if link has autonegotiated at 10/100 half
4179 if ((hw
->phy
.type
== e1000_phy_igp_3
||
4180 hw
->phy
.type
== e1000_phy_bm
) &&
4181 (hw
->mac
.autoneg
== true) &&
4182 (adapter
->link_speed
== SPEED_10
||
4183 adapter
->link_speed
== SPEED_100
) &&
4184 (adapter
->link_duplex
== HALF_DUPLEX
)) {
4187 e1e_rphy(hw
, PHY_AUTONEG_EXP
, &autoneg_exp
);
4189 if (!(autoneg_exp
& NWAY_ER_LP_NWAY_CAPS
))
4190 e_info("Autonegotiated half duplex but"
4191 " link partner cannot autoneg. "
4192 " Try forcing full duplex if "
4193 "link gets many collisions.\n");
4196 /* adjust timeout factor according to speed/duplex */
4197 adapter
->tx_timeout_factor
= 1;
4198 switch (adapter
->link_speed
) {
4201 adapter
->tx_timeout_factor
= 16;
4205 adapter
->tx_timeout_factor
= 10;
4210 * workaround: re-program speed mode bit after
4213 if ((adapter
->flags
& FLAG_TARC_SPEED_MODE_BIT
) &&
4216 tarc0
= er32(TARC(0));
4217 tarc0
&= ~SPEED_MODE_BIT
;
4218 ew32(TARC(0), tarc0
);
4222 * disable TSO for pcie and 10/100 speeds, to avoid
4223 * some hardware issues
4225 if (!(adapter
->flags
& FLAG_TSO_FORCE
)) {
4226 switch (adapter
->link_speed
) {
4229 e_info("10/100 speed: disabling TSO\n");
4230 netdev
->features
&= ~NETIF_F_TSO
;
4231 netdev
->features
&= ~NETIF_F_TSO6
;
4234 netdev
->features
|= NETIF_F_TSO
;
4235 netdev
->features
|= NETIF_F_TSO6
;
4244 * enable transmits in the hardware, need to do this
4245 * after setting TARC(0)
4248 tctl
|= E1000_TCTL_EN
;
4252 * Perform any post-link-up configuration before
4253 * reporting link up.
4255 if (phy
->ops
.cfg_on_link_up
)
4256 phy
->ops
.cfg_on_link_up(hw
);
4258 netif_carrier_on(netdev
);
4260 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
4261 mod_timer(&adapter
->phy_info_timer
,
4262 round_jiffies(jiffies
+ 2 * HZ
));
4265 if (netif_carrier_ok(netdev
)) {
4266 adapter
->link_speed
= 0;
4267 adapter
->link_duplex
= 0;
4268 /* Link status message must follow this format */
4269 printk(KERN_INFO
"e1000e: %s NIC Link is Down\n",
4270 adapter
->netdev
->name
);
4271 netif_carrier_off(netdev
);
4272 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
4273 mod_timer(&adapter
->phy_info_timer
,
4274 round_jiffies(jiffies
+ 2 * HZ
));
4276 if (adapter
->flags
& FLAG_RX_NEEDS_RESTART
)
4277 schedule_work(&adapter
->reset_task
);
4279 pm_schedule_suspend(netdev
->dev
.parent
,
4285 e1000e_update_stats(adapter
);
4287 mac
->tx_packet_delta
= adapter
->stats
.tpt
- adapter
->tpt_old
;
4288 adapter
->tpt_old
= adapter
->stats
.tpt
;
4289 mac
->collision_delta
= adapter
->stats
.colc
- adapter
->colc_old
;
4290 adapter
->colc_old
= adapter
->stats
.colc
;
4292 adapter
->gorc
= adapter
->stats
.gorc
- adapter
->gorc_old
;
4293 adapter
->gorc_old
= adapter
->stats
.gorc
;
4294 adapter
->gotc
= adapter
->stats
.gotc
- adapter
->gotc_old
;
4295 adapter
->gotc_old
= adapter
->stats
.gotc
;
4297 e1000e_update_adaptive(&adapter
->hw
);
4299 if (!netif_carrier_ok(netdev
)) {
4300 tx_pending
= (e1000_desc_unused(tx_ring
) + 1 <
4304 * We've lost link, so the controller stops DMA,
4305 * but we've got queued Tx work that's never going
4306 * to get done, so reset controller to flush Tx.
4307 * (Do the reset outside of interrupt context).
4309 adapter
->tx_timeout_count
++;
4310 schedule_work(&adapter
->reset_task
);
4311 /* return immediately since reset is imminent */
4316 /* Simple mode for Interrupt Throttle Rate (ITR) */
4317 if (adapter
->itr_setting
== 4) {
4319 * Symmetric Tx/Rx gets a reduced ITR=2000;
4320 * Total asymmetrical Tx or Rx gets ITR=8000;
4321 * everyone else is between 2000-8000.
4323 u32 goc
= (adapter
->gotc
+ adapter
->gorc
) / 10000;
4324 u32 dif
= (adapter
->gotc
> adapter
->gorc
?
4325 adapter
->gotc
- adapter
->gorc
:
4326 adapter
->gorc
- adapter
->gotc
) / 10000;
4327 u32 itr
= goc
> 0 ? (dif
* 6000 / goc
+ 2000) : 8000;
4329 ew32(ITR
, 1000000000 / (itr
* 256));
4332 /* Cause software interrupt to ensure Rx ring is cleaned */
4333 if (adapter
->msix_entries
)
4334 ew32(ICS
, adapter
->rx_ring
->ims_val
);
4336 ew32(ICS
, E1000_ICS_RXDMT0
);
4338 /* Force detection of hung controller every watchdog period */
4339 adapter
->detect_tx_hung
= 1;
4341 /* flush partial descriptors to memory before detecting tx hang */
4342 if (adapter
->flags2
& FLAG2_DMA_BURST
) {
4343 ew32(TIDV
, adapter
->tx_int_delay
| E1000_TIDV_FPD
);
4344 ew32(RDTR
, adapter
->rx_int_delay
| E1000_RDTR_FPD
);
4346 * no need to flush the writes because the timeout code does
4347 * an er32 first thing
4352 * With 82571 controllers, LAA may be overwritten due to controller
4353 * reset from the other port. Set the appropriate LAA in RAR[0]
4355 if (e1000e_get_laa_state_82571(hw
))
4356 e1000e_rar_set(hw
, adapter
->hw
.mac
.addr
, 0);
4358 if (adapter
->flags2
& FLAG2_CHECK_PHY_HANG
)
4359 e1000e_check_82574_phy_workaround(adapter
);
4361 /* Reset the timer */
4362 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
4363 mod_timer(&adapter
->watchdog_timer
,
4364 round_jiffies(jiffies
+ 2 * HZ
));
4367 #define E1000_TX_FLAGS_CSUM 0x00000001
4368 #define E1000_TX_FLAGS_VLAN 0x00000002
4369 #define E1000_TX_FLAGS_TSO 0x00000004
4370 #define E1000_TX_FLAGS_IPV4 0x00000008
4371 #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
4372 #define E1000_TX_FLAGS_VLAN_SHIFT 16
4374 static int e1000_tso(struct e1000_adapter
*adapter
,
4375 struct sk_buff
*skb
)
4377 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
4378 struct e1000_context_desc
*context_desc
;
4379 struct e1000_buffer
*buffer_info
;
4382 u16 ipcse
= 0, tucse
, mss
;
4383 u8 ipcss
, ipcso
, tucss
, tucso
, hdr_len
;
4386 if (!skb_is_gso(skb
))
4389 if (skb_header_cloned(skb
)) {
4390 err
= pskb_expand_head(skb
, 0, 0, GFP_ATOMIC
);
4395 hdr_len
= skb_transport_offset(skb
) + tcp_hdrlen(skb
);
4396 mss
= skb_shinfo(skb
)->gso_size
;
4397 if (skb
->protocol
== htons(ETH_P_IP
)) {
4398 struct iphdr
*iph
= ip_hdr(skb
);
4401 tcp_hdr(skb
)->check
= ~csum_tcpudp_magic(iph
->saddr
, iph
->daddr
,
4403 cmd_length
= E1000_TXD_CMD_IP
;
4404 ipcse
= skb_transport_offset(skb
) - 1;
4405 } else if (skb_is_gso_v6(skb
)) {
4406 ipv6_hdr(skb
)->payload_len
= 0;
4407 tcp_hdr(skb
)->check
= ~csum_ipv6_magic(&ipv6_hdr(skb
)->saddr
,
4408 &ipv6_hdr(skb
)->daddr
,
4412 ipcss
= skb_network_offset(skb
);
4413 ipcso
= (void *)&(ip_hdr(skb
)->check
) - (void *)skb
->data
;
4414 tucss
= skb_transport_offset(skb
);
4415 tucso
= (void *)&(tcp_hdr(skb
)->check
) - (void *)skb
->data
;
4418 cmd_length
|= (E1000_TXD_CMD_DEXT
| E1000_TXD_CMD_TSE
|
4419 E1000_TXD_CMD_TCP
| (skb
->len
- (hdr_len
)));
4421 i
= tx_ring
->next_to_use
;
4422 context_desc
= E1000_CONTEXT_DESC(*tx_ring
, i
);
4423 buffer_info
= &tx_ring
->buffer_info
[i
];
4425 context_desc
->lower_setup
.ip_fields
.ipcss
= ipcss
;
4426 context_desc
->lower_setup
.ip_fields
.ipcso
= ipcso
;
4427 context_desc
->lower_setup
.ip_fields
.ipcse
= cpu_to_le16(ipcse
);
4428 context_desc
->upper_setup
.tcp_fields
.tucss
= tucss
;
4429 context_desc
->upper_setup
.tcp_fields
.tucso
= tucso
;
4430 context_desc
->upper_setup
.tcp_fields
.tucse
= cpu_to_le16(tucse
);
4431 context_desc
->tcp_seg_setup
.fields
.mss
= cpu_to_le16(mss
);
4432 context_desc
->tcp_seg_setup
.fields
.hdr_len
= hdr_len
;
4433 context_desc
->cmd_and_length
= cpu_to_le32(cmd_length
);
4435 buffer_info
->time_stamp
= jiffies
;
4436 buffer_info
->next_to_watch
= i
;
4439 if (i
== tx_ring
->count
)
4441 tx_ring
->next_to_use
= i
;
4446 static bool e1000_tx_csum(struct e1000_adapter
*adapter
, struct sk_buff
*skb
)
4448 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
4449 struct e1000_context_desc
*context_desc
;
4450 struct e1000_buffer
*buffer_info
;
4453 u32 cmd_len
= E1000_TXD_CMD_DEXT
;
4456 if (skb
->ip_summed
!= CHECKSUM_PARTIAL
)
4459 if (skb
->protocol
== cpu_to_be16(ETH_P_8021Q
))
4460 protocol
= vlan_eth_hdr(skb
)->h_vlan_encapsulated_proto
;
4462 protocol
= skb
->protocol
;
4465 case cpu_to_be16(ETH_P_IP
):
4466 if (ip_hdr(skb
)->protocol
== IPPROTO_TCP
)
4467 cmd_len
|= E1000_TXD_CMD_TCP
;
4469 case cpu_to_be16(ETH_P_IPV6
):
4470 /* XXX not handling all IPV6 headers */
4471 if (ipv6_hdr(skb
)->nexthdr
== IPPROTO_TCP
)
4472 cmd_len
|= E1000_TXD_CMD_TCP
;
4475 if (unlikely(net_ratelimit()))
4476 e_warn("checksum_partial proto=%x!\n",
4477 be16_to_cpu(protocol
));
4481 css
= skb_checksum_start_offset(skb
);
4483 i
= tx_ring
->next_to_use
;
4484 buffer_info
= &tx_ring
->buffer_info
[i
];
4485 context_desc
= E1000_CONTEXT_DESC(*tx_ring
, i
);
4487 context_desc
->lower_setup
.ip_config
= 0;
4488 context_desc
->upper_setup
.tcp_fields
.tucss
= css
;
4489 context_desc
->upper_setup
.tcp_fields
.tucso
=
4490 css
+ skb
->csum_offset
;
4491 context_desc
->upper_setup
.tcp_fields
.tucse
= 0;
4492 context_desc
->tcp_seg_setup
.data
= 0;
4493 context_desc
->cmd_and_length
= cpu_to_le32(cmd_len
);
4495 buffer_info
->time_stamp
= jiffies
;
4496 buffer_info
->next_to_watch
= i
;
4499 if (i
== tx_ring
->count
)
4501 tx_ring
->next_to_use
= i
;
4506 #define E1000_MAX_PER_TXD 8192
4507 #define E1000_MAX_TXD_PWR 12
4509 static int e1000_tx_map(struct e1000_adapter
*adapter
,
4510 struct sk_buff
*skb
, unsigned int first
,
4511 unsigned int max_per_txd
, unsigned int nr_frags
,
4514 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
4515 struct pci_dev
*pdev
= adapter
->pdev
;
4516 struct e1000_buffer
*buffer_info
;
4517 unsigned int len
= skb_headlen(skb
);
4518 unsigned int offset
= 0, size
, count
= 0, i
;
4519 unsigned int f
, bytecount
, segs
;
4521 i
= tx_ring
->next_to_use
;
4524 buffer_info
= &tx_ring
->buffer_info
[i
];
4525 size
= min(len
, max_per_txd
);
4527 buffer_info
->length
= size
;
4528 buffer_info
->time_stamp
= jiffies
;
4529 buffer_info
->next_to_watch
= i
;
4530 buffer_info
->dma
= dma_map_single(&pdev
->dev
,
4532 size
, DMA_TO_DEVICE
);
4533 buffer_info
->mapped_as_page
= false;
4534 if (dma_mapping_error(&pdev
->dev
, buffer_info
->dma
))
4543 if (i
== tx_ring
->count
)
4548 for (f
= 0; f
< nr_frags
; f
++) {
4549 struct skb_frag_struct
*frag
;
4551 frag
= &skb_shinfo(skb
)->frags
[f
];
4553 offset
= frag
->page_offset
;
4557 if (i
== tx_ring
->count
)
4560 buffer_info
= &tx_ring
->buffer_info
[i
];
4561 size
= min(len
, max_per_txd
);
4563 buffer_info
->length
= size
;
4564 buffer_info
->time_stamp
= jiffies
;
4565 buffer_info
->next_to_watch
= i
;
4566 buffer_info
->dma
= dma_map_page(&pdev
->dev
, frag
->page
,
4569 buffer_info
->mapped_as_page
= true;
4570 if (dma_mapping_error(&pdev
->dev
, buffer_info
->dma
))
4579 segs
= skb_shinfo(skb
)->gso_segs
?: 1;
4580 /* multiply data chunks by size of headers */
4581 bytecount
= ((segs
- 1) * skb_headlen(skb
)) + skb
->len
;
4583 tx_ring
->buffer_info
[i
].skb
= skb
;
4584 tx_ring
->buffer_info
[i
].segs
= segs
;
4585 tx_ring
->buffer_info
[i
].bytecount
= bytecount
;
4586 tx_ring
->buffer_info
[first
].next_to_watch
= i
;
4591 dev_err(&pdev
->dev
, "TX DMA map failed\n");
4592 buffer_info
->dma
= 0;
4598 i
+= tx_ring
->count
;
4600 buffer_info
= &tx_ring
->buffer_info
[i
];
4601 e1000_put_txbuf(adapter
, buffer_info
);
4607 static void e1000_tx_queue(struct e1000_adapter
*adapter
,
4608 int tx_flags
, int count
)
4610 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
4611 struct e1000_tx_desc
*tx_desc
= NULL
;
4612 struct e1000_buffer
*buffer_info
;
4613 u32 txd_upper
= 0, txd_lower
= E1000_TXD_CMD_IFCS
;
4616 if (tx_flags
& E1000_TX_FLAGS_TSO
) {
4617 txd_lower
|= E1000_TXD_CMD_DEXT
| E1000_TXD_DTYP_D
|
4619 txd_upper
|= E1000_TXD_POPTS_TXSM
<< 8;
4621 if (tx_flags
& E1000_TX_FLAGS_IPV4
)
4622 txd_upper
|= E1000_TXD_POPTS_IXSM
<< 8;
4625 if (tx_flags
& E1000_TX_FLAGS_CSUM
) {
4626 txd_lower
|= E1000_TXD_CMD_DEXT
| E1000_TXD_DTYP_D
;
4627 txd_upper
|= E1000_TXD_POPTS_TXSM
<< 8;
4630 if (tx_flags
& E1000_TX_FLAGS_VLAN
) {
4631 txd_lower
|= E1000_TXD_CMD_VLE
;
4632 txd_upper
|= (tx_flags
& E1000_TX_FLAGS_VLAN_MASK
);
4635 i
= tx_ring
->next_to_use
;
4638 buffer_info
= &tx_ring
->buffer_info
[i
];
4639 tx_desc
= E1000_TX_DESC(*tx_ring
, i
);
4640 tx_desc
->buffer_addr
= cpu_to_le64(buffer_info
->dma
);
4641 tx_desc
->lower
.data
=
4642 cpu_to_le32(txd_lower
| buffer_info
->length
);
4643 tx_desc
->upper
.data
= cpu_to_le32(txd_upper
);
4646 if (i
== tx_ring
->count
)
4648 } while (--count
> 0);
4650 tx_desc
->lower
.data
|= cpu_to_le32(adapter
->txd_cmd
);
4653 * Force memory writes to complete before letting h/w
4654 * know there are new descriptors to fetch. (Only
4655 * applicable for weak-ordered memory model archs,
4660 tx_ring
->next_to_use
= i
;
4661 writel(i
, adapter
->hw
.hw_addr
+ tx_ring
->tail
);
4663 * we need this if more than one processor can write to our tail
4664 * at a time, it synchronizes IO on IA64/Altix systems
4669 #define MINIMUM_DHCP_PACKET_SIZE 282
4670 static int e1000_transfer_dhcp_info(struct e1000_adapter
*adapter
,
4671 struct sk_buff
*skb
)
4673 struct e1000_hw
*hw
= &adapter
->hw
;
4676 if (vlan_tx_tag_present(skb
)) {
4677 if (!((vlan_tx_tag_get(skb
) == adapter
->hw
.mng_cookie
.vlan_id
) &&
4678 (adapter
->hw
.mng_cookie
.status
&
4679 E1000_MNG_DHCP_COOKIE_STATUS_VLAN
)))
4683 if (skb
->len
<= MINIMUM_DHCP_PACKET_SIZE
)
4686 if (((struct ethhdr
*) skb
->data
)->h_proto
!= htons(ETH_P_IP
))
4690 const struct iphdr
*ip
= (struct iphdr
*)((u8
*)skb
->data
+14);
4693 if (ip
->protocol
!= IPPROTO_UDP
)
4696 udp
= (struct udphdr
*)((u8
*)ip
+ (ip
->ihl
<< 2));
4697 if (ntohs(udp
->dest
) != 67)
4700 offset
= (u8
*)udp
+ 8 - skb
->data
;
4701 length
= skb
->len
- offset
;
4702 return e1000e_mng_write_dhcp_info(hw
, (u8
*)udp
+ 8, length
);
4708 static int __e1000_maybe_stop_tx(struct net_device
*netdev
, int size
)
4710 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4712 netif_stop_queue(netdev
);
4714 * Herbert's original patch had:
4715 * smp_mb__after_netif_stop_queue();
4716 * but since that doesn't exist yet, just open code it.
4721 * We need to check again in a case another CPU has just
4722 * made room available.
4724 if (e1000_desc_unused(adapter
->tx_ring
) < size
)
4728 netif_start_queue(netdev
);
4729 ++adapter
->restart_queue
;
4733 static int e1000_maybe_stop_tx(struct net_device
*netdev
, int size
)
4735 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4737 if (e1000_desc_unused(adapter
->tx_ring
) >= size
)
4739 return __e1000_maybe_stop_tx(netdev
, size
);
4742 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
4743 static netdev_tx_t
e1000_xmit_frame(struct sk_buff
*skb
,
4744 struct net_device
*netdev
)
4746 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4747 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
4749 unsigned int max_per_txd
= E1000_MAX_PER_TXD
;
4750 unsigned int max_txd_pwr
= E1000_MAX_TXD_PWR
;
4751 unsigned int tx_flags
= 0;
4752 unsigned int len
= skb_headlen(skb
);
4753 unsigned int nr_frags
;
4759 if (test_bit(__E1000_DOWN
, &adapter
->state
)) {
4760 dev_kfree_skb_any(skb
);
4761 return NETDEV_TX_OK
;
4764 if (skb
->len
<= 0) {
4765 dev_kfree_skb_any(skb
);
4766 return NETDEV_TX_OK
;
4769 mss
= skb_shinfo(skb
)->gso_size
;
4771 * The controller does a simple calculation to
4772 * make sure there is enough room in the FIFO before
4773 * initiating the DMA for each buffer. The calc is:
4774 * 4 = ceil(buffer len/mss). To make sure we don't
4775 * overrun the FIFO, adjust the max buffer len if mss
4780 max_per_txd
= min(mss
<< 2, max_per_txd
);
4781 max_txd_pwr
= fls(max_per_txd
) - 1;
4784 * TSO Workaround for 82571/2/3 Controllers -- if skb->data
4785 * points to just header, pull a few bytes of payload from
4786 * frags into skb->data
4788 hdr_len
= skb_transport_offset(skb
) + tcp_hdrlen(skb
);
4790 * we do this workaround for ES2LAN, but it is un-necessary,
4791 * avoiding it could save a lot of cycles
4793 if (skb
->data_len
&& (hdr_len
== len
)) {
4794 unsigned int pull_size
;
4796 pull_size
= min((unsigned int)4, skb
->data_len
);
4797 if (!__pskb_pull_tail(skb
, pull_size
)) {
4798 e_err("__pskb_pull_tail failed.\n");
4799 dev_kfree_skb_any(skb
);
4800 return NETDEV_TX_OK
;
4802 len
= skb_headlen(skb
);
4806 /* reserve a descriptor for the offload context */
4807 if ((mss
) || (skb
->ip_summed
== CHECKSUM_PARTIAL
))
4811 count
+= TXD_USE_COUNT(len
, max_txd_pwr
);
4813 nr_frags
= skb_shinfo(skb
)->nr_frags
;
4814 for (f
= 0; f
< nr_frags
; f
++)
4815 count
+= TXD_USE_COUNT(skb_shinfo(skb
)->frags
[f
].size
,
4818 if (adapter
->hw
.mac
.tx_pkt_filtering
)
4819 e1000_transfer_dhcp_info(adapter
, skb
);
4822 * need: count + 2 desc gap to keep tail from touching
4823 * head, otherwise try next time
4825 if (e1000_maybe_stop_tx(netdev
, count
+ 2))
4826 return NETDEV_TX_BUSY
;
4828 if (vlan_tx_tag_present(skb
)) {
4829 tx_flags
|= E1000_TX_FLAGS_VLAN
;
4830 tx_flags
|= (vlan_tx_tag_get(skb
) << E1000_TX_FLAGS_VLAN_SHIFT
);
4833 first
= tx_ring
->next_to_use
;
4835 tso
= e1000_tso(adapter
, skb
);
4837 dev_kfree_skb_any(skb
);
4838 return NETDEV_TX_OK
;
4842 tx_flags
|= E1000_TX_FLAGS_TSO
;
4843 else if (e1000_tx_csum(adapter
, skb
))
4844 tx_flags
|= E1000_TX_FLAGS_CSUM
;
4847 * Old method was to assume IPv4 packet by default if TSO was enabled.
4848 * 82571 hardware supports TSO capabilities for IPv6 as well...
4849 * no longer assume, we must.
4851 if (skb
->protocol
== htons(ETH_P_IP
))
4852 tx_flags
|= E1000_TX_FLAGS_IPV4
;
4854 /* if count is 0 then mapping error has occured */
4855 count
= e1000_tx_map(adapter
, skb
, first
, max_per_txd
, nr_frags
, mss
);
4857 e1000_tx_queue(adapter
, tx_flags
, count
);
4858 /* Make sure there is space in the ring for the next send. */
4859 e1000_maybe_stop_tx(netdev
, MAX_SKB_FRAGS
+ 2);
4862 dev_kfree_skb_any(skb
);
4863 tx_ring
->buffer_info
[first
].time_stamp
= 0;
4864 tx_ring
->next_to_use
= first
;
4867 return NETDEV_TX_OK
;
4871 * e1000_tx_timeout - Respond to a Tx Hang
4872 * @netdev: network interface device structure
4874 static void e1000_tx_timeout(struct net_device
*netdev
)
4876 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4878 /* Do the reset outside of interrupt context */
4879 adapter
->tx_timeout_count
++;
4880 schedule_work(&adapter
->reset_task
);
4883 static void e1000_reset_task(struct work_struct
*work
)
4885 struct e1000_adapter
*adapter
;
4886 adapter
= container_of(work
, struct e1000_adapter
, reset_task
);
4888 if (!((adapter
->flags
& FLAG_RX_NEEDS_RESTART
) &&
4889 (adapter
->flags
& FLAG_RX_RESTART_NOW
))) {
4890 e1000e_dump(adapter
);
4891 e_err("Reset adapter\n");
4893 e1000e_reinit_locked(adapter
);
4897 * e1000_get_stats - Get System Network Statistics
4898 * @netdev: network interface device structure
4900 * Returns the address of the device statistics structure.
4901 * The statistics are actually updated from the timer callback.
4903 static struct net_device_stats
*e1000_get_stats(struct net_device
*netdev
)
4905 /* only return the current stats */
4906 return &netdev
->stats
;
4910 * e1000_change_mtu - Change the Maximum Transfer Unit
4911 * @netdev: network interface device structure
4912 * @new_mtu: new value for maximum frame size
4914 * Returns 0 on success, negative on failure
4916 static int e1000_change_mtu(struct net_device
*netdev
, int new_mtu
)
4918 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4919 int max_frame
= new_mtu
+ ETH_HLEN
+ ETH_FCS_LEN
;
4921 /* Jumbo frame support */
4922 if ((max_frame
> ETH_FRAME_LEN
+ ETH_FCS_LEN
) &&
4923 !(adapter
->flags
& FLAG_HAS_JUMBO_FRAMES
)) {
4924 e_err("Jumbo Frames not supported.\n");
4928 /* Supported frame sizes */
4929 if ((new_mtu
< ETH_ZLEN
+ ETH_FCS_LEN
+ VLAN_HLEN
) ||
4930 (max_frame
> adapter
->max_hw_frame_size
)) {
4931 e_err("Unsupported MTU setting\n");
4935 /* Jumbo frame workaround on 82579 requires CRC be stripped */
4936 if ((adapter
->hw
.mac
.type
== e1000_pch2lan
) &&
4937 !(adapter
->flags2
& FLAG2_CRC_STRIPPING
) &&
4938 (new_mtu
> ETH_DATA_LEN
)) {
4939 e_err("Jumbo Frames not supported on 82579 when CRC "
4940 "stripping is disabled.\n");
4944 /* 82573 Errata 17 */
4945 if (((adapter
->hw
.mac
.type
== e1000_82573
) ||
4946 (adapter
->hw
.mac
.type
== e1000_82574
)) &&
4947 (max_frame
> ETH_FRAME_LEN
+ ETH_FCS_LEN
)) {
4948 adapter
->flags2
|= FLAG2_DISABLE_ASPM_L1
;
4949 e1000e_disable_aspm(adapter
->pdev
, PCIE_LINK_STATE_L1
);
4952 while (test_and_set_bit(__E1000_RESETTING
, &adapter
->state
))
4954 /* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */
4955 adapter
->max_frame_size
= max_frame
;
4956 e_info("changing MTU from %d to %d\n", netdev
->mtu
, new_mtu
);
4957 netdev
->mtu
= new_mtu
;
4958 if (netif_running(netdev
))
4959 e1000e_down(adapter
);
4962 * NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
4963 * means we reserve 2 more, this pushes us to allocate from the next
4965 * i.e. RXBUFFER_2048 --> size-4096 slab
4966 * However with the new *_jumbo_rx* routines, jumbo receives will use
4970 if (max_frame
<= 2048)
4971 adapter
->rx_buffer_len
= 2048;
4973 adapter
->rx_buffer_len
= 4096;
4975 /* adjust allocation if LPE protects us, and we aren't using SBP */
4976 if ((max_frame
== ETH_FRAME_LEN
+ ETH_FCS_LEN
) ||
4977 (max_frame
== ETH_FRAME_LEN
+ VLAN_HLEN
+ ETH_FCS_LEN
))
4978 adapter
->rx_buffer_len
= ETH_FRAME_LEN
+ VLAN_HLEN
4981 if (netif_running(netdev
))
4984 e1000e_reset(adapter
);
4986 clear_bit(__E1000_RESETTING
, &adapter
->state
);
4991 static int e1000_mii_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
,
4994 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4995 struct mii_ioctl_data
*data
= if_mii(ifr
);
4997 if (adapter
->hw
.phy
.media_type
!= e1000_media_type_copper
)
5002 data
->phy_id
= adapter
->hw
.phy
.addr
;
5005 e1000_phy_read_status(adapter
);
5007 switch (data
->reg_num
& 0x1F) {
5009 data
->val_out
= adapter
->phy_regs
.bmcr
;
5012 data
->val_out
= adapter
->phy_regs
.bmsr
;
5015 data
->val_out
= (adapter
->hw
.phy
.id
>> 16);
5018 data
->val_out
= (adapter
->hw
.phy
.id
& 0xFFFF);
5021 data
->val_out
= adapter
->phy_regs
.advertise
;
5024 data
->val_out
= adapter
->phy_regs
.lpa
;
5027 data
->val_out
= adapter
->phy_regs
.expansion
;
5030 data
->val_out
= adapter
->phy_regs
.ctrl1000
;
5033 data
->val_out
= adapter
->phy_regs
.stat1000
;
5036 data
->val_out
= adapter
->phy_regs
.estatus
;
5049 static int e1000_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
, int cmd
)
5055 return e1000_mii_ioctl(netdev
, ifr
, cmd
);
5061 static int e1000_init_phy_wakeup(struct e1000_adapter
*adapter
, u32 wufc
)
5063 struct e1000_hw
*hw
= &adapter
->hw
;
5068 /* copy MAC RARs to PHY RARs */
5069 e1000_copy_rx_addrs_to_phy_ich8lan(hw
);
5071 /* copy MAC MTA to PHY MTA */
5072 for (i
= 0; i
< adapter
->hw
.mac
.mta_reg_count
; i
++) {
5073 mac_reg
= E1000_READ_REG_ARRAY(hw
, E1000_MTA
, i
);
5074 e1e_wphy(hw
, BM_MTA(i
), (u16
)(mac_reg
& 0xFFFF));
5075 e1e_wphy(hw
, BM_MTA(i
) + 1, (u16
)((mac_reg
>> 16) & 0xFFFF));
5078 /* configure PHY Rx Control register */
5079 e1e_rphy(&adapter
->hw
, BM_RCTL
, &phy_reg
);
5080 mac_reg
= er32(RCTL
);
5081 if (mac_reg
& E1000_RCTL_UPE
)
5082 phy_reg
|= BM_RCTL_UPE
;
5083 if (mac_reg
& E1000_RCTL_MPE
)
5084 phy_reg
|= BM_RCTL_MPE
;
5085 phy_reg
&= ~(BM_RCTL_MO_MASK
);
5086 if (mac_reg
& E1000_RCTL_MO_3
)
5087 phy_reg
|= (((mac_reg
& E1000_RCTL_MO_3
) >> E1000_RCTL_MO_SHIFT
)
5088 << BM_RCTL_MO_SHIFT
);
5089 if (mac_reg
& E1000_RCTL_BAM
)
5090 phy_reg
|= BM_RCTL_BAM
;
5091 if (mac_reg
& E1000_RCTL_PMCF
)
5092 phy_reg
|= BM_RCTL_PMCF
;
5093 mac_reg
= er32(CTRL
);
5094 if (mac_reg
& E1000_CTRL_RFCE
)
5095 phy_reg
|= BM_RCTL_RFCE
;
5096 e1e_wphy(&adapter
->hw
, BM_RCTL
, phy_reg
);
5098 /* enable PHY wakeup in MAC register */
5100 ew32(WUC
, E1000_WUC_PHY_WAKE
| E1000_WUC_PME_EN
);
5102 /* configure and enable PHY wakeup in PHY registers */
5103 e1e_wphy(&adapter
->hw
, BM_WUFC
, wufc
);
5104 e1e_wphy(&adapter
->hw
, BM_WUC
, E1000_WUC_PME_EN
);
5106 /* activate PHY wakeup */
5107 retval
= hw
->phy
.ops
.acquire(hw
);
5109 e_err("Could not acquire PHY\n");
5112 e1000e_write_phy_reg_mdic(hw
, IGP01E1000_PHY_PAGE_SELECT
,
5113 (BM_WUC_ENABLE_PAGE
<< IGP_PAGE_SHIFT
));
5114 retval
= e1000e_read_phy_reg_mdic(hw
, BM_WUC_ENABLE_REG
, &phy_reg
);
5116 e_err("Could not read PHY page 769\n");
5119 phy_reg
|= BM_WUC_ENABLE_BIT
| BM_WUC_HOST_WU_BIT
;
5120 retval
= e1000e_write_phy_reg_mdic(hw
, BM_WUC_ENABLE_REG
, phy_reg
);
5122 e_err("Could not set PHY Host Wakeup bit\n");
5124 hw
->phy
.ops
.release(hw
);
5129 static int __e1000_shutdown(struct pci_dev
*pdev
, bool *enable_wake
,
5132 struct net_device
*netdev
= pci_get_drvdata(pdev
);
5133 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
5134 struct e1000_hw
*hw
= &adapter
->hw
;
5135 u32 ctrl
, ctrl_ext
, rctl
, status
;
5136 /* Runtime suspend should only enable wakeup for link changes */
5137 u32 wufc
= runtime
? E1000_WUFC_LNKC
: adapter
->wol
;
5140 netif_device_detach(netdev
);
5142 if (netif_running(netdev
)) {
5143 WARN_ON(test_bit(__E1000_RESETTING
, &adapter
->state
));
5144 e1000e_down(adapter
);
5145 e1000_free_irq(adapter
);
5147 e1000e_reset_interrupt_capability(adapter
);
5149 retval
= pci_save_state(pdev
);
5153 status
= er32(STATUS
);
5154 if (status
& E1000_STATUS_LU
)
5155 wufc
&= ~E1000_WUFC_LNKC
;
5158 e1000_setup_rctl(adapter
);
5159 e1000_set_multi(netdev
);
5161 /* turn on all-multi mode if wake on multicast is enabled */
5162 if (wufc
& E1000_WUFC_MC
) {
5164 rctl
|= E1000_RCTL_MPE
;
5169 /* advertise wake from D3Cold */
5170 #define E1000_CTRL_ADVD3WUC 0x00100000
5171 /* phy power management enable */
5172 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5173 ctrl
|= E1000_CTRL_ADVD3WUC
;
5174 if (!(adapter
->flags2
& FLAG2_HAS_PHY_WAKEUP
))
5175 ctrl
|= E1000_CTRL_EN_PHY_PWR_MGMT
;
5178 if (adapter
->hw
.phy
.media_type
== e1000_media_type_fiber
||
5179 adapter
->hw
.phy
.media_type
==
5180 e1000_media_type_internal_serdes
) {
5181 /* keep the laser running in D3 */
5182 ctrl_ext
= er32(CTRL_EXT
);
5183 ctrl_ext
|= E1000_CTRL_EXT_SDP3_DATA
;
5184 ew32(CTRL_EXT
, ctrl_ext
);
5187 if (adapter
->flags
& FLAG_IS_ICH
)
5188 e1000e_disable_gig_wol_ich8lan(&adapter
->hw
);
5190 /* Allow time for pending master requests to run */
5191 e1000e_disable_pcie_master(&adapter
->hw
);
5193 if (adapter
->flags2
& FLAG2_HAS_PHY_WAKEUP
) {
5194 /* enable wakeup by the PHY */
5195 retval
= e1000_init_phy_wakeup(adapter
, wufc
);
5199 /* enable wakeup by the MAC */
5201 ew32(WUC
, E1000_WUC_PME_EN
);
5208 *enable_wake
= !!wufc
;
5210 /* make sure adapter isn't asleep if manageability is enabled */
5211 if ((adapter
->flags
& FLAG_MNG_PT_ENABLED
) ||
5212 (hw
->mac
.ops
.check_mng_mode(hw
)))
5213 *enable_wake
= true;
5215 if (adapter
->hw
.phy
.type
== e1000_phy_igp_3
)
5216 e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter
->hw
);
5219 * Release control of h/w to f/w. If f/w is AMT enabled, this
5220 * would have already happened in close and is redundant.
5222 e1000e_release_hw_control(adapter
);
5224 pci_disable_device(pdev
);
5229 static void e1000_power_off(struct pci_dev
*pdev
, bool sleep
, bool wake
)
5231 if (sleep
&& wake
) {
5232 pci_prepare_to_sleep(pdev
);
5236 pci_wake_from_d3(pdev
, wake
);
5237 pci_set_power_state(pdev
, PCI_D3hot
);
5240 static void e1000_complete_shutdown(struct pci_dev
*pdev
, bool sleep
,
5243 struct net_device
*netdev
= pci_get_drvdata(pdev
);
5244 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
5247 * The pci-e switch on some quad port adapters will report a
5248 * correctable error when the MAC transitions from D0 to D3. To
5249 * prevent this we need to mask off the correctable errors on the
5250 * downstream port of the pci-e switch.
5252 if (adapter
->flags
& FLAG_IS_QUAD_PORT
) {
5253 struct pci_dev
*us_dev
= pdev
->bus
->self
;
5254 int pos
= pci_find_capability(us_dev
, PCI_CAP_ID_EXP
);
5257 pci_read_config_word(us_dev
, pos
+ PCI_EXP_DEVCTL
, &devctl
);
5258 pci_write_config_word(us_dev
, pos
+ PCI_EXP_DEVCTL
,
5259 (devctl
& ~PCI_EXP_DEVCTL_CERE
));
5261 e1000_power_off(pdev
, sleep
, wake
);
5263 pci_write_config_word(us_dev
, pos
+ PCI_EXP_DEVCTL
, devctl
);
5265 e1000_power_off(pdev
, sleep
, wake
);
5269 #ifdef CONFIG_PCIEASPM
5270 static void __e1000e_disable_aspm(struct pci_dev
*pdev
, u16 state
)
5272 pci_disable_link_state(pdev
, state
);
5275 static void __e1000e_disable_aspm(struct pci_dev
*pdev
, u16 state
)
5281 * Both device and parent should have the same ASPM setting.
5282 * Disable ASPM in downstream component first and then upstream.
5284 pos
= pci_pcie_cap(pdev
);
5285 pci_read_config_word(pdev
, pos
+ PCI_EXP_LNKCTL
, ®16
);
5287 pci_write_config_word(pdev
, pos
+ PCI_EXP_LNKCTL
, reg16
);
5289 if (!pdev
->bus
->self
)
5292 pos
= pci_pcie_cap(pdev
->bus
->self
);
5293 pci_read_config_word(pdev
->bus
->self
, pos
+ PCI_EXP_LNKCTL
, ®16
);
5295 pci_write_config_word(pdev
->bus
->self
, pos
+ PCI_EXP_LNKCTL
, reg16
);
5298 void e1000e_disable_aspm(struct pci_dev
*pdev
, u16 state
)
5300 dev_info(&pdev
->dev
, "Disabling ASPM %s %s\n",
5301 (state
& PCIE_LINK_STATE_L0S
) ? "L0s" : "",
5302 (state
& PCIE_LINK_STATE_L1
) ? "L1" : "");
5304 __e1000e_disable_aspm(pdev
, state
);
5307 #ifdef CONFIG_PM_OPS
5308 static bool e1000e_pm_ready(struct e1000_adapter
*adapter
)
5310 return !!adapter
->tx_ring
->buffer_info
;
5313 static int __e1000_resume(struct pci_dev
*pdev
)
5315 struct net_device
*netdev
= pci_get_drvdata(pdev
);
5316 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
5317 struct e1000_hw
*hw
= &adapter
->hw
;
5320 pci_set_power_state(pdev
, PCI_D0
);
5321 pci_restore_state(pdev
);
5322 pci_save_state(pdev
);
5323 if (adapter
->flags2
& FLAG2_DISABLE_ASPM_L1
)
5324 e1000e_disable_aspm(pdev
, PCIE_LINK_STATE_L1
);
5326 e1000e_set_interrupt_capability(adapter
);
5327 if (netif_running(netdev
)) {
5328 err
= e1000_request_irq(adapter
);
5333 e1000e_power_up_phy(adapter
);
5335 /* report the system wakeup cause from S3/S4 */
5336 if (adapter
->flags2
& FLAG2_HAS_PHY_WAKEUP
) {
5339 e1e_rphy(&adapter
->hw
, BM_WUS
, &phy_data
);
5341 e_info("PHY Wakeup cause - %s\n",
5342 phy_data
& E1000_WUS_EX
? "Unicast Packet" :
5343 phy_data
& E1000_WUS_MC
? "Multicast Packet" :
5344 phy_data
& E1000_WUS_BC
? "Broadcast Packet" :
5345 phy_data
& E1000_WUS_MAG
? "Magic Packet" :
5346 phy_data
& E1000_WUS_LNKC
? "Link Status "
5347 " Change" : "other");
5349 e1e_wphy(&adapter
->hw
, BM_WUS
, ~0);
5351 u32 wus
= er32(WUS
);
5353 e_info("MAC Wakeup cause - %s\n",
5354 wus
& E1000_WUS_EX
? "Unicast Packet" :
5355 wus
& E1000_WUS_MC
? "Multicast Packet" :
5356 wus
& E1000_WUS_BC
? "Broadcast Packet" :
5357 wus
& E1000_WUS_MAG
? "Magic Packet" :
5358 wus
& E1000_WUS_LNKC
? "Link Status Change" :
5364 e1000e_reset(adapter
);
5366 e1000_init_manageability_pt(adapter
);
5368 if (netif_running(netdev
))
5371 netif_device_attach(netdev
);
5374 * If the controller has AMT, do not set DRV_LOAD until the interface
5375 * is up. For all other cases, let the f/w know that the h/w is now
5376 * under the control of the driver.
5378 if (!(adapter
->flags
& FLAG_HAS_AMT
))
5379 e1000e_get_hw_control(adapter
);
5384 #ifdef CONFIG_PM_SLEEP
5385 static int e1000_suspend(struct device
*dev
)
5387 struct pci_dev
*pdev
= to_pci_dev(dev
);
5391 retval
= __e1000_shutdown(pdev
, &wake
, false);
5393 e1000_complete_shutdown(pdev
, true, wake
);
5398 static int e1000_resume(struct device
*dev
)
5400 struct pci_dev
*pdev
= to_pci_dev(dev
);
5401 struct net_device
*netdev
= pci_get_drvdata(pdev
);
5402 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
5404 if (e1000e_pm_ready(adapter
))
5405 adapter
->idle_check
= true;
5407 return __e1000_resume(pdev
);
5409 #endif /* CONFIG_PM_SLEEP */
5411 #ifdef CONFIG_PM_RUNTIME
5412 static int e1000_runtime_suspend(struct device
*dev
)
5414 struct pci_dev
*pdev
= to_pci_dev(dev
);
5415 struct net_device
*netdev
= pci_get_drvdata(pdev
);
5416 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
5418 if (e1000e_pm_ready(adapter
)) {
5421 __e1000_shutdown(pdev
, &wake
, true);
5427 static int e1000_idle(struct device
*dev
)
5429 struct pci_dev
*pdev
= to_pci_dev(dev
);
5430 struct net_device
*netdev
= pci_get_drvdata(pdev
);
5431 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
5433 if (!e1000e_pm_ready(adapter
))
5436 if (adapter
->idle_check
) {
5437 adapter
->idle_check
= false;
5438 if (!e1000e_has_link(adapter
))
5439 pm_schedule_suspend(dev
, MSEC_PER_SEC
);
5445 static int e1000_runtime_resume(struct device
*dev
)
5447 struct pci_dev
*pdev
= to_pci_dev(dev
);
5448 struct net_device
*netdev
= pci_get_drvdata(pdev
);
5449 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
5451 if (!e1000e_pm_ready(adapter
))
5454 adapter
->idle_check
= !dev
->power
.runtime_auto
;
5455 return __e1000_resume(pdev
);
5457 #endif /* CONFIG_PM_RUNTIME */
5458 #endif /* CONFIG_PM_OPS */
5460 static void e1000_shutdown(struct pci_dev
*pdev
)
5464 __e1000_shutdown(pdev
, &wake
, false);
5466 if (system_state
== SYSTEM_POWER_OFF
)
5467 e1000_complete_shutdown(pdev
, false, wake
);
5470 #ifdef CONFIG_NET_POLL_CONTROLLER
5472 static irqreturn_t
e1000_intr_msix(int irq
, void *data
)
5474 struct net_device
*netdev
= data
;
5475 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
5476 int vector
, msix_irq
;
5478 if (adapter
->msix_entries
) {
5480 msix_irq
= adapter
->msix_entries
[vector
].vector
;
5481 disable_irq(msix_irq
);
5482 e1000_intr_msix_rx(msix_irq
, netdev
);
5483 enable_irq(msix_irq
);
5486 msix_irq
= adapter
->msix_entries
[vector
].vector
;
5487 disable_irq(msix_irq
);
5488 e1000_intr_msix_tx(msix_irq
, netdev
);
5489 enable_irq(msix_irq
);
5492 msix_irq
= adapter
->msix_entries
[vector
].vector
;
5493 disable_irq(msix_irq
);
5494 e1000_msix_other(msix_irq
, netdev
);
5495 enable_irq(msix_irq
);
5502 * Polling 'interrupt' - used by things like netconsole to send skbs
5503 * without having to re-enable interrupts. It's not called while
5504 * the interrupt routine is executing.
5506 static void e1000_netpoll(struct net_device
*netdev
)
5508 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
5510 switch (adapter
->int_mode
) {
5511 case E1000E_INT_MODE_MSIX
:
5512 e1000_intr_msix(adapter
->pdev
->irq
, netdev
);
5514 case E1000E_INT_MODE_MSI
:
5515 disable_irq(adapter
->pdev
->irq
);
5516 e1000_intr_msi(adapter
->pdev
->irq
, netdev
);
5517 enable_irq(adapter
->pdev
->irq
);
5519 default: /* E1000E_INT_MODE_LEGACY */
5520 disable_irq(adapter
->pdev
->irq
);
5521 e1000_intr(adapter
->pdev
->irq
, netdev
);
5522 enable_irq(adapter
->pdev
->irq
);
5529 * e1000_io_error_detected - called when PCI error is detected
5530 * @pdev: Pointer to PCI device
5531 * @state: The current pci connection state
5533 * This function is called after a PCI bus error affecting
5534 * this device has been detected.
5536 static pci_ers_result_t
e1000_io_error_detected(struct pci_dev
*pdev
,
5537 pci_channel_state_t state
)
5539 struct net_device
*netdev
= pci_get_drvdata(pdev
);
5540 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
5542 netif_device_detach(netdev
);
5544 if (state
== pci_channel_io_perm_failure
)
5545 return PCI_ERS_RESULT_DISCONNECT
;
5547 if (netif_running(netdev
))
5548 e1000e_down(adapter
);
5549 pci_disable_device(pdev
);
5551 /* Request a slot slot reset. */
5552 return PCI_ERS_RESULT_NEED_RESET
;
5556 * e1000_io_slot_reset - called after the pci bus has been reset.
5557 * @pdev: Pointer to PCI device
5559 * Restart the card from scratch, as if from a cold-boot. Implementation
5560 * resembles the first-half of the e1000_resume routine.
5562 static pci_ers_result_t
e1000_io_slot_reset(struct pci_dev
*pdev
)
5564 struct net_device
*netdev
= pci_get_drvdata(pdev
);
5565 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
5566 struct e1000_hw
*hw
= &adapter
->hw
;
5568 pci_ers_result_t result
;
5570 if (adapter
->flags2
& FLAG2_DISABLE_ASPM_L1
)
5571 e1000e_disable_aspm(pdev
, PCIE_LINK_STATE_L1
);
5572 err
= pci_enable_device_mem(pdev
);
5575 "Cannot re-enable PCI device after reset.\n");
5576 result
= PCI_ERS_RESULT_DISCONNECT
;
5578 pci_set_master(pdev
);
5579 pdev
->state_saved
= true;
5580 pci_restore_state(pdev
);
5582 pci_enable_wake(pdev
, PCI_D3hot
, 0);
5583 pci_enable_wake(pdev
, PCI_D3cold
, 0);
5585 e1000e_reset(adapter
);
5587 result
= PCI_ERS_RESULT_RECOVERED
;
5590 pci_cleanup_aer_uncorrect_error_status(pdev
);
5596 * e1000_io_resume - called when traffic can start flowing again.
5597 * @pdev: Pointer to PCI device
5599 * This callback is called when the error recovery driver tells us that
5600 * its OK to resume normal operation. Implementation resembles the
5601 * second-half of the e1000_resume routine.
5603 static void e1000_io_resume(struct pci_dev
*pdev
)
5605 struct net_device
*netdev
= pci_get_drvdata(pdev
);
5606 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
5608 e1000_init_manageability_pt(adapter
);
5610 if (netif_running(netdev
)) {
5611 if (e1000e_up(adapter
)) {
5613 "can't bring device back up after reset\n");
5618 netif_device_attach(netdev
);
5621 * If the controller has AMT, do not set DRV_LOAD until the interface
5622 * is up. For all other cases, let the f/w know that the h/w is now
5623 * under the control of the driver.
5625 if (!(adapter
->flags
& FLAG_HAS_AMT
))
5626 e1000e_get_hw_control(adapter
);
5630 static void e1000_print_device_info(struct e1000_adapter
*adapter
)
5632 struct e1000_hw
*hw
= &adapter
->hw
;
5633 struct net_device
*netdev
= adapter
->netdev
;
5635 u8 pba_str
[E1000_PBANUM_LENGTH
];
5637 /* print bus type/speed/width info */
5638 e_info("(PCI Express:2.5GB/s:%s) %pM\n",
5640 ((hw
->bus
.width
== e1000_bus_width_pcie_x4
) ? "Width x4" :
5644 e_info("Intel(R) PRO/%s Network Connection\n",
5645 (hw
->phy
.type
== e1000_phy_ife
) ? "10/100" : "1000");
5646 ret_val
= e1000_read_pba_string_generic(hw
, pba_str
,
5647 E1000_PBANUM_LENGTH
);
5649 strncpy((char *)pba_str
, "Unknown", sizeof(pba_str
) - 1);
5650 e_info("MAC: %d, PHY: %d, PBA No: %s\n",
5651 hw
->mac
.type
, hw
->phy
.type
, pba_str
);
5654 static void e1000_eeprom_checks(struct e1000_adapter
*adapter
)
5656 struct e1000_hw
*hw
= &adapter
->hw
;
5660 if (hw
->mac
.type
!= e1000_82573
)
5663 ret_val
= e1000_read_nvm(hw
, NVM_INIT_CONTROL2_REG
, 1, &buf
);
5664 if (!ret_val
&& (!(le16_to_cpu(buf
) & (1 << 0)))) {
5665 /* Deep Smart Power Down (DSPD) */
5666 dev_warn(&adapter
->pdev
->dev
,
5667 "Warning: detected DSPD enabled in EEPROM\n");
5671 static const struct net_device_ops e1000e_netdev_ops
= {
5672 .ndo_open
= e1000_open
,
5673 .ndo_stop
= e1000_close
,
5674 .ndo_start_xmit
= e1000_xmit_frame
,
5675 .ndo_get_stats
= e1000_get_stats
,
5676 .ndo_set_multicast_list
= e1000_set_multi
,
5677 .ndo_set_mac_address
= e1000_set_mac
,
5678 .ndo_change_mtu
= e1000_change_mtu
,
5679 .ndo_do_ioctl
= e1000_ioctl
,
5680 .ndo_tx_timeout
= e1000_tx_timeout
,
5681 .ndo_validate_addr
= eth_validate_addr
,
5683 .ndo_vlan_rx_register
= e1000_vlan_rx_register
,
5684 .ndo_vlan_rx_add_vid
= e1000_vlan_rx_add_vid
,
5685 .ndo_vlan_rx_kill_vid
= e1000_vlan_rx_kill_vid
,
5686 #ifdef CONFIG_NET_POLL_CONTROLLER
5687 .ndo_poll_controller
= e1000_netpoll
,
5692 * e1000_probe - Device Initialization Routine
5693 * @pdev: PCI device information struct
5694 * @ent: entry in e1000_pci_tbl
5696 * Returns 0 on success, negative on failure
5698 * e1000_probe initializes an adapter identified by a pci_dev structure.
5699 * The OS initialization, configuring of the adapter private structure,
5700 * and a hardware reset occur.
5702 static int __devinit
e1000_probe(struct pci_dev
*pdev
,
5703 const struct pci_device_id
*ent
)
5705 struct net_device
*netdev
;
5706 struct e1000_adapter
*adapter
;
5707 struct e1000_hw
*hw
;
5708 const struct e1000_info
*ei
= e1000_info_tbl
[ent
->driver_data
];
5709 resource_size_t mmio_start
, mmio_len
;
5710 resource_size_t flash_start
, flash_len
;
5712 static int cards_found
;
5713 int i
, err
, pci_using_dac
;
5714 u16 eeprom_data
= 0;
5715 u16 eeprom_apme_mask
= E1000_EEPROM_APME
;
5717 if (ei
->flags2
& FLAG2_DISABLE_ASPM_L1
)
5718 e1000e_disable_aspm(pdev
, PCIE_LINK_STATE_L1
);
5720 err
= pci_enable_device_mem(pdev
);
5725 err
= dma_set_mask(&pdev
->dev
, DMA_BIT_MASK(64));
5727 err
= dma_set_coherent_mask(&pdev
->dev
, DMA_BIT_MASK(64));
5731 err
= dma_set_mask(&pdev
->dev
, DMA_BIT_MASK(32));
5733 err
= dma_set_coherent_mask(&pdev
->dev
,
5736 dev_err(&pdev
->dev
, "No usable DMA "
5737 "configuration, aborting\n");
5743 err
= pci_request_selected_regions_exclusive(pdev
,
5744 pci_select_bars(pdev
, IORESOURCE_MEM
),
5745 e1000e_driver_name
);
5749 /* AER (Advanced Error Reporting) hooks */
5750 pci_enable_pcie_error_reporting(pdev
);
5752 pci_set_master(pdev
);
5753 /* PCI config space info */
5754 err
= pci_save_state(pdev
);
5756 goto err_alloc_etherdev
;
5759 netdev
= alloc_etherdev(sizeof(struct e1000_adapter
));
5761 goto err_alloc_etherdev
;
5763 SET_NETDEV_DEV(netdev
, &pdev
->dev
);
5765 netdev
->irq
= pdev
->irq
;
5767 pci_set_drvdata(pdev
, netdev
);
5768 adapter
= netdev_priv(netdev
);
5770 adapter
->netdev
= netdev
;
5771 adapter
->pdev
= pdev
;
5773 adapter
->pba
= ei
->pba
;
5774 adapter
->flags
= ei
->flags
;
5775 adapter
->flags2
= ei
->flags2
;
5776 adapter
->hw
.adapter
= adapter
;
5777 adapter
->hw
.mac
.type
= ei
->mac
;
5778 adapter
->max_hw_frame_size
= ei
->max_hw_frame_size
;
5779 adapter
->msg_enable
= (1 << NETIF_MSG_DRV
| NETIF_MSG_PROBE
) - 1;
5781 mmio_start
= pci_resource_start(pdev
, 0);
5782 mmio_len
= pci_resource_len(pdev
, 0);
5785 adapter
->hw
.hw_addr
= ioremap(mmio_start
, mmio_len
);
5786 if (!adapter
->hw
.hw_addr
)
5789 if ((adapter
->flags
& FLAG_HAS_FLASH
) &&
5790 (pci_resource_flags(pdev
, 1) & IORESOURCE_MEM
)) {
5791 flash_start
= pci_resource_start(pdev
, 1);
5792 flash_len
= pci_resource_len(pdev
, 1);
5793 adapter
->hw
.flash_address
= ioremap(flash_start
, flash_len
);
5794 if (!adapter
->hw
.flash_address
)
5798 /* construct the net_device struct */
5799 netdev
->netdev_ops
= &e1000e_netdev_ops
;
5800 e1000e_set_ethtool_ops(netdev
);
5801 netdev
->watchdog_timeo
= 5 * HZ
;
5802 netif_napi_add(netdev
, &adapter
->napi
, e1000_clean
, 64);
5803 strncpy(netdev
->name
, pci_name(pdev
), sizeof(netdev
->name
) - 1);
5805 netdev
->mem_start
= mmio_start
;
5806 netdev
->mem_end
= mmio_start
+ mmio_len
;
5808 adapter
->bd_number
= cards_found
++;
5810 e1000e_check_options(adapter
);
5812 /* setup adapter struct */
5813 err
= e1000_sw_init(adapter
);
5817 memcpy(&hw
->mac
.ops
, ei
->mac_ops
, sizeof(hw
->mac
.ops
));
5818 memcpy(&hw
->nvm
.ops
, ei
->nvm_ops
, sizeof(hw
->nvm
.ops
));
5819 memcpy(&hw
->phy
.ops
, ei
->phy_ops
, sizeof(hw
->phy
.ops
));
5821 err
= ei
->get_variants(adapter
);
5825 if ((adapter
->flags
& FLAG_IS_ICH
) &&
5826 (adapter
->flags
& FLAG_READ_ONLY_NVM
))
5827 e1000e_write_protect_nvm_ich8lan(&adapter
->hw
);
5829 hw
->mac
.ops
.get_bus_info(&adapter
->hw
);
5831 adapter
->hw
.phy
.autoneg_wait_to_complete
= 0;
5833 /* Copper options */
5834 if (adapter
->hw
.phy
.media_type
== e1000_media_type_copper
) {
5835 adapter
->hw
.phy
.mdix
= AUTO_ALL_MODES
;
5836 adapter
->hw
.phy
.disable_polarity_correction
= 0;
5837 adapter
->hw
.phy
.ms_type
= e1000_ms_hw_default
;
5840 if (e1000_check_reset_block(&adapter
->hw
))
5841 e_info("PHY reset is blocked due to SOL/IDER session.\n");
5843 netdev
->features
= NETIF_F_SG
|
5845 NETIF_F_HW_VLAN_TX
|
5848 if (adapter
->flags
& FLAG_HAS_HW_VLAN_FILTER
)
5849 netdev
->features
|= NETIF_F_HW_VLAN_FILTER
;
5851 netdev
->features
|= NETIF_F_TSO
;
5852 netdev
->features
|= NETIF_F_TSO6
;
5854 netdev
->vlan_features
|= NETIF_F_TSO
;
5855 netdev
->vlan_features
|= NETIF_F_TSO6
;
5856 netdev
->vlan_features
|= NETIF_F_HW_CSUM
;
5857 netdev
->vlan_features
|= NETIF_F_SG
;
5859 if (pci_using_dac
) {
5860 netdev
->features
|= NETIF_F_HIGHDMA
;
5861 netdev
->vlan_features
|= NETIF_F_HIGHDMA
;
5864 if (e1000e_enable_mng_pass_thru(&adapter
->hw
))
5865 adapter
->flags
|= FLAG_MNG_PT_ENABLED
;
5868 * before reading the NVM, reset the controller to
5869 * put the device in a known good starting state
5871 adapter
->hw
.mac
.ops
.reset_hw(&adapter
->hw
);
5874 * systems with ASPM and others may see the checksum fail on the first
5875 * attempt. Let's give it a few tries
5878 if (e1000_validate_nvm_checksum(&adapter
->hw
) >= 0)
5881 e_err("The NVM Checksum Is Not Valid\n");
5887 e1000_eeprom_checks(adapter
);
5889 /* copy the MAC address */
5890 if (e1000e_read_mac_addr(&adapter
->hw
))
5891 e_err("NVM Read Error while reading MAC address\n");
5893 memcpy(netdev
->dev_addr
, adapter
->hw
.mac
.addr
, netdev
->addr_len
);
5894 memcpy(netdev
->perm_addr
, adapter
->hw
.mac
.addr
, netdev
->addr_len
);
5896 if (!is_valid_ether_addr(netdev
->perm_addr
)) {
5897 e_err("Invalid MAC Address: %pM\n", netdev
->perm_addr
);
5902 init_timer(&adapter
->watchdog_timer
);
5903 adapter
->watchdog_timer
.function
= e1000_watchdog
;
5904 adapter
->watchdog_timer
.data
= (unsigned long) adapter
;
5906 init_timer(&adapter
->phy_info_timer
);
5907 adapter
->phy_info_timer
.function
= e1000_update_phy_info
;
5908 adapter
->phy_info_timer
.data
= (unsigned long) adapter
;
5910 INIT_WORK(&adapter
->reset_task
, e1000_reset_task
);
5911 INIT_WORK(&adapter
->watchdog_task
, e1000_watchdog_task
);
5912 INIT_WORK(&adapter
->downshift_task
, e1000e_downshift_workaround
);
5913 INIT_WORK(&adapter
->update_phy_task
, e1000e_update_phy_task
);
5914 INIT_WORK(&adapter
->print_hang_task
, e1000_print_hw_hang
);
5915 INIT_WORK(&adapter
->led_blink_task
, e1000e_led_blink_task
);
5917 /* Initialize link parameters. User can change them with ethtool */
5918 adapter
->hw
.mac
.autoneg
= 1;
5919 adapter
->fc_autoneg
= 1;
5920 adapter
->hw
.fc
.requested_mode
= e1000_fc_default
;
5921 adapter
->hw
.fc
.current_mode
= e1000_fc_default
;
5922 adapter
->hw
.phy
.autoneg_advertised
= 0x2f;
5924 /* ring size defaults */
5925 adapter
->rx_ring
->count
= 256;
5926 adapter
->tx_ring
->count
= 256;
5929 * Initial Wake on LAN setting - If APM wake is enabled in
5930 * the EEPROM, enable the ACPI Magic Packet filter
5932 if (adapter
->flags
& FLAG_APME_IN_WUC
) {
5933 /* APME bit in EEPROM is mapped to WUC.APME */
5934 eeprom_data
= er32(WUC
);
5935 eeprom_apme_mask
= E1000_WUC_APME
;
5936 if (eeprom_data
& E1000_WUC_PHY_WAKE
)
5937 adapter
->flags2
|= FLAG2_HAS_PHY_WAKEUP
;
5938 } else if (adapter
->flags
& FLAG_APME_IN_CTRL3
) {
5939 if (adapter
->flags
& FLAG_APME_CHECK_PORT_B
&&
5940 (adapter
->hw
.bus
.func
== 1))
5941 e1000_read_nvm(&adapter
->hw
,
5942 NVM_INIT_CONTROL3_PORT_B
, 1, &eeprom_data
);
5944 e1000_read_nvm(&adapter
->hw
,
5945 NVM_INIT_CONTROL3_PORT_A
, 1, &eeprom_data
);
5948 /* fetch WoL from EEPROM */
5949 if (eeprom_data
& eeprom_apme_mask
)
5950 adapter
->eeprom_wol
|= E1000_WUFC_MAG
;
5953 * now that we have the eeprom settings, apply the special cases
5954 * where the eeprom may be wrong or the board simply won't support
5955 * wake on lan on a particular port
5957 if (!(adapter
->flags
& FLAG_HAS_WOL
))
5958 adapter
->eeprom_wol
= 0;
5960 /* initialize the wol settings based on the eeprom settings */
5961 adapter
->wol
= adapter
->eeprom_wol
;
5962 device_set_wakeup_enable(&adapter
->pdev
->dev
, adapter
->wol
);
5964 /* save off EEPROM version number */
5965 e1000_read_nvm(&adapter
->hw
, 5, 1, &adapter
->eeprom_vers
);
5967 /* reset the hardware with the new settings */
5968 e1000e_reset(adapter
);
5971 * If the controller has AMT, do not set DRV_LOAD until the interface
5972 * is up. For all other cases, let the f/w know that the h/w is now
5973 * under the control of the driver.
5975 if (!(adapter
->flags
& FLAG_HAS_AMT
))
5976 e1000e_get_hw_control(adapter
);
5978 strncpy(netdev
->name
, "eth%d", sizeof(netdev
->name
) - 1);
5979 err
= register_netdev(netdev
);
5983 /* carrier off reporting is important to ethtool even BEFORE open */
5984 netif_carrier_off(netdev
);
5986 e1000_print_device_info(adapter
);
5988 if (pci_dev_run_wake(pdev
))
5989 pm_runtime_put_noidle(&pdev
->dev
);
5994 if (!(adapter
->flags
& FLAG_HAS_AMT
))
5995 e1000e_release_hw_control(adapter
);
5997 if (!e1000_check_reset_block(&adapter
->hw
))
5998 e1000_phy_hw_reset(&adapter
->hw
);
6000 kfree(adapter
->tx_ring
);
6001 kfree(adapter
->rx_ring
);
6003 if (adapter
->hw
.flash_address
)
6004 iounmap(adapter
->hw
.flash_address
);
6005 e1000e_reset_interrupt_capability(adapter
);
6007 iounmap(adapter
->hw
.hw_addr
);
6009 free_netdev(netdev
);
6011 pci_release_selected_regions(pdev
,
6012 pci_select_bars(pdev
, IORESOURCE_MEM
));
6015 pci_disable_device(pdev
);
6020 * e1000_remove - Device Removal Routine
6021 * @pdev: PCI device information struct
6023 * e1000_remove is called by the PCI subsystem to alert the driver
6024 * that it should release a PCI device. The could be caused by a
6025 * Hot-Plug event, or because the driver is going to be removed from
6028 static void __devexit
e1000_remove(struct pci_dev
*pdev
)
6030 struct net_device
*netdev
= pci_get_drvdata(pdev
);
6031 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
6032 bool down
= test_bit(__E1000_DOWN
, &adapter
->state
);
6035 * The timers may be rescheduled, so explicitly disable them
6036 * from being rescheduled.
6039 set_bit(__E1000_DOWN
, &adapter
->state
);
6040 del_timer_sync(&adapter
->watchdog_timer
);
6041 del_timer_sync(&adapter
->phy_info_timer
);
6043 cancel_work_sync(&adapter
->reset_task
);
6044 cancel_work_sync(&adapter
->watchdog_task
);
6045 cancel_work_sync(&adapter
->downshift_task
);
6046 cancel_work_sync(&adapter
->update_phy_task
);
6047 cancel_work_sync(&adapter
->led_blink_task
);
6048 cancel_work_sync(&adapter
->print_hang_task
);
6050 if (!(netdev
->flags
& IFF_UP
))
6051 e1000_power_down_phy(adapter
);
6053 /* Don't lie to e1000_close() down the road. */
6055 clear_bit(__E1000_DOWN
, &adapter
->state
);
6056 unregister_netdev(netdev
);
6058 if (pci_dev_run_wake(pdev
))
6059 pm_runtime_get_noresume(&pdev
->dev
);
6062 * Release control of h/w to f/w. If f/w is AMT enabled, this
6063 * would have already happened in close and is redundant.
6065 e1000e_release_hw_control(adapter
);
6067 e1000e_reset_interrupt_capability(adapter
);
6068 kfree(adapter
->tx_ring
);
6069 kfree(adapter
->rx_ring
);
6071 iounmap(adapter
->hw
.hw_addr
);
6072 if (adapter
->hw
.flash_address
)
6073 iounmap(adapter
->hw
.flash_address
);
6074 pci_release_selected_regions(pdev
,
6075 pci_select_bars(pdev
, IORESOURCE_MEM
));
6077 free_netdev(netdev
);
6080 pci_disable_pcie_error_reporting(pdev
);
6082 pci_disable_device(pdev
);
6085 /* PCI Error Recovery (ERS) */
6086 static struct pci_error_handlers e1000_err_handler
= {
6087 .error_detected
= e1000_io_error_detected
,
6088 .slot_reset
= e1000_io_slot_reset
,
6089 .resume
= e1000_io_resume
,
6092 static DEFINE_PCI_DEVICE_TABLE(e1000_pci_tbl
) = {
6093 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571EB_COPPER
), board_82571
},
6094 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571EB_FIBER
), board_82571
},
6095 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571EB_QUAD_COPPER
), board_82571
},
6096 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571EB_QUAD_COPPER_LP
), board_82571
},
6097 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571EB_QUAD_FIBER
), board_82571
},
6098 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571EB_SERDES
), board_82571
},
6099 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571EB_SERDES_DUAL
), board_82571
},
6100 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571EB_SERDES_QUAD
), board_82571
},
6101 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571PT_QUAD_COPPER
), board_82571
},
6103 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82572EI
), board_82572
},
6104 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82572EI_COPPER
), board_82572
},
6105 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82572EI_FIBER
), board_82572
},
6106 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82572EI_SERDES
), board_82572
},
6108 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82573E
), board_82573
},
6109 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82573E_IAMT
), board_82573
},
6110 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82573L
), board_82573
},
6112 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82574L
), board_82574
},
6113 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82574LA
), board_82574
},
6114 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82583V
), board_82583
},
6116 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_80003ES2LAN_COPPER_DPT
),
6117 board_80003es2lan
},
6118 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_80003ES2LAN_COPPER_SPT
),
6119 board_80003es2lan
},
6120 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_80003ES2LAN_SERDES_DPT
),
6121 board_80003es2lan
},
6122 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_80003ES2LAN_SERDES_SPT
),
6123 board_80003es2lan
},
6125 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH8_IFE
), board_ich8lan
},
6126 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH8_IFE_G
), board_ich8lan
},
6127 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH8_IFE_GT
), board_ich8lan
},
6128 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH8_IGP_AMT
), board_ich8lan
},
6129 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH8_IGP_C
), board_ich8lan
},
6130 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH8_IGP_M
), board_ich8lan
},
6131 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH8_IGP_M_AMT
), board_ich8lan
},
6132 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH8_82567V_3
), board_ich8lan
},
6134 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_IFE
), board_ich9lan
},
6135 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_IFE_G
), board_ich9lan
},
6136 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_IFE_GT
), board_ich9lan
},
6137 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_IGP_AMT
), board_ich9lan
},
6138 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_IGP_C
), board_ich9lan
},
6139 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_BM
), board_ich9lan
},
6140 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_IGP_M
), board_ich9lan
},
6141 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_IGP_M_AMT
), board_ich9lan
},
6142 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_IGP_M_V
), board_ich9lan
},
6144 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH10_R_BM_LM
), board_ich9lan
},
6145 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH10_R_BM_LF
), board_ich9lan
},
6146 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH10_R_BM_V
), board_ich9lan
},
6148 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH10_D_BM_LM
), board_ich10lan
},
6149 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH10_D_BM_LF
), board_ich10lan
},
6150 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH10_D_BM_V
), board_ich10lan
},
6152 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_M_HV_LM
), board_pchlan
},
6153 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_M_HV_LC
), board_pchlan
},
6154 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_D_HV_DM
), board_pchlan
},
6155 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_D_HV_DC
), board_pchlan
},
6157 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH2_LV_LM
), board_pch2lan
},
6158 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH2_LV_V
), board_pch2lan
},
6160 { } /* terminate list */
6162 MODULE_DEVICE_TABLE(pci
, e1000_pci_tbl
);
6164 #ifdef CONFIG_PM_OPS
6165 static const struct dev_pm_ops e1000_pm_ops
= {
6166 SET_SYSTEM_SLEEP_PM_OPS(e1000_suspend
, e1000_resume
)
6167 SET_RUNTIME_PM_OPS(e1000_runtime_suspend
,
6168 e1000_runtime_resume
, e1000_idle
)
6172 /* PCI Device API Driver */
6173 static struct pci_driver e1000_driver
= {
6174 .name
= e1000e_driver_name
,
6175 .id_table
= e1000_pci_tbl
,
6176 .probe
= e1000_probe
,
6177 .remove
= __devexit_p(e1000_remove
),
6178 #ifdef CONFIG_PM_OPS
6179 .driver
.pm
= &e1000_pm_ops
,
6181 .shutdown
= e1000_shutdown
,
6182 .err_handler
= &e1000_err_handler
6186 * e1000_init_module - Driver Registration Routine
6188 * e1000_init_module is the first routine called when the driver is
6189 * loaded. All it does is register with the PCI subsystem.
6191 static int __init
e1000_init_module(void)
6194 pr_info("Intel(R) PRO/1000 Network Driver - %s\n",
6195 e1000e_driver_version
);
6196 pr_info("Copyright (c) 1999 - 2010 Intel Corporation.\n");
6197 ret
= pci_register_driver(&e1000_driver
);
6201 module_init(e1000_init_module
);
6204 * e1000_exit_module - Driver Exit Cleanup Routine
6206 * e1000_exit_module is called just before the driver is removed
6209 static void __exit
e1000_exit_module(void)
6211 pci_unregister_driver(&e1000_driver
);
6213 module_exit(e1000_exit_module
);
6216 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
6217 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
6218 MODULE_LICENSE("GPL");
6219 MODULE_VERSION(DRV_VERSION
);