1 /*******************************************************************************
3 Intel(R) Gigabit Ethernet Linux driver
4 Copyright(c) 2007-2009 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 *******************************************************************************/
28 #include <linux/if_ether.h>
29 #include <linux/delay.h>
31 #include "e1000_mac.h"
32 #include "e1000_nvm.h"
35 * igb_raise_eec_clk - Raise EEPROM clock
36 * @hw: pointer to the HW structure
37 * @eecd: pointer to the EEPROM
39 * Enable/Raise the EEPROM clock bit.
41 static void igb_raise_eec_clk(struct e1000_hw
*hw
, u32
*eecd
)
43 *eecd
= *eecd
| E1000_EECD_SK
;
44 wr32(E1000_EECD
, *eecd
);
46 udelay(hw
->nvm
.delay_usec
);
50 * igb_lower_eec_clk - Lower EEPROM clock
51 * @hw: pointer to the HW structure
52 * @eecd: pointer to the EEPROM
54 * Clear/Lower the EEPROM clock bit.
56 static void igb_lower_eec_clk(struct e1000_hw
*hw
, u32
*eecd
)
58 *eecd
= *eecd
& ~E1000_EECD_SK
;
59 wr32(E1000_EECD
, *eecd
);
61 udelay(hw
->nvm
.delay_usec
);
65 * igb_shift_out_eec_bits - Shift data bits our to the EEPROM
66 * @hw: pointer to the HW structure
67 * @data: data to send to the EEPROM
68 * @count: number of bits to shift out
70 * We need to shift 'count' bits out to the EEPROM. So, the value in the
71 * "data" parameter will be shifted out to the EEPROM one bit at a time.
72 * In order to do this, "data" must be broken down into bits.
74 static void igb_shift_out_eec_bits(struct e1000_hw
*hw
, u16 data
, u16 count
)
76 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
77 u32 eecd
= rd32(E1000_EECD
);
80 mask
= 0x01 << (count
- 1);
81 if (nvm
->type
== e1000_nvm_eeprom_spi
)
82 eecd
|= E1000_EECD_DO
;
85 eecd
&= ~E1000_EECD_DI
;
88 eecd
|= E1000_EECD_DI
;
90 wr32(E1000_EECD
, eecd
);
93 udelay(nvm
->delay_usec
);
95 igb_raise_eec_clk(hw
, &eecd
);
96 igb_lower_eec_clk(hw
, &eecd
);
101 eecd
&= ~E1000_EECD_DI
;
102 wr32(E1000_EECD
, eecd
);
106 * igb_shift_in_eec_bits - Shift data bits in from the EEPROM
107 * @hw: pointer to the HW structure
108 * @count: number of bits to shift in
110 * In order to read a register from the EEPROM, we need to shift 'count' bits
111 * in from the EEPROM. Bits are "shifted in" by raising the clock input to
112 * the EEPROM (setting the SK bit), and then reading the value of the data out
113 * "DO" bit. During this "shifting in" process the data in "DI" bit should
116 static u16
igb_shift_in_eec_bits(struct e1000_hw
*hw
, u16 count
)
122 eecd
= rd32(E1000_EECD
);
124 eecd
&= ~(E1000_EECD_DO
| E1000_EECD_DI
);
127 for (i
= 0; i
< count
; i
++) {
129 igb_raise_eec_clk(hw
, &eecd
);
131 eecd
= rd32(E1000_EECD
);
133 eecd
&= ~E1000_EECD_DI
;
134 if (eecd
& E1000_EECD_DO
)
137 igb_lower_eec_clk(hw
, &eecd
);
144 * igb_poll_eerd_eewr_done - Poll for EEPROM read/write completion
145 * @hw: pointer to the HW structure
146 * @ee_reg: EEPROM flag for polling
148 * Polls the EEPROM status bit for either read or write completion based
149 * upon the value of 'ee_reg'.
151 static s32
igb_poll_eerd_eewr_done(struct e1000_hw
*hw
, int ee_reg
)
153 u32 attempts
= 100000;
155 s32 ret_val
= -E1000_ERR_NVM
;
157 for (i
= 0; i
< attempts
; i
++) {
158 if (ee_reg
== E1000_NVM_POLL_READ
)
159 reg
= rd32(E1000_EERD
);
161 reg
= rd32(E1000_EEWR
);
163 if (reg
& E1000_NVM_RW_REG_DONE
) {
175 * igb_acquire_nvm - Generic request for access to EEPROM
176 * @hw: pointer to the HW structure
178 * Set the EEPROM access request bit and wait for EEPROM access grant bit.
179 * Return successful if access grant bit set, else clear the request for
180 * EEPROM access and return -E1000_ERR_NVM (-1).
182 s32
igb_acquire_nvm(struct e1000_hw
*hw
)
184 u32 eecd
= rd32(E1000_EECD
);
185 s32 timeout
= E1000_NVM_GRANT_ATTEMPTS
;
189 wr32(E1000_EECD
, eecd
| E1000_EECD_REQ
);
190 eecd
= rd32(E1000_EECD
);
193 if (eecd
& E1000_EECD_GNT
)
196 eecd
= rd32(E1000_EECD
);
201 eecd
&= ~E1000_EECD_REQ
;
202 wr32(E1000_EECD
, eecd
);
203 hw_dbg("Could not acquire NVM grant\n");
204 ret_val
= -E1000_ERR_NVM
;
211 * igb_standby_nvm - Return EEPROM to standby state
212 * @hw: pointer to the HW structure
214 * Return the EEPROM to a standby state.
216 static void igb_standby_nvm(struct e1000_hw
*hw
)
218 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
219 u32 eecd
= rd32(E1000_EECD
);
221 if (nvm
->type
== e1000_nvm_eeprom_spi
) {
222 /* Toggle CS to flush commands */
223 eecd
|= E1000_EECD_CS
;
224 wr32(E1000_EECD
, eecd
);
226 udelay(nvm
->delay_usec
);
227 eecd
&= ~E1000_EECD_CS
;
228 wr32(E1000_EECD
, eecd
);
230 udelay(nvm
->delay_usec
);
235 * e1000_stop_nvm - Terminate EEPROM command
236 * @hw: pointer to the HW structure
238 * Terminates the current command by inverting the EEPROM's chip select pin.
240 static void e1000_stop_nvm(struct e1000_hw
*hw
)
244 eecd
= rd32(E1000_EECD
);
245 if (hw
->nvm
.type
== e1000_nvm_eeprom_spi
) {
247 eecd
|= E1000_EECD_CS
;
248 igb_lower_eec_clk(hw
, &eecd
);
253 * igb_release_nvm - Release exclusive access to EEPROM
254 * @hw: pointer to the HW structure
256 * Stop any current commands to the EEPROM and clear the EEPROM request bit.
258 void igb_release_nvm(struct e1000_hw
*hw
)
264 eecd
= rd32(E1000_EECD
);
265 eecd
&= ~E1000_EECD_REQ
;
266 wr32(E1000_EECD
, eecd
);
270 * igb_ready_nvm_eeprom - Prepares EEPROM for read/write
271 * @hw: pointer to the HW structure
273 * Setups the EEPROM for reading and writing.
275 static s32
igb_ready_nvm_eeprom(struct e1000_hw
*hw
)
277 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
278 u32 eecd
= rd32(E1000_EECD
);
284 if (nvm
->type
== e1000_nvm_eeprom_spi
) {
285 /* Clear SK and CS */
286 eecd
&= ~(E1000_EECD_CS
| E1000_EECD_SK
);
287 wr32(E1000_EECD
, eecd
);
289 timeout
= NVM_MAX_RETRY_SPI
;
292 * Read "Status Register" repeatedly until the LSB is cleared.
293 * The EEPROM will signal that the command has been completed
294 * by clearing bit 0 of the internal status register. If it's
295 * not cleared within 'timeout', then error out.
298 igb_shift_out_eec_bits(hw
, NVM_RDSR_OPCODE_SPI
,
299 hw
->nvm
.opcode_bits
);
300 spi_stat_reg
= (u8
)igb_shift_in_eec_bits(hw
, 8);
301 if (!(spi_stat_reg
& NVM_STATUS_RDY_SPI
))
310 hw_dbg("SPI NVM Status error\n");
311 ret_val
= -E1000_ERR_NVM
;
321 * igb_read_nvm_eerd - Reads EEPROM using EERD register
322 * @hw: pointer to the HW structure
323 * @offset: offset of word in the EEPROM to read
324 * @words: number of words to read
325 * @data: word read from the EEPROM
327 * Reads a 16 bit word from the EEPROM using the EERD register.
329 s32
igb_read_nvm_eerd(struct e1000_hw
*hw
, u16 offset
, u16 words
, u16
*data
)
331 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
336 * A check for invalid values: offset too large, too many words,
337 * and not enough words.
339 if ((offset
>= nvm
->word_size
) || (words
> (nvm
->word_size
- offset
)) ||
341 hw_dbg("nvm parameter(s) out of bounds\n");
342 ret_val
= -E1000_ERR_NVM
;
346 for (i
= 0; i
< words
; i
++) {
347 eerd
= ((offset
+i
) << E1000_NVM_RW_ADDR_SHIFT
) +
348 E1000_NVM_RW_REG_START
;
350 wr32(E1000_EERD
, eerd
);
351 ret_val
= igb_poll_eerd_eewr_done(hw
, E1000_NVM_POLL_READ
);
355 data
[i
] = (rd32(E1000_EERD
) >>
356 E1000_NVM_RW_REG_DATA
);
364 * igb_write_nvm_spi - Write to EEPROM using SPI
365 * @hw: pointer to the HW structure
366 * @offset: offset within the EEPROM to be written to
367 * @words: number of words to write
368 * @data: 16 bit word(s) to be written to the EEPROM
370 * Writes data to EEPROM at offset using SPI interface.
372 * If e1000_update_nvm_checksum is not called after this function , the
373 * EEPROM will most likley contain an invalid checksum.
375 s32
igb_write_nvm_spi(struct e1000_hw
*hw
, u16 offset
, u16 words
, u16
*data
)
377 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
382 * A check for invalid values: offset too large, too many words,
383 * and not enough words.
385 if ((offset
>= nvm
->word_size
) || (words
> (nvm
->word_size
- offset
)) ||
387 hw_dbg("nvm parameter(s) out of bounds\n");
388 ret_val
= -E1000_ERR_NVM
;
392 ret_val
= hw
->nvm
.ops
.acquire(hw
);
398 while (widx
< words
) {
399 u8 write_opcode
= NVM_WRITE_OPCODE_SPI
;
401 ret_val
= igb_ready_nvm_eeprom(hw
);
407 /* Send the WRITE ENABLE command (8 bit opcode) */
408 igb_shift_out_eec_bits(hw
, NVM_WREN_OPCODE_SPI
,
414 * Some SPI eeproms use the 8th address bit embedded in the
417 if ((nvm
->address_bits
== 8) && (offset
>= 128))
418 write_opcode
|= NVM_A8_OPCODE_SPI
;
420 /* Send the Write command (8-bit opcode + addr) */
421 igb_shift_out_eec_bits(hw
, write_opcode
, nvm
->opcode_bits
);
422 igb_shift_out_eec_bits(hw
, (u16
)((offset
+ widx
) * 2),
425 /* Loop to allow for up to whole page write of eeprom */
426 while (widx
< words
) {
427 u16 word_out
= data
[widx
];
428 word_out
= (word_out
>> 8) | (word_out
<< 8);
429 igb_shift_out_eec_bits(hw
, word_out
, 16);
432 if ((((offset
+ widx
) * 2) % nvm
->page_size
) == 0) {
441 hw
->nvm
.ops
.release(hw
);
448 * igb_read_part_string - Read device part number
449 * @hw: pointer to the HW structure
450 * @part_num: pointer to device part number
451 * @part_num_size: size of part number buffer
453 * Reads the product board assembly (PBA) number from the EEPROM and stores
454 * the value in part_num.
456 s32
igb_read_part_string(struct e1000_hw
*hw
, u8
*part_num
, u32 part_num_size
)
464 if (part_num
== NULL
) {
465 hw_dbg("PBA string buffer was null\n");
466 ret_val
= E1000_ERR_INVALID_ARGUMENT
;
470 ret_val
= hw
->nvm
.ops
.read(hw
, NVM_PBA_OFFSET_0
, 1, &nvm_data
);
472 hw_dbg("NVM Read Error\n");
476 ret_val
= hw
->nvm
.ops
.read(hw
, NVM_PBA_OFFSET_1
, 1, &pointer
);
478 hw_dbg("NVM Read Error\n");
483 * if nvm_data is not ptr guard the PBA must be in legacy format which
484 * means pointer is actually our second data word for the PBA number
485 * and we can decode it into an ascii string
487 if (nvm_data
!= NVM_PBA_PTR_GUARD
) {
488 hw_dbg("NVM PBA number is not stored as string\n");
490 /* we will need 11 characters to store the PBA */
491 if (part_num_size
< 11) {
492 hw_dbg("PBA string buffer too small\n");
493 return E1000_ERR_NO_SPACE
;
496 /* extract hex string from data and pointer */
497 part_num
[0] = (nvm_data
>> 12) & 0xF;
498 part_num
[1] = (nvm_data
>> 8) & 0xF;
499 part_num
[2] = (nvm_data
>> 4) & 0xF;
500 part_num
[3] = nvm_data
& 0xF;
501 part_num
[4] = (pointer
>> 12) & 0xF;
502 part_num
[5] = (pointer
>> 8) & 0xF;
505 part_num
[8] = (pointer
>> 4) & 0xF;
506 part_num
[9] = pointer
& 0xF;
508 /* put a null character on the end of our string */
511 /* switch all the data but the '-' to hex char */
512 for (offset
= 0; offset
< 10; offset
++) {
513 if (part_num
[offset
] < 0xA)
514 part_num
[offset
] += '0';
515 else if (part_num
[offset
] < 0x10)
516 part_num
[offset
] += 'A' - 0xA;
522 ret_val
= hw
->nvm
.ops
.read(hw
, pointer
, 1, &length
);
524 hw_dbg("NVM Read Error\n");
528 if (length
== 0xFFFF || length
== 0) {
529 hw_dbg("NVM PBA number section invalid length\n");
530 ret_val
= E1000_ERR_NVM_PBA_SECTION
;
533 /* check if part_num buffer is big enough */
534 if (part_num_size
< (((u32
)length
* 2) - 1)) {
535 hw_dbg("PBA string buffer too small\n");
536 ret_val
= E1000_ERR_NO_SPACE
;
540 /* trim pba length from start of string */
544 for (offset
= 0; offset
< length
; offset
++) {
545 ret_val
= hw
->nvm
.ops
.read(hw
, pointer
+ offset
, 1, &nvm_data
);
547 hw_dbg("NVM Read Error\n");
550 part_num
[offset
* 2] = (u8
)(nvm_data
>> 8);
551 part_num
[(offset
* 2) + 1] = (u8
)(nvm_data
& 0xFF);
553 part_num
[offset
* 2] = '\0';
560 * igb_read_mac_addr - Read device MAC address
561 * @hw: pointer to the HW structure
563 * Reads the device MAC address from the EEPROM and stores the value.
564 * Since devices with two ports use the same EEPROM, we increment the
565 * last bit in the MAC address for the second port.
567 s32
igb_read_mac_addr(struct e1000_hw
*hw
)
573 rar_high
= rd32(E1000_RAH(0));
574 rar_low
= rd32(E1000_RAL(0));
576 for (i
= 0; i
< E1000_RAL_MAC_ADDR_LEN
; i
++)
577 hw
->mac
.perm_addr
[i
] = (u8
)(rar_low
>> (i
*8));
579 for (i
= 0; i
< E1000_RAH_MAC_ADDR_LEN
; i
++)
580 hw
->mac
.perm_addr
[i
+4] = (u8
)(rar_high
>> (i
*8));
582 for (i
= 0; i
< ETH_ALEN
; i
++)
583 hw
->mac
.addr
[i
] = hw
->mac
.perm_addr
[i
];
589 * igb_validate_nvm_checksum - Validate EEPROM checksum
590 * @hw: pointer to the HW structure
592 * Calculates the EEPROM checksum by reading/adding each word of the EEPROM
593 * and then verifies that the sum of the EEPROM is equal to 0xBABA.
595 s32
igb_validate_nvm_checksum(struct e1000_hw
*hw
)
601 for (i
= 0; i
< (NVM_CHECKSUM_REG
+ 1); i
++) {
602 ret_val
= hw
->nvm
.ops
.read(hw
, i
, 1, &nvm_data
);
604 hw_dbg("NVM Read Error\n");
607 checksum
+= nvm_data
;
610 if (checksum
!= (u16
) NVM_SUM
) {
611 hw_dbg("NVM Checksum Invalid\n");
612 ret_val
= -E1000_ERR_NVM
;
621 * igb_update_nvm_checksum - Update EEPROM checksum
622 * @hw: pointer to the HW structure
624 * Updates the EEPROM checksum by reading/adding each word of the EEPROM
625 * up to the checksum. Then calculates the EEPROM checksum and writes the
626 * value to the EEPROM.
628 s32
igb_update_nvm_checksum(struct e1000_hw
*hw
)
634 for (i
= 0; i
< NVM_CHECKSUM_REG
; i
++) {
635 ret_val
= hw
->nvm
.ops
.read(hw
, i
, 1, &nvm_data
);
637 hw_dbg("NVM Read Error while updating checksum.\n");
640 checksum
+= nvm_data
;
642 checksum
= (u16
) NVM_SUM
- checksum
;
643 ret_val
= hw
->nvm
.ops
.write(hw
, NVM_CHECKSUM_REG
, 1, &checksum
);
645 hw_dbg("NVM Write Error while updating checksum.\n");