proc: use seq_puts()/seq_putc() where possible
[linux-2.6/next.git] / drivers / net / wimax / i2400m / fw.c
blob8b55a5b14152adee9c966f0d6705dddfad769ffb
1 /*
2 * Intel Wireless WiMAX Connection 2400m
3 * Firmware uploader
6 * Copyright (C) 2007-2008 Intel Corporation. All rights reserved.
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
12 * * Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * * Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in
16 * the documentation and/or other materials provided with the
17 * distribution.
18 * * Neither the name of Intel Corporation nor the names of its
19 * contributors may be used to endorse or promote products derived
20 * from this software without specific prior written permission.
22 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
25 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
26 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
27 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
28 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
32 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
35 * Intel Corporation <linux-wimax@intel.com>
36 * Yanir Lubetkin <yanirx.lubetkin@intel.com>
37 * Inaky Perez-Gonzalez <inaky.perez-gonzalez@intel.com>
38 * - Initial implementation
41 * THE PROCEDURE
43 * The 2400m and derived devices work in two modes: boot-mode or
44 * normal mode. In boot mode we can execute only a handful of commands
45 * targeted at uploading the firmware and launching it.
47 * The 2400m enters boot mode when it is first connected to the
48 * system, when it crashes and when you ask it to reboot. There are
49 * two submodes of the boot mode: signed and non-signed. Signed takes
50 * firmwares signed with a certain private key, non-signed takes any
51 * firmware. Normal hardware takes only signed firmware.
53 * On boot mode, in USB, we write to the device using the bulk out
54 * endpoint and read from it in the notification endpoint. In SDIO we
55 * talk to it via the write address and read from the read address.
57 * Upon entrance to boot mode, the device sends (preceeded with a few
58 * zero length packets (ZLPs) on the notification endpoint in USB) a
59 * reboot barker (4 le32 words with the same value). We ack it by
60 * sending the same barker to the device. The device acks with a
61 * reboot ack barker (4 le32 words with value I2400M_ACK_BARKER) and
62 * then is fully booted. At this point we can upload the firmware.
64 * Note that different iterations of the device and EEPROM
65 * configurations will send different [re]boot barkers; these are
66 * collected in i2400m_barker_db along with the firmware
67 * characteristics they require.
69 * This process is accomplished by the i2400m_bootrom_init()
70 * function. All the device interaction happens through the
71 * i2400m_bm_cmd() [boot mode command]. Special return values will
72 * indicate if the device did reset during the process.
74 * After this, we read the MAC address and then (if needed)
75 * reinitialize the device. We need to read it ahead of time because
76 * in the future, we might not upload the firmware until userspace
77 * 'ifconfig up's the device.
79 * We can then upload the firmware file. The file is composed of a BCF
80 * header (basic data, keys and signatures) and a list of write
81 * commands and payloads. Optionally more BCF headers might follow the
82 * main payload. We first upload the header [i2400m_dnload_init()] and
83 * then pass the commands and payloads verbatim to the i2400m_bm_cmd()
84 * function [i2400m_dnload_bcf()]. Then we tell the device to jump to
85 * the new firmware [i2400m_dnload_finalize()].
87 * Once firmware is uploaded, we are good to go :)
89 * When we don't know in which mode we are, we first try by sending a
90 * warm reset request that will take us to boot-mode. If we time out
91 * waiting for a reboot barker, that means maybe we are already in
92 * boot mode, so we send a reboot barker.
94 * COMMAND EXECUTION
96 * This code (and process) is single threaded; for executing commands,
97 * we post a URB to the notification endpoint, post the command, wait
98 * for data on the notification buffer. We don't need to worry about
99 * others as we know we are the only ones in there.
101 * BACKEND IMPLEMENTATION
103 * This code is bus-generic; the bus-specific driver provides back end
104 * implementations to send a boot mode command to the device and to
105 * read an acknolwedgement from it (or an asynchronous notification)
106 * from it.
108 * FIRMWARE LOADING
110 * Note that in some cases, we can't just load a firmware file (for
111 * example, when resuming). For that, we might cache the firmware
112 * file. Thus, when doing the bootstrap, if there is a cache firmware
113 * file, it is used; if not, loading from disk is attempted.
115 * ROADMAP
117 * i2400m_barker_db_init Called by i2400m_driver_init()
118 * i2400m_barker_db_add
120 * i2400m_barker_db_exit Called by i2400m_driver_exit()
122 * i2400m_dev_bootstrap Called by __i2400m_dev_start()
123 * request_firmware
124 * i2400m_fw_bootstrap
125 * i2400m_fw_check
126 * i2400m_fw_hdr_check
127 * i2400m_fw_dnload
128 * release_firmware
130 * i2400m_fw_dnload
131 * i2400m_bootrom_init
132 * i2400m_bm_cmd
133 * i2400m_reset
134 * i2400m_dnload_init
135 * i2400m_dnload_init_signed
136 * i2400m_dnload_init_nonsigned
137 * i2400m_download_chunk
138 * i2400m_bm_cmd
139 * i2400m_dnload_bcf
140 * i2400m_bm_cmd
141 * i2400m_dnload_finalize
142 * i2400m_bm_cmd
144 * i2400m_bm_cmd
145 * i2400m->bus_bm_cmd_send()
146 * i2400m->bus_bm_wait_for_ack
147 * __i2400m_bm_ack_verify
148 * i2400m_is_boot_barker
150 * i2400m_bm_cmd_prepare Used by bus-drivers to prep
151 * commands before sending
153 * i2400m_pm_notifier Called on Power Management events
154 * i2400m_fw_cache
155 * i2400m_fw_uncache
157 #include <linux/firmware.h>
158 #include <linux/sched.h>
159 #include <linux/slab.h>
160 #include <linux/usb.h>
161 #include "i2400m.h"
164 #define D_SUBMODULE fw
165 #include "debug-levels.h"
168 static const __le32 i2400m_ACK_BARKER[4] = {
169 cpu_to_le32(I2400M_ACK_BARKER),
170 cpu_to_le32(I2400M_ACK_BARKER),
171 cpu_to_le32(I2400M_ACK_BARKER),
172 cpu_to_le32(I2400M_ACK_BARKER)
177 * Prepare a boot-mode command for delivery
179 * @cmd: pointer to bootrom header to prepare
181 * Computes checksum if so needed. After calling this function, DO NOT
182 * modify the command or header as the checksum won't work anymore.
184 * We do it from here because some times we cannot do it in the
185 * original context the command was sent (it is a const), so when we
186 * copy it to our staging buffer, we add the checksum there.
188 void i2400m_bm_cmd_prepare(struct i2400m_bootrom_header *cmd)
190 if (i2400m_brh_get_use_checksum(cmd)) {
191 int i;
192 u32 checksum = 0;
193 const u32 *checksum_ptr = (void *) cmd->payload;
194 for (i = 0; i < cmd->data_size / 4; i++)
195 checksum += cpu_to_le32(*checksum_ptr++);
196 checksum += cmd->command + cmd->target_addr + cmd->data_size;
197 cmd->block_checksum = cpu_to_le32(checksum);
200 EXPORT_SYMBOL_GPL(i2400m_bm_cmd_prepare);
204 * Database of known barkers.
206 * A barker is what the device sends indicating he is ready to be
207 * bootloaded. Different versions of the device will send different
208 * barkers. Depending on the barker, it might mean the device wants
209 * some kind of firmware or the other.
211 static struct i2400m_barker_db {
212 __le32 data[4];
213 } *i2400m_barker_db;
214 static size_t i2400m_barker_db_used, i2400m_barker_db_size;
217 static
218 int i2400m_zrealloc_2x(void **ptr, size_t *_count, size_t el_size,
219 gfp_t gfp_flags)
221 size_t old_count = *_count,
222 new_count = old_count ? 2 * old_count : 2,
223 old_size = el_size * old_count,
224 new_size = el_size * new_count;
225 void *nptr = krealloc(*ptr, new_size, gfp_flags);
226 if (nptr) {
227 /* zero the other half or the whole thing if old_count
228 * was zero */
229 if (old_size == 0)
230 memset(nptr, 0, new_size);
231 else
232 memset(nptr + old_size, 0, old_size);
233 *_count = new_count;
234 *ptr = nptr;
235 return 0;
236 } else
237 return -ENOMEM;
242 * Add a barker to the database
244 * This cannot used outside of this module and only at at module_init
245 * time. This is to avoid the need to do locking.
247 static
248 int i2400m_barker_db_add(u32 barker_id)
250 int result;
252 struct i2400m_barker_db *barker;
253 if (i2400m_barker_db_used >= i2400m_barker_db_size) {
254 result = i2400m_zrealloc_2x(
255 (void **) &i2400m_barker_db, &i2400m_barker_db_size,
256 sizeof(i2400m_barker_db[0]), GFP_KERNEL);
257 if (result < 0)
258 return result;
260 barker = i2400m_barker_db + i2400m_barker_db_used++;
261 barker->data[0] = le32_to_cpu(barker_id);
262 barker->data[1] = le32_to_cpu(barker_id);
263 barker->data[2] = le32_to_cpu(barker_id);
264 barker->data[3] = le32_to_cpu(barker_id);
265 return 0;
269 void i2400m_barker_db_exit(void)
271 kfree(i2400m_barker_db);
272 i2400m_barker_db = NULL;
273 i2400m_barker_db_size = 0;
274 i2400m_barker_db_used = 0;
279 * Helper function to add all the known stable barkers to the barker
280 * database.
282 static
283 int i2400m_barker_db_known_barkers(void)
285 int result;
287 result = i2400m_barker_db_add(I2400M_NBOOT_BARKER);
288 if (result < 0)
289 goto error_add;
290 result = i2400m_barker_db_add(I2400M_SBOOT_BARKER);
291 if (result < 0)
292 goto error_add;
293 result = i2400m_barker_db_add(I2400M_SBOOT_BARKER_6050);
294 if (result < 0)
295 goto error_add;
296 error_add:
297 return result;
302 * Initialize the barker database
304 * This can only be used from the module_init function for this
305 * module; this is to avoid the need to do locking.
307 * @options: command line argument with extra barkers to
308 * recognize. This is a comma-separated list of 32-bit hex
309 * numbers. They are appended to the existing list. Setting 0
310 * cleans the existing list and starts a new one.
312 int i2400m_barker_db_init(const char *_options)
314 int result;
315 char *options = NULL, *options_orig, *token;
317 i2400m_barker_db = NULL;
318 i2400m_barker_db_size = 0;
319 i2400m_barker_db_used = 0;
321 result = i2400m_barker_db_known_barkers();
322 if (result < 0)
323 goto error_add;
324 /* parse command line options from i2400m.barkers */
325 if (_options != NULL) {
326 unsigned barker;
328 options_orig = kstrdup(_options, GFP_KERNEL);
329 if (options_orig == NULL)
330 goto error_parse;
331 options = options_orig;
333 while ((token = strsep(&options, ",")) != NULL) {
334 if (*token == '\0') /* eat joint commas */
335 continue;
336 if (sscanf(token, "%x", &barker) != 1
337 || barker > 0xffffffff) {
338 printk(KERN_ERR "%s: can't recognize "
339 "i2400m.barkers value '%s' as "
340 "a 32-bit number\n",
341 __func__, token);
342 result = -EINVAL;
343 goto error_parse;
345 if (barker == 0) {
346 /* clean list and start new */
347 i2400m_barker_db_exit();
348 continue;
350 result = i2400m_barker_db_add(barker);
351 if (result < 0)
352 goto error_add;
354 kfree(options_orig);
356 return 0;
358 error_parse:
359 error_add:
360 kfree(i2400m_barker_db);
361 return result;
366 * Recognize a boot barker
368 * @buf: buffer where the boot barker.
369 * @buf_size: size of the buffer (has to be 16 bytes). It is passed
370 * here so the function can check it for the caller.
372 * Note that as a side effect, upon identifying the obtained boot
373 * barker, this function will set i2400m->barker to point to the right
374 * barker database entry. Subsequent calls to the function will result
375 * in verifying that the same type of boot barker is returned when the
376 * device [re]boots (as long as the same device instance is used).
378 * Return: 0 if @buf matches a known boot barker. -ENOENT if the
379 * buffer in @buf doesn't match any boot barker in the database or
380 * -EILSEQ if the buffer doesn't have the right size.
382 int i2400m_is_boot_barker(struct i2400m *i2400m,
383 const void *buf, size_t buf_size)
385 int result;
386 struct device *dev = i2400m_dev(i2400m);
387 struct i2400m_barker_db *barker;
388 int i;
390 result = -ENOENT;
391 if (buf_size != sizeof(i2400m_barker_db[i].data))
392 return result;
394 /* Short circuit if we have already discovered the barker
395 * associated with the device. */
396 if (i2400m->barker
397 && !memcmp(buf, i2400m->barker, sizeof(i2400m->barker->data))) {
398 unsigned index = (i2400m->barker - i2400m_barker_db)
399 / sizeof(*i2400m->barker);
400 d_printf(2, dev, "boot barker cache-confirmed #%u/%08x\n",
401 index, le32_to_cpu(i2400m->barker->data[0]));
402 return 0;
405 for (i = 0; i < i2400m_barker_db_used; i++) {
406 barker = &i2400m_barker_db[i];
407 BUILD_BUG_ON(sizeof(barker->data) != 16);
408 if (memcmp(buf, barker->data, sizeof(barker->data)))
409 continue;
411 if (i2400m->barker == NULL) {
412 i2400m->barker = barker;
413 d_printf(1, dev, "boot barker set to #%u/%08x\n",
414 i, le32_to_cpu(barker->data[0]));
415 if (barker->data[0] == le32_to_cpu(I2400M_NBOOT_BARKER))
416 i2400m->sboot = 0;
417 else
418 i2400m->sboot = 1;
419 } else if (i2400m->barker != barker) {
420 dev_err(dev, "HW inconsistency: device "
421 "reports a different boot barker "
422 "than set (from %08x to %08x)\n",
423 le32_to_cpu(i2400m->barker->data[0]),
424 le32_to_cpu(barker->data[0]));
425 result = -EIO;
426 } else
427 d_printf(2, dev, "boot barker confirmed #%u/%08x\n",
428 i, le32_to_cpu(barker->data[0]));
429 result = 0;
430 break;
432 return result;
434 EXPORT_SYMBOL_GPL(i2400m_is_boot_barker);
438 * Verify the ack data received
440 * Given a reply to a boot mode command, chew it and verify everything
441 * is ok.
443 * @opcode: opcode which generated this ack. For error messages.
444 * @ack: pointer to ack data we received
445 * @ack_size: size of that data buffer
446 * @flags: I2400M_BM_CMD_* flags we called the command with.
448 * Way too long function -- maybe it should be further split
450 static
451 ssize_t __i2400m_bm_ack_verify(struct i2400m *i2400m, int opcode,
452 struct i2400m_bootrom_header *ack,
453 size_t ack_size, int flags)
455 ssize_t result = -ENOMEM;
456 struct device *dev = i2400m_dev(i2400m);
458 d_fnstart(8, dev, "(i2400m %p opcode %d ack %p size %zu)\n",
459 i2400m, opcode, ack, ack_size);
460 if (ack_size < sizeof(*ack)) {
461 result = -EIO;
462 dev_err(dev, "boot-mode cmd %d: HW BUG? notification didn't "
463 "return enough data (%zu bytes vs %zu expected)\n",
464 opcode, ack_size, sizeof(*ack));
465 goto error_ack_short;
467 result = i2400m_is_boot_barker(i2400m, ack, ack_size);
468 if (result >= 0) {
469 result = -ERESTARTSYS;
470 d_printf(6, dev, "boot-mode cmd %d: HW boot barker\n", opcode);
471 goto error_reboot;
473 if (ack_size == sizeof(i2400m_ACK_BARKER)
474 && memcmp(ack, i2400m_ACK_BARKER, sizeof(*ack)) == 0) {
475 result = -EISCONN;
476 d_printf(3, dev, "boot-mode cmd %d: HW reboot ack barker\n",
477 opcode);
478 goto error_reboot_ack;
480 result = 0;
481 if (flags & I2400M_BM_CMD_RAW)
482 goto out_raw;
483 ack->data_size = le32_to_cpu(ack->data_size);
484 ack->target_addr = le32_to_cpu(ack->target_addr);
485 ack->block_checksum = le32_to_cpu(ack->block_checksum);
486 d_printf(5, dev, "boot-mode cmd %d: notification for opcode %u "
487 "response %u csum %u rr %u da %u\n",
488 opcode, i2400m_brh_get_opcode(ack),
489 i2400m_brh_get_response(ack),
490 i2400m_brh_get_use_checksum(ack),
491 i2400m_brh_get_response_required(ack),
492 i2400m_brh_get_direct_access(ack));
493 result = -EIO;
494 if (i2400m_brh_get_signature(ack) != 0xcbbc) {
495 dev_err(dev, "boot-mode cmd %d: HW BUG? wrong signature "
496 "0x%04x\n", opcode, i2400m_brh_get_signature(ack));
497 goto error_ack_signature;
499 if (opcode != -1 && opcode != i2400m_brh_get_opcode(ack)) {
500 dev_err(dev, "boot-mode cmd %d: HW BUG? "
501 "received response for opcode %u, expected %u\n",
502 opcode, i2400m_brh_get_opcode(ack), opcode);
503 goto error_ack_opcode;
505 if (i2400m_brh_get_response(ack) != 0) { /* failed? */
506 dev_err(dev, "boot-mode cmd %d: error; hw response %u\n",
507 opcode, i2400m_brh_get_response(ack));
508 goto error_ack_failed;
510 if (ack_size < ack->data_size + sizeof(*ack)) {
511 dev_err(dev, "boot-mode cmd %d: SW BUG "
512 "driver provided only %zu bytes for %zu bytes "
513 "of data\n", opcode, ack_size,
514 (size_t) le32_to_cpu(ack->data_size) + sizeof(*ack));
515 goto error_ack_short_buffer;
517 result = ack_size;
518 /* Don't you love this stack of empty targets? Well, I don't
519 * either, but it helps track exactly who comes in here and
520 * why :) */
521 error_ack_short_buffer:
522 error_ack_failed:
523 error_ack_opcode:
524 error_ack_signature:
525 out_raw:
526 error_reboot_ack:
527 error_reboot:
528 error_ack_short:
529 d_fnend(8, dev, "(i2400m %p opcode %d ack %p size %zu) = %d\n",
530 i2400m, opcode, ack, ack_size, (int) result);
531 return result;
536 * i2400m_bm_cmd - Execute a boot mode command
538 * @cmd: buffer containing the command data (pointing at the header).
539 * This data can be ANYWHERE (for USB, we will copy it to an
540 * specific buffer). Make sure everything is in proper little
541 * endian.
543 * A raw buffer can be also sent, just cast it and set flags to
544 * I2400M_BM_CMD_RAW.
546 * This function will generate a checksum for you if the
547 * checksum bit in the command is set (unless I2400M_BM_CMD_RAW
548 * is set).
550 * You can use the i2400m->bm_cmd_buf to stage your commands and
551 * send them.
553 * If NULL, no command is sent (we just wait for an ack).
555 * @cmd_size: size of the command. Will be auto padded to the
556 * bus-specific drivers padding requirements.
558 * @ack: buffer where to place the acknowledgement. If it is a regular
559 * command response, all fields will be returned with the right,
560 * native endianess.
562 * You *cannot* use i2400m->bm_ack_buf for this buffer.
564 * @ack_size: size of @ack, 16 aligned; you need to provide at least
565 * sizeof(*ack) bytes and then enough to contain the return data
566 * from the command
568 * @flags: see I2400M_BM_CMD_* above.
570 * @returns: bytes received by the notification; if < 0, an errno code
571 * denoting an error or:
573 * -ERESTARTSYS The device has rebooted
575 * Executes a boot-mode command and waits for a response, doing basic
576 * validation on it; if a zero length response is received, it retries
577 * waiting for a response until a non-zero one is received (timing out
578 * after %I2400M_BOOT_RETRIES retries).
580 static
581 ssize_t i2400m_bm_cmd(struct i2400m *i2400m,
582 const struct i2400m_bootrom_header *cmd, size_t cmd_size,
583 struct i2400m_bootrom_header *ack, size_t ack_size,
584 int flags)
586 ssize_t result = -ENOMEM, rx_bytes;
587 struct device *dev = i2400m_dev(i2400m);
588 int opcode = cmd == NULL ? -1 : i2400m_brh_get_opcode(cmd);
590 d_fnstart(6, dev, "(i2400m %p cmd %p size %zu ack %p size %zu)\n",
591 i2400m, cmd, cmd_size, ack, ack_size);
592 BUG_ON(ack_size < sizeof(*ack));
593 BUG_ON(i2400m->boot_mode == 0);
595 if (cmd != NULL) { /* send the command */
596 result = i2400m->bus_bm_cmd_send(i2400m, cmd, cmd_size, flags);
597 if (result < 0)
598 goto error_cmd_send;
599 if ((flags & I2400M_BM_CMD_RAW) == 0)
600 d_printf(5, dev,
601 "boot-mode cmd %d csum %u rr %u da %u: "
602 "addr 0x%04x size %u block csum 0x%04x\n",
603 opcode, i2400m_brh_get_use_checksum(cmd),
604 i2400m_brh_get_response_required(cmd),
605 i2400m_brh_get_direct_access(cmd),
606 cmd->target_addr, cmd->data_size,
607 cmd->block_checksum);
609 result = i2400m->bus_bm_wait_for_ack(i2400m, ack, ack_size);
610 if (result < 0) {
611 dev_err(dev, "boot-mode cmd %d: error waiting for an ack: %d\n",
612 opcode, (int) result); /* bah, %zd doesn't work */
613 goto error_wait_for_ack;
615 rx_bytes = result;
616 /* verify the ack and read more if necessary [result is the
617 * final amount of bytes we get in the ack] */
618 result = __i2400m_bm_ack_verify(i2400m, opcode, ack, ack_size, flags);
619 if (result < 0)
620 goto error_bad_ack;
621 /* Don't you love this stack of empty targets? Well, I don't
622 * either, but it helps track exactly who comes in here and
623 * why :) */
624 result = rx_bytes;
625 error_bad_ack:
626 error_wait_for_ack:
627 error_cmd_send:
628 d_fnend(6, dev, "(i2400m %p cmd %p size %zu ack %p size %zu) = %d\n",
629 i2400m, cmd, cmd_size, ack, ack_size, (int) result);
630 return result;
635 * i2400m_download_chunk - write a single chunk of data to the device's memory
637 * @i2400m: device descriptor
638 * @buf: the buffer to write
639 * @buf_len: length of the buffer to write
640 * @addr: address in the device memory space
641 * @direct: bootrom write mode
642 * @do_csum: should a checksum validation be performed
644 static int i2400m_download_chunk(struct i2400m *i2400m, const void *chunk,
645 size_t __chunk_len, unsigned long addr,
646 unsigned int direct, unsigned int do_csum)
648 int ret;
649 size_t chunk_len = ALIGN(__chunk_len, I2400M_PL_ALIGN);
650 struct device *dev = i2400m_dev(i2400m);
651 struct {
652 struct i2400m_bootrom_header cmd;
653 u8 cmd_payload[chunk_len];
654 } __packed *buf;
655 struct i2400m_bootrom_header ack;
657 d_fnstart(5, dev, "(i2400m %p chunk %p __chunk_len %zu addr 0x%08lx "
658 "direct %u do_csum %u)\n", i2400m, chunk, __chunk_len,
659 addr, direct, do_csum);
660 buf = i2400m->bm_cmd_buf;
661 memcpy(buf->cmd_payload, chunk, __chunk_len);
662 memset(buf->cmd_payload + __chunk_len, 0xad, chunk_len - __chunk_len);
664 buf->cmd.command = i2400m_brh_command(I2400M_BRH_WRITE,
665 __chunk_len & 0x3 ? 0 : do_csum,
666 __chunk_len & 0xf ? 0 : direct);
667 buf->cmd.target_addr = cpu_to_le32(addr);
668 buf->cmd.data_size = cpu_to_le32(__chunk_len);
669 ret = i2400m_bm_cmd(i2400m, &buf->cmd, sizeof(buf->cmd) + chunk_len,
670 &ack, sizeof(ack), 0);
671 if (ret >= 0)
672 ret = 0;
673 d_fnend(5, dev, "(i2400m %p chunk %p __chunk_len %zu addr 0x%08lx "
674 "direct %u do_csum %u) = %d\n", i2400m, chunk, __chunk_len,
675 addr, direct, do_csum, ret);
676 return ret;
681 * Download a BCF file's sections to the device
683 * @i2400m: device descriptor
684 * @bcf: pointer to firmware data (first header followed by the
685 * payloads). Assumed verified and consistent.
686 * @bcf_len: length (in bytes) of the @bcf buffer.
688 * Returns: < 0 errno code on error or the offset to the jump instruction.
690 * Given a BCF file, downloads each section (a command and a payload)
691 * to the device's address space. Actually, it just executes each
692 * command i the BCF file.
694 * The section size has to be aligned to 4 bytes AND the padding has
695 * to be taken from the firmware file, as the signature takes it into
696 * account.
698 static
699 ssize_t i2400m_dnload_bcf(struct i2400m *i2400m,
700 const struct i2400m_bcf_hdr *bcf, size_t bcf_len)
702 ssize_t ret;
703 struct device *dev = i2400m_dev(i2400m);
704 size_t offset, /* iterator offset */
705 data_size, /* Size of the data payload */
706 section_size, /* Size of the whole section (cmd + payload) */
707 section = 1;
708 const struct i2400m_bootrom_header *bh;
709 struct i2400m_bootrom_header ack;
711 d_fnstart(3, dev, "(i2400m %p bcf %p bcf_len %zu)\n",
712 i2400m, bcf, bcf_len);
713 /* Iterate over the command blocks in the BCF file that start
714 * after the header */
715 offset = le32_to_cpu(bcf->header_len) * sizeof(u32);
716 while (1) { /* start sending the file */
717 bh = (void *) bcf + offset;
718 data_size = le32_to_cpu(bh->data_size);
719 section_size = ALIGN(sizeof(*bh) + data_size, 4);
720 d_printf(7, dev,
721 "downloading section #%zu (@%zu %zu B) to 0x%08x\n",
722 section, offset, sizeof(*bh) + data_size,
723 le32_to_cpu(bh->target_addr));
725 * We look for JUMP cmd from the bootmode header,
726 * either I2400M_BRH_SIGNED_JUMP for secure boot
727 * or I2400M_BRH_JUMP for unsecure boot, the last chunk
728 * should be the bootmode header with JUMP cmd.
730 if (i2400m_brh_get_opcode(bh) == I2400M_BRH_SIGNED_JUMP ||
731 i2400m_brh_get_opcode(bh) == I2400M_BRH_JUMP) {
732 d_printf(5, dev, "jump found @%zu\n", offset);
733 break;
735 if (offset + section_size > bcf_len) {
736 dev_err(dev, "fw %s: bad section #%zu, "
737 "end (@%zu) beyond EOF (@%zu)\n",
738 i2400m->fw_name, section,
739 offset + section_size, bcf_len);
740 ret = -EINVAL;
741 goto error_section_beyond_eof;
743 __i2400m_msleep(20);
744 ret = i2400m_bm_cmd(i2400m, bh, section_size,
745 &ack, sizeof(ack), I2400M_BM_CMD_RAW);
746 if (ret < 0) {
747 dev_err(dev, "fw %s: section #%zu (@%zu %zu B) "
748 "failed %d\n", i2400m->fw_name, section,
749 offset, sizeof(*bh) + data_size, (int) ret);
750 goto error_send;
752 offset += section_size;
753 section++;
755 ret = offset;
756 error_section_beyond_eof:
757 error_send:
758 d_fnend(3, dev, "(i2400m %p bcf %p bcf_len %zu) = %d\n",
759 i2400m, bcf, bcf_len, (int) ret);
760 return ret;
765 * Indicate if the device emitted a reboot barker that indicates
766 * "signed boot"
768 static
769 unsigned i2400m_boot_is_signed(struct i2400m *i2400m)
771 return likely(i2400m->sboot);
776 * Do the final steps of uploading firmware
778 * @bcf_hdr: BCF header we are actually using
779 * @bcf: pointer to the firmware image (which matches the first header
780 * that is followed by the actual payloads).
781 * @offset: [byte] offset into @bcf for the command we need to send.
783 * Depending on the boot mode (signed vs non-signed), different
784 * actions need to be taken.
786 static
787 int i2400m_dnload_finalize(struct i2400m *i2400m,
788 const struct i2400m_bcf_hdr *bcf_hdr,
789 const struct i2400m_bcf_hdr *bcf, size_t offset)
791 int ret = 0;
792 struct device *dev = i2400m_dev(i2400m);
793 struct i2400m_bootrom_header *cmd, ack;
794 struct {
795 struct i2400m_bootrom_header cmd;
796 u8 cmd_pl[0];
797 } __packed *cmd_buf;
798 size_t signature_block_offset, signature_block_size;
800 d_fnstart(3, dev, "offset %zu\n", offset);
801 cmd = (void *) bcf + offset;
802 if (i2400m_boot_is_signed(i2400m) == 0) {
803 struct i2400m_bootrom_header jump_ack;
804 d_printf(1, dev, "unsecure boot, jumping to 0x%08x\n",
805 le32_to_cpu(cmd->target_addr));
806 cmd_buf = i2400m->bm_cmd_buf;
807 memcpy(&cmd_buf->cmd, cmd, sizeof(*cmd));
808 cmd = &cmd_buf->cmd;
809 /* now cmd points to the actual bootrom_header in cmd_buf */
810 i2400m_brh_set_opcode(cmd, I2400M_BRH_JUMP);
811 cmd->data_size = 0;
812 ret = i2400m_bm_cmd(i2400m, cmd, sizeof(*cmd),
813 &jump_ack, sizeof(jump_ack), 0);
814 } else {
815 d_printf(1, dev, "secure boot, jumping to 0x%08x\n",
816 le32_to_cpu(cmd->target_addr));
817 cmd_buf = i2400m->bm_cmd_buf;
818 memcpy(&cmd_buf->cmd, cmd, sizeof(*cmd));
819 signature_block_offset =
820 sizeof(*bcf_hdr)
821 + le32_to_cpu(bcf_hdr->key_size) * sizeof(u32)
822 + le32_to_cpu(bcf_hdr->exponent_size) * sizeof(u32);
823 signature_block_size =
824 le32_to_cpu(bcf_hdr->modulus_size) * sizeof(u32);
825 memcpy(cmd_buf->cmd_pl,
826 (void *) bcf_hdr + signature_block_offset,
827 signature_block_size);
828 ret = i2400m_bm_cmd(i2400m, &cmd_buf->cmd,
829 sizeof(cmd_buf->cmd) + signature_block_size,
830 &ack, sizeof(ack), I2400M_BM_CMD_RAW);
832 d_fnend(3, dev, "returning %d\n", ret);
833 return ret;
838 * i2400m_bootrom_init - Reboots a powered device into boot mode
840 * @i2400m: device descriptor
841 * @flags:
842 * I2400M_BRI_SOFT: a reboot barker has been seen
843 * already, so don't wait for it.
845 * I2400M_BRI_NO_REBOOT: Don't send a reboot command, but wait
846 * for a reboot barker notification. This is a one shot; if
847 * the state machine needs to send a reboot command it will.
849 * Returns:
851 * < 0 errno code on error, 0 if ok.
853 * Description:
855 * Tries hard enough to put the device in boot-mode. There are two
856 * main phases to this:
858 * a. (1) send a reboot command and (2) get a reboot barker
860 * b. (1) echo/ack the reboot sending the reboot barker back and (2)
861 * getting an ack barker in return
863 * We want to skip (a) in some cases [soft]. The state machine is
864 * horrible, but it is basically: on each phase, send what has to be
865 * sent (if any), wait for the answer and act on the answer. We might
866 * have to backtrack and retry, so we keep a max tries counter for
867 * that.
869 * It sucks because we don't know ahead of time which is going to be
870 * the reboot barker (the device might send different ones depending
871 * on its EEPROM config) and once the device reboots and waits for the
872 * echo/ack reboot barker being sent back, it doesn't understand
873 * anything else. So we can be left at the point where we don't know
874 * what to send to it -- cold reset and bus reset seem to have little
875 * effect. So the function iterates (in this case) through all the
876 * known barkers and tries them all until an ACK is
877 * received. Otherwise, it gives up.
879 * If we get a timeout after sending a warm reset, we do it again.
881 int i2400m_bootrom_init(struct i2400m *i2400m, enum i2400m_bri flags)
883 int result;
884 struct device *dev = i2400m_dev(i2400m);
885 struct i2400m_bootrom_header *cmd;
886 struct i2400m_bootrom_header ack;
887 int count = i2400m->bus_bm_retries;
888 int ack_timeout_cnt = 1;
889 unsigned i;
891 BUILD_BUG_ON(sizeof(*cmd) != sizeof(i2400m_barker_db[0].data));
892 BUILD_BUG_ON(sizeof(ack) != sizeof(i2400m_ACK_BARKER));
894 d_fnstart(4, dev, "(i2400m %p flags 0x%08x)\n", i2400m, flags);
895 result = -ENOMEM;
896 cmd = i2400m->bm_cmd_buf;
897 if (flags & I2400M_BRI_SOFT)
898 goto do_reboot_ack;
899 do_reboot:
900 ack_timeout_cnt = 1;
901 if (--count < 0)
902 goto error_timeout;
903 d_printf(4, dev, "device reboot: reboot command [%d # left]\n",
904 count);
905 if ((flags & I2400M_BRI_NO_REBOOT) == 0)
906 i2400m_reset(i2400m, I2400M_RT_WARM);
907 result = i2400m_bm_cmd(i2400m, NULL, 0, &ack, sizeof(ack),
908 I2400M_BM_CMD_RAW);
909 flags &= ~I2400M_BRI_NO_REBOOT;
910 switch (result) {
911 case -ERESTARTSYS:
913 * at this point, i2400m_bm_cmd(), through
914 * __i2400m_bm_ack_process(), has updated
915 * i2400m->barker and we are good to go.
917 d_printf(4, dev, "device reboot: got reboot barker\n");
918 break;
919 case -EISCONN: /* we don't know how it got here...but we follow it */
920 d_printf(4, dev, "device reboot: got ack barker - whatever\n");
921 goto do_reboot;
922 case -ETIMEDOUT:
924 * Device has timed out, we might be in boot mode
925 * already and expecting an ack; if we don't know what
926 * the barker is, we just send them all. Cold reset
927 * and bus reset don't work. Beats me.
929 if (i2400m->barker != NULL) {
930 dev_err(dev, "device boot: reboot barker timed out, "
931 "trying (set) %08x echo/ack\n",
932 le32_to_cpu(i2400m->barker->data[0]));
933 goto do_reboot_ack;
935 for (i = 0; i < i2400m_barker_db_used; i++) {
936 struct i2400m_barker_db *barker = &i2400m_barker_db[i];
937 memcpy(cmd, barker->data, sizeof(barker->data));
938 result = i2400m_bm_cmd(i2400m, cmd, sizeof(*cmd),
939 &ack, sizeof(ack),
940 I2400M_BM_CMD_RAW);
941 if (result == -EISCONN) {
942 dev_warn(dev, "device boot: got ack barker "
943 "after sending echo/ack barker "
944 "#%d/%08x; rebooting j.i.c.\n",
945 i, le32_to_cpu(barker->data[0]));
946 flags &= ~I2400M_BRI_NO_REBOOT;
947 goto do_reboot;
950 dev_err(dev, "device boot: tried all the echo/acks, could "
951 "not get device to respond; giving up");
952 result = -ESHUTDOWN;
953 case -EPROTO:
954 case -ESHUTDOWN: /* dev is gone */
955 case -EINTR: /* user cancelled */
956 goto error_dev_gone;
957 default:
958 dev_err(dev, "device reboot: error %d while waiting "
959 "for reboot barker - rebooting\n", result);
960 d_dump(1, dev, &ack, result);
961 goto do_reboot;
963 /* At this point we ack back with 4 REBOOT barkers and expect
964 * 4 ACK barkers. This is ugly, as we send a raw command --
965 * hence the cast. _bm_cmd() will catch the reboot ack
966 * notification and report it as -EISCONN. */
967 do_reboot_ack:
968 d_printf(4, dev, "device reboot ack: sending ack [%d # left]\n", count);
969 memcpy(cmd, i2400m->barker->data, sizeof(i2400m->barker->data));
970 result = i2400m_bm_cmd(i2400m, cmd, sizeof(*cmd),
971 &ack, sizeof(ack), I2400M_BM_CMD_RAW);
972 switch (result) {
973 case -ERESTARTSYS:
974 d_printf(4, dev, "reboot ack: got reboot barker - retrying\n");
975 if (--count < 0)
976 goto error_timeout;
977 goto do_reboot_ack;
978 case -EISCONN:
979 d_printf(4, dev, "reboot ack: got ack barker - good\n");
980 break;
981 case -ETIMEDOUT: /* no response, maybe it is the other type? */
982 if (ack_timeout_cnt-- < 0) {
983 d_printf(4, dev, "reboot ack timedout: retrying\n");
984 goto do_reboot_ack;
985 } else {
986 dev_err(dev, "reboot ack timedout too long: "
987 "trying reboot\n");
988 goto do_reboot;
990 break;
991 case -EPROTO:
992 case -ESHUTDOWN: /* dev is gone */
993 goto error_dev_gone;
994 default:
995 dev_err(dev, "device reboot ack: error %d while waiting for "
996 "reboot ack barker - rebooting\n", result);
997 goto do_reboot;
999 d_printf(2, dev, "device reboot ack: got ack barker - boot done\n");
1000 result = 0;
1001 exit_timeout:
1002 error_dev_gone:
1003 d_fnend(4, dev, "(i2400m %p flags 0x%08x) = %d\n",
1004 i2400m, flags, result);
1005 return result;
1007 error_timeout:
1008 dev_err(dev, "Timed out waiting for reboot ack\n");
1009 result = -ETIMEDOUT;
1010 goto exit_timeout;
1015 * Read the MAC addr
1017 * The position this function reads is fixed in device memory and
1018 * always available, even without firmware.
1020 * Note we specify we want to read only six bytes, but provide space
1021 * for 16, as we always get it rounded up.
1023 int i2400m_read_mac_addr(struct i2400m *i2400m)
1025 int result;
1026 struct device *dev = i2400m_dev(i2400m);
1027 struct net_device *net_dev = i2400m->wimax_dev.net_dev;
1028 struct i2400m_bootrom_header *cmd;
1029 struct {
1030 struct i2400m_bootrom_header ack;
1031 u8 ack_pl[16];
1032 } __packed ack_buf;
1034 d_fnstart(5, dev, "(i2400m %p)\n", i2400m);
1035 cmd = i2400m->bm_cmd_buf;
1036 cmd->command = i2400m_brh_command(I2400M_BRH_READ, 0, 1);
1037 cmd->target_addr = cpu_to_le32(0x00203fe8);
1038 cmd->data_size = cpu_to_le32(6);
1039 result = i2400m_bm_cmd(i2400m, cmd, sizeof(*cmd),
1040 &ack_buf.ack, sizeof(ack_buf), 0);
1041 if (result < 0) {
1042 dev_err(dev, "BM: read mac addr failed: %d\n", result);
1043 goto error_read_mac;
1045 d_printf(2, dev, "mac addr is %pM\n", ack_buf.ack_pl);
1046 if (i2400m->bus_bm_mac_addr_impaired == 1) {
1047 ack_buf.ack_pl[0] = 0x00;
1048 ack_buf.ack_pl[1] = 0x16;
1049 ack_buf.ack_pl[2] = 0xd3;
1050 get_random_bytes(&ack_buf.ack_pl[3], 3);
1051 dev_err(dev, "BM is MAC addr impaired, faking MAC addr to "
1052 "mac addr is %pM\n", ack_buf.ack_pl);
1053 result = 0;
1055 net_dev->addr_len = ETH_ALEN;
1056 memcpy(net_dev->perm_addr, ack_buf.ack_pl, ETH_ALEN);
1057 memcpy(net_dev->dev_addr, ack_buf.ack_pl, ETH_ALEN);
1058 error_read_mac:
1059 d_fnend(5, dev, "(i2400m %p) = %d\n", i2400m, result);
1060 return result;
1065 * Initialize a non signed boot
1067 * This implies sending some magic values to the device's memory. Note
1068 * we convert the values to little endian in the same array
1069 * declaration.
1071 static
1072 int i2400m_dnload_init_nonsigned(struct i2400m *i2400m)
1074 unsigned i = 0;
1075 int ret = 0;
1076 struct device *dev = i2400m_dev(i2400m);
1077 d_fnstart(5, dev, "(i2400m %p)\n", i2400m);
1078 if (i2400m->bus_bm_pokes_table) {
1079 while (i2400m->bus_bm_pokes_table[i].address) {
1080 ret = i2400m_download_chunk(
1081 i2400m,
1082 &i2400m->bus_bm_pokes_table[i].data,
1083 sizeof(i2400m->bus_bm_pokes_table[i].data),
1084 i2400m->bus_bm_pokes_table[i].address, 1, 1);
1085 if (ret < 0)
1086 break;
1087 i++;
1090 d_fnend(5, dev, "(i2400m %p) = %d\n", i2400m, ret);
1091 return ret;
1096 * Initialize the signed boot process
1098 * @i2400m: device descriptor
1100 * @bcf_hdr: pointer to the firmware header; assumes it is fully in
1101 * memory (it has gone through basic validation).
1103 * Returns: 0 if ok, < 0 errno code on error, -ERESTARTSYS if the hw
1104 * rebooted.
1106 * This writes the firmware BCF header to the device using the
1107 * HASH_PAYLOAD_ONLY command.
1109 static
1110 int i2400m_dnload_init_signed(struct i2400m *i2400m,
1111 const struct i2400m_bcf_hdr *bcf_hdr)
1113 int ret;
1114 struct device *dev = i2400m_dev(i2400m);
1115 struct {
1116 struct i2400m_bootrom_header cmd;
1117 struct i2400m_bcf_hdr cmd_pl;
1118 } __packed *cmd_buf;
1119 struct i2400m_bootrom_header ack;
1121 d_fnstart(5, dev, "(i2400m %p bcf_hdr %p)\n", i2400m, bcf_hdr);
1122 cmd_buf = i2400m->bm_cmd_buf;
1123 cmd_buf->cmd.command =
1124 i2400m_brh_command(I2400M_BRH_HASH_PAYLOAD_ONLY, 0, 0);
1125 cmd_buf->cmd.target_addr = 0;
1126 cmd_buf->cmd.data_size = cpu_to_le32(sizeof(cmd_buf->cmd_pl));
1127 memcpy(&cmd_buf->cmd_pl, bcf_hdr, sizeof(*bcf_hdr));
1128 ret = i2400m_bm_cmd(i2400m, &cmd_buf->cmd, sizeof(*cmd_buf),
1129 &ack, sizeof(ack), 0);
1130 if (ret >= 0)
1131 ret = 0;
1132 d_fnend(5, dev, "(i2400m %p bcf_hdr %p) = %d\n", i2400m, bcf_hdr, ret);
1133 return ret;
1138 * Initialize the firmware download at the device size
1140 * Multiplex to the one that matters based on the device's mode
1141 * (signed or non-signed).
1143 static
1144 int i2400m_dnload_init(struct i2400m *i2400m,
1145 const struct i2400m_bcf_hdr *bcf_hdr)
1147 int result;
1148 struct device *dev = i2400m_dev(i2400m);
1150 if (i2400m_boot_is_signed(i2400m)) {
1151 d_printf(1, dev, "signed boot\n");
1152 result = i2400m_dnload_init_signed(i2400m, bcf_hdr);
1153 if (result == -ERESTARTSYS)
1154 return result;
1155 if (result < 0)
1156 dev_err(dev, "firmware %s: signed boot download "
1157 "initialization failed: %d\n",
1158 i2400m->fw_name, result);
1159 } else {
1160 /* non-signed boot process without pokes */
1161 d_printf(1, dev, "non-signed boot\n");
1162 result = i2400m_dnload_init_nonsigned(i2400m);
1163 if (result == -ERESTARTSYS)
1164 return result;
1165 if (result < 0)
1166 dev_err(dev, "firmware %s: non-signed download "
1167 "initialization failed: %d\n",
1168 i2400m->fw_name, result);
1170 return result;
1175 * Run consistency tests on the firmware file and load up headers
1177 * Check for the firmware being made for the i2400m device,
1178 * etc...These checks are mostly informative, as the device will make
1179 * them too; but the driver's response is more informative on what
1180 * went wrong.
1182 * This will also look at all the headers present on the firmware
1183 * file, and update i2400m->fw_bcf_hdr to point to them.
1185 static
1186 int i2400m_fw_hdr_check(struct i2400m *i2400m,
1187 const struct i2400m_bcf_hdr *bcf_hdr,
1188 size_t index, size_t offset)
1190 struct device *dev = i2400m_dev(i2400m);
1192 unsigned module_type, header_len, major_version, minor_version,
1193 module_id, module_vendor, date, size;
1195 module_type = le32_to_cpu(bcf_hdr->module_type);
1196 header_len = sizeof(u32) * le32_to_cpu(bcf_hdr->header_len);
1197 major_version = (le32_to_cpu(bcf_hdr->header_version) & 0xffff0000)
1198 >> 16;
1199 minor_version = le32_to_cpu(bcf_hdr->header_version) & 0x0000ffff;
1200 module_id = le32_to_cpu(bcf_hdr->module_id);
1201 module_vendor = le32_to_cpu(bcf_hdr->module_vendor);
1202 date = le32_to_cpu(bcf_hdr->date);
1203 size = sizeof(u32) * le32_to_cpu(bcf_hdr->size);
1205 d_printf(1, dev, "firmware %s #%zd@%08zx: BCF header "
1206 "type:vendor:id 0x%x:%x:%x v%u.%u (%u/%u B) built %08x\n",
1207 i2400m->fw_name, index, offset,
1208 module_type, module_vendor, module_id,
1209 major_version, minor_version, header_len, size, date);
1211 /* Hard errors */
1212 if (major_version != 1) {
1213 dev_err(dev, "firmware %s #%zd@%08zx: major header version "
1214 "v%u.%u not supported\n",
1215 i2400m->fw_name, index, offset,
1216 major_version, minor_version);
1217 return -EBADF;
1220 if (module_type != 6) { /* built for the right hardware? */
1221 dev_err(dev, "firmware %s #%zd@%08zx: unexpected module "
1222 "type 0x%x; aborting\n",
1223 i2400m->fw_name, index, offset,
1224 module_type);
1225 return -EBADF;
1228 if (module_vendor != 0x8086) {
1229 dev_err(dev, "firmware %s #%zd@%08zx: unexpected module "
1230 "vendor 0x%x; aborting\n",
1231 i2400m->fw_name, index, offset, module_vendor);
1232 return -EBADF;
1235 if (date < 0x20080300)
1236 dev_warn(dev, "firmware %s #%zd@%08zx: build date %08x "
1237 "too old; unsupported\n",
1238 i2400m->fw_name, index, offset, date);
1239 return 0;
1244 * Run consistency tests on the firmware file and load up headers
1246 * Check for the firmware being made for the i2400m device,
1247 * etc...These checks are mostly informative, as the device will make
1248 * them too; but the driver's response is more informative on what
1249 * went wrong.
1251 * This will also look at all the headers present on the firmware
1252 * file, and update i2400m->fw_hdrs to point to them.
1254 static
1255 int i2400m_fw_check(struct i2400m *i2400m, const void *bcf, size_t bcf_size)
1257 int result;
1258 struct device *dev = i2400m_dev(i2400m);
1259 size_t headers = 0;
1260 const struct i2400m_bcf_hdr *bcf_hdr;
1261 const void *itr, *next, *top;
1262 size_t slots = 0, used_slots = 0;
1264 for (itr = bcf, top = itr + bcf_size;
1265 itr < top;
1266 headers++, itr = next) {
1267 size_t leftover, offset, header_len, size;
1269 leftover = top - itr;
1270 offset = itr - (const void *) bcf;
1271 if (leftover <= sizeof(*bcf_hdr)) {
1272 dev_err(dev, "firmware %s: %zu B left at @%zx, "
1273 "not enough for BCF header\n",
1274 i2400m->fw_name, leftover, offset);
1275 break;
1277 bcf_hdr = itr;
1278 /* Only the first header is supposed to be followed by
1279 * payload */
1280 header_len = sizeof(u32) * le32_to_cpu(bcf_hdr->header_len);
1281 size = sizeof(u32) * le32_to_cpu(bcf_hdr->size);
1282 if (headers == 0)
1283 next = itr + size;
1284 else
1285 next = itr + header_len;
1287 result = i2400m_fw_hdr_check(i2400m, bcf_hdr, headers, offset);
1288 if (result < 0)
1289 continue;
1290 if (used_slots + 1 >= slots) {
1291 /* +1 -> we need to account for the one we'll
1292 * occupy and at least an extra one for
1293 * always being NULL */
1294 result = i2400m_zrealloc_2x(
1295 (void **) &i2400m->fw_hdrs, &slots,
1296 sizeof(i2400m->fw_hdrs[0]),
1297 GFP_KERNEL);
1298 if (result < 0)
1299 goto error_zrealloc;
1301 i2400m->fw_hdrs[used_slots] = bcf_hdr;
1302 used_slots++;
1304 if (headers == 0) {
1305 dev_err(dev, "firmware %s: no usable headers found\n",
1306 i2400m->fw_name);
1307 result = -EBADF;
1308 } else
1309 result = 0;
1310 error_zrealloc:
1311 return result;
1316 * Match a barker to a BCF header module ID
1318 * The device sends a barker which tells the firmware loader which
1319 * header in the BCF file has to be used. This does the matching.
1321 static
1322 unsigned i2400m_bcf_hdr_match(struct i2400m *i2400m,
1323 const struct i2400m_bcf_hdr *bcf_hdr)
1325 u32 barker = le32_to_cpu(i2400m->barker->data[0])
1326 & 0x7fffffff;
1327 u32 module_id = le32_to_cpu(bcf_hdr->module_id)
1328 & 0x7fffffff; /* high bit used for something else */
1330 /* special case for 5x50 */
1331 if (barker == I2400M_SBOOT_BARKER && module_id == 0)
1332 return 1;
1333 if (module_id == barker)
1334 return 1;
1335 return 0;
1338 static
1339 const struct i2400m_bcf_hdr *i2400m_bcf_hdr_find(struct i2400m *i2400m)
1341 struct device *dev = i2400m_dev(i2400m);
1342 const struct i2400m_bcf_hdr **bcf_itr, *bcf_hdr;
1343 unsigned i = 0;
1344 u32 barker = le32_to_cpu(i2400m->barker->data[0]);
1346 d_printf(2, dev, "finding BCF header for barker %08x\n", barker);
1347 if (barker == I2400M_NBOOT_BARKER) {
1348 bcf_hdr = i2400m->fw_hdrs[0];
1349 d_printf(1, dev, "using BCF header #%u/%08x for non-signed "
1350 "barker\n", 0, le32_to_cpu(bcf_hdr->module_id));
1351 return bcf_hdr;
1353 for (bcf_itr = i2400m->fw_hdrs; *bcf_itr != NULL; bcf_itr++, i++) {
1354 bcf_hdr = *bcf_itr;
1355 if (i2400m_bcf_hdr_match(i2400m, bcf_hdr)) {
1356 d_printf(1, dev, "hit on BCF hdr #%u/%08x\n",
1357 i, le32_to_cpu(bcf_hdr->module_id));
1358 return bcf_hdr;
1359 } else
1360 d_printf(1, dev, "miss on BCF hdr #%u/%08x\n",
1361 i, le32_to_cpu(bcf_hdr->module_id));
1363 dev_err(dev, "cannot find a matching BCF header for barker %08x\n",
1364 barker);
1365 return NULL;
1370 * Download the firmware to the device
1372 * @i2400m: device descriptor
1373 * @bcf: pointer to loaded (and minimally verified for consistency)
1374 * firmware
1375 * @bcf_size: size of the @bcf buffer (header plus payloads)
1377 * The process for doing this is described in this file's header.
1379 * Note we only reinitialize boot-mode if the flags say so. Some hw
1380 * iterations need it, some don't. In any case, if we loop, we always
1381 * need to reinitialize the boot room, hence the flags modification.
1383 static
1384 int i2400m_fw_dnload(struct i2400m *i2400m, const struct i2400m_bcf_hdr *bcf,
1385 size_t fw_size, enum i2400m_bri flags)
1387 int ret = 0;
1388 struct device *dev = i2400m_dev(i2400m);
1389 int count = i2400m->bus_bm_retries;
1390 const struct i2400m_bcf_hdr *bcf_hdr;
1391 size_t bcf_size;
1393 d_fnstart(5, dev, "(i2400m %p bcf %p fw size %zu)\n",
1394 i2400m, bcf, fw_size);
1395 i2400m->boot_mode = 1;
1396 wmb(); /* Make sure other readers see it */
1397 hw_reboot:
1398 if (count-- == 0) {
1399 ret = -ERESTARTSYS;
1400 dev_err(dev, "device rebooted too many times, aborting\n");
1401 goto error_too_many_reboots;
1403 if (flags & I2400M_BRI_MAC_REINIT) {
1404 ret = i2400m_bootrom_init(i2400m, flags);
1405 if (ret < 0) {
1406 dev_err(dev, "bootrom init failed: %d\n", ret);
1407 goto error_bootrom_init;
1410 flags |= I2400M_BRI_MAC_REINIT;
1413 * Initialize the download, push the bytes to the device and
1414 * then jump to the new firmware. Note @ret is passed with the
1415 * offset of the jump instruction to _dnload_finalize()
1417 * Note we need to use the BCF header in the firmware image
1418 * that matches the barker that the device sent when it
1419 * rebooted, so it has to be passed along.
1421 ret = -EBADF;
1422 bcf_hdr = i2400m_bcf_hdr_find(i2400m);
1423 if (bcf_hdr == NULL)
1424 goto error_bcf_hdr_find;
1426 ret = i2400m_dnload_init(i2400m, bcf_hdr);
1427 if (ret == -ERESTARTSYS)
1428 goto error_dev_rebooted;
1429 if (ret < 0)
1430 goto error_dnload_init;
1433 * bcf_size refers to one header size plus the fw sections size
1434 * indicated by the header,ie. if there are other extended headers
1435 * at the tail, they are not counted
1437 bcf_size = sizeof(u32) * le32_to_cpu(bcf_hdr->size);
1438 ret = i2400m_dnload_bcf(i2400m, bcf, bcf_size);
1439 if (ret == -ERESTARTSYS)
1440 goto error_dev_rebooted;
1441 if (ret < 0) {
1442 dev_err(dev, "fw %s: download failed: %d\n",
1443 i2400m->fw_name, ret);
1444 goto error_dnload_bcf;
1447 ret = i2400m_dnload_finalize(i2400m, bcf_hdr, bcf, ret);
1448 if (ret == -ERESTARTSYS)
1449 goto error_dev_rebooted;
1450 if (ret < 0) {
1451 dev_err(dev, "fw %s: "
1452 "download finalization failed: %d\n",
1453 i2400m->fw_name, ret);
1454 goto error_dnload_finalize;
1457 d_printf(2, dev, "fw %s successfully uploaded\n",
1458 i2400m->fw_name);
1459 i2400m->boot_mode = 0;
1460 wmb(); /* Make sure i2400m_msg_to_dev() sees boot_mode */
1461 error_dnload_finalize:
1462 error_dnload_bcf:
1463 error_dnload_init:
1464 error_bcf_hdr_find:
1465 error_bootrom_init:
1466 error_too_many_reboots:
1467 d_fnend(5, dev, "(i2400m %p bcf %p size %zu) = %d\n",
1468 i2400m, bcf, fw_size, ret);
1469 return ret;
1471 error_dev_rebooted:
1472 dev_err(dev, "device rebooted, %d tries left\n", count);
1473 /* we got the notification already, no need to wait for it again */
1474 flags |= I2400M_BRI_SOFT;
1475 goto hw_reboot;
1478 static
1479 int i2400m_fw_bootstrap(struct i2400m *i2400m, const struct firmware *fw,
1480 enum i2400m_bri flags)
1482 int ret;
1483 struct device *dev = i2400m_dev(i2400m);
1484 const struct i2400m_bcf_hdr *bcf; /* Firmware data */
1486 d_fnstart(5, dev, "(i2400m %p)\n", i2400m);
1487 bcf = (void *) fw->data;
1488 ret = i2400m_fw_check(i2400m, bcf, fw->size);
1489 if (ret >= 0)
1490 ret = i2400m_fw_dnload(i2400m, bcf, fw->size, flags);
1491 if (ret < 0)
1492 dev_err(dev, "%s: cannot use: %d, skipping\n",
1493 i2400m->fw_name, ret);
1494 kfree(i2400m->fw_hdrs);
1495 i2400m->fw_hdrs = NULL;
1496 d_fnend(5, dev, "(i2400m %p) = %d\n", i2400m, ret);
1497 return ret;
1501 /* Refcounted container for firmware data */
1502 struct i2400m_fw {
1503 struct kref kref;
1504 const struct firmware *fw;
1508 static
1509 void i2400m_fw_destroy(struct kref *kref)
1511 struct i2400m_fw *i2400m_fw =
1512 container_of(kref, struct i2400m_fw, kref);
1513 release_firmware(i2400m_fw->fw);
1514 kfree(i2400m_fw);
1518 static
1519 struct i2400m_fw *i2400m_fw_get(struct i2400m_fw *i2400m_fw)
1521 if (i2400m_fw != NULL && i2400m_fw != (void *) ~0)
1522 kref_get(&i2400m_fw->kref);
1523 return i2400m_fw;
1527 static
1528 void i2400m_fw_put(struct i2400m_fw *i2400m_fw)
1530 kref_put(&i2400m_fw->kref, i2400m_fw_destroy);
1535 * i2400m_dev_bootstrap - Bring the device to a known state and upload firmware
1537 * @i2400m: device descriptor
1539 * Returns: >= 0 if ok, < 0 errno code on error.
1541 * This sets up the firmware upload environment, loads the firmware
1542 * file from disk, verifies and then calls the firmware upload process
1543 * per se.
1545 * Can be called either from probe, or after a warm reset. Can not be
1546 * called from within an interrupt. All the flow in this code is
1547 * single-threade; all I/Os are synchronous.
1549 int i2400m_dev_bootstrap(struct i2400m *i2400m, enum i2400m_bri flags)
1551 int ret, itr;
1552 struct device *dev = i2400m_dev(i2400m);
1553 struct i2400m_fw *i2400m_fw;
1554 const struct i2400m_bcf_hdr *bcf; /* Firmware data */
1555 const struct firmware *fw;
1556 const char *fw_name;
1558 d_fnstart(5, dev, "(i2400m %p)\n", i2400m);
1560 ret = -ENODEV;
1561 spin_lock(&i2400m->rx_lock);
1562 i2400m_fw = i2400m_fw_get(i2400m->fw_cached);
1563 spin_unlock(&i2400m->rx_lock);
1564 if (i2400m_fw == (void *) ~0) {
1565 dev_err(dev, "can't load firmware now!");
1566 goto out;
1567 } else if (i2400m_fw != NULL) {
1568 dev_info(dev, "firmware %s: loading from cache\n",
1569 i2400m->fw_name);
1570 ret = i2400m_fw_bootstrap(i2400m, i2400m_fw->fw, flags);
1571 i2400m_fw_put(i2400m_fw);
1572 goto out;
1575 /* Load firmware files to memory. */
1576 for (itr = 0, bcf = NULL, ret = -ENOENT; ; itr++) {
1577 fw_name = i2400m->bus_fw_names[itr];
1578 if (fw_name == NULL) {
1579 dev_err(dev, "Could not find a usable firmware image\n");
1580 break;
1582 d_printf(1, dev, "trying firmware %s (%d)\n", fw_name, itr);
1583 ret = request_firmware(&fw, fw_name, dev);
1584 if (ret < 0) {
1585 dev_err(dev, "fw %s: cannot load file: %d\n",
1586 fw_name, ret);
1587 continue;
1589 i2400m->fw_name = fw_name;
1590 ret = i2400m_fw_bootstrap(i2400m, fw, flags);
1591 release_firmware(fw);
1592 if (ret >= 0) /* firmware loaded succesfully */
1593 break;
1594 i2400m->fw_name = NULL;
1596 out:
1597 d_fnend(5, dev, "(i2400m %p) = %d\n", i2400m, ret);
1598 return ret;
1600 EXPORT_SYMBOL_GPL(i2400m_dev_bootstrap);
1603 void i2400m_fw_cache(struct i2400m *i2400m)
1605 int result;
1606 struct i2400m_fw *i2400m_fw;
1607 struct device *dev = i2400m_dev(i2400m);
1609 /* if there is anything there, free it -- now, this'd be weird */
1610 spin_lock(&i2400m->rx_lock);
1611 i2400m_fw = i2400m->fw_cached;
1612 spin_unlock(&i2400m->rx_lock);
1613 if (i2400m_fw != NULL && i2400m_fw != (void *) ~0) {
1614 i2400m_fw_put(i2400m_fw);
1615 WARN(1, "%s:%u: still cached fw still present?\n",
1616 __func__, __LINE__);
1619 if (i2400m->fw_name == NULL) {
1620 dev_err(dev, "firmware n/a: can't cache\n");
1621 i2400m_fw = (void *) ~0;
1622 goto out;
1625 i2400m_fw = kzalloc(sizeof(*i2400m_fw), GFP_ATOMIC);
1626 if (i2400m_fw == NULL)
1627 goto out;
1628 kref_init(&i2400m_fw->kref);
1629 result = request_firmware(&i2400m_fw->fw, i2400m->fw_name, dev);
1630 if (result < 0) {
1631 dev_err(dev, "firmware %s: failed to cache: %d\n",
1632 i2400m->fw_name, result);
1633 kfree(i2400m_fw);
1634 i2400m_fw = (void *) ~0;
1635 } else
1636 dev_info(dev, "firmware %s: cached\n", i2400m->fw_name);
1637 out:
1638 spin_lock(&i2400m->rx_lock);
1639 i2400m->fw_cached = i2400m_fw;
1640 spin_unlock(&i2400m->rx_lock);
1644 void i2400m_fw_uncache(struct i2400m *i2400m)
1646 struct i2400m_fw *i2400m_fw;
1648 spin_lock(&i2400m->rx_lock);
1649 i2400m_fw = i2400m->fw_cached;
1650 i2400m->fw_cached = NULL;
1651 spin_unlock(&i2400m->rx_lock);
1653 if (i2400m_fw != NULL && i2400m_fw != (void *) ~0)
1654 i2400m_fw_put(i2400m_fw);