2 * This program is free software; you can redistribute it and/or
3 * modify it under the terms of the GNU General Public License
4 * as published by the Free Software Foundation; either version
5 * 2 of the License, or (at your option) any later version.
7 * (c) Copyright 1998 Alan Cox <alan@lxorguk.ukuu.org.uk>
8 * (c) Copyright 2000, 2001 Red Hat Inc
10 * Development of this driver was funded by Equiinet Ltd
11 * http://www.equiinet.com
15 * Asynchronous mode dropped for 2.2. For 2.5 we will attempt the
16 * unification of all the Z85x30 asynchronous drivers for real.
18 * DMA now uses get_free_page as kmalloc buffers may span a 64K
21 * Modified for SMP safety and SMP locking by Alan Cox
22 * <alan@lxorguk.ukuu.org.uk>
27 * Non DMA you want a 486DX50 or better to do 64Kbits. 9600 baud
28 * X.25 is not unrealistic on all machines. DMA mode can in theory
29 * handle T1/E1 quite nicely. In practice the limit seems to be about
30 * 512Kbit->1Mbit depending on motherboard.
33 * 64K will take DMA, 9600 baud X.25 should be ok.
36 * Synchronous mode without DMA is unlikely to pass about 2400 baud.
39 #include <linux/module.h>
40 #include <linux/kernel.h>
42 #include <linux/net.h>
43 #include <linux/skbuff.h>
44 #include <linux/netdevice.h>
45 #include <linux/if_arp.h>
46 #include <linux/delay.h>
47 #include <linux/hdlc.h>
48 #include <linux/ioport.h>
49 #include <linux/init.h>
50 #include <linux/gfp.h>
55 #include <linux/spinlock.h>
61 * z8530_read_port - Architecture specific interface function
64 * Provided port access methods. The Comtrol SV11 requires no delays
65 * between accesses and uses PC I/O. Some drivers may need a 5uS delay
67 * In the longer term this should become an architecture specific
68 * section so that this can become a generic driver interface for all
69 * platforms. For now we only handle PC I/O ports with or without the
70 * dread 5uS sanity delay.
72 * The caller must hold sufficient locks to avoid violating the horrible
76 static inline int z8530_read_port(unsigned long p
)
78 u8 r
=inb(Z8530_PORT_OF(p
));
79 if(p
&Z8530_PORT_SLEEP
) /* gcc should figure this out efficiently ! */
85 * z8530_write_port - Architecture specific interface function
89 * Write a value to a port with delays if need be. Note that the
90 * caller must hold locks to avoid read/writes from other contexts
91 * violating the 5uS rule
93 * In the longer term this should become an architecture specific
94 * section so that this can become a generic driver interface for all
95 * platforms. For now we only handle PC I/O ports with or without the
96 * dread 5uS sanity delay.
100 static inline void z8530_write_port(unsigned long p
, u8 d
)
102 outb(d
,Z8530_PORT_OF(p
));
103 if(p
&Z8530_PORT_SLEEP
)
109 static void z8530_rx_done(struct z8530_channel
*c
);
110 static void z8530_tx_done(struct z8530_channel
*c
);
114 * read_zsreg - Read a register from a Z85230
115 * @c: Z8530 channel to read from (2 per chip)
116 * @reg: Register to read
117 * FIXME: Use a spinlock.
119 * Most of the Z8530 registers are indexed off the control registers.
120 * A read is done by writing to the control register and reading the
121 * register back. The caller must hold the lock
124 static inline u8
read_zsreg(struct z8530_channel
*c
, u8 reg
)
127 z8530_write_port(c
->ctrlio
, reg
);
128 return z8530_read_port(c
->ctrlio
);
132 * read_zsdata - Read the data port of a Z8530 channel
133 * @c: The Z8530 channel to read the data port from
135 * The data port provides fast access to some things. We still
136 * have all the 5uS delays to worry about.
139 static inline u8
read_zsdata(struct z8530_channel
*c
)
142 r
=z8530_read_port(c
->dataio
);
147 * write_zsreg - Write to a Z8530 channel register
148 * @c: The Z8530 channel
149 * @reg: Register number
150 * @val: Value to write
152 * Write a value to an indexed register. The caller must hold the lock
153 * to honour the irritating delay rules. We know about register 0
154 * being fast to access.
156 * Assumes c->lock is held.
158 static inline void write_zsreg(struct z8530_channel
*c
, u8 reg
, u8 val
)
161 z8530_write_port(c
->ctrlio
, reg
);
162 z8530_write_port(c
->ctrlio
, val
);
167 * write_zsctrl - Write to a Z8530 control register
168 * @c: The Z8530 channel
169 * @val: Value to write
171 * Write directly to the control register on the Z8530
174 static inline void write_zsctrl(struct z8530_channel
*c
, u8 val
)
176 z8530_write_port(c
->ctrlio
, val
);
180 * write_zsdata - Write to a Z8530 control register
181 * @c: The Z8530 channel
182 * @val: Value to write
184 * Write directly to the data register on the Z8530
188 static inline void write_zsdata(struct z8530_channel
*c
, u8 val
)
190 z8530_write_port(c
->dataio
, val
);
194 * Register loading parameters for a dead port
197 u8 z8530_dead_port
[]=
202 EXPORT_SYMBOL(z8530_dead_port
);
205 * Register loading parameters for currently supported circuit types
210 * Data clocked by telco end. This is the correct data for the UK
211 * "kilostream" service, and most other similar services.
214 u8 z8530_hdlc_kilostream
[]=
216 4, SYNC_ENAB
|SDLC
|X1CLK
,
217 2, 0, /* No vector */
219 3, ENT_HM
|RxCRC_ENAB
|Rx8
,
220 5, TxCRC_ENAB
|RTS
|TxENAB
|Tx8
|DTR
,
221 9, 0, /* Disable interrupts */
224 10, ABUNDER
|NRZ
|CRCPS
,/*MARKIDLE ??*/
227 15, DCDIE
|SYNCIE
|CTSIE
|TxUIE
|BRKIE
,
228 1, EXT_INT_ENAB
|TxINT_ENAB
|INT_ALL_Rx
,
233 EXPORT_SYMBOL(z8530_hdlc_kilostream
);
236 * As above but for enhanced chips.
239 u8 z8530_hdlc_kilostream_85230
[]=
241 4, SYNC_ENAB
|SDLC
|X1CLK
,
242 2, 0, /* No vector */
244 3, ENT_HM
|RxCRC_ENAB
|Rx8
,
245 5, TxCRC_ENAB
|RTS
|TxENAB
|Tx8
|DTR
,
246 9, 0, /* Disable interrupts */
249 10, ABUNDER
|NRZ
|CRCPS
, /* MARKIDLE?? */
252 15, DCDIE
|SYNCIE
|CTSIE
|TxUIE
|BRKIE
,
253 1, EXT_INT_ENAB
|TxINT_ENAB
|INT_ALL_Rx
,
255 23, 3, /* Extended mode AUTO TX and EOM*/
260 EXPORT_SYMBOL(z8530_hdlc_kilostream_85230
);
263 * z8530_flush_fifo - Flush on chip RX FIFO
264 * @c: Channel to flush
266 * Flush the receive FIFO. There is no specific option for this, we
267 * blindly read bytes and discard them. Reading when there is no data
268 * is harmless. The 8530 has a 4 byte FIFO, the 85230 has 8 bytes.
270 * All locking is handled for the caller. On return data may still be
271 * present if it arrived during the flush.
274 static void z8530_flush_fifo(struct z8530_channel
*c
)
280 if(c
->dev
->type
==Z85230
)
290 * z8530_rtsdtr - Control the outgoing DTS/RTS line
291 * @c: The Z8530 channel to control;
292 * @set: 1 to set, 0 to clear
294 * Sets or clears DTR/RTS on the requested line. All locking is handled
295 * by the caller. For now we assume all boards use the actual RTS/DTR
296 * on the chip. Apparently one or two don't. We'll scream about them
300 static void z8530_rtsdtr(struct z8530_channel
*c
, int set
)
303 c
->regs
[5] |= (RTS
| DTR
);
305 c
->regs
[5] &= ~(RTS
| DTR
);
306 write_zsreg(c
, R5
, c
->regs
[5]);
310 * z8530_rx - Handle a PIO receive event
311 * @c: Z8530 channel to process
313 * Receive handler for receiving in PIO mode. This is much like the
314 * async one but not quite the same or as complex
316 * Note: Its intended that this handler can easily be separated from
317 * the main code to run realtime. That'll be needed for some machines
318 * (eg to ever clock 64kbits on a sparc ;)).
320 * The RT_LOCK macros don't do anything now. Keep the code covered
321 * by them as short as possible in all circumstances - clocks cost
322 * baud. The interrupt handler is assumed to be atomic w.r.t. to
323 * other code - this is true in the RT case too.
325 * We only cover the sync cases for this. If you want 2Mbit async
326 * do it yourself but consider medical assistance first. This non DMA
327 * synchronous mode is portable code. The DMA mode assumes PCI like
330 * Called with the device lock held
333 static void z8530_rx(struct z8530_channel
*c
)
340 if(!(read_zsreg(c
, R0
)&1))
343 stat
=read_zsreg(c
, R1
);
348 if(c
->count
< c
->max
)
360 if(stat
&(Rx_OVR
|CRC_ERR
))
362 /* Rewind the buffer and return */
364 c
->dptr
=c
->skb
->data
;
368 printk(KERN_WARNING
"%s: overrun\n", c
->dev
->name
);
374 /* printk("crc error\n"); */
376 /* Shove the frame upstream */
381 * Drop the lock for RX processing, or
382 * there are deadlocks
385 write_zsctrl(c
, RES_Rx_CRC
);
392 write_zsctrl(c
, ERR_RES
);
393 write_zsctrl(c
, RES_H_IUS
);
398 * z8530_tx - Handle a PIO transmit event
399 * @c: Z8530 channel to process
401 * Z8530 transmit interrupt handler for the PIO mode. The basic
402 * idea is to attempt to keep the FIFO fed. We fill as many bytes
403 * in as possible, its quite possible that we won't keep up with the
404 * data rate otherwise.
407 static void z8530_tx(struct z8530_channel
*c
)
411 if(!(read_zsreg(c
, R0
)&4))
415 * Shovel out the byte
417 write_zsreg(c
, R8
, *c
->tx_ptr
++);
418 write_zsctrl(c
, RES_H_IUS
);
419 /* We are about to underflow */
422 write_zsctrl(c
, RES_EOM_L
);
423 write_zsreg(c
, R10
, c
->regs
[10]&~ABUNDER
);
429 * End of frame TX - fire another one
432 write_zsctrl(c
, RES_Tx_P
);
435 write_zsctrl(c
, RES_H_IUS
);
439 * z8530_status - Handle a PIO status exception
440 * @chan: Z8530 channel to process
442 * A status event occurred in PIO synchronous mode. There are several
443 * reasons the chip will bother us here. A transmit underrun means we
444 * failed to feed the chip fast enough and just broke a packet. A DCD
445 * change is a line up or down.
448 static void z8530_status(struct z8530_channel
*chan
)
452 status
= read_zsreg(chan
, R0
);
453 altered
= chan
->status
^ status
;
455 chan
->status
= status
;
457 if (status
& TxEOM
) {
458 /* printk("%s: Tx underrun.\n", chan->dev->name); */
459 chan
->netdevice
->stats
.tx_fifo_errors
++;
460 write_zsctrl(chan
, ERR_RES
);
464 if (altered
& chan
->dcdcheck
)
466 if (status
& chan
->dcdcheck
) {
467 printk(KERN_INFO
"%s: DCD raised\n", chan
->dev
->name
);
468 write_zsreg(chan
, R3
, chan
->regs
[3] | RxENABLE
);
470 netif_carrier_on(chan
->netdevice
);
472 printk(KERN_INFO
"%s: DCD lost\n", chan
->dev
->name
);
473 write_zsreg(chan
, R3
, chan
->regs
[3] & ~RxENABLE
);
474 z8530_flush_fifo(chan
);
476 netif_carrier_off(chan
->netdevice
);
480 write_zsctrl(chan
, RES_EXT_INT
);
481 write_zsctrl(chan
, RES_H_IUS
);
484 struct z8530_irqhandler z8530_sync
=
491 EXPORT_SYMBOL(z8530_sync
);
494 * z8530_dma_rx - Handle a DMA RX event
495 * @chan: Channel to handle
497 * Non bus mastering DMA interfaces for the Z8x30 devices. This
498 * is really pretty PC specific. The DMA mode means that most receive
499 * events are handled by the DMA hardware. We get a kick here only if
503 static void z8530_dma_rx(struct z8530_channel
*chan
)
507 /* Special condition check only */
510 read_zsreg(chan
, R7
);
511 read_zsreg(chan
, R6
);
513 status
=read_zsreg(chan
, R1
);
517 z8530_rx_done(chan
); /* Fire up the next one */
519 write_zsctrl(chan
, ERR_RES
);
520 write_zsctrl(chan
, RES_H_IUS
);
524 /* DMA is off right now, drain the slow way */
530 * z8530_dma_tx - Handle a DMA TX event
531 * @chan: The Z8530 channel to handle
533 * We have received an interrupt while doing DMA transmissions. It
534 * shouldn't happen. Scream loudly if it does.
537 static void z8530_dma_tx(struct z8530_channel
*chan
)
541 printk(KERN_WARNING
"Hey who turned the DMA off?\n");
545 /* This shouldnt occur in DMA mode */
546 printk(KERN_ERR
"DMA tx - bogus event!\n");
551 * z8530_dma_status - Handle a DMA status exception
552 * @chan: Z8530 channel to process
554 * A status event occurred on the Z8530. We receive these for two reasons
555 * when in DMA mode. Firstly if we finished a packet transfer we get one
556 * and kick the next packet out. Secondly we may see a DCD change.
560 static void z8530_dma_status(struct z8530_channel
*chan
)
564 status
=read_zsreg(chan
, R0
);
565 altered
=chan
->status
^status
;
576 flags
=claim_dma_lock();
577 disable_dma(chan
->txdma
);
578 clear_dma_ff(chan
->txdma
);
580 release_dma_lock(flags
);
585 if (altered
& chan
->dcdcheck
)
587 if (status
& chan
->dcdcheck
) {
588 printk(KERN_INFO
"%s: DCD raised\n", chan
->dev
->name
);
589 write_zsreg(chan
, R3
, chan
->regs
[3] | RxENABLE
);
591 netif_carrier_on(chan
->netdevice
);
593 printk(KERN_INFO
"%s:DCD lost\n", chan
->dev
->name
);
594 write_zsreg(chan
, R3
, chan
->regs
[3] & ~RxENABLE
);
595 z8530_flush_fifo(chan
);
597 netif_carrier_off(chan
->netdevice
);
601 write_zsctrl(chan
, RES_EXT_INT
);
602 write_zsctrl(chan
, RES_H_IUS
);
605 static struct z8530_irqhandler z8530_dma_sync
= {
611 static struct z8530_irqhandler z8530_txdma_sync
= {
618 * z8530_rx_clear - Handle RX events from a stopped chip
619 * @c: Z8530 channel to shut up
621 * Receive interrupt vectors for a Z8530 that is in 'parked' mode.
622 * For machines with PCI Z85x30 cards, or level triggered interrupts
623 * (eg the MacII) we must clear the interrupt cause or die.
627 static void z8530_rx_clear(struct z8530_channel
*c
)
630 * Data and status bytes
635 stat
=read_zsreg(c
, R1
);
638 write_zsctrl(c
, RES_Rx_CRC
);
642 write_zsctrl(c
, ERR_RES
);
643 write_zsctrl(c
, RES_H_IUS
);
647 * z8530_tx_clear - Handle TX events from a stopped chip
648 * @c: Z8530 channel to shut up
650 * Transmit interrupt vectors for a Z8530 that is in 'parked' mode.
651 * For machines with PCI Z85x30 cards, or level triggered interrupts
652 * (eg the MacII) we must clear the interrupt cause or die.
655 static void z8530_tx_clear(struct z8530_channel
*c
)
657 write_zsctrl(c
, RES_Tx_P
);
658 write_zsctrl(c
, RES_H_IUS
);
662 * z8530_status_clear - Handle status events from a stopped chip
663 * @chan: Z8530 channel to shut up
665 * Status interrupt vectors for a Z8530 that is in 'parked' mode.
666 * For machines with PCI Z85x30 cards, or level triggered interrupts
667 * (eg the MacII) we must clear the interrupt cause or die.
670 static void z8530_status_clear(struct z8530_channel
*chan
)
672 u8 status
=read_zsreg(chan
, R0
);
674 write_zsctrl(chan
, ERR_RES
);
675 write_zsctrl(chan
, RES_EXT_INT
);
676 write_zsctrl(chan
, RES_H_IUS
);
679 struct z8530_irqhandler z8530_nop
=
687 EXPORT_SYMBOL(z8530_nop
);
690 * z8530_interrupt - Handle an interrupt from a Z8530
691 * @irq: Interrupt number
692 * @dev_id: The Z8530 device that is interrupting.
694 * A Z85[2]30 device has stuck its hand in the air for attention.
695 * We scan both the channels on the chip for events and then call
696 * the channel specific call backs for each channel that has events.
697 * We have to use callback functions because the two channels can be
698 * in different modes.
700 * Locking is done for the handlers. Note that locking is done
701 * at the chip level (the 5uS delay issue is per chip not per
702 * channel). c->lock for both channels points to dev->lock
705 irqreturn_t
z8530_interrupt(int irq
, void *dev_id
)
707 struct z8530_dev
*dev
=dev_id
;
708 u8
uninitialized_var(intr
);
709 static volatile int locker
=0;
711 struct z8530_irqhandler
*irqs
;
715 printk(KERN_ERR
"IRQ re-enter\n");
720 spin_lock(&dev
->lock
);
725 intr
= read_zsreg(&dev
->chanA
, R3
);
726 if(!(intr
& (CHARxIP
|CHATxIP
|CHAEXT
|CHBRxIP
|CHBTxIP
|CHBEXT
)))
729 /* This holds the IRQ status. On the 8530 you must read it from chan
730 A even though it applies to the whole chip */
732 /* Now walk the chip and see what it is wanting - it may be
733 an IRQ for someone else remember */
735 irqs
=dev
->chanA
.irqs
;
737 if(intr
& (CHARxIP
|CHATxIP
|CHAEXT
))
740 irqs
->rx(&dev
->chanA
);
742 irqs
->tx(&dev
->chanA
);
744 irqs
->status(&dev
->chanA
);
747 irqs
=dev
->chanB
.irqs
;
749 if(intr
& (CHBRxIP
|CHBTxIP
|CHBEXT
))
752 irqs
->rx(&dev
->chanB
);
754 irqs
->tx(&dev
->chanB
);
756 irqs
->status(&dev
->chanB
);
759 spin_unlock(&dev
->lock
);
761 printk(KERN_ERR
"%s: interrupt jammed - abort(0x%X)!\n", dev
->name
, intr
);
767 EXPORT_SYMBOL(z8530_interrupt
);
769 static const u8 reg_init
[16]=
779 * z8530_sync_open - Open a Z8530 channel for PIO
780 * @dev: The network interface we are using
781 * @c: The Z8530 channel to open in synchronous PIO mode
783 * Switch a Z8530 into synchronous mode without DMA assist. We
784 * raise the RTS/DTR and commence network operation.
787 int z8530_sync_open(struct net_device
*dev
, struct z8530_channel
*c
)
791 spin_lock_irqsave(c
->lock
, flags
);
794 c
->mtu
= dev
->mtu
+64;
798 c
->irqs
= &z8530_sync
;
800 /* This loads the double buffer up */
801 z8530_rx_done(c
); /* Load the frame ring */
802 z8530_rx_done(c
); /* Load the backup frame */
805 c
->regs
[R1
]|=TxINT_ENAB
;
806 write_zsreg(c
, R1
, c
->regs
[R1
]);
807 write_zsreg(c
, R3
, c
->regs
[R3
]|RxENABLE
);
809 spin_unlock_irqrestore(c
->lock
, flags
);
814 EXPORT_SYMBOL(z8530_sync_open
);
817 * z8530_sync_close - Close a PIO Z8530 channel
818 * @dev: Network device to close
819 * @c: Z8530 channel to disassociate and move to idle
821 * Close down a Z8530 interface and switch its interrupt handlers
822 * to discard future events.
825 int z8530_sync_close(struct net_device
*dev
, struct z8530_channel
*c
)
830 spin_lock_irqsave(c
->lock
, flags
);
831 c
->irqs
= &z8530_nop
;
835 chk
=read_zsreg(c
,R0
);
836 write_zsreg(c
, R3
, c
->regs
[R3
]);
839 spin_unlock_irqrestore(c
->lock
, flags
);
843 EXPORT_SYMBOL(z8530_sync_close
);
846 * z8530_sync_dma_open - Open a Z8530 for DMA I/O
847 * @dev: The network device to attach
848 * @c: The Z8530 channel to configure in sync DMA mode.
850 * Set up a Z85x30 device for synchronous DMA in both directions. Two
851 * ISA DMA channels must be available for this to work. We assume ISA
852 * DMA driven I/O and PC limits on access.
855 int z8530_sync_dma_open(struct net_device
*dev
, struct z8530_channel
*c
)
857 unsigned long cflags
, dflags
;
860 c
->mtu
= dev
->mtu
+64;
865 * Load the DMA interfaces up
871 * Allocate the DMA flip buffers. Limit by page size.
872 * Everyone runs 1500 mtu or less on wan links so this
876 if(c
->mtu
> PAGE_SIZE
/2)
879 c
->rx_buf
[0]=(void *)get_zeroed_page(GFP_KERNEL
|GFP_DMA
);
880 if(c
->rx_buf
[0]==NULL
)
882 c
->rx_buf
[1]=c
->rx_buf
[0]+PAGE_SIZE
/2;
884 c
->tx_dma_buf
[0]=(void *)get_zeroed_page(GFP_KERNEL
|GFP_DMA
);
885 if(c
->tx_dma_buf
[0]==NULL
)
887 free_page((unsigned long)c
->rx_buf
[0]);
891 c
->tx_dma_buf
[1]=c
->tx_dma_buf
[0]+PAGE_SIZE
/2;
899 * Enable DMA control mode
902 spin_lock_irqsave(c
->lock
, cflags
);
908 c
->regs
[R14
]|= DTRREQ
;
909 write_zsreg(c
, R14
, c
->regs
[R14
]);
911 c
->regs
[R1
]&= ~TxINT_ENAB
;
912 write_zsreg(c
, R1
, c
->regs
[R1
]);
918 c
->regs
[R1
]|= WT_FN_RDYFN
;
919 c
->regs
[R1
]|= WT_RDY_RT
;
920 c
->regs
[R1
]|= INT_ERR_Rx
;
921 c
->regs
[R1
]&= ~TxINT_ENAB
;
922 write_zsreg(c
, R1
, c
->regs
[R1
]);
923 c
->regs
[R1
]|= WT_RDY_ENAB
;
924 write_zsreg(c
, R1
, c
->regs
[R1
]);
931 * Set up the DMA configuration
934 dflags
=claim_dma_lock();
936 disable_dma(c
->rxdma
);
937 clear_dma_ff(c
->rxdma
);
938 set_dma_mode(c
->rxdma
, DMA_MODE_READ
|0x10);
939 set_dma_addr(c
->rxdma
, virt_to_bus(c
->rx_buf
[0]));
940 set_dma_count(c
->rxdma
, c
->mtu
);
941 enable_dma(c
->rxdma
);
943 disable_dma(c
->txdma
);
944 clear_dma_ff(c
->txdma
);
945 set_dma_mode(c
->txdma
, DMA_MODE_WRITE
);
946 disable_dma(c
->txdma
);
948 release_dma_lock(dflags
);
951 * Select the DMA interrupt handlers
958 c
->irqs
= &z8530_dma_sync
;
960 write_zsreg(c
, R3
, c
->regs
[R3
]|RxENABLE
);
962 spin_unlock_irqrestore(c
->lock
, cflags
);
967 EXPORT_SYMBOL(z8530_sync_dma_open
);
970 * z8530_sync_dma_close - Close down DMA I/O
971 * @dev: Network device to detach
972 * @c: Z8530 channel to move into discard mode
974 * Shut down a DMA mode synchronous interface. Halt the DMA, and
978 int z8530_sync_dma_close(struct net_device
*dev
, struct z8530_channel
*c
)
983 c
->irqs
= &z8530_nop
;
988 * Disable the PC DMA channels
991 flags
=claim_dma_lock();
992 disable_dma(c
->rxdma
);
993 clear_dma_ff(c
->rxdma
);
997 disable_dma(c
->txdma
);
998 clear_dma_ff(c
->txdma
);
999 release_dma_lock(flags
);
1004 spin_lock_irqsave(c
->lock
, flags
);
1007 * Disable DMA control mode
1010 c
->regs
[R1
]&= ~WT_RDY_ENAB
;
1011 write_zsreg(c
, R1
, c
->regs
[R1
]);
1012 c
->regs
[R1
]&= ~(WT_RDY_RT
|WT_FN_RDYFN
|INT_ERR_Rx
);
1013 c
->regs
[R1
]|= INT_ALL_Rx
;
1014 write_zsreg(c
, R1
, c
->regs
[R1
]);
1015 c
->regs
[R14
]&= ~DTRREQ
;
1016 write_zsreg(c
, R14
, c
->regs
[R14
]);
1020 free_page((unsigned long)c
->rx_buf
[0]);
1023 if(c
->tx_dma_buf
[0])
1025 free_page((unsigned long)c
->tx_dma_buf
[0]);
1026 c
->tx_dma_buf
[0]=NULL
;
1028 chk
=read_zsreg(c
,R0
);
1029 write_zsreg(c
, R3
, c
->regs
[R3
]);
1032 spin_unlock_irqrestore(c
->lock
, flags
);
1037 EXPORT_SYMBOL(z8530_sync_dma_close
);
1040 * z8530_sync_txdma_open - Open a Z8530 for TX driven DMA
1041 * @dev: The network device to attach
1042 * @c: The Z8530 channel to configure in sync DMA mode.
1044 * Set up a Z85x30 device for synchronous DMA tranmission. One
1045 * ISA DMA channel must be available for this to work. The receive
1046 * side is run in PIO mode, but then it has the bigger FIFO.
1049 int z8530_sync_txdma_open(struct net_device
*dev
, struct z8530_channel
*c
)
1051 unsigned long cflags
, dflags
;
1053 printk("Opening sync interface for TX-DMA\n");
1055 c
->mtu
= dev
->mtu
+64;
1061 * Allocate the DMA flip buffers. Limit by page size.
1062 * Everyone runs 1500 mtu or less on wan links so this
1066 if(c
->mtu
> PAGE_SIZE
/2)
1069 c
->tx_dma_buf
[0]=(void *)get_zeroed_page(GFP_KERNEL
|GFP_DMA
);
1070 if(c
->tx_dma_buf
[0]==NULL
)
1073 c
->tx_dma_buf
[1] = c
->tx_dma_buf
[0] + PAGE_SIZE
/2;
1076 spin_lock_irqsave(c
->lock
, cflags
);
1079 * Load the PIO receive ring
1086 * Load the DMA interfaces up
1098 * Enable DMA control mode
1102 * TX DMA via DIR/REQ
1104 c
->regs
[R14
]|= DTRREQ
;
1105 write_zsreg(c
, R14
, c
->regs
[R14
]);
1107 c
->regs
[R1
]&= ~TxINT_ENAB
;
1108 write_zsreg(c
, R1
, c
->regs
[R1
]);
1111 * Set up the DMA configuration
1114 dflags
= claim_dma_lock();
1116 disable_dma(c
->txdma
);
1117 clear_dma_ff(c
->txdma
);
1118 set_dma_mode(c
->txdma
, DMA_MODE_WRITE
);
1119 disable_dma(c
->txdma
);
1121 release_dma_lock(dflags
);
1124 * Select the DMA interrupt handlers
1131 c
->irqs
= &z8530_txdma_sync
;
1133 write_zsreg(c
, R3
, c
->regs
[R3
]|RxENABLE
);
1134 spin_unlock_irqrestore(c
->lock
, cflags
);
1139 EXPORT_SYMBOL(z8530_sync_txdma_open
);
1142 * z8530_sync_txdma_close - Close down a TX driven DMA channel
1143 * @dev: Network device to detach
1144 * @c: Z8530 channel to move into discard mode
1146 * Shut down a DMA/PIO split mode synchronous interface. Halt the DMA,
1147 * and free the buffers.
1150 int z8530_sync_txdma_close(struct net_device
*dev
, struct z8530_channel
*c
)
1152 unsigned long dflags
, cflags
;
1156 spin_lock_irqsave(c
->lock
, cflags
);
1158 c
->irqs
= &z8530_nop
;
1163 * Disable the PC DMA channels
1166 dflags
= claim_dma_lock();
1168 disable_dma(c
->txdma
);
1169 clear_dma_ff(c
->txdma
);
1173 release_dma_lock(dflags
);
1176 * Disable DMA control mode
1179 c
->regs
[R1
]&= ~WT_RDY_ENAB
;
1180 write_zsreg(c
, R1
, c
->regs
[R1
]);
1181 c
->regs
[R1
]&= ~(WT_RDY_RT
|WT_FN_RDYFN
|INT_ERR_Rx
);
1182 c
->regs
[R1
]|= INT_ALL_Rx
;
1183 write_zsreg(c
, R1
, c
->regs
[R1
]);
1184 c
->regs
[R14
]&= ~DTRREQ
;
1185 write_zsreg(c
, R14
, c
->regs
[R14
]);
1187 if(c
->tx_dma_buf
[0])
1189 free_page((unsigned long)c
->tx_dma_buf
[0]);
1190 c
->tx_dma_buf
[0]=NULL
;
1192 chk
=read_zsreg(c
,R0
);
1193 write_zsreg(c
, R3
, c
->regs
[R3
]);
1196 spin_unlock_irqrestore(c
->lock
, cflags
);
1201 EXPORT_SYMBOL(z8530_sync_txdma_close
);
1205 * Name strings for Z8530 chips. SGI claim to have a 130, Zilog deny
1209 static const char *z8530_type_name
[]={
1216 * z8530_describe - Uniformly describe a Z8530 port
1217 * @dev: Z8530 device to describe
1218 * @mapping: string holding mapping type (eg "I/O" or "Mem")
1219 * @io: the port value in question
1221 * Describe a Z8530 in a standard format. We must pass the I/O as
1222 * the port offset isnt predictable. The main reason for this function
1223 * is to try and get a common format of report.
1226 void z8530_describe(struct z8530_dev
*dev
, char *mapping
, unsigned long io
)
1228 printk(KERN_INFO
"%s: %s found at %s 0x%lX, IRQ %d.\n",
1230 z8530_type_name
[dev
->type
],
1236 EXPORT_SYMBOL(z8530_describe
);
1239 * Locked operation part of the z8530 init code
1242 static inline int do_z8530_init(struct z8530_dev
*dev
)
1244 /* NOP the interrupt handlers first - we might get a
1245 floating IRQ transition when we reset the chip */
1246 dev
->chanA
.irqs
=&z8530_nop
;
1247 dev
->chanB
.irqs
=&z8530_nop
;
1248 dev
->chanA
.dcdcheck
=DCD
;
1249 dev
->chanB
.dcdcheck
=DCD
;
1251 /* Reset the chip */
1252 write_zsreg(&dev
->chanA
, R9
, 0xC0);
1254 /* Now check its valid */
1255 write_zsreg(&dev
->chanA
, R12
, 0xAA);
1256 if(read_zsreg(&dev
->chanA
, R12
)!=0xAA)
1258 write_zsreg(&dev
->chanA
, R12
, 0x55);
1259 if(read_zsreg(&dev
->chanA
, R12
)!=0x55)
1265 * See the application note.
1268 write_zsreg(&dev
->chanA
, R15
, 0x01);
1271 * If we can set the low bit of R15 then
1272 * the chip is enhanced.
1275 if(read_zsreg(&dev
->chanA
, R15
)==0x01)
1277 /* This C30 versus 230 detect is from Klaus Kudielka's dmascc */
1278 /* Put a char in the fifo */
1279 write_zsreg(&dev
->chanA
, R8
, 0);
1280 if(read_zsreg(&dev
->chanA
, R0
)&Tx_BUF_EMP
)
1281 dev
->type
= Z85230
; /* Has a FIFO */
1283 dev
->type
= Z85C30
; /* Z85C30, 1 byte FIFO */
1287 * The code assumes R7' and friends are
1288 * off. Use write_zsext() for these and keep
1292 write_zsreg(&dev
->chanA
, R15
, 0);
1295 * At this point it looks like the chip is behaving
1298 memcpy(dev
->chanA
.regs
, reg_init
, 16);
1299 memcpy(dev
->chanB
.regs
, reg_init
,16);
1305 * z8530_init - Initialise a Z8530 device
1306 * @dev: Z8530 device to initialise.
1308 * Configure up a Z8530/Z85C30 or Z85230 chip. We check the device
1309 * is present, identify the type and then program it to hopefully
1310 * keep quite and behave. This matters a lot, a Z8530 in the wrong
1311 * state will sometimes get into stupid modes generating 10Khz
1312 * interrupt streams and the like.
1314 * We set the interrupt handler up to discard any events, in case
1315 * we get them during reset or setp.
1317 * Return 0 for success, or a negative value indicating the problem
1321 int z8530_init(struct z8530_dev
*dev
)
1323 unsigned long flags
;
1326 /* Set up the chip level lock */
1327 spin_lock_init(&dev
->lock
);
1328 dev
->chanA
.lock
= &dev
->lock
;
1329 dev
->chanB
.lock
= &dev
->lock
;
1331 spin_lock_irqsave(&dev
->lock
, flags
);
1332 ret
= do_z8530_init(dev
);
1333 spin_unlock_irqrestore(&dev
->lock
, flags
);
1339 EXPORT_SYMBOL(z8530_init
);
1342 * z8530_shutdown - Shutdown a Z8530 device
1343 * @dev: The Z8530 chip to shutdown
1345 * We set the interrupt handlers to silence any interrupts. We then
1346 * reset the chip and wait 100uS to be sure the reset completed. Just
1347 * in case the caller then tries to do stuff.
1349 * This is called without the lock held
1352 int z8530_shutdown(struct z8530_dev
*dev
)
1354 unsigned long flags
;
1355 /* Reset the chip */
1357 spin_lock_irqsave(&dev
->lock
, flags
);
1358 dev
->chanA
.irqs
=&z8530_nop
;
1359 dev
->chanB
.irqs
=&z8530_nop
;
1360 write_zsreg(&dev
->chanA
, R9
, 0xC0);
1361 /* We must lock the udelay, the chip is offlimits here */
1363 spin_unlock_irqrestore(&dev
->lock
, flags
);
1367 EXPORT_SYMBOL(z8530_shutdown
);
1370 * z8530_channel_load - Load channel data
1371 * @c: Z8530 channel to configure
1372 * @rtable: table of register, value pairs
1373 * FIXME: ioctl to allow user uploaded tables
1375 * Load a Z8530 channel up from the system data. We use +16 to
1376 * indicate the "prime" registers. The value 255 terminates the
1380 int z8530_channel_load(struct z8530_channel
*c
, u8
*rtable
)
1382 unsigned long flags
;
1384 spin_lock_irqsave(c
->lock
, flags
);
1390 write_zsreg(c
, R15
, c
->regs
[15]|1);
1391 write_zsreg(c
, reg
&0x0F, *rtable
);
1393 write_zsreg(c
, R15
, c
->regs
[15]&~1);
1394 c
->regs
[reg
]=*rtable
++;
1396 c
->rx_function
=z8530_null_rx
;
1399 c
->tx_next_skb
=NULL
;
1403 c
->status
=read_zsreg(c
, R0
);
1405 write_zsreg(c
, R3
, c
->regs
[R3
]|RxENABLE
);
1407 spin_unlock_irqrestore(c
->lock
, flags
);
1411 EXPORT_SYMBOL(z8530_channel_load
);
1415 * z8530_tx_begin - Begin packet transmission
1416 * @c: The Z8530 channel to kick
1418 * This is the speed sensitive side of transmission. If we are called
1419 * and no buffer is being transmitted we commence the next buffer. If
1420 * nothing is queued we idle the sync.
1422 * Note: We are handling this code path in the interrupt path, keep it
1423 * fast or bad things will happen.
1425 * Called with the lock held.
1428 static void z8530_tx_begin(struct z8530_channel
*c
)
1430 unsigned long flags
;
1434 c
->tx_skb
=c
->tx_next_skb
;
1435 c
->tx_next_skb
=NULL
;
1436 c
->tx_ptr
=c
->tx_next_ptr
;
1443 flags
=claim_dma_lock();
1444 disable_dma(c
->txdma
);
1446 * Check if we crapped out.
1448 if (get_dma_residue(c
->txdma
))
1450 c
->netdevice
->stats
.tx_dropped
++;
1451 c
->netdevice
->stats
.tx_fifo_errors
++;
1453 release_dma_lock(flags
);
1459 c
->txcount
=c
->tx_skb
->len
;
1465 * FIXME. DMA is broken for the original 8530,
1466 * on the older parts we need to set a flag and
1467 * wait for a further TX interrupt to fire this
1471 flags
=claim_dma_lock();
1472 disable_dma(c
->txdma
);
1475 * These two are needed by the 8530/85C30
1476 * and must be issued when idling.
1479 if(c
->dev
->type
!=Z85230
)
1481 write_zsctrl(c
, RES_Tx_CRC
);
1482 write_zsctrl(c
, RES_EOM_L
);
1484 write_zsreg(c
, R10
, c
->regs
[10]&~ABUNDER
);
1485 clear_dma_ff(c
->txdma
);
1486 set_dma_addr(c
->txdma
, virt_to_bus(c
->tx_ptr
));
1487 set_dma_count(c
->txdma
, c
->txcount
);
1488 enable_dma(c
->txdma
);
1489 release_dma_lock(flags
);
1490 write_zsctrl(c
, RES_EOM_L
);
1491 write_zsreg(c
, R5
, c
->regs
[R5
]|TxENAB
);
1497 write_zsreg(c
, R10
, c
->regs
[10]);
1498 write_zsctrl(c
, RES_Tx_CRC
);
1500 while(c
->txcount
&& (read_zsreg(c
,R0
)&Tx_BUF_EMP
))
1502 write_zsreg(c
, R8
, *c
->tx_ptr
++);
1509 * Since we emptied tx_skb we can ask for more
1511 netif_wake_queue(c
->netdevice
);
1515 * z8530_tx_done - TX complete callback
1516 * @c: The channel that completed a transmit.
1518 * This is called when we complete a packet send. We wake the queue,
1519 * start the next packet going and then free the buffer of the existing
1520 * packet. This code is fairly timing sensitive.
1522 * Called with the register lock held.
1525 static void z8530_tx_done(struct z8530_channel
*c
)
1527 struct sk_buff
*skb
;
1529 /* Actually this can happen.*/
1530 if (c
->tx_skb
== NULL
)
1536 c
->netdevice
->stats
.tx_packets
++;
1537 c
->netdevice
->stats
.tx_bytes
+= skb
->len
;
1538 dev_kfree_skb_irq(skb
);
1542 * z8530_null_rx - Discard a packet
1543 * @c: The channel the packet arrived on
1546 * We point the receive handler at this function when idle. Instead
1547 * of processing the frames we get to throw them away.
1550 void z8530_null_rx(struct z8530_channel
*c
, struct sk_buff
*skb
)
1552 dev_kfree_skb_any(skb
);
1555 EXPORT_SYMBOL(z8530_null_rx
);
1558 * z8530_rx_done - Receive completion callback
1559 * @c: The channel that completed a receive
1561 * A new packet is complete. Our goal here is to get back into receive
1562 * mode as fast as possible. On the Z85230 we could change to using
1563 * ESCC mode, but on the older chips we have no choice. We flip to the
1564 * new buffer immediately in DMA mode so that the DMA of the next
1565 * frame can occur while we are copying the previous buffer to an sk_buff
1567 * Called with the lock held
1570 static void z8530_rx_done(struct z8530_channel
*c
)
1572 struct sk_buff
*skb
;
1576 * Is our receive engine in DMA mode
1582 * Save the ready state and the buffer currently
1583 * being used as the DMA target
1586 int ready
=c
->dma_ready
;
1587 unsigned char *rxb
=c
->rx_buf
[c
->dma_num
];
1588 unsigned long flags
;
1591 * Complete this DMA. Neccessary to find the length
1594 flags
=claim_dma_lock();
1596 disable_dma(c
->rxdma
);
1597 clear_dma_ff(c
->rxdma
);
1599 ct
=c
->mtu
-get_dma_residue(c
->rxdma
);
1601 ct
=2; /* Shit happens.. */
1605 * Normal case: the other slot is free, start the next DMA
1606 * into it immediately.
1612 set_dma_mode(c
->rxdma
, DMA_MODE_READ
|0x10);
1613 set_dma_addr(c
->rxdma
, virt_to_bus(c
->rx_buf
[c
->dma_num
]));
1614 set_dma_count(c
->rxdma
, c
->mtu
);
1616 enable_dma(c
->rxdma
);
1617 /* Stop any frames that we missed the head of
1619 write_zsreg(c
, R0
, RES_Rx_CRC
);
1622 /* Can't occur as we dont reenable the DMA irq until
1623 after the flip is done */
1624 printk(KERN_WARNING
"%s: DMA flip overrun!\n",
1625 c
->netdevice
->name
);
1627 release_dma_lock(flags
);
1630 * Shove the old buffer into an sk_buff. We can't DMA
1631 * directly into one on a PC - it might be above the 16Mb
1632 * boundary. Optimisation - we could check to see if we
1633 * can avoid the copy. Optimisation 2 - make the memcpy
1637 skb
= dev_alloc_skb(ct
);
1639 c
->netdevice
->stats
.rx_dropped
++;
1640 printk(KERN_WARNING
"%s: Memory squeeze.\n",
1641 c
->netdevice
->name
);
1644 skb_copy_to_linear_data(skb
, rxb
, ct
);
1645 c
->netdevice
->stats
.rx_packets
++;
1646 c
->netdevice
->stats
.rx_bytes
+= ct
;
1654 * The game we play for non DMA is similar. We want to
1655 * get the controller set up for the next packet as fast
1656 * as possible. We potentially only have one byte + the
1657 * fifo length for this. Thus we want to flip to the new
1658 * buffer and then mess around copying and allocating
1659 * things. For the current case it doesn't matter but
1660 * if you build a system where the sync irq isnt blocked
1661 * by the kernel IRQ disable then you need only block the
1662 * sync IRQ for the RT_LOCK area.
1671 c
->dptr
= c
->skb
->data
;
1679 c
->skb2
= dev_alloc_skb(c
->mtu
);
1680 if (c
->skb2
== NULL
)
1681 printk(KERN_WARNING
"%s: memory squeeze.\n",
1682 c
->netdevice
->name
);
1684 skb_put(c
->skb2
, c
->mtu
);
1685 c
->netdevice
->stats
.rx_packets
++;
1686 c
->netdevice
->stats
.rx_bytes
+= ct
;
1689 * If we received a frame we must now process it.
1693 c
->rx_function(c
, skb
);
1695 c
->netdevice
->stats
.rx_dropped
++;
1696 printk(KERN_ERR
"%s: Lost a frame\n", c
->netdevice
->name
);
1701 * spans_boundary - Check a packet can be ISA DMA'd
1702 * @skb: The buffer to check
1704 * Returns true if the buffer cross a DMA boundary on a PC. The poor
1705 * thing can only DMA within a 64K block not across the edges of it.
1708 static inline int spans_boundary(struct sk_buff
*skb
)
1710 unsigned long a
=(unsigned long)skb
->data
;
1712 if(a
&0x00010000) /* If the 64K bit is different.. */
1718 * z8530_queue_xmit - Queue a packet
1719 * @c: The channel to use
1720 * @skb: The packet to kick down the channel
1722 * Queue a packet for transmission. Because we have rather
1723 * hard to hit interrupt latencies for the Z85230 per packet
1724 * even in DMA mode we do the flip to DMA buffer if needed here
1727 * Called from the network code. The lock is not held at this
1731 netdev_tx_t
z8530_queue_xmit(struct z8530_channel
*c
, struct sk_buff
*skb
)
1733 unsigned long flags
;
1735 netif_stop_queue(c
->netdevice
);
1737 return NETDEV_TX_BUSY
;
1740 /* PC SPECIFIC - DMA limits */
1743 * If we will DMA the transmit and its gone over the ISA bus
1744 * limit, then copy to the flip buffer
1747 if(c
->dma_tx
&& ((unsigned long)(virt_to_bus(skb
->data
+skb
->len
))>=16*1024*1024 || spans_boundary(skb
)))
1750 * Send the flip buffer, and flip the flippy bit.
1751 * We don't care which is used when just so long as
1752 * we never use the same buffer twice in a row. Since
1753 * only one buffer can be going out at a time the other
1756 c
->tx_next_ptr
=c
->tx_dma_buf
[c
->tx_dma_used
];
1757 c
->tx_dma_used
^=1; /* Flip temp buffer */
1758 skb_copy_from_linear_data(skb
, c
->tx_next_ptr
, skb
->len
);
1761 c
->tx_next_ptr
=skb
->data
;
1766 spin_lock_irqsave(c
->lock
, flags
);
1768 spin_unlock_irqrestore(c
->lock
, flags
);
1770 return NETDEV_TX_OK
;
1773 EXPORT_SYMBOL(z8530_queue_xmit
);
1778 static const char banner
[] __initdata
=
1779 KERN_INFO
"Generic Z85C30/Z85230 interface driver v0.02\n";
1781 static int __init
z85230_init_driver(void)
1786 module_init(z85230_init_driver
);
1788 static void __exit
z85230_cleanup_driver(void)
1791 module_exit(z85230_cleanup_driver
);
1793 MODULE_AUTHOR("Red Hat Inc.");
1794 MODULE_DESCRIPTION("Z85x30 synchronous driver core");
1795 MODULE_LICENSE("GPL");