proc: use seq_puts()/seq_putc() where possible
[linux-2.6/next.git] / drivers / net / wireless / ath / ath5k / eeprom.c
blob80e625608bac69665b29ff32915d3e8f0d13c92a
1 /*
2 * Copyright (c) 2004-2008 Reyk Floeter <reyk@openbsd.org>
3 * Copyright (c) 2006-2009 Nick Kossifidis <mickflemm@gmail.com>
4 * Copyright (c) 2008-2009 Felix Fietkau <nbd@openwrt.org>
6 * Permission to use, copy, modify, and distribute this software for any
7 * purpose with or without fee is hereby granted, provided that the above
8 * copyright notice and this permission notice appear in all copies.
10 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20 /*************************************\
21 * EEPROM access functions and helpers *
22 \*************************************/
24 #include <linux/slab.h>
26 #include "ath5k.h"
27 #include "reg.h"
28 #include "debug.h"
29 #include "base.h"
32 /******************\
33 * Helper functions *
34 \******************/
37 * Translate binary channel representation in EEPROM to frequency
39 static u16 ath5k_eeprom_bin2freq(struct ath5k_eeprom_info *ee, u16 bin,
40 unsigned int mode)
42 u16 val;
44 if (bin == AR5K_EEPROM_CHANNEL_DIS)
45 return bin;
47 if (mode == AR5K_EEPROM_MODE_11A) {
48 if (ee->ee_version > AR5K_EEPROM_VERSION_3_2)
49 val = (5 * bin) + 4800;
50 else
51 val = bin > 62 ? (10 * 62) + (5 * (bin - 62)) + 5100 :
52 (bin * 10) + 5100;
53 } else {
54 if (ee->ee_version > AR5K_EEPROM_VERSION_3_2)
55 val = bin + 2300;
56 else
57 val = bin + 2400;
60 return val;
64 /*********\
65 * Parsers *
66 \*********/
69 * Initialize eeprom & capabilities structs
71 static int
72 ath5k_eeprom_init_header(struct ath5k_hw *ah)
74 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
75 int ret;
76 u16 val;
77 u32 cksum, offset, eep_max = AR5K_EEPROM_INFO_MAX;
80 * Read values from EEPROM and store them in the capability structure
82 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MAGIC, ee_magic);
83 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_PROTECT, ee_protect);
84 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_REG_DOMAIN, ee_regdomain);
85 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_VERSION, ee_version);
86 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_HDR, ee_header);
88 /* Return if we have an old EEPROM */
89 if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_0)
90 return 0;
93 * Validate the checksum of the EEPROM date. There are some
94 * devices with invalid EEPROMs.
96 AR5K_EEPROM_READ(AR5K_EEPROM_SIZE_UPPER, val);
97 if (val) {
98 eep_max = (val & AR5K_EEPROM_SIZE_UPPER_MASK) <<
99 AR5K_EEPROM_SIZE_ENDLOC_SHIFT;
100 AR5K_EEPROM_READ(AR5K_EEPROM_SIZE_LOWER, val);
101 eep_max = (eep_max | val) - AR5K_EEPROM_INFO_BASE;
104 * Fail safe check to prevent stupid loops due
105 * to busted EEPROMs. XXX: This value is likely too
106 * big still, waiting on a better value.
108 if (eep_max > (3 * AR5K_EEPROM_INFO_MAX)) {
109 ATH5K_ERR(ah->ah_sc, "Invalid max custom EEPROM size: "
110 "%d (0x%04x) max expected: %d (0x%04x)\n",
111 eep_max, eep_max,
112 3 * AR5K_EEPROM_INFO_MAX,
113 3 * AR5K_EEPROM_INFO_MAX);
114 return -EIO;
118 for (cksum = 0, offset = 0; offset < eep_max; offset++) {
119 AR5K_EEPROM_READ(AR5K_EEPROM_INFO(offset), val);
120 cksum ^= val;
122 if (cksum != AR5K_EEPROM_INFO_CKSUM) {
123 ATH5K_ERR(ah->ah_sc, "Invalid EEPROM "
124 "checksum: 0x%04x eep_max: 0x%04x (%s)\n",
125 cksum, eep_max,
126 eep_max == AR5K_EEPROM_INFO_MAX ?
127 "default size" : "custom size");
128 return -EIO;
131 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_ANT_GAIN(ah->ah_ee_version),
132 ee_ant_gain);
134 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0) {
135 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC0, ee_misc0);
136 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC1, ee_misc1);
138 /* XXX: Don't know which versions include these two */
139 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC2, ee_misc2);
141 if (ee->ee_version >= AR5K_EEPROM_VERSION_4_3)
142 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC3, ee_misc3);
144 if (ee->ee_version >= AR5K_EEPROM_VERSION_5_0) {
145 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC4, ee_misc4);
146 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC5, ee_misc5);
147 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC6, ee_misc6);
151 if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_3) {
152 AR5K_EEPROM_READ(AR5K_EEPROM_OBDB0_2GHZ, val);
153 ee->ee_ob[AR5K_EEPROM_MODE_11B][0] = val & 0x7;
154 ee->ee_db[AR5K_EEPROM_MODE_11B][0] = (val >> 3) & 0x7;
156 AR5K_EEPROM_READ(AR5K_EEPROM_OBDB1_2GHZ, val);
157 ee->ee_ob[AR5K_EEPROM_MODE_11G][0] = val & 0x7;
158 ee->ee_db[AR5K_EEPROM_MODE_11G][0] = (val >> 3) & 0x7;
161 AR5K_EEPROM_READ(AR5K_EEPROM_IS_HB63, val);
163 if ((ah->ah_mac_version == (AR5K_SREV_AR2425 >> 4)) && val)
164 ee->ee_is_hb63 = true;
165 else
166 ee->ee_is_hb63 = false;
168 AR5K_EEPROM_READ(AR5K_EEPROM_RFKILL, val);
169 ee->ee_rfkill_pin = (u8) AR5K_REG_MS(val, AR5K_EEPROM_RFKILL_GPIO_SEL);
170 ee->ee_rfkill_pol = val & AR5K_EEPROM_RFKILL_POLARITY ? true : false;
172 /* Check if PCIE_OFFSET points to PCIE_SERDES_SECTION
173 * and enable serdes programming if needed.
175 * XXX: Serdes values seem to be fixed so
176 * no need to read them here, we write them
177 * during ath5k_hw_init */
178 AR5K_EEPROM_READ(AR5K_EEPROM_PCIE_OFFSET, val);
179 ee->ee_serdes = (val == AR5K_EEPROM_PCIE_SERDES_SECTION) ?
180 true : false;
182 return 0;
187 * Read antenna infos from eeprom
189 static int ath5k_eeprom_read_ants(struct ath5k_hw *ah, u32 *offset,
190 unsigned int mode)
192 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
193 u32 o = *offset;
194 u16 val;
195 int ret, i = 0;
197 AR5K_EEPROM_READ(o++, val);
198 ee->ee_switch_settling[mode] = (val >> 8) & 0x7f;
199 ee->ee_atn_tx_rx[mode] = (val >> 2) & 0x3f;
200 ee->ee_ant_control[mode][i] = (val << 4) & 0x3f;
202 AR5K_EEPROM_READ(o++, val);
203 ee->ee_ant_control[mode][i++] |= (val >> 12) & 0xf;
204 ee->ee_ant_control[mode][i++] = (val >> 6) & 0x3f;
205 ee->ee_ant_control[mode][i++] = val & 0x3f;
207 AR5K_EEPROM_READ(o++, val);
208 ee->ee_ant_control[mode][i++] = (val >> 10) & 0x3f;
209 ee->ee_ant_control[mode][i++] = (val >> 4) & 0x3f;
210 ee->ee_ant_control[mode][i] = (val << 2) & 0x3f;
212 AR5K_EEPROM_READ(o++, val);
213 ee->ee_ant_control[mode][i++] |= (val >> 14) & 0x3;
214 ee->ee_ant_control[mode][i++] = (val >> 8) & 0x3f;
215 ee->ee_ant_control[mode][i++] = (val >> 2) & 0x3f;
216 ee->ee_ant_control[mode][i] = (val << 4) & 0x3f;
218 AR5K_EEPROM_READ(o++, val);
219 ee->ee_ant_control[mode][i++] |= (val >> 12) & 0xf;
220 ee->ee_ant_control[mode][i++] = (val >> 6) & 0x3f;
221 ee->ee_ant_control[mode][i++] = val & 0x3f;
223 /* Get antenna switch tables */
224 ah->ah_ant_ctl[mode][AR5K_ANT_CTL] =
225 (ee->ee_ant_control[mode][0] << 4);
226 ah->ah_ant_ctl[mode][AR5K_ANT_SWTABLE_A] =
227 ee->ee_ant_control[mode][1] |
228 (ee->ee_ant_control[mode][2] << 6) |
229 (ee->ee_ant_control[mode][3] << 12) |
230 (ee->ee_ant_control[mode][4] << 18) |
231 (ee->ee_ant_control[mode][5] << 24);
232 ah->ah_ant_ctl[mode][AR5K_ANT_SWTABLE_B] =
233 ee->ee_ant_control[mode][6] |
234 (ee->ee_ant_control[mode][7] << 6) |
235 (ee->ee_ant_control[mode][8] << 12) |
236 (ee->ee_ant_control[mode][9] << 18) |
237 (ee->ee_ant_control[mode][10] << 24);
239 /* return new offset */
240 *offset = o;
242 return 0;
246 * Read supported modes and some mode-specific calibration data
247 * from eeprom
249 static int ath5k_eeprom_read_modes(struct ath5k_hw *ah, u32 *offset,
250 unsigned int mode)
252 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
253 u32 o = *offset;
254 u16 val;
255 int ret;
257 ee->ee_n_piers[mode] = 0;
258 AR5K_EEPROM_READ(o++, val);
259 ee->ee_adc_desired_size[mode] = (s8)((val >> 8) & 0xff);
260 switch(mode) {
261 case AR5K_EEPROM_MODE_11A:
262 ee->ee_ob[mode][3] = (val >> 5) & 0x7;
263 ee->ee_db[mode][3] = (val >> 2) & 0x7;
264 ee->ee_ob[mode][2] = (val << 1) & 0x7;
266 AR5K_EEPROM_READ(o++, val);
267 ee->ee_ob[mode][2] |= (val >> 15) & 0x1;
268 ee->ee_db[mode][2] = (val >> 12) & 0x7;
269 ee->ee_ob[mode][1] = (val >> 9) & 0x7;
270 ee->ee_db[mode][1] = (val >> 6) & 0x7;
271 ee->ee_ob[mode][0] = (val >> 3) & 0x7;
272 ee->ee_db[mode][0] = val & 0x7;
273 break;
274 case AR5K_EEPROM_MODE_11G:
275 case AR5K_EEPROM_MODE_11B:
276 ee->ee_ob[mode][1] = (val >> 4) & 0x7;
277 ee->ee_db[mode][1] = val & 0x7;
278 break;
281 AR5K_EEPROM_READ(o++, val);
282 ee->ee_tx_end2xlna_enable[mode] = (val >> 8) & 0xff;
283 ee->ee_thr_62[mode] = val & 0xff;
285 if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2)
286 ee->ee_thr_62[mode] = mode == AR5K_EEPROM_MODE_11A ? 15 : 28;
288 AR5K_EEPROM_READ(o++, val);
289 ee->ee_tx_end2xpa_disable[mode] = (val >> 8) & 0xff;
290 ee->ee_tx_frm2xpa_enable[mode] = val & 0xff;
292 AR5K_EEPROM_READ(o++, val);
293 ee->ee_pga_desired_size[mode] = (val >> 8) & 0xff;
295 if ((val & 0xff) & 0x80)
296 ee->ee_noise_floor_thr[mode] = -((((val & 0xff) ^ 0xff)) + 1);
297 else
298 ee->ee_noise_floor_thr[mode] = val & 0xff;
300 if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2)
301 ee->ee_noise_floor_thr[mode] =
302 mode == AR5K_EEPROM_MODE_11A ? -54 : -1;
304 AR5K_EEPROM_READ(o++, val);
305 ee->ee_xlna_gain[mode] = (val >> 5) & 0xff;
306 ee->ee_x_gain[mode] = (val >> 1) & 0xf;
307 ee->ee_xpd[mode] = val & 0x1;
309 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0 &&
310 mode != AR5K_EEPROM_MODE_11B)
311 ee->ee_fixed_bias[mode] = (val >> 13) & 0x1;
313 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_3_3) {
314 AR5K_EEPROM_READ(o++, val);
315 ee->ee_false_detect[mode] = (val >> 6) & 0x7f;
317 if (mode == AR5K_EEPROM_MODE_11A)
318 ee->ee_xr_power[mode] = val & 0x3f;
319 else {
320 /* b_DB_11[bg] and b_OB_11[bg] */
321 ee->ee_ob[mode][0] = val & 0x7;
322 ee->ee_db[mode][0] = (val >> 3) & 0x7;
326 if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_4) {
327 ee->ee_i_gain[mode] = AR5K_EEPROM_I_GAIN;
328 ee->ee_cck_ofdm_power_delta = AR5K_EEPROM_CCK_OFDM_DELTA;
329 } else {
330 ee->ee_i_gain[mode] = (val >> 13) & 0x7;
332 AR5K_EEPROM_READ(o++, val);
333 ee->ee_i_gain[mode] |= (val << 3) & 0x38;
335 if (mode == AR5K_EEPROM_MODE_11G) {
336 ee->ee_cck_ofdm_power_delta = (val >> 3) & 0xff;
337 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_6)
338 ee->ee_scaled_cck_delta = (val >> 11) & 0x1f;
342 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0 &&
343 mode == AR5K_EEPROM_MODE_11A) {
344 ee->ee_i_cal[mode] = (val >> 8) & 0x3f;
345 ee->ee_q_cal[mode] = (val >> 3) & 0x1f;
348 if (ah->ah_ee_version < AR5K_EEPROM_VERSION_4_0)
349 goto done;
351 /* Note: >= v5 have bg freq piers on another location
352 * so these freq piers are ignored for >= v5 (should be 0xff
353 * anyway) */
354 switch(mode) {
355 case AR5K_EEPROM_MODE_11A:
356 if (ah->ah_ee_version < AR5K_EEPROM_VERSION_4_1)
357 break;
359 AR5K_EEPROM_READ(o++, val);
360 ee->ee_margin_tx_rx[mode] = val & 0x3f;
361 break;
362 case AR5K_EEPROM_MODE_11B:
363 AR5K_EEPROM_READ(o++, val);
365 ee->ee_pwr_cal_b[0].freq =
366 ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
367 if (ee->ee_pwr_cal_b[0].freq != AR5K_EEPROM_CHANNEL_DIS)
368 ee->ee_n_piers[mode]++;
370 ee->ee_pwr_cal_b[1].freq =
371 ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode);
372 if (ee->ee_pwr_cal_b[1].freq != AR5K_EEPROM_CHANNEL_DIS)
373 ee->ee_n_piers[mode]++;
375 AR5K_EEPROM_READ(o++, val);
376 ee->ee_pwr_cal_b[2].freq =
377 ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
378 if (ee->ee_pwr_cal_b[2].freq != AR5K_EEPROM_CHANNEL_DIS)
379 ee->ee_n_piers[mode]++;
381 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1)
382 ee->ee_margin_tx_rx[mode] = (val >> 8) & 0x3f;
383 break;
384 case AR5K_EEPROM_MODE_11G:
385 AR5K_EEPROM_READ(o++, val);
387 ee->ee_pwr_cal_g[0].freq =
388 ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
389 if (ee->ee_pwr_cal_g[0].freq != AR5K_EEPROM_CHANNEL_DIS)
390 ee->ee_n_piers[mode]++;
392 ee->ee_pwr_cal_g[1].freq =
393 ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode);
394 if (ee->ee_pwr_cal_g[1].freq != AR5K_EEPROM_CHANNEL_DIS)
395 ee->ee_n_piers[mode]++;
397 AR5K_EEPROM_READ(o++, val);
398 ee->ee_turbo_max_power[mode] = val & 0x7f;
399 ee->ee_xr_power[mode] = (val >> 7) & 0x3f;
401 AR5K_EEPROM_READ(o++, val);
402 ee->ee_pwr_cal_g[2].freq =
403 ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
404 if (ee->ee_pwr_cal_g[2].freq != AR5K_EEPROM_CHANNEL_DIS)
405 ee->ee_n_piers[mode]++;
407 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1)
408 ee->ee_margin_tx_rx[mode] = (val >> 8) & 0x3f;
410 AR5K_EEPROM_READ(o++, val);
411 ee->ee_i_cal[mode] = (val >> 5) & 0x3f;
412 ee->ee_q_cal[mode] = val & 0x1f;
414 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_2) {
415 AR5K_EEPROM_READ(o++, val);
416 ee->ee_cck_ofdm_gain_delta = val & 0xff;
418 break;
422 * Read turbo mode information on newer EEPROM versions
424 if (ee->ee_version < AR5K_EEPROM_VERSION_5_0)
425 goto done;
427 switch (mode){
428 case AR5K_EEPROM_MODE_11A:
429 ee->ee_switch_settling_turbo[mode] = (val >> 6) & 0x7f;
431 ee->ee_atn_tx_rx_turbo[mode] = (val >> 13) & 0x7;
432 AR5K_EEPROM_READ(o++, val);
433 ee->ee_atn_tx_rx_turbo[mode] |= (val & 0x7) << 3;
434 ee->ee_margin_tx_rx_turbo[mode] = (val >> 3) & 0x3f;
436 ee->ee_adc_desired_size_turbo[mode] = (val >> 9) & 0x7f;
437 AR5K_EEPROM_READ(o++, val);
438 ee->ee_adc_desired_size_turbo[mode] |= (val & 0x1) << 7;
439 ee->ee_pga_desired_size_turbo[mode] = (val >> 1) & 0xff;
441 if (AR5K_EEPROM_EEMAP(ee->ee_misc0) >=2)
442 ee->ee_pd_gain_overlap = (val >> 9) & 0xf;
443 break;
444 case AR5K_EEPROM_MODE_11G:
445 ee->ee_switch_settling_turbo[mode] = (val >> 8) & 0x7f;
447 ee->ee_atn_tx_rx_turbo[mode] = (val >> 15) & 0x7;
448 AR5K_EEPROM_READ(o++, val);
449 ee->ee_atn_tx_rx_turbo[mode] |= (val & 0x1f) << 1;
450 ee->ee_margin_tx_rx_turbo[mode] = (val >> 5) & 0x3f;
452 ee->ee_adc_desired_size_turbo[mode] = (val >> 11) & 0x7f;
453 AR5K_EEPROM_READ(o++, val);
454 ee->ee_adc_desired_size_turbo[mode] |= (val & 0x7) << 5;
455 ee->ee_pga_desired_size_turbo[mode] = (val >> 3) & 0xff;
456 break;
459 done:
460 /* return new offset */
461 *offset = o;
463 return 0;
466 /* Read mode-specific data (except power calibration data) */
467 static int
468 ath5k_eeprom_init_modes(struct ath5k_hw *ah)
470 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
471 u32 mode_offset[3];
472 unsigned int mode;
473 u32 offset;
474 int ret;
477 * Get values for all modes
479 mode_offset[AR5K_EEPROM_MODE_11A] = AR5K_EEPROM_MODES_11A(ah->ah_ee_version);
480 mode_offset[AR5K_EEPROM_MODE_11B] = AR5K_EEPROM_MODES_11B(ah->ah_ee_version);
481 mode_offset[AR5K_EEPROM_MODE_11G] = AR5K_EEPROM_MODES_11G(ah->ah_ee_version);
483 ee->ee_turbo_max_power[AR5K_EEPROM_MODE_11A] =
484 AR5K_EEPROM_HDR_T_5GHZ_DBM(ee->ee_header);
486 for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G; mode++) {
487 offset = mode_offset[mode];
489 ret = ath5k_eeprom_read_ants(ah, &offset, mode);
490 if (ret)
491 return ret;
493 ret = ath5k_eeprom_read_modes(ah, &offset, mode);
494 if (ret)
495 return ret;
498 /* override for older eeprom versions for better performance */
499 if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2) {
500 ee->ee_thr_62[AR5K_EEPROM_MODE_11A] = 15;
501 ee->ee_thr_62[AR5K_EEPROM_MODE_11B] = 28;
502 ee->ee_thr_62[AR5K_EEPROM_MODE_11G] = 28;
505 return 0;
508 /* Read the frequency piers for each mode (mostly used on newer eeproms with 0xff
509 * frequency mask) */
510 static inline int
511 ath5k_eeprom_read_freq_list(struct ath5k_hw *ah, int *offset, int max,
512 struct ath5k_chan_pcal_info *pc, unsigned int mode)
514 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
515 int o = *offset;
516 int i = 0;
517 u8 freq1, freq2;
518 int ret;
519 u16 val;
521 ee->ee_n_piers[mode] = 0;
522 while(i < max) {
523 AR5K_EEPROM_READ(o++, val);
525 freq1 = val & 0xff;
526 if (!freq1)
527 break;
529 pc[i++].freq = ath5k_eeprom_bin2freq(ee,
530 freq1, mode);
531 ee->ee_n_piers[mode]++;
533 freq2 = (val >> 8) & 0xff;
534 if (!freq2)
535 break;
537 pc[i++].freq = ath5k_eeprom_bin2freq(ee,
538 freq2, mode);
539 ee->ee_n_piers[mode]++;
542 /* return new offset */
543 *offset = o;
545 return 0;
548 /* Read frequency piers for 802.11a */
549 static int
550 ath5k_eeprom_init_11a_pcal_freq(struct ath5k_hw *ah, int offset)
552 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
553 struct ath5k_chan_pcal_info *pcal = ee->ee_pwr_cal_a;
554 int i, ret;
555 u16 val;
556 u8 mask;
558 if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3) {
559 ath5k_eeprom_read_freq_list(ah, &offset,
560 AR5K_EEPROM_N_5GHZ_CHAN, pcal,
561 AR5K_EEPROM_MODE_11A);
562 } else {
563 mask = AR5K_EEPROM_FREQ_M(ah->ah_ee_version);
565 AR5K_EEPROM_READ(offset++, val);
566 pcal[0].freq = (val >> 9) & mask;
567 pcal[1].freq = (val >> 2) & mask;
568 pcal[2].freq = (val << 5) & mask;
570 AR5K_EEPROM_READ(offset++, val);
571 pcal[2].freq |= (val >> 11) & 0x1f;
572 pcal[3].freq = (val >> 4) & mask;
573 pcal[4].freq = (val << 3) & mask;
575 AR5K_EEPROM_READ(offset++, val);
576 pcal[4].freq |= (val >> 13) & 0x7;
577 pcal[5].freq = (val >> 6) & mask;
578 pcal[6].freq = (val << 1) & mask;
580 AR5K_EEPROM_READ(offset++, val);
581 pcal[6].freq |= (val >> 15) & 0x1;
582 pcal[7].freq = (val >> 8) & mask;
583 pcal[8].freq = (val >> 1) & mask;
584 pcal[9].freq = (val << 6) & mask;
586 AR5K_EEPROM_READ(offset++, val);
587 pcal[9].freq |= (val >> 10) & 0x3f;
589 /* Fixed number of piers */
590 ee->ee_n_piers[AR5K_EEPROM_MODE_11A] = 10;
592 for (i = 0; i < AR5K_EEPROM_N_5GHZ_CHAN; i++) {
593 pcal[i].freq = ath5k_eeprom_bin2freq(ee,
594 pcal[i].freq, AR5K_EEPROM_MODE_11A);
598 return 0;
601 /* Read frequency piers for 802.11bg on eeprom versions >= 5 and eemap >= 2 */
602 static inline int
603 ath5k_eeprom_init_11bg_2413(struct ath5k_hw *ah, unsigned int mode, int offset)
605 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
606 struct ath5k_chan_pcal_info *pcal;
608 switch(mode) {
609 case AR5K_EEPROM_MODE_11B:
610 pcal = ee->ee_pwr_cal_b;
611 break;
612 case AR5K_EEPROM_MODE_11G:
613 pcal = ee->ee_pwr_cal_g;
614 break;
615 default:
616 return -EINVAL;
619 ath5k_eeprom_read_freq_list(ah, &offset,
620 AR5K_EEPROM_N_2GHZ_CHAN_2413, pcal,
621 mode);
623 return 0;
628 * Read power calibration for RF5111 chips
630 * For RF5111 we have an XPD -eXternal Power Detector- curve
631 * for each calibrated channel. Each curve has 0,5dB Power steps
632 * on x axis and PCDAC steps (offsets) on y axis and looks like an
633 * exponential function. To recreate the curve we read 11 points
634 * here and interpolate later.
637 /* Used to match PCDAC steps with power values on RF5111 chips
638 * (eeprom versions < 4). For RF5111 we have 11 pre-defined PCDAC
639 * steps that match with the power values we read from eeprom. On
640 * older eeprom versions (< 3.2) these steps are equaly spaced at
641 * 10% of the pcdac curve -until the curve reaches its maximum-
642 * (11 steps from 0 to 100%) but on newer eeprom versions (>= 3.2)
643 * these 11 steps are spaced in a different way. This function returns
644 * the pcdac steps based on eeprom version and curve min/max so that we
645 * can have pcdac/pwr points.
647 static inline void
648 ath5k_get_pcdac_intercepts(struct ath5k_hw *ah, u8 min, u8 max, u8 *vp)
650 static const u16 intercepts3[] =
651 { 0, 5, 10, 20, 30, 50, 70, 85, 90, 95, 100 };
652 static const u16 intercepts3_2[] =
653 { 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 };
654 const u16 *ip;
655 int i;
657 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_3_2)
658 ip = intercepts3_2;
659 else
660 ip = intercepts3;
662 for (i = 0; i < ARRAY_SIZE(intercepts3); i++)
663 vp[i] = (ip[i] * max + (100 - ip[i]) * min) / 100;
666 /* Convert RF5111 specific data to generic raw data
667 * used by interpolation code */
668 static int
669 ath5k_eeprom_convert_pcal_info_5111(struct ath5k_hw *ah, int mode,
670 struct ath5k_chan_pcal_info *chinfo)
672 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
673 struct ath5k_chan_pcal_info_rf5111 *pcinfo;
674 struct ath5k_pdgain_info *pd;
675 u8 pier, point, idx;
676 u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
678 /* Fill raw data for each calibration pier */
679 for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
681 pcinfo = &chinfo[pier].rf5111_info;
683 /* Allocate pd_curves for this cal pier */
684 chinfo[pier].pd_curves =
685 kcalloc(AR5K_EEPROM_N_PD_CURVES,
686 sizeof(struct ath5k_pdgain_info),
687 GFP_KERNEL);
689 if (!chinfo[pier].pd_curves)
690 return -ENOMEM;
692 /* Only one curve for RF5111
693 * find out which one and place
694 * in pd_curves.
695 * Note: ee_x_gain is reversed here */
696 for (idx = 0; idx < AR5K_EEPROM_N_PD_CURVES; idx++) {
698 if (!((ee->ee_x_gain[mode] >> idx) & 0x1)) {
699 pdgain_idx[0] = idx;
700 break;
704 ee->ee_pd_gains[mode] = 1;
706 pd = &chinfo[pier].pd_curves[idx];
708 pd->pd_points = AR5K_EEPROM_N_PWR_POINTS_5111;
710 /* Allocate pd points for this curve */
711 pd->pd_step = kcalloc(AR5K_EEPROM_N_PWR_POINTS_5111,
712 sizeof(u8), GFP_KERNEL);
713 if (!pd->pd_step)
714 return -ENOMEM;
716 pd->pd_pwr = kcalloc(AR5K_EEPROM_N_PWR_POINTS_5111,
717 sizeof(s16), GFP_KERNEL);
718 if (!pd->pd_pwr)
719 return -ENOMEM;
721 /* Fill raw dataset
722 * (convert power to 0.25dB units
723 * for RF5112 combatibility) */
724 for (point = 0; point < pd->pd_points; point++) {
726 /* Absolute values */
727 pd->pd_pwr[point] = 2 * pcinfo->pwr[point];
729 /* Already sorted */
730 pd->pd_step[point] = pcinfo->pcdac[point];
733 /* Set min/max pwr */
734 chinfo[pier].min_pwr = pd->pd_pwr[0];
735 chinfo[pier].max_pwr = pd->pd_pwr[10];
739 return 0;
742 /* Parse EEPROM data */
743 static int
744 ath5k_eeprom_read_pcal_info_5111(struct ath5k_hw *ah, int mode)
746 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
747 struct ath5k_chan_pcal_info *pcal;
748 int offset, ret;
749 int i;
750 u16 val;
752 offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
753 switch(mode) {
754 case AR5K_EEPROM_MODE_11A:
755 if (!AR5K_EEPROM_HDR_11A(ee->ee_header))
756 return 0;
758 ret = ath5k_eeprom_init_11a_pcal_freq(ah,
759 offset + AR5K_EEPROM_GROUP1_OFFSET);
760 if (ret < 0)
761 return ret;
763 offset += AR5K_EEPROM_GROUP2_OFFSET;
764 pcal = ee->ee_pwr_cal_a;
765 break;
766 case AR5K_EEPROM_MODE_11B:
767 if (!AR5K_EEPROM_HDR_11B(ee->ee_header) &&
768 !AR5K_EEPROM_HDR_11G(ee->ee_header))
769 return 0;
771 pcal = ee->ee_pwr_cal_b;
772 offset += AR5K_EEPROM_GROUP3_OFFSET;
774 /* fixed piers */
775 pcal[0].freq = 2412;
776 pcal[1].freq = 2447;
777 pcal[2].freq = 2484;
778 ee->ee_n_piers[mode] = 3;
779 break;
780 case AR5K_EEPROM_MODE_11G:
781 if (!AR5K_EEPROM_HDR_11G(ee->ee_header))
782 return 0;
784 pcal = ee->ee_pwr_cal_g;
785 offset += AR5K_EEPROM_GROUP4_OFFSET;
787 /* fixed piers */
788 pcal[0].freq = 2312;
789 pcal[1].freq = 2412;
790 pcal[2].freq = 2484;
791 ee->ee_n_piers[mode] = 3;
792 break;
793 default:
794 return -EINVAL;
797 for (i = 0; i < ee->ee_n_piers[mode]; i++) {
798 struct ath5k_chan_pcal_info_rf5111 *cdata =
799 &pcal[i].rf5111_info;
801 AR5K_EEPROM_READ(offset++, val);
802 cdata->pcdac_max = ((val >> 10) & AR5K_EEPROM_PCDAC_M);
803 cdata->pcdac_min = ((val >> 4) & AR5K_EEPROM_PCDAC_M);
804 cdata->pwr[0] = ((val << 2) & AR5K_EEPROM_POWER_M);
806 AR5K_EEPROM_READ(offset++, val);
807 cdata->pwr[0] |= ((val >> 14) & 0x3);
808 cdata->pwr[1] = ((val >> 8) & AR5K_EEPROM_POWER_M);
809 cdata->pwr[2] = ((val >> 2) & AR5K_EEPROM_POWER_M);
810 cdata->pwr[3] = ((val << 4) & AR5K_EEPROM_POWER_M);
812 AR5K_EEPROM_READ(offset++, val);
813 cdata->pwr[3] |= ((val >> 12) & 0xf);
814 cdata->pwr[4] = ((val >> 6) & AR5K_EEPROM_POWER_M);
815 cdata->pwr[5] = (val & AR5K_EEPROM_POWER_M);
817 AR5K_EEPROM_READ(offset++, val);
818 cdata->pwr[6] = ((val >> 10) & AR5K_EEPROM_POWER_M);
819 cdata->pwr[7] = ((val >> 4) & AR5K_EEPROM_POWER_M);
820 cdata->pwr[8] = ((val << 2) & AR5K_EEPROM_POWER_M);
822 AR5K_EEPROM_READ(offset++, val);
823 cdata->pwr[8] |= ((val >> 14) & 0x3);
824 cdata->pwr[9] = ((val >> 8) & AR5K_EEPROM_POWER_M);
825 cdata->pwr[10] = ((val >> 2) & AR5K_EEPROM_POWER_M);
827 ath5k_get_pcdac_intercepts(ah, cdata->pcdac_min,
828 cdata->pcdac_max, cdata->pcdac);
831 return ath5k_eeprom_convert_pcal_info_5111(ah, mode, pcal);
836 * Read power calibration for RF5112 chips
838 * For RF5112 we have 4 XPD -eXternal Power Detector- curves
839 * for each calibrated channel on 0, -6, -12 and -18dbm but we only
840 * use the higher (3) and the lower (0) curves. Each curve has 0.5dB
841 * power steps on x axis and PCDAC steps on y axis and looks like a
842 * linear function. To recreate the curve and pass the power values
843 * on hw, we read 4 points for xpd 0 (lower gain -> max power)
844 * and 3 points for xpd 3 (higher gain -> lower power) here and
845 * interpolate later.
847 * Note: Many vendors just use xpd 0 so xpd 3 is zeroed.
850 /* Convert RF5112 specific data to generic raw data
851 * used by interpolation code */
852 static int
853 ath5k_eeprom_convert_pcal_info_5112(struct ath5k_hw *ah, int mode,
854 struct ath5k_chan_pcal_info *chinfo)
856 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
857 struct ath5k_chan_pcal_info_rf5112 *pcinfo;
858 u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
859 unsigned int pier, pdg, point;
861 /* Fill raw data for each calibration pier */
862 for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
864 pcinfo = &chinfo[pier].rf5112_info;
866 /* Allocate pd_curves for this cal pier */
867 chinfo[pier].pd_curves =
868 kcalloc(AR5K_EEPROM_N_PD_CURVES,
869 sizeof(struct ath5k_pdgain_info),
870 GFP_KERNEL);
872 if (!chinfo[pier].pd_curves)
873 return -ENOMEM;
875 /* Fill pd_curves */
876 for (pdg = 0; pdg < ee->ee_pd_gains[mode]; pdg++) {
878 u8 idx = pdgain_idx[pdg];
879 struct ath5k_pdgain_info *pd =
880 &chinfo[pier].pd_curves[idx];
882 /* Lowest gain curve (max power) */
883 if (pdg == 0) {
884 /* One more point for better accuracy */
885 pd->pd_points = AR5K_EEPROM_N_XPD0_POINTS;
887 /* Allocate pd points for this curve */
888 pd->pd_step = kcalloc(pd->pd_points,
889 sizeof(u8), GFP_KERNEL);
891 if (!pd->pd_step)
892 return -ENOMEM;
894 pd->pd_pwr = kcalloc(pd->pd_points,
895 sizeof(s16), GFP_KERNEL);
897 if (!pd->pd_pwr)
898 return -ENOMEM;
901 /* Fill raw dataset
902 * (all power levels are in 0.25dB units) */
903 pd->pd_step[0] = pcinfo->pcdac_x0[0];
904 pd->pd_pwr[0] = pcinfo->pwr_x0[0];
906 for (point = 1; point < pd->pd_points;
907 point++) {
908 /* Absolute values */
909 pd->pd_pwr[point] =
910 pcinfo->pwr_x0[point];
912 /* Deltas */
913 pd->pd_step[point] =
914 pd->pd_step[point - 1] +
915 pcinfo->pcdac_x0[point];
918 /* Set min power for this frequency */
919 chinfo[pier].min_pwr = pd->pd_pwr[0];
921 /* Highest gain curve (min power) */
922 } else if (pdg == 1) {
924 pd->pd_points = AR5K_EEPROM_N_XPD3_POINTS;
926 /* Allocate pd points for this curve */
927 pd->pd_step = kcalloc(pd->pd_points,
928 sizeof(u8), GFP_KERNEL);
930 if (!pd->pd_step)
931 return -ENOMEM;
933 pd->pd_pwr = kcalloc(pd->pd_points,
934 sizeof(s16), GFP_KERNEL);
936 if (!pd->pd_pwr)
937 return -ENOMEM;
939 /* Fill raw dataset
940 * (all power levels are in 0.25dB units) */
941 for (point = 0; point < pd->pd_points;
942 point++) {
943 /* Absolute values */
944 pd->pd_pwr[point] =
945 pcinfo->pwr_x3[point];
947 /* Fixed points */
948 pd->pd_step[point] =
949 pcinfo->pcdac_x3[point];
952 /* Since we have a higher gain curve
953 * override min power */
954 chinfo[pier].min_pwr = pd->pd_pwr[0];
959 return 0;
962 /* Parse EEPROM data */
963 static int
964 ath5k_eeprom_read_pcal_info_5112(struct ath5k_hw *ah, int mode)
966 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
967 struct ath5k_chan_pcal_info_rf5112 *chan_pcal_info;
968 struct ath5k_chan_pcal_info *gen_chan_info;
969 u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
970 u32 offset;
971 u8 i, c;
972 u16 val;
973 int ret;
974 u8 pd_gains = 0;
976 /* Count how many curves we have and
977 * identify them (which one of the 4
978 * available curves we have on each count).
979 * Curves are stored from lower (x0) to
980 * higher (x3) gain */
981 for (i = 0; i < AR5K_EEPROM_N_PD_CURVES; i++) {
982 /* ee_x_gain[mode] is x gain mask */
983 if ((ee->ee_x_gain[mode] >> i) & 0x1)
984 pdgain_idx[pd_gains++] = i;
986 ee->ee_pd_gains[mode] = pd_gains;
988 if (pd_gains == 0 || pd_gains > 2)
989 return -EINVAL;
991 switch (mode) {
992 case AR5K_EEPROM_MODE_11A:
994 * Read 5GHz EEPROM channels
996 offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
997 ath5k_eeprom_init_11a_pcal_freq(ah, offset);
999 offset += AR5K_EEPROM_GROUP2_OFFSET;
1000 gen_chan_info = ee->ee_pwr_cal_a;
1001 break;
1002 case AR5K_EEPROM_MODE_11B:
1003 offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
1004 if (AR5K_EEPROM_HDR_11A(ee->ee_header))
1005 offset += AR5K_EEPROM_GROUP3_OFFSET;
1007 /* NB: frequency piers parsed during mode init */
1008 gen_chan_info = ee->ee_pwr_cal_b;
1009 break;
1010 case AR5K_EEPROM_MODE_11G:
1011 offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
1012 if (AR5K_EEPROM_HDR_11A(ee->ee_header))
1013 offset += AR5K_EEPROM_GROUP4_OFFSET;
1014 else if (AR5K_EEPROM_HDR_11B(ee->ee_header))
1015 offset += AR5K_EEPROM_GROUP2_OFFSET;
1017 /* NB: frequency piers parsed during mode init */
1018 gen_chan_info = ee->ee_pwr_cal_g;
1019 break;
1020 default:
1021 return -EINVAL;
1024 for (i = 0; i < ee->ee_n_piers[mode]; i++) {
1025 chan_pcal_info = &gen_chan_info[i].rf5112_info;
1027 /* Power values in quarter dB
1028 * for the lower xpd gain curve
1029 * (0 dBm -> higher output power) */
1030 for (c = 0; c < AR5K_EEPROM_N_XPD0_POINTS; c++) {
1031 AR5K_EEPROM_READ(offset++, val);
1032 chan_pcal_info->pwr_x0[c] = (s8) (val & 0xff);
1033 chan_pcal_info->pwr_x0[++c] = (s8) ((val >> 8) & 0xff);
1036 /* PCDAC steps
1037 * corresponding to the above power
1038 * measurements */
1039 AR5K_EEPROM_READ(offset++, val);
1040 chan_pcal_info->pcdac_x0[1] = (val & 0x1f);
1041 chan_pcal_info->pcdac_x0[2] = ((val >> 5) & 0x1f);
1042 chan_pcal_info->pcdac_x0[3] = ((val >> 10) & 0x1f);
1044 /* Power values in quarter dB
1045 * for the higher xpd gain curve
1046 * (18 dBm -> lower output power) */
1047 AR5K_EEPROM_READ(offset++, val);
1048 chan_pcal_info->pwr_x3[0] = (s8) (val & 0xff);
1049 chan_pcal_info->pwr_x3[1] = (s8) ((val >> 8) & 0xff);
1051 AR5K_EEPROM_READ(offset++, val);
1052 chan_pcal_info->pwr_x3[2] = (val & 0xff);
1054 /* PCDAC steps
1055 * corresponding to the above power
1056 * measurements (fixed) */
1057 chan_pcal_info->pcdac_x3[0] = 20;
1058 chan_pcal_info->pcdac_x3[1] = 35;
1059 chan_pcal_info->pcdac_x3[2] = 63;
1061 if (ee->ee_version >= AR5K_EEPROM_VERSION_4_3) {
1062 chan_pcal_info->pcdac_x0[0] = ((val >> 8) & 0x3f);
1064 /* Last xpd0 power level is also channel maximum */
1065 gen_chan_info[i].max_pwr = chan_pcal_info->pwr_x0[3];
1066 } else {
1067 chan_pcal_info->pcdac_x0[0] = 1;
1068 gen_chan_info[i].max_pwr = (s8) ((val >> 8) & 0xff);
1073 return ath5k_eeprom_convert_pcal_info_5112(ah, mode, gen_chan_info);
1078 * Read power calibration for RF2413 chips
1080 * For RF2413 we have a Power to PDDAC table (Power Detector)
1081 * instead of a PCDAC and 4 pd gain curves for each calibrated channel.
1082 * Each curve has power on x axis in 0.5 db steps and PDDADC steps on y
1083 * axis and looks like an exponential function like the RF5111 curve.
1085 * To recreate the curves we read here the points and interpolate
1086 * later. Note that in most cases only 2 (higher and lower) curves are
1087 * used (like RF5112) but vendors have the oportunity to include all
1088 * 4 curves on eeprom. The final curve (higher power) has an extra
1089 * point for better accuracy like RF5112.
1092 /* For RF2413 power calibration data doesn't start on a fixed location and
1093 * if a mode is not supported, its section is missing -not zeroed-.
1094 * So we need to calculate the starting offset for each section by using
1095 * these two functions */
1097 /* Return the size of each section based on the mode and the number of pd
1098 * gains available (maximum 4). */
1099 static inline unsigned int
1100 ath5k_pdgains_size_2413(struct ath5k_eeprom_info *ee, unsigned int mode)
1102 static const unsigned int pdgains_size[] = { 4, 6, 9, 12 };
1103 unsigned int sz;
1105 sz = pdgains_size[ee->ee_pd_gains[mode] - 1];
1106 sz *= ee->ee_n_piers[mode];
1108 return sz;
1111 /* Return the starting offset for a section based on the modes supported
1112 * and each section's size. */
1113 static unsigned int
1114 ath5k_cal_data_offset_2413(struct ath5k_eeprom_info *ee, int mode)
1116 u32 offset = AR5K_EEPROM_CAL_DATA_START(ee->ee_misc4);
1118 switch(mode) {
1119 case AR5K_EEPROM_MODE_11G:
1120 if (AR5K_EEPROM_HDR_11B(ee->ee_header))
1121 offset += ath5k_pdgains_size_2413(ee,
1122 AR5K_EEPROM_MODE_11B) +
1123 AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2;
1124 /* fall through */
1125 case AR5K_EEPROM_MODE_11B:
1126 if (AR5K_EEPROM_HDR_11A(ee->ee_header))
1127 offset += ath5k_pdgains_size_2413(ee,
1128 AR5K_EEPROM_MODE_11A) +
1129 AR5K_EEPROM_N_5GHZ_CHAN / 2;
1130 /* fall through */
1131 case AR5K_EEPROM_MODE_11A:
1132 break;
1133 default:
1134 break;
1137 return offset;
1140 /* Convert RF2413 specific data to generic raw data
1141 * used by interpolation code */
1142 static int
1143 ath5k_eeprom_convert_pcal_info_2413(struct ath5k_hw *ah, int mode,
1144 struct ath5k_chan_pcal_info *chinfo)
1146 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1147 struct ath5k_chan_pcal_info_rf2413 *pcinfo;
1148 u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
1149 unsigned int pier, pdg, point;
1151 /* Fill raw data for each calibration pier */
1152 for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
1154 pcinfo = &chinfo[pier].rf2413_info;
1156 /* Allocate pd_curves for this cal pier */
1157 chinfo[pier].pd_curves =
1158 kcalloc(AR5K_EEPROM_N_PD_CURVES,
1159 sizeof(struct ath5k_pdgain_info),
1160 GFP_KERNEL);
1162 if (!chinfo[pier].pd_curves)
1163 return -ENOMEM;
1165 /* Fill pd_curves */
1166 for (pdg = 0; pdg < ee->ee_pd_gains[mode]; pdg++) {
1168 u8 idx = pdgain_idx[pdg];
1169 struct ath5k_pdgain_info *pd =
1170 &chinfo[pier].pd_curves[idx];
1172 /* One more point for the highest power
1173 * curve (lowest gain) */
1174 if (pdg == ee->ee_pd_gains[mode] - 1)
1175 pd->pd_points = AR5K_EEPROM_N_PD_POINTS;
1176 else
1177 pd->pd_points = AR5K_EEPROM_N_PD_POINTS - 1;
1179 /* Allocate pd points for this curve */
1180 pd->pd_step = kcalloc(pd->pd_points,
1181 sizeof(u8), GFP_KERNEL);
1183 if (!pd->pd_step)
1184 return -ENOMEM;
1186 pd->pd_pwr = kcalloc(pd->pd_points,
1187 sizeof(s16), GFP_KERNEL);
1189 if (!pd->pd_pwr)
1190 return -ENOMEM;
1192 /* Fill raw dataset
1193 * convert all pwr levels to
1194 * quarter dB for RF5112 combatibility */
1195 pd->pd_step[0] = pcinfo->pddac_i[pdg];
1196 pd->pd_pwr[0] = 4 * pcinfo->pwr_i[pdg];
1198 for (point = 1; point < pd->pd_points; point++) {
1200 pd->pd_pwr[point] = pd->pd_pwr[point - 1] +
1201 2 * pcinfo->pwr[pdg][point - 1];
1203 pd->pd_step[point] = pd->pd_step[point - 1] +
1204 pcinfo->pddac[pdg][point - 1];
1208 /* Highest gain curve -> min power */
1209 if (pdg == 0)
1210 chinfo[pier].min_pwr = pd->pd_pwr[0];
1212 /* Lowest gain curve -> max power */
1213 if (pdg == ee->ee_pd_gains[mode] - 1)
1214 chinfo[pier].max_pwr =
1215 pd->pd_pwr[pd->pd_points - 1];
1219 return 0;
1222 /* Parse EEPROM data */
1223 static int
1224 ath5k_eeprom_read_pcal_info_2413(struct ath5k_hw *ah, int mode)
1226 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1227 struct ath5k_chan_pcal_info_rf2413 *pcinfo;
1228 struct ath5k_chan_pcal_info *chinfo;
1229 u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
1230 u32 offset;
1231 int idx, i, ret;
1232 u16 val;
1233 u8 pd_gains = 0;
1235 /* Count how many curves we have and
1236 * identify them (which one of the 4
1237 * available curves we have on each count).
1238 * Curves are stored from higher to
1239 * lower gain so we go backwards */
1240 for (idx = AR5K_EEPROM_N_PD_CURVES - 1; idx >= 0; idx--) {
1241 /* ee_x_gain[mode] is x gain mask */
1242 if ((ee->ee_x_gain[mode] >> idx) & 0x1)
1243 pdgain_idx[pd_gains++] = idx;
1246 ee->ee_pd_gains[mode] = pd_gains;
1248 if (pd_gains == 0)
1249 return -EINVAL;
1251 offset = ath5k_cal_data_offset_2413(ee, mode);
1252 switch (mode) {
1253 case AR5K_EEPROM_MODE_11A:
1254 if (!AR5K_EEPROM_HDR_11A(ee->ee_header))
1255 return 0;
1257 ath5k_eeprom_init_11a_pcal_freq(ah, offset);
1258 offset += AR5K_EEPROM_N_5GHZ_CHAN / 2;
1259 chinfo = ee->ee_pwr_cal_a;
1260 break;
1261 case AR5K_EEPROM_MODE_11B:
1262 if (!AR5K_EEPROM_HDR_11B(ee->ee_header))
1263 return 0;
1265 ath5k_eeprom_init_11bg_2413(ah, mode, offset);
1266 offset += AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2;
1267 chinfo = ee->ee_pwr_cal_b;
1268 break;
1269 case AR5K_EEPROM_MODE_11G:
1270 if (!AR5K_EEPROM_HDR_11G(ee->ee_header))
1271 return 0;
1273 ath5k_eeprom_init_11bg_2413(ah, mode, offset);
1274 offset += AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2;
1275 chinfo = ee->ee_pwr_cal_g;
1276 break;
1277 default:
1278 return -EINVAL;
1281 for (i = 0; i < ee->ee_n_piers[mode]; i++) {
1282 pcinfo = &chinfo[i].rf2413_info;
1285 * Read pwr_i, pddac_i and the first
1286 * 2 pd points (pwr, pddac)
1288 AR5K_EEPROM_READ(offset++, val);
1289 pcinfo->pwr_i[0] = val & 0x1f;
1290 pcinfo->pddac_i[0] = (val >> 5) & 0x7f;
1291 pcinfo->pwr[0][0] = (val >> 12) & 0xf;
1293 AR5K_EEPROM_READ(offset++, val);
1294 pcinfo->pddac[0][0] = val & 0x3f;
1295 pcinfo->pwr[0][1] = (val >> 6) & 0xf;
1296 pcinfo->pddac[0][1] = (val >> 10) & 0x3f;
1298 AR5K_EEPROM_READ(offset++, val);
1299 pcinfo->pwr[0][2] = val & 0xf;
1300 pcinfo->pddac[0][2] = (val >> 4) & 0x3f;
1302 pcinfo->pwr[0][3] = 0;
1303 pcinfo->pddac[0][3] = 0;
1305 if (pd_gains > 1) {
1307 * Pd gain 0 is not the last pd gain
1308 * so it only has 2 pd points.
1309 * Continue wih pd gain 1.
1311 pcinfo->pwr_i[1] = (val >> 10) & 0x1f;
1313 pcinfo->pddac_i[1] = (val >> 15) & 0x1;
1314 AR5K_EEPROM_READ(offset++, val);
1315 pcinfo->pddac_i[1] |= (val & 0x3F) << 1;
1317 pcinfo->pwr[1][0] = (val >> 6) & 0xf;
1318 pcinfo->pddac[1][0] = (val >> 10) & 0x3f;
1320 AR5K_EEPROM_READ(offset++, val);
1321 pcinfo->pwr[1][1] = val & 0xf;
1322 pcinfo->pddac[1][1] = (val >> 4) & 0x3f;
1323 pcinfo->pwr[1][2] = (val >> 10) & 0xf;
1325 pcinfo->pddac[1][2] = (val >> 14) & 0x3;
1326 AR5K_EEPROM_READ(offset++, val);
1327 pcinfo->pddac[1][2] |= (val & 0xF) << 2;
1329 pcinfo->pwr[1][3] = 0;
1330 pcinfo->pddac[1][3] = 0;
1331 } else if (pd_gains == 1) {
1333 * Pd gain 0 is the last one so
1334 * read the extra point.
1336 pcinfo->pwr[0][3] = (val >> 10) & 0xf;
1338 pcinfo->pddac[0][3] = (val >> 14) & 0x3;
1339 AR5K_EEPROM_READ(offset++, val);
1340 pcinfo->pddac[0][3] |= (val & 0xF) << 2;
1344 * Proceed with the other pd_gains
1345 * as above.
1347 if (pd_gains > 2) {
1348 pcinfo->pwr_i[2] = (val >> 4) & 0x1f;
1349 pcinfo->pddac_i[2] = (val >> 9) & 0x7f;
1351 AR5K_EEPROM_READ(offset++, val);
1352 pcinfo->pwr[2][0] = (val >> 0) & 0xf;
1353 pcinfo->pddac[2][0] = (val >> 4) & 0x3f;
1354 pcinfo->pwr[2][1] = (val >> 10) & 0xf;
1356 pcinfo->pddac[2][1] = (val >> 14) & 0x3;
1357 AR5K_EEPROM_READ(offset++, val);
1358 pcinfo->pddac[2][1] |= (val & 0xF) << 2;
1360 pcinfo->pwr[2][2] = (val >> 4) & 0xf;
1361 pcinfo->pddac[2][2] = (val >> 8) & 0x3f;
1363 pcinfo->pwr[2][3] = 0;
1364 pcinfo->pddac[2][3] = 0;
1365 } else if (pd_gains == 2) {
1366 pcinfo->pwr[1][3] = (val >> 4) & 0xf;
1367 pcinfo->pddac[1][3] = (val >> 8) & 0x3f;
1370 if (pd_gains > 3) {
1371 pcinfo->pwr_i[3] = (val >> 14) & 0x3;
1372 AR5K_EEPROM_READ(offset++, val);
1373 pcinfo->pwr_i[3] |= ((val >> 0) & 0x7) << 2;
1375 pcinfo->pddac_i[3] = (val >> 3) & 0x7f;
1376 pcinfo->pwr[3][0] = (val >> 10) & 0xf;
1377 pcinfo->pddac[3][0] = (val >> 14) & 0x3;
1379 AR5K_EEPROM_READ(offset++, val);
1380 pcinfo->pddac[3][0] |= (val & 0xF) << 2;
1381 pcinfo->pwr[3][1] = (val >> 4) & 0xf;
1382 pcinfo->pddac[3][1] = (val >> 8) & 0x3f;
1384 pcinfo->pwr[3][2] = (val >> 14) & 0x3;
1385 AR5K_EEPROM_READ(offset++, val);
1386 pcinfo->pwr[3][2] |= ((val >> 0) & 0x3) << 2;
1388 pcinfo->pddac[3][2] = (val >> 2) & 0x3f;
1389 pcinfo->pwr[3][3] = (val >> 8) & 0xf;
1391 pcinfo->pddac[3][3] = (val >> 12) & 0xF;
1392 AR5K_EEPROM_READ(offset++, val);
1393 pcinfo->pddac[3][3] |= ((val >> 0) & 0x3) << 4;
1394 } else if (pd_gains == 3) {
1395 pcinfo->pwr[2][3] = (val >> 14) & 0x3;
1396 AR5K_EEPROM_READ(offset++, val);
1397 pcinfo->pwr[2][3] |= ((val >> 0) & 0x3) << 2;
1399 pcinfo->pddac[2][3] = (val >> 2) & 0x3f;
1403 return ath5k_eeprom_convert_pcal_info_2413(ah, mode, chinfo);
1408 * Read per rate target power (this is the maximum tx power
1409 * supported by the card). This info is used when setting
1410 * tx power, no matter the channel.
1412 * This also works for v5 EEPROMs.
1414 static int
1415 ath5k_eeprom_read_target_rate_pwr_info(struct ath5k_hw *ah, unsigned int mode)
1417 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1418 struct ath5k_rate_pcal_info *rate_pcal_info;
1419 u8 *rate_target_pwr_num;
1420 u32 offset;
1421 u16 val;
1422 int ret, i;
1424 offset = AR5K_EEPROM_TARGET_PWRSTART(ee->ee_misc1);
1425 rate_target_pwr_num = &ee->ee_rate_target_pwr_num[mode];
1426 switch (mode) {
1427 case AR5K_EEPROM_MODE_11A:
1428 offset += AR5K_EEPROM_TARGET_PWR_OFF_11A(ee->ee_version);
1429 rate_pcal_info = ee->ee_rate_tpwr_a;
1430 ee->ee_rate_target_pwr_num[mode] = AR5K_EEPROM_N_5GHZ_CHAN;
1431 break;
1432 case AR5K_EEPROM_MODE_11B:
1433 offset += AR5K_EEPROM_TARGET_PWR_OFF_11B(ee->ee_version);
1434 rate_pcal_info = ee->ee_rate_tpwr_b;
1435 ee->ee_rate_target_pwr_num[mode] = 2; /* 3rd is g mode's 1st */
1436 break;
1437 case AR5K_EEPROM_MODE_11G:
1438 offset += AR5K_EEPROM_TARGET_PWR_OFF_11G(ee->ee_version);
1439 rate_pcal_info = ee->ee_rate_tpwr_g;
1440 ee->ee_rate_target_pwr_num[mode] = AR5K_EEPROM_N_2GHZ_CHAN;
1441 break;
1442 default:
1443 return -EINVAL;
1446 /* Different freq mask for older eeproms (<= v3.2) */
1447 if (ee->ee_version <= AR5K_EEPROM_VERSION_3_2) {
1448 for (i = 0; i < (*rate_target_pwr_num); i++) {
1449 AR5K_EEPROM_READ(offset++, val);
1450 rate_pcal_info[i].freq =
1451 ath5k_eeprom_bin2freq(ee, (val >> 9) & 0x7f, mode);
1453 rate_pcal_info[i].target_power_6to24 = ((val >> 3) & 0x3f);
1454 rate_pcal_info[i].target_power_36 = (val << 3) & 0x3f;
1456 AR5K_EEPROM_READ(offset++, val);
1458 if (rate_pcal_info[i].freq == AR5K_EEPROM_CHANNEL_DIS ||
1459 val == 0) {
1460 (*rate_target_pwr_num) = i;
1461 break;
1464 rate_pcal_info[i].target_power_36 |= ((val >> 13) & 0x7);
1465 rate_pcal_info[i].target_power_48 = ((val >> 7) & 0x3f);
1466 rate_pcal_info[i].target_power_54 = ((val >> 1) & 0x3f);
1468 } else {
1469 for (i = 0; i < (*rate_target_pwr_num); i++) {
1470 AR5K_EEPROM_READ(offset++, val);
1471 rate_pcal_info[i].freq =
1472 ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode);
1474 rate_pcal_info[i].target_power_6to24 = ((val >> 2) & 0x3f);
1475 rate_pcal_info[i].target_power_36 = (val << 4) & 0x3f;
1477 AR5K_EEPROM_READ(offset++, val);
1479 if (rate_pcal_info[i].freq == AR5K_EEPROM_CHANNEL_DIS ||
1480 val == 0) {
1481 (*rate_target_pwr_num) = i;
1482 break;
1485 rate_pcal_info[i].target_power_36 |= (val >> 12) & 0xf;
1486 rate_pcal_info[i].target_power_48 = ((val >> 6) & 0x3f);
1487 rate_pcal_info[i].target_power_54 = (val & 0x3f);
1491 return 0;
1496 * Read per channel calibration info from EEPROM
1498 * This info is used to calibrate the baseband power table. Imagine
1499 * that for each channel there is a power curve that's hw specific
1500 * (depends on amplifier etc) and we try to "correct" this curve using
1501 * offsets we pass on to phy chip (baseband -> before amplifier) so that
1502 * it can use accurate power values when setting tx power (takes amplifier's
1503 * performance on each channel into account).
1505 * EEPROM provides us with the offsets for some pre-calibrated channels
1506 * and we have to interpolate to create the full table for these channels and
1507 * also the table for any channel.
1509 static int
1510 ath5k_eeprom_read_pcal_info(struct ath5k_hw *ah)
1512 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1513 int (*read_pcal)(struct ath5k_hw *hw, int mode);
1514 int mode;
1515 int err;
1517 if ((ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0) &&
1518 (AR5K_EEPROM_EEMAP(ee->ee_misc0) == 1))
1519 read_pcal = ath5k_eeprom_read_pcal_info_5112;
1520 else if ((ah->ah_ee_version >= AR5K_EEPROM_VERSION_5_0) &&
1521 (AR5K_EEPROM_EEMAP(ee->ee_misc0) == 2))
1522 read_pcal = ath5k_eeprom_read_pcal_info_2413;
1523 else
1524 read_pcal = ath5k_eeprom_read_pcal_info_5111;
1527 for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G;
1528 mode++) {
1529 err = read_pcal(ah, mode);
1530 if (err)
1531 return err;
1533 err = ath5k_eeprom_read_target_rate_pwr_info(ah, mode);
1534 if (err < 0)
1535 return err;
1538 return 0;
1541 static int
1542 ath5k_eeprom_free_pcal_info(struct ath5k_hw *ah, int mode)
1544 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1545 struct ath5k_chan_pcal_info *chinfo;
1546 u8 pier, pdg;
1548 switch (mode) {
1549 case AR5K_EEPROM_MODE_11A:
1550 if (!AR5K_EEPROM_HDR_11A(ee->ee_header))
1551 return 0;
1552 chinfo = ee->ee_pwr_cal_a;
1553 break;
1554 case AR5K_EEPROM_MODE_11B:
1555 if (!AR5K_EEPROM_HDR_11B(ee->ee_header))
1556 return 0;
1557 chinfo = ee->ee_pwr_cal_b;
1558 break;
1559 case AR5K_EEPROM_MODE_11G:
1560 if (!AR5K_EEPROM_HDR_11G(ee->ee_header))
1561 return 0;
1562 chinfo = ee->ee_pwr_cal_g;
1563 break;
1564 default:
1565 return -EINVAL;
1568 for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
1569 if (!chinfo[pier].pd_curves)
1570 continue;
1572 for (pdg = 0; pdg < ee->ee_pd_gains[mode]; pdg++) {
1573 struct ath5k_pdgain_info *pd =
1574 &chinfo[pier].pd_curves[pdg];
1576 if (pd != NULL) {
1577 kfree(pd->pd_step);
1578 kfree(pd->pd_pwr);
1582 kfree(chinfo[pier].pd_curves);
1585 return 0;
1588 /* Read conformance test limits used for regulatory control */
1589 static int
1590 ath5k_eeprom_read_ctl_info(struct ath5k_hw *ah)
1592 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1593 struct ath5k_edge_power *rep;
1594 unsigned int fmask, pmask;
1595 unsigned int ctl_mode;
1596 int ret, i, j;
1597 u32 offset;
1598 u16 val;
1600 pmask = AR5K_EEPROM_POWER_M;
1601 fmask = AR5K_EEPROM_FREQ_M(ee->ee_version);
1602 offset = AR5K_EEPROM_CTL(ee->ee_version);
1603 ee->ee_ctls = AR5K_EEPROM_N_CTLS(ee->ee_version);
1604 for (i = 0; i < ee->ee_ctls; i += 2) {
1605 AR5K_EEPROM_READ(offset++, val);
1606 ee->ee_ctl[i] = (val >> 8) & 0xff;
1607 ee->ee_ctl[i + 1] = val & 0xff;
1610 offset = AR5K_EEPROM_GROUP8_OFFSET;
1611 if (ee->ee_version >= AR5K_EEPROM_VERSION_4_0)
1612 offset += AR5K_EEPROM_TARGET_PWRSTART(ee->ee_misc1) -
1613 AR5K_EEPROM_GROUP5_OFFSET;
1614 else
1615 offset += AR5K_EEPROM_GROUPS_START(ee->ee_version);
1617 rep = ee->ee_ctl_pwr;
1618 for(i = 0; i < ee->ee_ctls; i++) {
1619 switch(ee->ee_ctl[i] & AR5K_CTL_MODE_M) {
1620 case AR5K_CTL_11A:
1621 case AR5K_CTL_TURBO:
1622 ctl_mode = AR5K_EEPROM_MODE_11A;
1623 break;
1624 default:
1625 ctl_mode = AR5K_EEPROM_MODE_11G;
1626 break;
1628 if (ee->ee_ctl[i] == 0) {
1629 if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3)
1630 offset += 8;
1631 else
1632 offset += 7;
1633 rep += AR5K_EEPROM_N_EDGES;
1634 continue;
1636 if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3) {
1637 for (j = 0; j < AR5K_EEPROM_N_EDGES; j += 2) {
1638 AR5K_EEPROM_READ(offset++, val);
1639 rep[j].freq = (val >> 8) & fmask;
1640 rep[j + 1].freq = val & fmask;
1642 for (j = 0; j < AR5K_EEPROM_N_EDGES; j += 2) {
1643 AR5K_EEPROM_READ(offset++, val);
1644 rep[j].edge = (val >> 8) & pmask;
1645 rep[j].flag = (val >> 14) & 1;
1646 rep[j + 1].edge = val & pmask;
1647 rep[j + 1].flag = (val >> 6) & 1;
1649 } else {
1650 AR5K_EEPROM_READ(offset++, val);
1651 rep[0].freq = (val >> 9) & fmask;
1652 rep[1].freq = (val >> 2) & fmask;
1653 rep[2].freq = (val << 5) & fmask;
1655 AR5K_EEPROM_READ(offset++, val);
1656 rep[2].freq |= (val >> 11) & 0x1f;
1657 rep[3].freq = (val >> 4) & fmask;
1658 rep[4].freq = (val << 3) & fmask;
1660 AR5K_EEPROM_READ(offset++, val);
1661 rep[4].freq |= (val >> 13) & 0x7;
1662 rep[5].freq = (val >> 6) & fmask;
1663 rep[6].freq = (val << 1) & fmask;
1665 AR5K_EEPROM_READ(offset++, val);
1666 rep[6].freq |= (val >> 15) & 0x1;
1667 rep[7].freq = (val >> 8) & fmask;
1669 rep[0].edge = (val >> 2) & pmask;
1670 rep[1].edge = (val << 4) & pmask;
1672 AR5K_EEPROM_READ(offset++, val);
1673 rep[1].edge |= (val >> 12) & 0xf;
1674 rep[2].edge = (val >> 6) & pmask;
1675 rep[3].edge = val & pmask;
1677 AR5K_EEPROM_READ(offset++, val);
1678 rep[4].edge = (val >> 10) & pmask;
1679 rep[5].edge = (val >> 4) & pmask;
1680 rep[6].edge = (val << 2) & pmask;
1682 AR5K_EEPROM_READ(offset++, val);
1683 rep[6].edge |= (val >> 14) & 0x3;
1684 rep[7].edge = (val >> 8) & pmask;
1686 for (j = 0; j < AR5K_EEPROM_N_EDGES; j++) {
1687 rep[j].freq = ath5k_eeprom_bin2freq(ee,
1688 rep[j].freq, ctl_mode);
1690 rep += AR5K_EEPROM_N_EDGES;
1693 return 0;
1696 static int
1697 ath5k_eeprom_read_spur_chans(struct ath5k_hw *ah)
1699 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1700 u32 offset;
1701 u16 val;
1702 int ret = 0, i;
1704 offset = AR5K_EEPROM_CTL(ee->ee_version) +
1705 AR5K_EEPROM_N_CTLS(ee->ee_version);
1707 if (ee->ee_version < AR5K_EEPROM_VERSION_5_3) {
1708 /* No spur info for 5GHz */
1709 ee->ee_spur_chans[0][0] = AR5K_EEPROM_NO_SPUR;
1710 /* 2 channels for 2GHz (2464/2420) */
1711 ee->ee_spur_chans[0][1] = AR5K_EEPROM_5413_SPUR_CHAN_1;
1712 ee->ee_spur_chans[1][1] = AR5K_EEPROM_5413_SPUR_CHAN_2;
1713 ee->ee_spur_chans[2][1] = AR5K_EEPROM_NO_SPUR;
1714 } else if (ee->ee_version >= AR5K_EEPROM_VERSION_5_3) {
1715 for (i = 0; i < AR5K_EEPROM_N_SPUR_CHANS; i++) {
1716 AR5K_EEPROM_READ(offset, val);
1717 ee->ee_spur_chans[i][0] = val;
1718 AR5K_EEPROM_READ(offset + AR5K_EEPROM_N_SPUR_CHANS,
1719 val);
1720 ee->ee_spur_chans[i][1] = val;
1721 offset++;
1725 return ret;
1729 * Read the MAC address from eeprom
1731 int ath5k_eeprom_read_mac(struct ath5k_hw *ah, u8 *mac)
1733 u8 mac_d[ETH_ALEN] = {};
1734 u32 total, offset;
1735 u16 data;
1736 int octet, ret;
1738 ret = ath5k_hw_nvram_read(ah, 0x20, &data);
1739 if (ret)
1740 return ret;
1742 for (offset = 0x1f, octet = 0, total = 0; offset >= 0x1d; offset--) {
1743 ret = ath5k_hw_nvram_read(ah, offset, &data);
1744 if (ret)
1745 return ret;
1747 total += data;
1748 mac_d[octet + 1] = data & 0xff;
1749 mac_d[octet] = data >> 8;
1750 octet += 2;
1753 if (!total || total == 3 * 0xffff)
1754 return -EINVAL;
1756 memcpy(mac, mac_d, ETH_ALEN);
1758 return 0;
1762 /***********************\
1763 * Init/Detach functions *
1764 \***********************/
1767 * Initialize eeprom data structure
1770 ath5k_eeprom_init(struct ath5k_hw *ah)
1772 int err;
1774 err = ath5k_eeprom_init_header(ah);
1775 if (err < 0)
1776 return err;
1778 err = ath5k_eeprom_init_modes(ah);
1779 if (err < 0)
1780 return err;
1782 err = ath5k_eeprom_read_pcal_info(ah);
1783 if (err < 0)
1784 return err;
1786 err = ath5k_eeprom_read_ctl_info(ah);
1787 if (err < 0)
1788 return err;
1790 err = ath5k_eeprom_read_spur_chans(ah);
1791 if (err < 0)
1792 return err;
1794 return 0;
1797 void
1798 ath5k_eeprom_detach(struct ath5k_hw *ah)
1800 u8 mode;
1802 for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G; mode++)
1803 ath5k_eeprom_free_pcal_info(ah, mode);
1807 ath5k_eeprom_mode_from_channel(struct ieee80211_channel *channel)
1809 switch (channel->hw_value & CHANNEL_MODES) {
1810 case CHANNEL_A:
1811 case CHANNEL_XR:
1812 return AR5K_EEPROM_MODE_11A;
1813 case CHANNEL_G:
1814 return AR5K_EEPROM_MODE_11G;
1815 case CHANNEL_B:
1816 return AR5K_EEPROM_MODE_11B;
1817 default:
1818 return -1;