proc: use seq_puts()/seq_putc() where possible
[linux-2.6/next.git] / drivers / net / e1000e / netdev.c
blobfa5b6045254732910a877f25c8f474a67cfea0e8
1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2010 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
31 #include <linux/module.h>
32 #include <linux/types.h>
33 #include <linux/init.h>
34 #include <linux/pci.h>
35 #include <linux/vmalloc.h>
36 #include <linux/pagemap.h>
37 #include <linux/delay.h>
38 #include <linux/netdevice.h>
39 #include <linux/tcp.h>
40 #include <linux/ipv6.h>
41 #include <linux/slab.h>
42 #include <net/checksum.h>
43 #include <net/ip6_checksum.h>
44 #include <linux/mii.h>
45 #include <linux/ethtool.h>
46 #include <linux/if_vlan.h>
47 #include <linux/cpu.h>
48 #include <linux/smp.h>
49 #include <linux/pm_qos_params.h>
50 #include <linux/pm_runtime.h>
51 #include <linux/aer.h>
53 #include "e1000.h"
55 #define DRV_EXTRAVERSION "-k2"
57 #define DRV_VERSION "1.2.20" DRV_EXTRAVERSION
58 char e1000e_driver_name[] = "e1000e";
59 const char e1000e_driver_version[] = DRV_VERSION;
61 static const struct e1000_info *e1000_info_tbl[] = {
62 [board_82571] = &e1000_82571_info,
63 [board_82572] = &e1000_82572_info,
64 [board_82573] = &e1000_82573_info,
65 [board_82574] = &e1000_82574_info,
66 [board_82583] = &e1000_82583_info,
67 [board_80003es2lan] = &e1000_es2_info,
68 [board_ich8lan] = &e1000_ich8_info,
69 [board_ich9lan] = &e1000_ich9_info,
70 [board_ich10lan] = &e1000_ich10_info,
71 [board_pchlan] = &e1000_pch_info,
72 [board_pch2lan] = &e1000_pch2_info,
75 struct e1000_reg_info {
76 u32 ofs;
77 char *name;
80 #define E1000_RDFH 0x02410 /* Rx Data FIFO Head - RW */
81 #define E1000_RDFT 0x02418 /* Rx Data FIFO Tail - RW */
82 #define E1000_RDFHS 0x02420 /* Rx Data FIFO Head Saved - RW */
83 #define E1000_RDFTS 0x02428 /* Rx Data FIFO Tail Saved - RW */
84 #define E1000_RDFPC 0x02430 /* Rx Data FIFO Packet Count - RW */
86 #define E1000_TDFH 0x03410 /* Tx Data FIFO Head - RW */
87 #define E1000_TDFT 0x03418 /* Tx Data FIFO Tail - RW */
88 #define E1000_TDFHS 0x03420 /* Tx Data FIFO Head Saved - RW */
89 #define E1000_TDFTS 0x03428 /* Tx Data FIFO Tail Saved - RW */
90 #define E1000_TDFPC 0x03430 /* Tx Data FIFO Packet Count - RW */
92 static const struct e1000_reg_info e1000_reg_info_tbl[] = {
94 /* General Registers */
95 {E1000_CTRL, "CTRL"},
96 {E1000_STATUS, "STATUS"},
97 {E1000_CTRL_EXT, "CTRL_EXT"},
99 /* Interrupt Registers */
100 {E1000_ICR, "ICR"},
102 /* RX Registers */
103 {E1000_RCTL, "RCTL"},
104 {E1000_RDLEN, "RDLEN"},
105 {E1000_RDH, "RDH"},
106 {E1000_RDT, "RDT"},
107 {E1000_RDTR, "RDTR"},
108 {E1000_RXDCTL(0), "RXDCTL"},
109 {E1000_ERT, "ERT"},
110 {E1000_RDBAL, "RDBAL"},
111 {E1000_RDBAH, "RDBAH"},
112 {E1000_RDFH, "RDFH"},
113 {E1000_RDFT, "RDFT"},
114 {E1000_RDFHS, "RDFHS"},
115 {E1000_RDFTS, "RDFTS"},
116 {E1000_RDFPC, "RDFPC"},
118 /* TX Registers */
119 {E1000_TCTL, "TCTL"},
120 {E1000_TDBAL, "TDBAL"},
121 {E1000_TDBAH, "TDBAH"},
122 {E1000_TDLEN, "TDLEN"},
123 {E1000_TDH, "TDH"},
124 {E1000_TDT, "TDT"},
125 {E1000_TIDV, "TIDV"},
126 {E1000_TXDCTL(0), "TXDCTL"},
127 {E1000_TADV, "TADV"},
128 {E1000_TARC(0), "TARC"},
129 {E1000_TDFH, "TDFH"},
130 {E1000_TDFT, "TDFT"},
131 {E1000_TDFHS, "TDFHS"},
132 {E1000_TDFTS, "TDFTS"},
133 {E1000_TDFPC, "TDFPC"},
135 /* List Terminator */
140 * e1000_regdump - register printout routine
142 static void e1000_regdump(struct e1000_hw *hw, struct e1000_reg_info *reginfo)
144 int n = 0;
145 char rname[16];
146 u32 regs[8];
148 switch (reginfo->ofs) {
149 case E1000_RXDCTL(0):
150 for (n = 0; n < 2; n++)
151 regs[n] = __er32(hw, E1000_RXDCTL(n));
152 break;
153 case E1000_TXDCTL(0):
154 for (n = 0; n < 2; n++)
155 regs[n] = __er32(hw, E1000_TXDCTL(n));
156 break;
157 case E1000_TARC(0):
158 for (n = 0; n < 2; n++)
159 regs[n] = __er32(hw, E1000_TARC(n));
160 break;
161 default:
162 printk(KERN_INFO "%-15s %08x\n",
163 reginfo->name, __er32(hw, reginfo->ofs));
164 return;
167 snprintf(rname, 16, "%s%s", reginfo->name, "[0-1]");
168 printk(KERN_INFO "%-15s ", rname);
169 for (n = 0; n < 2; n++)
170 printk(KERN_CONT "%08x ", regs[n]);
171 printk(KERN_CONT "\n");
176 * e1000e_dump - Print registers, tx-ring and rx-ring
178 static void e1000e_dump(struct e1000_adapter *adapter)
180 struct net_device *netdev = adapter->netdev;
181 struct e1000_hw *hw = &adapter->hw;
182 struct e1000_reg_info *reginfo;
183 struct e1000_ring *tx_ring = adapter->tx_ring;
184 struct e1000_tx_desc *tx_desc;
185 struct my_u0 { u64 a; u64 b; } *u0;
186 struct e1000_buffer *buffer_info;
187 struct e1000_ring *rx_ring = adapter->rx_ring;
188 union e1000_rx_desc_packet_split *rx_desc_ps;
189 struct e1000_rx_desc *rx_desc;
190 struct my_u1 { u64 a; u64 b; u64 c; u64 d; } *u1;
191 u32 staterr;
192 int i = 0;
194 if (!netif_msg_hw(adapter))
195 return;
197 /* Print netdevice Info */
198 if (netdev) {
199 dev_info(&adapter->pdev->dev, "Net device Info\n");
200 printk(KERN_INFO "Device Name state "
201 "trans_start last_rx\n");
202 printk(KERN_INFO "%-15s %016lX %016lX %016lX\n",
203 netdev->name,
204 netdev->state,
205 netdev->trans_start,
206 netdev->last_rx);
209 /* Print Registers */
210 dev_info(&adapter->pdev->dev, "Register Dump\n");
211 printk(KERN_INFO " Register Name Value\n");
212 for (reginfo = (struct e1000_reg_info *)e1000_reg_info_tbl;
213 reginfo->name; reginfo++) {
214 e1000_regdump(hw, reginfo);
217 /* Print TX Ring Summary */
218 if (!netdev || !netif_running(netdev))
219 goto exit;
221 dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
222 printk(KERN_INFO "Queue [NTU] [NTC] [bi(ntc)->dma ]"
223 " leng ntw timestamp\n");
224 buffer_info = &tx_ring->buffer_info[tx_ring->next_to_clean];
225 printk(KERN_INFO " %5d %5X %5X %016llX %04X %3X %016llX\n",
226 0, tx_ring->next_to_use, tx_ring->next_to_clean,
227 (unsigned long long)buffer_info->dma,
228 buffer_info->length,
229 buffer_info->next_to_watch,
230 (unsigned long long)buffer_info->time_stamp);
232 /* Print TX Rings */
233 if (!netif_msg_tx_done(adapter))
234 goto rx_ring_summary;
236 dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
238 /* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
240 * Legacy Transmit Descriptor
241 * +--------------------------------------------------------------+
242 * 0 | Buffer Address [63:0] (Reserved on Write Back) |
243 * +--------------------------------------------------------------+
244 * 8 | Special | CSS | Status | CMD | CSO | Length |
245 * +--------------------------------------------------------------+
246 * 63 48 47 36 35 32 31 24 23 16 15 0
248 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
249 * 63 48 47 40 39 32 31 16 15 8 7 0
250 * +----------------------------------------------------------------+
251 * 0 | TUCSE | TUCS0 | TUCSS | IPCSE | IPCS0 | IPCSS |
252 * +----------------------------------------------------------------+
253 * 8 | MSS | HDRLEN | RSV | STA | TUCMD | DTYP | PAYLEN |
254 * +----------------------------------------------------------------+
255 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0
257 * Extended Data Descriptor (DTYP=0x1)
258 * +----------------------------------------------------------------+
259 * 0 | Buffer Address [63:0] |
260 * +----------------------------------------------------------------+
261 * 8 | VLAN tag | POPTS | Rsvd | Status | Command | DTYP | DTALEN |
262 * +----------------------------------------------------------------+
263 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0
265 printk(KERN_INFO "Tl[desc] [address 63:0 ] [SpeCssSCmCsLen]"
266 " [bi->dma ] leng ntw timestamp bi->skb "
267 "<-- Legacy format\n");
268 printk(KERN_INFO "Tc[desc] [Ce CoCsIpceCoS] [MssHlRSCm0Plen]"
269 " [bi->dma ] leng ntw timestamp bi->skb "
270 "<-- Ext Context format\n");
271 printk(KERN_INFO "Td[desc] [address 63:0 ] [VlaPoRSCm1Dlen]"
272 " [bi->dma ] leng ntw timestamp bi->skb "
273 "<-- Ext Data format\n");
274 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
275 tx_desc = E1000_TX_DESC(*tx_ring, i);
276 buffer_info = &tx_ring->buffer_info[i];
277 u0 = (struct my_u0 *)tx_desc;
278 printk(KERN_INFO "T%c[0x%03X] %016llX %016llX %016llX "
279 "%04X %3X %016llX %p",
280 (!(le64_to_cpu(u0->b) & (1<<29)) ? 'l' :
281 ((le64_to_cpu(u0->b) & (1<<20)) ? 'd' : 'c')), i,
282 (unsigned long long)le64_to_cpu(u0->a),
283 (unsigned long long)le64_to_cpu(u0->b),
284 (unsigned long long)buffer_info->dma,
285 buffer_info->length, buffer_info->next_to_watch,
286 (unsigned long long)buffer_info->time_stamp,
287 buffer_info->skb);
288 if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
289 printk(KERN_CONT " NTC/U\n");
290 else if (i == tx_ring->next_to_use)
291 printk(KERN_CONT " NTU\n");
292 else if (i == tx_ring->next_to_clean)
293 printk(KERN_CONT " NTC\n");
294 else
295 printk(KERN_CONT "\n");
297 if (netif_msg_pktdata(adapter) && buffer_info->dma != 0)
298 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
299 16, 1, phys_to_virt(buffer_info->dma),
300 buffer_info->length, true);
303 /* Print RX Rings Summary */
304 rx_ring_summary:
305 dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
306 printk(KERN_INFO "Queue [NTU] [NTC]\n");
307 printk(KERN_INFO " %5d %5X %5X\n", 0,
308 rx_ring->next_to_use, rx_ring->next_to_clean);
310 /* Print RX Rings */
311 if (!netif_msg_rx_status(adapter))
312 goto exit;
314 dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
315 switch (adapter->rx_ps_pages) {
316 case 1:
317 case 2:
318 case 3:
319 /* [Extended] Packet Split Receive Descriptor Format
321 * +-----------------------------------------------------+
322 * 0 | Buffer Address 0 [63:0] |
323 * +-----------------------------------------------------+
324 * 8 | Buffer Address 1 [63:0] |
325 * +-----------------------------------------------------+
326 * 16 | Buffer Address 2 [63:0] |
327 * +-----------------------------------------------------+
328 * 24 | Buffer Address 3 [63:0] |
329 * +-----------------------------------------------------+
331 printk(KERN_INFO "R [desc] [buffer 0 63:0 ] "
332 "[buffer 1 63:0 ] "
333 "[buffer 2 63:0 ] [buffer 3 63:0 ] [bi->dma ] "
334 "[bi->skb] <-- Ext Pkt Split format\n");
335 /* [Extended] Receive Descriptor (Write-Back) Format
337 * 63 48 47 32 31 13 12 8 7 4 3 0
338 * +------------------------------------------------------+
339 * 0 | Packet | IP | Rsvd | MRQ | Rsvd | MRQ RSS |
340 * | Checksum | Ident | | Queue | | Type |
341 * +------------------------------------------------------+
342 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
343 * +------------------------------------------------------+
344 * 63 48 47 32 31 20 19 0
346 printk(KERN_INFO "RWB[desc] [ck ipid mrqhsh] "
347 "[vl l0 ee es] "
348 "[ l3 l2 l1 hs] [reserved ] ---------------- "
349 "[bi->skb] <-- Ext Rx Write-Back format\n");
350 for (i = 0; i < rx_ring->count; i++) {
351 buffer_info = &rx_ring->buffer_info[i];
352 rx_desc_ps = E1000_RX_DESC_PS(*rx_ring, i);
353 u1 = (struct my_u1 *)rx_desc_ps;
354 staterr =
355 le32_to_cpu(rx_desc_ps->wb.middle.status_error);
356 if (staterr & E1000_RXD_STAT_DD) {
357 /* Descriptor Done */
358 printk(KERN_INFO "RWB[0x%03X] %016llX "
359 "%016llX %016llX %016llX "
360 "---------------- %p", i,
361 (unsigned long long)le64_to_cpu(u1->a),
362 (unsigned long long)le64_to_cpu(u1->b),
363 (unsigned long long)le64_to_cpu(u1->c),
364 (unsigned long long)le64_to_cpu(u1->d),
365 buffer_info->skb);
366 } else {
367 printk(KERN_INFO "R [0x%03X] %016llX "
368 "%016llX %016llX %016llX %016llX %p", i,
369 (unsigned long long)le64_to_cpu(u1->a),
370 (unsigned long long)le64_to_cpu(u1->b),
371 (unsigned long long)le64_to_cpu(u1->c),
372 (unsigned long long)le64_to_cpu(u1->d),
373 (unsigned long long)buffer_info->dma,
374 buffer_info->skb);
376 if (netif_msg_pktdata(adapter))
377 print_hex_dump(KERN_INFO, "",
378 DUMP_PREFIX_ADDRESS, 16, 1,
379 phys_to_virt(buffer_info->dma),
380 adapter->rx_ps_bsize0, true);
383 if (i == rx_ring->next_to_use)
384 printk(KERN_CONT " NTU\n");
385 else if (i == rx_ring->next_to_clean)
386 printk(KERN_CONT " NTC\n");
387 else
388 printk(KERN_CONT "\n");
390 break;
391 default:
392 case 0:
393 /* Legacy Receive Descriptor Format
395 * +-----------------------------------------------------+
396 * | Buffer Address [63:0] |
397 * +-----------------------------------------------------+
398 * | VLAN Tag | Errors | Status 0 | Packet csum | Length |
399 * +-----------------------------------------------------+
400 * 63 48 47 40 39 32 31 16 15 0
402 printk(KERN_INFO "Rl[desc] [address 63:0 ] "
403 "[vl er S cks ln] [bi->dma ] [bi->skb] "
404 "<-- Legacy format\n");
405 for (i = 0; rx_ring->desc && (i < rx_ring->count); i++) {
406 rx_desc = E1000_RX_DESC(*rx_ring, i);
407 buffer_info = &rx_ring->buffer_info[i];
408 u0 = (struct my_u0 *)rx_desc;
409 printk(KERN_INFO "Rl[0x%03X] %016llX %016llX "
410 "%016llX %p", i,
411 (unsigned long long)le64_to_cpu(u0->a),
412 (unsigned long long)le64_to_cpu(u0->b),
413 (unsigned long long)buffer_info->dma,
414 buffer_info->skb);
415 if (i == rx_ring->next_to_use)
416 printk(KERN_CONT " NTU\n");
417 else if (i == rx_ring->next_to_clean)
418 printk(KERN_CONT " NTC\n");
419 else
420 printk(KERN_CONT "\n");
422 if (netif_msg_pktdata(adapter))
423 print_hex_dump(KERN_INFO, "",
424 DUMP_PREFIX_ADDRESS,
425 16, 1, phys_to_virt(buffer_info->dma),
426 adapter->rx_buffer_len, true);
430 exit:
431 return;
435 * e1000_desc_unused - calculate if we have unused descriptors
437 static int e1000_desc_unused(struct e1000_ring *ring)
439 if (ring->next_to_clean > ring->next_to_use)
440 return ring->next_to_clean - ring->next_to_use - 1;
442 return ring->count + ring->next_to_clean - ring->next_to_use - 1;
446 * e1000_receive_skb - helper function to handle Rx indications
447 * @adapter: board private structure
448 * @status: descriptor status field as written by hardware
449 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
450 * @skb: pointer to sk_buff to be indicated to stack
452 static void e1000_receive_skb(struct e1000_adapter *adapter,
453 struct net_device *netdev,
454 struct sk_buff *skb,
455 u8 status, __le16 vlan)
457 skb->protocol = eth_type_trans(skb, netdev);
459 if (adapter->vlgrp && (status & E1000_RXD_STAT_VP))
460 vlan_gro_receive(&adapter->napi, adapter->vlgrp,
461 le16_to_cpu(vlan), skb);
462 else
463 napi_gro_receive(&adapter->napi, skb);
467 * e1000_rx_checksum - Receive Checksum Offload for 82543
468 * @adapter: board private structure
469 * @status_err: receive descriptor status and error fields
470 * @csum: receive descriptor csum field
471 * @sk_buff: socket buffer with received data
473 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
474 u32 csum, struct sk_buff *skb)
476 u16 status = (u16)status_err;
477 u8 errors = (u8)(status_err >> 24);
479 skb_checksum_none_assert(skb);
481 /* Ignore Checksum bit is set */
482 if (status & E1000_RXD_STAT_IXSM)
483 return;
484 /* TCP/UDP checksum error bit is set */
485 if (errors & E1000_RXD_ERR_TCPE) {
486 /* let the stack verify checksum errors */
487 adapter->hw_csum_err++;
488 return;
491 /* TCP/UDP Checksum has not been calculated */
492 if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
493 return;
495 /* It must be a TCP or UDP packet with a valid checksum */
496 if (status & E1000_RXD_STAT_TCPCS) {
497 /* TCP checksum is good */
498 skb->ip_summed = CHECKSUM_UNNECESSARY;
499 } else {
501 * IP fragment with UDP payload
502 * Hardware complements the payload checksum, so we undo it
503 * and then put the value in host order for further stack use.
505 __sum16 sum = (__force __sum16)htons(csum);
506 skb->csum = csum_unfold(~sum);
507 skb->ip_summed = CHECKSUM_COMPLETE;
509 adapter->hw_csum_good++;
513 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
514 * @adapter: address of board private structure
516 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
517 int cleaned_count)
519 struct net_device *netdev = adapter->netdev;
520 struct pci_dev *pdev = adapter->pdev;
521 struct e1000_ring *rx_ring = adapter->rx_ring;
522 struct e1000_rx_desc *rx_desc;
523 struct e1000_buffer *buffer_info;
524 struct sk_buff *skb;
525 unsigned int i;
526 unsigned int bufsz = adapter->rx_buffer_len;
528 i = rx_ring->next_to_use;
529 buffer_info = &rx_ring->buffer_info[i];
531 while (cleaned_count--) {
532 skb = buffer_info->skb;
533 if (skb) {
534 skb_trim(skb, 0);
535 goto map_skb;
538 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
539 if (!skb) {
540 /* Better luck next round */
541 adapter->alloc_rx_buff_failed++;
542 break;
545 buffer_info->skb = skb;
546 map_skb:
547 buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
548 adapter->rx_buffer_len,
549 DMA_FROM_DEVICE);
550 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
551 dev_err(&pdev->dev, "RX DMA map failed\n");
552 adapter->rx_dma_failed++;
553 break;
556 rx_desc = E1000_RX_DESC(*rx_ring, i);
557 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
559 if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
561 * Force memory writes to complete before letting h/w
562 * know there are new descriptors to fetch. (Only
563 * applicable for weak-ordered memory model archs,
564 * such as IA-64).
566 wmb();
567 writel(i, adapter->hw.hw_addr + rx_ring->tail);
569 i++;
570 if (i == rx_ring->count)
571 i = 0;
572 buffer_info = &rx_ring->buffer_info[i];
575 rx_ring->next_to_use = i;
579 * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
580 * @adapter: address of board private structure
582 static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
583 int cleaned_count)
585 struct net_device *netdev = adapter->netdev;
586 struct pci_dev *pdev = adapter->pdev;
587 union e1000_rx_desc_packet_split *rx_desc;
588 struct e1000_ring *rx_ring = adapter->rx_ring;
589 struct e1000_buffer *buffer_info;
590 struct e1000_ps_page *ps_page;
591 struct sk_buff *skb;
592 unsigned int i, j;
594 i = rx_ring->next_to_use;
595 buffer_info = &rx_ring->buffer_info[i];
597 while (cleaned_count--) {
598 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
600 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
601 ps_page = &buffer_info->ps_pages[j];
602 if (j >= adapter->rx_ps_pages) {
603 /* all unused desc entries get hw null ptr */
604 rx_desc->read.buffer_addr[j+1] = ~cpu_to_le64(0);
605 continue;
607 if (!ps_page->page) {
608 ps_page->page = alloc_page(GFP_ATOMIC);
609 if (!ps_page->page) {
610 adapter->alloc_rx_buff_failed++;
611 goto no_buffers;
613 ps_page->dma = dma_map_page(&pdev->dev,
614 ps_page->page,
615 0, PAGE_SIZE,
616 DMA_FROM_DEVICE);
617 if (dma_mapping_error(&pdev->dev,
618 ps_page->dma)) {
619 dev_err(&adapter->pdev->dev,
620 "RX DMA page map failed\n");
621 adapter->rx_dma_failed++;
622 goto no_buffers;
626 * Refresh the desc even if buffer_addrs
627 * didn't change because each write-back
628 * erases this info.
630 rx_desc->read.buffer_addr[j+1] =
631 cpu_to_le64(ps_page->dma);
634 skb = netdev_alloc_skb_ip_align(netdev,
635 adapter->rx_ps_bsize0);
637 if (!skb) {
638 adapter->alloc_rx_buff_failed++;
639 break;
642 buffer_info->skb = skb;
643 buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
644 adapter->rx_ps_bsize0,
645 DMA_FROM_DEVICE);
646 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
647 dev_err(&pdev->dev, "RX DMA map failed\n");
648 adapter->rx_dma_failed++;
649 /* cleanup skb */
650 dev_kfree_skb_any(skb);
651 buffer_info->skb = NULL;
652 break;
655 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
657 if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
659 * Force memory writes to complete before letting h/w
660 * know there are new descriptors to fetch. (Only
661 * applicable for weak-ordered memory model archs,
662 * such as IA-64).
664 wmb();
665 writel(i<<1, adapter->hw.hw_addr + rx_ring->tail);
668 i++;
669 if (i == rx_ring->count)
670 i = 0;
671 buffer_info = &rx_ring->buffer_info[i];
674 no_buffers:
675 rx_ring->next_to_use = i;
679 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
680 * @adapter: address of board private structure
681 * @cleaned_count: number of buffers to allocate this pass
684 static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
685 int cleaned_count)
687 struct net_device *netdev = adapter->netdev;
688 struct pci_dev *pdev = adapter->pdev;
689 struct e1000_rx_desc *rx_desc;
690 struct e1000_ring *rx_ring = adapter->rx_ring;
691 struct e1000_buffer *buffer_info;
692 struct sk_buff *skb;
693 unsigned int i;
694 unsigned int bufsz = 256 - 16 /* for skb_reserve */;
696 i = rx_ring->next_to_use;
697 buffer_info = &rx_ring->buffer_info[i];
699 while (cleaned_count--) {
700 skb = buffer_info->skb;
701 if (skb) {
702 skb_trim(skb, 0);
703 goto check_page;
706 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
707 if (unlikely(!skb)) {
708 /* Better luck next round */
709 adapter->alloc_rx_buff_failed++;
710 break;
713 buffer_info->skb = skb;
714 check_page:
715 /* allocate a new page if necessary */
716 if (!buffer_info->page) {
717 buffer_info->page = alloc_page(GFP_ATOMIC);
718 if (unlikely(!buffer_info->page)) {
719 adapter->alloc_rx_buff_failed++;
720 break;
724 if (!buffer_info->dma)
725 buffer_info->dma = dma_map_page(&pdev->dev,
726 buffer_info->page, 0,
727 PAGE_SIZE,
728 DMA_FROM_DEVICE);
730 rx_desc = E1000_RX_DESC(*rx_ring, i);
731 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
733 if (unlikely(++i == rx_ring->count))
734 i = 0;
735 buffer_info = &rx_ring->buffer_info[i];
738 if (likely(rx_ring->next_to_use != i)) {
739 rx_ring->next_to_use = i;
740 if (unlikely(i-- == 0))
741 i = (rx_ring->count - 1);
743 /* Force memory writes to complete before letting h/w
744 * know there are new descriptors to fetch. (Only
745 * applicable for weak-ordered memory model archs,
746 * such as IA-64). */
747 wmb();
748 writel(i, adapter->hw.hw_addr + rx_ring->tail);
753 * e1000_clean_rx_irq - Send received data up the network stack; legacy
754 * @adapter: board private structure
756 * the return value indicates whether actual cleaning was done, there
757 * is no guarantee that everything was cleaned
759 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
760 int *work_done, int work_to_do)
762 struct net_device *netdev = adapter->netdev;
763 struct pci_dev *pdev = adapter->pdev;
764 struct e1000_hw *hw = &adapter->hw;
765 struct e1000_ring *rx_ring = adapter->rx_ring;
766 struct e1000_rx_desc *rx_desc, *next_rxd;
767 struct e1000_buffer *buffer_info, *next_buffer;
768 u32 length;
769 unsigned int i;
770 int cleaned_count = 0;
771 bool cleaned = 0;
772 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
774 i = rx_ring->next_to_clean;
775 rx_desc = E1000_RX_DESC(*rx_ring, i);
776 buffer_info = &rx_ring->buffer_info[i];
778 while (rx_desc->status & E1000_RXD_STAT_DD) {
779 struct sk_buff *skb;
780 u8 status;
782 if (*work_done >= work_to_do)
783 break;
784 (*work_done)++;
785 rmb(); /* read descriptor and rx_buffer_info after status DD */
787 status = rx_desc->status;
788 skb = buffer_info->skb;
789 buffer_info->skb = NULL;
791 prefetch(skb->data - NET_IP_ALIGN);
793 i++;
794 if (i == rx_ring->count)
795 i = 0;
796 next_rxd = E1000_RX_DESC(*rx_ring, i);
797 prefetch(next_rxd);
799 next_buffer = &rx_ring->buffer_info[i];
801 cleaned = 1;
802 cleaned_count++;
803 dma_unmap_single(&pdev->dev,
804 buffer_info->dma,
805 adapter->rx_buffer_len,
806 DMA_FROM_DEVICE);
807 buffer_info->dma = 0;
809 length = le16_to_cpu(rx_desc->length);
812 * !EOP means multiple descriptors were used to store a single
813 * packet, if that's the case we need to toss it. In fact, we
814 * need to toss every packet with the EOP bit clear and the
815 * next frame that _does_ have the EOP bit set, as it is by
816 * definition only a frame fragment
818 if (unlikely(!(status & E1000_RXD_STAT_EOP)))
819 adapter->flags2 |= FLAG2_IS_DISCARDING;
821 if (adapter->flags2 & FLAG2_IS_DISCARDING) {
822 /* All receives must fit into a single buffer */
823 e_dbg("Receive packet consumed multiple buffers\n");
824 /* recycle */
825 buffer_info->skb = skb;
826 if (status & E1000_RXD_STAT_EOP)
827 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
828 goto next_desc;
831 if (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK) {
832 /* recycle */
833 buffer_info->skb = skb;
834 goto next_desc;
837 /* adjust length to remove Ethernet CRC */
838 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING))
839 length -= 4;
841 total_rx_bytes += length;
842 total_rx_packets++;
845 * code added for copybreak, this should improve
846 * performance for small packets with large amounts
847 * of reassembly being done in the stack
849 if (length < copybreak) {
850 struct sk_buff *new_skb =
851 netdev_alloc_skb_ip_align(netdev, length);
852 if (new_skb) {
853 skb_copy_to_linear_data_offset(new_skb,
854 -NET_IP_ALIGN,
855 (skb->data -
856 NET_IP_ALIGN),
857 (length +
858 NET_IP_ALIGN));
859 /* save the skb in buffer_info as good */
860 buffer_info->skb = skb;
861 skb = new_skb;
863 /* else just continue with the old one */
865 /* end copybreak code */
866 skb_put(skb, length);
868 /* Receive Checksum Offload */
869 e1000_rx_checksum(adapter,
870 (u32)(status) |
871 ((u32)(rx_desc->errors) << 24),
872 le16_to_cpu(rx_desc->csum), skb);
874 e1000_receive_skb(adapter, netdev, skb,status,rx_desc->special);
876 next_desc:
877 rx_desc->status = 0;
879 /* return some buffers to hardware, one at a time is too slow */
880 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
881 adapter->alloc_rx_buf(adapter, cleaned_count);
882 cleaned_count = 0;
885 /* use prefetched values */
886 rx_desc = next_rxd;
887 buffer_info = next_buffer;
889 rx_ring->next_to_clean = i;
891 cleaned_count = e1000_desc_unused(rx_ring);
892 if (cleaned_count)
893 adapter->alloc_rx_buf(adapter, cleaned_count);
895 adapter->total_rx_bytes += total_rx_bytes;
896 adapter->total_rx_packets += total_rx_packets;
897 netdev->stats.rx_bytes += total_rx_bytes;
898 netdev->stats.rx_packets += total_rx_packets;
899 return cleaned;
902 static void e1000_put_txbuf(struct e1000_adapter *adapter,
903 struct e1000_buffer *buffer_info)
905 if (buffer_info->dma) {
906 if (buffer_info->mapped_as_page)
907 dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
908 buffer_info->length, DMA_TO_DEVICE);
909 else
910 dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
911 buffer_info->length, DMA_TO_DEVICE);
912 buffer_info->dma = 0;
914 if (buffer_info->skb) {
915 dev_kfree_skb_any(buffer_info->skb);
916 buffer_info->skb = NULL;
918 buffer_info->time_stamp = 0;
921 static void e1000_print_hw_hang(struct work_struct *work)
923 struct e1000_adapter *adapter = container_of(work,
924 struct e1000_adapter,
925 print_hang_task);
926 struct e1000_ring *tx_ring = adapter->tx_ring;
927 unsigned int i = tx_ring->next_to_clean;
928 unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
929 struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
930 struct e1000_hw *hw = &adapter->hw;
931 u16 phy_status, phy_1000t_status, phy_ext_status;
932 u16 pci_status;
934 e1e_rphy(hw, PHY_STATUS, &phy_status);
935 e1e_rphy(hw, PHY_1000T_STATUS, &phy_1000t_status);
936 e1e_rphy(hw, PHY_EXT_STATUS, &phy_ext_status);
938 pci_read_config_word(adapter->pdev, PCI_STATUS, &pci_status);
940 /* detected Hardware unit hang */
941 e_err("Detected Hardware Unit Hang:\n"
942 " TDH <%x>\n"
943 " TDT <%x>\n"
944 " next_to_use <%x>\n"
945 " next_to_clean <%x>\n"
946 "buffer_info[next_to_clean]:\n"
947 " time_stamp <%lx>\n"
948 " next_to_watch <%x>\n"
949 " jiffies <%lx>\n"
950 " next_to_watch.status <%x>\n"
951 "MAC Status <%x>\n"
952 "PHY Status <%x>\n"
953 "PHY 1000BASE-T Status <%x>\n"
954 "PHY Extended Status <%x>\n"
955 "PCI Status <%x>\n",
956 readl(adapter->hw.hw_addr + tx_ring->head),
957 readl(adapter->hw.hw_addr + tx_ring->tail),
958 tx_ring->next_to_use,
959 tx_ring->next_to_clean,
960 tx_ring->buffer_info[eop].time_stamp,
961 eop,
962 jiffies,
963 eop_desc->upper.fields.status,
964 er32(STATUS),
965 phy_status,
966 phy_1000t_status,
967 phy_ext_status,
968 pci_status);
972 * e1000_clean_tx_irq - Reclaim resources after transmit completes
973 * @adapter: board private structure
975 * the return value indicates whether actual cleaning was done, there
976 * is no guarantee that everything was cleaned
978 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter)
980 struct net_device *netdev = adapter->netdev;
981 struct e1000_hw *hw = &adapter->hw;
982 struct e1000_ring *tx_ring = adapter->tx_ring;
983 struct e1000_tx_desc *tx_desc, *eop_desc;
984 struct e1000_buffer *buffer_info;
985 unsigned int i, eop;
986 unsigned int count = 0;
987 unsigned int total_tx_bytes = 0, total_tx_packets = 0;
989 i = tx_ring->next_to_clean;
990 eop = tx_ring->buffer_info[i].next_to_watch;
991 eop_desc = E1000_TX_DESC(*tx_ring, eop);
993 while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
994 (count < tx_ring->count)) {
995 bool cleaned = false;
996 rmb(); /* read buffer_info after eop_desc */
997 for (; !cleaned; count++) {
998 tx_desc = E1000_TX_DESC(*tx_ring, i);
999 buffer_info = &tx_ring->buffer_info[i];
1000 cleaned = (i == eop);
1002 if (cleaned) {
1003 total_tx_packets += buffer_info->segs;
1004 total_tx_bytes += buffer_info->bytecount;
1007 e1000_put_txbuf(adapter, buffer_info);
1008 tx_desc->upper.data = 0;
1010 i++;
1011 if (i == tx_ring->count)
1012 i = 0;
1015 if (i == tx_ring->next_to_use)
1016 break;
1017 eop = tx_ring->buffer_info[i].next_to_watch;
1018 eop_desc = E1000_TX_DESC(*tx_ring, eop);
1021 tx_ring->next_to_clean = i;
1023 #define TX_WAKE_THRESHOLD 32
1024 if (count && netif_carrier_ok(netdev) &&
1025 e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
1026 /* Make sure that anybody stopping the queue after this
1027 * sees the new next_to_clean.
1029 smp_mb();
1031 if (netif_queue_stopped(netdev) &&
1032 !(test_bit(__E1000_DOWN, &adapter->state))) {
1033 netif_wake_queue(netdev);
1034 ++adapter->restart_queue;
1038 if (adapter->detect_tx_hung) {
1040 * Detect a transmit hang in hardware, this serializes the
1041 * check with the clearing of time_stamp and movement of i
1043 adapter->detect_tx_hung = 0;
1044 if (tx_ring->buffer_info[i].time_stamp &&
1045 time_after(jiffies, tx_ring->buffer_info[i].time_stamp
1046 + (adapter->tx_timeout_factor * HZ)) &&
1047 !(er32(STATUS) & E1000_STATUS_TXOFF)) {
1048 schedule_work(&adapter->print_hang_task);
1049 netif_stop_queue(netdev);
1052 adapter->total_tx_bytes += total_tx_bytes;
1053 adapter->total_tx_packets += total_tx_packets;
1054 netdev->stats.tx_bytes += total_tx_bytes;
1055 netdev->stats.tx_packets += total_tx_packets;
1056 return count < tx_ring->count;
1060 * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
1061 * @adapter: board private structure
1063 * the return value indicates whether actual cleaning was done, there
1064 * is no guarantee that everything was cleaned
1066 static bool e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
1067 int *work_done, int work_to_do)
1069 struct e1000_hw *hw = &adapter->hw;
1070 union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
1071 struct net_device *netdev = adapter->netdev;
1072 struct pci_dev *pdev = adapter->pdev;
1073 struct e1000_ring *rx_ring = adapter->rx_ring;
1074 struct e1000_buffer *buffer_info, *next_buffer;
1075 struct e1000_ps_page *ps_page;
1076 struct sk_buff *skb;
1077 unsigned int i, j;
1078 u32 length, staterr;
1079 int cleaned_count = 0;
1080 bool cleaned = 0;
1081 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1083 i = rx_ring->next_to_clean;
1084 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
1085 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1086 buffer_info = &rx_ring->buffer_info[i];
1088 while (staterr & E1000_RXD_STAT_DD) {
1089 if (*work_done >= work_to_do)
1090 break;
1091 (*work_done)++;
1092 skb = buffer_info->skb;
1093 rmb(); /* read descriptor and rx_buffer_info after status DD */
1095 /* in the packet split case this is header only */
1096 prefetch(skb->data - NET_IP_ALIGN);
1098 i++;
1099 if (i == rx_ring->count)
1100 i = 0;
1101 next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
1102 prefetch(next_rxd);
1104 next_buffer = &rx_ring->buffer_info[i];
1106 cleaned = 1;
1107 cleaned_count++;
1108 dma_unmap_single(&pdev->dev, buffer_info->dma,
1109 adapter->rx_ps_bsize0,
1110 DMA_FROM_DEVICE);
1111 buffer_info->dma = 0;
1113 /* see !EOP comment in other rx routine */
1114 if (!(staterr & E1000_RXD_STAT_EOP))
1115 adapter->flags2 |= FLAG2_IS_DISCARDING;
1117 if (adapter->flags2 & FLAG2_IS_DISCARDING) {
1118 e_dbg("Packet Split buffers didn't pick up the full "
1119 "packet\n");
1120 dev_kfree_skb_irq(skb);
1121 if (staterr & E1000_RXD_STAT_EOP)
1122 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1123 goto next_desc;
1126 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
1127 dev_kfree_skb_irq(skb);
1128 goto next_desc;
1131 length = le16_to_cpu(rx_desc->wb.middle.length0);
1133 if (!length) {
1134 e_dbg("Last part of the packet spanning multiple "
1135 "descriptors\n");
1136 dev_kfree_skb_irq(skb);
1137 goto next_desc;
1140 /* Good Receive */
1141 skb_put(skb, length);
1145 * this looks ugly, but it seems compiler issues make it
1146 * more efficient than reusing j
1148 int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
1151 * page alloc/put takes too long and effects small packet
1152 * throughput, so unsplit small packets and save the alloc/put
1153 * only valid in softirq (napi) context to call kmap_*
1155 if (l1 && (l1 <= copybreak) &&
1156 ((length + l1) <= adapter->rx_ps_bsize0)) {
1157 u8 *vaddr;
1159 ps_page = &buffer_info->ps_pages[0];
1162 * there is no documentation about how to call
1163 * kmap_atomic, so we can't hold the mapping
1164 * very long
1166 dma_sync_single_for_cpu(&pdev->dev, ps_page->dma,
1167 PAGE_SIZE, DMA_FROM_DEVICE);
1168 vaddr = kmap_atomic(ps_page->page, KM_SKB_DATA_SOFTIRQ);
1169 memcpy(skb_tail_pointer(skb), vaddr, l1);
1170 kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
1171 dma_sync_single_for_device(&pdev->dev, ps_page->dma,
1172 PAGE_SIZE, DMA_FROM_DEVICE);
1174 /* remove the CRC */
1175 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING))
1176 l1 -= 4;
1178 skb_put(skb, l1);
1179 goto copydone;
1180 } /* if */
1183 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1184 length = le16_to_cpu(rx_desc->wb.upper.length[j]);
1185 if (!length)
1186 break;
1188 ps_page = &buffer_info->ps_pages[j];
1189 dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1190 DMA_FROM_DEVICE);
1191 ps_page->dma = 0;
1192 skb_fill_page_desc(skb, j, ps_page->page, 0, length);
1193 ps_page->page = NULL;
1194 skb->len += length;
1195 skb->data_len += length;
1196 skb->truesize += length;
1199 /* strip the ethernet crc, problem is we're using pages now so
1200 * this whole operation can get a little cpu intensive
1202 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING))
1203 pskb_trim(skb, skb->len - 4);
1205 copydone:
1206 total_rx_bytes += skb->len;
1207 total_rx_packets++;
1209 e1000_rx_checksum(adapter, staterr, le16_to_cpu(
1210 rx_desc->wb.lower.hi_dword.csum_ip.csum), skb);
1212 if (rx_desc->wb.upper.header_status &
1213 cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
1214 adapter->rx_hdr_split++;
1216 e1000_receive_skb(adapter, netdev, skb,
1217 staterr, rx_desc->wb.middle.vlan);
1219 next_desc:
1220 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
1221 buffer_info->skb = NULL;
1223 /* return some buffers to hardware, one at a time is too slow */
1224 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1225 adapter->alloc_rx_buf(adapter, cleaned_count);
1226 cleaned_count = 0;
1229 /* use prefetched values */
1230 rx_desc = next_rxd;
1231 buffer_info = next_buffer;
1233 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1235 rx_ring->next_to_clean = i;
1237 cleaned_count = e1000_desc_unused(rx_ring);
1238 if (cleaned_count)
1239 adapter->alloc_rx_buf(adapter, cleaned_count);
1241 adapter->total_rx_bytes += total_rx_bytes;
1242 adapter->total_rx_packets += total_rx_packets;
1243 netdev->stats.rx_bytes += total_rx_bytes;
1244 netdev->stats.rx_packets += total_rx_packets;
1245 return cleaned;
1249 * e1000_consume_page - helper function
1251 static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
1252 u16 length)
1254 bi->page = NULL;
1255 skb->len += length;
1256 skb->data_len += length;
1257 skb->truesize += length;
1261 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
1262 * @adapter: board private structure
1264 * the return value indicates whether actual cleaning was done, there
1265 * is no guarantee that everything was cleaned
1268 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
1269 int *work_done, int work_to_do)
1271 struct net_device *netdev = adapter->netdev;
1272 struct pci_dev *pdev = adapter->pdev;
1273 struct e1000_ring *rx_ring = adapter->rx_ring;
1274 struct e1000_rx_desc *rx_desc, *next_rxd;
1275 struct e1000_buffer *buffer_info, *next_buffer;
1276 u32 length;
1277 unsigned int i;
1278 int cleaned_count = 0;
1279 bool cleaned = false;
1280 unsigned int total_rx_bytes=0, total_rx_packets=0;
1282 i = rx_ring->next_to_clean;
1283 rx_desc = E1000_RX_DESC(*rx_ring, i);
1284 buffer_info = &rx_ring->buffer_info[i];
1286 while (rx_desc->status & E1000_RXD_STAT_DD) {
1287 struct sk_buff *skb;
1288 u8 status;
1290 if (*work_done >= work_to_do)
1291 break;
1292 (*work_done)++;
1293 rmb(); /* read descriptor and rx_buffer_info after status DD */
1295 status = rx_desc->status;
1296 skb = buffer_info->skb;
1297 buffer_info->skb = NULL;
1299 ++i;
1300 if (i == rx_ring->count)
1301 i = 0;
1302 next_rxd = E1000_RX_DESC(*rx_ring, i);
1303 prefetch(next_rxd);
1305 next_buffer = &rx_ring->buffer_info[i];
1307 cleaned = true;
1308 cleaned_count++;
1309 dma_unmap_page(&pdev->dev, buffer_info->dma, PAGE_SIZE,
1310 DMA_FROM_DEVICE);
1311 buffer_info->dma = 0;
1313 length = le16_to_cpu(rx_desc->length);
1315 /* errors is only valid for DD + EOP descriptors */
1316 if (unlikely((status & E1000_RXD_STAT_EOP) &&
1317 (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
1318 /* recycle both page and skb */
1319 buffer_info->skb = skb;
1320 /* an error means any chain goes out the window
1321 * too */
1322 if (rx_ring->rx_skb_top)
1323 dev_kfree_skb(rx_ring->rx_skb_top);
1324 rx_ring->rx_skb_top = NULL;
1325 goto next_desc;
1328 #define rxtop (rx_ring->rx_skb_top)
1329 if (!(status & E1000_RXD_STAT_EOP)) {
1330 /* this descriptor is only the beginning (or middle) */
1331 if (!rxtop) {
1332 /* this is the beginning of a chain */
1333 rxtop = skb;
1334 skb_fill_page_desc(rxtop, 0, buffer_info->page,
1335 0, length);
1336 } else {
1337 /* this is the middle of a chain */
1338 skb_fill_page_desc(rxtop,
1339 skb_shinfo(rxtop)->nr_frags,
1340 buffer_info->page, 0, length);
1341 /* re-use the skb, only consumed the page */
1342 buffer_info->skb = skb;
1344 e1000_consume_page(buffer_info, rxtop, length);
1345 goto next_desc;
1346 } else {
1347 if (rxtop) {
1348 /* end of the chain */
1349 skb_fill_page_desc(rxtop,
1350 skb_shinfo(rxtop)->nr_frags,
1351 buffer_info->page, 0, length);
1352 /* re-use the current skb, we only consumed the
1353 * page */
1354 buffer_info->skb = skb;
1355 skb = rxtop;
1356 rxtop = NULL;
1357 e1000_consume_page(buffer_info, skb, length);
1358 } else {
1359 /* no chain, got EOP, this buf is the packet
1360 * copybreak to save the put_page/alloc_page */
1361 if (length <= copybreak &&
1362 skb_tailroom(skb) >= length) {
1363 u8 *vaddr;
1364 vaddr = kmap_atomic(buffer_info->page,
1365 KM_SKB_DATA_SOFTIRQ);
1366 memcpy(skb_tail_pointer(skb), vaddr,
1367 length);
1368 kunmap_atomic(vaddr,
1369 KM_SKB_DATA_SOFTIRQ);
1370 /* re-use the page, so don't erase
1371 * buffer_info->page */
1372 skb_put(skb, length);
1373 } else {
1374 skb_fill_page_desc(skb, 0,
1375 buffer_info->page, 0,
1376 length);
1377 e1000_consume_page(buffer_info, skb,
1378 length);
1383 /* Receive Checksum Offload XXX recompute due to CRC strip? */
1384 e1000_rx_checksum(adapter,
1385 (u32)(status) |
1386 ((u32)(rx_desc->errors) << 24),
1387 le16_to_cpu(rx_desc->csum), skb);
1389 /* probably a little skewed due to removing CRC */
1390 total_rx_bytes += skb->len;
1391 total_rx_packets++;
1393 /* eth type trans needs skb->data to point to something */
1394 if (!pskb_may_pull(skb, ETH_HLEN)) {
1395 e_err("pskb_may_pull failed.\n");
1396 dev_kfree_skb(skb);
1397 goto next_desc;
1400 e1000_receive_skb(adapter, netdev, skb, status,
1401 rx_desc->special);
1403 next_desc:
1404 rx_desc->status = 0;
1406 /* return some buffers to hardware, one at a time is too slow */
1407 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
1408 adapter->alloc_rx_buf(adapter, cleaned_count);
1409 cleaned_count = 0;
1412 /* use prefetched values */
1413 rx_desc = next_rxd;
1414 buffer_info = next_buffer;
1416 rx_ring->next_to_clean = i;
1418 cleaned_count = e1000_desc_unused(rx_ring);
1419 if (cleaned_count)
1420 adapter->alloc_rx_buf(adapter, cleaned_count);
1422 adapter->total_rx_bytes += total_rx_bytes;
1423 adapter->total_rx_packets += total_rx_packets;
1424 netdev->stats.rx_bytes += total_rx_bytes;
1425 netdev->stats.rx_packets += total_rx_packets;
1426 return cleaned;
1430 * e1000_clean_rx_ring - Free Rx Buffers per Queue
1431 * @adapter: board private structure
1433 static void e1000_clean_rx_ring(struct e1000_adapter *adapter)
1435 struct e1000_ring *rx_ring = adapter->rx_ring;
1436 struct e1000_buffer *buffer_info;
1437 struct e1000_ps_page *ps_page;
1438 struct pci_dev *pdev = adapter->pdev;
1439 unsigned int i, j;
1441 /* Free all the Rx ring sk_buffs */
1442 for (i = 0; i < rx_ring->count; i++) {
1443 buffer_info = &rx_ring->buffer_info[i];
1444 if (buffer_info->dma) {
1445 if (adapter->clean_rx == e1000_clean_rx_irq)
1446 dma_unmap_single(&pdev->dev, buffer_info->dma,
1447 adapter->rx_buffer_len,
1448 DMA_FROM_DEVICE);
1449 else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq)
1450 dma_unmap_page(&pdev->dev, buffer_info->dma,
1451 PAGE_SIZE,
1452 DMA_FROM_DEVICE);
1453 else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
1454 dma_unmap_single(&pdev->dev, buffer_info->dma,
1455 adapter->rx_ps_bsize0,
1456 DMA_FROM_DEVICE);
1457 buffer_info->dma = 0;
1460 if (buffer_info->page) {
1461 put_page(buffer_info->page);
1462 buffer_info->page = NULL;
1465 if (buffer_info->skb) {
1466 dev_kfree_skb(buffer_info->skb);
1467 buffer_info->skb = NULL;
1470 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1471 ps_page = &buffer_info->ps_pages[j];
1472 if (!ps_page->page)
1473 break;
1474 dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1475 DMA_FROM_DEVICE);
1476 ps_page->dma = 0;
1477 put_page(ps_page->page);
1478 ps_page->page = NULL;
1482 /* there also may be some cached data from a chained receive */
1483 if (rx_ring->rx_skb_top) {
1484 dev_kfree_skb(rx_ring->rx_skb_top);
1485 rx_ring->rx_skb_top = NULL;
1488 /* Zero out the descriptor ring */
1489 memset(rx_ring->desc, 0, rx_ring->size);
1491 rx_ring->next_to_clean = 0;
1492 rx_ring->next_to_use = 0;
1493 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1495 writel(0, adapter->hw.hw_addr + rx_ring->head);
1496 writel(0, adapter->hw.hw_addr + rx_ring->tail);
1499 static void e1000e_downshift_workaround(struct work_struct *work)
1501 struct e1000_adapter *adapter = container_of(work,
1502 struct e1000_adapter, downshift_task);
1504 e1000e_gig_downshift_workaround_ich8lan(&adapter->hw);
1508 * e1000_intr_msi - Interrupt Handler
1509 * @irq: interrupt number
1510 * @data: pointer to a network interface device structure
1512 static irqreturn_t e1000_intr_msi(int irq, void *data)
1514 struct net_device *netdev = data;
1515 struct e1000_adapter *adapter = netdev_priv(netdev);
1516 struct e1000_hw *hw = &adapter->hw;
1517 u32 icr = er32(ICR);
1520 * read ICR disables interrupts using IAM
1523 if (icr & E1000_ICR_LSC) {
1524 hw->mac.get_link_status = 1;
1526 * ICH8 workaround-- Call gig speed drop workaround on cable
1527 * disconnect (LSC) before accessing any PHY registers
1529 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1530 (!(er32(STATUS) & E1000_STATUS_LU)))
1531 schedule_work(&adapter->downshift_task);
1534 * 80003ES2LAN workaround-- For packet buffer work-around on
1535 * link down event; disable receives here in the ISR and reset
1536 * adapter in watchdog
1538 if (netif_carrier_ok(netdev) &&
1539 adapter->flags & FLAG_RX_NEEDS_RESTART) {
1540 /* disable receives */
1541 u32 rctl = er32(RCTL);
1542 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1543 adapter->flags |= FLAG_RX_RESTART_NOW;
1545 /* guard against interrupt when we're going down */
1546 if (!test_bit(__E1000_DOWN, &adapter->state))
1547 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1550 if (napi_schedule_prep(&adapter->napi)) {
1551 adapter->total_tx_bytes = 0;
1552 adapter->total_tx_packets = 0;
1553 adapter->total_rx_bytes = 0;
1554 adapter->total_rx_packets = 0;
1555 __napi_schedule(&adapter->napi);
1558 return IRQ_HANDLED;
1562 * e1000_intr - Interrupt Handler
1563 * @irq: interrupt number
1564 * @data: pointer to a network interface device structure
1566 static irqreturn_t e1000_intr(int irq, void *data)
1568 struct net_device *netdev = data;
1569 struct e1000_adapter *adapter = netdev_priv(netdev);
1570 struct e1000_hw *hw = &adapter->hw;
1571 u32 rctl, icr = er32(ICR);
1573 if (!icr || test_bit(__E1000_DOWN, &adapter->state))
1574 return IRQ_NONE; /* Not our interrupt */
1577 * IMS will not auto-mask if INT_ASSERTED is not set, and if it is
1578 * not set, then the adapter didn't send an interrupt
1580 if (!(icr & E1000_ICR_INT_ASSERTED))
1581 return IRQ_NONE;
1584 * Interrupt Auto-Mask...upon reading ICR,
1585 * interrupts are masked. No need for the
1586 * IMC write
1589 if (icr & E1000_ICR_LSC) {
1590 hw->mac.get_link_status = 1;
1592 * ICH8 workaround-- Call gig speed drop workaround on cable
1593 * disconnect (LSC) before accessing any PHY registers
1595 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1596 (!(er32(STATUS) & E1000_STATUS_LU)))
1597 schedule_work(&adapter->downshift_task);
1600 * 80003ES2LAN workaround--
1601 * For packet buffer work-around on link down event;
1602 * disable receives here in the ISR and
1603 * reset adapter in watchdog
1605 if (netif_carrier_ok(netdev) &&
1606 (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
1607 /* disable receives */
1608 rctl = er32(RCTL);
1609 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1610 adapter->flags |= FLAG_RX_RESTART_NOW;
1612 /* guard against interrupt when we're going down */
1613 if (!test_bit(__E1000_DOWN, &adapter->state))
1614 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1617 if (napi_schedule_prep(&adapter->napi)) {
1618 adapter->total_tx_bytes = 0;
1619 adapter->total_tx_packets = 0;
1620 adapter->total_rx_bytes = 0;
1621 adapter->total_rx_packets = 0;
1622 __napi_schedule(&adapter->napi);
1625 return IRQ_HANDLED;
1628 static irqreturn_t e1000_msix_other(int irq, void *data)
1630 struct net_device *netdev = data;
1631 struct e1000_adapter *adapter = netdev_priv(netdev);
1632 struct e1000_hw *hw = &adapter->hw;
1633 u32 icr = er32(ICR);
1635 if (!(icr & E1000_ICR_INT_ASSERTED)) {
1636 if (!test_bit(__E1000_DOWN, &adapter->state))
1637 ew32(IMS, E1000_IMS_OTHER);
1638 return IRQ_NONE;
1641 if (icr & adapter->eiac_mask)
1642 ew32(ICS, (icr & adapter->eiac_mask));
1644 if (icr & E1000_ICR_OTHER) {
1645 if (!(icr & E1000_ICR_LSC))
1646 goto no_link_interrupt;
1647 hw->mac.get_link_status = 1;
1648 /* guard against interrupt when we're going down */
1649 if (!test_bit(__E1000_DOWN, &adapter->state))
1650 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1653 no_link_interrupt:
1654 if (!test_bit(__E1000_DOWN, &adapter->state))
1655 ew32(IMS, E1000_IMS_LSC | E1000_IMS_OTHER);
1657 return IRQ_HANDLED;
1661 static irqreturn_t e1000_intr_msix_tx(int irq, void *data)
1663 struct net_device *netdev = data;
1664 struct e1000_adapter *adapter = netdev_priv(netdev);
1665 struct e1000_hw *hw = &adapter->hw;
1666 struct e1000_ring *tx_ring = adapter->tx_ring;
1669 adapter->total_tx_bytes = 0;
1670 adapter->total_tx_packets = 0;
1672 if (!e1000_clean_tx_irq(adapter))
1673 /* Ring was not completely cleaned, so fire another interrupt */
1674 ew32(ICS, tx_ring->ims_val);
1676 return IRQ_HANDLED;
1679 static irqreturn_t e1000_intr_msix_rx(int irq, void *data)
1681 struct net_device *netdev = data;
1682 struct e1000_adapter *adapter = netdev_priv(netdev);
1684 /* Write the ITR value calculated at the end of the
1685 * previous interrupt.
1687 if (adapter->rx_ring->set_itr) {
1688 writel(1000000000 / (adapter->rx_ring->itr_val * 256),
1689 adapter->hw.hw_addr + adapter->rx_ring->itr_register);
1690 adapter->rx_ring->set_itr = 0;
1693 if (napi_schedule_prep(&adapter->napi)) {
1694 adapter->total_rx_bytes = 0;
1695 adapter->total_rx_packets = 0;
1696 __napi_schedule(&adapter->napi);
1698 return IRQ_HANDLED;
1702 * e1000_configure_msix - Configure MSI-X hardware
1704 * e1000_configure_msix sets up the hardware to properly
1705 * generate MSI-X interrupts.
1707 static void e1000_configure_msix(struct e1000_adapter *adapter)
1709 struct e1000_hw *hw = &adapter->hw;
1710 struct e1000_ring *rx_ring = adapter->rx_ring;
1711 struct e1000_ring *tx_ring = adapter->tx_ring;
1712 int vector = 0;
1713 u32 ctrl_ext, ivar = 0;
1715 adapter->eiac_mask = 0;
1717 /* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
1718 if (hw->mac.type == e1000_82574) {
1719 u32 rfctl = er32(RFCTL);
1720 rfctl |= E1000_RFCTL_ACK_DIS;
1721 ew32(RFCTL, rfctl);
1724 #define E1000_IVAR_INT_ALLOC_VALID 0x8
1725 /* Configure Rx vector */
1726 rx_ring->ims_val = E1000_IMS_RXQ0;
1727 adapter->eiac_mask |= rx_ring->ims_val;
1728 if (rx_ring->itr_val)
1729 writel(1000000000 / (rx_ring->itr_val * 256),
1730 hw->hw_addr + rx_ring->itr_register);
1731 else
1732 writel(1, hw->hw_addr + rx_ring->itr_register);
1733 ivar = E1000_IVAR_INT_ALLOC_VALID | vector;
1735 /* Configure Tx vector */
1736 tx_ring->ims_val = E1000_IMS_TXQ0;
1737 vector++;
1738 if (tx_ring->itr_val)
1739 writel(1000000000 / (tx_ring->itr_val * 256),
1740 hw->hw_addr + tx_ring->itr_register);
1741 else
1742 writel(1, hw->hw_addr + tx_ring->itr_register);
1743 adapter->eiac_mask |= tx_ring->ims_val;
1744 ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8);
1746 /* set vector for Other Causes, e.g. link changes */
1747 vector++;
1748 ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16);
1749 if (rx_ring->itr_val)
1750 writel(1000000000 / (rx_ring->itr_val * 256),
1751 hw->hw_addr + E1000_EITR_82574(vector));
1752 else
1753 writel(1, hw->hw_addr + E1000_EITR_82574(vector));
1755 /* Cause Tx interrupts on every write back */
1756 ivar |= (1 << 31);
1758 ew32(IVAR, ivar);
1760 /* enable MSI-X PBA support */
1761 ctrl_ext = er32(CTRL_EXT);
1762 ctrl_ext |= E1000_CTRL_EXT_PBA_CLR;
1764 /* Auto-Mask Other interrupts upon ICR read */
1765 #define E1000_EIAC_MASK_82574 0x01F00000
1766 ew32(IAM, ~E1000_EIAC_MASK_82574 | E1000_IMS_OTHER);
1767 ctrl_ext |= E1000_CTRL_EXT_EIAME;
1768 ew32(CTRL_EXT, ctrl_ext);
1769 e1e_flush();
1772 void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter)
1774 if (adapter->msix_entries) {
1775 pci_disable_msix(adapter->pdev);
1776 kfree(adapter->msix_entries);
1777 adapter->msix_entries = NULL;
1778 } else if (adapter->flags & FLAG_MSI_ENABLED) {
1779 pci_disable_msi(adapter->pdev);
1780 adapter->flags &= ~FLAG_MSI_ENABLED;
1785 * e1000e_set_interrupt_capability - set MSI or MSI-X if supported
1787 * Attempt to configure interrupts using the best available
1788 * capabilities of the hardware and kernel.
1790 void e1000e_set_interrupt_capability(struct e1000_adapter *adapter)
1792 int err;
1793 int i;
1795 switch (adapter->int_mode) {
1796 case E1000E_INT_MODE_MSIX:
1797 if (adapter->flags & FLAG_HAS_MSIX) {
1798 adapter->num_vectors = 3; /* RxQ0, TxQ0 and other */
1799 adapter->msix_entries = kcalloc(adapter->num_vectors,
1800 sizeof(struct msix_entry),
1801 GFP_KERNEL);
1802 if (adapter->msix_entries) {
1803 for (i = 0; i < adapter->num_vectors; i++)
1804 adapter->msix_entries[i].entry = i;
1806 err = pci_enable_msix(adapter->pdev,
1807 adapter->msix_entries,
1808 adapter->num_vectors);
1809 if (err == 0)
1810 return;
1812 /* MSI-X failed, so fall through and try MSI */
1813 e_err("Failed to initialize MSI-X interrupts. "
1814 "Falling back to MSI interrupts.\n");
1815 e1000e_reset_interrupt_capability(adapter);
1817 adapter->int_mode = E1000E_INT_MODE_MSI;
1818 /* Fall through */
1819 case E1000E_INT_MODE_MSI:
1820 if (!pci_enable_msi(adapter->pdev)) {
1821 adapter->flags |= FLAG_MSI_ENABLED;
1822 } else {
1823 adapter->int_mode = E1000E_INT_MODE_LEGACY;
1824 e_err("Failed to initialize MSI interrupts. Falling "
1825 "back to legacy interrupts.\n");
1827 /* Fall through */
1828 case E1000E_INT_MODE_LEGACY:
1829 /* Don't do anything; this is the system default */
1830 break;
1833 /* store the number of vectors being used */
1834 adapter->num_vectors = 1;
1838 * e1000_request_msix - Initialize MSI-X interrupts
1840 * e1000_request_msix allocates MSI-X vectors and requests interrupts from the
1841 * kernel.
1843 static int e1000_request_msix(struct e1000_adapter *adapter)
1845 struct net_device *netdev = adapter->netdev;
1846 int err = 0, vector = 0;
1848 if (strlen(netdev->name) < (IFNAMSIZ - 5))
1849 sprintf(adapter->rx_ring->name, "%s-rx-0", netdev->name);
1850 else
1851 memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
1852 err = request_irq(adapter->msix_entries[vector].vector,
1853 e1000_intr_msix_rx, 0, adapter->rx_ring->name,
1854 netdev);
1855 if (err)
1856 goto out;
1857 adapter->rx_ring->itr_register = E1000_EITR_82574(vector);
1858 adapter->rx_ring->itr_val = adapter->itr;
1859 vector++;
1861 if (strlen(netdev->name) < (IFNAMSIZ - 5))
1862 sprintf(adapter->tx_ring->name, "%s-tx-0", netdev->name);
1863 else
1864 memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
1865 err = request_irq(adapter->msix_entries[vector].vector,
1866 e1000_intr_msix_tx, 0, adapter->tx_ring->name,
1867 netdev);
1868 if (err)
1869 goto out;
1870 adapter->tx_ring->itr_register = E1000_EITR_82574(vector);
1871 adapter->tx_ring->itr_val = adapter->itr;
1872 vector++;
1874 err = request_irq(adapter->msix_entries[vector].vector,
1875 e1000_msix_other, 0, netdev->name, netdev);
1876 if (err)
1877 goto out;
1879 e1000_configure_msix(adapter);
1880 return 0;
1881 out:
1882 return err;
1886 * e1000_request_irq - initialize interrupts
1888 * Attempts to configure interrupts using the best available
1889 * capabilities of the hardware and kernel.
1891 static int e1000_request_irq(struct e1000_adapter *adapter)
1893 struct net_device *netdev = adapter->netdev;
1894 int err;
1896 if (adapter->msix_entries) {
1897 err = e1000_request_msix(adapter);
1898 if (!err)
1899 return err;
1900 /* fall back to MSI */
1901 e1000e_reset_interrupt_capability(adapter);
1902 adapter->int_mode = E1000E_INT_MODE_MSI;
1903 e1000e_set_interrupt_capability(adapter);
1905 if (adapter->flags & FLAG_MSI_ENABLED) {
1906 err = request_irq(adapter->pdev->irq, e1000_intr_msi, 0,
1907 netdev->name, netdev);
1908 if (!err)
1909 return err;
1911 /* fall back to legacy interrupt */
1912 e1000e_reset_interrupt_capability(adapter);
1913 adapter->int_mode = E1000E_INT_MODE_LEGACY;
1916 err = request_irq(adapter->pdev->irq, e1000_intr, IRQF_SHARED,
1917 netdev->name, netdev);
1918 if (err)
1919 e_err("Unable to allocate interrupt, Error: %d\n", err);
1921 return err;
1924 static void e1000_free_irq(struct e1000_adapter *adapter)
1926 struct net_device *netdev = adapter->netdev;
1928 if (adapter->msix_entries) {
1929 int vector = 0;
1931 free_irq(adapter->msix_entries[vector].vector, netdev);
1932 vector++;
1934 free_irq(adapter->msix_entries[vector].vector, netdev);
1935 vector++;
1937 /* Other Causes interrupt vector */
1938 free_irq(adapter->msix_entries[vector].vector, netdev);
1939 return;
1942 free_irq(adapter->pdev->irq, netdev);
1946 * e1000_irq_disable - Mask off interrupt generation on the NIC
1948 static void e1000_irq_disable(struct e1000_adapter *adapter)
1950 struct e1000_hw *hw = &adapter->hw;
1952 ew32(IMC, ~0);
1953 if (adapter->msix_entries)
1954 ew32(EIAC_82574, 0);
1955 e1e_flush();
1957 if (adapter->msix_entries) {
1958 int i;
1959 for (i = 0; i < adapter->num_vectors; i++)
1960 synchronize_irq(adapter->msix_entries[i].vector);
1961 } else {
1962 synchronize_irq(adapter->pdev->irq);
1967 * e1000_irq_enable - Enable default interrupt generation settings
1969 static void e1000_irq_enable(struct e1000_adapter *adapter)
1971 struct e1000_hw *hw = &adapter->hw;
1973 if (adapter->msix_entries) {
1974 ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574);
1975 ew32(IMS, adapter->eiac_mask | E1000_IMS_OTHER | E1000_IMS_LSC);
1976 } else {
1977 ew32(IMS, IMS_ENABLE_MASK);
1979 e1e_flush();
1983 * e1000e_get_hw_control - get control of the h/w from f/w
1984 * @adapter: address of board private structure
1986 * e1000e_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
1987 * For ASF and Pass Through versions of f/w this means that
1988 * the driver is loaded. For AMT version (only with 82573)
1989 * of the f/w this means that the network i/f is open.
1991 void e1000e_get_hw_control(struct e1000_adapter *adapter)
1993 struct e1000_hw *hw = &adapter->hw;
1994 u32 ctrl_ext;
1995 u32 swsm;
1997 /* Let firmware know the driver has taken over */
1998 if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
1999 swsm = er32(SWSM);
2000 ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
2001 } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2002 ctrl_ext = er32(CTRL_EXT);
2003 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
2008 * e1000e_release_hw_control - release control of the h/w to f/w
2009 * @adapter: address of board private structure
2011 * e1000e_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2012 * For ASF and Pass Through versions of f/w this means that the
2013 * driver is no longer loaded. For AMT version (only with 82573) i
2014 * of the f/w this means that the network i/f is closed.
2017 void e1000e_release_hw_control(struct e1000_adapter *adapter)
2019 struct e1000_hw *hw = &adapter->hw;
2020 u32 ctrl_ext;
2021 u32 swsm;
2023 /* Let firmware taken over control of h/w */
2024 if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2025 swsm = er32(SWSM);
2026 ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
2027 } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2028 ctrl_ext = er32(CTRL_EXT);
2029 ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
2034 * @e1000_alloc_ring - allocate memory for a ring structure
2036 static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
2037 struct e1000_ring *ring)
2039 struct pci_dev *pdev = adapter->pdev;
2041 ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma,
2042 GFP_KERNEL);
2043 if (!ring->desc)
2044 return -ENOMEM;
2046 return 0;
2050 * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
2051 * @adapter: board private structure
2053 * Return 0 on success, negative on failure
2055 int e1000e_setup_tx_resources(struct e1000_adapter *adapter)
2057 struct e1000_ring *tx_ring = adapter->tx_ring;
2058 int err = -ENOMEM, size;
2060 size = sizeof(struct e1000_buffer) * tx_ring->count;
2061 tx_ring->buffer_info = vzalloc(size);
2062 if (!tx_ring->buffer_info)
2063 goto err;
2065 /* round up to nearest 4K */
2066 tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
2067 tx_ring->size = ALIGN(tx_ring->size, 4096);
2069 err = e1000_alloc_ring_dma(adapter, tx_ring);
2070 if (err)
2071 goto err;
2073 tx_ring->next_to_use = 0;
2074 tx_ring->next_to_clean = 0;
2076 return 0;
2077 err:
2078 vfree(tx_ring->buffer_info);
2079 e_err("Unable to allocate memory for the transmit descriptor ring\n");
2080 return err;
2084 * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
2085 * @adapter: board private structure
2087 * Returns 0 on success, negative on failure
2089 int e1000e_setup_rx_resources(struct e1000_adapter *adapter)
2091 struct e1000_ring *rx_ring = adapter->rx_ring;
2092 struct e1000_buffer *buffer_info;
2093 int i, size, desc_len, err = -ENOMEM;
2095 size = sizeof(struct e1000_buffer) * rx_ring->count;
2096 rx_ring->buffer_info = vzalloc(size);
2097 if (!rx_ring->buffer_info)
2098 goto err;
2100 for (i = 0; i < rx_ring->count; i++) {
2101 buffer_info = &rx_ring->buffer_info[i];
2102 buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
2103 sizeof(struct e1000_ps_page),
2104 GFP_KERNEL);
2105 if (!buffer_info->ps_pages)
2106 goto err_pages;
2109 desc_len = sizeof(union e1000_rx_desc_packet_split);
2111 /* Round up to nearest 4K */
2112 rx_ring->size = rx_ring->count * desc_len;
2113 rx_ring->size = ALIGN(rx_ring->size, 4096);
2115 err = e1000_alloc_ring_dma(adapter, rx_ring);
2116 if (err)
2117 goto err_pages;
2119 rx_ring->next_to_clean = 0;
2120 rx_ring->next_to_use = 0;
2121 rx_ring->rx_skb_top = NULL;
2123 return 0;
2125 err_pages:
2126 for (i = 0; i < rx_ring->count; i++) {
2127 buffer_info = &rx_ring->buffer_info[i];
2128 kfree(buffer_info->ps_pages);
2130 err:
2131 vfree(rx_ring->buffer_info);
2132 e_err("Unable to allocate memory for the receive descriptor ring\n");
2133 return err;
2137 * e1000_clean_tx_ring - Free Tx Buffers
2138 * @adapter: board private structure
2140 static void e1000_clean_tx_ring(struct e1000_adapter *adapter)
2142 struct e1000_ring *tx_ring = adapter->tx_ring;
2143 struct e1000_buffer *buffer_info;
2144 unsigned long size;
2145 unsigned int i;
2147 for (i = 0; i < tx_ring->count; i++) {
2148 buffer_info = &tx_ring->buffer_info[i];
2149 e1000_put_txbuf(adapter, buffer_info);
2152 size = sizeof(struct e1000_buffer) * tx_ring->count;
2153 memset(tx_ring->buffer_info, 0, size);
2155 memset(tx_ring->desc, 0, tx_ring->size);
2157 tx_ring->next_to_use = 0;
2158 tx_ring->next_to_clean = 0;
2160 writel(0, adapter->hw.hw_addr + tx_ring->head);
2161 writel(0, adapter->hw.hw_addr + tx_ring->tail);
2165 * e1000e_free_tx_resources - Free Tx Resources per Queue
2166 * @adapter: board private structure
2168 * Free all transmit software resources
2170 void e1000e_free_tx_resources(struct e1000_adapter *adapter)
2172 struct pci_dev *pdev = adapter->pdev;
2173 struct e1000_ring *tx_ring = adapter->tx_ring;
2175 e1000_clean_tx_ring(adapter);
2177 vfree(tx_ring->buffer_info);
2178 tx_ring->buffer_info = NULL;
2180 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
2181 tx_ring->dma);
2182 tx_ring->desc = NULL;
2186 * e1000e_free_rx_resources - Free Rx Resources
2187 * @adapter: board private structure
2189 * Free all receive software resources
2192 void e1000e_free_rx_resources(struct e1000_adapter *adapter)
2194 struct pci_dev *pdev = adapter->pdev;
2195 struct e1000_ring *rx_ring = adapter->rx_ring;
2196 int i;
2198 e1000_clean_rx_ring(adapter);
2200 for (i = 0; i < rx_ring->count; i++)
2201 kfree(rx_ring->buffer_info[i].ps_pages);
2203 vfree(rx_ring->buffer_info);
2204 rx_ring->buffer_info = NULL;
2206 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2207 rx_ring->dma);
2208 rx_ring->desc = NULL;
2212 * e1000_update_itr - update the dynamic ITR value based on statistics
2213 * @adapter: pointer to adapter
2214 * @itr_setting: current adapter->itr
2215 * @packets: the number of packets during this measurement interval
2216 * @bytes: the number of bytes during this measurement interval
2218 * Stores a new ITR value based on packets and byte
2219 * counts during the last interrupt. The advantage of per interrupt
2220 * computation is faster updates and more accurate ITR for the current
2221 * traffic pattern. Constants in this function were computed
2222 * based on theoretical maximum wire speed and thresholds were set based
2223 * on testing data as well as attempting to minimize response time
2224 * while increasing bulk throughput. This functionality is controlled
2225 * by the InterruptThrottleRate module parameter.
2227 static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2228 u16 itr_setting, int packets,
2229 int bytes)
2231 unsigned int retval = itr_setting;
2233 if (packets == 0)
2234 goto update_itr_done;
2236 switch (itr_setting) {
2237 case lowest_latency:
2238 /* handle TSO and jumbo frames */
2239 if (bytes/packets > 8000)
2240 retval = bulk_latency;
2241 else if ((packets < 5) && (bytes > 512))
2242 retval = low_latency;
2243 break;
2244 case low_latency: /* 50 usec aka 20000 ints/s */
2245 if (bytes > 10000) {
2246 /* this if handles the TSO accounting */
2247 if (bytes/packets > 8000)
2248 retval = bulk_latency;
2249 else if ((packets < 10) || ((bytes/packets) > 1200))
2250 retval = bulk_latency;
2251 else if ((packets > 35))
2252 retval = lowest_latency;
2253 } else if (bytes/packets > 2000) {
2254 retval = bulk_latency;
2255 } else if (packets <= 2 && bytes < 512) {
2256 retval = lowest_latency;
2258 break;
2259 case bulk_latency: /* 250 usec aka 4000 ints/s */
2260 if (bytes > 25000) {
2261 if (packets > 35)
2262 retval = low_latency;
2263 } else if (bytes < 6000) {
2264 retval = low_latency;
2266 break;
2269 update_itr_done:
2270 return retval;
2273 static void e1000_set_itr(struct e1000_adapter *adapter)
2275 struct e1000_hw *hw = &adapter->hw;
2276 u16 current_itr;
2277 u32 new_itr = adapter->itr;
2279 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2280 if (adapter->link_speed != SPEED_1000) {
2281 current_itr = 0;
2282 new_itr = 4000;
2283 goto set_itr_now;
2286 if (adapter->flags2 & FLAG2_DISABLE_AIM) {
2287 new_itr = 0;
2288 goto set_itr_now;
2291 adapter->tx_itr = e1000_update_itr(adapter,
2292 adapter->tx_itr,
2293 adapter->total_tx_packets,
2294 adapter->total_tx_bytes);
2295 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2296 if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2297 adapter->tx_itr = low_latency;
2299 adapter->rx_itr = e1000_update_itr(adapter,
2300 adapter->rx_itr,
2301 adapter->total_rx_packets,
2302 adapter->total_rx_bytes);
2303 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2304 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2305 adapter->rx_itr = low_latency;
2307 current_itr = max(adapter->rx_itr, adapter->tx_itr);
2309 switch (current_itr) {
2310 /* counts and packets in update_itr are dependent on these numbers */
2311 case lowest_latency:
2312 new_itr = 70000;
2313 break;
2314 case low_latency:
2315 new_itr = 20000; /* aka hwitr = ~200 */
2316 break;
2317 case bulk_latency:
2318 new_itr = 4000;
2319 break;
2320 default:
2321 break;
2324 set_itr_now:
2325 if (new_itr != adapter->itr) {
2327 * this attempts to bias the interrupt rate towards Bulk
2328 * by adding intermediate steps when interrupt rate is
2329 * increasing
2331 new_itr = new_itr > adapter->itr ?
2332 min(adapter->itr + (new_itr >> 2), new_itr) :
2333 new_itr;
2334 adapter->itr = new_itr;
2335 adapter->rx_ring->itr_val = new_itr;
2336 if (adapter->msix_entries)
2337 adapter->rx_ring->set_itr = 1;
2338 else
2339 if (new_itr)
2340 ew32(ITR, 1000000000 / (new_itr * 256));
2341 else
2342 ew32(ITR, 0);
2347 * e1000_alloc_queues - Allocate memory for all rings
2348 * @adapter: board private structure to initialize
2350 static int __devinit e1000_alloc_queues(struct e1000_adapter *adapter)
2352 adapter->tx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
2353 if (!adapter->tx_ring)
2354 goto err;
2356 adapter->rx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
2357 if (!adapter->rx_ring)
2358 goto err;
2360 return 0;
2361 err:
2362 e_err("Unable to allocate memory for queues\n");
2363 kfree(adapter->rx_ring);
2364 kfree(adapter->tx_ring);
2365 return -ENOMEM;
2369 * e1000_clean - NAPI Rx polling callback
2370 * @napi: struct associated with this polling callback
2371 * @budget: amount of packets driver is allowed to process this poll
2373 static int e1000_clean(struct napi_struct *napi, int budget)
2375 struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi);
2376 struct e1000_hw *hw = &adapter->hw;
2377 struct net_device *poll_dev = adapter->netdev;
2378 int tx_cleaned = 1, work_done = 0;
2380 adapter = netdev_priv(poll_dev);
2382 if (adapter->msix_entries &&
2383 !(adapter->rx_ring->ims_val & adapter->tx_ring->ims_val))
2384 goto clean_rx;
2386 tx_cleaned = e1000_clean_tx_irq(adapter);
2388 clean_rx:
2389 adapter->clean_rx(adapter, &work_done, budget);
2391 if (!tx_cleaned)
2392 work_done = budget;
2394 /* If budget not fully consumed, exit the polling mode */
2395 if (work_done < budget) {
2396 if (adapter->itr_setting & 3)
2397 e1000_set_itr(adapter);
2398 napi_complete(napi);
2399 if (!test_bit(__E1000_DOWN, &adapter->state)) {
2400 if (adapter->msix_entries)
2401 ew32(IMS, adapter->rx_ring->ims_val);
2402 else
2403 e1000_irq_enable(adapter);
2407 return work_done;
2410 static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
2412 struct e1000_adapter *adapter = netdev_priv(netdev);
2413 struct e1000_hw *hw = &adapter->hw;
2414 u32 vfta, index;
2416 /* don't update vlan cookie if already programmed */
2417 if ((adapter->hw.mng_cookie.status &
2418 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2419 (vid == adapter->mng_vlan_id))
2420 return;
2422 /* add VID to filter table */
2423 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2424 index = (vid >> 5) & 0x7F;
2425 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2426 vfta |= (1 << (vid & 0x1F));
2427 hw->mac.ops.write_vfta(hw, index, vfta);
2431 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
2433 struct e1000_adapter *adapter = netdev_priv(netdev);
2434 struct e1000_hw *hw = &adapter->hw;
2435 u32 vfta, index;
2437 if (!test_bit(__E1000_DOWN, &adapter->state))
2438 e1000_irq_disable(adapter);
2439 vlan_group_set_device(adapter->vlgrp, vid, NULL);
2441 if (!test_bit(__E1000_DOWN, &adapter->state))
2442 e1000_irq_enable(adapter);
2444 if ((adapter->hw.mng_cookie.status &
2445 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2446 (vid == adapter->mng_vlan_id)) {
2447 /* release control to f/w */
2448 e1000e_release_hw_control(adapter);
2449 return;
2452 /* remove VID from filter table */
2453 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2454 index = (vid >> 5) & 0x7F;
2455 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2456 vfta &= ~(1 << (vid & 0x1F));
2457 hw->mac.ops.write_vfta(hw, index, vfta);
2461 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
2463 struct net_device *netdev = adapter->netdev;
2464 u16 vid = adapter->hw.mng_cookie.vlan_id;
2465 u16 old_vid = adapter->mng_vlan_id;
2467 if (!adapter->vlgrp)
2468 return;
2470 if (!vlan_group_get_device(adapter->vlgrp, vid)) {
2471 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2472 if (adapter->hw.mng_cookie.status &
2473 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
2474 e1000_vlan_rx_add_vid(netdev, vid);
2475 adapter->mng_vlan_id = vid;
2478 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
2479 (vid != old_vid) &&
2480 !vlan_group_get_device(adapter->vlgrp, old_vid))
2481 e1000_vlan_rx_kill_vid(netdev, old_vid);
2482 } else {
2483 adapter->mng_vlan_id = vid;
2488 static void e1000_vlan_rx_register(struct net_device *netdev,
2489 struct vlan_group *grp)
2491 struct e1000_adapter *adapter = netdev_priv(netdev);
2492 struct e1000_hw *hw = &adapter->hw;
2493 u32 ctrl, rctl;
2495 if (!test_bit(__E1000_DOWN, &adapter->state))
2496 e1000_irq_disable(adapter);
2497 adapter->vlgrp = grp;
2499 if (grp) {
2500 /* enable VLAN tag insert/strip */
2501 ctrl = er32(CTRL);
2502 ctrl |= E1000_CTRL_VME;
2503 ew32(CTRL, ctrl);
2505 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2506 /* enable VLAN receive filtering */
2507 rctl = er32(RCTL);
2508 rctl &= ~E1000_RCTL_CFIEN;
2509 ew32(RCTL, rctl);
2510 e1000_update_mng_vlan(adapter);
2512 } else {
2513 /* disable VLAN tag insert/strip */
2514 ctrl = er32(CTRL);
2515 ctrl &= ~E1000_CTRL_VME;
2516 ew32(CTRL, ctrl);
2518 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2519 if (adapter->mng_vlan_id !=
2520 (u16)E1000_MNG_VLAN_NONE) {
2521 e1000_vlan_rx_kill_vid(netdev,
2522 adapter->mng_vlan_id);
2523 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2528 if (!test_bit(__E1000_DOWN, &adapter->state))
2529 e1000_irq_enable(adapter);
2532 static void e1000_restore_vlan(struct e1000_adapter *adapter)
2534 u16 vid;
2536 e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
2538 if (!adapter->vlgrp)
2539 return;
2541 for (vid = 0; vid < VLAN_N_VID; vid++) {
2542 if (!vlan_group_get_device(adapter->vlgrp, vid))
2543 continue;
2544 e1000_vlan_rx_add_vid(adapter->netdev, vid);
2548 static void e1000_init_manageability_pt(struct e1000_adapter *adapter)
2550 struct e1000_hw *hw = &adapter->hw;
2551 u32 manc, manc2h, mdef, i, j;
2553 if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
2554 return;
2556 manc = er32(MANC);
2559 * enable receiving management packets to the host. this will probably
2560 * generate destination unreachable messages from the host OS, but
2561 * the packets will be handled on SMBUS
2563 manc |= E1000_MANC_EN_MNG2HOST;
2564 manc2h = er32(MANC2H);
2566 switch (hw->mac.type) {
2567 default:
2568 manc2h |= (E1000_MANC2H_PORT_623 | E1000_MANC2H_PORT_664);
2569 break;
2570 case e1000_82574:
2571 case e1000_82583:
2573 * Check if IPMI pass-through decision filter already exists;
2574 * if so, enable it.
2576 for (i = 0, j = 0; i < 8; i++) {
2577 mdef = er32(MDEF(i));
2579 /* Ignore filters with anything other than IPMI ports */
2580 if (mdef & ~(E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2581 continue;
2583 /* Enable this decision filter in MANC2H */
2584 if (mdef)
2585 manc2h |= (1 << i);
2587 j |= mdef;
2590 if (j == (E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2591 break;
2593 /* Create new decision filter in an empty filter */
2594 for (i = 0, j = 0; i < 8; i++)
2595 if (er32(MDEF(i)) == 0) {
2596 ew32(MDEF(i), (E1000_MDEF_PORT_623 |
2597 E1000_MDEF_PORT_664));
2598 manc2h |= (1 << 1);
2599 j++;
2600 break;
2603 if (!j)
2604 e_warn("Unable to create IPMI pass-through filter\n");
2605 break;
2608 ew32(MANC2H, manc2h);
2609 ew32(MANC, manc);
2613 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
2614 * @adapter: board private structure
2616 * Configure the Tx unit of the MAC after a reset.
2618 static void e1000_configure_tx(struct e1000_adapter *adapter)
2620 struct e1000_hw *hw = &adapter->hw;
2621 struct e1000_ring *tx_ring = adapter->tx_ring;
2622 u64 tdba;
2623 u32 tdlen, tctl, tipg, tarc;
2624 u32 ipgr1, ipgr2;
2626 /* Setup the HW Tx Head and Tail descriptor pointers */
2627 tdba = tx_ring->dma;
2628 tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
2629 ew32(TDBAL, (tdba & DMA_BIT_MASK(32)));
2630 ew32(TDBAH, (tdba >> 32));
2631 ew32(TDLEN, tdlen);
2632 ew32(TDH, 0);
2633 ew32(TDT, 0);
2634 tx_ring->head = E1000_TDH;
2635 tx_ring->tail = E1000_TDT;
2637 /* Set the default values for the Tx Inter Packet Gap timer */
2638 tipg = DEFAULT_82543_TIPG_IPGT_COPPER; /* 8 */
2639 ipgr1 = DEFAULT_82543_TIPG_IPGR1; /* 8 */
2640 ipgr2 = DEFAULT_82543_TIPG_IPGR2; /* 6 */
2642 if (adapter->flags & FLAG_TIPG_MEDIUM_FOR_80003ESLAN)
2643 ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2; /* 7 */
2645 tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
2646 tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
2647 ew32(TIPG, tipg);
2649 /* Set the Tx Interrupt Delay register */
2650 ew32(TIDV, adapter->tx_int_delay);
2651 /* Tx irq moderation */
2652 ew32(TADV, adapter->tx_abs_int_delay);
2654 if (adapter->flags2 & FLAG2_DMA_BURST) {
2655 u32 txdctl = er32(TXDCTL(0));
2656 txdctl &= ~(E1000_TXDCTL_PTHRESH | E1000_TXDCTL_HTHRESH |
2657 E1000_TXDCTL_WTHRESH);
2659 * set up some performance related parameters to encourage the
2660 * hardware to use the bus more efficiently in bursts, depends
2661 * on the tx_int_delay to be enabled,
2662 * wthresh = 5 ==> burst write a cacheline (64 bytes) at a time
2663 * hthresh = 1 ==> prefetch when one or more available
2664 * pthresh = 0x1f ==> prefetch if internal cache 31 or less
2665 * BEWARE: this seems to work but should be considered first if
2666 * there are tx hangs or other tx related bugs
2668 txdctl |= E1000_TXDCTL_DMA_BURST_ENABLE;
2669 ew32(TXDCTL(0), txdctl);
2670 /* erratum work around: set txdctl the same for both queues */
2671 ew32(TXDCTL(1), txdctl);
2674 /* Program the Transmit Control Register */
2675 tctl = er32(TCTL);
2676 tctl &= ~E1000_TCTL_CT;
2677 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2678 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2680 if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
2681 tarc = er32(TARC(0));
2683 * set the speed mode bit, we'll clear it if we're not at
2684 * gigabit link later
2686 #define SPEED_MODE_BIT (1 << 21)
2687 tarc |= SPEED_MODE_BIT;
2688 ew32(TARC(0), tarc);
2691 /* errata: program both queues to unweighted RR */
2692 if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
2693 tarc = er32(TARC(0));
2694 tarc |= 1;
2695 ew32(TARC(0), tarc);
2696 tarc = er32(TARC(1));
2697 tarc |= 1;
2698 ew32(TARC(1), tarc);
2701 /* Setup Transmit Descriptor Settings for eop descriptor */
2702 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
2704 /* only set IDE if we are delaying interrupts using the timers */
2705 if (adapter->tx_int_delay)
2706 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
2708 /* enable Report Status bit */
2709 adapter->txd_cmd |= E1000_TXD_CMD_RS;
2711 ew32(TCTL, tctl);
2713 e1000e_config_collision_dist(hw);
2717 * e1000_setup_rctl - configure the receive control registers
2718 * @adapter: Board private structure
2720 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
2721 (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
2722 static void e1000_setup_rctl(struct e1000_adapter *adapter)
2724 struct e1000_hw *hw = &adapter->hw;
2725 u32 rctl, rfctl;
2726 u32 psrctl = 0;
2727 u32 pages = 0;
2729 /* Workaround Si errata on 82579 - configure jumbo frame flow */
2730 if (hw->mac.type == e1000_pch2lan) {
2731 s32 ret_val;
2733 if (adapter->netdev->mtu > ETH_DATA_LEN)
2734 ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, true);
2735 else
2736 ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, false);
2738 if (ret_val)
2739 e_dbg("failed to enable jumbo frame workaround mode\n");
2742 /* Program MC offset vector base */
2743 rctl = er32(RCTL);
2744 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2745 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
2746 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
2747 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
2749 /* Do not Store bad packets */
2750 rctl &= ~E1000_RCTL_SBP;
2752 /* Enable Long Packet receive */
2753 if (adapter->netdev->mtu <= ETH_DATA_LEN)
2754 rctl &= ~E1000_RCTL_LPE;
2755 else
2756 rctl |= E1000_RCTL_LPE;
2758 /* Some systems expect that the CRC is included in SMBUS traffic. The
2759 * hardware strips the CRC before sending to both SMBUS (BMC) and to
2760 * host memory when this is enabled
2762 if (adapter->flags2 & FLAG2_CRC_STRIPPING)
2763 rctl |= E1000_RCTL_SECRC;
2765 /* Workaround Si errata on 82577 PHY - configure IPG for jumbos */
2766 if ((hw->phy.type == e1000_phy_82577) && (rctl & E1000_RCTL_LPE)) {
2767 u16 phy_data;
2769 e1e_rphy(hw, PHY_REG(770, 26), &phy_data);
2770 phy_data &= 0xfff8;
2771 phy_data |= (1 << 2);
2772 e1e_wphy(hw, PHY_REG(770, 26), phy_data);
2774 e1e_rphy(hw, 22, &phy_data);
2775 phy_data &= 0x0fff;
2776 phy_data |= (1 << 14);
2777 e1e_wphy(hw, 0x10, 0x2823);
2778 e1e_wphy(hw, 0x11, 0x0003);
2779 e1e_wphy(hw, 22, phy_data);
2782 /* Setup buffer sizes */
2783 rctl &= ~E1000_RCTL_SZ_4096;
2784 rctl |= E1000_RCTL_BSEX;
2785 switch (adapter->rx_buffer_len) {
2786 case 2048:
2787 default:
2788 rctl |= E1000_RCTL_SZ_2048;
2789 rctl &= ~E1000_RCTL_BSEX;
2790 break;
2791 case 4096:
2792 rctl |= E1000_RCTL_SZ_4096;
2793 break;
2794 case 8192:
2795 rctl |= E1000_RCTL_SZ_8192;
2796 break;
2797 case 16384:
2798 rctl |= E1000_RCTL_SZ_16384;
2799 break;
2803 * 82571 and greater support packet-split where the protocol
2804 * header is placed in skb->data and the packet data is
2805 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
2806 * In the case of a non-split, skb->data is linearly filled,
2807 * followed by the page buffers. Therefore, skb->data is
2808 * sized to hold the largest protocol header.
2810 * allocations using alloc_page take too long for regular MTU
2811 * so only enable packet split for jumbo frames
2813 * Using pages when the page size is greater than 16k wastes
2814 * a lot of memory, since we allocate 3 pages at all times
2815 * per packet.
2817 pages = PAGE_USE_COUNT(adapter->netdev->mtu);
2818 if (!(adapter->flags & FLAG_HAS_ERT) && (pages <= 3) &&
2819 (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
2820 adapter->rx_ps_pages = pages;
2821 else
2822 adapter->rx_ps_pages = 0;
2824 if (adapter->rx_ps_pages) {
2825 /* Configure extra packet-split registers */
2826 rfctl = er32(RFCTL);
2827 rfctl |= E1000_RFCTL_EXTEN;
2829 * disable packet split support for IPv6 extension headers,
2830 * because some malformed IPv6 headers can hang the Rx
2832 rfctl |= (E1000_RFCTL_IPV6_EX_DIS |
2833 E1000_RFCTL_NEW_IPV6_EXT_DIS);
2835 ew32(RFCTL, rfctl);
2837 /* Enable Packet split descriptors */
2838 rctl |= E1000_RCTL_DTYP_PS;
2840 psrctl |= adapter->rx_ps_bsize0 >>
2841 E1000_PSRCTL_BSIZE0_SHIFT;
2843 switch (adapter->rx_ps_pages) {
2844 case 3:
2845 psrctl |= PAGE_SIZE <<
2846 E1000_PSRCTL_BSIZE3_SHIFT;
2847 case 2:
2848 psrctl |= PAGE_SIZE <<
2849 E1000_PSRCTL_BSIZE2_SHIFT;
2850 case 1:
2851 psrctl |= PAGE_SIZE >>
2852 E1000_PSRCTL_BSIZE1_SHIFT;
2853 break;
2856 ew32(PSRCTL, psrctl);
2859 ew32(RCTL, rctl);
2860 /* just started the receive unit, no need to restart */
2861 adapter->flags &= ~FLAG_RX_RESTART_NOW;
2865 * e1000_configure_rx - Configure Receive Unit after Reset
2866 * @adapter: board private structure
2868 * Configure the Rx unit of the MAC after a reset.
2870 static void e1000_configure_rx(struct e1000_adapter *adapter)
2872 struct e1000_hw *hw = &adapter->hw;
2873 struct e1000_ring *rx_ring = adapter->rx_ring;
2874 u64 rdba;
2875 u32 rdlen, rctl, rxcsum, ctrl_ext;
2877 if (adapter->rx_ps_pages) {
2878 /* this is a 32 byte descriptor */
2879 rdlen = rx_ring->count *
2880 sizeof(union e1000_rx_desc_packet_split);
2881 adapter->clean_rx = e1000_clean_rx_irq_ps;
2882 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
2883 } else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) {
2884 rdlen = rx_ring->count * sizeof(struct e1000_rx_desc);
2885 adapter->clean_rx = e1000_clean_jumbo_rx_irq;
2886 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
2887 } else {
2888 rdlen = rx_ring->count * sizeof(struct e1000_rx_desc);
2889 adapter->clean_rx = e1000_clean_rx_irq;
2890 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
2893 /* disable receives while setting up the descriptors */
2894 rctl = er32(RCTL);
2895 ew32(RCTL, rctl & ~E1000_RCTL_EN);
2896 e1e_flush();
2897 msleep(10);
2899 if (adapter->flags2 & FLAG2_DMA_BURST) {
2901 * set the writeback threshold (only takes effect if the RDTR
2902 * is set). set GRAN=1 and write back up to 0x4 worth, and
2903 * enable prefetching of 0x20 rx descriptors
2904 * granularity = 01
2905 * wthresh = 04,
2906 * hthresh = 04,
2907 * pthresh = 0x20
2909 ew32(RXDCTL(0), E1000_RXDCTL_DMA_BURST_ENABLE);
2910 ew32(RXDCTL(1), E1000_RXDCTL_DMA_BURST_ENABLE);
2913 * override the delay timers for enabling bursting, only if
2914 * the value was not set by the user via module options
2916 if (adapter->rx_int_delay == DEFAULT_RDTR)
2917 adapter->rx_int_delay = BURST_RDTR;
2918 if (adapter->rx_abs_int_delay == DEFAULT_RADV)
2919 adapter->rx_abs_int_delay = BURST_RADV;
2922 /* set the Receive Delay Timer Register */
2923 ew32(RDTR, adapter->rx_int_delay);
2925 /* irq moderation */
2926 ew32(RADV, adapter->rx_abs_int_delay);
2927 if ((adapter->itr_setting != 0) && (adapter->itr != 0))
2928 ew32(ITR, 1000000000 / (adapter->itr * 256));
2930 ctrl_ext = er32(CTRL_EXT);
2931 /* Auto-Mask interrupts upon ICR access */
2932 ctrl_ext |= E1000_CTRL_EXT_IAME;
2933 ew32(IAM, 0xffffffff);
2934 ew32(CTRL_EXT, ctrl_ext);
2935 e1e_flush();
2938 * Setup the HW Rx Head and Tail Descriptor Pointers and
2939 * the Base and Length of the Rx Descriptor Ring
2941 rdba = rx_ring->dma;
2942 ew32(RDBAL, (rdba & DMA_BIT_MASK(32)));
2943 ew32(RDBAH, (rdba >> 32));
2944 ew32(RDLEN, rdlen);
2945 ew32(RDH, 0);
2946 ew32(RDT, 0);
2947 rx_ring->head = E1000_RDH;
2948 rx_ring->tail = E1000_RDT;
2950 /* Enable Receive Checksum Offload for TCP and UDP */
2951 rxcsum = er32(RXCSUM);
2952 if (adapter->flags & FLAG_RX_CSUM_ENABLED) {
2953 rxcsum |= E1000_RXCSUM_TUOFL;
2956 * IPv4 payload checksum for UDP fragments must be
2957 * used in conjunction with packet-split.
2959 if (adapter->rx_ps_pages)
2960 rxcsum |= E1000_RXCSUM_IPPCSE;
2961 } else {
2962 rxcsum &= ~E1000_RXCSUM_TUOFL;
2963 /* no need to clear IPPCSE as it defaults to 0 */
2965 ew32(RXCSUM, rxcsum);
2968 * Enable early receives on supported devices, only takes effect when
2969 * packet size is equal or larger than the specified value (in 8 byte
2970 * units), e.g. using jumbo frames when setting to E1000_ERT_2048
2972 if ((adapter->flags & FLAG_HAS_ERT) ||
2973 (adapter->hw.mac.type == e1000_pch2lan)) {
2974 if (adapter->netdev->mtu > ETH_DATA_LEN) {
2975 u32 rxdctl = er32(RXDCTL(0));
2976 ew32(RXDCTL(0), rxdctl | 0x3);
2977 if (adapter->flags & FLAG_HAS_ERT)
2978 ew32(ERT, E1000_ERT_2048 | (1 << 13));
2980 * With jumbo frames and early-receive enabled,
2981 * excessive C-state transition latencies result in
2982 * dropped transactions.
2984 pm_qos_update_request(
2985 &adapter->netdev->pm_qos_req, 55);
2986 } else {
2987 pm_qos_update_request(
2988 &adapter->netdev->pm_qos_req,
2989 PM_QOS_DEFAULT_VALUE);
2993 /* Enable Receives */
2994 ew32(RCTL, rctl);
2998 * e1000_update_mc_addr_list - Update Multicast addresses
2999 * @hw: pointer to the HW structure
3000 * @mc_addr_list: array of multicast addresses to program
3001 * @mc_addr_count: number of multicast addresses to program
3003 * Updates the Multicast Table Array.
3004 * The caller must have a packed mc_addr_list of multicast addresses.
3006 static void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list,
3007 u32 mc_addr_count)
3009 hw->mac.ops.update_mc_addr_list(hw, mc_addr_list, mc_addr_count);
3013 * e1000_set_multi - Multicast and Promiscuous mode set
3014 * @netdev: network interface device structure
3016 * The set_multi entry point is called whenever the multicast address
3017 * list or the network interface flags are updated. This routine is
3018 * responsible for configuring the hardware for proper multicast,
3019 * promiscuous mode, and all-multi behavior.
3021 static void e1000_set_multi(struct net_device *netdev)
3023 struct e1000_adapter *adapter = netdev_priv(netdev);
3024 struct e1000_hw *hw = &adapter->hw;
3025 struct netdev_hw_addr *ha;
3026 u8 *mta_list;
3027 u32 rctl;
3028 int i;
3030 /* Check for Promiscuous and All Multicast modes */
3032 rctl = er32(RCTL);
3034 if (netdev->flags & IFF_PROMISC) {
3035 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3036 rctl &= ~E1000_RCTL_VFE;
3037 } else {
3038 if (netdev->flags & IFF_ALLMULTI) {
3039 rctl |= E1000_RCTL_MPE;
3040 rctl &= ~E1000_RCTL_UPE;
3041 } else {
3042 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
3044 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
3045 rctl |= E1000_RCTL_VFE;
3048 ew32(RCTL, rctl);
3050 if (!netdev_mc_empty(netdev)) {
3051 mta_list = kmalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
3052 if (!mta_list)
3053 return;
3055 /* prepare a packed array of only addresses. */
3056 i = 0;
3057 netdev_for_each_mc_addr(ha, netdev)
3058 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3060 e1000_update_mc_addr_list(hw, mta_list, i);
3061 kfree(mta_list);
3062 } else {
3064 * if we're called from probe, we might not have
3065 * anything to do here, so clear out the list
3067 e1000_update_mc_addr_list(hw, NULL, 0);
3072 * e1000_configure - configure the hardware for Rx and Tx
3073 * @adapter: private board structure
3075 static void e1000_configure(struct e1000_adapter *adapter)
3077 e1000_set_multi(adapter->netdev);
3079 e1000_restore_vlan(adapter);
3080 e1000_init_manageability_pt(adapter);
3082 e1000_configure_tx(adapter);
3083 e1000_setup_rctl(adapter);
3084 e1000_configure_rx(adapter);
3085 adapter->alloc_rx_buf(adapter, e1000_desc_unused(adapter->rx_ring));
3089 * e1000e_power_up_phy - restore link in case the phy was powered down
3090 * @adapter: address of board private structure
3092 * The phy may be powered down to save power and turn off link when the
3093 * driver is unloaded and wake on lan is not enabled (among others)
3094 * *** this routine MUST be followed by a call to e1000e_reset ***
3096 void e1000e_power_up_phy(struct e1000_adapter *adapter)
3098 if (adapter->hw.phy.ops.power_up)
3099 adapter->hw.phy.ops.power_up(&adapter->hw);
3101 adapter->hw.mac.ops.setup_link(&adapter->hw);
3105 * e1000_power_down_phy - Power down the PHY
3107 * Power down the PHY so no link is implied when interface is down.
3108 * The PHY cannot be powered down if management or WoL is active.
3110 static void e1000_power_down_phy(struct e1000_adapter *adapter)
3112 /* WoL is enabled */
3113 if (adapter->wol)
3114 return;
3116 if (adapter->hw.phy.ops.power_down)
3117 adapter->hw.phy.ops.power_down(&adapter->hw);
3121 * e1000e_reset - bring the hardware into a known good state
3123 * This function boots the hardware and enables some settings that
3124 * require a configuration cycle of the hardware - those cannot be
3125 * set/changed during runtime. After reset the device needs to be
3126 * properly configured for Rx, Tx etc.
3128 void e1000e_reset(struct e1000_adapter *adapter)
3130 struct e1000_mac_info *mac = &adapter->hw.mac;
3131 struct e1000_fc_info *fc = &adapter->hw.fc;
3132 struct e1000_hw *hw = &adapter->hw;
3133 u32 tx_space, min_tx_space, min_rx_space;
3134 u32 pba = adapter->pba;
3135 u16 hwm;
3137 /* reset Packet Buffer Allocation to default */
3138 ew32(PBA, pba);
3140 if (adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) {
3142 * To maintain wire speed transmits, the Tx FIFO should be
3143 * large enough to accommodate two full transmit packets,
3144 * rounded up to the next 1KB and expressed in KB. Likewise,
3145 * the Rx FIFO should be large enough to accommodate at least
3146 * one full receive packet and is similarly rounded up and
3147 * expressed in KB.
3149 pba = er32(PBA);
3150 /* upper 16 bits has Tx packet buffer allocation size in KB */
3151 tx_space = pba >> 16;
3152 /* lower 16 bits has Rx packet buffer allocation size in KB */
3153 pba &= 0xffff;
3155 * the Tx fifo also stores 16 bytes of information about the tx
3156 * but don't include ethernet FCS because hardware appends it
3158 min_tx_space = (adapter->max_frame_size +
3159 sizeof(struct e1000_tx_desc) -
3160 ETH_FCS_LEN) * 2;
3161 min_tx_space = ALIGN(min_tx_space, 1024);
3162 min_tx_space >>= 10;
3163 /* software strips receive CRC, so leave room for it */
3164 min_rx_space = adapter->max_frame_size;
3165 min_rx_space = ALIGN(min_rx_space, 1024);
3166 min_rx_space >>= 10;
3169 * If current Tx allocation is less than the min Tx FIFO size,
3170 * and the min Tx FIFO size is less than the current Rx FIFO
3171 * allocation, take space away from current Rx allocation
3173 if ((tx_space < min_tx_space) &&
3174 ((min_tx_space - tx_space) < pba)) {
3175 pba -= min_tx_space - tx_space;
3178 * if short on Rx space, Rx wins and must trump tx
3179 * adjustment or use Early Receive if available
3181 if ((pba < min_rx_space) &&
3182 (!(adapter->flags & FLAG_HAS_ERT)))
3183 /* ERT enabled in e1000_configure_rx */
3184 pba = min_rx_space;
3187 ew32(PBA, pba);
3191 * flow control settings
3193 * The high water mark must be low enough to fit one full frame
3194 * (or the size used for early receive) above it in the Rx FIFO.
3195 * Set it to the lower of:
3196 * - 90% of the Rx FIFO size, and
3197 * - the full Rx FIFO size minus the early receive size (for parts
3198 * with ERT support assuming ERT set to E1000_ERT_2048), or
3199 * - the full Rx FIFO size minus one full frame
3201 if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
3202 fc->pause_time = 0xFFFF;
3203 else
3204 fc->pause_time = E1000_FC_PAUSE_TIME;
3205 fc->send_xon = 1;
3206 fc->current_mode = fc->requested_mode;
3208 switch (hw->mac.type) {
3209 default:
3210 if ((adapter->flags & FLAG_HAS_ERT) &&
3211 (adapter->netdev->mtu > ETH_DATA_LEN))
3212 hwm = min(((pba << 10) * 9 / 10),
3213 ((pba << 10) - (E1000_ERT_2048 << 3)));
3214 else
3215 hwm = min(((pba << 10) * 9 / 10),
3216 ((pba << 10) - adapter->max_frame_size));
3218 fc->high_water = hwm & E1000_FCRTH_RTH; /* 8-byte granularity */
3219 fc->low_water = fc->high_water - 8;
3220 break;
3221 case e1000_pchlan:
3223 * Workaround PCH LOM adapter hangs with certain network
3224 * loads. If hangs persist, try disabling Tx flow control.
3226 if (adapter->netdev->mtu > ETH_DATA_LEN) {
3227 fc->high_water = 0x3500;
3228 fc->low_water = 0x1500;
3229 } else {
3230 fc->high_water = 0x5000;
3231 fc->low_water = 0x3000;
3233 fc->refresh_time = 0x1000;
3234 break;
3235 case e1000_pch2lan:
3236 fc->high_water = 0x05C20;
3237 fc->low_water = 0x05048;
3238 fc->pause_time = 0x0650;
3239 fc->refresh_time = 0x0400;
3240 if (adapter->netdev->mtu > ETH_DATA_LEN) {
3241 pba = 14;
3242 ew32(PBA, pba);
3244 break;
3248 * Disable Adaptive Interrupt Moderation if 2 full packets cannot
3249 * fit in receive buffer and early-receive not supported.
3251 if (adapter->itr_setting & 0x3) {
3252 if (((adapter->max_frame_size * 2) > (pba << 10)) &&
3253 !(adapter->flags & FLAG_HAS_ERT)) {
3254 if (!(adapter->flags2 & FLAG2_DISABLE_AIM)) {
3255 dev_info(&adapter->pdev->dev,
3256 "Interrupt Throttle Rate turned off\n");
3257 adapter->flags2 |= FLAG2_DISABLE_AIM;
3258 ew32(ITR, 0);
3260 } else if (adapter->flags2 & FLAG2_DISABLE_AIM) {
3261 dev_info(&adapter->pdev->dev,
3262 "Interrupt Throttle Rate turned on\n");
3263 adapter->flags2 &= ~FLAG2_DISABLE_AIM;
3264 adapter->itr = 20000;
3265 ew32(ITR, 1000000000 / (adapter->itr * 256));
3269 /* Allow time for pending master requests to run */
3270 mac->ops.reset_hw(hw);
3273 * For parts with AMT enabled, let the firmware know
3274 * that the network interface is in control
3276 if (adapter->flags & FLAG_HAS_AMT)
3277 e1000e_get_hw_control(adapter);
3279 ew32(WUC, 0);
3281 if (mac->ops.init_hw(hw))
3282 e_err("Hardware Error\n");
3284 e1000_update_mng_vlan(adapter);
3286 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
3287 ew32(VET, ETH_P_8021Q);
3289 e1000e_reset_adaptive(hw);
3291 if (!netif_running(adapter->netdev) &&
3292 !test_bit(__E1000_TESTING, &adapter->state)) {
3293 e1000_power_down_phy(adapter);
3294 return;
3297 e1000_get_phy_info(hw);
3299 if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN) &&
3300 !(adapter->flags & FLAG_SMART_POWER_DOWN)) {
3301 u16 phy_data = 0;
3303 * speed up time to link by disabling smart power down, ignore
3304 * the return value of this function because there is nothing
3305 * different we would do if it failed
3307 e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
3308 phy_data &= ~IGP02E1000_PM_SPD;
3309 e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
3313 int e1000e_up(struct e1000_adapter *adapter)
3315 struct e1000_hw *hw = &adapter->hw;
3317 /* hardware has been reset, we need to reload some things */
3318 e1000_configure(adapter);
3320 clear_bit(__E1000_DOWN, &adapter->state);
3322 napi_enable(&adapter->napi);
3323 if (adapter->msix_entries)
3324 e1000_configure_msix(adapter);
3325 e1000_irq_enable(adapter);
3327 netif_wake_queue(adapter->netdev);
3329 /* fire a link change interrupt to start the watchdog */
3330 if (adapter->msix_entries)
3331 ew32(ICS, E1000_ICS_LSC | E1000_ICR_OTHER);
3332 else
3333 ew32(ICS, E1000_ICS_LSC);
3335 return 0;
3338 void e1000e_down(struct e1000_adapter *adapter)
3340 struct net_device *netdev = adapter->netdev;
3341 struct e1000_hw *hw = &adapter->hw;
3342 u32 tctl, rctl;
3345 * signal that we're down so the interrupt handler does not
3346 * reschedule our watchdog timer
3348 set_bit(__E1000_DOWN, &adapter->state);
3350 /* disable receives in the hardware */
3351 rctl = er32(RCTL);
3352 ew32(RCTL, rctl & ~E1000_RCTL_EN);
3353 /* flush and sleep below */
3355 netif_stop_queue(netdev);
3357 /* disable transmits in the hardware */
3358 tctl = er32(TCTL);
3359 tctl &= ~E1000_TCTL_EN;
3360 ew32(TCTL, tctl);
3361 /* flush both disables and wait for them to finish */
3362 e1e_flush();
3363 msleep(10);
3365 napi_disable(&adapter->napi);
3366 e1000_irq_disable(adapter);
3368 del_timer_sync(&adapter->watchdog_timer);
3369 del_timer_sync(&adapter->phy_info_timer);
3371 netif_carrier_off(netdev);
3372 adapter->link_speed = 0;
3373 adapter->link_duplex = 0;
3375 if (!pci_channel_offline(adapter->pdev))
3376 e1000e_reset(adapter);
3377 e1000_clean_tx_ring(adapter);
3378 e1000_clean_rx_ring(adapter);
3381 * TODO: for power management, we could drop the link and
3382 * pci_disable_device here.
3386 void e1000e_reinit_locked(struct e1000_adapter *adapter)
3388 might_sleep();
3389 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
3390 msleep(1);
3391 e1000e_down(adapter);
3392 e1000e_up(adapter);
3393 clear_bit(__E1000_RESETTING, &adapter->state);
3397 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
3398 * @adapter: board private structure to initialize
3400 * e1000_sw_init initializes the Adapter private data structure.
3401 * Fields are initialized based on PCI device information and
3402 * OS network device settings (MTU size).
3404 static int __devinit e1000_sw_init(struct e1000_adapter *adapter)
3406 struct net_device *netdev = adapter->netdev;
3408 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
3409 adapter->rx_ps_bsize0 = 128;
3410 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
3411 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
3413 e1000e_set_interrupt_capability(adapter);
3415 if (e1000_alloc_queues(adapter))
3416 return -ENOMEM;
3418 /* Explicitly disable IRQ since the NIC can be in any state. */
3419 e1000_irq_disable(adapter);
3421 set_bit(__E1000_DOWN, &adapter->state);
3422 return 0;
3426 * e1000_intr_msi_test - Interrupt Handler
3427 * @irq: interrupt number
3428 * @data: pointer to a network interface device structure
3430 static irqreturn_t e1000_intr_msi_test(int irq, void *data)
3432 struct net_device *netdev = data;
3433 struct e1000_adapter *adapter = netdev_priv(netdev);
3434 struct e1000_hw *hw = &adapter->hw;
3435 u32 icr = er32(ICR);
3437 e_dbg("icr is %08X\n", icr);
3438 if (icr & E1000_ICR_RXSEQ) {
3439 adapter->flags &= ~FLAG_MSI_TEST_FAILED;
3440 wmb();
3443 return IRQ_HANDLED;
3447 * e1000_test_msi_interrupt - Returns 0 for successful test
3448 * @adapter: board private struct
3450 * code flow taken from tg3.c
3452 static int e1000_test_msi_interrupt(struct e1000_adapter *adapter)
3454 struct net_device *netdev = adapter->netdev;
3455 struct e1000_hw *hw = &adapter->hw;
3456 int err;
3458 /* poll_enable hasn't been called yet, so don't need disable */
3459 /* clear any pending events */
3460 er32(ICR);
3462 /* free the real vector and request a test handler */
3463 e1000_free_irq(adapter);
3464 e1000e_reset_interrupt_capability(adapter);
3466 /* Assume that the test fails, if it succeeds then the test
3467 * MSI irq handler will unset this flag */
3468 adapter->flags |= FLAG_MSI_TEST_FAILED;
3470 err = pci_enable_msi(adapter->pdev);
3471 if (err)
3472 goto msi_test_failed;
3474 err = request_irq(adapter->pdev->irq, e1000_intr_msi_test, 0,
3475 netdev->name, netdev);
3476 if (err) {
3477 pci_disable_msi(adapter->pdev);
3478 goto msi_test_failed;
3481 wmb();
3483 e1000_irq_enable(adapter);
3485 /* fire an unusual interrupt on the test handler */
3486 ew32(ICS, E1000_ICS_RXSEQ);
3487 e1e_flush();
3488 msleep(50);
3490 e1000_irq_disable(adapter);
3492 rmb();
3494 if (adapter->flags & FLAG_MSI_TEST_FAILED) {
3495 adapter->int_mode = E1000E_INT_MODE_LEGACY;
3496 e_info("MSI interrupt test failed, using legacy interrupt.\n");
3497 } else
3498 e_dbg("MSI interrupt test succeeded!\n");
3500 free_irq(adapter->pdev->irq, netdev);
3501 pci_disable_msi(adapter->pdev);
3503 msi_test_failed:
3504 e1000e_set_interrupt_capability(adapter);
3505 return e1000_request_irq(adapter);
3509 * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
3510 * @adapter: board private struct
3512 * code flow taken from tg3.c, called with e1000 interrupts disabled.
3514 static int e1000_test_msi(struct e1000_adapter *adapter)
3516 int err;
3517 u16 pci_cmd;
3519 if (!(adapter->flags & FLAG_MSI_ENABLED))
3520 return 0;
3522 /* disable SERR in case the MSI write causes a master abort */
3523 pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
3524 if (pci_cmd & PCI_COMMAND_SERR)
3525 pci_write_config_word(adapter->pdev, PCI_COMMAND,
3526 pci_cmd & ~PCI_COMMAND_SERR);
3528 err = e1000_test_msi_interrupt(adapter);
3530 /* re-enable SERR */
3531 if (pci_cmd & PCI_COMMAND_SERR) {
3532 pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
3533 pci_cmd |= PCI_COMMAND_SERR;
3534 pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd);
3537 return err;
3541 * e1000_open - Called when a network interface is made active
3542 * @netdev: network interface device structure
3544 * Returns 0 on success, negative value on failure
3546 * The open entry point is called when a network interface is made
3547 * active by the system (IFF_UP). At this point all resources needed
3548 * for transmit and receive operations are allocated, the interrupt
3549 * handler is registered with the OS, the watchdog timer is started,
3550 * and the stack is notified that the interface is ready.
3552 static int e1000_open(struct net_device *netdev)
3554 struct e1000_adapter *adapter = netdev_priv(netdev);
3555 struct e1000_hw *hw = &adapter->hw;
3556 struct pci_dev *pdev = adapter->pdev;
3557 int err;
3559 /* disallow open during test */
3560 if (test_bit(__E1000_TESTING, &adapter->state))
3561 return -EBUSY;
3563 pm_runtime_get_sync(&pdev->dev);
3565 netif_carrier_off(netdev);
3567 /* allocate transmit descriptors */
3568 err = e1000e_setup_tx_resources(adapter);
3569 if (err)
3570 goto err_setup_tx;
3572 /* allocate receive descriptors */
3573 err = e1000e_setup_rx_resources(adapter);
3574 if (err)
3575 goto err_setup_rx;
3578 * If AMT is enabled, let the firmware know that the network
3579 * interface is now open and reset the part to a known state.
3581 if (adapter->flags & FLAG_HAS_AMT) {
3582 e1000e_get_hw_control(adapter);
3583 e1000e_reset(adapter);
3586 e1000e_power_up_phy(adapter);
3588 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
3589 if ((adapter->hw.mng_cookie.status &
3590 E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
3591 e1000_update_mng_vlan(adapter);
3593 /* DMA latency requirement to workaround early-receive/jumbo issue */
3594 if ((adapter->flags & FLAG_HAS_ERT) ||
3595 (adapter->hw.mac.type == e1000_pch2lan))
3596 pm_qos_add_request(&adapter->netdev->pm_qos_req,
3597 PM_QOS_CPU_DMA_LATENCY,
3598 PM_QOS_DEFAULT_VALUE);
3601 * before we allocate an interrupt, we must be ready to handle it.
3602 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
3603 * as soon as we call pci_request_irq, so we have to setup our
3604 * clean_rx handler before we do so.
3606 e1000_configure(adapter);
3608 err = e1000_request_irq(adapter);
3609 if (err)
3610 goto err_req_irq;
3613 * Work around PCIe errata with MSI interrupts causing some chipsets to
3614 * ignore e1000e MSI messages, which means we need to test our MSI
3615 * interrupt now
3617 if (adapter->int_mode != E1000E_INT_MODE_LEGACY) {
3618 err = e1000_test_msi(adapter);
3619 if (err) {
3620 e_err("Interrupt allocation failed\n");
3621 goto err_req_irq;
3625 /* From here on the code is the same as e1000e_up() */
3626 clear_bit(__E1000_DOWN, &adapter->state);
3628 napi_enable(&adapter->napi);
3630 e1000_irq_enable(adapter);
3632 netif_start_queue(netdev);
3634 adapter->idle_check = true;
3635 pm_runtime_put(&pdev->dev);
3637 /* fire a link status change interrupt to start the watchdog */
3638 if (adapter->msix_entries)
3639 ew32(ICS, E1000_ICS_LSC | E1000_ICR_OTHER);
3640 else
3641 ew32(ICS, E1000_ICS_LSC);
3643 return 0;
3645 err_req_irq:
3646 e1000e_release_hw_control(adapter);
3647 e1000_power_down_phy(adapter);
3648 e1000e_free_rx_resources(adapter);
3649 err_setup_rx:
3650 e1000e_free_tx_resources(adapter);
3651 err_setup_tx:
3652 e1000e_reset(adapter);
3653 pm_runtime_put_sync(&pdev->dev);
3655 return err;
3659 * e1000_close - Disables a network interface
3660 * @netdev: network interface device structure
3662 * Returns 0, this is not allowed to fail
3664 * The close entry point is called when an interface is de-activated
3665 * by the OS. The hardware is still under the drivers control, but
3666 * needs to be disabled. A global MAC reset is issued to stop the
3667 * hardware, and all transmit and receive resources are freed.
3669 static int e1000_close(struct net_device *netdev)
3671 struct e1000_adapter *adapter = netdev_priv(netdev);
3672 struct pci_dev *pdev = adapter->pdev;
3674 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
3676 pm_runtime_get_sync(&pdev->dev);
3678 if (!test_bit(__E1000_DOWN, &adapter->state)) {
3679 e1000e_down(adapter);
3680 e1000_free_irq(adapter);
3682 e1000_power_down_phy(adapter);
3684 e1000e_free_tx_resources(adapter);
3685 e1000e_free_rx_resources(adapter);
3688 * kill manageability vlan ID if supported, but not if a vlan with
3689 * the same ID is registered on the host OS (let 8021q kill it)
3691 if ((adapter->hw.mng_cookie.status &
3692 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
3693 !(adapter->vlgrp &&
3694 vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id)))
3695 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
3698 * If AMT is enabled, let the firmware know that the network
3699 * interface is now closed
3701 if ((adapter->flags & FLAG_HAS_AMT) &&
3702 !test_bit(__E1000_TESTING, &adapter->state))
3703 e1000e_release_hw_control(adapter);
3705 if ((adapter->flags & FLAG_HAS_ERT) ||
3706 (adapter->hw.mac.type == e1000_pch2lan))
3707 pm_qos_remove_request(&adapter->netdev->pm_qos_req);
3709 pm_runtime_put_sync(&pdev->dev);
3711 return 0;
3714 * e1000_set_mac - Change the Ethernet Address of the NIC
3715 * @netdev: network interface device structure
3716 * @p: pointer to an address structure
3718 * Returns 0 on success, negative on failure
3720 static int e1000_set_mac(struct net_device *netdev, void *p)
3722 struct e1000_adapter *adapter = netdev_priv(netdev);
3723 struct sockaddr *addr = p;
3725 if (!is_valid_ether_addr(addr->sa_data))
3726 return -EADDRNOTAVAIL;
3728 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3729 memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
3731 e1000e_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
3733 if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
3734 /* activate the work around */
3735 e1000e_set_laa_state_82571(&adapter->hw, 1);
3738 * Hold a copy of the LAA in RAR[14] This is done so that
3739 * between the time RAR[0] gets clobbered and the time it
3740 * gets fixed (in e1000_watchdog), the actual LAA is in one
3741 * of the RARs and no incoming packets directed to this port
3742 * are dropped. Eventually the LAA will be in RAR[0] and
3743 * RAR[14]
3745 e1000e_rar_set(&adapter->hw,
3746 adapter->hw.mac.addr,
3747 adapter->hw.mac.rar_entry_count - 1);
3750 return 0;
3754 * e1000e_update_phy_task - work thread to update phy
3755 * @work: pointer to our work struct
3757 * this worker thread exists because we must acquire a
3758 * semaphore to read the phy, which we could msleep while
3759 * waiting for it, and we can't msleep in a timer.
3761 static void e1000e_update_phy_task(struct work_struct *work)
3763 struct e1000_adapter *adapter = container_of(work,
3764 struct e1000_adapter, update_phy_task);
3765 e1000_get_phy_info(&adapter->hw);
3769 * Need to wait a few seconds after link up to get diagnostic information from
3770 * the phy
3772 static void e1000_update_phy_info(unsigned long data)
3774 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
3775 schedule_work(&adapter->update_phy_task);
3779 * e1000e_update_phy_stats - Update the PHY statistics counters
3780 * @adapter: board private structure
3782 static void e1000e_update_phy_stats(struct e1000_adapter *adapter)
3784 struct e1000_hw *hw = &adapter->hw;
3785 s32 ret_val;
3786 u16 phy_data;
3788 ret_val = hw->phy.ops.acquire(hw);
3789 if (ret_val)
3790 return;
3792 hw->phy.addr = 1;
3794 #define HV_PHY_STATS_PAGE 778
3796 * A page set is expensive so check if already on desired page.
3797 * If not, set to the page with the PHY status registers.
3799 ret_val = e1000e_read_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
3800 &phy_data);
3801 if (ret_val)
3802 goto release;
3803 if (phy_data != (HV_PHY_STATS_PAGE << IGP_PAGE_SHIFT)) {
3804 ret_val = e1000e_write_phy_reg_mdic(hw,
3805 IGP01E1000_PHY_PAGE_SELECT,
3806 (HV_PHY_STATS_PAGE <<
3807 IGP_PAGE_SHIFT));
3808 if (ret_val)
3809 goto release;
3812 /* Read/clear the upper 16-bit registers and read/accumulate lower */
3814 /* Single Collision Count */
3815 e1000e_read_phy_reg_mdic(hw, HV_SCC_UPPER & MAX_PHY_REG_ADDRESS,
3816 &phy_data);
3817 ret_val = e1000e_read_phy_reg_mdic(hw,
3818 HV_SCC_LOWER & MAX_PHY_REG_ADDRESS,
3819 &phy_data);
3820 if (!ret_val)
3821 adapter->stats.scc += phy_data;
3823 /* Excessive Collision Count */
3824 e1000e_read_phy_reg_mdic(hw, HV_ECOL_UPPER & MAX_PHY_REG_ADDRESS,
3825 &phy_data);
3826 ret_val = e1000e_read_phy_reg_mdic(hw,
3827 HV_ECOL_LOWER & MAX_PHY_REG_ADDRESS,
3828 &phy_data);
3829 if (!ret_val)
3830 adapter->stats.ecol += phy_data;
3832 /* Multiple Collision Count */
3833 e1000e_read_phy_reg_mdic(hw, HV_MCC_UPPER & MAX_PHY_REG_ADDRESS,
3834 &phy_data);
3835 ret_val = e1000e_read_phy_reg_mdic(hw,
3836 HV_MCC_LOWER & MAX_PHY_REG_ADDRESS,
3837 &phy_data);
3838 if (!ret_val)
3839 adapter->stats.mcc += phy_data;
3841 /* Late Collision Count */
3842 e1000e_read_phy_reg_mdic(hw, HV_LATECOL_UPPER & MAX_PHY_REG_ADDRESS,
3843 &phy_data);
3844 ret_val = e1000e_read_phy_reg_mdic(hw,
3845 HV_LATECOL_LOWER &
3846 MAX_PHY_REG_ADDRESS,
3847 &phy_data);
3848 if (!ret_val)
3849 adapter->stats.latecol += phy_data;
3851 /* Collision Count - also used for adaptive IFS */
3852 e1000e_read_phy_reg_mdic(hw, HV_COLC_UPPER & MAX_PHY_REG_ADDRESS,
3853 &phy_data);
3854 ret_val = e1000e_read_phy_reg_mdic(hw,
3855 HV_COLC_LOWER & MAX_PHY_REG_ADDRESS,
3856 &phy_data);
3857 if (!ret_val)
3858 hw->mac.collision_delta = phy_data;
3860 /* Defer Count */
3861 e1000e_read_phy_reg_mdic(hw, HV_DC_UPPER & MAX_PHY_REG_ADDRESS,
3862 &phy_data);
3863 ret_val = e1000e_read_phy_reg_mdic(hw,
3864 HV_DC_LOWER & MAX_PHY_REG_ADDRESS,
3865 &phy_data);
3866 if (!ret_val)
3867 adapter->stats.dc += phy_data;
3869 /* Transmit with no CRS */
3870 e1000e_read_phy_reg_mdic(hw, HV_TNCRS_UPPER & MAX_PHY_REG_ADDRESS,
3871 &phy_data);
3872 ret_val = e1000e_read_phy_reg_mdic(hw,
3873 HV_TNCRS_LOWER & MAX_PHY_REG_ADDRESS,
3874 &phy_data);
3875 if (!ret_val)
3876 adapter->stats.tncrs += phy_data;
3878 release:
3879 hw->phy.ops.release(hw);
3883 * e1000e_update_stats - Update the board statistics counters
3884 * @adapter: board private structure
3886 void e1000e_update_stats(struct e1000_adapter *adapter)
3888 struct net_device *netdev = adapter->netdev;
3889 struct e1000_hw *hw = &adapter->hw;
3890 struct pci_dev *pdev = adapter->pdev;
3893 * Prevent stats update while adapter is being reset, or if the pci
3894 * connection is down.
3896 if (adapter->link_speed == 0)
3897 return;
3898 if (pci_channel_offline(pdev))
3899 return;
3901 adapter->stats.crcerrs += er32(CRCERRS);
3902 adapter->stats.gprc += er32(GPRC);
3903 adapter->stats.gorc += er32(GORCL);
3904 er32(GORCH); /* Clear gorc */
3905 adapter->stats.bprc += er32(BPRC);
3906 adapter->stats.mprc += er32(MPRC);
3907 adapter->stats.roc += er32(ROC);
3909 adapter->stats.mpc += er32(MPC);
3911 /* Half-duplex statistics */
3912 if (adapter->link_duplex == HALF_DUPLEX) {
3913 if (adapter->flags2 & FLAG2_HAS_PHY_STATS) {
3914 e1000e_update_phy_stats(adapter);
3915 } else {
3916 adapter->stats.scc += er32(SCC);
3917 adapter->stats.ecol += er32(ECOL);
3918 adapter->stats.mcc += er32(MCC);
3919 adapter->stats.latecol += er32(LATECOL);
3920 adapter->stats.dc += er32(DC);
3922 hw->mac.collision_delta = er32(COLC);
3924 if ((hw->mac.type != e1000_82574) &&
3925 (hw->mac.type != e1000_82583))
3926 adapter->stats.tncrs += er32(TNCRS);
3928 adapter->stats.colc += hw->mac.collision_delta;
3931 adapter->stats.xonrxc += er32(XONRXC);
3932 adapter->stats.xontxc += er32(XONTXC);
3933 adapter->stats.xoffrxc += er32(XOFFRXC);
3934 adapter->stats.xofftxc += er32(XOFFTXC);
3935 adapter->stats.gptc += er32(GPTC);
3936 adapter->stats.gotc += er32(GOTCL);
3937 er32(GOTCH); /* Clear gotc */
3938 adapter->stats.rnbc += er32(RNBC);
3939 adapter->stats.ruc += er32(RUC);
3941 adapter->stats.mptc += er32(MPTC);
3942 adapter->stats.bptc += er32(BPTC);
3944 /* used for adaptive IFS */
3946 hw->mac.tx_packet_delta = er32(TPT);
3947 adapter->stats.tpt += hw->mac.tx_packet_delta;
3949 adapter->stats.algnerrc += er32(ALGNERRC);
3950 adapter->stats.rxerrc += er32(RXERRC);
3951 adapter->stats.cexterr += er32(CEXTERR);
3952 adapter->stats.tsctc += er32(TSCTC);
3953 adapter->stats.tsctfc += er32(TSCTFC);
3955 /* Fill out the OS statistics structure */
3956 netdev->stats.multicast = adapter->stats.mprc;
3957 netdev->stats.collisions = adapter->stats.colc;
3959 /* Rx Errors */
3962 * RLEC on some newer hardware can be incorrect so build
3963 * our own version based on RUC and ROC
3965 netdev->stats.rx_errors = adapter->stats.rxerrc +
3966 adapter->stats.crcerrs + adapter->stats.algnerrc +
3967 adapter->stats.ruc + adapter->stats.roc +
3968 adapter->stats.cexterr;
3969 netdev->stats.rx_length_errors = adapter->stats.ruc +
3970 adapter->stats.roc;
3971 netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
3972 netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
3973 netdev->stats.rx_missed_errors = adapter->stats.mpc;
3975 /* Tx Errors */
3976 netdev->stats.tx_errors = adapter->stats.ecol +
3977 adapter->stats.latecol;
3978 netdev->stats.tx_aborted_errors = adapter->stats.ecol;
3979 netdev->stats.tx_window_errors = adapter->stats.latecol;
3980 netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
3982 /* Tx Dropped needs to be maintained elsewhere */
3984 /* Management Stats */
3985 adapter->stats.mgptc += er32(MGTPTC);
3986 adapter->stats.mgprc += er32(MGTPRC);
3987 adapter->stats.mgpdc += er32(MGTPDC);
3991 * e1000_phy_read_status - Update the PHY register status snapshot
3992 * @adapter: board private structure
3994 static void e1000_phy_read_status(struct e1000_adapter *adapter)
3996 struct e1000_hw *hw = &adapter->hw;
3997 struct e1000_phy_regs *phy = &adapter->phy_regs;
3998 int ret_val;
4000 if ((er32(STATUS) & E1000_STATUS_LU) &&
4001 (adapter->hw.phy.media_type == e1000_media_type_copper)) {
4002 ret_val = e1e_rphy(hw, PHY_CONTROL, &phy->bmcr);
4003 ret_val |= e1e_rphy(hw, PHY_STATUS, &phy->bmsr);
4004 ret_val |= e1e_rphy(hw, PHY_AUTONEG_ADV, &phy->advertise);
4005 ret_val |= e1e_rphy(hw, PHY_LP_ABILITY, &phy->lpa);
4006 ret_val |= e1e_rphy(hw, PHY_AUTONEG_EXP, &phy->expansion);
4007 ret_val |= e1e_rphy(hw, PHY_1000T_CTRL, &phy->ctrl1000);
4008 ret_val |= e1e_rphy(hw, PHY_1000T_STATUS, &phy->stat1000);
4009 ret_val |= e1e_rphy(hw, PHY_EXT_STATUS, &phy->estatus);
4010 if (ret_val)
4011 e_warn("Error reading PHY register\n");
4012 } else {
4014 * Do not read PHY registers if link is not up
4015 * Set values to typical power-on defaults
4017 phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX);
4018 phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL |
4019 BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE |
4020 BMSR_ERCAP);
4021 phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP |
4022 ADVERTISE_ALL | ADVERTISE_CSMA);
4023 phy->lpa = 0;
4024 phy->expansion = EXPANSION_ENABLENPAGE;
4025 phy->ctrl1000 = ADVERTISE_1000FULL;
4026 phy->stat1000 = 0;
4027 phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF);
4031 static void e1000_print_link_info(struct e1000_adapter *adapter)
4033 struct e1000_hw *hw = &adapter->hw;
4034 u32 ctrl = er32(CTRL);
4036 /* Link status message must follow this format for user tools */
4037 printk(KERN_INFO "e1000e: %s NIC Link is Up %d Mbps %s, "
4038 "Flow Control: %s\n",
4039 adapter->netdev->name,
4040 adapter->link_speed,
4041 (adapter->link_duplex == FULL_DUPLEX) ?
4042 "Full Duplex" : "Half Duplex",
4043 ((ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE)) ?
4044 "RX/TX" :
4045 ((ctrl & E1000_CTRL_RFCE) ? "RX" :
4046 ((ctrl & E1000_CTRL_TFCE) ? "TX" : "None" )));
4049 static bool e1000e_has_link(struct e1000_adapter *adapter)
4051 struct e1000_hw *hw = &adapter->hw;
4052 bool link_active = 0;
4053 s32 ret_val = 0;
4056 * get_link_status is set on LSC (link status) interrupt or
4057 * Rx sequence error interrupt. get_link_status will stay
4058 * false until the check_for_link establishes link
4059 * for copper adapters ONLY
4061 switch (hw->phy.media_type) {
4062 case e1000_media_type_copper:
4063 if (hw->mac.get_link_status) {
4064 ret_val = hw->mac.ops.check_for_link(hw);
4065 link_active = !hw->mac.get_link_status;
4066 } else {
4067 link_active = 1;
4069 break;
4070 case e1000_media_type_fiber:
4071 ret_val = hw->mac.ops.check_for_link(hw);
4072 link_active = !!(er32(STATUS) & E1000_STATUS_LU);
4073 break;
4074 case e1000_media_type_internal_serdes:
4075 ret_val = hw->mac.ops.check_for_link(hw);
4076 link_active = adapter->hw.mac.serdes_has_link;
4077 break;
4078 default:
4079 case e1000_media_type_unknown:
4080 break;
4083 if ((ret_val == E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) &&
4084 (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
4085 /* See e1000_kmrn_lock_loss_workaround_ich8lan() */
4086 e_info("Gigabit has been disabled, downgrading speed\n");
4089 return link_active;
4092 static void e1000e_enable_receives(struct e1000_adapter *adapter)
4094 /* make sure the receive unit is started */
4095 if ((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
4096 (adapter->flags & FLAG_RX_RESTART_NOW)) {
4097 struct e1000_hw *hw = &adapter->hw;
4098 u32 rctl = er32(RCTL);
4099 ew32(RCTL, rctl | E1000_RCTL_EN);
4100 adapter->flags &= ~FLAG_RX_RESTART_NOW;
4104 static void e1000e_check_82574_phy_workaround(struct e1000_adapter *adapter)
4106 struct e1000_hw *hw = &adapter->hw;
4109 * With 82574 controllers, PHY needs to be checked periodically
4110 * for hung state and reset, if two calls return true
4112 if (e1000_check_phy_82574(hw))
4113 adapter->phy_hang_count++;
4114 else
4115 adapter->phy_hang_count = 0;
4117 if (adapter->phy_hang_count > 1) {
4118 adapter->phy_hang_count = 0;
4119 schedule_work(&adapter->reset_task);
4124 * e1000_watchdog - Timer Call-back
4125 * @data: pointer to adapter cast into an unsigned long
4127 static void e1000_watchdog(unsigned long data)
4129 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
4131 /* Do the rest outside of interrupt context */
4132 schedule_work(&adapter->watchdog_task);
4134 /* TODO: make this use queue_delayed_work() */
4137 static void e1000_watchdog_task(struct work_struct *work)
4139 struct e1000_adapter *adapter = container_of(work,
4140 struct e1000_adapter, watchdog_task);
4141 struct net_device *netdev = adapter->netdev;
4142 struct e1000_mac_info *mac = &adapter->hw.mac;
4143 struct e1000_phy_info *phy = &adapter->hw.phy;
4144 struct e1000_ring *tx_ring = adapter->tx_ring;
4145 struct e1000_hw *hw = &adapter->hw;
4146 u32 link, tctl;
4147 int tx_pending = 0;
4149 link = e1000e_has_link(adapter);
4150 if ((netif_carrier_ok(netdev)) && link) {
4151 /* Cancel scheduled suspend requests. */
4152 pm_runtime_resume(netdev->dev.parent);
4154 e1000e_enable_receives(adapter);
4155 goto link_up;
4158 if ((e1000e_enable_tx_pkt_filtering(hw)) &&
4159 (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
4160 e1000_update_mng_vlan(adapter);
4162 if (link) {
4163 if (!netif_carrier_ok(netdev)) {
4164 bool txb2b = 1;
4166 /* Cancel scheduled suspend requests. */
4167 pm_runtime_resume(netdev->dev.parent);
4169 /* update snapshot of PHY registers on LSC */
4170 e1000_phy_read_status(adapter);
4171 mac->ops.get_link_up_info(&adapter->hw,
4172 &adapter->link_speed,
4173 &adapter->link_duplex);
4174 e1000_print_link_info(adapter);
4176 * On supported PHYs, check for duplex mismatch only
4177 * if link has autonegotiated at 10/100 half
4179 if ((hw->phy.type == e1000_phy_igp_3 ||
4180 hw->phy.type == e1000_phy_bm) &&
4181 (hw->mac.autoneg == true) &&
4182 (adapter->link_speed == SPEED_10 ||
4183 adapter->link_speed == SPEED_100) &&
4184 (adapter->link_duplex == HALF_DUPLEX)) {
4185 u16 autoneg_exp;
4187 e1e_rphy(hw, PHY_AUTONEG_EXP, &autoneg_exp);
4189 if (!(autoneg_exp & NWAY_ER_LP_NWAY_CAPS))
4190 e_info("Autonegotiated half duplex but"
4191 " link partner cannot autoneg. "
4192 " Try forcing full duplex if "
4193 "link gets many collisions.\n");
4196 /* adjust timeout factor according to speed/duplex */
4197 adapter->tx_timeout_factor = 1;
4198 switch (adapter->link_speed) {
4199 case SPEED_10:
4200 txb2b = 0;
4201 adapter->tx_timeout_factor = 16;
4202 break;
4203 case SPEED_100:
4204 txb2b = 0;
4205 adapter->tx_timeout_factor = 10;
4206 break;
4210 * workaround: re-program speed mode bit after
4211 * link-up event
4213 if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
4214 !txb2b) {
4215 u32 tarc0;
4216 tarc0 = er32(TARC(0));
4217 tarc0 &= ~SPEED_MODE_BIT;
4218 ew32(TARC(0), tarc0);
4222 * disable TSO for pcie and 10/100 speeds, to avoid
4223 * some hardware issues
4225 if (!(adapter->flags & FLAG_TSO_FORCE)) {
4226 switch (adapter->link_speed) {
4227 case SPEED_10:
4228 case SPEED_100:
4229 e_info("10/100 speed: disabling TSO\n");
4230 netdev->features &= ~NETIF_F_TSO;
4231 netdev->features &= ~NETIF_F_TSO6;
4232 break;
4233 case SPEED_1000:
4234 netdev->features |= NETIF_F_TSO;
4235 netdev->features |= NETIF_F_TSO6;
4236 break;
4237 default:
4238 /* oops */
4239 break;
4244 * enable transmits in the hardware, need to do this
4245 * after setting TARC(0)
4247 tctl = er32(TCTL);
4248 tctl |= E1000_TCTL_EN;
4249 ew32(TCTL, tctl);
4252 * Perform any post-link-up configuration before
4253 * reporting link up.
4255 if (phy->ops.cfg_on_link_up)
4256 phy->ops.cfg_on_link_up(hw);
4258 netif_carrier_on(netdev);
4260 if (!test_bit(__E1000_DOWN, &adapter->state))
4261 mod_timer(&adapter->phy_info_timer,
4262 round_jiffies(jiffies + 2 * HZ));
4264 } else {
4265 if (netif_carrier_ok(netdev)) {
4266 adapter->link_speed = 0;
4267 adapter->link_duplex = 0;
4268 /* Link status message must follow this format */
4269 printk(KERN_INFO "e1000e: %s NIC Link is Down\n",
4270 adapter->netdev->name);
4271 netif_carrier_off(netdev);
4272 if (!test_bit(__E1000_DOWN, &adapter->state))
4273 mod_timer(&adapter->phy_info_timer,
4274 round_jiffies(jiffies + 2 * HZ));
4276 if (adapter->flags & FLAG_RX_NEEDS_RESTART)
4277 schedule_work(&adapter->reset_task);
4278 else
4279 pm_schedule_suspend(netdev->dev.parent,
4280 LINK_TIMEOUT);
4284 link_up:
4285 e1000e_update_stats(adapter);
4287 mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
4288 adapter->tpt_old = adapter->stats.tpt;
4289 mac->collision_delta = adapter->stats.colc - adapter->colc_old;
4290 adapter->colc_old = adapter->stats.colc;
4292 adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
4293 adapter->gorc_old = adapter->stats.gorc;
4294 adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
4295 adapter->gotc_old = adapter->stats.gotc;
4297 e1000e_update_adaptive(&adapter->hw);
4299 if (!netif_carrier_ok(netdev)) {
4300 tx_pending = (e1000_desc_unused(tx_ring) + 1 <
4301 tx_ring->count);
4302 if (tx_pending) {
4304 * We've lost link, so the controller stops DMA,
4305 * but we've got queued Tx work that's never going
4306 * to get done, so reset controller to flush Tx.
4307 * (Do the reset outside of interrupt context).
4309 adapter->tx_timeout_count++;
4310 schedule_work(&adapter->reset_task);
4311 /* return immediately since reset is imminent */
4312 return;
4316 /* Simple mode for Interrupt Throttle Rate (ITR) */
4317 if (adapter->itr_setting == 4) {
4319 * Symmetric Tx/Rx gets a reduced ITR=2000;
4320 * Total asymmetrical Tx or Rx gets ITR=8000;
4321 * everyone else is between 2000-8000.
4323 u32 goc = (adapter->gotc + adapter->gorc) / 10000;
4324 u32 dif = (adapter->gotc > adapter->gorc ?
4325 adapter->gotc - adapter->gorc :
4326 adapter->gorc - adapter->gotc) / 10000;
4327 u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
4329 ew32(ITR, 1000000000 / (itr * 256));
4332 /* Cause software interrupt to ensure Rx ring is cleaned */
4333 if (adapter->msix_entries)
4334 ew32(ICS, adapter->rx_ring->ims_val);
4335 else
4336 ew32(ICS, E1000_ICS_RXDMT0);
4338 /* Force detection of hung controller every watchdog period */
4339 adapter->detect_tx_hung = 1;
4341 /* flush partial descriptors to memory before detecting tx hang */
4342 if (adapter->flags2 & FLAG2_DMA_BURST) {
4343 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
4344 ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
4346 * no need to flush the writes because the timeout code does
4347 * an er32 first thing
4352 * With 82571 controllers, LAA may be overwritten due to controller
4353 * reset from the other port. Set the appropriate LAA in RAR[0]
4355 if (e1000e_get_laa_state_82571(hw))
4356 e1000e_rar_set(hw, adapter->hw.mac.addr, 0);
4358 if (adapter->flags2 & FLAG2_CHECK_PHY_HANG)
4359 e1000e_check_82574_phy_workaround(adapter);
4361 /* Reset the timer */
4362 if (!test_bit(__E1000_DOWN, &adapter->state))
4363 mod_timer(&adapter->watchdog_timer,
4364 round_jiffies(jiffies + 2 * HZ));
4367 #define E1000_TX_FLAGS_CSUM 0x00000001
4368 #define E1000_TX_FLAGS_VLAN 0x00000002
4369 #define E1000_TX_FLAGS_TSO 0x00000004
4370 #define E1000_TX_FLAGS_IPV4 0x00000008
4371 #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
4372 #define E1000_TX_FLAGS_VLAN_SHIFT 16
4374 static int e1000_tso(struct e1000_adapter *adapter,
4375 struct sk_buff *skb)
4377 struct e1000_ring *tx_ring = adapter->tx_ring;
4378 struct e1000_context_desc *context_desc;
4379 struct e1000_buffer *buffer_info;
4380 unsigned int i;
4381 u32 cmd_length = 0;
4382 u16 ipcse = 0, tucse, mss;
4383 u8 ipcss, ipcso, tucss, tucso, hdr_len;
4384 int err;
4386 if (!skb_is_gso(skb))
4387 return 0;
4389 if (skb_header_cloned(skb)) {
4390 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
4391 if (err)
4392 return err;
4395 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
4396 mss = skb_shinfo(skb)->gso_size;
4397 if (skb->protocol == htons(ETH_P_IP)) {
4398 struct iphdr *iph = ip_hdr(skb);
4399 iph->tot_len = 0;
4400 iph->check = 0;
4401 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
4402 0, IPPROTO_TCP, 0);
4403 cmd_length = E1000_TXD_CMD_IP;
4404 ipcse = skb_transport_offset(skb) - 1;
4405 } else if (skb_is_gso_v6(skb)) {
4406 ipv6_hdr(skb)->payload_len = 0;
4407 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4408 &ipv6_hdr(skb)->daddr,
4409 0, IPPROTO_TCP, 0);
4410 ipcse = 0;
4412 ipcss = skb_network_offset(skb);
4413 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
4414 tucss = skb_transport_offset(skb);
4415 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
4416 tucse = 0;
4418 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
4419 E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
4421 i = tx_ring->next_to_use;
4422 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
4423 buffer_info = &tx_ring->buffer_info[i];
4425 context_desc->lower_setup.ip_fields.ipcss = ipcss;
4426 context_desc->lower_setup.ip_fields.ipcso = ipcso;
4427 context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
4428 context_desc->upper_setup.tcp_fields.tucss = tucss;
4429 context_desc->upper_setup.tcp_fields.tucso = tucso;
4430 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
4431 context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
4432 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
4433 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
4435 buffer_info->time_stamp = jiffies;
4436 buffer_info->next_to_watch = i;
4438 i++;
4439 if (i == tx_ring->count)
4440 i = 0;
4441 tx_ring->next_to_use = i;
4443 return 1;
4446 static bool e1000_tx_csum(struct e1000_adapter *adapter, struct sk_buff *skb)
4448 struct e1000_ring *tx_ring = adapter->tx_ring;
4449 struct e1000_context_desc *context_desc;
4450 struct e1000_buffer *buffer_info;
4451 unsigned int i;
4452 u8 css;
4453 u32 cmd_len = E1000_TXD_CMD_DEXT;
4454 __be16 protocol;
4456 if (skb->ip_summed != CHECKSUM_PARTIAL)
4457 return 0;
4459 if (skb->protocol == cpu_to_be16(ETH_P_8021Q))
4460 protocol = vlan_eth_hdr(skb)->h_vlan_encapsulated_proto;
4461 else
4462 protocol = skb->protocol;
4464 switch (protocol) {
4465 case cpu_to_be16(ETH_P_IP):
4466 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
4467 cmd_len |= E1000_TXD_CMD_TCP;
4468 break;
4469 case cpu_to_be16(ETH_P_IPV6):
4470 /* XXX not handling all IPV6 headers */
4471 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
4472 cmd_len |= E1000_TXD_CMD_TCP;
4473 break;
4474 default:
4475 if (unlikely(net_ratelimit()))
4476 e_warn("checksum_partial proto=%x!\n",
4477 be16_to_cpu(protocol));
4478 break;
4481 css = skb_checksum_start_offset(skb);
4483 i = tx_ring->next_to_use;
4484 buffer_info = &tx_ring->buffer_info[i];
4485 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
4487 context_desc->lower_setup.ip_config = 0;
4488 context_desc->upper_setup.tcp_fields.tucss = css;
4489 context_desc->upper_setup.tcp_fields.tucso =
4490 css + skb->csum_offset;
4491 context_desc->upper_setup.tcp_fields.tucse = 0;
4492 context_desc->tcp_seg_setup.data = 0;
4493 context_desc->cmd_and_length = cpu_to_le32(cmd_len);
4495 buffer_info->time_stamp = jiffies;
4496 buffer_info->next_to_watch = i;
4498 i++;
4499 if (i == tx_ring->count)
4500 i = 0;
4501 tx_ring->next_to_use = i;
4503 return 1;
4506 #define E1000_MAX_PER_TXD 8192
4507 #define E1000_MAX_TXD_PWR 12
4509 static int e1000_tx_map(struct e1000_adapter *adapter,
4510 struct sk_buff *skb, unsigned int first,
4511 unsigned int max_per_txd, unsigned int nr_frags,
4512 unsigned int mss)
4514 struct e1000_ring *tx_ring = adapter->tx_ring;
4515 struct pci_dev *pdev = adapter->pdev;
4516 struct e1000_buffer *buffer_info;
4517 unsigned int len = skb_headlen(skb);
4518 unsigned int offset = 0, size, count = 0, i;
4519 unsigned int f, bytecount, segs;
4521 i = tx_ring->next_to_use;
4523 while (len) {
4524 buffer_info = &tx_ring->buffer_info[i];
4525 size = min(len, max_per_txd);
4527 buffer_info->length = size;
4528 buffer_info->time_stamp = jiffies;
4529 buffer_info->next_to_watch = i;
4530 buffer_info->dma = dma_map_single(&pdev->dev,
4531 skb->data + offset,
4532 size, DMA_TO_DEVICE);
4533 buffer_info->mapped_as_page = false;
4534 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
4535 goto dma_error;
4537 len -= size;
4538 offset += size;
4539 count++;
4541 if (len) {
4542 i++;
4543 if (i == tx_ring->count)
4544 i = 0;
4548 for (f = 0; f < nr_frags; f++) {
4549 struct skb_frag_struct *frag;
4551 frag = &skb_shinfo(skb)->frags[f];
4552 len = frag->size;
4553 offset = frag->page_offset;
4555 while (len) {
4556 i++;
4557 if (i == tx_ring->count)
4558 i = 0;
4560 buffer_info = &tx_ring->buffer_info[i];
4561 size = min(len, max_per_txd);
4563 buffer_info->length = size;
4564 buffer_info->time_stamp = jiffies;
4565 buffer_info->next_to_watch = i;
4566 buffer_info->dma = dma_map_page(&pdev->dev, frag->page,
4567 offset, size,
4568 DMA_TO_DEVICE);
4569 buffer_info->mapped_as_page = true;
4570 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
4571 goto dma_error;
4573 len -= size;
4574 offset += size;
4575 count++;
4579 segs = skb_shinfo(skb)->gso_segs ?: 1;
4580 /* multiply data chunks by size of headers */
4581 bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
4583 tx_ring->buffer_info[i].skb = skb;
4584 tx_ring->buffer_info[i].segs = segs;
4585 tx_ring->buffer_info[i].bytecount = bytecount;
4586 tx_ring->buffer_info[first].next_to_watch = i;
4588 return count;
4590 dma_error:
4591 dev_err(&pdev->dev, "TX DMA map failed\n");
4592 buffer_info->dma = 0;
4593 if (count)
4594 count--;
4596 while (count--) {
4597 if (i==0)
4598 i += tx_ring->count;
4599 i--;
4600 buffer_info = &tx_ring->buffer_info[i];
4601 e1000_put_txbuf(adapter, buffer_info);
4604 return 0;
4607 static void e1000_tx_queue(struct e1000_adapter *adapter,
4608 int tx_flags, int count)
4610 struct e1000_ring *tx_ring = adapter->tx_ring;
4611 struct e1000_tx_desc *tx_desc = NULL;
4612 struct e1000_buffer *buffer_info;
4613 u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
4614 unsigned int i;
4616 if (tx_flags & E1000_TX_FLAGS_TSO) {
4617 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
4618 E1000_TXD_CMD_TSE;
4619 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
4621 if (tx_flags & E1000_TX_FLAGS_IPV4)
4622 txd_upper |= E1000_TXD_POPTS_IXSM << 8;
4625 if (tx_flags & E1000_TX_FLAGS_CSUM) {
4626 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
4627 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
4630 if (tx_flags & E1000_TX_FLAGS_VLAN) {
4631 txd_lower |= E1000_TXD_CMD_VLE;
4632 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
4635 i = tx_ring->next_to_use;
4637 do {
4638 buffer_info = &tx_ring->buffer_info[i];
4639 tx_desc = E1000_TX_DESC(*tx_ring, i);
4640 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4641 tx_desc->lower.data =
4642 cpu_to_le32(txd_lower | buffer_info->length);
4643 tx_desc->upper.data = cpu_to_le32(txd_upper);
4645 i++;
4646 if (i == tx_ring->count)
4647 i = 0;
4648 } while (--count > 0);
4650 tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
4653 * Force memory writes to complete before letting h/w
4654 * know there are new descriptors to fetch. (Only
4655 * applicable for weak-ordered memory model archs,
4656 * such as IA-64).
4658 wmb();
4660 tx_ring->next_to_use = i;
4661 writel(i, adapter->hw.hw_addr + tx_ring->tail);
4663 * we need this if more than one processor can write to our tail
4664 * at a time, it synchronizes IO on IA64/Altix systems
4666 mmiowb();
4669 #define MINIMUM_DHCP_PACKET_SIZE 282
4670 static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
4671 struct sk_buff *skb)
4673 struct e1000_hw *hw = &adapter->hw;
4674 u16 length, offset;
4676 if (vlan_tx_tag_present(skb)) {
4677 if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
4678 (adapter->hw.mng_cookie.status &
4679 E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
4680 return 0;
4683 if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
4684 return 0;
4686 if (((struct ethhdr *) skb->data)->h_proto != htons(ETH_P_IP))
4687 return 0;
4690 const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data+14);
4691 struct udphdr *udp;
4693 if (ip->protocol != IPPROTO_UDP)
4694 return 0;
4696 udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
4697 if (ntohs(udp->dest) != 67)
4698 return 0;
4700 offset = (u8 *)udp + 8 - skb->data;
4701 length = skb->len - offset;
4702 return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
4705 return 0;
4708 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
4710 struct e1000_adapter *adapter = netdev_priv(netdev);
4712 netif_stop_queue(netdev);
4714 * Herbert's original patch had:
4715 * smp_mb__after_netif_stop_queue();
4716 * but since that doesn't exist yet, just open code it.
4718 smp_mb();
4721 * We need to check again in a case another CPU has just
4722 * made room available.
4724 if (e1000_desc_unused(adapter->tx_ring) < size)
4725 return -EBUSY;
4727 /* A reprieve! */
4728 netif_start_queue(netdev);
4729 ++adapter->restart_queue;
4730 return 0;
4733 static int e1000_maybe_stop_tx(struct net_device *netdev, int size)
4735 struct e1000_adapter *adapter = netdev_priv(netdev);
4737 if (e1000_desc_unused(adapter->tx_ring) >= size)
4738 return 0;
4739 return __e1000_maybe_stop_tx(netdev, size);
4742 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
4743 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
4744 struct net_device *netdev)
4746 struct e1000_adapter *adapter = netdev_priv(netdev);
4747 struct e1000_ring *tx_ring = adapter->tx_ring;
4748 unsigned int first;
4749 unsigned int max_per_txd = E1000_MAX_PER_TXD;
4750 unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
4751 unsigned int tx_flags = 0;
4752 unsigned int len = skb_headlen(skb);
4753 unsigned int nr_frags;
4754 unsigned int mss;
4755 int count = 0;
4756 int tso;
4757 unsigned int f;
4759 if (test_bit(__E1000_DOWN, &adapter->state)) {
4760 dev_kfree_skb_any(skb);
4761 return NETDEV_TX_OK;
4764 if (skb->len <= 0) {
4765 dev_kfree_skb_any(skb);
4766 return NETDEV_TX_OK;
4769 mss = skb_shinfo(skb)->gso_size;
4771 * The controller does a simple calculation to
4772 * make sure there is enough room in the FIFO before
4773 * initiating the DMA for each buffer. The calc is:
4774 * 4 = ceil(buffer len/mss). To make sure we don't
4775 * overrun the FIFO, adjust the max buffer len if mss
4776 * drops.
4778 if (mss) {
4779 u8 hdr_len;
4780 max_per_txd = min(mss << 2, max_per_txd);
4781 max_txd_pwr = fls(max_per_txd) - 1;
4784 * TSO Workaround for 82571/2/3 Controllers -- if skb->data
4785 * points to just header, pull a few bytes of payload from
4786 * frags into skb->data
4788 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
4790 * we do this workaround for ES2LAN, but it is un-necessary,
4791 * avoiding it could save a lot of cycles
4793 if (skb->data_len && (hdr_len == len)) {
4794 unsigned int pull_size;
4796 pull_size = min((unsigned int)4, skb->data_len);
4797 if (!__pskb_pull_tail(skb, pull_size)) {
4798 e_err("__pskb_pull_tail failed.\n");
4799 dev_kfree_skb_any(skb);
4800 return NETDEV_TX_OK;
4802 len = skb_headlen(skb);
4806 /* reserve a descriptor for the offload context */
4807 if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
4808 count++;
4809 count++;
4811 count += TXD_USE_COUNT(len, max_txd_pwr);
4813 nr_frags = skb_shinfo(skb)->nr_frags;
4814 for (f = 0; f < nr_frags; f++)
4815 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
4816 max_txd_pwr);
4818 if (adapter->hw.mac.tx_pkt_filtering)
4819 e1000_transfer_dhcp_info(adapter, skb);
4822 * need: count + 2 desc gap to keep tail from touching
4823 * head, otherwise try next time
4825 if (e1000_maybe_stop_tx(netdev, count + 2))
4826 return NETDEV_TX_BUSY;
4828 if (vlan_tx_tag_present(skb)) {
4829 tx_flags |= E1000_TX_FLAGS_VLAN;
4830 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
4833 first = tx_ring->next_to_use;
4835 tso = e1000_tso(adapter, skb);
4836 if (tso < 0) {
4837 dev_kfree_skb_any(skb);
4838 return NETDEV_TX_OK;
4841 if (tso)
4842 tx_flags |= E1000_TX_FLAGS_TSO;
4843 else if (e1000_tx_csum(adapter, skb))
4844 tx_flags |= E1000_TX_FLAGS_CSUM;
4847 * Old method was to assume IPv4 packet by default if TSO was enabled.
4848 * 82571 hardware supports TSO capabilities for IPv6 as well...
4849 * no longer assume, we must.
4851 if (skb->protocol == htons(ETH_P_IP))
4852 tx_flags |= E1000_TX_FLAGS_IPV4;
4854 /* if count is 0 then mapping error has occured */
4855 count = e1000_tx_map(adapter, skb, first, max_per_txd, nr_frags, mss);
4856 if (count) {
4857 e1000_tx_queue(adapter, tx_flags, count);
4858 /* Make sure there is space in the ring for the next send. */
4859 e1000_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 2);
4861 } else {
4862 dev_kfree_skb_any(skb);
4863 tx_ring->buffer_info[first].time_stamp = 0;
4864 tx_ring->next_to_use = first;
4867 return NETDEV_TX_OK;
4871 * e1000_tx_timeout - Respond to a Tx Hang
4872 * @netdev: network interface device structure
4874 static void e1000_tx_timeout(struct net_device *netdev)
4876 struct e1000_adapter *adapter = netdev_priv(netdev);
4878 /* Do the reset outside of interrupt context */
4879 adapter->tx_timeout_count++;
4880 schedule_work(&adapter->reset_task);
4883 static void e1000_reset_task(struct work_struct *work)
4885 struct e1000_adapter *adapter;
4886 adapter = container_of(work, struct e1000_adapter, reset_task);
4888 if (!((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
4889 (adapter->flags & FLAG_RX_RESTART_NOW))) {
4890 e1000e_dump(adapter);
4891 e_err("Reset adapter\n");
4893 e1000e_reinit_locked(adapter);
4897 * e1000_get_stats - Get System Network Statistics
4898 * @netdev: network interface device structure
4900 * Returns the address of the device statistics structure.
4901 * The statistics are actually updated from the timer callback.
4903 static struct net_device_stats *e1000_get_stats(struct net_device *netdev)
4905 /* only return the current stats */
4906 return &netdev->stats;
4910 * e1000_change_mtu - Change the Maximum Transfer Unit
4911 * @netdev: network interface device structure
4912 * @new_mtu: new value for maximum frame size
4914 * Returns 0 on success, negative on failure
4916 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
4918 struct e1000_adapter *adapter = netdev_priv(netdev);
4919 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
4921 /* Jumbo frame support */
4922 if ((max_frame > ETH_FRAME_LEN + ETH_FCS_LEN) &&
4923 !(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
4924 e_err("Jumbo Frames not supported.\n");
4925 return -EINVAL;
4928 /* Supported frame sizes */
4929 if ((new_mtu < ETH_ZLEN + ETH_FCS_LEN + VLAN_HLEN) ||
4930 (max_frame > adapter->max_hw_frame_size)) {
4931 e_err("Unsupported MTU setting\n");
4932 return -EINVAL;
4935 /* Jumbo frame workaround on 82579 requires CRC be stripped */
4936 if ((adapter->hw.mac.type == e1000_pch2lan) &&
4937 !(adapter->flags2 & FLAG2_CRC_STRIPPING) &&
4938 (new_mtu > ETH_DATA_LEN)) {
4939 e_err("Jumbo Frames not supported on 82579 when CRC "
4940 "stripping is disabled.\n");
4941 return -EINVAL;
4944 /* 82573 Errata 17 */
4945 if (((adapter->hw.mac.type == e1000_82573) ||
4946 (adapter->hw.mac.type == e1000_82574)) &&
4947 (max_frame > ETH_FRAME_LEN + ETH_FCS_LEN)) {
4948 adapter->flags2 |= FLAG2_DISABLE_ASPM_L1;
4949 e1000e_disable_aspm(adapter->pdev, PCIE_LINK_STATE_L1);
4952 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
4953 msleep(1);
4954 /* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */
4955 adapter->max_frame_size = max_frame;
4956 e_info("changing MTU from %d to %d\n", netdev->mtu, new_mtu);
4957 netdev->mtu = new_mtu;
4958 if (netif_running(netdev))
4959 e1000e_down(adapter);
4962 * NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
4963 * means we reserve 2 more, this pushes us to allocate from the next
4964 * larger slab size.
4965 * i.e. RXBUFFER_2048 --> size-4096 slab
4966 * However with the new *_jumbo_rx* routines, jumbo receives will use
4967 * fragmented skbs
4970 if (max_frame <= 2048)
4971 adapter->rx_buffer_len = 2048;
4972 else
4973 adapter->rx_buffer_len = 4096;
4975 /* adjust allocation if LPE protects us, and we aren't using SBP */
4976 if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
4977 (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
4978 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN
4979 + ETH_FCS_LEN;
4981 if (netif_running(netdev))
4982 e1000e_up(adapter);
4983 else
4984 e1000e_reset(adapter);
4986 clear_bit(__E1000_RESETTING, &adapter->state);
4988 return 0;
4991 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
4992 int cmd)
4994 struct e1000_adapter *adapter = netdev_priv(netdev);
4995 struct mii_ioctl_data *data = if_mii(ifr);
4997 if (adapter->hw.phy.media_type != e1000_media_type_copper)
4998 return -EOPNOTSUPP;
5000 switch (cmd) {
5001 case SIOCGMIIPHY:
5002 data->phy_id = adapter->hw.phy.addr;
5003 break;
5004 case SIOCGMIIREG:
5005 e1000_phy_read_status(adapter);
5007 switch (data->reg_num & 0x1F) {
5008 case MII_BMCR:
5009 data->val_out = adapter->phy_regs.bmcr;
5010 break;
5011 case MII_BMSR:
5012 data->val_out = adapter->phy_regs.bmsr;
5013 break;
5014 case MII_PHYSID1:
5015 data->val_out = (adapter->hw.phy.id >> 16);
5016 break;
5017 case MII_PHYSID2:
5018 data->val_out = (adapter->hw.phy.id & 0xFFFF);
5019 break;
5020 case MII_ADVERTISE:
5021 data->val_out = adapter->phy_regs.advertise;
5022 break;
5023 case MII_LPA:
5024 data->val_out = adapter->phy_regs.lpa;
5025 break;
5026 case MII_EXPANSION:
5027 data->val_out = adapter->phy_regs.expansion;
5028 break;
5029 case MII_CTRL1000:
5030 data->val_out = adapter->phy_regs.ctrl1000;
5031 break;
5032 case MII_STAT1000:
5033 data->val_out = adapter->phy_regs.stat1000;
5034 break;
5035 case MII_ESTATUS:
5036 data->val_out = adapter->phy_regs.estatus;
5037 break;
5038 default:
5039 return -EIO;
5041 break;
5042 case SIOCSMIIREG:
5043 default:
5044 return -EOPNOTSUPP;
5046 return 0;
5049 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
5051 switch (cmd) {
5052 case SIOCGMIIPHY:
5053 case SIOCGMIIREG:
5054 case SIOCSMIIREG:
5055 return e1000_mii_ioctl(netdev, ifr, cmd);
5056 default:
5057 return -EOPNOTSUPP;
5061 static int e1000_init_phy_wakeup(struct e1000_adapter *adapter, u32 wufc)
5063 struct e1000_hw *hw = &adapter->hw;
5064 u32 i, mac_reg;
5065 u16 phy_reg;
5066 int retval = 0;
5068 /* copy MAC RARs to PHY RARs */
5069 e1000_copy_rx_addrs_to_phy_ich8lan(hw);
5071 /* copy MAC MTA to PHY MTA */
5072 for (i = 0; i < adapter->hw.mac.mta_reg_count; i++) {
5073 mac_reg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
5074 e1e_wphy(hw, BM_MTA(i), (u16)(mac_reg & 0xFFFF));
5075 e1e_wphy(hw, BM_MTA(i) + 1, (u16)((mac_reg >> 16) & 0xFFFF));
5078 /* configure PHY Rx Control register */
5079 e1e_rphy(&adapter->hw, BM_RCTL, &phy_reg);
5080 mac_reg = er32(RCTL);
5081 if (mac_reg & E1000_RCTL_UPE)
5082 phy_reg |= BM_RCTL_UPE;
5083 if (mac_reg & E1000_RCTL_MPE)
5084 phy_reg |= BM_RCTL_MPE;
5085 phy_reg &= ~(BM_RCTL_MO_MASK);
5086 if (mac_reg & E1000_RCTL_MO_3)
5087 phy_reg |= (((mac_reg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT)
5088 << BM_RCTL_MO_SHIFT);
5089 if (mac_reg & E1000_RCTL_BAM)
5090 phy_reg |= BM_RCTL_BAM;
5091 if (mac_reg & E1000_RCTL_PMCF)
5092 phy_reg |= BM_RCTL_PMCF;
5093 mac_reg = er32(CTRL);
5094 if (mac_reg & E1000_CTRL_RFCE)
5095 phy_reg |= BM_RCTL_RFCE;
5096 e1e_wphy(&adapter->hw, BM_RCTL, phy_reg);
5098 /* enable PHY wakeup in MAC register */
5099 ew32(WUFC, wufc);
5100 ew32(WUC, E1000_WUC_PHY_WAKE | E1000_WUC_PME_EN);
5102 /* configure and enable PHY wakeup in PHY registers */
5103 e1e_wphy(&adapter->hw, BM_WUFC, wufc);
5104 e1e_wphy(&adapter->hw, BM_WUC, E1000_WUC_PME_EN);
5106 /* activate PHY wakeup */
5107 retval = hw->phy.ops.acquire(hw);
5108 if (retval) {
5109 e_err("Could not acquire PHY\n");
5110 return retval;
5112 e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
5113 (BM_WUC_ENABLE_PAGE << IGP_PAGE_SHIFT));
5114 retval = e1000e_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, &phy_reg);
5115 if (retval) {
5116 e_err("Could not read PHY page 769\n");
5117 goto out;
5119 phy_reg |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
5120 retval = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, phy_reg);
5121 if (retval)
5122 e_err("Could not set PHY Host Wakeup bit\n");
5123 out:
5124 hw->phy.ops.release(hw);
5126 return retval;
5129 static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake,
5130 bool runtime)
5132 struct net_device *netdev = pci_get_drvdata(pdev);
5133 struct e1000_adapter *adapter = netdev_priv(netdev);
5134 struct e1000_hw *hw = &adapter->hw;
5135 u32 ctrl, ctrl_ext, rctl, status;
5136 /* Runtime suspend should only enable wakeup for link changes */
5137 u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
5138 int retval = 0;
5140 netif_device_detach(netdev);
5142 if (netif_running(netdev)) {
5143 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
5144 e1000e_down(adapter);
5145 e1000_free_irq(adapter);
5147 e1000e_reset_interrupt_capability(adapter);
5149 retval = pci_save_state(pdev);
5150 if (retval)
5151 return retval;
5153 status = er32(STATUS);
5154 if (status & E1000_STATUS_LU)
5155 wufc &= ~E1000_WUFC_LNKC;
5157 if (wufc) {
5158 e1000_setup_rctl(adapter);
5159 e1000_set_multi(netdev);
5161 /* turn on all-multi mode if wake on multicast is enabled */
5162 if (wufc & E1000_WUFC_MC) {
5163 rctl = er32(RCTL);
5164 rctl |= E1000_RCTL_MPE;
5165 ew32(RCTL, rctl);
5168 ctrl = er32(CTRL);
5169 /* advertise wake from D3Cold */
5170 #define E1000_CTRL_ADVD3WUC 0x00100000
5171 /* phy power management enable */
5172 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5173 ctrl |= E1000_CTRL_ADVD3WUC;
5174 if (!(adapter->flags2 & FLAG2_HAS_PHY_WAKEUP))
5175 ctrl |= E1000_CTRL_EN_PHY_PWR_MGMT;
5176 ew32(CTRL, ctrl);
5178 if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
5179 adapter->hw.phy.media_type ==
5180 e1000_media_type_internal_serdes) {
5181 /* keep the laser running in D3 */
5182 ctrl_ext = er32(CTRL_EXT);
5183 ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
5184 ew32(CTRL_EXT, ctrl_ext);
5187 if (adapter->flags & FLAG_IS_ICH)
5188 e1000e_disable_gig_wol_ich8lan(&adapter->hw);
5190 /* Allow time for pending master requests to run */
5191 e1000e_disable_pcie_master(&adapter->hw);
5193 if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
5194 /* enable wakeup by the PHY */
5195 retval = e1000_init_phy_wakeup(adapter, wufc);
5196 if (retval)
5197 return retval;
5198 } else {
5199 /* enable wakeup by the MAC */
5200 ew32(WUFC, wufc);
5201 ew32(WUC, E1000_WUC_PME_EN);
5203 } else {
5204 ew32(WUC, 0);
5205 ew32(WUFC, 0);
5208 *enable_wake = !!wufc;
5210 /* make sure adapter isn't asleep if manageability is enabled */
5211 if ((adapter->flags & FLAG_MNG_PT_ENABLED) ||
5212 (hw->mac.ops.check_mng_mode(hw)))
5213 *enable_wake = true;
5215 if (adapter->hw.phy.type == e1000_phy_igp_3)
5216 e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
5219 * Release control of h/w to f/w. If f/w is AMT enabled, this
5220 * would have already happened in close and is redundant.
5222 e1000e_release_hw_control(adapter);
5224 pci_disable_device(pdev);
5226 return 0;
5229 static void e1000_power_off(struct pci_dev *pdev, bool sleep, bool wake)
5231 if (sleep && wake) {
5232 pci_prepare_to_sleep(pdev);
5233 return;
5236 pci_wake_from_d3(pdev, wake);
5237 pci_set_power_state(pdev, PCI_D3hot);
5240 static void e1000_complete_shutdown(struct pci_dev *pdev, bool sleep,
5241 bool wake)
5243 struct net_device *netdev = pci_get_drvdata(pdev);
5244 struct e1000_adapter *adapter = netdev_priv(netdev);
5247 * The pci-e switch on some quad port adapters will report a
5248 * correctable error when the MAC transitions from D0 to D3. To
5249 * prevent this we need to mask off the correctable errors on the
5250 * downstream port of the pci-e switch.
5252 if (adapter->flags & FLAG_IS_QUAD_PORT) {
5253 struct pci_dev *us_dev = pdev->bus->self;
5254 int pos = pci_find_capability(us_dev, PCI_CAP_ID_EXP);
5255 u16 devctl;
5257 pci_read_config_word(us_dev, pos + PCI_EXP_DEVCTL, &devctl);
5258 pci_write_config_word(us_dev, pos + PCI_EXP_DEVCTL,
5259 (devctl & ~PCI_EXP_DEVCTL_CERE));
5261 e1000_power_off(pdev, sleep, wake);
5263 pci_write_config_word(us_dev, pos + PCI_EXP_DEVCTL, devctl);
5264 } else {
5265 e1000_power_off(pdev, sleep, wake);
5269 #ifdef CONFIG_PCIEASPM
5270 static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
5272 pci_disable_link_state(pdev, state);
5274 #else
5275 static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
5277 int pos;
5278 u16 reg16;
5281 * Both device and parent should have the same ASPM setting.
5282 * Disable ASPM in downstream component first and then upstream.
5284 pos = pci_pcie_cap(pdev);
5285 pci_read_config_word(pdev, pos + PCI_EXP_LNKCTL, &reg16);
5286 reg16 &= ~state;
5287 pci_write_config_word(pdev, pos + PCI_EXP_LNKCTL, reg16);
5289 if (!pdev->bus->self)
5290 return;
5292 pos = pci_pcie_cap(pdev->bus->self);
5293 pci_read_config_word(pdev->bus->self, pos + PCI_EXP_LNKCTL, &reg16);
5294 reg16 &= ~state;
5295 pci_write_config_word(pdev->bus->self, pos + PCI_EXP_LNKCTL, reg16);
5297 #endif
5298 void e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
5300 dev_info(&pdev->dev, "Disabling ASPM %s %s\n",
5301 (state & PCIE_LINK_STATE_L0S) ? "L0s" : "",
5302 (state & PCIE_LINK_STATE_L1) ? "L1" : "");
5304 __e1000e_disable_aspm(pdev, state);
5307 #ifdef CONFIG_PM_OPS
5308 static bool e1000e_pm_ready(struct e1000_adapter *adapter)
5310 return !!adapter->tx_ring->buffer_info;
5313 static int __e1000_resume(struct pci_dev *pdev)
5315 struct net_device *netdev = pci_get_drvdata(pdev);
5316 struct e1000_adapter *adapter = netdev_priv(netdev);
5317 struct e1000_hw *hw = &adapter->hw;
5318 u32 err;
5320 pci_set_power_state(pdev, PCI_D0);
5321 pci_restore_state(pdev);
5322 pci_save_state(pdev);
5323 if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
5324 e1000e_disable_aspm(pdev, PCIE_LINK_STATE_L1);
5326 e1000e_set_interrupt_capability(adapter);
5327 if (netif_running(netdev)) {
5328 err = e1000_request_irq(adapter);
5329 if (err)
5330 return err;
5333 e1000e_power_up_phy(adapter);
5335 /* report the system wakeup cause from S3/S4 */
5336 if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
5337 u16 phy_data;
5339 e1e_rphy(&adapter->hw, BM_WUS, &phy_data);
5340 if (phy_data) {
5341 e_info("PHY Wakeup cause - %s\n",
5342 phy_data & E1000_WUS_EX ? "Unicast Packet" :
5343 phy_data & E1000_WUS_MC ? "Multicast Packet" :
5344 phy_data & E1000_WUS_BC ? "Broadcast Packet" :
5345 phy_data & E1000_WUS_MAG ? "Magic Packet" :
5346 phy_data & E1000_WUS_LNKC ? "Link Status "
5347 " Change" : "other");
5349 e1e_wphy(&adapter->hw, BM_WUS, ~0);
5350 } else {
5351 u32 wus = er32(WUS);
5352 if (wus) {
5353 e_info("MAC Wakeup cause - %s\n",
5354 wus & E1000_WUS_EX ? "Unicast Packet" :
5355 wus & E1000_WUS_MC ? "Multicast Packet" :
5356 wus & E1000_WUS_BC ? "Broadcast Packet" :
5357 wus & E1000_WUS_MAG ? "Magic Packet" :
5358 wus & E1000_WUS_LNKC ? "Link Status Change" :
5359 "other");
5361 ew32(WUS, ~0);
5364 e1000e_reset(adapter);
5366 e1000_init_manageability_pt(adapter);
5368 if (netif_running(netdev))
5369 e1000e_up(adapter);
5371 netif_device_attach(netdev);
5374 * If the controller has AMT, do not set DRV_LOAD until the interface
5375 * is up. For all other cases, let the f/w know that the h/w is now
5376 * under the control of the driver.
5378 if (!(adapter->flags & FLAG_HAS_AMT))
5379 e1000e_get_hw_control(adapter);
5381 return 0;
5384 #ifdef CONFIG_PM_SLEEP
5385 static int e1000_suspend(struct device *dev)
5387 struct pci_dev *pdev = to_pci_dev(dev);
5388 int retval;
5389 bool wake;
5391 retval = __e1000_shutdown(pdev, &wake, false);
5392 if (!retval)
5393 e1000_complete_shutdown(pdev, true, wake);
5395 return retval;
5398 static int e1000_resume(struct device *dev)
5400 struct pci_dev *pdev = to_pci_dev(dev);
5401 struct net_device *netdev = pci_get_drvdata(pdev);
5402 struct e1000_adapter *adapter = netdev_priv(netdev);
5404 if (e1000e_pm_ready(adapter))
5405 adapter->idle_check = true;
5407 return __e1000_resume(pdev);
5409 #endif /* CONFIG_PM_SLEEP */
5411 #ifdef CONFIG_PM_RUNTIME
5412 static int e1000_runtime_suspend(struct device *dev)
5414 struct pci_dev *pdev = to_pci_dev(dev);
5415 struct net_device *netdev = pci_get_drvdata(pdev);
5416 struct e1000_adapter *adapter = netdev_priv(netdev);
5418 if (e1000e_pm_ready(adapter)) {
5419 bool wake;
5421 __e1000_shutdown(pdev, &wake, true);
5424 return 0;
5427 static int e1000_idle(struct device *dev)
5429 struct pci_dev *pdev = to_pci_dev(dev);
5430 struct net_device *netdev = pci_get_drvdata(pdev);
5431 struct e1000_adapter *adapter = netdev_priv(netdev);
5433 if (!e1000e_pm_ready(adapter))
5434 return 0;
5436 if (adapter->idle_check) {
5437 adapter->idle_check = false;
5438 if (!e1000e_has_link(adapter))
5439 pm_schedule_suspend(dev, MSEC_PER_SEC);
5442 return -EBUSY;
5445 static int e1000_runtime_resume(struct device *dev)
5447 struct pci_dev *pdev = to_pci_dev(dev);
5448 struct net_device *netdev = pci_get_drvdata(pdev);
5449 struct e1000_adapter *adapter = netdev_priv(netdev);
5451 if (!e1000e_pm_ready(adapter))
5452 return 0;
5454 adapter->idle_check = !dev->power.runtime_auto;
5455 return __e1000_resume(pdev);
5457 #endif /* CONFIG_PM_RUNTIME */
5458 #endif /* CONFIG_PM_OPS */
5460 static void e1000_shutdown(struct pci_dev *pdev)
5462 bool wake = false;
5464 __e1000_shutdown(pdev, &wake, false);
5466 if (system_state == SYSTEM_POWER_OFF)
5467 e1000_complete_shutdown(pdev, false, wake);
5470 #ifdef CONFIG_NET_POLL_CONTROLLER
5472 static irqreturn_t e1000_intr_msix(int irq, void *data)
5474 struct net_device *netdev = data;
5475 struct e1000_adapter *adapter = netdev_priv(netdev);
5476 int vector, msix_irq;
5478 if (adapter->msix_entries) {
5479 vector = 0;
5480 msix_irq = adapter->msix_entries[vector].vector;
5481 disable_irq(msix_irq);
5482 e1000_intr_msix_rx(msix_irq, netdev);
5483 enable_irq(msix_irq);
5485 vector++;
5486 msix_irq = adapter->msix_entries[vector].vector;
5487 disable_irq(msix_irq);
5488 e1000_intr_msix_tx(msix_irq, netdev);
5489 enable_irq(msix_irq);
5491 vector++;
5492 msix_irq = adapter->msix_entries[vector].vector;
5493 disable_irq(msix_irq);
5494 e1000_msix_other(msix_irq, netdev);
5495 enable_irq(msix_irq);
5498 return IRQ_HANDLED;
5502 * Polling 'interrupt' - used by things like netconsole to send skbs
5503 * without having to re-enable interrupts. It's not called while
5504 * the interrupt routine is executing.
5506 static void e1000_netpoll(struct net_device *netdev)
5508 struct e1000_adapter *adapter = netdev_priv(netdev);
5510 switch (adapter->int_mode) {
5511 case E1000E_INT_MODE_MSIX:
5512 e1000_intr_msix(adapter->pdev->irq, netdev);
5513 break;
5514 case E1000E_INT_MODE_MSI:
5515 disable_irq(adapter->pdev->irq);
5516 e1000_intr_msi(adapter->pdev->irq, netdev);
5517 enable_irq(adapter->pdev->irq);
5518 break;
5519 default: /* E1000E_INT_MODE_LEGACY */
5520 disable_irq(adapter->pdev->irq);
5521 e1000_intr(adapter->pdev->irq, netdev);
5522 enable_irq(adapter->pdev->irq);
5523 break;
5526 #endif
5529 * e1000_io_error_detected - called when PCI error is detected
5530 * @pdev: Pointer to PCI device
5531 * @state: The current pci connection state
5533 * This function is called after a PCI bus error affecting
5534 * this device has been detected.
5536 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
5537 pci_channel_state_t state)
5539 struct net_device *netdev = pci_get_drvdata(pdev);
5540 struct e1000_adapter *adapter = netdev_priv(netdev);
5542 netif_device_detach(netdev);
5544 if (state == pci_channel_io_perm_failure)
5545 return PCI_ERS_RESULT_DISCONNECT;
5547 if (netif_running(netdev))
5548 e1000e_down(adapter);
5549 pci_disable_device(pdev);
5551 /* Request a slot slot reset. */
5552 return PCI_ERS_RESULT_NEED_RESET;
5556 * e1000_io_slot_reset - called after the pci bus has been reset.
5557 * @pdev: Pointer to PCI device
5559 * Restart the card from scratch, as if from a cold-boot. Implementation
5560 * resembles the first-half of the e1000_resume routine.
5562 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
5564 struct net_device *netdev = pci_get_drvdata(pdev);
5565 struct e1000_adapter *adapter = netdev_priv(netdev);
5566 struct e1000_hw *hw = &adapter->hw;
5567 int err;
5568 pci_ers_result_t result;
5570 if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
5571 e1000e_disable_aspm(pdev, PCIE_LINK_STATE_L1);
5572 err = pci_enable_device_mem(pdev);
5573 if (err) {
5574 dev_err(&pdev->dev,
5575 "Cannot re-enable PCI device after reset.\n");
5576 result = PCI_ERS_RESULT_DISCONNECT;
5577 } else {
5578 pci_set_master(pdev);
5579 pdev->state_saved = true;
5580 pci_restore_state(pdev);
5582 pci_enable_wake(pdev, PCI_D3hot, 0);
5583 pci_enable_wake(pdev, PCI_D3cold, 0);
5585 e1000e_reset(adapter);
5586 ew32(WUS, ~0);
5587 result = PCI_ERS_RESULT_RECOVERED;
5590 pci_cleanup_aer_uncorrect_error_status(pdev);
5592 return result;
5596 * e1000_io_resume - called when traffic can start flowing again.
5597 * @pdev: Pointer to PCI device
5599 * This callback is called when the error recovery driver tells us that
5600 * its OK to resume normal operation. Implementation resembles the
5601 * second-half of the e1000_resume routine.
5603 static void e1000_io_resume(struct pci_dev *pdev)
5605 struct net_device *netdev = pci_get_drvdata(pdev);
5606 struct e1000_adapter *adapter = netdev_priv(netdev);
5608 e1000_init_manageability_pt(adapter);
5610 if (netif_running(netdev)) {
5611 if (e1000e_up(adapter)) {
5612 dev_err(&pdev->dev,
5613 "can't bring device back up after reset\n");
5614 return;
5618 netif_device_attach(netdev);
5621 * If the controller has AMT, do not set DRV_LOAD until the interface
5622 * is up. For all other cases, let the f/w know that the h/w is now
5623 * under the control of the driver.
5625 if (!(adapter->flags & FLAG_HAS_AMT))
5626 e1000e_get_hw_control(adapter);
5630 static void e1000_print_device_info(struct e1000_adapter *adapter)
5632 struct e1000_hw *hw = &adapter->hw;
5633 struct net_device *netdev = adapter->netdev;
5634 u32 ret_val;
5635 u8 pba_str[E1000_PBANUM_LENGTH];
5637 /* print bus type/speed/width info */
5638 e_info("(PCI Express:2.5GB/s:%s) %pM\n",
5639 /* bus width */
5640 ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
5641 "Width x1"),
5642 /* MAC address */
5643 netdev->dev_addr);
5644 e_info("Intel(R) PRO/%s Network Connection\n",
5645 (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000");
5646 ret_val = e1000_read_pba_string_generic(hw, pba_str,
5647 E1000_PBANUM_LENGTH);
5648 if (ret_val)
5649 strncpy((char *)pba_str, "Unknown", sizeof(pba_str) - 1);
5650 e_info("MAC: %d, PHY: %d, PBA No: %s\n",
5651 hw->mac.type, hw->phy.type, pba_str);
5654 static void e1000_eeprom_checks(struct e1000_adapter *adapter)
5656 struct e1000_hw *hw = &adapter->hw;
5657 int ret_val;
5658 u16 buf = 0;
5660 if (hw->mac.type != e1000_82573)
5661 return;
5663 ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf);
5664 if (!ret_val && (!(le16_to_cpu(buf) & (1 << 0)))) {
5665 /* Deep Smart Power Down (DSPD) */
5666 dev_warn(&adapter->pdev->dev,
5667 "Warning: detected DSPD enabled in EEPROM\n");
5671 static const struct net_device_ops e1000e_netdev_ops = {
5672 .ndo_open = e1000_open,
5673 .ndo_stop = e1000_close,
5674 .ndo_start_xmit = e1000_xmit_frame,
5675 .ndo_get_stats = e1000_get_stats,
5676 .ndo_set_multicast_list = e1000_set_multi,
5677 .ndo_set_mac_address = e1000_set_mac,
5678 .ndo_change_mtu = e1000_change_mtu,
5679 .ndo_do_ioctl = e1000_ioctl,
5680 .ndo_tx_timeout = e1000_tx_timeout,
5681 .ndo_validate_addr = eth_validate_addr,
5683 .ndo_vlan_rx_register = e1000_vlan_rx_register,
5684 .ndo_vlan_rx_add_vid = e1000_vlan_rx_add_vid,
5685 .ndo_vlan_rx_kill_vid = e1000_vlan_rx_kill_vid,
5686 #ifdef CONFIG_NET_POLL_CONTROLLER
5687 .ndo_poll_controller = e1000_netpoll,
5688 #endif
5692 * e1000_probe - Device Initialization Routine
5693 * @pdev: PCI device information struct
5694 * @ent: entry in e1000_pci_tbl
5696 * Returns 0 on success, negative on failure
5698 * e1000_probe initializes an adapter identified by a pci_dev structure.
5699 * The OS initialization, configuring of the adapter private structure,
5700 * and a hardware reset occur.
5702 static int __devinit e1000_probe(struct pci_dev *pdev,
5703 const struct pci_device_id *ent)
5705 struct net_device *netdev;
5706 struct e1000_adapter *adapter;
5707 struct e1000_hw *hw;
5708 const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
5709 resource_size_t mmio_start, mmio_len;
5710 resource_size_t flash_start, flash_len;
5712 static int cards_found;
5713 int i, err, pci_using_dac;
5714 u16 eeprom_data = 0;
5715 u16 eeprom_apme_mask = E1000_EEPROM_APME;
5717 if (ei->flags2 & FLAG2_DISABLE_ASPM_L1)
5718 e1000e_disable_aspm(pdev, PCIE_LINK_STATE_L1);
5720 err = pci_enable_device_mem(pdev);
5721 if (err)
5722 return err;
5724 pci_using_dac = 0;
5725 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
5726 if (!err) {
5727 err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
5728 if (!err)
5729 pci_using_dac = 1;
5730 } else {
5731 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
5732 if (err) {
5733 err = dma_set_coherent_mask(&pdev->dev,
5734 DMA_BIT_MASK(32));
5735 if (err) {
5736 dev_err(&pdev->dev, "No usable DMA "
5737 "configuration, aborting\n");
5738 goto err_dma;
5743 err = pci_request_selected_regions_exclusive(pdev,
5744 pci_select_bars(pdev, IORESOURCE_MEM),
5745 e1000e_driver_name);
5746 if (err)
5747 goto err_pci_reg;
5749 /* AER (Advanced Error Reporting) hooks */
5750 pci_enable_pcie_error_reporting(pdev);
5752 pci_set_master(pdev);
5753 /* PCI config space info */
5754 err = pci_save_state(pdev);
5755 if (err)
5756 goto err_alloc_etherdev;
5758 err = -ENOMEM;
5759 netdev = alloc_etherdev(sizeof(struct e1000_adapter));
5760 if (!netdev)
5761 goto err_alloc_etherdev;
5763 SET_NETDEV_DEV(netdev, &pdev->dev);
5765 netdev->irq = pdev->irq;
5767 pci_set_drvdata(pdev, netdev);
5768 adapter = netdev_priv(netdev);
5769 hw = &adapter->hw;
5770 adapter->netdev = netdev;
5771 adapter->pdev = pdev;
5772 adapter->ei = ei;
5773 adapter->pba = ei->pba;
5774 adapter->flags = ei->flags;
5775 adapter->flags2 = ei->flags2;
5776 adapter->hw.adapter = adapter;
5777 adapter->hw.mac.type = ei->mac;
5778 adapter->max_hw_frame_size = ei->max_hw_frame_size;
5779 adapter->msg_enable = (1 << NETIF_MSG_DRV | NETIF_MSG_PROBE) - 1;
5781 mmio_start = pci_resource_start(pdev, 0);
5782 mmio_len = pci_resource_len(pdev, 0);
5784 err = -EIO;
5785 adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
5786 if (!adapter->hw.hw_addr)
5787 goto err_ioremap;
5789 if ((adapter->flags & FLAG_HAS_FLASH) &&
5790 (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
5791 flash_start = pci_resource_start(pdev, 1);
5792 flash_len = pci_resource_len(pdev, 1);
5793 adapter->hw.flash_address = ioremap(flash_start, flash_len);
5794 if (!adapter->hw.flash_address)
5795 goto err_flashmap;
5798 /* construct the net_device struct */
5799 netdev->netdev_ops = &e1000e_netdev_ops;
5800 e1000e_set_ethtool_ops(netdev);
5801 netdev->watchdog_timeo = 5 * HZ;
5802 netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
5803 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
5805 netdev->mem_start = mmio_start;
5806 netdev->mem_end = mmio_start + mmio_len;
5808 adapter->bd_number = cards_found++;
5810 e1000e_check_options(adapter);
5812 /* setup adapter struct */
5813 err = e1000_sw_init(adapter);
5814 if (err)
5815 goto err_sw_init;
5817 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
5818 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
5819 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
5821 err = ei->get_variants(adapter);
5822 if (err)
5823 goto err_hw_init;
5825 if ((adapter->flags & FLAG_IS_ICH) &&
5826 (adapter->flags & FLAG_READ_ONLY_NVM))
5827 e1000e_write_protect_nvm_ich8lan(&adapter->hw);
5829 hw->mac.ops.get_bus_info(&adapter->hw);
5831 adapter->hw.phy.autoneg_wait_to_complete = 0;
5833 /* Copper options */
5834 if (adapter->hw.phy.media_type == e1000_media_type_copper) {
5835 adapter->hw.phy.mdix = AUTO_ALL_MODES;
5836 adapter->hw.phy.disable_polarity_correction = 0;
5837 adapter->hw.phy.ms_type = e1000_ms_hw_default;
5840 if (e1000_check_reset_block(&adapter->hw))
5841 e_info("PHY reset is blocked due to SOL/IDER session.\n");
5843 netdev->features = NETIF_F_SG |
5844 NETIF_F_HW_CSUM |
5845 NETIF_F_HW_VLAN_TX |
5846 NETIF_F_HW_VLAN_RX;
5848 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
5849 netdev->features |= NETIF_F_HW_VLAN_FILTER;
5851 netdev->features |= NETIF_F_TSO;
5852 netdev->features |= NETIF_F_TSO6;
5854 netdev->vlan_features |= NETIF_F_TSO;
5855 netdev->vlan_features |= NETIF_F_TSO6;
5856 netdev->vlan_features |= NETIF_F_HW_CSUM;
5857 netdev->vlan_features |= NETIF_F_SG;
5859 if (pci_using_dac) {
5860 netdev->features |= NETIF_F_HIGHDMA;
5861 netdev->vlan_features |= NETIF_F_HIGHDMA;
5864 if (e1000e_enable_mng_pass_thru(&adapter->hw))
5865 adapter->flags |= FLAG_MNG_PT_ENABLED;
5868 * before reading the NVM, reset the controller to
5869 * put the device in a known good starting state
5871 adapter->hw.mac.ops.reset_hw(&adapter->hw);
5874 * systems with ASPM and others may see the checksum fail on the first
5875 * attempt. Let's give it a few tries
5877 for (i = 0;; i++) {
5878 if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
5879 break;
5880 if (i == 2) {
5881 e_err("The NVM Checksum Is Not Valid\n");
5882 err = -EIO;
5883 goto err_eeprom;
5887 e1000_eeprom_checks(adapter);
5889 /* copy the MAC address */
5890 if (e1000e_read_mac_addr(&adapter->hw))
5891 e_err("NVM Read Error while reading MAC address\n");
5893 memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
5894 memcpy(netdev->perm_addr, adapter->hw.mac.addr, netdev->addr_len);
5896 if (!is_valid_ether_addr(netdev->perm_addr)) {
5897 e_err("Invalid MAC Address: %pM\n", netdev->perm_addr);
5898 err = -EIO;
5899 goto err_eeprom;
5902 init_timer(&adapter->watchdog_timer);
5903 adapter->watchdog_timer.function = e1000_watchdog;
5904 adapter->watchdog_timer.data = (unsigned long) adapter;
5906 init_timer(&adapter->phy_info_timer);
5907 adapter->phy_info_timer.function = e1000_update_phy_info;
5908 adapter->phy_info_timer.data = (unsigned long) adapter;
5910 INIT_WORK(&adapter->reset_task, e1000_reset_task);
5911 INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
5912 INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround);
5913 INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task);
5914 INIT_WORK(&adapter->print_hang_task, e1000_print_hw_hang);
5915 INIT_WORK(&adapter->led_blink_task, e1000e_led_blink_task);
5917 /* Initialize link parameters. User can change them with ethtool */
5918 adapter->hw.mac.autoneg = 1;
5919 adapter->fc_autoneg = 1;
5920 adapter->hw.fc.requested_mode = e1000_fc_default;
5921 adapter->hw.fc.current_mode = e1000_fc_default;
5922 adapter->hw.phy.autoneg_advertised = 0x2f;
5924 /* ring size defaults */
5925 adapter->rx_ring->count = 256;
5926 adapter->tx_ring->count = 256;
5929 * Initial Wake on LAN setting - If APM wake is enabled in
5930 * the EEPROM, enable the ACPI Magic Packet filter
5932 if (adapter->flags & FLAG_APME_IN_WUC) {
5933 /* APME bit in EEPROM is mapped to WUC.APME */
5934 eeprom_data = er32(WUC);
5935 eeprom_apme_mask = E1000_WUC_APME;
5936 if (eeprom_data & E1000_WUC_PHY_WAKE)
5937 adapter->flags2 |= FLAG2_HAS_PHY_WAKEUP;
5938 } else if (adapter->flags & FLAG_APME_IN_CTRL3) {
5939 if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
5940 (adapter->hw.bus.func == 1))
5941 e1000_read_nvm(&adapter->hw,
5942 NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
5943 else
5944 e1000_read_nvm(&adapter->hw,
5945 NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
5948 /* fetch WoL from EEPROM */
5949 if (eeprom_data & eeprom_apme_mask)
5950 adapter->eeprom_wol |= E1000_WUFC_MAG;
5953 * now that we have the eeprom settings, apply the special cases
5954 * where the eeprom may be wrong or the board simply won't support
5955 * wake on lan on a particular port
5957 if (!(adapter->flags & FLAG_HAS_WOL))
5958 adapter->eeprom_wol = 0;
5960 /* initialize the wol settings based on the eeprom settings */
5961 adapter->wol = adapter->eeprom_wol;
5962 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
5964 /* save off EEPROM version number */
5965 e1000_read_nvm(&adapter->hw, 5, 1, &adapter->eeprom_vers);
5967 /* reset the hardware with the new settings */
5968 e1000e_reset(adapter);
5971 * If the controller has AMT, do not set DRV_LOAD until the interface
5972 * is up. For all other cases, let the f/w know that the h/w is now
5973 * under the control of the driver.
5975 if (!(adapter->flags & FLAG_HAS_AMT))
5976 e1000e_get_hw_control(adapter);
5978 strncpy(netdev->name, "eth%d", sizeof(netdev->name) - 1);
5979 err = register_netdev(netdev);
5980 if (err)
5981 goto err_register;
5983 /* carrier off reporting is important to ethtool even BEFORE open */
5984 netif_carrier_off(netdev);
5986 e1000_print_device_info(adapter);
5988 if (pci_dev_run_wake(pdev))
5989 pm_runtime_put_noidle(&pdev->dev);
5991 return 0;
5993 err_register:
5994 if (!(adapter->flags & FLAG_HAS_AMT))
5995 e1000e_release_hw_control(adapter);
5996 err_eeprom:
5997 if (!e1000_check_reset_block(&adapter->hw))
5998 e1000_phy_hw_reset(&adapter->hw);
5999 err_hw_init:
6000 kfree(adapter->tx_ring);
6001 kfree(adapter->rx_ring);
6002 err_sw_init:
6003 if (adapter->hw.flash_address)
6004 iounmap(adapter->hw.flash_address);
6005 e1000e_reset_interrupt_capability(adapter);
6006 err_flashmap:
6007 iounmap(adapter->hw.hw_addr);
6008 err_ioremap:
6009 free_netdev(netdev);
6010 err_alloc_etherdev:
6011 pci_release_selected_regions(pdev,
6012 pci_select_bars(pdev, IORESOURCE_MEM));
6013 err_pci_reg:
6014 err_dma:
6015 pci_disable_device(pdev);
6016 return err;
6020 * e1000_remove - Device Removal Routine
6021 * @pdev: PCI device information struct
6023 * e1000_remove is called by the PCI subsystem to alert the driver
6024 * that it should release a PCI device. The could be caused by a
6025 * Hot-Plug event, or because the driver is going to be removed from
6026 * memory.
6028 static void __devexit e1000_remove(struct pci_dev *pdev)
6030 struct net_device *netdev = pci_get_drvdata(pdev);
6031 struct e1000_adapter *adapter = netdev_priv(netdev);
6032 bool down = test_bit(__E1000_DOWN, &adapter->state);
6035 * The timers may be rescheduled, so explicitly disable them
6036 * from being rescheduled.
6038 if (!down)
6039 set_bit(__E1000_DOWN, &adapter->state);
6040 del_timer_sync(&adapter->watchdog_timer);
6041 del_timer_sync(&adapter->phy_info_timer);
6043 cancel_work_sync(&adapter->reset_task);
6044 cancel_work_sync(&adapter->watchdog_task);
6045 cancel_work_sync(&adapter->downshift_task);
6046 cancel_work_sync(&adapter->update_phy_task);
6047 cancel_work_sync(&adapter->led_blink_task);
6048 cancel_work_sync(&adapter->print_hang_task);
6050 if (!(netdev->flags & IFF_UP))
6051 e1000_power_down_phy(adapter);
6053 /* Don't lie to e1000_close() down the road. */
6054 if (!down)
6055 clear_bit(__E1000_DOWN, &adapter->state);
6056 unregister_netdev(netdev);
6058 if (pci_dev_run_wake(pdev))
6059 pm_runtime_get_noresume(&pdev->dev);
6062 * Release control of h/w to f/w. If f/w is AMT enabled, this
6063 * would have already happened in close and is redundant.
6065 e1000e_release_hw_control(adapter);
6067 e1000e_reset_interrupt_capability(adapter);
6068 kfree(adapter->tx_ring);
6069 kfree(adapter->rx_ring);
6071 iounmap(adapter->hw.hw_addr);
6072 if (adapter->hw.flash_address)
6073 iounmap(adapter->hw.flash_address);
6074 pci_release_selected_regions(pdev,
6075 pci_select_bars(pdev, IORESOURCE_MEM));
6077 free_netdev(netdev);
6079 /* AER disable */
6080 pci_disable_pcie_error_reporting(pdev);
6082 pci_disable_device(pdev);
6085 /* PCI Error Recovery (ERS) */
6086 static struct pci_error_handlers e1000_err_handler = {
6087 .error_detected = e1000_io_error_detected,
6088 .slot_reset = e1000_io_slot_reset,
6089 .resume = e1000_io_resume,
6092 static DEFINE_PCI_DEVICE_TABLE(e1000_pci_tbl) = {
6093 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
6094 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
6095 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
6096 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP), board_82571 },
6097 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
6098 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
6099 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 },
6100 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 },
6101 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 },
6103 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
6104 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
6105 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
6106 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
6108 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
6109 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
6110 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
6112 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 },
6113 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574LA), board_82574 },
6114 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82583V), board_82583 },
6116 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
6117 board_80003es2lan },
6118 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
6119 board_80003es2lan },
6120 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
6121 board_80003es2lan },
6122 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
6123 board_80003es2lan },
6125 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
6126 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
6127 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
6128 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
6129 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
6130 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
6131 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
6132 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_82567V_3), board_ich8lan },
6134 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
6135 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
6136 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
6137 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
6138 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
6139 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan },
6140 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan },
6141 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan },
6142 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan },
6144 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan },
6145 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan },
6146 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan },
6148 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan },
6149 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan },
6150 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_V), board_ich10lan },
6152 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LM), board_pchlan },
6153 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LC), board_pchlan },
6154 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DM), board_pchlan },
6155 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DC), board_pchlan },
6157 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_LM), board_pch2lan },
6158 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_V), board_pch2lan },
6160 { } /* terminate list */
6162 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
6164 #ifdef CONFIG_PM_OPS
6165 static const struct dev_pm_ops e1000_pm_ops = {
6166 SET_SYSTEM_SLEEP_PM_OPS(e1000_suspend, e1000_resume)
6167 SET_RUNTIME_PM_OPS(e1000_runtime_suspend,
6168 e1000_runtime_resume, e1000_idle)
6170 #endif
6172 /* PCI Device API Driver */
6173 static struct pci_driver e1000_driver = {
6174 .name = e1000e_driver_name,
6175 .id_table = e1000_pci_tbl,
6176 .probe = e1000_probe,
6177 .remove = __devexit_p(e1000_remove),
6178 #ifdef CONFIG_PM_OPS
6179 .driver.pm = &e1000_pm_ops,
6180 #endif
6181 .shutdown = e1000_shutdown,
6182 .err_handler = &e1000_err_handler
6186 * e1000_init_module - Driver Registration Routine
6188 * e1000_init_module is the first routine called when the driver is
6189 * loaded. All it does is register with the PCI subsystem.
6191 static int __init e1000_init_module(void)
6193 int ret;
6194 pr_info("Intel(R) PRO/1000 Network Driver - %s\n",
6195 e1000e_driver_version);
6196 pr_info("Copyright (c) 1999 - 2010 Intel Corporation.\n");
6197 ret = pci_register_driver(&e1000_driver);
6199 return ret;
6201 module_init(e1000_init_module);
6204 * e1000_exit_module - Driver Exit Cleanup Routine
6206 * e1000_exit_module is called just before the driver is removed
6207 * from memory.
6209 static void __exit e1000_exit_module(void)
6211 pci_unregister_driver(&e1000_driver);
6213 module_exit(e1000_exit_module);
6216 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
6217 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
6218 MODULE_LICENSE("GPL");
6219 MODULE_VERSION(DRV_VERSION);
6221 /* e1000_main.c */