proc: use seq_puts()/seq_putc() where possible
[linux-2.6/next.git] / drivers / net / vxge / vxge-traffic.c
blob4c10d6c4075fdd8092a6f9dc599ae81073d2cb85
1 /******************************************************************************
2 * This software may be used and distributed according to the terms of
3 * the GNU General Public License (GPL), incorporated herein by reference.
4 * Drivers based on or derived from this code fall under the GPL and must
5 * retain the authorship, copyright and license notice. This file is not
6 * a complete program and may only be used when the entire operating
7 * system is licensed under the GPL.
8 * See the file COPYING in this distribution for more information.
10 * vxge-traffic.c: Driver for Exar Corp's X3100 Series 10GbE PCIe I/O
11 * Virtualized Server Adapter.
12 * Copyright(c) 2002-2010 Exar Corp.
13 ******************************************************************************/
14 #include <linux/etherdevice.h>
16 #include "vxge-traffic.h"
17 #include "vxge-config.h"
18 #include "vxge-main.h"
21 * vxge_hw_vpath_intr_enable - Enable vpath interrupts.
22 * @vp: Virtual Path handle.
24 * Enable vpath interrupts. The function is to be executed the last in
25 * vpath initialization sequence.
27 * See also: vxge_hw_vpath_intr_disable()
29 enum vxge_hw_status vxge_hw_vpath_intr_enable(struct __vxge_hw_vpath_handle *vp)
31 u64 val64;
33 struct __vxge_hw_virtualpath *vpath;
34 struct vxge_hw_vpath_reg __iomem *vp_reg;
35 enum vxge_hw_status status = VXGE_HW_OK;
36 if (vp == NULL) {
37 status = VXGE_HW_ERR_INVALID_HANDLE;
38 goto exit;
41 vpath = vp->vpath;
43 if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
44 status = VXGE_HW_ERR_VPATH_NOT_OPEN;
45 goto exit;
48 vp_reg = vpath->vp_reg;
50 writeq(VXGE_HW_INTR_MASK_ALL, &vp_reg->kdfcctl_errors_reg);
52 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
53 &vp_reg->general_errors_reg);
55 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
56 &vp_reg->pci_config_errors_reg);
58 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
59 &vp_reg->mrpcim_to_vpath_alarm_reg);
61 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
62 &vp_reg->srpcim_to_vpath_alarm_reg);
64 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
65 &vp_reg->vpath_ppif_int_status);
67 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
68 &vp_reg->srpcim_msg_to_vpath_reg);
70 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
71 &vp_reg->vpath_pcipif_int_status);
73 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
74 &vp_reg->prc_alarm_reg);
76 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
77 &vp_reg->wrdma_alarm_status);
79 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
80 &vp_reg->asic_ntwk_vp_err_reg);
82 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
83 &vp_reg->xgmac_vp_int_status);
85 val64 = readq(&vp_reg->vpath_general_int_status);
87 /* Mask unwanted interrupts */
89 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
90 &vp_reg->vpath_pcipif_int_mask);
92 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
93 &vp_reg->srpcim_msg_to_vpath_mask);
95 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
96 &vp_reg->srpcim_to_vpath_alarm_mask);
98 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
99 &vp_reg->mrpcim_to_vpath_alarm_mask);
101 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
102 &vp_reg->pci_config_errors_mask);
104 /* Unmask the individual interrupts */
106 writeq((u32)vxge_bVALn((VXGE_HW_GENERAL_ERRORS_REG_DBLGEN_FIFO1_OVRFLOW|
107 VXGE_HW_GENERAL_ERRORS_REG_DBLGEN_FIFO2_OVRFLOW|
108 VXGE_HW_GENERAL_ERRORS_REG_STATSB_DROP_TIMEOUT_REQ|
109 VXGE_HW_GENERAL_ERRORS_REG_STATSB_PIF_CHAIN_ERR), 0, 32),
110 &vp_reg->general_errors_mask);
112 __vxge_hw_pio_mem_write32_upper(
113 (u32)vxge_bVALn((VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO1_OVRWR|
114 VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO2_OVRWR|
115 VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO1_POISON|
116 VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO2_POISON|
117 VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO1_DMA_ERR|
118 VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO2_DMA_ERR), 0, 32),
119 &vp_reg->kdfcctl_errors_mask);
121 __vxge_hw_pio_mem_write32_upper(0, &vp_reg->vpath_ppif_int_mask);
123 __vxge_hw_pio_mem_write32_upper(
124 (u32)vxge_bVALn(VXGE_HW_PRC_ALARM_REG_PRC_RING_BUMP, 0, 32),
125 &vp_reg->prc_alarm_mask);
127 __vxge_hw_pio_mem_write32_upper(0, &vp_reg->wrdma_alarm_mask);
128 __vxge_hw_pio_mem_write32_upper(0, &vp_reg->xgmac_vp_int_mask);
130 if (vpath->hldev->first_vp_id != vpath->vp_id)
131 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
132 &vp_reg->asic_ntwk_vp_err_mask);
133 else
134 __vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn((
135 VXGE_HW_ASIC_NTWK_VP_ERR_REG_XMACJ_NTWK_REAFFIRMED_FAULT |
136 VXGE_HW_ASIC_NTWK_VP_ERR_REG_XMACJ_NTWK_REAFFIRMED_OK), 0, 32),
137 &vp_reg->asic_ntwk_vp_err_mask);
139 __vxge_hw_pio_mem_write32_upper(0,
140 &vp_reg->vpath_general_int_mask);
141 exit:
142 return status;
147 * vxge_hw_vpath_intr_disable - Disable vpath interrupts.
148 * @vp: Virtual Path handle.
150 * Disable vpath interrupts. The function is to be executed the last in
151 * vpath initialization sequence.
153 * See also: vxge_hw_vpath_intr_enable()
155 enum vxge_hw_status vxge_hw_vpath_intr_disable(
156 struct __vxge_hw_vpath_handle *vp)
158 u64 val64;
160 struct __vxge_hw_virtualpath *vpath;
161 enum vxge_hw_status status = VXGE_HW_OK;
162 struct vxge_hw_vpath_reg __iomem *vp_reg;
163 if (vp == NULL) {
164 status = VXGE_HW_ERR_INVALID_HANDLE;
165 goto exit;
168 vpath = vp->vpath;
170 if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
171 status = VXGE_HW_ERR_VPATH_NOT_OPEN;
172 goto exit;
174 vp_reg = vpath->vp_reg;
176 __vxge_hw_pio_mem_write32_upper(
177 (u32)VXGE_HW_INTR_MASK_ALL,
178 &vp_reg->vpath_general_int_mask);
180 val64 = VXGE_HW_TIM_CLR_INT_EN_VP(1 << (16 - vpath->vp_id));
182 writeq(VXGE_HW_INTR_MASK_ALL, &vp_reg->kdfcctl_errors_mask);
184 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
185 &vp_reg->general_errors_mask);
187 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
188 &vp_reg->pci_config_errors_mask);
190 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
191 &vp_reg->mrpcim_to_vpath_alarm_mask);
193 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
194 &vp_reg->srpcim_to_vpath_alarm_mask);
196 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
197 &vp_reg->vpath_ppif_int_mask);
199 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
200 &vp_reg->srpcim_msg_to_vpath_mask);
202 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
203 &vp_reg->vpath_pcipif_int_mask);
205 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
206 &vp_reg->wrdma_alarm_mask);
208 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
209 &vp_reg->prc_alarm_mask);
211 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
212 &vp_reg->xgmac_vp_int_mask);
214 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
215 &vp_reg->asic_ntwk_vp_err_mask);
217 exit:
218 return status;
222 * vxge_hw_channel_msix_mask - Mask MSIX Vector.
223 * @channeh: Channel for rx or tx handle
224 * @msix_id: MSIX ID
226 * The function masks the msix interrupt for the given msix_id
228 * Returns: 0
230 void vxge_hw_channel_msix_mask(struct __vxge_hw_channel *channel, int msix_id)
233 __vxge_hw_pio_mem_write32_upper(
234 (u32)vxge_bVALn(vxge_mBIT(msix_id >> 2), 0, 32),
235 &channel->common_reg->set_msix_mask_vect[msix_id%4]);
239 * vxge_hw_channel_msix_unmask - Unmask the MSIX Vector.
240 * @channeh: Channel for rx or tx handle
241 * @msix_id: MSI ID
243 * The function unmasks the msix interrupt for the given msix_id
245 * Returns: 0
247 void
248 vxge_hw_channel_msix_unmask(struct __vxge_hw_channel *channel, int msix_id)
251 __vxge_hw_pio_mem_write32_upper(
252 (u32)vxge_bVALn(vxge_mBIT(msix_id >> 2), 0, 32),
253 &channel->common_reg->clear_msix_mask_vect[msix_id%4]);
257 * vxge_hw_device_set_intr_type - Updates the configuration
258 * with new interrupt type.
259 * @hldev: HW device handle.
260 * @intr_mode: New interrupt type
262 u32 vxge_hw_device_set_intr_type(struct __vxge_hw_device *hldev, u32 intr_mode)
265 if ((intr_mode != VXGE_HW_INTR_MODE_IRQLINE) &&
266 (intr_mode != VXGE_HW_INTR_MODE_MSIX) &&
267 (intr_mode != VXGE_HW_INTR_MODE_MSIX_ONE_SHOT) &&
268 (intr_mode != VXGE_HW_INTR_MODE_DEF))
269 intr_mode = VXGE_HW_INTR_MODE_IRQLINE;
271 hldev->config.intr_mode = intr_mode;
272 return intr_mode;
276 * vxge_hw_device_intr_enable - Enable interrupts.
277 * @hldev: HW device handle.
278 * @op: One of the enum vxge_hw_device_intr enumerated values specifying
279 * the type(s) of interrupts to enable.
281 * Enable Titan interrupts. The function is to be executed the last in
282 * Titan initialization sequence.
284 * See also: vxge_hw_device_intr_disable()
286 void vxge_hw_device_intr_enable(struct __vxge_hw_device *hldev)
288 u32 i;
289 u64 val64;
290 u32 val32;
292 vxge_hw_device_mask_all(hldev);
294 for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
296 if (!(hldev->vpaths_deployed & vxge_mBIT(i)))
297 continue;
299 vxge_hw_vpath_intr_enable(
300 VXGE_HW_VIRTUAL_PATH_HANDLE(&hldev->virtual_paths[i]));
303 if (hldev->config.intr_mode == VXGE_HW_INTR_MODE_IRQLINE) {
304 val64 = hldev->tim_int_mask0[VXGE_HW_VPATH_INTR_TX] |
305 hldev->tim_int_mask0[VXGE_HW_VPATH_INTR_RX];
307 if (val64 != 0) {
308 writeq(val64, &hldev->common_reg->tim_int_status0);
310 writeq(~val64, &hldev->common_reg->tim_int_mask0);
313 val32 = hldev->tim_int_mask1[VXGE_HW_VPATH_INTR_TX] |
314 hldev->tim_int_mask1[VXGE_HW_VPATH_INTR_RX];
316 if (val32 != 0) {
317 __vxge_hw_pio_mem_write32_upper(val32,
318 &hldev->common_reg->tim_int_status1);
320 __vxge_hw_pio_mem_write32_upper(~val32,
321 &hldev->common_reg->tim_int_mask1);
325 val64 = readq(&hldev->common_reg->titan_general_int_status);
327 vxge_hw_device_unmask_all(hldev);
331 * vxge_hw_device_intr_disable - Disable Titan interrupts.
332 * @hldev: HW device handle.
333 * @op: One of the enum vxge_hw_device_intr enumerated values specifying
334 * the type(s) of interrupts to disable.
336 * Disable Titan interrupts.
338 * See also: vxge_hw_device_intr_enable()
340 void vxge_hw_device_intr_disable(struct __vxge_hw_device *hldev)
342 u32 i;
344 vxge_hw_device_mask_all(hldev);
346 /* mask all the tim interrupts */
347 writeq(VXGE_HW_INTR_MASK_ALL, &hldev->common_reg->tim_int_mask0);
348 __vxge_hw_pio_mem_write32_upper(VXGE_HW_DEFAULT_32,
349 &hldev->common_reg->tim_int_mask1);
351 for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
353 if (!(hldev->vpaths_deployed & vxge_mBIT(i)))
354 continue;
356 vxge_hw_vpath_intr_disable(
357 VXGE_HW_VIRTUAL_PATH_HANDLE(&hldev->virtual_paths[i]));
362 * vxge_hw_device_mask_all - Mask all device interrupts.
363 * @hldev: HW device handle.
365 * Mask all device interrupts.
367 * See also: vxge_hw_device_unmask_all()
369 void vxge_hw_device_mask_all(struct __vxge_hw_device *hldev)
371 u64 val64;
373 val64 = VXGE_HW_TITAN_MASK_ALL_INT_ALARM |
374 VXGE_HW_TITAN_MASK_ALL_INT_TRAFFIC;
376 __vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(val64, 0, 32),
377 &hldev->common_reg->titan_mask_all_int);
381 * vxge_hw_device_unmask_all - Unmask all device interrupts.
382 * @hldev: HW device handle.
384 * Unmask all device interrupts.
386 * See also: vxge_hw_device_mask_all()
388 void vxge_hw_device_unmask_all(struct __vxge_hw_device *hldev)
390 u64 val64 = 0;
392 if (hldev->config.intr_mode == VXGE_HW_INTR_MODE_IRQLINE)
393 val64 = VXGE_HW_TITAN_MASK_ALL_INT_TRAFFIC;
395 __vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(val64, 0, 32),
396 &hldev->common_reg->titan_mask_all_int);
400 * vxge_hw_device_flush_io - Flush io writes.
401 * @hldev: HW device handle.
403 * The function performs a read operation to flush io writes.
405 * Returns: void
407 void vxge_hw_device_flush_io(struct __vxge_hw_device *hldev)
409 u32 val32;
411 val32 = readl(&hldev->common_reg->titan_general_int_status);
415 * __vxge_hw_device_handle_error - Handle error
416 * @hldev: HW device
417 * @vp_id: Vpath Id
418 * @type: Error type. Please see enum vxge_hw_event{}
420 * Handle error.
422 static enum vxge_hw_status
423 __vxge_hw_device_handle_error(struct __vxge_hw_device *hldev, u32 vp_id,
424 enum vxge_hw_event type)
426 switch (type) {
427 case VXGE_HW_EVENT_UNKNOWN:
428 break;
429 case VXGE_HW_EVENT_RESET_START:
430 case VXGE_HW_EVENT_RESET_COMPLETE:
431 case VXGE_HW_EVENT_LINK_DOWN:
432 case VXGE_HW_EVENT_LINK_UP:
433 goto out;
434 case VXGE_HW_EVENT_ALARM_CLEARED:
435 goto out;
436 case VXGE_HW_EVENT_ECCERR:
437 case VXGE_HW_EVENT_MRPCIM_ECCERR:
438 goto out;
439 case VXGE_HW_EVENT_FIFO_ERR:
440 case VXGE_HW_EVENT_VPATH_ERR:
441 case VXGE_HW_EVENT_CRITICAL_ERR:
442 case VXGE_HW_EVENT_SERR:
443 break;
444 case VXGE_HW_EVENT_SRPCIM_SERR:
445 case VXGE_HW_EVENT_MRPCIM_SERR:
446 goto out;
447 case VXGE_HW_EVENT_SLOT_FREEZE:
448 break;
449 default:
450 vxge_assert(0);
451 goto out;
454 /* notify driver */
455 if (hldev->uld_callbacks.crit_err)
456 hldev->uld_callbacks.crit_err(
457 (struct __vxge_hw_device *)hldev,
458 type, vp_id);
459 out:
461 return VXGE_HW_OK;
465 * __vxge_hw_device_handle_link_down_ind
466 * @hldev: HW device handle.
468 * Link down indication handler. The function is invoked by HW when
469 * Titan indicates that the link is down.
471 static enum vxge_hw_status
472 __vxge_hw_device_handle_link_down_ind(struct __vxge_hw_device *hldev)
475 * If the previous link state is not down, return.
477 if (hldev->link_state == VXGE_HW_LINK_DOWN)
478 goto exit;
480 hldev->link_state = VXGE_HW_LINK_DOWN;
482 /* notify driver */
483 if (hldev->uld_callbacks.link_down)
484 hldev->uld_callbacks.link_down(hldev);
485 exit:
486 return VXGE_HW_OK;
490 * __vxge_hw_device_handle_link_up_ind
491 * @hldev: HW device handle.
493 * Link up indication handler. The function is invoked by HW when
494 * Titan indicates that the link is up for programmable amount of time.
496 static enum vxge_hw_status
497 __vxge_hw_device_handle_link_up_ind(struct __vxge_hw_device *hldev)
500 * If the previous link state is not down, return.
502 if (hldev->link_state == VXGE_HW_LINK_UP)
503 goto exit;
505 hldev->link_state = VXGE_HW_LINK_UP;
507 /* notify driver */
508 if (hldev->uld_callbacks.link_up)
509 hldev->uld_callbacks.link_up(hldev);
510 exit:
511 return VXGE_HW_OK;
515 * __vxge_hw_vpath_alarm_process - Process Alarms.
516 * @vpath: Virtual Path.
517 * @skip_alarms: Do not clear the alarms
519 * Process vpath alarms.
522 static enum vxge_hw_status
523 __vxge_hw_vpath_alarm_process(struct __vxge_hw_virtualpath *vpath,
524 u32 skip_alarms)
526 u64 val64;
527 u64 alarm_status;
528 u64 pic_status;
529 struct __vxge_hw_device *hldev = NULL;
530 enum vxge_hw_event alarm_event = VXGE_HW_EVENT_UNKNOWN;
531 u64 mask64;
532 struct vxge_hw_vpath_stats_sw_info *sw_stats;
533 struct vxge_hw_vpath_reg __iomem *vp_reg;
535 if (vpath == NULL) {
536 alarm_event = VXGE_HW_SET_LEVEL(VXGE_HW_EVENT_UNKNOWN,
537 alarm_event);
538 goto out2;
541 hldev = vpath->hldev;
542 vp_reg = vpath->vp_reg;
543 alarm_status = readq(&vp_reg->vpath_general_int_status);
545 if (alarm_status == VXGE_HW_ALL_FOXES) {
546 alarm_event = VXGE_HW_SET_LEVEL(VXGE_HW_EVENT_SLOT_FREEZE,
547 alarm_event);
548 goto out;
551 sw_stats = vpath->sw_stats;
553 if (alarm_status & ~(
554 VXGE_HW_VPATH_GENERAL_INT_STATUS_PIC_INT |
555 VXGE_HW_VPATH_GENERAL_INT_STATUS_PCI_INT |
556 VXGE_HW_VPATH_GENERAL_INT_STATUS_WRDMA_INT |
557 VXGE_HW_VPATH_GENERAL_INT_STATUS_XMAC_INT)) {
558 sw_stats->error_stats.unknown_alarms++;
560 alarm_event = VXGE_HW_SET_LEVEL(VXGE_HW_EVENT_UNKNOWN,
561 alarm_event);
562 goto out;
565 if (alarm_status & VXGE_HW_VPATH_GENERAL_INT_STATUS_XMAC_INT) {
567 val64 = readq(&vp_reg->xgmac_vp_int_status);
569 if (val64 &
570 VXGE_HW_XGMAC_VP_INT_STATUS_ASIC_NTWK_VP_ERR_ASIC_NTWK_VP_INT) {
572 val64 = readq(&vp_reg->asic_ntwk_vp_err_reg);
574 if (((val64 &
575 VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_FLT) &&
576 (!(val64 &
577 VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_OK))) ||
578 ((val64 &
579 VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_FLT_OCCURR) &&
580 (!(val64 &
581 VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_OK_OCCURR)
582 ))) {
583 sw_stats->error_stats.network_sustained_fault++;
585 writeq(
586 VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_FLT,
587 &vp_reg->asic_ntwk_vp_err_mask);
589 __vxge_hw_device_handle_link_down_ind(hldev);
590 alarm_event = VXGE_HW_SET_LEVEL(
591 VXGE_HW_EVENT_LINK_DOWN, alarm_event);
594 if (((val64 &
595 VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_OK) &&
596 (!(val64 &
597 VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_FLT))) ||
598 ((val64 &
599 VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_OK_OCCURR) &&
600 (!(val64 &
601 VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_FLT_OCCURR)
602 ))) {
604 sw_stats->error_stats.network_sustained_ok++;
606 writeq(
607 VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_OK,
608 &vp_reg->asic_ntwk_vp_err_mask);
610 __vxge_hw_device_handle_link_up_ind(hldev);
611 alarm_event = VXGE_HW_SET_LEVEL(
612 VXGE_HW_EVENT_LINK_UP, alarm_event);
615 writeq(VXGE_HW_INTR_MASK_ALL,
616 &vp_reg->asic_ntwk_vp_err_reg);
618 alarm_event = VXGE_HW_SET_LEVEL(
619 VXGE_HW_EVENT_ALARM_CLEARED, alarm_event);
621 if (skip_alarms)
622 return VXGE_HW_OK;
626 if (alarm_status & VXGE_HW_VPATH_GENERAL_INT_STATUS_PIC_INT) {
628 pic_status = readq(&vp_reg->vpath_ppif_int_status);
630 if (pic_status &
631 VXGE_HW_VPATH_PPIF_INT_STATUS_GENERAL_ERRORS_GENERAL_INT) {
633 val64 = readq(&vp_reg->general_errors_reg);
634 mask64 = readq(&vp_reg->general_errors_mask);
636 if ((val64 &
637 VXGE_HW_GENERAL_ERRORS_REG_INI_SERR_DET) &
638 ~mask64) {
639 sw_stats->error_stats.ini_serr_det++;
641 alarm_event = VXGE_HW_SET_LEVEL(
642 VXGE_HW_EVENT_SERR, alarm_event);
645 if ((val64 &
646 VXGE_HW_GENERAL_ERRORS_REG_DBLGEN_FIFO0_OVRFLOW) &
647 ~mask64) {
648 sw_stats->error_stats.dblgen_fifo0_overflow++;
650 alarm_event = VXGE_HW_SET_LEVEL(
651 VXGE_HW_EVENT_FIFO_ERR, alarm_event);
654 if ((val64 &
655 VXGE_HW_GENERAL_ERRORS_REG_STATSB_PIF_CHAIN_ERR) &
656 ~mask64)
657 sw_stats->error_stats.statsb_pif_chain_error++;
659 if ((val64 &
660 VXGE_HW_GENERAL_ERRORS_REG_STATSB_DROP_TIMEOUT_REQ) &
661 ~mask64)
662 sw_stats->error_stats.statsb_drop_timeout++;
664 if ((val64 &
665 VXGE_HW_GENERAL_ERRORS_REG_TGT_ILLEGAL_ACCESS) &
666 ~mask64)
667 sw_stats->error_stats.target_illegal_access++;
669 if (!skip_alarms) {
670 writeq(VXGE_HW_INTR_MASK_ALL,
671 &vp_reg->general_errors_reg);
672 alarm_event = VXGE_HW_SET_LEVEL(
673 VXGE_HW_EVENT_ALARM_CLEARED,
674 alarm_event);
678 if (pic_status &
679 VXGE_HW_VPATH_PPIF_INT_STATUS_KDFCCTL_ERRORS_KDFCCTL_INT) {
681 val64 = readq(&vp_reg->kdfcctl_errors_reg);
682 mask64 = readq(&vp_reg->kdfcctl_errors_mask);
684 if ((val64 &
685 VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO0_OVRWR) &
686 ~mask64) {
687 sw_stats->error_stats.kdfcctl_fifo0_overwrite++;
689 alarm_event = VXGE_HW_SET_LEVEL(
690 VXGE_HW_EVENT_FIFO_ERR,
691 alarm_event);
694 if ((val64 &
695 VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO0_POISON) &
696 ~mask64) {
697 sw_stats->error_stats.kdfcctl_fifo0_poison++;
699 alarm_event = VXGE_HW_SET_LEVEL(
700 VXGE_HW_EVENT_FIFO_ERR,
701 alarm_event);
704 if ((val64 &
705 VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO0_DMA_ERR) &
706 ~mask64) {
707 sw_stats->error_stats.kdfcctl_fifo0_dma_error++;
709 alarm_event = VXGE_HW_SET_LEVEL(
710 VXGE_HW_EVENT_FIFO_ERR,
711 alarm_event);
714 if (!skip_alarms) {
715 writeq(VXGE_HW_INTR_MASK_ALL,
716 &vp_reg->kdfcctl_errors_reg);
717 alarm_event = VXGE_HW_SET_LEVEL(
718 VXGE_HW_EVENT_ALARM_CLEARED,
719 alarm_event);
725 if (alarm_status & VXGE_HW_VPATH_GENERAL_INT_STATUS_WRDMA_INT) {
727 val64 = readq(&vp_reg->wrdma_alarm_status);
729 if (val64 & VXGE_HW_WRDMA_ALARM_STATUS_PRC_ALARM_PRC_INT) {
731 val64 = readq(&vp_reg->prc_alarm_reg);
732 mask64 = readq(&vp_reg->prc_alarm_mask);
734 if ((val64 & VXGE_HW_PRC_ALARM_REG_PRC_RING_BUMP)&
735 ~mask64)
736 sw_stats->error_stats.prc_ring_bumps++;
738 if ((val64 & VXGE_HW_PRC_ALARM_REG_PRC_RXDCM_SC_ERR) &
739 ~mask64) {
740 sw_stats->error_stats.prc_rxdcm_sc_err++;
742 alarm_event = VXGE_HW_SET_LEVEL(
743 VXGE_HW_EVENT_VPATH_ERR,
744 alarm_event);
747 if ((val64 & VXGE_HW_PRC_ALARM_REG_PRC_RXDCM_SC_ABORT)
748 & ~mask64) {
749 sw_stats->error_stats.prc_rxdcm_sc_abort++;
751 alarm_event = VXGE_HW_SET_LEVEL(
752 VXGE_HW_EVENT_VPATH_ERR,
753 alarm_event);
756 if ((val64 & VXGE_HW_PRC_ALARM_REG_PRC_QUANTA_SIZE_ERR)
757 & ~mask64) {
758 sw_stats->error_stats.prc_quanta_size_err++;
760 alarm_event = VXGE_HW_SET_LEVEL(
761 VXGE_HW_EVENT_VPATH_ERR,
762 alarm_event);
765 if (!skip_alarms) {
766 writeq(VXGE_HW_INTR_MASK_ALL,
767 &vp_reg->prc_alarm_reg);
768 alarm_event = VXGE_HW_SET_LEVEL(
769 VXGE_HW_EVENT_ALARM_CLEARED,
770 alarm_event);
774 out:
775 hldev->stats.sw_dev_err_stats.vpath_alarms++;
776 out2:
777 if ((alarm_event == VXGE_HW_EVENT_ALARM_CLEARED) ||
778 (alarm_event == VXGE_HW_EVENT_UNKNOWN))
779 return VXGE_HW_OK;
781 __vxge_hw_device_handle_error(hldev, vpath->vp_id, alarm_event);
783 if (alarm_event == VXGE_HW_EVENT_SERR)
784 return VXGE_HW_ERR_CRITICAL;
786 return (alarm_event == VXGE_HW_EVENT_SLOT_FREEZE) ?
787 VXGE_HW_ERR_SLOT_FREEZE :
788 (alarm_event == VXGE_HW_EVENT_FIFO_ERR) ? VXGE_HW_ERR_FIFO :
789 VXGE_HW_ERR_VPATH;
793 * vxge_hw_device_begin_irq - Begin IRQ processing.
794 * @hldev: HW device handle.
795 * @skip_alarms: Do not clear the alarms
796 * @reason: "Reason" for the interrupt, the value of Titan's
797 * general_int_status register.
799 * The function performs two actions, It first checks whether (shared IRQ) the
800 * interrupt was raised by the device. Next, it masks the device interrupts.
802 * Note:
803 * vxge_hw_device_begin_irq() does not flush MMIO writes through the
804 * bridge. Therefore, two back-to-back interrupts are potentially possible.
806 * Returns: 0, if the interrupt is not "ours" (note that in this case the
807 * device remain enabled).
808 * Otherwise, vxge_hw_device_begin_irq() returns 64bit general adapter
809 * status.
811 enum vxge_hw_status vxge_hw_device_begin_irq(struct __vxge_hw_device *hldev,
812 u32 skip_alarms, u64 *reason)
814 u32 i;
815 u64 val64;
816 u64 adapter_status;
817 u64 vpath_mask;
818 enum vxge_hw_status ret = VXGE_HW_OK;
820 val64 = readq(&hldev->common_reg->titan_general_int_status);
822 if (unlikely(!val64)) {
823 /* not Titan interrupt */
824 *reason = 0;
825 ret = VXGE_HW_ERR_WRONG_IRQ;
826 goto exit;
829 if (unlikely(val64 == VXGE_HW_ALL_FOXES)) {
831 adapter_status = readq(&hldev->common_reg->adapter_status);
833 if (adapter_status == VXGE_HW_ALL_FOXES) {
835 __vxge_hw_device_handle_error(hldev,
836 NULL_VPID, VXGE_HW_EVENT_SLOT_FREEZE);
837 *reason = 0;
838 ret = VXGE_HW_ERR_SLOT_FREEZE;
839 goto exit;
843 hldev->stats.sw_dev_info_stats.total_intr_cnt++;
845 *reason = val64;
847 vpath_mask = hldev->vpaths_deployed >>
848 (64 - VXGE_HW_MAX_VIRTUAL_PATHS);
850 if (val64 &
851 VXGE_HW_TITAN_GENERAL_INT_STATUS_VPATH_TRAFFIC_INT(vpath_mask)) {
852 hldev->stats.sw_dev_info_stats.traffic_intr_cnt++;
854 return VXGE_HW_OK;
857 hldev->stats.sw_dev_info_stats.not_traffic_intr_cnt++;
859 if (unlikely(val64 &
860 VXGE_HW_TITAN_GENERAL_INT_STATUS_VPATH_ALARM_INT)) {
862 enum vxge_hw_status error_level = VXGE_HW_OK;
864 hldev->stats.sw_dev_err_stats.vpath_alarms++;
866 for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
868 if (!(hldev->vpaths_deployed & vxge_mBIT(i)))
869 continue;
871 ret = __vxge_hw_vpath_alarm_process(
872 &hldev->virtual_paths[i], skip_alarms);
874 error_level = VXGE_HW_SET_LEVEL(ret, error_level);
876 if (unlikely((ret == VXGE_HW_ERR_CRITICAL) ||
877 (ret == VXGE_HW_ERR_SLOT_FREEZE)))
878 break;
881 ret = error_level;
883 exit:
884 return ret;
888 * vxge_hw_device_clear_tx_rx - Acknowledge (that is, clear) the
889 * condition that has caused the Tx and RX interrupt.
890 * @hldev: HW device.
892 * Acknowledge (that is, clear) the condition that has caused
893 * the Tx and Rx interrupt.
894 * See also: vxge_hw_device_begin_irq(),
895 * vxge_hw_device_mask_tx_rx(), vxge_hw_device_unmask_tx_rx().
897 void vxge_hw_device_clear_tx_rx(struct __vxge_hw_device *hldev)
900 if ((hldev->tim_int_mask0[VXGE_HW_VPATH_INTR_TX] != 0) ||
901 (hldev->tim_int_mask0[VXGE_HW_VPATH_INTR_RX] != 0)) {
902 writeq((hldev->tim_int_mask0[VXGE_HW_VPATH_INTR_TX] |
903 hldev->tim_int_mask0[VXGE_HW_VPATH_INTR_RX]),
904 &hldev->common_reg->tim_int_status0);
907 if ((hldev->tim_int_mask1[VXGE_HW_VPATH_INTR_TX] != 0) ||
908 (hldev->tim_int_mask1[VXGE_HW_VPATH_INTR_RX] != 0)) {
909 __vxge_hw_pio_mem_write32_upper(
910 (hldev->tim_int_mask1[VXGE_HW_VPATH_INTR_TX] |
911 hldev->tim_int_mask1[VXGE_HW_VPATH_INTR_RX]),
912 &hldev->common_reg->tim_int_status1);
917 * vxge_hw_channel_dtr_alloc - Allocate a dtr from the channel
918 * @channel: Channel
919 * @dtrh: Buffer to return the DTR pointer
921 * Allocates a dtr from the reserve array. If the reserve array is empty,
922 * it swaps the reserve and free arrays.
925 static enum vxge_hw_status
926 vxge_hw_channel_dtr_alloc(struct __vxge_hw_channel *channel, void **dtrh)
928 void **tmp_arr;
930 if (channel->reserve_ptr - channel->reserve_top > 0) {
931 _alloc_after_swap:
932 *dtrh = channel->reserve_arr[--channel->reserve_ptr];
934 return VXGE_HW_OK;
937 /* switch between empty and full arrays */
939 /* the idea behind such a design is that by having free and reserved
940 * arrays separated we basically separated irq and non-irq parts.
941 * i.e. no additional lock need to be done when we free a resource */
943 if (channel->length - channel->free_ptr > 0) {
945 tmp_arr = channel->reserve_arr;
946 channel->reserve_arr = channel->free_arr;
947 channel->free_arr = tmp_arr;
948 channel->reserve_ptr = channel->length;
949 channel->reserve_top = channel->free_ptr;
950 channel->free_ptr = channel->length;
952 channel->stats->reserve_free_swaps_cnt++;
954 goto _alloc_after_swap;
957 channel->stats->full_cnt++;
959 *dtrh = NULL;
960 return VXGE_HW_INF_OUT_OF_DESCRIPTORS;
964 * vxge_hw_channel_dtr_post - Post a dtr to the channel
965 * @channelh: Channel
966 * @dtrh: DTR pointer
968 * Posts a dtr to work array.
971 static void
972 vxge_hw_channel_dtr_post(struct __vxge_hw_channel *channel, void *dtrh)
974 vxge_assert(channel->work_arr[channel->post_index] == NULL);
976 channel->work_arr[channel->post_index++] = dtrh;
978 /* wrap-around */
979 if (channel->post_index == channel->length)
980 channel->post_index = 0;
984 * vxge_hw_channel_dtr_try_complete - Returns next completed dtr
985 * @channel: Channel
986 * @dtr: Buffer to return the next completed DTR pointer
988 * Returns the next completed dtr with out removing it from work array
991 void
992 vxge_hw_channel_dtr_try_complete(struct __vxge_hw_channel *channel, void **dtrh)
994 vxge_assert(channel->compl_index < channel->length);
996 *dtrh = channel->work_arr[channel->compl_index];
997 prefetch(*dtrh);
1001 * vxge_hw_channel_dtr_complete - Removes next completed dtr from the work array
1002 * @channel: Channel handle
1004 * Removes the next completed dtr from work array
1007 void vxge_hw_channel_dtr_complete(struct __vxge_hw_channel *channel)
1009 channel->work_arr[channel->compl_index] = NULL;
1011 /* wrap-around */
1012 if (++channel->compl_index == channel->length)
1013 channel->compl_index = 0;
1015 channel->stats->total_compl_cnt++;
1019 * vxge_hw_channel_dtr_free - Frees a dtr
1020 * @channel: Channel handle
1021 * @dtr: DTR pointer
1023 * Returns the dtr to free array
1026 void vxge_hw_channel_dtr_free(struct __vxge_hw_channel *channel, void *dtrh)
1028 channel->free_arr[--channel->free_ptr] = dtrh;
1032 * vxge_hw_channel_dtr_count
1033 * @channel: Channel handle. Obtained via vxge_hw_channel_open().
1035 * Retreive number of DTRs available. This function can not be called
1036 * from data path. ring_initial_replenishi() is the only user.
1038 int vxge_hw_channel_dtr_count(struct __vxge_hw_channel *channel)
1040 return (channel->reserve_ptr - channel->reserve_top) +
1041 (channel->length - channel->free_ptr);
1045 * vxge_hw_ring_rxd_reserve - Reserve ring descriptor.
1046 * @ring: Handle to the ring object used for receive
1047 * @rxdh: Reserved descriptor. On success HW fills this "out" parameter
1048 * with a valid handle.
1050 * Reserve Rx descriptor for the subsequent filling-in driver
1051 * and posting on the corresponding channel (@channelh)
1052 * via vxge_hw_ring_rxd_post().
1054 * Returns: VXGE_HW_OK - success.
1055 * VXGE_HW_INF_OUT_OF_DESCRIPTORS - Currently no descriptors available.
1058 enum vxge_hw_status vxge_hw_ring_rxd_reserve(struct __vxge_hw_ring *ring,
1059 void **rxdh)
1061 enum vxge_hw_status status;
1062 struct __vxge_hw_channel *channel;
1064 channel = &ring->channel;
1066 status = vxge_hw_channel_dtr_alloc(channel, rxdh);
1068 if (status == VXGE_HW_OK) {
1069 struct vxge_hw_ring_rxd_1 *rxdp =
1070 (struct vxge_hw_ring_rxd_1 *)*rxdh;
1072 rxdp->control_0 = rxdp->control_1 = 0;
1075 return status;
1079 * vxge_hw_ring_rxd_free - Free descriptor.
1080 * @ring: Handle to the ring object used for receive
1081 * @rxdh: Descriptor handle.
1083 * Free the reserved descriptor. This operation is "symmetrical" to
1084 * vxge_hw_ring_rxd_reserve. The "free-ing" completes the descriptor's
1085 * lifecycle.
1087 * After free-ing (see vxge_hw_ring_rxd_free()) the descriptor again can
1088 * be:
1090 * - reserved (vxge_hw_ring_rxd_reserve);
1092 * - posted (vxge_hw_ring_rxd_post);
1094 * - completed (vxge_hw_ring_rxd_next_completed);
1096 * - and recycled again (vxge_hw_ring_rxd_free).
1098 * For alternative state transitions and more details please refer to
1099 * the design doc.
1102 void vxge_hw_ring_rxd_free(struct __vxge_hw_ring *ring, void *rxdh)
1104 struct __vxge_hw_channel *channel;
1106 channel = &ring->channel;
1108 vxge_hw_channel_dtr_free(channel, rxdh);
1113 * vxge_hw_ring_rxd_pre_post - Prepare rxd and post
1114 * @ring: Handle to the ring object used for receive
1115 * @rxdh: Descriptor handle.
1117 * This routine prepares a rxd and posts
1119 void vxge_hw_ring_rxd_pre_post(struct __vxge_hw_ring *ring, void *rxdh)
1121 struct __vxge_hw_channel *channel;
1123 channel = &ring->channel;
1125 vxge_hw_channel_dtr_post(channel, rxdh);
1129 * vxge_hw_ring_rxd_post_post - Process rxd after post.
1130 * @ring: Handle to the ring object used for receive
1131 * @rxdh: Descriptor handle.
1133 * Processes rxd after post
1135 void vxge_hw_ring_rxd_post_post(struct __vxge_hw_ring *ring, void *rxdh)
1137 struct vxge_hw_ring_rxd_1 *rxdp = (struct vxge_hw_ring_rxd_1 *)rxdh;
1138 struct __vxge_hw_channel *channel;
1140 channel = &ring->channel;
1142 rxdp->control_0 = VXGE_HW_RING_RXD_LIST_OWN_ADAPTER;
1144 if (ring->stats->common_stats.usage_cnt > 0)
1145 ring->stats->common_stats.usage_cnt--;
1149 * vxge_hw_ring_rxd_post - Post descriptor on the ring.
1150 * @ring: Handle to the ring object used for receive
1151 * @rxdh: Descriptor obtained via vxge_hw_ring_rxd_reserve().
1153 * Post descriptor on the ring.
1154 * Prior to posting the descriptor should be filled in accordance with
1155 * Host/Titan interface specification for a given service (LL, etc.).
1158 void vxge_hw_ring_rxd_post(struct __vxge_hw_ring *ring, void *rxdh)
1160 struct vxge_hw_ring_rxd_1 *rxdp = (struct vxge_hw_ring_rxd_1 *)rxdh;
1161 struct __vxge_hw_channel *channel;
1163 channel = &ring->channel;
1165 wmb();
1166 rxdp->control_0 = VXGE_HW_RING_RXD_LIST_OWN_ADAPTER;
1168 vxge_hw_channel_dtr_post(channel, rxdh);
1170 if (ring->stats->common_stats.usage_cnt > 0)
1171 ring->stats->common_stats.usage_cnt--;
1175 * vxge_hw_ring_rxd_post_post_wmb - Process rxd after post with memory barrier.
1176 * @ring: Handle to the ring object used for receive
1177 * @rxdh: Descriptor handle.
1179 * Processes rxd after post with memory barrier.
1181 void vxge_hw_ring_rxd_post_post_wmb(struct __vxge_hw_ring *ring, void *rxdh)
1183 wmb();
1184 vxge_hw_ring_rxd_post_post(ring, rxdh);
1188 * vxge_hw_ring_rxd_next_completed - Get the _next_ completed descriptor.
1189 * @ring: Handle to the ring object used for receive
1190 * @rxdh: Descriptor handle. Returned by HW.
1191 * @t_code: Transfer code, as per Titan User Guide,
1192 * Receive Descriptor Format. Returned by HW.
1194 * Retrieve the _next_ completed descriptor.
1195 * HW uses ring callback (*vxge_hw_ring_callback_f) to notifiy
1196 * driver of new completed descriptors. After that
1197 * the driver can use vxge_hw_ring_rxd_next_completed to retrieve the rest
1198 * completions (the very first completion is passed by HW via
1199 * vxge_hw_ring_callback_f).
1201 * Implementation-wise, the driver is free to call
1202 * vxge_hw_ring_rxd_next_completed either immediately from inside the
1203 * ring callback, or in a deferred fashion and separate (from HW)
1204 * context.
1206 * Non-zero @t_code means failure to fill-in receive buffer(s)
1207 * of the descriptor.
1208 * For instance, parity error detected during the data transfer.
1209 * In this case Titan will complete the descriptor and indicate
1210 * for the host that the received data is not to be used.
1211 * For details please refer to Titan User Guide.
1213 * Returns: VXGE_HW_OK - success.
1214 * VXGE_HW_INF_NO_MORE_COMPLETED_DESCRIPTORS - No completed descriptors
1215 * are currently available for processing.
1217 * See also: vxge_hw_ring_callback_f{},
1218 * vxge_hw_fifo_rxd_next_completed(), enum vxge_hw_status{}.
1220 enum vxge_hw_status vxge_hw_ring_rxd_next_completed(
1221 struct __vxge_hw_ring *ring, void **rxdh, u8 *t_code)
1223 struct __vxge_hw_channel *channel;
1224 struct vxge_hw_ring_rxd_1 *rxdp;
1225 enum vxge_hw_status status = VXGE_HW_OK;
1226 u64 control_0, own;
1228 channel = &ring->channel;
1230 vxge_hw_channel_dtr_try_complete(channel, rxdh);
1232 rxdp = (struct vxge_hw_ring_rxd_1 *)*rxdh;
1233 if (rxdp == NULL) {
1234 status = VXGE_HW_INF_NO_MORE_COMPLETED_DESCRIPTORS;
1235 goto exit;
1238 control_0 = rxdp->control_0;
1239 own = control_0 & VXGE_HW_RING_RXD_LIST_OWN_ADAPTER;
1240 *t_code = (u8)VXGE_HW_RING_RXD_T_CODE_GET(control_0);
1242 /* check whether it is not the end */
1243 if (!own || *t_code == VXGE_HW_RING_T_CODE_FRM_DROP) {
1245 vxge_assert(((struct vxge_hw_ring_rxd_1 *)rxdp)->host_control !=
1248 ++ring->cmpl_cnt;
1249 vxge_hw_channel_dtr_complete(channel);
1251 vxge_assert(*t_code != VXGE_HW_RING_RXD_T_CODE_UNUSED);
1253 ring->stats->common_stats.usage_cnt++;
1254 if (ring->stats->common_stats.usage_max <
1255 ring->stats->common_stats.usage_cnt)
1256 ring->stats->common_stats.usage_max =
1257 ring->stats->common_stats.usage_cnt;
1259 status = VXGE_HW_OK;
1260 goto exit;
1263 /* reset it. since we don't want to return
1264 * garbage to the driver */
1265 *rxdh = NULL;
1266 status = VXGE_HW_INF_NO_MORE_COMPLETED_DESCRIPTORS;
1267 exit:
1268 return status;
1272 * vxge_hw_ring_handle_tcode - Handle transfer code.
1273 * @ring: Handle to the ring object used for receive
1274 * @rxdh: Descriptor handle.
1275 * @t_code: One of the enumerated (and documented in the Titan user guide)
1276 * "transfer codes".
1278 * Handle descriptor's transfer code. The latter comes with each completed
1279 * descriptor.
1281 * Returns: one of the enum vxge_hw_status{} enumerated types.
1282 * VXGE_HW_OK - for success.
1283 * VXGE_HW_ERR_CRITICAL - when encounters critical error.
1285 enum vxge_hw_status vxge_hw_ring_handle_tcode(
1286 struct __vxge_hw_ring *ring, void *rxdh, u8 t_code)
1288 struct __vxge_hw_channel *channel;
1289 enum vxge_hw_status status = VXGE_HW_OK;
1291 channel = &ring->channel;
1293 /* If the t_code is not supported and if the
1294 * t_code is other than 0x5 (unparseable packet
1295 * such as unknown UPV6 header), Drop it !!!
1298 if (t_code == VXGE_HW_RING_T_CODE_OK ||
1299 t_code == VXGE_HW_RING_T_CODE_L3_PKT_ERR) {
1300 status = VXGE_HW_OK;
1301 goto exit;
1304 if (t_code > VXGE_HW_RING_T_CODE_MULTI_ERR) {
1305 status = VXGE_HW_ERR_INVALID_TCODE;
1306 goto exit;
1309 ring->stats->rxd_t_code_err_cnt[t_code]++;
1310 exit:
1311 return status;
1315 * __vxge_hw_non_offload_db_post - Post non offload doorbell
1317 * @fifo: fifohandle
1318 * @txdl_ptr: The starting location of the TxDL in host memory
1319 * @num_txds: The highest TxD in this TxDL (0 to 255 means 1 to 256)
1320 * @no_snoop: No snoop flags
1322 * This function posts a non-offload doorbell to doorbell FIFO
1325 static void __vxge_hw_non_offload_db_post(struct __vxge_hw_fifo *fifo,
1326 u64 txdl_ptr, u32 num_txds, u32 no_snoop)
1328 struct __vxge_hw_channel *channel;
1330 channel = &fifo->channel;
1332 writeq(VXGE_HW_NODBW_TYPE(VXGE_HW_NODBW_TYPE_NODBW) |
1333 VXGE_HW_NODBW_LAST_TXD_NUMBER(num_txds) |
1334 VXGE_HW_NODBW_GET_NO_SNOOP(no_snoop),
1335 &fifo->nofl_db->control_0);
1337 mmiowb();
1339 writeq(txdl_ptr, &fifo->nofl_db->txdl_ptr);
1341 mmiowb();
1345 * vxge_hw_fifo_free_txdl_count_get - returns the number of txdls available in
1346 * the fifo
1347 * @fifoh: Handle to the fifo object used for non offload send
1349 u32 vxge_hw_fifo_free_txdl_count_get(struct __vxge_hw_fifo *fifoh)
1351 return vxge_hw_channel_dtr_count(&fifoh->channel);
1355 * vxge_hw_fifo_txdl_reserve - Reserve fifo descriptor.
1356 * @fifoh: Handle to the fifo object used for non offload send
1357 * @txdlh: Reserved descriptor. On success HW fills this "out" parameter
1358 * with a valid handle.
1359 * @txdl_priv: Buffer to return the pointer to per txdl space
1361 * Reserve a single TxDL (that is, fifo descriptor)
1362 * for the subsequent filling-in by driver)
1363 * and posting on the corresponding channel (@channelh)
1364 * via vxge_hw_fifo_txdl_post().
1366 * Note: it is the responsibility of driver to reserve multiple descriptors
1367 * for lengthy (e.g., LSO) transmit operation. A single fifo descriptor
1368 * carries up to configured number (fifo.max_frags) of contiguous buffers.
1370 * Returns: VXGE_HW_OK - success;
1371 * VXGE_HW_INF_OUT_OF_DESCRIPTORS - Currently no descriptors available
1374 enum vxge_hw_status vxge_hw_fifo_txdl_reserve(
1375 struct __vxge_hw_fifo *fifo,
1376 void **txdlh, void **txdl_priv)
1378 struct __vxge_hw_channel *channel;
1379 enum vxge_hw_status status;
1380 int i;
1382 channel = &fifo->channel;
1384 status = vxge_hw_channel_dtr_alloc(channel, txdlh);
1386 if (status == VXGE_HW_OK) {
1387 struct vxge_hw_fifo_txd *txdp =
1388 (struct vxge_hw_fifo_txd *)*txdlh;
1389 struct __vxge_hw_fifo_txdl_priv *priv;
1391 priv = __vxge_hw_fifo_txdl_priv(fifo, txdp);
1393 /* reset the TxDL's private */
1394 priv->align_dma_offset = 0;
1395 priv->align_vaddr_start = priv->align_vaddr;
1396 priv->align_used_frags = 0;
1397 priv->frags = 0;
1398 priv->alloc_frags = fifo->config->max_frags;
1399 priv->next_txdl_priv = NULL;
1401 *txdl_priv = (void *)(size_t)txdp->host_control;
1403 for (i = 0; i < fifo->config->max_frags; i++) {
1404 txdp = ((struct vxge_hw_fifo_txd *)*txdlh) + i;
1405 txdp->control_0 = txdp->control_1 = 0;
1409 return status;
1413 * vxge_hw_fifo_txdl_buffer_set - Set transmit buffer pointer in the
1414 * descriptor.
1415 * @fifo: Handle to the fifo object used for non offload send
1416 * @txdlh: Descriptor handle.
1417 * @frag_idx: Index of the data buffer in the caller's scatter-gather list
1418 * (of buffers).
1419 * @dma_pointer: DMA address of the data buffer referenced by @frag_idx.
1420 * @size: Size of the data buffer (in bytes).
1422 * This API is part of the preparation of the transmit descriptor for posting
1423 * (via vxge_hw_fifo_txdl_post()). The related "preparation" APIs include
1424 * vxge_hw_fifo_txdl_mss_set() and vxge_hw_fifo_txdl_cksum_set_bits().
1425 * All three APIs fill in the fields of the fifo descriptor,
1426 * in accordance with the Titan specification.
1429 void vxge_hw_fifo_txdl_buffer_set(struct __vxge_hw_fifo *fifo,
1430 void *txdlh, u32 frag_idx,
1431 dma_addr_t dma_pointer, u32 size)
1433 struct __vxge_hw_fifo_txdl_priv *txdl_priv;
1434 struct vxge_hw_fifo_txd *txdp, *txdp_last;
1435 struct __vxge_hw_channel *channel;
1437 channel = &fifo->channel;
1439 txdl_priv = __vxge_hw_fifo_txdl_priv(fifo, txdlh);
1440 txdp = (struct vxge_hw_fifo_txd *)txdlh + txdl_priv->frags;
1442 if (frag_idx != 0)
1443 txdp->control_0 = txdp->control_1 = 0;
1444 else {
1445 txdp->control_0 |= VXGE_HW_FIFO_TXD_GATHER_CODE(
1446 VXGE_HW_FIFO_TXD_GATHER_CODE_FIRST);
1447 txdp->control_1 |= fifo->interrupt_type;
1448 txdp->control_1 |= VXGE_HW_FIFO_TXD_INT_NUMBER(
1449 fifo->tx_intr_num);
1450 if (txdl_priv->frags) {
1451 txdp_last = (struct vxge_hw_fifo_txd *)txdlh +
1452 (txdl_priv->frags - 1);
1453 txdp_last->control_0 |= VXGE_HW_FIFO_TXD_GATHER_CODE(
1454 VXGE_HW_FIFO_TXD_GATHER_CODE_LAST);
1458 vxge_assert(frag_idx < txdl_priv->alloc_frags);
1460 txdp->buffer_pointer = (u64)dma_pointer;
1461 txdp->control_0 |= VXGE_HW_FIFO_TXD_BUFFER_SIZE(size);
1462 fifo->stats->total_buffers++;
1463 txdl_priv->frags++;
1467 * vxge_hw_fifo_txdl_post - Post descriptor on the fifo channel.
1468 * @fifo: Handle to the fifo object used for non offload send
1469 * @txdlh: Descriptor obtained via vxge_hw_fifo_txdl_reserve()
1470 * @frags: Number of contiguous buffers that are part of a single
1471 * transmit operation.
1473 * Post descriptor on the 'fifo' type channel for transmission.
1474 * Prior to posting the descriptor should be filled in accordance with
1475 * Host/Titan interface specification for a given service (LL, etc.).
1478 void vxge_hw_fifo_txdl_post(struct __vxge_hw_fifo *fifo, void *txdlh)
1480 struct __vxge_hw_fifo_txdl_priv *txdl_priv;
1481 struct vxge_hw_fifo_txd *txdp_last;
1482 struct vxge_hw_fifo_txd *txdp_first;
1483 struct __vxge_hw_channel *channel;
1485 channel = &fifo->channel;
1487 txdl_priv = __vxge_hw_fifo_txdl_priv(fifo, txdlh);
1488 txdp_first = (struct vxge_hw_fifo_txd *)txdlh;
1490 txdp_last = (struct vxge_hw_fifo_txd *)txdlh + (txdl_priv->frags - 1);
1491 txdp_last->control_0 |=
1492 VXGE_HW_FIFO_TXD_GATHER_CODE(VXGE_HW_FIFO_TXD_GATHER_CODE_LAST);
1493 txdp_first->control_0 |= VXGE_HW_FIFO_TXD_LIST_OWN_ADAPTER;
1495 vxge_hw_channel_dtr_post(&fifo->channel, txdlh);
1497 __vxge_hw_non_offload_db_post(fifo,
1498 (u64)txdl_priv->dma_addr,
1499 txdl_priv->frags - 1,
1500 fifo->no_snoop_bits);
1502 fifo->stats->total_posts++;
1503 fifo->stats->common_stats.usage_cnt++;
1504 if (fifo->stats->common_stats.usage_max <
1505 fifo->stats->common_stats.usage_cnt)
1506 fifo->stats->common_stats.usage_max =
1507 fifo->stats->common_stats.usage_cnt;
1511 * vxge_hw_fifo_txdl_next_completed - Retrieve next completed descriptor.
1512 * @fifo: Handle to the fifo object used for non offload send
1513 * @txdlh: Descriptor handle. Returned by HW.
1514 * @t_code: Transfer code, as per Titan User Guide,
1515 * Transmit Descriptor Format.
1516 * Returned by HW.
1518 * Retrieve the _next_ completed descriptor.
1519 * HW uses channel callback (*vxge_hw_channel_callback_f) to notifiy
1520 * driver of new completed descriptors. After that
1521 * the driver can use vxge_hw_fifo_txdl_next_completed to retrieve the rest
1522 * completions (the very first completion is passed by HW via
1523 * vxge_hw_channel_callback_f).
1525 * Implementation-wise, the driver is free to call
1526 * vxge_hw_fifo_txdl_next_completed either immediately from inside the
1527 * channel callback, or in a deferred fashion and separate (from HW)
1528 * context.
1530 * Non-zero @t_code means failure to process the descriptor.
1531 * The failure could happen, for instance, when the link is
1532 * down, in which case Titan completes the descriptor because it
1533 * is not able to send the data out.
1535 * For details please refer to Titan User Guide.
1537 * Returns: VXGE_HW_OK - success.
1538 * VXGE_HW_INF_NO_MORE_COMPLETED_DESCRIPTORS - No completed descriptors
1539 * are currently available for processing.
1542 enum vxge_hw_status vxge_hw_fifo_txdl_next_completed(
1543 struct __vxge_hw_fifo *fifo, void **txdlh,
1544 enum vxge_hw_fifo_tcode *t_code)
1546 struct __vxge_hw_channel *channel;
1547 struct vxge_hw_fifo_txd *txdp;
1548 enum vxge_hw_status status = VXGE_HW_OK;
1550 channel = &fifo->channel;
1552 vxge_hw_channel_dtr_try_complete(channel, txdlh);
1554 txdp = (struct vxge_hw_fifo_txd *)*txdlh;
1555 if (txdp == NULL) {
1556 status = VXGE_HW_INF_NO_MORE_COMPLETED_DESCRIPTORS;
1557 goto exit;
1560 /* check whether host owns it */
1561 if (!(txdp->control_0 & VXGE_HW_FIFO_TXD_LIST_OWN_ADAPTER)) {
1563 vxge_assert(txdp->host_control != 0);
1565 vxge_hw_channel_dtr_complete(channel);
1567 *t_code = (u8)VXGE_HW_FIFO_TXD_T_CODE_GET(txdp->control_0);
1569 if (fifo->stats->common_stats.usage_cnt > 0)
1570 fifo->stats->common_stats.usage_cnt--;
1572 status = VXGE_HW_OK;
1573 goto exit;
1576 /* no more completions */
1577 *txdlh = NULL;
1578 status = VXGE_HW_INF_NO_MORE_COMPLETED_DESCRIPTORS;
1579 exit:
1580 return status;
1584 * vxge_hw_fifo_handle_tcode - Handle transfer code.
1585 * @fifo: Handle to the fifo object used for non offload send
1586 * @txdlh: Descriptor handle.
1587 * @t_code: One of the enumerated (and documented in the Titan user guide)
1588 * "transfer codes".
1590 * Handle descriptor's transfer code. The latter comes with each completed
1591 * descriptor.
1593 * Returns: one of the enum vxge_hw_status{} enumerated types.
1594 * VXGE_HW_OK - for success.
1595 * VXGE_HW_ERR_CRITICAL - when encounters critical error.
1597 enum vxge_hw_status vxge_hw_fifo_handle_tcode(struct __vxge_hw_fifo *fifo,
1598 void *txdlh,
1599 enum vxge_hw_fifo_tcode t_code)
1601 struct __vxge_hw_channel *channel;
1603 enum vxge_hw_status status = VXGE_HW_OK;
1604 channel = &fifo->channel;
1606 if (((t_code & 0x7) < 0) || ((t_code & 0x7) > 0x4)) {
1607 status = VXGE_HW_ERR_INVALID_TCODE;
1608 goto exit;
1611 fifo->stats->txd_t_code_err_cnt[t_code]++;
1612 exit:
1613 return status;
1617 * vxge_hw_fifo_txdl_free - Free descriptor.
1618 * @fifo: Handle to the fifo object used for non offload send
1619 * @txdlh: Descriptor handle.
1621 * Free the reserved descriptor. This operation is "symmetrical" to
1622 * vxge_hw_fifo_txdl_reserve. The "free-ing" completes the descriptor's
1623 * lifecycle.
1625 * After free-ing (see vxge_hw_fifo_txdl_free()) the descriptor again can
1626 * be:
1628 * - reserved (vxge_hw_fifo_txdl_reserve);
1630 * - posted (vxge_hw_fifo_txdl_post);
1632 * - completed (vxge_hw_fifo_txdl_next_completed);
1634 * - and recycled again (vxge_hw_fifo_txdl_free).
1636 * For alternative state transitions and more details please refer to
1637 * the design doc.
1640 void vxge_hw_fifo_txdl_free(struct __vxge_hw_fifo *fifo, void *txdlh)
1642 struct __vxge_hw_fifo_txdl_priv *txdl_priv;
1643 u32 max_frags;
1644 struct __vxge_hw_channel *channel;
1646 channel = &fifo->channel;
1648 txdl_priv = __vxge_hw_fifo_txdl_priv(fifo,
1649 (struct vxge_hw_fifo_txd *)txdlh);
1651 max_frags = fifo->config->max_frags;
1653 vxge_hw_channel_dtr_free(channel, txdlh);
1657 * vxge_hw_vpath_mac_addr_add - Add the mac address entry for this vpath
1658 * to MAC address table.
1659 * @vp: Vpath handle.
1660 * @macaddr: MAC address to be added for this vpath into the list
1661 * @macaddr_mask: MAC address mask for macaddr
1662 * @duplicate_mode: Duplicate MAC address add mode. Please see
1663 * enum vxge_hw_vpath_mac_addr_add_mode{}
1665 * Adds the given mac address and mac address mask into the list for this
1666 * vpath.
1667 * see also: vxge_hw_vpath_mac_addr_delete, vxge_hw_vpath_mac_addr_get and
1668 * vxge_hw_vpath_mac_addr_get_next
1671 enum vxge_hw_status
1672 vxge_hw_vpath_mac_addr_add(
1673 struct __vxge_hw_vpath_handle *vp,
1674 u8 (macaddr)[ETH_ALEN],
1675 u8 (macaddr_mask)[ETH_ALEN],
1676 enum vxge_hw_vpath_mac_addr_add_mode duplicate_mode)
1678 u32 i;
1679 u64 data1 = 0ULL;
1680 u64 data2 = 0ULL;
1681 enum vxge_hw_status status = VXGE_HW_OK;
1683 if (vp == NULL) {
1684 status = VXGE_HW_ERR_INVALID_HANDLE;
1685 goto exit;
1688 for (i = 0; i < ETH_ALEN; i++) {
1689 data1 <<= 8;
1690 data1 |= (u8)macaddr[i];
1692 data2 <<= 8;
1693 data2 |= (u8)macaddr_mask[i];
1696 switch (duplicate_mode) {
1697 case VXGE_HW_VPATH_MAC_ADDR_ADD_DUPLICATE:
1698 i = 0;
1699 break;
1700 case VXGE_HW_VPATH_MAC_ADDR_DISCARD_DUPLICATE:
1701 i = 1;
1702 break;
1703 case VXGE_HW_VPATH_MAC_ADDR_REPLACE_DUPLICATE:
1704 i = 2;
1705 break;
1706 default:
1707 i = 0;
1708 break;
1711 status = __vxge_hw_vpath_rts_table_set(vp,
1712 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_ADD_ENTRY,
1713 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA,
1715 VXGE_HW_RTS_ACCESS_STEER_DATA0_DA_MAC_ADDR(data1),
1716 VXGE_HW_RTS_ACCESS_STEER_DATA1_DA_MAC_ADDR_MASK(data2)|
1717 VXGE_HW_RTS_ACCESS_STEER_DATA1_DA_MAC_ADDR_MODE(i));
1718 exit:
1719 return status;
1723 * vxge_hw_vpath_mac_addr_get - Get the first mac address entry for this vpath
1724 * from MAC address table.
1725 * @vp: Vpath handle.
1726 * @macaddr: First MAC address entry for this vpath in the list
1727 * @macaddr_mask: MAC address mask for macaddr
1729 * Returns the first mac address and mac address mask in the list for this
1730 * vpath.
1731 * see also: vxge_hw_vpath_mac_addr_get_next
1734 enum vxge_hw_status
1735 vxge_hw_vpath_mac_addr_get(
1736 struct __vxge_hw_vpath_handle *vp,
1737 u8 (macaddr)[ETH_ALEN],
1738 u8 (macaddr_mask)[ETH_ALEN])
1740 u32 i;
1741 u64 data1 = 0ULL;
1742 u64 data2 = 0ULL;
1743 enum vxge_hw_status status = VXGE_HW_OK;
1745 if (vp == NULL) {
1746 status = VXGE_HW_ERR_INVALID_HANDLE;
1747 goto exit;
1750 status = __vxge_hw_vpath_rts_table_get(vp,
1751 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_LIST_FIRST_ENTRY,
1752 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA,
1753 0, &data1, &data2);
1755 if (status != VXGE_HW_OK)
1756 goto exit;
1758 data1 = VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_DA_MAC_ADDR(data1);
1760 data2 = VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_DA_MAC_ADDR_MASK(data2);
1762 for (i = ETH_ALEN; i > 0; i--) {
1763 macaddr[i-1] = (u8)(data1 & 0xFF);
1764 data1 >>= 8;
1766 macaddr_mask[i-1] = (u8)(data2 & 0xFF);
1767 data2 >>= 8;
1769 exit:
1770 return status;
1774 * vxge_hw_vpath_mac_addr_get_next - Get the next mac address entry for this
1775 * vpath
1776 * from MAC address table.
1777 * @vp: Vpath handle.
1778 * @macaddr: Next MAC address entry for this vpath in the list
1779 * @macaddr_mask: MAC address mask for macaddr
1781 * Returns the next mac address and mac address mask in the list for this
1782 * vpath.
1783 * see also: vxge_hw_vpath_mac_addr_get
1786 enum vxge_hw_status
1787 vxge_hw_vpath_mac_addr_get_next(
1788 struct __vxge_hw_vpath_handle *vp,
1789 u8 (macaddr)[ETH_ALEN],
1790 u8 (macaddr_mask)[ETH_ALEN])
1792 u32 i;
1793 u64 data1 = 0ULL;
1794 u64 data2 = 0ULL;
1795 enum vxge_hw_status status = VXGE_HW_OK;
1797 if (vp == NULL) {
1798 status = VXGE_HW_ERR_INVALID_HANDLE;
1799 goto exit;
1802 status = __vxge_hw_vpath_rts_table_get(vp,
1803 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_LIST_NEXT_ENTRY,
1804 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA,
1805 0, &data1, &data2);
1807 if (status != VXGE_HW_OK)
1808 goto exit;
1810 data1 = VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_DA_MAC_ADDR(data1);
1812 data2 = VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_DA_MAC_ADDR_MASK(data2);
1814 for (i = ETH_ALEN; i > 0; i--) {
1815 macaddr[i-1] = (u8)(data1 & 0xFF);
1816 data1 >>= 8;
1818 macaddr_mask[i-1] = (u8)(data2 & 0xFF);
1819 data2 >>= 8;
1822 exit:
1823 return status;
1827 * vxge_hw_vpath_mac_addr_delete - Delete the mac address entry for this vpath
1828 * to MAC address table.
1829 * @vp: Vpath handle.
1830 * @macaddr: MAC address to be added for this vpath into the list
1831 * @macaddr_mask: MAC address mask for macaddr
1833 * Delete the given mac address and mac address mask into the list for this
1834 * vpath.
1835 * see also: vxge_hw_vpath_mac_addr_add, vxge_hw_vpath_mac_addr_get and
1836 * vxge_hw_vpath_mac_addr_get_next
1839 enum vxge_hw_status
1840 vxge_hw_vpath_mac_addr_delete(
1841 struct __vxge_hw_vpath_handle *vp,
1842 u8 (macaddr)[ETH_ALEN],
1843 u8 (macaddr_mask)[ETH_ALEN])
1845 u32 i;
1846 u64 data1 = 0ULL;
1847 u64 data2 = 0ULL;
1848 enum vxge_hw_status status = VXGE_HW_OK;
1850 if (vp == NULL) {
1851 status = VXGE_HW_ERR_INVALID_HANDLE;
1852 goto exit;
1855 for (i = 0; i < ETH_ALEN; i++) {
1856 data1 <<= 8;
1857 data1 |= (u8)macaddr[i];
1859 data2 <<= 8;
1860 data2 |= (u8)macaddr_mask[i];
1863 status = __vxge_hw_vpath_rts_table_set(vp,
1864 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_DELETE_ENTRY,
1865 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA,
1867 VXGE_HW_RTS_ACCESS_STEER_DATA0_DA_MAC_ADDR(data1),
1868 VXGE_HW_RTS_ACCESS_STEER_DATA1_DA_MAC_ADDR_MASK(data2));
1869 exit:
1870 return status;
1874 * vxge_hw_vpath_vid_add - Add the vlan id entry for this vpath
1875 * to vlan id table.
1876 * @vp: Vpath handle.
1877 * @vid: vlan id to be added for this vpath into the list
1879 * Adds the given vlan id into the list for this vpath.
1880 * see also: vxge_hw_vpath_vid_delete, vxge_hw_vpath_vid_get and
1881 * vxge_hw_vpath_vid_get_next
1884 enum vxge_hw_status
1885 vxge_hw_vpath_vid_add(struct __vxge_hw_vpath_handle *vp, u64 vid)
1887 enum vxge_hw_status status = VXGE_HW_OK;
1889 if (vp == NULL) {
1890 status = VXGE_HW_ERR_INVALID_HANDLE;
1891 goto exit;
1894 status = __vxge_hw_vpath_rts_table_set(vp,
1895 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_ADD_ENTRY,
1896 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_VID,
1897 0, VXGE_HW_RTS_ACCESS_STEER_DATA0_VLAN_ID(vid), 0);
1898 exit:
1899 return status;
1903 * vxge_hw_vpath_vid_get - Get the first vid entry for this vpath
1904 * from vlan id table.
1905 * @vp: Vpath handle.
1906 * @vid: Buffer to return vlan id
1908 * Returns the first vlan id in the list for this vpath.
1909 * see also: vxge_hw_vpath_vid_get_next
1912 enum vxge_hw_status
1913 vxge_hw_vpath_vid_get(struct __vxge_hw_vpath_handle *vp, u64 *vid)
1915 u64 data;
1916 enum vxge_hw_status status = VXGE_HW_OK;
1918 if (vp == NULL) {
1919 status = VXGE_HW_ERR_INVALID_HANDLE;
1920 goto exit;
1923 status = __vxge_hw_vpath_rts_table_get(vp,
1924 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_LIST_FIRST_ENTRY,
1925 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_VID,
1926 0, vid, &data);
1928 *vid = VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_VLAN_ID(*vid);
1929 exit:
1930 return status;
1934 * vxge_hw_vpath_vid_delete - Delete the vlan id entry for this vpath
1935 * to vlan id table.
1936 * @vp: Vpath handle.
1937 * @vid: vlan id to be added for this vpath into the list
1939 * Adds the given vlan id into the list for this vpath.
1940 * see also: vxge_hw_vpath_vid_add, vxge_hw_vpath_vid_get and
1941 * vxge_hw_vpath_vid_get_next
1944 enum vxge_hw_status
1945 vxge_hw_vpath_vid_delete(struct __vxge_hw_vpath_handle *vp, u64 vid)
1947 enum vxge_hw_status status = VXGE_HW_OK;
1949 if (vp == NULL) {
1950 status = VXGE_HW_ERR_INVALID_HANDLE;
1951 goto exit;
1954 status = __vxge_hw_vpath_rts_table_set(vp,
1955 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_DELETE_ENTRY,
1956 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_VID,
1957 0, VXGE_HW_RTS_ACCESS_STEER_DATA0_VLAN_ID(vid), 0);
1958 exit:
1959 return status;
1963 * vxge_hw_vpath_promisc_enable - Enable promiscuous mode.
1964 * @vp: Vpath handle.
1966 * Enable promiscuous mode of Titan-e operation.
1968 * See also: vxge_hw_vpath_promisc_disable().
1970 enum vxge_hw_status vxge_hw_vpath_promisc_enable(
1971 struct __vxge_hw_vpath_handle *vp)
1973 u64 val64;
1974 struct __vxge_hw_virtualpath *vpath;
1975 enum vxge_hw_status status = VXGE_HW_OK;
1977 if ((vp == NULL) || (vp->vpath->ringh == NULL)) {
1978 status = VXGE_HW_ERR_INVALID_HANDLE;
1979 goto exit;
1982 vpath = vp->vpath;
1984 /* Enable promiscous mode for function 0 only */
1985 if (!(vpath->hldev->access_rights &
1986 VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM))
1987 return VXGE_HW_OK;
1989 val64 = readq(&vpath->vp_reg->rxmac_vcfg0);
1991 if (!(val64 & VXGE_HW_RXMAC_VCFG0_UCAST_ALL_ADDR_EN)) {
1993 val64 |= VXGE_HW_RXMAC_VCFG0_UCAST_ALL_ADDR_EN |
1994 VXGE_HW_RXMAC_VCFG0_MCAST_ALL_ADDR_EN |
1995 VXGE_HW_RXMAC_VCFG0_BCAST_EN |
1996 VXGE_HW_RXMAC_VCFG0_ALL_VID_EN;
1998 writeq(val64, &vpath->vp_reg->rxmac_vcfg0);
2000 exit:
2001 return status;
2005 * vxge_hw_vpath_promisc_disable - Disable promiscuous mode.
2006 * @vp: Vpath handle.
2008 * Disable promiscuous mode of Titan-e operation.
2010 * See also: vxge_hw_vpath_promisc_enable().
2012 enum vxge_hw_status vxge_hw_vpath_promisc_disable(
2013 struct __vxge_hw_vpath_handle *vp)
2015 u64 val64;
2016 struct __vxge_hw_virtualpath *vpath;
2017 enum vxge_hw_status status = VXGE_HW_OK;
2019 if ((vp == NULL) || (vp->vpath->ringh == NULL)) {
2020 status = VXGE_HW_ERR_INVALID_HANDLE;
2021 goto exit;
2024 vpath = vp->vpath;
2026 val64 = readq(&vpath->vp_reg->rxmac_vcfg0);
2028 if (val64 & VXGE_HW_RXMAC_VCFG0_UCAST_ALL_ADDR_EN) {
2030 val64 &= ~(VXGE_HW_RXMAC_VCFG0_UCAST_ALL_ADDR_EN |
2031 VXGE_HW_RXMAC_VCFG0_MCAST_ALL_ADDR_EN |
2032 VXGE_HW_RXMAC_VCFG0_ALL_VID_EN);
2034 writeq(val64, &vpath->vp_reg->rxmac_vcfg0);
2036 exit:
2037 return status;
2041 * vxge_hw_vpath_bcast_enable - Enable broadcast
2042 * @vp: Vpath handle.
2044 * Enable receiving broadcasts.
2046 enum vxge_hw_status vxge_hw_vpath_bcast_enable(
2047 struct __vxge_hw_vpath_handle *vp)
2049 u64 val64;
2050 struct __vxge_hw_virtualpath *vpath;
2051 enum vxge_hw_status status = VXGE_HW_OK;
2053 if ((vp == NULL) || (vp->vpath->ringh == NULL)) {
2054 status = VXGE_HW_ERR_INVALID_HANDLE;
2055 goto exit;
2058 vpath = vp->vpath;
2060 val64 = readq(&vpath->vp_reg->rxmac_vcfg0);
2062 if (!(val64 & VXGE_HW_RXMAC_VCFG0_BCAST_EN)) {
2063 val64 |= VXGE_HW_RXMAC_VCFG0_BCAST_EN;
2064 writeq(val64, &vpath->vp_reg->rxmac_vcfg0);
2066 exit:
2067 return status;
2071 * vxge_hw_vpath_mcast_enable - Enable multicast addresses.
2072 * @vp: Vpath handle.
2074 * Enable Titan-e multicast addresses.
2075 * Returns: VXGE_HW_OK on success.
2078 enum vxge_hw_status vxge_hw_vpath_mcast_enable(
2079 struct __vxge_hw_vpath_handle *vp)
2081 u64 val64;
2082 struct __vxge_hw_virtualpath *vpath;
2083 enum vxge_hw_status status = VXGE_HW_OK;
2085 if ((vp == NULL) || (vp->vpath->ringh == NULL)) {
2086 status = VXGE_HW_ERR_INVALID_HANDLE;
2087 goto exit;
2090 vpath = vp->vpath;
2092 val64 = readq(&vpath->vp_reg->rxmac_vcfg0);
2094 if (!(val64 & VXGE_HW_RXMAC_VCFG0_MCAST_ALL_ADDR_EN)) {
2095 val64 |= VXGE_HW_RXMAC_VCFG0_MCAST_ALL_ADDR_EN;
2096 writeq(val64, &vpath->vp_reg->rxmac_vcfg0);
2098 exit:
2099 return status;
2103 * vxge_hw_vpath_mcast_disable - Disable multicast addresses.
2104 * @vp: Vpath handle.
2106 * Disable Titan-e multicast addresses.
2107 * Returns: VXGE_HW_OK - success.
2108 * VXGE_HW_ERR_INVALID_HANDLE - Invalid handle
2111 enum vxge_hw_status
2112 vxge_hw_vpath_mcast_disable(struct __vxge_hw_vpath_handle *vp)
2114 u64 val64;
2115 struct __vxge_hw_virtualpath *vpath;
2116 enum vxge_hw_status status = VXGE_HW_OK;
2118 if ((vp == NULL) || (vp->vpath->ringh == NULL)) {
2119 status = VXGE_HW_ERR_INVALID_HANDLE;
2120 goto exit;
2123 vpath = vp->vpath;
2125 val64 = readq(&vpath->vp_reg->rxmac_vcfg0);
2127 if (val64 & VXGE_HW_RXMAC_VCFG0_MCAST_ALL_ADDR_EN) {
2128 val64 &= ~VXGE_HW_RXMAC_VCFG0_MCAST_ALL_ADDR_EN;
2129 writeq(val64, &vpath->vp_reg->rxmac_vcfg0);
2131 exit:
2132 return status;
2136 * vxge_hw_vpath_alarm_process - Process Alarms.
2137 * @vpath: Virtual Path.
2138 * @skip_alarms: Do not clear the alarms
2140 * Process vpath alarms.
2143 enum vxge_hw_status vxge_hw_vpath_alarm_process(
2144 struct __vxge_hw_vpath_handle *vp,
2145 u32 skip_alarms)
2147 enum vxge_hw_status status = VXGE_HW_OK;
2149 if (vp == NULL) {
2150 status = VXGE_HW_ERR_INVALID_HANDLE;
2151 goto exit;
2154 status = __vxge_hw_vpath_alarm_process(vp->vpath, skip_alarms);
2155 exit:
2156 return status;
2160 * vxge_hw_vpath_msix_set - Associate MSIX vectors with TIM interrupts and
2161 * alrms
2162 * @vp: Virtual Path handle.
2163 * @tim_msix_id: MSIX vectors associated with VXGE_HW_MAX_INTR_PER_VP number of
2164 * interrupts(Can be repeated). If fifo or ring are not enabled
2165 * the MSIX vector for that should be set to 0
2166 * @alarm_msix_id: MSIX vector for alarm.
2168 * This API will associate a given MSIX vector numbers with the four TIM
2169 * interrupts and alarm interrupt.
2171 void
2172 vxge_hw_vpath_msix_set(struct __vxge_hw_vpath_handle *vp, int *tim_msix_id,
2173 int alarm_msix_id)
2175 u64 val64;
2176 struct __vxge_hw_virtualpath *vpath = vp->vpath;
2177 struct vxge_hw_vpath_reg __iomem *vp_reg = vpath->vp_reg;
2178 u32 vp_id = vp->vpath->vp_id;
2180 val64 = VXGE_HW_INTERRUPT_CFG0_GROUP0_MSIX_FOR_TXTI(
2181 (vp_id * 4) + tim_msix_id[0]) |
2182 VXGE_HW_INTERRUPT_CFG0_GROUP1_MSIX_FOR_TXTI(
2183 (vp_id * 4) + tim_msix_id[1]);
2185 writeq(val64, &vp_reg->interrupt_cfg0);
2187 writeq(VXGE_HW_INTERRUPT_CFG2_ALARM_MAP_TO_MSG(
2188 (vpath->hldev->first_vp_id * 4) + alarm_msix_id),
2189 &vp_reg->interrupt_cfg2);
2191 if (vpath->hldev->config.intr_mode ==
2192 VXGE_HW_INTR_MODE_MSIX_ONE_SHOT) {
2193 __vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(
2194 VXGE_HW_ONE_SHOT_VECT1_EN_ONE_SHOT_VECT1_EN,
2195 0, 32), &vp_reg->one_shot_vect1_en);
2198 if (vpath->hldev->config.intr_mode ==
2199 VXGE_HW_INTR_MODE_MSIX_ONE_SHOT) {
2200 __vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(
2201 VXGE_HW_ONE_SHOT_VECT2_EN_ONE_SHOT_VECT2_EN,
2202 0, 32), &vp_reg->one_shot_vect2_en);
2204 __vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(
2205 VXGE_HW_ONE_SHOT_VECT3_EN_ONE_SHOT_VECT3_EN,
2206 0, 32), &vp_reg->one_shot_vect3_en);
2211 * vxge_hw_vpath_msix_mask - Mask MSIX Vector.
2212 * @vp: Virtual Path handle.
2213 * @msix_id: MSIX ID
2215 * The function masks the msix interrupt for the given msix_id
2217 * Returns: 0,
2218 * Otherwise, VXGE_HW_ERR_WRONG_IRQ if the msix index is out of range
2219 * status.
2220 * See also:
2222 void
2223 vxge_hw_vpath_msix_mask(struct __vxge_hw_vpath_handle *vp, int msix_id)
2225 struct __vxge_hw_device *hldev = vp->vpath->hldev;
2226 __vxge_hw_pio_mem_write32_upper(
2227 (u32) vxge_bVALn(vxge_mBIT(msix_id >> 2), 0, 32),
2228 &hldev->common_reg->set_msix_mask_vect[msix_id % 4]);
2232 * vxge_hw_vpath_msix_unmask - Unmask the MSIX Vector.
2233 * @vp: Virtual Path handle.
2234 * @msix_id: MSI ID
2236 * The function unmasks the msix interrupt for the given msix_id
2238 * Returns: 0,
2239 * Otherwise, VXGE_HW_ERR_WRONG_IRQ if the msix index is out of range
2240 * status.
2241 * See also:
2243 void
2244 vxge_hw_vpath_msix_unmask(struct __vxge_hw_vpath_handle *vp, int msix_id)
2246 struct __vxge_hw_device *hldev = vp->vpath->hldev;
2247 __vxge_hw_pio_mem_write32_upper(
2248 (u32)vxge_bVALn(vxge_mBIT(msix_id >> 2), 0, 32),
2249 &hldev->common_reg->clear_msix_mask_vect[msix_id%4]);
2253 * vxge_hw_vpath_inta_mask_tx_rx - Mask Tx and Rx interrupts.
2254 * @vp: Virtual Path handle.
2256 * Mask Tx and Rx vpath interrupts.
2258 * See also: vxge_hw_vpath_inta_mask_tx_rx()
2260 void vxge_hw_vpath_inta_mask_tx_rx(struct __vxge_hw_vpath_handle *vp)
2262 u64 tim_int_mask0[4] = {[0 ...3] = 0};
2263 u32 tim_int_mask1[4] = {[0 ...3] = 0};
2264 u64 val64;
2265 struct __vxge_hw_device *hldev = vp->vpath->hldev;
2267 VXGE_HW_DEVICE_TIM_INT_MASK_SET(tim_int_mask0,
2268 tim_int_mask1, vp->vpath->vp_id);
2270 val64 = readq(&hldev->common_reg->tim_int_mask0);
2272 if ((tim_int_mask0[VXGE_HW_VPATH_INTR_TX] != 0) ||
2273 (tim_int_mask0[VXGE_HW_VPATH_INTR_RX] != 0)) {
2274 writeq((tim_int_mask0[VXGE_HW_VPATH_INTR_TX] |
2275 tim_int_mask0[VXGE_HW_VPATH_INTR_RX] | val64),
2276 &hldev->common_reg->tim_int_mask0);
2279 val64 = readl(&hldev->common_reg->tim_int_mask1);
2281 if ((tim_int_mask1[VXGE_HW_VPATH_INTR_TX] != 0) ||
2282 (tim_int_mask1[VXGE_HW_VPATH_INTR_RX] != 0)) {
2283 __vxge_hw_pio_mem_write32_upper(
2284 (tim_int_mask1[VXGE_HW_VPATH_INTR_TX] |
2285 tim_int_mask1[VXGE_HW_VPATH_INTR_RX] | val64),
2286 &hldev->common_reg->tim_int_mask1);
2291 * vxge_hw_vpath_inta_unmask_tx_rx - Unmask Tx and Rx interrupts.
2292 * @vp: Virtual Path handle.
2294 * Unmask Tx and Rx vpath interrupts.
2296 * See also: vxge_hw_vpath_inta_mask_tx_rx()
2298 void vxge_hw_vpath_inta_unmask_tx_rx(struct __vxge_hw_vpath_handle *vp)
2300 u64 tim_int_mask0[4] = {[0 ...3] = 0};
2301 u32 tim_int_mask1[4] = {[0 ...3] = 0};
2302 u64 val64;
2303 struct __vxge_hw_device *hldev = vp->vpath->hldev;
2305 VXGE_HW_DEVICE_TIM_INT_MASK_SET(tim_int_mask0,
2306 tim_int_mask1, vp->vpath->vp_id);
2308 val64 = readq(&hldev->common_reg->tim_int_mask0);
2310 if ((tim_int_mask0[VXGE_HW_VPATH_INTR_TX] != 0) ||
2311 (tim_int_mask0[VXGE_HW_VPATH_INTR_RX] != 0)) {
2312 writeq((~(tim_int_mask0[VXGE_HW_VPATH_INTR_TX] |
2313 tim_int_mask0[VXGE_HW_VPATH_INTR_RX])) & val64,
2314 &hldev->common_reg->tim_int_mask0);
2317 if ((tim_int_mask1[VXGE_HW_VPATH_INTR_TX] != 0) ||
2318 (tim_int_mask1[VXGE_HW_VPATH_INTR_RX] != 0)) {
2319 __vxge_hw_pio_mem_write32_upper(
2320 (~(tim_int_mask1[VXGE_HW_VPATH_INTR_TX] |
2321 tim_int_mask1[VXGE_HW_VPATH_INTR_RX])) & val64,
2322 &hldev->common_reg->tim_int_mask1);
2327 * vxge_hw_vpath_poll_rx - Poll Rx Virtual Path for completed
2328 * descriptors and process the same.
2329 * @ring: Handle to the ring object used for receive
2331 * The function polls the Rx for the completed descriptors and calls
2332 * the driver via supplied completion callback.
2334 * Returns: VXGE_HW_OK, if the polling is completed successful.
2335 * VXGE_HW_COMPLETIONS_REMAIN: There are still more completed
2336 * descriptors available which are yet to be processed.
2338 * See also: vxge_hw_vpath_poll_rx()
2340 enum vxge_hw_status vxge_hw_vpath_poll_rx(struct __vxge_hw_ring *ring)
2342 u8 t_code;
2343 enum vxge_hw_status status = VXGE_HW_OK;
2344 void *first_rxdh;
2345 u64 val64 = 0;
2346 int new_count = 0;
2348 ring->cmpl_cnt = 0;
2350 status = vxge_hw_ring_rxd_next_completed(ring, &first_rxdh, &t_code);
2351 if (status == VXGE_HW_OK)
2352 ring->callback(ring, first_rxdh,
2353 t_code, ring->channel.userdata);
2355 if (ring->cmpl_cnt != 0) {
2356 ring->doorbell_cnt += ring->cmpl_cnt;
2357 if (ring->doorbell_cnt >= ring->rxds_limit) {
2359 * Each RxD is of 4 qwords, update the number of
2360 * qwords replenished
2362 new_count = (ring->doorbell_cnt * 4);
2364 /* For each block add 4 more qwords */
2365 ring->total_db_cnt += ring->doorbell_cnt;
2366 if (ring->total_db_cnt >= ring->rxds_per_block) {
2367 new_count += 4;
2368 /* Reset total count */
2369 ring->total_db_cnt %= ring->rxds_per_block;
2371 writeq(VXGE_HW_PRC_RXD_DOORBELL_NEW_QW_CNT(new_count),
2372 &ring->vp_reg->prc_rxd_doorbell);
2373 val64 =
2374 readl(&ring->common_reg->titan_general_int_status);
2375 ring->doorbell_cnt = 0;
2379 return status;
2383 * vxge_hw_vpath_poll_tx - Poll Tx for completed descriptors and process
2384 * the same.
2385 * @fifo: Handle to the fifo object used for non offload send
2387 * The function polls the Tx for the completed descriptors and calls
2388 * the driver via supplied completion callback.
2390 * Returns: VXGE_HW_OK, if the polling is completed successful.
2391 * VXGE_HW_COMPLETIONS_REMAIN: There are still more completed
2392 * descriptors available which are yet to be processed.
2394 enum vxge_hw_status vxge_hw_vpath_poll_tx(struct __vxge_hw_fifo *fifo,
2395 struct sk_buff ***skb_ptr, int nr_skb,
2396 int *more)
2398 enum vxge_hw_fifo_tcode t_code;
2399 void *first_txdlh;
2400 enum vxge_hw_status status = VXGE_HW_OK;
2401 struct __vxge_hw_channel *channel;
2403 channel = &fifo->channel;
2405 status = vxge_hw_fifo_txdl_next_completed(fifo,
2406 &first_txdlh, &t_code);
2407 if (status == VXGE_HW_OK)
2408 if (fifo->callback(fifo, first_txdlh, t_code,
2409 channel->userdata, skb_ptr, nr_skb, more) != VXGE_HW_OK)
2410 status = VXGE_HW_COMPLETIONS_REMAIN;
2412 return status;