2 * Copyright (c) 2004-2008 Reyk Floeter <reyk@openbsd.org>
3 * Copyright (c) 2006-2009 Nick Kossifidis <mickflemm@gmail.com>
4 * Copyright (c) 2008-2009 Felix Fietkau <nbd@openwrt.org>
6 * Permission to use, copy, modify, and distribute this software for any
7 * purpose with or without fee is hereby granted, provided that the above
8 * copyright notice and this permission notice appear in all copies.
10 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20 /*************************************\
21 * EEPROM access functions and helpers *
22 \*************************************/
24 #include <linux/slab.h>
37 * Translate binary channel representation in EEPROM to frequency
39 static u16
ath5k_eeprom_bin2freq(struct ath5k_eeprom_info
*ee
, u16 bin
,
44 if (bin
== AR5K_EEPROM_CHANNEL_DIS
)
47 if (mode
== AR5K_EEPROM_MODE_11A
) {
48 if (ee
->ee_version
> AR5K_EEPROM_VERSION_3_2
)
49 val
= (5 * bin
) + 4800;
51 val
= bin
> 62 ? (10 * 62) + (5 * (bin
- 62)) + 5100 :
54 if (ee
->ee_version
> AR5K_EEPROM_VERSION_3_2
)
69 * Initialize eeprom & capabilities structs
72 ath5k_eeprom_init_header(struct ath5k_hw
*ah
)
74 struct ath5k_eeprom_info
*ee
= &ah
->ah_capabilities
.cap_eeprom
;
77 u32 cksum
, offset
, eep_max
= AR5K_EEPROM_INFO_MAX
;
80 * Read values from EEPROM and store them in the capability structure
82 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MAGIC
, ee_magic
);
83 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_PROTECT
, ee_protect
);
84 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_REG_DOMAIN
, ee_regdomain
);
85 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_VERSION
, ee_version
);
86 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_HDR
, ee_header
);
88 /* Return if we have an old EEPROM */
89 if (ah
->ah_ee_version
< AR5K_EEPROM_VERSION_3_0
)
93 * Validate the checksum of the EEPROM date. There are some
94 * devices with invalid EEPROMs.
96 AR5K_EEPROM_READ(AR5K_EEPROM_SIZE_UPPER
, val
);
98 eep_max
= (val
& AR5K_EEPROM_SIZE_UPPER_MASK
) <<
99 AR5K_EEPROM_SIZE_ENDLOC_SHIFT
;
100 AR5K_EEPROM_READ(AR5K_EEPROM_SIZE_LOWER
, val
);
101 eep_max
= (eep_max
| val
) - AR5K_EEPROM_INFO_BASE
;
104 * Fail safe check to prevent stupid loops due
105 * to busted EEPROMs. XXX: This value is likely too
106 * big still, waiting on a better value.
108 if (eep_max
> (3 * AR5K_EEPROM_INFO_MAX
)) {
109 ATH5K_ERR(ah
->ah_sc
, "Invalid max custom EEPROM size: "
110 "%d (0x%04x) max expected: %d (0x%04x)\n",
112 3 * AR5K_EEPROM_INFO_MAX
,
113 3 * AR5K_EEPROM_INFO_MAX
);
118 for (cksum
= 0, offset
= 0; offset
< eep_max
; offset
++) {
119 AR5K_EEPROM_READ(AR5K_EEPROM_INFO(offset
), val
);
122 if (cksum
!= AR5K_EEPROM_INFO_CKSUM
) {
123 ATH5K_ERR(ah
->ah_sc
, "Invalid EEPROM "
124 "checksum: 0x%04x eep_max: 0x%04x (%s)\n",
126 eep_max
== AR5K_EEPROM_INFO_MAX
?
127 "default size" : "custom size");
131 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_ANT_GAIN(ah
->ah_ee_version
),
134 if (ah
->ah_ee_version
>= AR5K_EEPROM_VERSION_4_0
) {
135 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC0
, ee_misc0
);
136 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC1
, ee_misc1
);
138 /* XXX: Don't know which versions include these two */
139 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC2
, ee_misc2
);
141 if (ee
->ee_version
>= AR5K_EEPROM_VERSION_4_3
)
142 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC3
, ee_misc3
);
144 if (ee
->ee_version
>= AR5K_EEPROM_VERSION_5_0
) {
145 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC4
, ee_misc4
);
146 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC5
, ee_misc5
);
147 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC6
, ee_misc6
);
151 if (ah
->ah_ee_version
< AR5K_EEPROM_VERSION_3_3
) {
152 AR5K_EEPROM_READ(AR5K_EEPROM_OBDB0_2GHZ
, val
);
153 ee
->ee_ob
[AR5K_EEPROM_MODE_11B
][0] = val
& 0x7;
154 ee
->ee_db
[AR5K_EEPROM_MODE_11B
][0] = (val
>> 3) & 0x7;
156 AR5K_EEPROM_READ(AR5K_EEPROM_OBDB1_2GHZ
, val
);
157 ee
->ee_ob
[AR5K_EEPROM_MODE_11G
][0] = val
& 0x7;
158 ee
->ee_db
[AR5K_EEPROM_MODE_11G
][0] = (val
>> 3) & 0x7;
161 AR5K_EEPROM_READ(AR5K_EEPROM_IS_HB63
, val
);
163 if ((ah
->ah_mac_version
== (AR5K_SREV_AR2425
>> 4)) && val
)
164 ee
->ee_is_hb63
= true;
166 ee
->ee_is_hb63
= false;
168 AR5K_EEPROM_READ(AR5K_EEPROM_RFKILL
, val
);
169 ee
->ee_rfkill_pin
= (u8
) AR5K_REG_MS(val
, AR5K_EEPROM_RFKILL_GPIO_SEL
);
170 ee
->ee_rfkill_pol
= val
& AR5K_EEPROM_RFKILL_POLARITY
? true : false;
172 /* Check if PCIE_OFFSET points to PCIE_SERDES_SECTION
173 * and enable serdes programming if needed.
175 * XXX: Serdes values seem to be fixed so
176 * no need to read them here, we write them
177 * during ath5k_hw_init */
178 AR5K_EEPROM_READ(AR5K_EEPROM_PCIE_OFFSET
, val
);
179 ee
->ee_serdes
= (val
== AR5K_EEPROM_PCIE_SERDES_SECTION
) ?
187 * Read antenna infos from eeprom
189 static int ath5k_eeprom_read_ants(struct ath5k_hw
*ah
, u32
*offset
,
192 struct ath5k_eeprom_info
*ee
= &ah
->ah_capabilities
.cap_eeprom
;
197 AR5K_EEPROM_READ(o
++, val
);
198 ee
->ee_switch_settling
[mode
] = (val
>> 8) & 0x7f;
199 ee
->ee_atn_tx_rx
[mode
] = (val
>> 2) & 0x3f;
200 ee
->ee_ant_control
[mode
][i
] = (val
<< 4) & 0x3f;
202 AR5K_EEPROM_READ(o
++, val
);
203 ee
->ee_ant_control
[mode
][i
++] |= (val
>> 12) & 0xf;
204 ee
->ee_ant_control
[mode
][i
++] = (val
>> 6) & 0x3f;
205 ee
->ee_ant_control
[mode
][i
++] = val
& 0x3f;
207 AR5K_EEPROM_READ(o
++, val
);
208 ee
->ee_ant_control
[mode
][i
++] = (val
>> 10) & 0x3f;
209 ee
->ee_ant_control
[mode
][i
++] = (val
>> 4) & 0x3f;
210 ee
->ee_ant_control
[mode
][i
] = (val
<< 2) & 0x3f;
212 AR5K_EEPROM_READ(o
++, val
);
213 ee
->ee_ant_control
[mode
][i
++] |= (val
>> 14) & 0x3;
214 ee
->ee_ant_control
[mode
][i
++] = (val
>> 8) & 0x3f;
215 ee
->ee_ant_control
[mode
][i
++] = (val
>> 2) & 0x3f;
216 ee
->ee_ant_control
[mode
][i
] = (val
<< 4) & 0x3f;
218 AR5K_EEPROM_READ(o
++, val
);
219 ee
->ee_ant_control
[mode
][i
++] |= (val
>> 12) & 0xf;
220 ee
->ee_ant_control
[mode
][i
++] = (val
>> 6) & 0x3f;
221 ee
->ee_ant_control
[mode
][i
++] = val
& 0x3f;
223 /* Get antenna switch tables */
224 ah
->ah_ant_ctl
[mode
][AR5K_ANT_CTL
] =
225 (ee
->ee_ant_control
[mode
][0] << 4);
226 ah
->ah_ant_ctl
[mode
][AR5K_ANT_SWTABLE_A
] =
227 ee
->ee_ant_control
[mode
][1] |
228 (ee
->ee_ant_control
[mode
][2] << 6) |
229 (ee
->ee_ant_control
[mode
][3] << 12) |
230 (ee
->ee_ant_control
[mode
][4] << 18) |
231 (ee
->ee_ant_control
[mode
][5] << 24);
232 ah
->ah_ant_ctl
[mode
][AR5K_ANT_SWTABLE_B
] =
233 ee
->ee_ant_control
[mode
][6] |
234 (ee
->ee_ant_control
[mode
][7] << 6) |
235 (ee
->ee_ant_control
[mode
][8] << 12) |
236 (ee
->ee_ant_control
[mode
][9] << 18) |
237 (ee
->ee_ant_control
[mode
][10] << 24);
239 /* return new offset */
246 * Read supported modes and some mode-specific calibration data
249 static int ath5k_eeprom_read_modes(struct ath5k_hw
*ah
, u32
*offset
,
252 struct ath5k_eeprom_info
*ee
= &ah
->ah_capabilities
.cap_eeprom
;
257 ee
->ee_n_piers
[mode
] = 0;
258 AR5K_EEPROM_READ(o
++, val
);
259 ee
->ee_adc_desired_size
[mode
] = (s8
)((val
>> 8) & 0xff);
261 case AR5K_EEPROM_MODE_11A
:
262 ee
->ee_ob
[mode
][3] = (val
>> 5) & 0x7;
263 ee
->ee_db
[mode
][3] = (val
>> 2) & 0x7;
264 ee
->ee_ob
[mode
][2] = (val
<< 1) & 0x7;
266 AR5K_EEPROM_READ(o
++, val
);
267 ee
->ee_ob
[mode
][2] |= (val
>> 15) & 0x1;
268 ee
->ee_db
[mode
][2] = (val
>> 12) & 0x7;
269 ee
->ee_ob
[mode
][1] = (val
>> 9) & 0x7;
270 ee
->ee_db
[mode
][1] = (val
>> 6) & 0x7;
271 ee
->ee_ob
[mode
][0] = (val
>> 3) & 0x7;
272 ee
->ee_db
[mode
][0] = val
& 0x7;
274 case AR5K_EEPROM_MODE_11G
:
275 case AR5K_EEPROM_MODE_11B
:
276 ee
->ee_ob
[mode
][1] = (val
>> 4) & 0x7;
277 ee
->ee_db
[mode
][1] = val
& 0x7;
281 AR5K_EEPROM_READ(o
++, val
);
282 ee
->ee_tx_end2xlna_enable
[mode
] = (val
>> 8) & 0xff;
283 ee
->ee_thr_62
[mode
] = val
& 0xff;
285 if (ah
->ah_ee_version
<= AR5K_EEPROM_VERSION_3_2
)
286 ee
->ee_thr_62
[mode
] = mode
== AR5K_EEPROM_MODE_11A
? 15 : 28;
288 AR5K_EEPROM_READ(o
++, val
);
289 ee
->ee_tx_end2xpa_disable
[mode
] = (val
>> 8) & 0xff;
290 ee
->ee_tx_frm2xpa_enable
[mode
] = val
& 0xff;
292 AR5K_EEPROM_READ(o
++, val
);
293 ee
->ee_pga_desired_size
[mode
] = (val
>> 8) & 0xff;
295 if ((val
& 0xff) & 0x80)
296 ee
->ee_noise_floor_thr
[mode
] = -((((val
& 0xff) ^ 0xff)) + 1);
298 ee
->ee_noise_floor_thr
[mode
] = val
& 0xff;
300 if (ah
->ah_ee_version
<= AR5K_EEPROM_VERSION_3_2
)
301 ee
->ee_noise_floor_thr
[mode
] =
302 mode
== AR5K_EEPROM_MODE_11A
? -54 : -1;
304 AR5K_EEPROM_READ(o
++, val
);
305 ee
->ee_xlna_gain
[mode
] = (val
>> 5) & 0xff;
306 ee
->ee_x_gain
[mode
] = (val
>> 1) & 0xf;
307 ee
->ee_xpd
[mode
] = val
& 0x1;
309 if (ah
->ah_ee_version
>= AR5K_EEPROM_VERSION_4_0
&&
310 mode
!= AR5K_EEPROM_MODE_11B
)
311 ee
->ee_fixed_bias
[mode
] = (val
>> 13) & 0x1;
313 if (ah
->ah_ee_version
>= AR5K_EEPROM_VERSION_3_3
) {
314 AR5K_EEPROM_READ(o
++, val
);
315 ee
->ee_false_detect
[mode
] = (val
>> 6) & 0x7f;
317 if (mode
== AR5K_EEPROM_MODE_11A
)
318 ee
->ee_xr_power
[mode
] = val
& 0x3f;
320 /* b_DB_11[bg] and b_OB_11[bg] */
321 ee
->ee_ob
[mode
][0] = val
& 0x7;
322 ee
->ee_db
[mode
][0] = (val
>> 3) & 0x7;
326 if (ah
->ah_ee_version
< AR5K_EEPROM_VERSION_3_4
) {
327 ee
->ee_i_gain
[mode
] = AR5K_EEPROM_I_GAIN
;
328 ee
->ee_cck_ofdm_power_delta
= AR5K_EEPROM_CCK_OFDM_DELTA
;
330 ee
->ee_i_gain
[mode
] = (val
>> 13) & 0x7;
332 AR5K_EEPROM_READ(o
++, val
);
333 ee
->ee_i_gain
[mode
] |= (val
<< 3) & 0x38;
335 if (mode
== AR5K_EEPROM_MODE_11G
) {
336 ee
->ee_cck_ofdm_power_delta
= (val
>> 3) & 0xff;
337 if (ah
->ah_ee_version
>= AR5K_EEPROM_VERSION_4_6
)
338 ee
->ee_scaled_cck_delta
= (val
>> 11) & 0x1f;
342 if (ah
->ah_ee_version
>= AR5K_EEPROM_VERSION_4_0
&&
343 mode
== AR5K_EEPROM_MODE_11A
) {
344 ee
->ee_i_cal
[mode
] = (val
>> 8) & 0x3f;
345 ee
->ee_q_cal
[mode
] = (val
>> 3) & 0x1f;
348 if (ah
->ah_ee_version
< AR5K_EEPROM_VERSION_4_0
)
351 /* Note: >= v5 have bg freq piers on another location
352 * so these freq piers are ignored for >= v5 (should be 0xff
355 case AR5K_EEPROM_MODE_11A
:
356 if (ah
->ah_ee_version
< AR5K_EEPROM_VERSION_4_1
)
359 AR5K_EEPROM_READ(o
++, val
);
360 ee
->ee_margin_tx_rx
[mode
] = val
& 0x3f;
362 case AR5K_EEPROM_MODE_11B
:
363 AR5K_EEPROM_READ(o
++, val
);
365 ee
->ee_pwr_cal_b
[0].freq
=
366 ath5k_eeprom_bin2freq(ee
, val
& 0xff, mode
);
367 if (ee
->ee_pwr_cal_b
[0].freq
!= AR5K_EEPROM_CHANNEL_DIS
)
368 ee
->ee_n_piers
[mode
]++;
370 ee
->ee_pwr_cal_b
[1].freq
=
371 ath5k_eeprom_bin2freq(ee
, (val
>> 8) & 0xff, mode
);
372 if (ee
->ee_pwr_cal_b
[1].freq
!= AR5K_EEPROM_CHANNEL_DIS
)
373 ee
->ee_n_piers
[mode
]++;
375 AR5K_EEPROM_READ(o
++, val
);
376 ee
->ee_pwr_cal_b
[2].freq
=
377 ath5k_eeprom_bin2freq(ee
, val
& 0xff, mode
);
378 if (ee
->ee_pwr_cal_b
[2].freq
!= AR5K_EEPROM_CHANNEL_DIS
)
379 ee
->ee_n_piers
[mode
]++;
381 if (ah
->ah_ee_version
>= AR5K_EEPROM_VERSION_4_1
)
382 ee
->ee_margin_tx_rx
[mode
] = (val
>> 8) & 0x3f;
384 case AR5K_EEPROM_MODE_11G
:
385 AR5K_EEPROM_READ(o
++, val
);
387 ee
->ee_pwr_cal_g
[0].freq
=
388 ath5k_eeprom_bin2freq(ee
, val
& 0xff, mode
);
389 if (ee
->ee_pwr_cal_g
[0].freq
!= AR5K_EEPROM_CHANNEL_DIS
)
390 ee
->ee_n_piers
[mode
]++;
392 ee
->ee_pwr_cal_g
[1].freq
=
393 ath5k_eeprom_bin2freq(ee
, (val
>> 8) & 0xff, mode
);
394 if (ee
->ee_pwr_cal_g
[1].freq
!= AR5K_EEPROM_CHANNEL_DIS
)
395 ee
->ee_n_piers
[mode
]++;
397 AR5K_EEPROM_READ(o
++, val
);
398 ee
->ee_turbo_max_power
[mode
] = val
& 0x7f;
399 ee
->ee_xr_power
[mode
] = (val
>> 7) & 0x3f;
401 AR5K_EEPROM_READ(o
++, val
);
402 ee
->ee_pwr_cal_g
[2].freq
=
403 ath5k_eeprom_bin2freq(ee
, val
& 0xff, mode
);
404 if (ee
->ee_pwr_cal_g
[2].freq
!= AR5K_EEPROM_CHANNEL_DIS
)
405 ee
->ee_n_piers
[mode
]++;
407 if (ah
->ah_ee_version
>= AR5K_EEPROM_VERSION_4_1
)
408 ee
->ee_margin_tx_rx
[mode
] = (val
>> 8) & 0x3f;
410 AR5K_EEPROM_READ(o
++, val
);
411 ee
->ee_i_cal
[mode
] = (val
>> 5) & 0x3f;
412 ee
->ee_q_cal
[mode
] = val
& 0x1f;
414 if (ah
->ah_ee_version
>= AR5K_EEPROM_VERSION_4_2
) {
415 AR5K_EEPROM_READ(o
++, val
);
416 ee
->ee_cck_ofdm_gain_delta
= val
& 0xff;
422 * Read turbo mode information on newer EEPROM versions
424 if (ee
->ee_version
< AR5K_EEPROM_VERSION_5_0
)
428 case AR5K_EEPROM_MODE_11A
:
429 ee
->ee_switch_settling_turbo
[mode
] = (val
>> 6) & 0x7f;
431 ee
->ee_atn_tx_rx_turbo
[mode
] = (val
>> 13) & 0x7;
432 AR5K_EEPROM_READ(o
++, val
);
433 ee
->ee_atn_tx_rx_turbo
[mode
] |= (val
& 0x7) << 3;
434 ee
->ee_margin_tx_rx_turbo
[mode
] = (val
>> 3) & 0x3f;
436 ee
->ee_adc_desired_size_turbo
[mode
] = (val
>> 9) & 0x7f;
437 AR5K_EEPROM_READ(o
++, val
);
438 ee
->ee_adc_desired_size_turbo
[mode
] |= (val
& 0x1) << 7;
439 ee
->ee_pga_desired_size_turbo
[mode
] = (val
>> 1) & 0xff;
441 if (AR5K_EEPROM_EEMAP(ee
->ee_misc0
) >=2)
442 ee
->ee_pd_gain_overlap
= (val
>> 9) & 0xf;
444 case AR5K_EEPROM_MODE_11G
:
445 ee
->ee_switch_settling_turbo
[mode
] = (val
>> 8) & 0x7f;
447 ee
->ee_atn_tx_rx_turbo
[mode
] = (val
>> 15) & 0x7;
448 AR5K_EEPROM_READ(o
++, val
);
449 ee
->ee_atn_tx_rx_turbo
[mode
] |= (val
& 0x1f) << 1;
450 ee
->ee_margin_tx_rx_turbo
[mode
] = (val
>> 5) & 0x3f;
452 ee
->ee_adc_desired_size_turbo
[mode
] = (val
>> 11) & 0x7f;
453 AR5K_EEPROM_READ(o
++, val
);
454 ee
->ee_adc_desired_size_turbo
[mode
] |= (val
& 0x7) << 5;
455 ee
->ee_pga_desired_size_turbo
[mode
] = (val
>> 3) & 0xff;
460 /* return new offset */
466 /* Read mode-specific data (except power calibration data) */
468 ath5k_eeprom_init_modes(struct ath5k_hw
*ah
)
470 struct ath5k_eeprom_info
*ee
= &ah
->ah_capabilities
.cap_eeprom
;
477 * Get values for all modes
479 mode_offset
[AR5K_EEPROM_MODE_11A
] = AR5K_EEPROM_MODES_11A(ah
->ah_ee_version
);
480 mode_offset
[AR5K_EEPROM_MODE_11B
] = AR5K_EEPROM_MODES_11B(ah
->ah_ee_version
);
481 mode_offset
[AR5K_EEPROM_MODE_11G
] = AR5K_EEPROM_MODES_11G(ah
->ah_ee_version
);
483 ee
->ee_turbo_max_power
[AR5K_EEPROM_MODE_11A
] =
484 AR5K_EEPROM_HDR_T_5GHZ_DBM(ee
->ee_header
);
486 for (mode
= AR5K_EEPROM_MODE_11A
; mode
<= AR5K_EEPROM_MODE_11G
; mode
++) {
487 offset
= mode_offset
[mode
];
489 ret
= ath5k_eeprom_read_ants(ah
, &offset
, mode
);
493 ret
= ath5k_eeprom_read_modes(ah
, &offset
, mode
);
498 /* override for older eeprom versions for better performance */
499 if (ah
->ah_ee_version
<= AR5K_EEPROM_VERSION_3_2
) {
500 ee
->ee_thr_62
[AR5K_EEPROM_MODE_11A
] = 15;
501 ee
->ee_thr_62
[AR5K_EEPROM_MODE_11B
] = 28;
502 ee
->ee_thr_62
[AR5K_EEPROM_MODE_11G
] = 28;
508 /* Read the frequency piers for each mode (mostly used on newer eeproms with 0xff
511 ath5k_eeprom_read_freq_list(struct ath5k_hw
*ah
, int *offset
, int max
,
512 struct ath5k_chan_pcal_info
*pc
, unsigned int mode
)
514 struct ath5k_eeprom_info
*ee
= &ah
->ah_capabilities
.cap_eeprom
;
521 ee
->ee_n_piers
[mode
] = 0;
523 AR5K_EEPROM_READ(o
++, val
);
529 pc
[i
++].freq
= ath5k_eeprom_bin2freq(ee
,
531 ee
->ee_n_piers
[mode
]++;
533 freq2
= (val
>> 8) & 0xff;
537 pc
[i
++].freq
= ath5k_eeprom_bin2freq(ee
,
539 ee
->ee_n_piers
[mode
]++;
542 /* return new offset */
548 /* Read frequency piers for 802.11a */
550 ath5k_eeprom_init_11a_pcal_freq(struct ath5k_hw
*ah
, int offset
)
552 struct ath5k_eeprom_info
*ee
= &ah
->ah_capabilities
.cap_eeprom
;
553 struct ath5k_chan_pcal_info
*pcal
= ee
->ee_pwr_cal_a
;
558 if (ee
->ee_version
>= AR5K_EEPROM_VERSION_3_3
) {
559 ath5k_eeprom_read_freq_list(ah
, &offset
,
560 AR5K_EEPROM_N_5GHZ_CHAN
, pcal
,
561 AR5K_EEPROM_MODE_11A
);
563 mask
= AR5K_EEPROM_FREQ_M(ah
->ah_ee_version
);
565 AR5K_EEPROM_READ(offset
++, val
);
566 pcal
[0].freq
= (val
>> 9) & mask
;
567 pcal
[1].freq
= (val
>> 2) & mask
;
568 pcal
[2].freq
= (val
<< 5) & mask
;
570 AR5K_EEPROM_READ(offset
++, val
);
571 pcal
[2].freq
|= (val
>> 11) & 0x1f;
572 pcal
[3].freq
= (val
>> 4) & mask
;
573 pcal
[4].freq
= (val
<< 3) & mask
;
575 AR5K_EEPROM_READ(offset
++, val
);
576 pcal
[4].freq
|= (val
>> 13) & 0x7;
577 pcal
[5].freq
= (val
>> 6) & mask
;
578 pcal
[6].freq
= (val
<< 1) & mask
;
580 AR5K_EEPROM_READ(offset
++, val
);
581 pcal
[6].freq
|= (val
>> 15) & 0x1;
582 pcal
[7].freq
= (val
>> 8) & mask
;
583 pcal
[8].freq
= (val
>> 1) & mask
;
584 pcal
[9].freq
= (val
<< 6) & mask
;
586 AR5K_EEPROM_READ(offset
++, val
);
587 pcal
[9].freq
|= (val
>> 10) & 0x3f;
589 /* Fixed number of piers */
590 ee
->ee_n_piers
[AR5K_EEPROM_MODE_11A
] = 10;
592 for (i
= 0; i
< AR5K_EEPROM_N_5GHZ_CHAN
; i
++) {
593 pcal
[i
].freq
= ath5k_eeprom_bin2freq(ee
,
594 pcal
[i
].freq
, AR5K_EEPROM_MODE_11A
);
601 /* Read frequency piers for 802.11bg on eeprom versions >= 5 and eemap >= 2 */
603 ath5k_eeprom_init_11bg_2413(struct ath5k_hw
*ah
, unsigned int mode
, int offset
)
605 struct ath5k_eeprom_info
*ee
= &ah
->ah_capabilities
.cap_eeprom
;
606 struct ath5k_chan_pcal_info
*pcal
;
609 case AR5K_EEPROM_MODE_11B
:
610 pcal
= ee
->ee_pwr_cal_b
;
612 case AR5K_EEPROM_MODE_11G
:
613 pcal
= ee
->ee_pwr_cal_g
;
619 ath5k_eeprom_read_freq_list(ah
, &offset
,
620 AR5K_EEPROM_N_2GHZ_CHAN_2413
, pcal
,
628 * Read power calibration for RF5111 chips
630 * For RF5111 we have an XPD -eXternal Power Detector- curve
631 * for each calibrated channel. Each curve has 0,5dB Power steps
632 * on x axis and PCDAC steps (offsets) on y axis and looks like an
633 * exponential function. To recreate the curve we read 11 points
634 * here and interpolate later.
637 /* Used to match PCDAC steps with power values on RF5111 chips
638 * (eeprom versions < 4). For RF5111 we have 11 pre-defined PCDAC
639 * steps that match with the power values we read from eeprom. On
640 * older eeprom versions (< 3.2) these steps are equaly spaced at
641 * 10% of the pcdac curve -until the curve reaches its maximum-
642 * (11 steps from 0 to 100%) but on newer eeprom versions (>= 3.2)
643 * these 11 steps are spaced in a different way. This function returns
644 * the pcdac steps based on eeprom version and curve min/max so that we
645 * can have pcdac/pwr points.
648 ath5k_get_pcdac_intercepts(struct ath5k_hw
*ah
, u8 min
, u8 max
, u8
*vp
)
650 static const u16 intercepts3
[] =
651 { 0, 5, 10, 20, 30, 50, 70, 85, 90, 95, 100 };
652 static const u16 intercepts3_2
[] =
653 { 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 };
657 if (ah
->ah_ee_version
>= AR5K_EEPROM_VERSION_3_2
)
662 for (i
= 0; i
< ARRAY_SIZE(intercepts3
); i
++)
663 vp
[i
] = (ip
[i
] * max
+ (100 - ip
[i
]) * min
) / 100;
666 /* Convert RF5111 specific data to generic raw data
667 * used by interpolation code */
669 ath5k_eeprom_convert_pcal_info_5111(struct ath5k_hw
*ah
, int mode
,
670 struct ath5k_chan_pcal_info
*chinfo
)
672 struct ath5k_eeprom_info
*ee
= &ah
->ah_capabilities
.cap_eeprom
;
673 struct ath5k_chan_pcal_info_rf5111
*pcinfo
;
674 struct ath5k_pdgain_info
*pd
;
676 u8
*pdgain_idx
= ee
->ee_pdc_to_idx
[mode
];
678 /* Fill raw data for each calibration pier */
679 for (pier
= 0; pier
< ee
->ee_n_piers
[mode
]; pier
++) {
681 pcinfo
= &chinfo
[pier
].rf5111_info
;
683 /* Allocate pd_curves for this cal pier */
684 chinfo
[pier
].pd_curves
=
685 kcalloc(AR5K_EEPROM_N_PD_CURVES
,
686 sizeof(struct ath5k_pdgain_info
),
689 if (!chinfo
[pier
].pd_curves
)
692 /* Only one curve for RF5111
693 * find out which one and place
695 * Note: ee_x_gain is reversed here */
696 for (idx
= 0; idx
< AR5K_EEPROM_N_PD_CURVES
; idx
++) {
698 if (!((ee
->ee_x_gain
[mode
] >> idx
) & 0x1)) {
704 ee
->ee_pd_gains
[mode
] = 1;
706 pd
= &chinfo
[pier
].pd_curves
[idx
];
708 pd
->pd_points
= AR5K_EEPROM_N_PWR_POINTS_5111
;
710 /* Allocate pd points for this curve */
711 pd
->pd_step
= kcalloc(AR5K_EEPROM_N_PWR_POINTS_5111
,
712 sizeof(u8
), GFP_KERNEL
);
716 pd
->pd_pwr
= kcalloc(AR5K_EEPROM_N_PWR_POINTS_5111
,
717 sizeof(s16
), GFP_KERNEL
);
722 * (convert power to 0.25dB units
723 * for RF5112 combatibility) */
724 for (point
= 0; point
< pd
->pd_points
; point
++) {
726 /* Absolute values */
727 pd
->pd_pwr
[point
] = 2 * pcinfo
->pwr
[point
];
730 pd
->pd_step
[point
] = pcinfo
->pcdac
[point
];
733 /* Set min/max pwr */
734 chinfo
[pier
].min_pwr
= pd
->pd_pwr
[0];
735 chinfo
[pier
].max_pwr
= pd
->pd_pwr
[10];
742 /* Parse EEPROM data */
744 ath5k_eeprom_read_pcal_info_5111(struct ath5k_hw
*ah
, int mode
)
746 struct ath5k_eeprom_info
*ee
= &ah
->ah_capabilities
.cap_eeprom
;
747 struct ath5k_chan_pcal_info
*pcal
;
752 offset
= AR5K_EEPROM_GROUPS_START(ee
->ee_version
);
754 case AR5K_EEPROM_MODE_11A
:
755 if (!AR5K_EEPROM_HDR_11A(ee
->ee_header
))
758 ret
= ath5k_eeprom_init_11a_pcal_freq(ah
,
759 offset
+ AR5K_EEPROM_GROUP1_OFFSET
);
763 offset
+= AR5K_EEPROM_GROUP2_OFFSET
;
764 pcal
= ee
->ee_pwr_cal_a
;
766 case AR5K_EEPROM_MODE_11B
:
767 if (!AR5K_EEPROM_HDR_11B(ee
->ee_header
) &&
768 !AR5K_EEPROM_HDR_11G(ee
->ee_header
))
771 pcal
= ee
->ee_pwr_cal_b
;
772 offset
+= AR5K_EEPROM_GROUP3_OFFSET
;
778 ee
->ee_n_piers
[mode
] = 3;
780 case AR5K_EEPROM_MODE_11G
:
781 if (!AR5K_EEPROM_HDR_11G(ee
->ee_header
))
784 pcal
= ee
->ee_pwr_cal_g
;
785 offset
+= AR5K_EEPROM_GROUP4_OFFSET
;
791 ee
->ee_n_piers
[mode
] = 3;
797 for (i
= 0; i
< ee
->ee_n_piers
[mode
]; i
++) {
798 struct ath5k_chan_pcal_info_rf5111
*cdata
=
799 &pcal
[i
].rf5111_info
;
801 AR5K_EEPROM_READ(offset
++, val
);
802 cdata
->pcdac_max
= ((val
>> 10) & AR5K_EEPROM_PCDAC_M
);
803 cdata
->pcdac_min
= ((val
>> 4) & AR5K_EEPROM_PCDAC_M
);
804 cdata
->pwr
[0] = ((val
<< 2) & AR5K_EEPROM_POWER_M
);
806 AR5K_EEPROM_READ(offset
++, val
);
807 cdata
->pwr
[0] |= ((val
>> 14) & 0x3);
808 cdata
->pwr
[1] = ((val
>> 8) & AR5K_EEPROM_POWER_M
);
809 cdata
->pwr
[2] = ((val
>> 2) & AR5K_EEPROM_POWER_M
);
810 cdata
->pwr
[3] = ((val
<< 4) & AR5K_EEPROM_POWER_M
);
812 AR5K_EEPROM_READ(offset
++, val
);
813 cdata
->pwr
[3] |= ((val
>> 12) & 0xf);
814 cdata
->pwr
[4] = ((val
>> 6) & AR5K_EEPROM_POWER_M
);
815 cdata
->pwr
[5] = (val
& AR5K_EEPROM_POWER_M
);
817 AR5K_EEPROM_READ(offset
++, val
);
818 cdata
->pwr
[6] = ((val
>> 10) & AR5K_EEPROM_POWER_M
);
819 cdata
->pwr
[7] = ((val
>> 4) & AR5K_EEPROM_POWER_M
);
820 cdata
->pwr
[8] = ((val
<< 2) & AR5K_EEPROM_POWER_M
);
822 AR5K_EEPROM_READ(offset
++, val
);
823 cdata
->pwr
[8] |= ((val
>> 14) & 0x3);
824 cdata
->pwr
[9] = ((val
>> 8) & AR5K_EEPROM_POWER_M
);
825 cdata
->pwr
[10] = ((val
>> 2) & AR5K_EEPROM_POWER_M
);
827 ath5k_get_pcdac_intercepts(ah
, cdata
->pcdac_min
,
828 cdata
->pcdac_max
, cdata
->pcdac
);
831 return ath5k_eeprom_convert_pcal_info_5111(ah
, mode
, pcal
);
836 * Read power calibration for RF5112 chips
838 * For RF5112 we have 4 XPD -eXternal Power Detector- curves
839 * for each calibrated channel on 0, -6, -12 and -18dbm but we only
840 * use the higher (3) and the lower (0) curves. Each curve has 0.5dB
841 * power steps on x axis and PCDAC steps on y axis and looks like a
842 * linear function. To recreate the curve and pass the power values
843 * on hw, we read 4 points for xpd 0 (lower gain -> max power)
844 * and 3 points for xpd 3 (higher gain -> lower power) here and
847 * Note: Many vendors just use xpd 0 so xpd 3 is zeroed.
850 /* Convert RF5112 specific data to generic raw data
851 * used by interpolation code */
853 ath5k_eeprom_convert_pcal_info_5112(struct ath5k_hw
*ah
, int mode
,
854 struct ath5k_chan_pcal_info
*chinfo
)
856 struct ath5k_eeprom_info
*ee
= &ah
->ah_capabilities
.cap_eeprom
;
857 struct ath5k_chan_pcal_info_rf5112
*pcinfo
;
858 u8
*pdgain_idx
= ee
->ee_pdc_to_idx
[mode
];
859 unsigned int pier
, pdg
, point
;
861 /* Fill raw data for each calibration pier */
862 for (pier
= 0; pier
< ee
->ee_n_piers
[mode
]; pier
++) {
864 pcinfo
= &chinfo
[pier
].rf5112_info
;
866 /* Allocate pd_curves for this cal pier */
867 chinfo
[pier
].pd_curves
=
868 kcalloc(AR5K_EEPROM_N_PD_CURVES
,
869 sizeof(struct ath5k_pdgain_info
),
872 if (!chinfo
[pier
].pd_curves
)
876 for (pdg
= 0; pdg
< ee
->ee_pd_gains
[mode
]; pdg
++) {
878 u8 idx
= pdgain_idx
[pdg
];
879 struct ath5k_pdgain_info
*pd
=
880 &chinfo
[pier
].pd_curves
[idx
];
882 /* Lowest gain curve (max power) */
884 /* One more point for better accuracy */
885 pd
->pd_points
= AR5K_EEPROM_N_XPD0_POINTS
;
887 /* Allocate pd points for this curve */
888 pd
->pd_step
= kcalloc(pd
->pd_points
,
889 sizeof(u8
), GFP_KERNEL
);
894 pd
->pd_pwr
= kcalloc(pd
->pd_points
,
895 sizeof(s16
), GFP_KERNEL
);
902 * (all power levels are in 0.25dB units) */
903 pd
->pd_step
[0] = pcinfo
->pcdac_x0
[0];
904 pd
->pd_pwr
[0] = pcinfo
->pwr_x0
[0];
906 for (point
= 1; point
< pd
->pd_points
;
908 /* Absolute values */
910 pcinfo
->pwr_x0
[point
];
914 pd
->pd_step
[point
- 1] +
915 pcinfo
->pcdac_x0
[point
];
918 /* Set min power for this frequency */
919 chinfo
[pier
].min_pwr
= pd
->pd_pwr
[0];
921 /* Highest gain curve (min power) */
922 } else if (pdg
== 1) {
924 pd
->pd_points
= AR5K_EEPROM_N_XPD3_POINTS
;
926 /* Allocate pd points for this curve */
927 pd
->pd_step
= kcalloc(pd
->pd_points
,
928 sizeof(u8
), GFP_KERNEL
);
933 pd
->pd_pwr
= kcalloc(pd
->pd_points
,
934 sizeof(s16
), GFP_KERNEL
);
940 * (all power levels are in 0.25dB units) */
941 for (point
= 0; point
< pd
->pd_points
;
943 /* Absolute values */
945 pcinfo
->pwr_x3
[point
];
949 pcinfo
->pcdac_x3
[point
];
952 /* Since we have a higher gain curve
953 * override min power */
954 chinfo
[pier
].min_pwr
= pd
->pd_pwr
[0];
962 /* Parse EEPROM data */
964 ath5k_eeprom_read_pcal_info_5112(struct ath5k_hw
*ah
, int mode
)
966 struct ath5k_eeprom_info
*ee
= &ah
->ah_capabilities
.cap_eeprom
;
967 struct ath5k_chan_pcal_info_rf5112
*chan_pcal_info
;
968 struct ath5k_chan_pcal_info
*gen_chan_info
;
969 u8
*pdgain_idx
= ee
->ee_pdc_to_idx
[mode
];
976 /* Count how many curves we have and
977 * identify them (which one of the 4
978 * available curves we have on each count).
979 * Curves are stored from lower (x0) to
980 * higher (x3) gain */
981 for (i
= 0; i
< AR5K_EEPROM_N_PD_CURVES
; i
++) {
982 /* ee_x_gain[mode] is x gain mask */
983 if ((ee
->ee_x_gain
[mode
] >> i
) & 0x1)
984 pdgain_idx
[pd_gains
++] = i
;
986 ee
->ee_pd_gains
[mode
] = pd_gains
;
988 if (pd_gains
== 0 || pd_gains
> 2)
992 case AR5K_EEPROM_MODE_11A
:
994 * Read 5GHz EEPROM channels
996 offset
= AR5K_EEPROM_GROUPS_START(ee
->ee_version
);
997 ath5k_eeprom_init_11a_pcal_freq(ah
, offset
);
999 offset
+= AR5K_EEPROM_GROUP2_OFFSET
;
1000 gen_chan_info
= ee
->ee_pwr_cal_a
;
1002 case AR5K_EEPROM_MODE_11B
:
1003 offset
= AR5K_EEPROM_GROUPS_START(ee
->ee_version
);
1004 if (AR5K_EEPROM_HDR_11A(ee
->ee_header
))
1005 offset
+= AR5K_EEPROM_GROUP3_OFFSET
;
1007 /* NB: frequency piers parsed during mode init */
1008 gen_chan_info
= ee
->ee_pwr_cal_b
;
1010 case AR5K_EEPROM_MODE_11G
:
1011 offset
= AR5K_EEPROM_GROUPS_START(ee
->ee_version
);
1012 if (AR5K_EEPROM_HDR_11A(ee
->ee_header
))
1013 offset
+= AR5K_EEPROM_GROUP4_OFFSET
;
1014 else if (AR5K_EEPROM_HDR_11B(ee
->ee_header
))
1015 offset
+= AR5K_EEPROM_GROUP2_OFFSET
;
1017 /* NB: frequency piers parsed during mode init */
1018 gen_chan_info
= ee
->ee_pwr_cal_g
;
1024 for (i
= 0; i
< ee
->ee_n_piers
[mode
]; i
++) {
1025 chan_pcal_info
= &gen_chan_info
[i
].rf5112_info
;
1027 /* Power values in quarter dB
1028 * for the lower xpd gain curve
1029 * (0 dBm -> higher output power) */
1030 for (c
= 0; c
< AR5K_EEPROM_N_XPD0_POINTS
; c
++) {
1031 AR5K_EEPROM_READ(offset
++, val
);
1032 chan_pcal_info
->pwr_x0
[c
] = (s8
) (val
& 0xff);
1033 chan_pcal_info
->pwr_x0
[++c
] = (s8
) ((val
>> 8) & 0xff);
1037 * corresponding to the above power
1039 AR5K_EEPROM_READ(offset
++, val
);
1040 chan_pcal_info
->pcdac_x0
[1] = (val
& 0x1f);
1041 chan_pcal_info
->pcdac_x0
[2] = ((val
>> 5) & 0x1f);
1042 chan_pcal_info
->pcdac_x0
[3] = ((val
>> 10) & 0x1f);
1044 /* Power values in quarter dB
1045 * for the higher xpd gain curve
1046 * (18 dBm -> lower output power) */
1047 AR5K_EEPROM_READ(offset
++, val
);
1048 chan_pcal_info
->pwr_x3
[0] = (s8
) (val
& 0xff);
1049 chan_pcal_info
->pwr_x3
[1] = (s8
) ((val
>> 8) & 0xff);
1051 AR5K_EEPROM_READ(offset
++, val
);
1052 chan_pcal_info
->pwr_x3
[2] = (val
& 0xff);
1055 * corresponding to the above power
1056 * measurements (fixed) */
1057 chan_pcal_info
->pcdac_x3
[0] = 20;
1058 chan_pcal_info
->pcdac_x3
[1] = 35;
1059 chan_pcal_info
->pcdac_x3
[2] = 63;
1061 if (ee
->ee_version
>= AR5K_EEPROM_VERSION_4_3
) {
1062 chan_pcal_info
->pcdac_x0
[0] = ((val
>> 8) & 0x3f);
1064 /* Last xpd0 power level is also channel maximum */
1065 gen_chan_info
[i
].max_pwr
= chan_pcal_info
->pwr_x0
[3];
1067 chan_pcal_info
->pcdac_x0
[0] = 1;
1068 gen_chan_info
[i
].max_pwr
= (s8
) ((val
>> 8) & 0xff);
1073 return ath5k_eeprom_convert_pcal_info_5112(ah
, mode
, gen_chan_info
);
1078 * Read power calibration for RF2413 chips
1080 * For RF2413 we have a Power to PDDAC table (Power Detector)
1081 * instead of a PCDAC and 4 pd gain curves for each calibrated channel.
1082 * Each curve has power on x axis in 0.5 db steps and PDDADC steps on y
1083 * axis and looks like an exponential function like the RF5111 curve.
1085 * To recreate the curves we read here the points and interpolate
1086 * later. Note that in most cases only 2 (higher and lower) curves are
1087 * used (like RF5112) but vendors have the oportunity to include all
1088 * 4 curves on eeprom. The final curve (higher power) has an extra
1089 * point for better accuracy like RF5112.
1092 /* For RF2413 power calibration data doesn't start on a fixed location and
1093 * if a mode is not supported, its section is missing -not zeroed-.
1094 * So we need to calculate the starting offset for each section by using
1095 * these two functions */
1097 /* Return the size of each section based on the mode and the number of pd
1098 * gains available (maximum 4). */
1099 static inline unsigned int
1100 ath5k_pdgains_size_2413(struct ath5k_eeprom_info
*ee
, unsigned int mode
)
1102 static const unsigned int pdgains_size
[] = { 4, 6, 9, 12 };
1105 sz
= pdgains_size
[ee
->ee_pd_gains
[mode
] - 1];
1106 sz
*= ee
->ee_n_piers
[mode
];
1111 /* Return the starting offset for a section based on the modes supported
1112 * and each section's size. */
1114 ath5k_cal_data_offset_2413(struct ath5k_eeprom_info
*ee
, int mode
)
1116 u32 offset
= AR5K_EEPROM_CAL_DATA_START(ee
->ee_misc4
);
1119 case AR5K_EEPROM_MODE_11G
:
1120 if (AR5K_EEPROM_HDR_11B(ee
->ee_header
))
1121 offset
+= ath5k_pdgains_size_2413(ee
,
1122 AR5K_EEPROM_MODE_11B
) +
1123 AR5K_EEPROM_N_2GHZ_CHAN_2413
/ 2;
1125 case AR5K_EEPROM_MODE_11B
:
1126 if (AR5K_EEPROM_HDR_11A(ee
->ee_header
))
1127 offset
+= ath5k_pdgains_size_2413(ee
,
1128 AR5K_EEPROM_MODE_11A
) +
1129 AR5K_EEPROM_N_5GHZ_CHAN
/ 2;
1131 case AR5K_EEPROM_MODE_11A
:
1140 /* Convert RF2413 specific data to generic raw data
1141 * used by interpolation code */
1143 ath5k_eeprom_convert_pcal_info_2413(struct ath5k_hw
*ah
, int mode
,
1144 struct ath5k_chan_pcal_info
*chinfo
)
1146 struct ath5k_eeprom_info
*ee
= &ah
->ah_capabilities
.cap_eeprom
;
1147 struct ath5k_chan_pcal_info_rf2413
*pcinfo
;
1148 u8
*pdgain_idx
= ee
->ee_pdc_to_idx
[mode
];
1149 unsigned int pier
, pdg
, point
;
1151 /* Fill raw data for each calibration pier */
1152 for (pier
= 0; pier
< ee
->ee_n_piers
[mode
]; pier
++) {
1154 pcinfo
= &chinfo
[pier
].rf2413_info
;
1156 /* Allocate pd_curves for this cal pier */
1157 chinfo
[pier
].pd_curves
=
1158 kcalloc(AR5K_EEPROM_N_PD_CURVES
,
1159 sizeof(struct ath5k_pdgain_info
),
1162 if (!chinfo
[pier
].pd_curves
)
1165 /* Fill pd_curves */
1166 for (pdg
= 0; pdg
< ee
->ee_pd_gains
[mode
]; pdg
++) {
1168 u8 idx
= pdgain_idx
[pdg
];
1169 struct ath5k_pdgain_info
*pd
=
1170 &chinfo
[pier
].pd_curves
[idx
];
1172 /* One more point for the highest power
1173 * curve (lowest gain) */
1174 if (pdg
== ee
->ee_pd_gains
[mode
] - 1)
1175 pd
->pd_points
= AR5K_EEPROM_N_PD_POINTS
;
1177 pd
->pd_points
= AR5K_EEPROM_N_PD_POINTS
- 1;
1179 /* Allocate pd points for this curve */
1180 pd
->pd_step
= kcalloc(pd
->pd_points
,
1181 sizeof(u8
), GFP_KERNEL
);
1186 pd
->pd_pwr
= kcalloc(pd
->pd_points
,
1187 sizeof(s16
), GFP_KERNEL
);
1193 * convert all pwr levels to
1194 * quarter dB for RF5112 combatibility */
1195 pd
->pd_step
[0] = pcinfo
->pddac_i
[pdg
];
1196 pd
->pd_pwr
[0] = 4 * pcinfo
->pwr_i
[pdg
];
1198 for (point
= 1; point
< pd
->pd_points
; point
++) {
1200 pd
->pd_pwr
[point
] = pd
->pd_pwr
[point
- 1] +
1201 2 * pcinfo
->pwr
[pdg
][point
- 1];
1203 pd
->pd_step
[point
] = pd
->pd_step
[point
- 1] +
1204 pcinfo
->pddac
[pdg
][point
- 1];
1208 /* Highest gain curve -> min power */
1210 chinfo
[pier
].min_pwr
= pd
->pd_pwr
[0];
1212 /* Lowest gain curve -> max power */
1213 if (pdg
== ee
->ee_pd_gains
[mode
] - 1)
1214 chinfo
[pier
].max_pwr
=
1215 pd
->pd_pwr
[pd
->pd_points
- 1];
1222 /* Parse EEPROM data */
1224 ath5k_eeprom_read_pcal_info_2413(struct ath5k_hw
*ah
, int mode
)
1226 struct ath5k_eeprom_info
*ee
= &ah
->ah_capabilities
.cap_eeprom
;
1227 struct ath5k_chan_pcal_info_rf2413
*pcinfo
;
1228 struct ath5k_chan_pcal_info
*chinfo
;
1229 u8
*pdgain_idx
= ee
->ee_pdc_to_idx
[mode
];
1235 /* Count how many curves we have and
1236 * identify them (which one of the 4
1237 * available curves we have on each count).
1238 * Curves are stored from higher to
1239 * lower gain so we go backwards */
1240 for (idx
= AR5K_EEPROM_N_PD_CURVES
- 1; idx
>= 0; idx
--) {
1241 /* ee_x_gain[mode] is x gain mask */
1242 if ((ee
->ee_x_gain
[mode
] >> idx
) & 0x1)
1243 pdgain_idx
[pd_gains
++] = idx
;
1246 ee
->ee_pd_gains
[mode
] = pd_gains
;
1251 offset
= ath5k_cal_data_offset_2413(ee
, mode
);
1253 case AR5K_EEPROM_MODE_11A
:
1254 if (!AR5K_EEPROM_HDR_11A(ee
->ee_header
))
1257 ath5k_eeprom_init_11a_pcal_freq(ah
, offset
);
1258 offset
+= AR5K_EEPROM_N_5GHZ_CHAN
/ 2;
1259 chinfo
= ee
->ee_pwr_cal_a
;
1261 case AR5K_EEPROM_MODE_11B
:
1262 if (!AR5K_EEPROM_HDR_11B(ee
->ee_header
))
1265 ath5k_eeprom_init_11bg_2413(ah
, mode
, offset
);
1266 offset
+= AR5K_EEPROM_N_2GHZ_CHAN_2413
/ 2;
1267 chinfo
= ee
->ee_pwr_cal_b
;
1269 case AR5K_EEPROM_MODE_11G
:
1270 if (!AR5K_EEPROM_HDR_11G(ee
->ee_header
))
1273 ath5k_eeprom_init_11bg_2413(ah
, mode
, offset
);
1274 offset
+= AR5K_EEPROM_N_2GHZ_CHAN_2413
/ 2;
1275 chinfo
= ee
->ee_pwr_cal_g
;
1281 for (i
= 0; i
< ee
->ee_n_piers
[mode
]; i
++) {
1282 pcinfo
= &chinfo
[i
].rf2413_info
;
1285 * Read pwr_i, pddac_i and the first
1286 * 2 pd points (pwr, pddac)
1288 AR5K_EEPROM_READ(offset
++, val
);
1289 pcinfo
->pwr_i
[0] = val
& 0x1f;
1290 pcinfo
->pddac_i
[0] = (val
>> 5) & 0x7f;
1291 pcinfo
->pwr
[0][0] = (val
>> 12) & 0xf;
1293 AR5K_EEPROM_READ(offset
++, val
);
1294 pcinfo
->pddac
[0][0] = val
& 0x3f;
1295 pcinfo
->pwr
[0][1] = (val
>> 6) & 0xf;
1296 pcinfo
->pddac
[0][1] = (val
>> 10) & 0x3f;
1298 AR5K_EEPROM_READ(offset
++, val
);
1299 pcinfo
->pwr
[0][2] = val
& 0xf;
1300 pcinfo
->pddac
[0][2] = (val
>> 4) & 0x3f;
1302 pcinfo
->pwr
[0][3] = 0;
1303 pcinfo
->pddac
[0][3] = 0;
1307 * Pd gain 0 is not the last pd gain
1308 * so it only has 2 pd points.
1309 * Continue wih pd gain 1.
1311 pcinfo
->pwr_i
[1] = (val
>> 10) & 0x1f;
1313 pcinfo
->pddac_i
[1] = (val
>> 15) & 0x1;
1314 AR5K_EEPROM_READ(offset
++, val
);
1315 pcinfo
->pddac_i
[1] |= (val
& 0x3F) << 1;
1317 pcinfo
->pwr
[1][0] = (val
>> 6) & 0xf;
1318 pcinfo
->pddac
[1][0] = (val
>> 10) & 0x3f;
1320 AR5K_EEPROM_READ(offset
++, val
);
1321 pcinfo
->pwr
[1][1] = val
& 0xf;
1322 pcinfo
->pddac
[1][1] = (val
>> 4) & 0x3f;
1323 pcinfo
->pwr
[1][2] = (val
>> 10) & 0xf;
1325 pcinfo
->pddac
[1][2] = (val
>> 14) & 0x3;
1326 AR5K_EEPROM_READ(offset
++, val
);
1327 pcinfo
->pddac
[1][2] |= (val
& 0xF) << 2;
1329 pcinfo
->pwr
[1][3] = 0;
1330 pcinfo
->pddac
[1][3] = 0;
1331 } else if (pd_gains
== 1) {
1333 * Pd gain 0 is the last one so
1334 * read the extra point.
1336 pcinfo
->pwr
[0][3] = (val
>> 10) & 0xf;
1338 pcinfo
->pddac
[0][3] = (val
>> 14) & 0x3;
1339 AR5K_EEPROM_READ(offset
++, val
);
1340 pcinfo
->pddac
[0][3] |= (val
& 0xF) << 2;
1344 * Proceed with the other pd_gains
1348 pcinfo
->pwr_i
[2] = (val
>> 4) & 0x1f;
1349 pcinfo
->pddac_i
[2] = (val
>> 9) & 0x7f;
1351 AR5K_EEPROM_READ(offset
++, val
);
1352 pcinfo
->pwr
[2][0] = (val
>> 0) & 0xf;
1353 pcinfo
->pddac
[2][0] = (val
>> 4) & 0x3f;
1354 pcinfo
->pwr
[2][1] = (val
>> 10) & 0xf;
1356 pcinfo
->pddac
[2][1] = (val
>> 14) & 0x3;
1357 AR5K_EEPROM_READ(offset
++, val
);
1358 pcinfo
->pddac
[2][1] |= (val
& 0xF) << 2;
1360 pcinfo
->pwr
[2][2] = (val
>> 4) & 0xf;
1361 pcinfo
->pddac
[2][2] = (val
>> 8) & 0x3f;
1363 pcinfo
->pwr
[2][3] = 0;
1364 pcinfo
->pddac
[2][3] = 0;
1365 } else if (pd_gains
== 2) {
1366 pcinfo
->pwr
[1][3] = (val
>> 4) & 0xf;
1367 pcinfo
->pddac
[1][3] = (val
>> 8) & 0x3f;
1371 pcinfo
->pwr_i
[3] = (val
>> 14) & 0x3;
1372 AR5K_EEPROM_READ(offset
++, val
);
1373 pcinfo
->pwr_i
[3] |= ((val
>> 0) & 0x7) << 2;
1375 pcinfo
->pddac_i
[3] = (val
>> 3) & 0x7f;
1376 pcinfo
->pwr
[3][0] = (val
>> 10) & 0xf;
1377 pcinfo
->pddac
[3][0] = (val
>> 14) & 0x3;
1379 AR5K_EEPROM_READ(offset
++, val
);
1380 pcinfo
->pddac
[3][0] |= (val
& 0xF) << 2;
1381 pcinfo
->pwr
[3][1] = (val
>> 4) & 0xf;
1382 pcinfo
->pddac
[3][1] = (val
>> 8) & 0x3f;
1384 pcinfo
->pwr
[3][2] = (val
>> 14) & 0x3;
1385 AR5K_EEPROM_READ(offset
++, val
);
1386 pcinfo
->pwr
[3][2] |= ((val
>> 0) & 0x3) << 2;
1388 pcinfo
->pddac
[3][2] = (val
>> 2) & 0x3f;
1389 pcinfo
->pwr
[3][3] = (val
>> 8) & 0xf;
1391 pcinfo
->pddac
[3][3] = (val
>> 12) & 0xF;
1392 AR5K_EEPROM_READ(offset
++, val
);
1393 pcinfo
->pddac
[3][3] |= ((val
>> 0) & 0x3) << 4;
1394 } else if (pd_gains
== 3) {
1395 pcinfo
->pwr
[2][3] = (val
>> 14) & 0x3;
1396 AR5K_EEPROM_READ(offset
++, val
);
1397 pcinfo
->pwr
[2][3] |= ((val
>> 0) & 0x3) << 2;
1399 pcinfo
->pddac
[2][3] = (val
>> 2) & 0x3f;
1403 return ath5k_eeprom_convert_pcal_info_2413(ah
, mode
, chinfo
);
1408 * Read per rate target power (this is the maximum tx power
1409 * supported by the card). This info is used when setting
1410 * tx power, no matter the channel.
1412 * This also works for v5 EEPROMs.
1415 ath5k_eeprom_read_target_rate_pwr_info(struct ath5k_hw
*ah
, unsigned int mode
)
1417 struct ath5k_eeprom_info
*ee
= &ah
->ah_capabilities
.cap_eeprom
;
1418 struct ath5k_rate_pcal_info
*rate_pcal_info
;
1419 u8
*rate_target_pwr_num
;
1424 offset
= AR5K_EEPROM_TARGET_PWRSTART(ee
->ee_misc1
);
1425 rate_target_pwr_num
= &ee
->ee_rate_target_pwr_num
[mode
];
1427 case AR5K_EEPROM_MODE_11A
:
1428 offset
+= AR5K_EEPROM_TARGET_PWR_OFF_11A(ee
->ee_version
);
1429 rate_pcal_info
= ee
->ee_rate_tpwr_a
;
1430 ee
->ee_rate_target_pwr_num
[mode
] = AR5K_EEPROM_N_5GHZ_CHAN
;
1432 case AR5K_EEPROM_MODE_11B
:
1433 offset
+= AR5K_EEPROM_TARGET_PWR_OFF_11B(ee
->ee_version
);
1434 rate_pcal_info
= ee
->ee_rate_tpwr_b
;
1435 ee
->ee_rate_target_pwr_num
[mode
] = 2; /* 3rd is g mode's 1st */
1437 case AR5K_EEPROM_MODE_11G
:
1438 offset
+= AR5K_EEPROM_TARGET_PWR_OFF_11G(ee
->ee_version
);
1439 rate_pcal_info
= ee
->ee_rate_tpwr_g
;
1440 ee
->ee_rate_target_pwr_num
[mode
] = AR5K_EEPROM_N_2GHZ_CHAN
;
1446 /* Different freq mask for older eeproms (<= v3.2) */
1447 if (ee
->ee_version
<= AR5K_EEPROM_VERSION_3_2
) {
1448 for (i
= 0; i
< (*rate_target_pwr_num
); i
++) {
1449 AR5K_EEPROM_READ(offset
++, val
);
1450 rate_pcal_info
[i
].freq
=
1451 ath5k_eeprom_bin2freq(ee
, (val
>> 9) & 0x7f, mode
);
1453 rate_pcal_info
[i
].target_power_6to24
= ((val
>> 3) & 0x3f);
1454 rate_pcal_info
[i
].target_power_36
= (val
<< 3) & 0x3f;
1456 AR5K_EEPROM_READ(offset
++, val
);
1458 if (rate_pcal_info
[i
].freq
== AR5K_EEPROM_CHANNEL_DIS
||
1460 (*rate_target_pwr_num
) = i
;
1464 rate_pcal_info
[i
].target_power_36
|= ((val
>> 13) & 0x7);
1465 rate_pcal_info
[i
].target_power_48
= ((val
>> 7) & 0x3f);
1466 rate_pcal_info
[i
].target_power_54
= ((val
>> 1) & 0x3f);
1469 for (i
= 0; i
< (*rate_target_pwr_num
); i
++) {
1470 AR5K_EEPROM_READ(offset
++, val
);
1471 rate_pcal_info
[i
].freq
=
1472 ath5k_eeprom_bin2freq(ee
, (val
>> 8) & 0xff, mode
);
1474 rate_pcal_info
[i
].target_power_6to24
= ((val
>> 2) & 0x3f);
1475 rate_pcal_info
[i
].target_power_36
= (val
<< 4) & 0x3f;
1477 AR5K_EEPROM_READ(offset
++, val
);
1479 if (rate_pcal_info
[i
].freq
== AR5K_EEPROM_CHANNEL_DIS
||
1481 (*rate_target_pwr_num
) = i
;
1485 rate_pcal_info
[i
].target_power_36
|= (val
>> 12) & 0xf;
1486 rate_pcal_info
[i
].target_power_48
= ((val
>> 6) & 0x3f);
1487 rate_pcal_info
[i
].target_power_54
= (val
& 0x3f);
1496 * Read per channel calibration info from EEPROM
1498 * This info is used to calibrate the baseband power table. Imagine
1499 * that for each channel there is a power curve that's hw specific
1500 * (depends on amplifier etc) and we try to "correct" this curve using
1501 * offsets we pass on to phy chip (baseband -> before amplifier) so that
1502 * it can use accurate power values when setting tx power (takes amplifier's
1503 * performance on each channel into account).
1505 * EEPROM provides us with the offsets for some pre-calibrated channels
1506 * and we have to interpolate to create the full table for these channels and
1507 * also the table for any channel.
1510 ath5k_eeprom_read_pcal_info(struct ath5k_hw
*ah
)
1512 struct ath5k_eeprom_info
*ee
= &ah
->ah_capabilities
.cap_eeprom
;
1513 int (*read_pcal
)(struct ath5k_hw
*hw
, int mode
);
1517 if ((ah
->ah_ee_version
>= AR5K_EEPROM_VERSION_4_0
) &&
1518 (AR5K_EEPROM_EEMAP(ee
->ee_misc0
) == 1))
1519 read_pcal
= ath5k_eeprom_read_pcal_info_5112
;
1520 else if ((ah
->ah_ee_version
>= AR5K_EEPROM_VERSION_5_0
) &&
1521 (AR5K_EEPROM_EEMAP(ee
->ee_misc0
) == 2))
1522 read_pcal
= ath5k_eeprom_read_pcal_info_2413
;
1524 read_pcal
= ath5k_eeprom_read_pcal_info_5111
;
1527 for (mode
= AR5K_EEPROM_MODE_11A
; mode
<= AR5K_EEPROM_MODE_11G
;
1529 err
= read_pcal(ah
, mode
);
1533 err
= ath5k_eeprom_read_target_rate_pwr_info(ah
, mode
);
1542 ath5k_eeprom_free_pcal_info(struct ath5k_hw
*ah
, int mode
)
1544 struct ath5k_eeprom_info
*ee
= &ah
->ah_capabilities
.cap_eeprom
;
1545 struct ath5k_chan_pcal_info
*chinfo
;
1549 case AR5K_EEPROM_MODE_11A
:
1550 if (!AR5K_EEPROM_HDR_11A(ee
->ee_header
))
1552 chinfo
= ee
->ee_pwr_cal_a
;
1554 case AR5K_EEPROM_MODE_11B
:
1555 if (!AR5K_EEPROM_HDR_11B(ee
->ee_header
))
1557 chinfo
= ee
->ee_pwr_cal_b
;
1559 case AR5K_EEPROM_MODE_11G
:
1560 if (!AR5K_EEPROM_HDR_11G(ee
->ee_header
))
1562 chinfo
= ee
->ee_pwr_cal_g
;
1568 for (pier
= 0; pier
< ee
->ee_n_piers
[mode
]; pier
++) {
1569 if (!chinfo
[pier
].pd_curves
)
1572 for (pdg
= 0; pdg
< ee
->ee_pd_gains
[mode
]; pdg
++) {
1573 struct ath5k_pdgain_info
*pd
=
1574 &chinfo
[pier
].pd_curves
[pdg
];
1582 kfree(chinfo
[pier
].pd_curves
);
1588 /* Read conformance test limits used for regulatory control */
1590 ath5k_eeprom_read_ctl_info(struct ath5k_hw
*ah
)
1592 struct ath5k_eeprom_info
*ee
= &ah
->ah_capabilities
.cap_eeprom
;
1593 struct ath5k_edge_power
*rep
;
1594 unsigned int fmask
, pmask
;
1595 unsigned int ctl_mode
;
1600 pmask
= AR5K_EEPROM_POWER_M
;
1601 fmask
= AR5K_EEPROM_FREQ_M(ee
->ee_version
);
1602 offset
= AR5K_EEPROM_CTL(ee
->ee_version
);
1603 ee
->ee_ctls
= AR5K_EEPROM_N_CTLS(ee
->ee_version
);
1604 for (i
= 0; i
< ee
->ee_ctls
; i
+= 2) {
1605 AR5K_EEPROM_READ(offset
++, val
);
1606 ee
->ee_ctl
[i
] = (val
>> 8) & 0xff;
1607 ee
->ee_ctl
[i
+ 1] = val
& 0xff;
1610 offset
= AR5K_EEPROM_GROUP8_OFFSET
;
1611 if (ee
->ee_version
>= AR5K_EEPROM_VERSION_4_0
)
1612 offset
+= AR5K_EEPROM_TARGET_PWRSTART(ee
->ee_misc1
) -
1613 AR5K_EEPROM_GROUP5_OFFSET
;
1615 offset
+= AR5K_EEPROM_GROUPS_START(ee
->ee_version
);
1617 rep
= ee
->ee_ctl_pwr
;
1618 for(i
= 0; i
< ee
->ee_ctls
; i
++) {
1619 switch(ee
->ee_ctl
[i
] & AR5K_CTL_MODE_M
) {
1621 case AR5K_CTL_TURBO
:
1622 ctl_mode
= AR5K_EEPROM_MODE_11A
;
1625 ctl_mode
= AR5K_EEPROM_MODE_11G
;
1628 if (ee
->ee_ctl
[i
] == 0) {
1629 if (ee
->ee_version
>= AR5K_EEPROM_VERSION_3_3
)
1633 rep
+= AR5K_EEPROM_N_EDGES
;
1636 if (ee
->ee_version
>= AR5K_EEPROM_VERSION_3_3
) {
1637 for (j
= 0; j
< AR5K_EEPROM_N_EDGES
; j
+= 2) {
1638 AR5K_EEPROM_READ(offset
++, val
);
1639 rep
[j
].freq
= (val
>> 8) & fmask
;
1640 rep
[j
+ 1].freq
= val
& fmask
;
1642 for (j
= 0; j
< AR5K_EEPROM_N_EDGES
; j
+= 2) {
1643 AR5K_EEPROM_READ(offset
++, val
);
1644 rep
[j
].edge
= (val
>> 8) & pmask
;
1645 rep
[j
].flag
= (val
>> 14) & 1;
1646 rep
[j
+ 1].edge
= val
& pmask
;
1647 rep
[j
+ 1].flag
= (val
>> 6) & 1;
1650 AR5K_EEPROM_READ(offset
++, val
);
1651 rep
[0].freq
= (val
>> 9) & fmask
;
1652 rep
[1].freq
= (val
>> 2) & fmask
;
1653 rep
[2].freq
= (val
<< 5) & fmask
;
1655 AR5K_EEPROM_READ(offset
++, val
);
1656 rep
[2].freq
|= (val
>> 11) & 0x1f;
1657 rep
[3].freq
= (val
>> 4) & fmask
;
1658 rep
[4].freq
= (val
<< 3) & fmask
;
1660 AR5K_EEPROM_READ(offset
++, val
);
1661 rep
[4].freq
|= (val
>> 13) & 0x7;
1662 rep
[5].freq
= (val
>> 6) & fmask
;
1663 rep
[6].freq
= (val
<< 1) & fmask
;
1665 AR5K_EEPROM_READ(offset
++, val
);
1666 rep
[6].freq
|= (val
>> 15) & 0x1;
1667 rep
[7].freq
= (val
>> 8) & fmask
;
1669 rep
[0].edge
= (val
>> 2) & pmask
;
1670 rep
[1].edge
= (val
<< 4) & pmask
;
1672 AR5K_EEPROM_READ(offset
++, val
);
1673 rep
[1].edge
|= (val
>> 12) & 0xf;
1674 rep
[2].edge
= (val
>> 6) & pmask
;
1675 rep
[3].edge
= val
& pmask
;
1677 AR5K_EEPROM_READ(offset
++, val
);
1678 rep
[4].edge
= (val
>> 10) & pmask
;
1679 rep
[5].edge
= (val
>> 4) & pmask
;
1680 rep
[6].edge
= (val
<< 2) & pmask
;
1682 AR5K_EEPROM_READ(offset
++, val
);
1683 rep
[6].edge
|= (val
>> 14) & 0x3;
1684 rep
[7].edge
= (val
>> 8) & pmask
;
1686 for (j
= 0; j
< AR5K_EEPROM_N_EDGES
; j
++) {
1687 rep
[j
].freq
= ath5k_eeprom_bin2freq(ee
,
1688 rep
[j
].freq
, ctl_mode
);
1690 rep
+= AR5K_EEPROM_N_EDGES
;
1697 ath5k_eeprom_read_spur_chans(struct ath5k_hw
*ah
)
1699 struct ath5k_eeprom_info
*ee
= &ah
->ah_capabilities
.cap_eeprom
;
1704 offset
= AR5K_EEPROM_CTL(ee
->ee_version
) +
1705 AR5K_EEPROM_N_CTLS(ee
->ee_version
);
1707 if (ee
->ee_version
< AR5K_EEPROM_VERSION_5_3
) {
1708 /* No spur info for 5GHz */
1709 ee
->ee_spur_chans
[0][0] = AR5K_EEPROM_NO_SPUR
;
1710 /* 2 channels for 2GHz (2464/2420) */
1711 ee
->ee_spur_chans
[0][1] = AR5K_EEPROM_5413_SPUR_CHAN_1
;
1712 ee
->ee_spur_chans
[1][1] = AR5K_EEPROM_5413_SPUR_CHAN_2
;
1713 ee
->ee_spur_chans
[2][1] = AR5K_EEPROM_NO_SPUR
;
1714 } else if (ee
->ee_version
>= AR5K_EEPROM_VERSION_5_3
) {
1715 for (i
= 0; i
< AR5K_EEPROM_N_SPUR_CHANS
; i
++) {
1716 AR5K_EEPROM_READ(offset
, val
);
1717 ee
->ee_spur_chans
[i
][0] = val
;
1718 AR5K_EEPROM_READ(offset
+ AR5K_EEPROM_N_SPUR_CHANS
,
1720 ee
->ee_spur_chans
[i
][1] = val
;
1729 * Read the MAC address from eeprom
1731 int ath5k_eeprom_read_mac(struct ath5k_hw
*ah
, u8
*mac
)
1733 u8 mac_d
[ETH_ALEN
] = {};
1738 ret
= ath5k_hw_nvram_read(ah
, 0x20, &data
);
1742 for (offset
= 0x1f, octet
= 0, total
= 0; offset
>= 0x1d; offset
--) {
1743 ret
= ath5k_hw_nvram_read(ah
, offset
, &data
);
1748 mac_d
[octet
+ 1] = data
& 0xff;
1749 mac_d
[octet
] = data
>> 8;
1753 if (!total
|| total
== 3 * 0xffff)
1756 memcpy(mac
, mac_d
, ETH_ALEN
);
1762 /***********************\
1763 * Init/Detach functions *
1764 \***********************/
1767 * Initialize eeprom data structure
1770 ath5k_eeprom_init(struct ath5k_hw
*ah
)
1774 err
= ath5k_eeprom_init_header(ah
);
1778 err
= ath5k_eeprom_init_modes(ah
);
1782 err
= ath5k_eeprom_read_pcal_info(ah
);
1786 err
= ath5k_eeprom_read_ctl_info(ah
);
1790 err
= ath5k_eeprom_read_spur_chans(ah
);
1798 ath5k_eeprom_detach(struct ath5k_hw
*ah
)
1802 for (mode
= AR5K_EEPROM_MODE_11A
; mode
<= AR5K_EEPROM_MODE_11G
; mode
++)
1803 ath5k_eeprom_free_pcal_info(ah
, mode
);
1807 ath5k_eeprom_mode_from_channel(struct ieee80211_channel
*channel
)
1809 switch (channel
->hw_value
& CHANNEL_MODES
) {
1812 return AR5K_EEPROM_MODE_11A
;
1814 return AR5K_EEPROM_MODE_11G
;
1816 return AR5K_EEPROM_MODE_11B
;