proc: use seq_puts()/seq_putc() where possible
[linux-2.6/next.git] / drivers / net / igb / e1000_82575.c
blob0a2368fa6bc660906b2120a84e69570e4c1962d7
1 /*******************************************************************************
3 Intel(R) Gigabit Ethernet Linux driver
4 Copyright(c) 2007-2009 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 *******************************************************************************/
28 /* e1000_82575
29 * e1000_82576
32 #include <linux/types.h>
33 #include <linux/if_ether.h>
35 #include "e1000_mac.h"
36 #include "e1000_82575.h"
38 static s32 igb_get_invariants_82575(struct e1000_hw *);
39 static s32 igb_acquire_phy_82575(struct e1000_hw *);
40 static void igb_release_phy_82575(struct e1000_hw *);
41 static s32 igb_acquire_nvm_82575(struct e1000_hw *);
42 static void igb_release_nvm_82575(struct e1000_hw *);
43 static s32 igb_check_for_link_82575(struct e1000_hw *);
44 static s32 igb_get_cfg_done_82575(struct e1000_hw *);
45 static s32 igb_init_hw_82575(struct e1000_hw *);
46 static s32 igb_phy_hw_reset_sgmii_82575(struct e1000_hw *);
47 static s32 igb_read_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16 *);
48 static s32 igb_read_phy_reg_82580(struct e1000_hw *, u32, u16 *);
49 static s32 igb_write_phy_reg_82580(struct e1000_hw *, u32, u16);
50 static s32 igb_reset_hw_82575(struct e1000_hw *);
51 static s32 igb_reset_hw_82580(struct e1000_hw *);
52 static s32 igb_set_d0_lplu_state_82575(struct e1000_hw *, bool);
53 static s32 igb_setup_copper_link_82575(struct e1000_hw *);
54 static s32 igb_setup_serdes_link_82575(struct e1000_hw *);
55 static s32 igb_write_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16);
56 static void igb_clear_hw_cntrs_82575(struct e1000_hw *);
57 static s32 igb_acquire_swfw_sync_82575(struct e1000_hw *, u16);
58 static s32 igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *, u16 *,
59 u16 *);
60 static s32 igb_get_phy_id_82575(struct e1000_hw *);
61 static void igb_release_swfw_sync_82575(struct e1000_hw *, u16);
62 static bool igb_sgmii_active_82575(struct e1000_hw *);
63 static s32 igb_reset_init_script_82575(struct e1000_hw *);
64 static s32 igb_read_mac_addr_82575(struct e1000_hw *);
65 static s32 igb_set_pcie_completion_timeout(struct e1000_hw *hw);
66 static s32 igb_reset_mdicnfg_82580(struct e1000_hw *hw);
68 static const u16 e1000_82580_rxpbs_table[] =
69 { 36, 72, 144, 1, 2, 4, 8, 16,
70 35, 70, 140 };
71 #define E1000_82580_RXPBS_TABLE_SIZE \
72 (sizeof(e1000_82580_rxpbs_table)/sizeof(u16))
74 /**
75 * igb_sgmii_uses_mdio_82575 - Determine if I2C pins are for external MDIO
76 * @hw: pointer to the HW structure
78 * Called to determine if the I2C pins are being used for I2C or as an
79 * external MDIO interface since the two options are mutually exclusive.
80 **/
81 static bool igb_sgmii_uses_mdio_82575(struct e1000_hw *hw)
83 u32 reg = 0;
84 bool ext_mdio = false;
86 switch (hw->mac.type) {
87 case e1000_82575:
88 case e1000_82576:
89 reg = rd32(E1000_MDIC);
90 ext_mdio = !!(reg & E1000_MDIC_DEST);
91 break;
92 case e1000_82580:
93 case e1000_i350:
94 reg = rd32(E1000_MDICNFG);
95 ext_mdio = !!(reg & E1000_MDICNFG_EXT_MDIO);
96 break;
97 default:
98 break;
100 return ext_mdio;
103 static s32 igb_get_invariants_82575(struct e1000_hw *hw)
105 struct e1000_phy_info *phy = &hw->phy;
106 struct e1000_nvm_info *nvm = &hw->nvm;
107 struct e1000_mac_info *mac = &hw->mac;
108 struct e1000_dev_spec_82575 * dev_spec = &hw->dev_spec._82575;
109 u32 eecd;
110 s32 ret_val;
111 u16 size;
112 u32 ctrl_ext = 0;
114 switch (hw->device_id) {
115 case E1000_DEV_ID_82575EB_COPPER:
116 case E1000_DEV_ID_82575EB_FIBER_SERDES:
117 case E1000_DEV_ID_82575GB_QUAD_COPPER:
118 mac->type = e1000_82575;
119 break;
120 case E1000_DEV_ID_82576:
121 case E1000_DEV_ID_82576_NS:
122 case E1000_DEV_ID_82576_NS_SERDES:
123 case E1000_DEV_ID_82576_FIBER:
124 case E1000_DEV_ID_82576_SERDES:
125 case E1000_DEV_ID_82576_QUAD_COPPER:
126 case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
127 case E1000_DEV_ID_82576_SERDES_QUAD:
128 mac->type = e1000_82576;
129 break;
130 case E1000_DEV_ID_82580_COPPER:
131 case E1000_DEV_ID_82580_FIBER:
132 case E1000_DEV_ID_82580_SERDES:
133 case E1000_DEV_ID_82580_SGMII:
134 case E1000_DEV_ID_82580_COPPER_DUAL:
135 case E1000_DEV_ID_DH89XXCC_SGMII:
136 case E1000_DEV_ID_DH89XXCC_SERDES:
137 case E1000_DEV_ID_DH89XXCC_BACKPLANE:
138 case E1000_DEV_ID_DH89XXCC_SFP:
139 mac->type = e1000_82580;
140 break;
141 case E1000_DEV_ID_I350_COPPER:
142 case E1000_DEV_ID_I350_FIBER:
143 case E1000_DEV_ID_I350_SERDES:
144 case E1000_DEV_ID_I350_SGMII:
145 mac->type = e1000_i350;
146 break;
147 default:
148 return -E1000_ERR_MAC_INIT;
149 break;
152 /* Set media type */
154 * The 82575 uses bits 22:23 for link mode. The mode can be changed
155 * based on the EEPROM. We cannot rely upon device ID. There
156 * is no distinguishable difference between fiber and internal
157 * SerDes mode on the 82575. There can be an external PHY attached
158 * on the SGMII interface. For this, we'll set sgmii_active to true.
160 phy->media_type = e1000_media_type_copper;
161 dev_spec->sgmii_active = false;
163 ctrl_ext = rd32(E1000_CTRL_EXT);
164 switch (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) {
165 case E1000_CTRL_EXT_LINK_MODE_SGMII:
166 dev_spec->sgmii_active = true;
167 break;
168 case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
169 case E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES:
170 hw->phy.media_type = e1000_media_type_internal_serdes;
171 break;
172 default:
173 break;
176 /* Set mta register count */
177 mac->mta_reg_count = 128;
178 /* Set rar entry count */
179 mac->rar_entry_count = E1000_RAR_ENTRIES_82575;
180 if (mac->type == e1000_82576)
181 mac->rar_entry_count = E1000_RAR_ENTRIES_82576;
182 if (mac->type == e1000_82580)
183 mac->rar_entry_count = E1000_RAR_ENTRIES_82580;
184 if (mac->type == e1000_i350)
185 mac->rar_entry_count = E1000_RAR_ENTRIES_I350;
186 /* reset */
187 if (mac->type >= e1000_82580)
188 mac->ops.reset_hw = igb_reset_hw_82580;
189 else
190 mac->ops.reset_hw = igb_reset_hw_82575;
191 /* Set if part includes ASF firmware */
192 mac->asf_firmware_present = true;
193 /* Set if manageability features are enabled. */
194 mac->arc_subsystem_valid =
195 (rd32(E1000_FWSM) & E1000_FWSM_MODE_MASK)
196 ? true : false;
198 /* physical interface link setup */
199 mac->ops.setup_physical_interface =
200 (hw->phy.media_type == e1000_media_type_copper)
201 ? igb_setup_copper_link_82575
202 : igb_setup_serdes_link_82575;
204 /* NVM initialization */
205 eecd = rd32(E1000_EECD);
207 nvm->opcode_bits = 8;
208 nvm->delay_usec = 1;
209 switch (nvm->override) {
210 case e1000_nvm_override_spi_large:
211 nvm->page_size = 32;
212 nvm->address_bits = 16;
213 break;
214 case e1000_nvm_override_spi_small:
215 nvm->page_size = 8;
216 nvm->address_bits = 8;
217 break;
218 default:
219 nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
220 nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
221 break;
224 nvm->type = e1000_nvm_eeprom_spi;
226 size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
227 E1000_EECD_SIZE_EX_SHIFT);
230 * Added to a constant, "size" becomes the left-shift value
231 * for setting word_size.
233 size += NVM_WORD_SIZE_BASE_SHIFT;
235 /* EEPROM access above 16k is unsupported */
236 if (size > 14)
237 size = 14;
238 nvm->word_size = 1 << size;
240 /* if 82576 then initialize mailbox parameters */
241 if (mac->type == e1000_82576)
242 igb_init_mbx_params_pf(hw);
244 /* setup PHY parameters */
245 if (phy->media_type != e1000_media_type_copper) {
246 phy->type = e1000_phy_none;
247 return 0;
250 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
251 phy->reset_delay_us = 100;
253 ctrl_ext = rd32(E1000_CTRL_EXT);
255 /* PHY function pointers */
256 if (igb_sgmii_active_82575(hw)) {
257 phy->ops.reset = igb_phy_hw_reset_sgmii_82575;
258 ctrl_ext |= E1000_CTRL_I2C_ENA;
259 } else {
260 phy->ops.reset = igb_phy_hw_reset;
261 ctrl_ext &= ~E1000_CTRL_I2C_ENA;
264 wr32(E1000_CTRL_EXT, ctrl_ext);
265 igb_reset_mdicnfg_82580(hw);
267 if (igb_sgmii_active_82575(hw) && !igb_sgmii_uses_mdio_82575(hw)) {
268 phy->ops.read_reg = igb_read_phy_reg_sgmii_82575;
269 phy->ops.write_reg = igb_write_phy_reg_sgmii_82575;
270 } else if (hw->mac.type >= e1000_82580) {
271 phy->ops.read_reg = igb_read_phy_reg_82580;
272 phy->ops.write_reg = igb_write_phy_reg_82580;
273 } else {
274 phy->ops.read_reg = igb_read_phy_reg_igp;
275 phy->ops.write_reg = igb_write_phy_reg_igp;
278 /* set lan id */
279 hw->bus.func = (rd32(E1000_STATUS) & E1000_STATUS_FUNC_MASK) >>
280 E1000_STATUS_FUNC_SHIFT;
282 /* Set phy->phy_addr and phy->id. */
283 ret_val = igb_get_phy_id_82575(hw);
284 if (ret_val)
285 return ret_val;
287 /* Verify phy id and set remaining function pointers */
288 switch (phy->id) {
289 case I347AT4_E_PHY_ID:
290 case M88E1112_E_PHY_ID:
291 case M88E1111_I_PHY_ID:
292 phy->type = e1000_phy_m88;
293 phy->ops.get_phy_info = igb_get_phy_info_m88;
295 if (phy->id == I347AT4_E_PHY_ID ||
296 phy->id == M88E1112_E_PHY_ID)
297 phy->ops.get_cable_length = igb_get_cable_length_m88_gen2;
298 else
299 phy->ops.get_cable_length = igb_get_cable_length_m88;
301 phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88;
302 break;
303 case IGP03E1000_E_PHY_ID:
304 phy->type = e1000_phy_igp_3;
305 phy->ops.get_phy_info = igb_get_phy_info_igp;
306 phy->ops.get_cable_length = igb_get_cable_length_igp_2;
307 phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_igp;
308 phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82575;
309 phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state;
310 break;
311 case I82580_I_PHY_ID:
312 case I350_I_PHY_ID:
313 phy->type = e1000_phy_82580;
314 phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_82580;
315 phy->ops.get_cable_length = igb_get_cable_length_82580;
316 phy->ops.get_phy_info = igb_get_phy_info_82580;
317 break;
318 default:
319 return -E1000_ERR_PHY;
322 return 0;
326 * igb_acquire_phy_82575 - Acquire rights to access PHY
327 * @hw: pointer to the HW structure
329 * Acquire access rights to the correct PHY. This is a
330 * function pointer entry point called by the api module.
332 static s32 igb_acquire_phy_82575(struct e1000_hw *hw)
334 u16 mask = E1000_SWFW_PHY0_SM;
336 if (hw->bus.func == E1000_FUNC_1)
337 mask = E1000_SWFW_PHY1_SM;
338 else if (hw->bus.func == E1000_FUNC_2)
339 mask = E1000_SWFW_PHY2_SM;
340 else if (hw->bus.func == E1000_FUNC_3)
341 mask = E1000_SWFW_PHY3_SM;
343 return igb_acquire_swfw_sync_82575(hw, mask);
347 * igb_release_phy_82575 - Release rights to access PHY
348 * @hw: pointer to the HW structure
350 * A wrapper to release access rights to the correct PHY. This is a
351 * function pointer entry point called by the api module.
353 static void igb_release_phy_82575(struct e1000_hw *hw)
355 u16 mask = E1000_SWFW_PHY0_SM;
357 if (hw->bus.func == E1000_FUNC_1)
358 mask = E1000_SWFW_PHY1_SM;
359 else if (hw->bus.func == E1000_FUNC_2)
360 mask = E1000_SWFW_PHY2_SM;
361 else if (hw->bus.func == E1000_FUNC_3)
362 mask = E1000_SWFW_PHY3_SM;
364 igb_release_swfw_sync_82575(hw, mask);
368 * igb_read_phy_reg_sgmii_82575 - Read PHY register using sgmii
369 * @hw: pointer to the HW structure
370 * @offset: register offset to be read
371 * @data: pointer to the read data
373 * Reads the PHY register at offset using the serial gigabit media independent
374 * interface and stores the retrieved information in data.
376 static s32 igb_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
377 u16 *data)
379 s32 ret_val = -E1000_ERR_PARAM;
381 if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
382 hw_dbg("PHY Address %u is out of range\n", offset);
383 goto out;
386 ret_val = hw->phy.ops.acquire(hw);
387 if (ret_val)
388 goto out;
390 ret_val = igb_read_phy_reg_i2c(hw, offset, data);
392 hw->phy.ops.release(hw);
394 out:
395 return ret_val;
399 * igb_write_phy_reg_sgmii_82575 - Write PHY register using sgmii
400 * @hw: pointer to the HW structure
401 * @offset: register offset to write to
402 * @data: data to write at register offset
404 * Writes the data to PHY register at the offset using the serial gigabit
405 * media independent interface.
407 static s32 igb_write_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
408 u16 data)
410 s32 ret_val = -E1000_ERR_PARAM;
413 if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
414 hw_dbg("PHY Address %d is out of range\n", offset);
415 goto out;
418 ret_val = hw->phy.ops.acquire(hw);
419 if (ret_val)
420 goto out;
422 ret_val = igb_write_phy_reg_i2c(hw, offset, data);
424 hw->phy.ops.release(hw);
426 out:
427 return ret_val;
431 * igb_get_phy_id_82575 - Retrieve PHY addr and id
432 * @hw: pointer to the HW structure
434 * Retrieves the PHY address and ID for both PHY's which do and do not use
435 * sgmi interface.
437 static s32 igb_get_phy_id_82575(struct e1000_hw *hw)
439 struct e1000_phy_info *phy = &hw->phy;
440 s32 ret_val = 0;
441 u16 phy_id;
442 u32 ctrl_ext;
443 u32 mdic;
446 * For SGMII PHYs, we try the list of possible addresses until
447 * we find one that works. For non-SGMII PHYs
448 * (e.g. integrated copper PHYs), an address of 1 should
449 * work. The result of this function should mean phy->phy_addr
450 * and phy->id are set correctly.
452 if (!(igb_sgmii_active_82575(hw))) {
453 phy->addr = 1;
454 ret_val = igb_get_phy_id(hw);
455 goto out;
458 if (igb_sgmii_uses_mdio_82575(hw)) {
459 switch (hw->mac.type) {
460 case e1000_82575:
461 case e1000_82576:
462 mdic = rd32(E1000_MDIC);
463 mdic &= E1000_MDIC_PHY_MASK;
464 phy->addr = mdic >> E1000_MDIC_PHY_SHIFT;
465 break;
466 case e1000_82580:
467 case e1000_i350:
468 mdic = rd32(E1000_MDICNFG);
469 mdic &= E1000_MDICNFG_PHY_MASK;
470 phy->addr = mdic >> E1000_MDICNFG_PHY_SHIFT;
471 break;
472 default:
473 ret_val = -E1000_ERR_PHY;
474 goto out;
475 break;
477 ret_val = igb_get_phy_id(hw);
478 goto out;
481 /* Power on sgmii phy if it is disabled */
482 ctrl_ext = rd32(E1000_CTRL_EXT);
483 wr32(E1000_CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_SDP3_DATA);
484 wrfl();
485 msleep(300);
488 * The address field in the I2CCMD register is 3 bits and 0 is invalid.
489 * Therefore, we need to test 1-7
491 for (phy->addr = 1; phy->addr < 8; phy->addr++) {
492 ret_val = igb_read_phy_reg_sgmii_82575(hw, PHY_ID1, &phy_id);
493 if (ret_val == 0) {
494 hw_dbg("Vendor ID 0x%08X read at address %u\n",
495 phy_id, phy->addr);
497 * At the time of this writing, The M88 part is
498 * the only supported SGMII PHY product.
500 if (phy_id == M88_VENDOR)
501 break;
502 } else {
503 hw_dbg("PHY address %u was unreadable\n", phy->addr);
507 /* A valid PHY type couldn't be found. */
508 if (phy->addr == 8) {
509 phy->addr = 0;
510 ret_val = -E1000_ERR_PHY;
511 goto out;
512 } else {
513 ret_val = igb_get_phy_id(hw);
516 /* restore previous sfp cage power state */
517 wr32(E1000_CTRL_EXT, ctrl_ext);
519 out:
520 return ret_val;
524 * igb_phy_hw_reset_sgmii_82575 - Performs a PHY reset
525 * @hw: pointer to the HW structure
527 * Resets the PHY using the serial gigabit media independent interface.
529 static s32 igb_phy_hw_reset_sgmii_82575(struct e1000_hw *hw)
531 s32 ret_val;
534 * This isn't a true "hard" reset, but is the only reset
535 * available to us at this time.
538 hw_dbg("Soft resetting SGMII attached PHY...\n");
541 * SFP documentation requires the following to configure the SPF module
542 * to work on SGMII. No further documentation is given.
544 ret_val = hw->phy.ops.write_reg(hw, 0x1B, 0x8084);
545 if (ret_val)
546 goto out;
548 ret_val = igb_phy_sw_reset(hw);
550 out:
551 return ret_val;
555 * igb_set_d0_lplu_state_82575 - Set Low Power Linkup D0 state
556 * @hw: pointer to the HW structure
557 * @active: true to enable LPLU, false to disable
559 * Sets the LPLU D0 state according to the active flag. When
560 * activating LPLU this function also disables smart speed
561 * and vice versa. LPLU will not be activated unless the
562 * device autonegotiation advertisement meets standards of
563 * either 10 or 10/100 or 10/100/1000 at all duplexes.
564 * This is a function pointer entry point only called by
565 * PHY setup routines.
567 static s32 igb_set_d0_lplu_state_82575(struct e1000_hw *hw, bool active)
569 struct e1000_phy_info *phy = &hw->phy;
570 s32 ret_val;
571 u16 data;
573 ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
574 if (ret_val)
575 goto out;
577 if (active) {
578 data |= IGP02E1000_PM_D0_LPLU;
579 ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
580 data);
581 if (ret_val)
582 goto out;
584 /* When LPLU is enabled, we should disable SmartSpeed */
585 ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
586 &data);
587 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
588 ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
589 data);
590 if (ret_val)
591 goto out;
592 } else {
593 data &= ~IGP02E1000_PM_D0_LPLU;
594 ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
595 data);
597 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
598 * during Dx states where the power conservation is most
599 * important. During driver activity we should enable
600 * SmartSpeed, so performance is maintained.
602 if (phy->smart_speed == e1000_smart_speed_on) {
603 ret_val = phy->ops.read_reg(hw,
604 IGP01E1000_PHY_PORT_CONFIG, &data);
605 if (ret_val)
606 goto out;
608 data |= IGP01E1000_PSCFR_SMART_SPEED;
609 ret_val = phy->ops.write_reg(hw,
610 IGP01E1000_PHY_PORT_CONFIG, data);
611 if (ret_val)
612 goto out;
613 } else if (phy->smart_speed == e1000_smart_speed_off) {
614 ret_val = phy->ops.read_reg(hw,
615 IGP01E1000_PHY_PORT_CONFIG, &data);
616 if (ret_val)
617 goto out;
619 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
620 ret_val = phy->ops.write_reg(hw,
621 IGP01E1000_PHY_PORT_CONFIG, data);
622 if (ret_val)
623 goto out;
627 out:
628 return ret_val;
632 * igb_acquire_nvm_82575 - Request for access to EEPROM
633 * @hw: pointer to the HW structure
635 * Acquire the necessary semaphores for exclusive access to the EEPROM.
636 * Set the EEPROM access request bit and wait for EEPROM access grant bit.
637 * Return successful if access grant bit set, else clear the request for
638 * EEPROM access and return -E1000_ERR_NVM (-1).
640 static s32 igb_acquire_nvm_82575(struct e1000_hw *hw)
642 s32 ret_val;
644 ret_val = igb_acquire_swfw_sync_82575(hw, E1000_SWFW_EEP_SM);
645 if (ret_val)
646 goto out;
648 ret_val = igb_acquire_nvm(hw);
650 if (ret_val)
651 igb_release_swfw_sync_82575(hw, E1000_SWFW_EEP_SM);
653 out:
654 return ret_val;
658 * igb_release_nvm_82575 - Release exclusive access to EEPROM
659 * @hw: pointer to the HW structure
661 * Stop any current commands to the EEPROM and clear the EEPROM request bit,
662 * then release the semaphores acquired.
664 static void igb_release_nvm_82575(struct e1000_hw *hw)
666 igb_release_nvm(hw);
667 igb_release_swfw_sync_82575(hw, E1000_SWFW_EEP_SM);
671 * igb_acquire_swfw_sync_82575 - Acquire SW/FW semaphore
672 * @hw: pointer to the HW structure
673 * @mask: specifies which semaphore to acquire
675 * Acquire the SW/FW semaphore to access the PHY or NVM. The mask
676 * will also specify which port we're acquiring the lock for.
678 static s32 igb_acquire_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
680 u32 swfw_sync;
681 u32 swmask = mask;
682 u32 fwmask = mask << 16;
683 s32 ret_val = 0;
684 s32 i = 0, timeout = 200; /* FIXME: find real value to use here */
686 while (i < timeout) {
687 if (igb_get_hw_semaphore(hw)) {
688 ret_val = -E1000_ERR_SWFW_SYNC;
689 goto out;
692 swfw_sync = rd32(E1000_SW_FW_SYNC);
693 if (!(swfw_sync & (fwmask | swmask)))
694 break;
697 * Firmware currently using resource (fwmask)
698 * or other software thread using resource (swmask)
700 igb_put_hw_semaphore(hw);
701 mdelay(5);
702 i++;
705 if (i == timeout) {
706 hw_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
707 ret_val = -E1000_ERR_SWFW_SYNC;
708 goto out;
711 swfw_sync |= swmask;
712 wr32(E1000_SW_FW_SYNC, swfw_sync);
714 igb_put_hw_semaphore(hw);
716 out:
717 return ret_val;
721 * igb_release_swfw_sync_82575 - Release SW/FW semaphore
722 * @hw: pointer to the HW structure
723 * @mask: specifies which semaphore to acquire
725 * Release the SW/FW semaphore used to access the PHY or NVM. The mask
726 * will also specify which port we're releasing the lock for.
728 static void igb_release_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
730 u32 swfw_sync;
732 while (igb_get_hw_semaphore(hw) != 0);
733 /* Empty */
735 swfw_sync = rd32(E1000_SW_FW_SYNC);
736 swfw_sync &= ~mask;
737 wr32(E1000_SW_FW_SYNC, swfw_sync);
739 igb_put_hw_semaphore(hw);
743 * igb_get_cfg_done_82575 - Read config done bit
744 * @hw: pointer to the HW structure
746 * Read the management control register for the config done bit for
747 * completion status. NOTE: silicon which is EEPROM-less will fail trying
748 * to read the config done bit, so an error is *ONLY* logged and returns
749 * 0. If we were to return with error, EEPROM-less silicon
750 * would not be able to be reset or change link.
752 static s32 igb_get_cfg_done_82575(struct e1000_hw *hw)
754 s32 timeout = PHY_CFG_TIMEOUT;
755 s32 ret_val = 0;
756 u32 mask = E1000_NVM_CFG_DONE_PORT_0;
758 if (hw->bus.func == 1)
759 mask = E1000_NVM_CFG_DONE_PORT_1;
760 else if (hw->bus.func == E1000_FUNC_2)
761 mask = E1000_NVM_CFG_DONE_PORT_2;
762 else if (hw->bus.func == E1000_FUNC_3)
763 mask = E1000_NVM_CFG_DONE_PORT_3;
765 while (timeout) {
766 if (rd32(E1000_EEMNGCTL) & mask)
767 break;
768 msleep(1);
769 timeout--;
771 if (!timeout)
772 hw_dbg("MNG configuration cycle has not completed.\n");
774 /* If EEPROM is not marked present, init the PHY manually */
775 if (((rd32(E1000_EECD) & E1000_EECD_PRES) == 0) &&
776 (hw->phy.type == e1000_phy_igp_3))
777 igb_phy_init_script_igp3(hw);
779 return ret_val;
783 * igb_check_for_link_82575 - Check for link
784 * @hw: pointer to the HW structure
786 * If sgmii is enabled, then use the pcs register to determine link, otherwise
787 * use the generic interface for determining link.
789 static s32 igb_check_for_link_82575(struct e1000_hw *hw)
791 s32 ret_val;
792 u16 speed, duplex;
794 if (hw->phy.media_type != e1000_media_type_copper) {
795 ret_val = igb_get_pcs_speed_and_duplex_82575(hw, &speed,
796 &duplex);
798 * Use this flag to determine if link needs to be checked or
799 * not. If we have link clear the flag so that we do not
800 * continue to check for link.
802 hw->mac.get_link_status = !hw->mac.serdes_has_link;
803 } else {
804 ret_val = igb_check_for_copper_link(hw);
807 return ret_val;
811 * igb_power_up_serdes_link_82575 - Power up the serdes link after shutdown
812 * @hw: pointer to the HW structure
814 void igb_power_up_serdes_link_82575(struct e1000_hw *hw)
816 u32 reg;
819 if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
820 !igb_sgmii_active_82575(hw))
821 return;
823 /* Enable PCS to turn on link */
824 reg = rd32(E1000_PCS_CFG0);
825 reg |= E1000_PCS_CFG_PCS_EN;
826 wr32(E1000_PCS_CFG0, reg);
828 /* Power up the laser */
829 reg = rd32(E1000_CTRL_EXT);
830 reg &= ~E1000_CTRL_EXT_SDP3_DATA;
831 wr32(E1000_CTRL_EXT, reg);
833 /* flush the write to verify completion */
834 wrfl();
835 msleep(1);
839 * igb_get_pcs_speed_and_duplex_82575 - Retrieve current speed/duplex
840 * @hw: pointer to the HW structure
841 * @speed: stores the current speed
842 * @duplex: stores the current duplex
844 * Using the physical coding sub-layer (PCS), retrieve the current speed and
845 * duplex, then store the values in the pointers provided.
847 static s32 igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw, u16 *speed,
848 u16 *duplex)
850 struct e1000_mac_info *mac = &hw->mac;
851 u32 pcs;
853 /* Set up defaults for the return values of this function */
854 mac->serdes_has_link = false;
855 *speed = 0;
856 *duplex = 0;
859 * Read the PCS Status register for link state. For non-copper mode,
860 * the status register is not accurate. The PCS status register is
861 * used instead.
863 pcs = rd32(E1000_PCS_LSTAT);
866 * The link up bit determines when link is up on autoneg. The sync ok
867 * gets set once both sides sync up and agree upon link. Stable link
868 * can be determined by checking for both link up and link sync ok
870 if ((pcs & E1000_PCS_LSTS_LINK_OK) && (pcs & E1000_PCS_LSTS_SYNK_OK)) {
871 mac->serdes_has_link = true;
873 /* Detect and store PCS speed */
874 if (pcs & E1000_PCS_LSTS_SPEED_1000) {
875 *speed = SPEED_1000;
876 } else if (pcs & E1000_PCS_LSTS_SPEED_100) {
877 *speed = SPEED_100;
878 } else {
879 *speed = SPEED_10;
882 /* Detect and store PCS duplex */
883 if (pcs & E1000_PCS_LSTS_DUPLEX_FULL) {
884 *duplex = FULL_DUPLEX;
885 } else {
886 *duplex = HALF_DUPLEX;
890 return 0;
894 * igb_shutdown_serdes_link_82575 - Remove link during power down
895 * @hw: pointer to the HW structure
897 * In the case of fiber serdes, shut down optics and PCS on driver unload
898 * when management pass thru is not enabled.
900 void igb_shutdown_serdes_link_82575(struct e1000_hw *hw)
902 u32 reg;
904 if (hw->phy.media_type != e1000_media_type_internal_serdes &&
905 igb_sgmii_active_82575(hw))
906 return;
908 if (!igb_enable_mng_pass_thru(hw)) {
909 /* Disable PCS to turn off link */
910 reg = rd32(E1000_PCS_CFG0);
911 reg &= ~E1000_PCS_CFG_PCS_EN;
912 wr32(E1000_PCS_CFG0, reg);
914 /* shutdown the laser */
915 reg = rd32(E1000_CTRL_EXT);
916 reg |= E1000_CTRL_EXT_SDP3_DATA;
917 wr32(E1000_CTRL_EXT, reg);
919 /* flush the write to verify completion */
920 wrfl();
921 msleep(1);
926 * igb_reset_hw_82575 - Reset hardware
927 * @hw: pointer to the HW structure
929 * This resets the hardware into a known state. This is a
930 * function pointer entry point called by the api module.
932 static s32 igb_reset_hw_82575(struct e1000_hw *hw)
934 u32 ctrl, icr;
935 s32 ret_val;
938 * Prevent the PCI-E bus from sticking if there is no TLP connection
939 * on the last TLP read/write transaction when MAC is reset.
941 ret_val = igb_disable_pcie_master(hw);
942 if (ret_val)
943 hw_dbg("PCI-E Master disable polling has failed.\n");
945 /* set the completion timeout for interface */
946 ret_val = igb_set_pcie_completion_timeout(hw);
947 if (ret_val) {
948 hw_dbg("PCI-E Set completion timeout has failed.\n");
951 hw_dbg("Masking off all interrupts\n");
952 wr32(E1000_IMC, 0xffffffff);
954 wr32(E1000_RCTL, 0);
955 wr32(E1000_TCTL, E1000_TCTL_PSP);
956 wrfl();
958 msleep(10);
960 ctrl = rd32(E1000_CTRL);
962 hw_dbg("Issuing a global reset to MAC\n");
963 wr32(E1000_CTRL, ctrl | E1000_CTRL_RST);
965 ret_val = igb_get_auto_rd_done(hw);
966 if (ret_val) {
968 * When auto config read does not complete, do not
969 * return with an error. This can happen in situations
970 * where there is no eeprom and prevents getting link.
972 hw_dbg("Auto Read Done did not complete\n");
975 /* If EEPROM is not present, run manual init scripts */
976 if ((rd32(E1000_EECD) & E1000_EECD_PRES) == 0)
977 igb_reset_init_script_82575(hw);
979 /* Clear any pending interrupt events. */
980 wr32(E1000_IMC, 0xffffffff);
981 icr = rd32(E1000_ICR);
983 /* Install any alternate MAC address into RAR0 */
984 ret_val = igb_check_alt_mac_addr(hw);
986 return ret_val;
990 * igb_init_hw_82575 - Initialize hardware
991 * @hw: pointer to the HW structure
993 * This inits the hardware readying it for operation.
995 static s32 igb_init_hw_82575(struct e1000_hw *hw)
997 struct e1000_mac_info *mac = &hw->mac;
998 s32 ret_val;
999 u16 i, rar_count = mac->rar_entry_count;
1001 /* Initialize identification LED */
1002 ret_val = igb_id_led_init(hw);
1003 if (ret_val) {
1004 hw_dbg("Error initializing identification LED\n");
1005 /* This is not fatal and we should not stop init due to this */
1008 /* Disabling VLAN filtering */
1009 hw_dbg("Initializing the IEEE VLAN\n");
1010 igb_clear_vfta(hw);
1012 /* Setup the receive address */
1013 igb_init_rx_addrs(hw, rar_count);
1015 /* Zero out the Multicast HASH table */
1016 hw_dbg("Zeroing the MTA\n");
1017 for (i = 0; i < mac->mta_reg_count; i++)
1018 array_wr32(E1000_MTA, i, 0);
1020 /* Zero out the Unicast HASH table */
1021 hw_dbg("Zeroing the UTA\n");
1022 for (i = 0; i < mac->uta_reg_count; i++)
1023 array_wr32(E1000_UTA, i, 0);
1025 /* Setup link and flow control */
1026 ret_val = igb_setup_link(hw);
1029 * Clear all of the statistics registers (clear on read). It is
1030 * important that we do this after we have tried to establish link
1031 * because the symbol error count will increment wildly if there
1032 * is no link.
1034 igb_clear_hw_cntrs_82575(hw);
1036 return ret_val;
1040 * igb_setup_copper_link_82575 - Configure copper link settings
1041 * @hw: pointer to the HW structure
1043 * Configures the link for auto-neg or forced speed and duplex. Then we check
1044 * for link, once link is established calls to configure collision distance
1045 * and flow control are called.
1047 static s32 igb_setup_copper_link_82575(struct e1000_hw *hw)
1049 u32 ctrl;
1050 s32 ret_val;
1052 ctrl = rd32(E1000_CTRL);
1053 ctrl |= E1000_CTRL_SLU;
1054 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1055 wr32(E1000_CTRL, ctrl);
1057 ret_val = igb_setup_serdes_link_82575(hw);
1058 if (ret_val)
1059 goto out;
1061 if (igb_sgmii_active_82575(hw) && !hw->phy.reset_disable) {
1062 /* allow time for SFP cage time to power up phy */
1063 msleep(300);
1065 ret_val = hw->phy.ops.reset(hw);
1066 if (ret_val) {
1067 hw_dbg("Error resetting the PHY.\n");
1068 goto out;
1071 switch (hw->phy.type) {
1072 case e1000_phy_m88:
1073 if (hw->phy.id == I347AT4_E_PHY_ID ||
1074 hw->phy.id == M88E1112_E_PHY_ID)
1075 ret_val = igb_copper_link_setup_m88_gen2(hw);
1076 else
1077 ret_val = igb_copper_link_setup_m88(hw);
1078 break;
1079 case e1000_phy_igp_3:
1080 ret_val = igb_copper_link_setup_igp(hw);
1081 break;
1082 case e1000_phy_82580:
1083 ret_val = igb_copper_link_setup_82580(hw);
1084 break;
1085 default:
1086 ret_val = -E1000_ERR_PHY;
1087 break;
1090 if (ret_val)
1091 goto out;
1093 ret_val = igb_setup_copper_link(hw);
1094 out:
1095 return ret_val;
1099 * igb_setup_serdes_link_82575 - Setup link for serdes
1100 * @hw: pointer to the HW structure
1102 * Configure the physical coding sub-layer (PCS) link. The PCS link is
1103 * used on copper connections where the serialized gigabit media independent
1104 * interface (sgmii), or serdes fiber is being used. Configures the link
1105 * for auto-negotiation or forces speed/duplex.
1107 static s32 igb_setup_serdes_link_82575(struct e1000_hw *hw)
1109 u32 ctrl_ext, ctrl_reg, reg;
1110 bool pcs_autoneg;
1112 if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
1113 !igb_sgmii_active_82575(hw))
1114 return 0;
1117 * On the 82575, SerDes loopback mode persists until it is
1118 * explicitly turned off or a power cycle is performed. A read to
1119 * the register does not indicate its status. Therefore, we ensure
1120 * loopback mode is disabled during initialization.
1122 wr32(E1000_SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1124 /* power on the sfp cage if present */
1125 ctrl_ext = rd32(E1000_CTRL_EXT);
1126 ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA;
1127 wr32(E1000_CTRL_EXT, ctrl_ext);
1129 ctrl_reg = rd32(E1000_CTRL);
1130 ctrl_reg |= E1000_CTRL_SLU;
1132 if (hw->mac.type == e1000_82575 || hw->mac.type == e1000_82576) {
1133 /* set both sw defined pins */
1134 ctrl_reg |= E1000_CTRL_SWDPIN0 | E1000_CTRL_SWDPIN1;
1136 /* Set switch control to serdes energy detect */
1137 reg = rd32(E1000_CONNSW);
1138 reg |= E1000_CONNSW_ENRGSRC;
1139 wr32(E1000_CONNSW, reg);
1142 reg = rd32(E1000_PCS_LCTL);
1144 /* default pcs_autoneg to the same setting as mac autoneg */
1145 pcs_autoneg = hw->mac.autoneg;
1147 switch (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) {
1148 case E1000_CTRL_EXT_LINK_MODE_SGMII:
1149 /* sgmii mode lets the phy handle forcing speed/duplex */
1150 pcs_autoneg = true;
1151 /* autoneg time out should be disabled for SGMII mode */
1152 reg &= ~(E1000_PCS_LCTL_AN_TIMEOUT);
1153 break;
1154 case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
1155 /* disable PCS autoneg and support parallel detect only */
1156 pcs_autoneg = false;
1157 default:
1159 * non-SGMII modes only supports a speed of 1000/Full for the
1160 * link so it is best to just force the MAC and let the pcs
1161 * link either autoneg or be forced to 1000/Full
1163 ctrl_reg |= E1000_CTRL_SPD_1000 | E1000_CTRL_FRCSPD |
1164 E1000_CTRL_FD | E1000_CTRL_FRCDPX;
1166 /* set speed of 1000/Full if speed/duplex is forced */
1167 reg |= E1000_PCS_LCTL_FSV_1000 | E1000_PCS_LCTL_FDV_FULL;
1168 break;
1171 wr32(E1000_CTRL, ctrl_reg);
1174 * New SerDes mode allows for forcing speed or autonegotiating speed
1175 * at 1gb. Autoneg should be default set by most drivers. This is the
1176 * mode that will be compatible with older link partners and switches.
1177 * However, both are supported by the hardware and some drivers/tools.
1179 reg &= ~(E1000_PCS_LCTL_AN_ENABLE | E1000_PCS_LCTL_FLV_LINK_UP |
1180 E1000_PCS_LCTL_FSD | E1000_PCS_LCTL_FORCE_LINK);
1183 * We force flow control to prevent the CTRL register values from being
1184 * overwritten by the autonegotiated flow control values
1186 reg |= E1000_PCS_LCTL_FORCE_FCTRL;
1188 if (pcs_autoneg) {
1189 /* Set PCS register for autoneg */
1190 reg |= E1000_PCS_LCTL_AN_ENABLE | /* Enable Autoneg */
1191 E1000_PCS_LCTL_AN_RESTART; /* Restart autoneg */
1192 hw_dbg("Configuring Autoneg:PCS_LCTL=0x%08X\n", reg);
1193 } else {
1194 /* Set PCS register for forced link */
1195 reg |= E1000_PCS_LCTL_FSD; /* Force Speed */
1197 hw_dbg("Configuring Forced Link:PCS_LCTL=0x%08X\n", reg);
1200 wr32(E1000_PCS_LCTL, reg);
1202 if (!igb_sgmii_active_82575(hw))
1203 igb_force_mac_fc(hw);
1205 return 0;
1209 * igb_sgmii_active_82575 - Return sgmii state
1210 * @hw: pointer to the HW structure
1212 * 82575 silicon has a serialized gigabit media independent interface (sgmii)
1213 * which can be enabled for use in the embedded applications. Simply
1214 * return the current state of the sgmii interface.
1216 static bool igb_sgmii_active_82575(struct e1000_hw *hw)
1218 struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
1219 return dev_spec->sgmii_active;
1223 * igb_reset_init_script_82575 - Inits HW defaults after reset
1224 * @hw: pointer to the HW structure
1226 * Inits recommended HW defaults after a reset when there is no EEPROM
1227 * detected. This is only for the 82575.
1229 static s32 igb_reset_init_script_82575(struct e1000_hw *hw)
1231 if (hw->mac.type == e1000_82575) {
1232 hw_dbg("Running reset init script for 82575\n");
1233 /* SerDes configuration via SERDESCTRL */
1234 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x00, 0x0C);
1235 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x01, 0x78);
1236 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x1B, 0x23);
1237 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x23, 0x15);
1239 /* CCM configuration via CCMCTL register */
1240 igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x14, 0x00);
1241 igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x10, 0x00);
1243 /* PCIe lanes configuration */
1244 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x00, 0xEC);
1245 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x61, 0xDF);
1246 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x34, 0x05);
1247 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x2F, 0x81);
1249 /* PCIe PLL Configuration */
1250 igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x02, 0x47);
1251 igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x14, 0x00);
1252 igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x10, 0x00);
1255 return 0;
1259 * igb_read_mac_addr_82575 - Read device MAC address
1260 * @hw: pointer to the HW structure
1262 static s32 igb_read_mac_addr_82575(struct e1000_hw *hw)
1264 s32 ret_val = 0;
1267 * If there's an alternate MAC address place it in RAR0
1268 * so that it will override the Si installed default perm
1269 * address.
1271 ret_val = igb_check_alt_mac_addr(hw);
1272 if (ret_val)
1273 goto out;
1275 ret_val = igb_read_mac_addr(hw);
1277 out:
1278 return ret_val;
1282 * igb_power_down_phy_copper_82575 - Remove link during PHY power down
1283 * @hw: pointer to the HW structure
1285 * In the case of a PHY power down to save power, or to turn off link during a
1286 * driver unload, or wake on lan is not enabled, remove the link.
1288 void igb_power_down_phy_copper_82575(struct e1000_hw *hw)
1290 /* If the management interface is not enabled, then power down */
1291 if (!(igb_enable_mng_pass_thru(hw) || igb_check_reset_block(hw)))
1292 igb_power_down_phy_copper(hw);
1296 * igb_clear_hw_cntrs_82575 - Clear device specific hardware counters
1297 * @hw: pointer to the HW structure
1299 * Clears the hardware counters by reading the counter registers.
1301 static void igb_clear_hw_cntrs_82575(struct e1000_hw *hw)
1303 igb_clear_hw_cntrs_base(hw);
1305 rd32(E1000_PRC64);
1306 rd32(E1000_PRC127);
1307 rd32(E1000_PRC255);
1308 rd32(E1000_PRC511);
1309 rd32(E1000_PRC1023);
1310 rd32(E1000_PRC1522);
1311 rd32(E1000_PTC64);
1312 rd32(E1000_PTC127);
1313 rd32(E1000_PTC255);
1314 rd32(E1000_PTC511);
1315 rd32(E1000_PTC1023);
1316 rd32(E1000_PTC1522);
1318 rd32(E1000_ALGNERRC);
1319 rd32(E1000_RXERRC);
1320 rd32(E1000_TNCRS);
1321 rd32(E1000_CEXTERR);
1322 rd32(E1000_TSCTC);
1323 rd32(E1000_TSCTFC);
1325 rd32(E1000_MGTPRC);
1326 rd32(E1000_MGTPDC);
1327 rd32(E1000_MGTPTC);
1329 rd32(E1000_IAC);
1330 rd32(E1000_ICRXOC);
1332 rd32(E1000_ICRXPTC);
1333 rd32(E1000_ICRXATC);
1334 rd32(E1000_ICTXPTC);
1335 rd32(E1000_ICTXATC);
1336 rd32(E1000_ICTXQEC);
1337 rd32(E1000_ICTXQMTC);
1338 rd32(E1000_ICRXDMTC);
1340 rd32(E1000_CBTMPC);
1341 rd32(E1000_HTDPMC);
1342 rd32(E1000_CBRMPC);
1343 rd32(E1000_RPTHC);
1344 rd32(E1000_HGPTC);
1345 rd32(E1000_HTCBDPC);
1346 rd32(E1000_HGORCL);
1347 rd32(E1000_HGORCH);
1348 rd32(E1000_HGOTCL);
1349 rd32(E1000_HGOTCH);
1350 rd32(E1000_LENERRS);
1352 /* This register should not be read in copper configurations */
1353 if (hw->phy.media_type == e1000_media_type_internal_serdes ||
1354 igb_sgmii_active_82575(hw))
1355 rd32(E1000_SCVPC);
1359 * igb_rx_fifo_flush_82575 - Clean rx fifo after RX enable
1360 * @hw: pointer to the HW structure
1362 * After rx enable if managability is enabled then there is likely some
1363 * bad data at the start of the fifo and possibly in the DMA fifo. This
1364 * function clears the fifos and flushes any packets that came in as rx was
1365 * being enabled.
1367 void igb_rx_fifo_flush_82575(struct e1000_hw *hw)
1369 u32 rctl, rlpml, rxdctl[4], rfctl, temp_rctl, rx_enabled;
1370 int i, ms_wait;
1372 if (hw->mac.type != e1000_82575 ||
1373 !(rd32(E1000_MANC) & E1000_MANC_RCV_TCO_EN))
1374 return;
1376 /* Disable all RX queues */
1377 for (i = 0; i < 4; i++) {
1378 rxdctl[i] = rd32(E1000_RXDCTL(i));
1379 wr32(E1000_RXDCTL(i),
1380 rxdctl[i] & ~E1000_RXDCTL_QUEUE_ENABLE);
1382 /* Poll all queues to verify they have shut down */
1383 for (ms_wait = 0; ms_wait < 10; ms_wait++) {
1384 msleep(1);
1385 rx_enabled = 0;
1386 for (i = 0; i < 4; i++)
1387 rx_enabled |= rd32(E1000_RXDCTL(i));
1388 if (!(rx_enabled & E1000_RXDCTL_QUEUE_ENABLE))
1389 break;
1392 if (ms_wait == 10)
1393 hw_dbg("Queue disable timed out after 10ms\n");
1395 /* Clear RLPML, RCTL.SBP, RFCTL.LEF, and set RCTL.LPE so that all
1396 * incoming packets are rejected. Set enable and wait 2ms so that
1397 * any packet that was coming in as RCTL.EN was set is flushed
1399 rfctl = rd32(E1000_RFCTL);
1400 wr32(E1000_RFCTL, rfctl & ~E1000_RFCTL_LEF);
1402 rlpml = rd32(E1000_RLPML);
1403 wr32(E1000_RLPML, 0);
1405 rctl = rd32(E1000_RCTL);
1406 temp_rctl = rctl & ~(E1000_RCTL_EN | E1000_RCTL_SBP);
1407 temp_rctl |= E1000_RCTL_LPE;
1409 wr32(E1000_RCTL, temp_rctl);
1410 wr32(E1000_RCTL, temp_rctl | E1000_RCTL_EN);
1411 wrfl();
1412 msleep(2);
1414 /* Enable RX queues that were previously enabled and restore our
1415 * previous state
1417 for (i = 0; i < 4; i++)
1418 wr32(E1000_RXDCTL(i), rxdctl[i]);
1419 wr32(E1000_RCTL, rctl);
1420 wrfl();
1422 wr32(E1000_RLPML, rlpml);
1423 wr32(E1000_RFCTL, rfctl);
1425 /* Flush receive errors generated by workaround */
1426 rd32(E1000_ROC);
1427 rd32(E1000_RNBC);
1428 rd32(E1000_MPC);
1432 * igb_set_pcie_completion_timeout - set pci-e completion timeout
1433 * @hw: pointer to the HW structure
1435 * The defaults for 82575 and 82576 should be in the range of 50us to 50ms,
1436 * however the hardware default for these parts is 500us to 1ms which is less
1437 * than the 10ms recommended by the pci-e spec. To address this we need to
1438 * increase the value to either 10ms to 200ms for capability version 1 config,
1439 * or 16ms to 55ms for version 2.
1441 static s32 igb_set_pcie_completion_timeout(struct e1000_hw *hw)
1443 u32 gcr = rd32(E1000_GCR);
1444 s32 ret_val = 0;
1445 u16 pcie_devctl2;
1447 /* only take action if timeout value is defaulted to 0 */
1448 if (gcr & E1000_GCR_CMPL_TMOUT_MASK)
1449 goto out;
1452 * if capababilities version is type 1 we can write the
1453 * timeout of 10ms to 200ms through the GCR register
1455 if (!(gcr & E1000_GCR_CAP_VER2)) {
1456 gcr |= E1000_GCR_CMPL_TMOUT_10ms;
1457 goto out;
1461 * for version 2 capabilities we need to write the config space
1462 * directly in order to set the completion timeout value for
1463 * 16ms to 55ms
1465 ret_val = igb_read_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
1466 &pcie_devctl2);
1467 if (ret_val)
1468 goto out;
1470 pcie_devctl2 |= PCIE_DEVICE_CONTROL2_16ms;
1472 ret_val = igb_write_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
1473 &pcie_devctl2);
1474 out:
1475 /* disable completion timeout resend */
1476 gcr &= ~E1000_GCR_CMPL_TMOUT_RESEND;
1478 wr32(E1000_GCR, gcr);
1479 return ret_val;
1483 * igb_vmdq_set_anti_spoofing_pf - enable or disable anti-spoofing
1484 * @hw: pointer to the hardware struct
1485 * @enable: state to enter, either enabled or disabled
1486 * @pf: Physical Function pool - do not set anti-spoofing for the PF
1488 * enables/disables L2 switch anti-spoofing functionality.
1490 void igb_vmdq_set_anti_spoofing_pf(struct e1000_hw *hw, bool enable, int pf)
1492 u32 dtxswc;
1494 switch (hw->mac.type) {
1495 case e1000_82576:
1496 case e1000_i350:
1497 dtxswc = rd32(E1000_DTXSWC);
1498 if (enable) {
1499 dtxswc |= (E1000_DTXSWC_MAC_SPOOF_MASK |
1500 E1000_DTXSWC_VLAN_SPOOF_MASK);
1501 /* The PF can spoof - it has to in order to
1502 * support emulation mode NICs */
1503 dtxswc ^= (1 << pf | 1 << (pf + MAX_NUM_VFS));
1504 } else {
1505 dtxswc &= ~(E1000_DTXSWC_MAC_SPOOF_MASK |
1506 E1000_DTXSWC_VLAN_SPOOF_MASK);
1508 wr32(E1000_DTXSWC, dtxswc);
1509 break;
1510 default:
1511 break;
1516 * igb_vmdq_set_loopback_pf - enable or disable vmdq loopback
1517 * @hw: pointer to the hardware struct
1518 * @enable: state to enter, either enabled or disabled
1520 * enables/disables L2 switch loopback functionality.
1522 void igb_vmdq_set_loopback_pf(struct e1000_hw *hw, bool enable)
1524 u32 dtxswc = rd32(E1000_DTXSWC);
1526 if (enable)
1527 dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
1528 else
1529 dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
1531 wr32(E1000_DTXSWC, dtxswc);
1535 * igb_vmdq_set_replication_pf - enable or disable vmdq replication
1536 * @hw: pointer to the hardware struct
1537 * @enable: state to enter, either enabled or disabled
1539 * enables/disables replication of packets across multiple pools.
1541 void igb_vmdq_set_replication_pf(struct e1000_hw *hw, bool enable)
1543 u32 vt_ctl = rd32(E1000_VT_CTL);
1545 if (enable)
1546 vt_ctl |= E1000_VT_CTL_VM_REPL_EN;
1547 else
1548 vt_ctl &= ~E1000_VT_CTL_VM_REPL_EN;
1550 wr32(E1000_VT_CTL, vt_ctl);
1554 * igb_read_phy_reg_82580 - Read 82580 MDI control register
1555 * @hw: pointer to the HW structure
1556 * @offset: register offset to be read
1557 * @data: pointer to the read data
1559 * Reads the MDI control register in the PHY at offset and stores the
1560 * information read to data.
1562 static s32 igb_read_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 *data)
1564 s32 ret_val;
1567 ret_val = hw->phy.ops.acquire(hw);
1568 if (ret_val)
1569 goto out;
1571 ret_val = igb_read_phy_reg_mdic(hw, offset, data);
1573 hw->phy.ops.release(hw);
1575 out:
1576 return ret_val;
1580 * igb_write_phy_reg_82580 - Write 82580 MDI control register
1581 * @hw: pointer to the HW structure
1582 * @offset: register offset to write to
1583 * @data: data to write to register at offset
1585 * Writes data to MDI control register in the PHY at offset.
1587 static s32 igb_write_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 data)
1589 s32 ret_val;
1592 ret_val = hw->phy.ops.acquire(hw);
1593 if (ret_val)
1594 goto out;
1596 ret_val = igb_write_phy_reg_mdic(hw, offset, data);
1598 hw->phy.ops.release(hw);
1600 out:
1601 return ret_val;
1605 * igb_reset_mdicnfg_82580 - Reset MDICNFG destination and com_mdio bits
1606 * @hw: pointer to the HW structure
1608 * This resets the the MDICNFG.Destination and MDICNFG.Com_MDIO bits based on
1609 * the values found in the EEPROM. This addresses an issue in which these
1610 * bits are not restored from EEPROM after reset.
1612 static s32 igb_reset_mdicnfg_82580(struct e1000_hw *hw)
1614 s32 ret_val = 0;
1615 u32 mdicnfg;
1616 u16 nvm_data = 0;
1618 if (hw->mac.type != e1000_82580)
1619 goto out;
1620 if (!igb_sgmii_active_82575(hw))
1621 goto out;
1623 ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
1624 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
1625 &nvm_data);
1626 if (ret_val) {
1627 hw_dbg("NVM Read Error\n");
1628 goto out;
1631 mdicnfg = rd32(E1000_MDICNFG);
1632 if (nvm_data & NVM_WORD24_EXT_MDIO)
1633 mdicnfg |= E1000_MDICNFG_EXT_MDIO;
1634 if (nvm_data & NVM_WORD24_COM_MDIO)
1635 mdicnfg |= E1000_MDICNFG_COM_MDIO;
1636 wr32(E1000_MDICNFG, mdicnfg);
1637 out:
1638 return ret_val;
1642 * igb_reset_hw_82580 - Reset hardware
1643 * @hw: pointer to the HW structure
1645 * This resets function or entire device (all ports, etc.)
1646 * to a known state.
1648 static s32 igb_reset_hw_82580(struct e1000_hw *hw)
1650 s32 ret_val = 0;
1651 /* BH SW mailbox bit in SW_FW_SYNC */
1652 u16 swmbsw_mask = E1000_SW_SYNCH_MB;
1653 u32 ctrl, icr;
1654 bool global_device_reset = hw->dev_spec._82575.global_device_reset;
1657 hw->dev_spec._82575.global_device_reset = false;
1659 /* Get current control state. */
1660 ctrl = rd32(E1000_CTRL);
1663 * Prevent the PCI-E bus from sticking if there is no TLP connection
1664 * on the last TLP read/write transaction when MAC is reset.
1666 ret_val = igb_disable_pcie_master(hw);
1667 if (ret_val)
1668 hw_dbg("PCI-E Master disable polling has failed.\n");
1670 hw_dbg("Masking off all interrupts\n");
1671 wr32(E1000_IMC, 0xffffffff);
1672 wr32(E1000_RCTL, 0);
1673 wr32(E1000_TCTL, E1000_TCTL_PSP);
1674 wrfl();
1676 msleep(10);
1678 /* Determine whether or not a global dev reset is requested */
1679 if (global_device_reset &&
1680 igb_acquire_swfw_sync_82575(hw, swmbsw_mask))
1681 global_device_reset = false;
1683 if (global_device_reset &&
1684 !(rd32(E1000_STATUS) & E1000_STAT_DEV_RST_SET))
1685 ctrl |= E1000_CTRL_DEV_RST;
1686 else
1687 ctrl |= E1000_CTRL_RST;
1689 wr32(E1000_CTRL, ctrl);
1691 /* Add delay to insure DEV_RST has time to complete */
1692 if (global_device_reset)
1693 msleep(5);
1695 ret_val = igb_get_auto_rd_done(hw);
1696 if (ret_val) {
1698 * When auto config read does not complete, do not
1699 * return with an error. This can happen in situations
1700 * where there is no eeprom and prevents getting link.
1702 hw_dbg("Auto Read Done did not complete\n");
1705 /* If EEPROM is not present, run manual init scripts */
1706 if ((rd32(E1000_EECD) & E1000_EECD_PRES) == 0)
1707 igb_reset_init_script_82575(hw);
1709 /* clear global device reset status bit */
1710 wr32(E1000_STATUS, E1000_STAT_DEV_RST_SET);
1712 /* Clear any pending interrupt events. */
1713 wr32(E1000_IMC, 0xffffffff);
1714 icr = rd32(E1000_ICR);
1716 ret_val = igb_reset_mdicnfg_82580(hw);
1717 if (ret_val)
1718 hw_dbg("Could not reset MDICNFG based on EEPROM\n");
1720 /* Install any alternate MAC address into RAR0 */
1721 ret_val = igb_check_alt_mac_addr(hw);
1723 /* Release semaphore */
1724 if (global_device_reset)
1725 igb_release_swfw_sync_82575(hw, swmbsw_mask);
1727 return ret_val;
1731 * igb_rxpbs_adjust_82580 - adjust RXPBS value to reflect actual RX PBA size
1732 * @data: data received by reading RXPBS register
1734 * The 82580 uses a table based approach for packet buffer allocation sizes.
1735 * This function converts the retrieved value into the correct table value
1736 * 0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7
1737 * 0x0 36 72 144 1 2 4 8 16
1738 * 0x8 35 70 140 rsv rsv rsv rsv rsv
1740 u16 igb_rxpbs_adjust_82580(u32 data)
1742 u16 ret_val = 0;
1744 if (data < E1000_82580_RXPBS_TABLE_SIZE)
1745 ret_val = e1000_82580_rxpbs_table[data];
1747 return ret_val;
1750 static struct e1000_mac_operations e1000_mac_ops_82575 = {
1751 .init_hw = igb_init_hw_82575,
1752 .check_for_link = igb_check_for_link_82575,
1753 .rar_set = igb_rar_set,
1754 .read_mac_addr = igb_read_mac_addr_82575,
1755 .get_speed_and_duplex = igb_get_speed_and_duplex_copper,
1758 static struct e1000_phy_operations e1000_phy_ops_82575 = {
1759 .acquire = igb_acquire_phy_82575,
1760 .get_cfg_done = igb_get_cfg_done_82575,
1761 .release = igb_release_phy_82575,
1764 static struct e1000_nvm_operations e1000_nvm_ops_82575 = {
1765 .acquire = igb_acquire_nvm_82575,
1766 .read = igb_read_nvm_eerd,
1767 .release = igb_release_nvm_82575,
1768 .write = igb_write_nvm_spi,
1771 const struct e1000_info e1000_82575_info = {
1772 .get_invariants = igb_get_invariants_82575,
1773 .mac_ops = &e1000_mac_ops_82575,
1774 .phy_ops = &e1000_phy_ops_82575,
1775 .nvm_ops = &e1000_nvm_ops_82575,