1 /******************************************************************************
3 * This file is provided under a dual BSD/GPLv2 license. When using or
4 * redistributing this file, you may do so under either license.
8 * Copyright(c) 2008 - 2010 Intel Corporation. All rights reserved.
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of version 2 of the GNU General Public License as
12 * published by the Free Software Foundation.
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
24 * The full GNU General Public License is included in this distribution
25 * in the file called LICENSE.GPL.
27 * Contact Information:
28 * Intel Linux Wireless <ilw@linux.intel.com>
29 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
33 * Copyright(c) 2005 - 2010 Intel Corporation. All rights reserved.
34 * All rights reserved.
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
40 * * Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * * Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in
44 * the documentation and/or other materials provided with the
46 * * Neither the name Intel Corporation nor the names of its
47 * contributors may be used to endorse or promote products derived
48 * from this software without specific prior written permission.
50 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
51 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
52 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
53 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
54 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
55 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
56 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
57 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
58 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
59 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
60 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
61 *****************************************************************************/
63 #include <linux/slab.h>
64 #include <net/mac80211.h>
68 #include "iwl-agn-calib.h"
70 /*****************************************************************************
71 * INIT calibrations framework
72 *****************************************************************************/
74 struct statistics_general_data
{
75 u32 beacon_silence_rssi_a
;
76 u32 beacon_silence_rssi_b
;
77 u32 beacon_silence_rssi_c
;
83 int iwl_send_calib_results(struct iwl_priv
*priv
)
88 struct iwl_host_cmd hcmd
= {
89 .id
= REPLY_PHY_CALIBRATION_CMD
,
90 .flags
= CMD_SIZE_HUGE
,
93 for (i
= 0; i
< IWL_CALIB_MAX
; i
++) {
94 if ((BIT(i
) & priv
->hw_params
.calib_init_cfg
) &&
95 priv
->calib_results
[i
].buf
) {
96 hcmd
.len
= priv
->calib_results
[i
].buf_len
;
97 hcmd
.data
= priv
->calib_results
[i
].buf
;
98 ret
= iwl_send_cmd_sync(priv
, &hcmd
);
100 IWL_ERR(priv
, "Error %d iteration %d\n",
110 int iwl_calib_set(struct iwl_calib_result
*res
, const u8
*buf
, int len
)
112 if (res
->buf_len
!= len
) {
114 res
->buf
= kzalloc(len
, GFP_ATOMIC
);
116 if (unlikely(res
->buf
== NULL
))
120 memcpy(res
->buf
, buf
, len
);
124 void iwl_calib_free_results(struct iwl_priv
*priv
)
128 for (i
= 0; i
< IWL_CALIB_MAX
; i
++) {
129 kfree(priv
->calib_results
[i
].buf
);
130 priv
->calib_results
[i
].buf
= NULL
;
131 priv
->calib_results
[i
].buf_len
= 0;
135 /*****************************************************************************
136 * RUNTIME calibrations framework
137 *****************************************************************************/
139 /* "false alarms" are signals that our DSP tries to lock onto,
140 * but then determines that they are either noise, or transmissions
141 * from a distant wireless network (also "noise", really) that get
142 * "stepped on" by stronger transmissions within our own network.
143 * This algorithm attempts to set a sensitivity level that is high
144 * enough to receive all of our own network traffic, but not so
145 * high that our DSP gets too busy trying to lock onto non-network
147 static int iwl_sens_energy_cck(struct iwl_priv
*priv
,
150 struct statistics_general_data
*rx_info
)
154 u8 max_silence_rssi
= 0;
156 u8 silence_rssi_a
= 0;
157 u8 silence_rssi_b
= 0;
158 u8 silence_rssi_c
= 0;
161 /* "false_alarms" values below are cross-multiplications to assess the
162 * numbers of false alarms within the measured period of actual Rx
163 * (Rx is off when we're txing), vs the min/max expected false alarms
164 * (some should be expected if rx is sensitive enough) in a
165 * hypothetical listening period of 200 time units (TU), 204.8 msec:
167 * MIN_FA/fixed-time < false_alarms/actual-rx-time < MAX_FA/beacon-time
170 u32 false_alarms
= norm_fa
* 200 * 1024;
171 u32 max_false_alarms
= MAX_FA_CCK
* rx_enable_time
;
172 u32 min_false_alarms
= MIN_FA_CCK
* rx_enable_time
;
173 struct iwl_sensitivity_data
*data
= NULL
;
174 const struct iwl_sensitivity_ranges
*ranges
= priv
->hw_params
.sens
;
176 data
= &(priv
->sensitivity_data
);
178 data
->nrg_auto_corr_silence_diff
= 0;
180 /* Find max silence rssi among all 3 receivers.
181 * This is background noise, which may include transmissions from other
182 * networks, measured during silence before our network's beacon */
183 silence_rssi_a
= (u8
)((rx_info
->beacon_silence_rssi_a
&
184 ALL_BAND_FILTER
) >> 8);
185 silence_rssi_b
= (u8
)((rx_info
->beacon_silence_rssi_b
&
186 ALL_BAND_FILTER
) >> 8);
187 silence_rssi_c
= (u8
)((rx_info
->beacon_silence_rssi_c
&
188 ALL_BAND_FILTER
) >> 8);
190 val
= max(silence_rssi_b
, silence_rssi_c
);
191 max_silence_rssi
= max(silence_rssi_a
, (u8
) val
);
193 /* Store silence rssi in 20-beacon history table */
194 data
->nrg_silence_rssi
[data
->nrg_silence_idx
] = max_silence_rssi
;
195 data
->nrg_silence_idx
++;
196 if (data
->nrg_silence_idx
>= NRG_NUM_PREV_STAT_L
)
197 data
->nrg_silence_idx
= 0;
199 /* Find max silence rssi across 20 beacon history */
200 for (i
= 0; i
< NRG_NUM_PREV_STAT_L
; i
++) {
201 val
= data
->nrg_silence_rssi
[i
];
202 silence_ref
= max(silence_ref
, val
);
204 IWL_DEBUG_CALIB(priv
, "silence a %u, b %u, c %u, 20-bcn max %u\n",
205 silence_rssi_a
, silence_rssi_b
, silence_rssi_c
,
208 /* Find max rx energy (min value!) among all 3 receivers,
209 * measured during beacon frame.
210 * Save it in 10-beacon history table. */
211 i
= data
->nrg_energy_idx
;
212 val
= min(rx_info
->beacon_energy_b
, rx_info
->beacon_energy_c
);
213 data
->nrg_value
[i
] = min(rx_info
->beacon_energy_a
, val
);
215 data
->nrg_energy_idx
++;
216 if (data
->nrg_energy_idx
>= 10)
217 data
->nrg_energy_idx
= 0;
219 /* Find min rx energy (max value) across 10 beacon history.
220 * This is the minimum signal level that we want to receive well.
221 * Add backoff (margin so we don't miss slightly lower energy frames).
222 * This establishes an upper bound (min value) for energy threshold. */
223 max_nrg_cck
= data
->nrg_value
[0];
224 for (i
= 1; i
< 10; i
++)
225 max_nrg_cck
= (u32
) max(max_nrg_cck
, (data
->nrg_value
[i
]));
228 IWL_DEBUG_CALIB(priv
, "rx energy a %u, b %u, c %u, 10-bcn max/min %u\n",
229 rx_info
->beacon_energy_a
, rx_info
->beacon_energy_b
,
230 rx_info
->beacon_energy_c
, max_nrg_cck
- 6);
232 /* Count number of consecutive beacons with fewer-than-desired
234 if (false_alarms
< min_false_alarms
)
235 data
->num_in_cck_no_fa
++;
237 data
->num_in_cck_no_fa
= 0;
238 IWL_DEBUG_CALIB(priv
, "consecutive bcns with few false alarms = %u\n",
239 data
->num_in_cck_no_fa
);
241 /* If we got too many false alarms this time, reduce sensitivity */
242 if ((false_alarms
> max_false_alarms
) &&
243 (data
->auto_corr_cck
> AUTO_CORR_MAX_TH_CCK
)) {
244 IWL_DEBUG_CALIB(priv
, "norm FA %u > max FA %u\n",
245 false_alarms
, max_false_alarms
);
246 IWL_DEBUG_CALIB(priv
, "... reducing sensitivity\n");
247 data
->nrg_curr_state
= IWL_FA_TOO_MANY
;
248 /* Store for "fewer than desired" on later beacon */
249 data
->nrg_silence_ref
= silence_ref
;
251 /* increase energy threshold (reduce nrg value)
252 * to decrease sensitivity */
253 data
->nrg_th_cck
= data
->nrg_th_cck
- NRG_STEP_CCK
;
254 /* Else if we got fewer than desired, increase sensitivity */
255 } else if (false_alarms
< min_false_alarms
) {
256 data
->nrg_curr_state
= IWL_FA_TOO_FEW
;
258 /* Compare silence level with silence level for most recent
259 * healthy number or too many false alarms */
260 data
->nrg_auto_corr_silence_diff
= (s32
)data
->nrg_silence_ref
-
263 IWL_DEBUG_CALIB(priv
, "norm FA %u < min FA %u, silence diff %d\n",
264 false_alarms
, min_false_alarms
,
265 data
->nrg_auto_corr_silence_diff
);
267 /* Increase value to increase sensitivity, but only if:
268 * 1a) previous beacon did *not* have *too many* false alarms
269 * 1b) AND there's a significant difference in Rx levels
270 * from a previous beacon with too many, or healthy # FAs
271 * OR 2) We've seen a lot of beacons (100) with too few
273 if ((data
->nrg_prev_state
!= IWL_FA_TOO_MANY
) &&
274 ((data
->nrg_auto_corr_silence_diff
> NRG_DIFF
) ||
275 (data
->num_in_cck_no_fa
> MAX_NUMBER_CCK_NO_FA
))) {
277 IWL_DEBUG_CALIB(priv
, "... increasing sensitivity\n");
278 /* Increase nrg value to increase sensitivity */
279 val
= data
->nrg_th_cck
+ NRG_STEP_CCK
;
280 data
->nrg_th_cck
= min((u32
)ranges
->min_nrg_cck
, val
);
282 IWL_DEBUG_CALIB(priv
, "... but not changing sensitivity\n");
285 /* Else we got a healthy number of false alarms, keep status quo */
287 IWL_DEBUG_CALIB(priv
, " FA in safe zone\n");
288 data
->nrg_curr_state
= IWL_FA_GOOD_RANGE
;
290 /* Store for use in "fewer than desired" with later beacon */
291 data
->nrg_silence_ref
= silence_ref
;
293 /* If previous beacon had too many false alarms,
294 * give it some extra margin by reducing sensitivity again
295 * (but don't go below measured energy of desired Rx) */
296 if (IWL_FA_TOO_MANY
== data
->nrg_prev_state
) {
297 IWL_DEBUG_CALIB(priv
, "... increasing margin\n");
298 if (data
->nrg_th_cck
> (max_nrg_cck
+ NRG_MARGIN
))
299 data
->nrg_th_cck
-= NRG_MARGIN
;
301 data
->nrg_th_cck
= max_nrg_cck
;
305 /* Make sure the energy threshold does not go above the measured
306 * energy of the desired Rx signals (reduced by backoff margin),
307 * or else we might start missing Rx frames.
308 * Lower value is higher energy, so we use max()!
310 data
->nrg_th_cck
= max(max_nrg_cck
, data
->nrg_th_cck
);
311 IWL_DEBUG_CALIB(priv
, "new nrg_th_cck %u\n", data
->nrg_th_cck
);
313 data
->nrg_prev_state
= data
->nrg_curr_state
;
315 /* Auto-correlation CCK algorithm */
316 if (false_alarms
> min_false_alarms
) {
318 /* increase auto_corr values to decrease sensitivity
319 * so the DSP won't be disturbed by the noise
321 if (data
->auto_corr_cck
< AUTO_CORR_MAX_TH_CCK
)
322 data
->auto_corr_cck
= AUTO_CORR_MAX_TH_CCK
+ 1;
324 val
= data
->auto_corr_cck
+ AUTO_CORR_STEP_CCK
;
325 data
->auto_corr_cck
=
326 min((u32
)ranges
->auto_corr_max_cck
, val
);
328 val
= data
->auto_corr_cck_mrc
+ AUTO_CORR_STEP_CCK
;
329 data
->auto_corr_cck_mrc
=
330 min((u32
)ranges
->auto_corr_max_cck_mrc
, val
);
331 } else if ((false_alarms
< min_false_alarms
) &&
332 ((data
->nrg_auto_corr_silence_diff
> NRG_DIFF
) ||
333 (data
->num_in_cck_no_fa
> MAX_NUMBER_CCK_NO_FA
))) {
335 /* Decrease auto_corr values to increase sensitivity */
336 val
= data
->auto_corr_cck
- AUTO_CORR_STEP_CCK
;
337 data
->auto_corr_cck
=
338 max((u32
)ranges
->auto_corr_min_cck
, val
);
339 val
= data
->auto_corr_cck_mrc
- AUTO_CORR_STEP_CCK
;
340 data
->auto_corr_cck_mrc
=
341 max((u32
)ranges
->auto_corr_min_cck_mrc
, val
);
348 static int iwl_sens_auto_corr_ofdm(struct iwl_priv
*priv
,
353 u32 false_alarms
= norm_fa
* 200 * 1024;
354 u32 max_false_alarms
= MAX_FA_OFDM
* rx_enable_time
;
355 u32 min_false_alarms
= MIN_FA_OFDM
* rx_enable_time
;
356 struct iwl_sensitivity_data
*data
= NULL
;
357 const struct iwl_sensitivity_ranges
*ranges
= priv
->hw_params
.sens
;
359 data
= &(priv
->sensitivity_data
);
361 /* If we got too many false alarms this time, reduce sensitivity */
362 if (false_alarms
> max_false_alarms
) {
364 IWL_DEBUG_CALIB(priv
, "norm FA %u > max FA %u)\n",
365 false_alarms
, max_false_alarms
);
367 val
= data
->auto_corr_ofdm
+ AUTO_CORR_STEP_OFDM
;
368 data
->auto_corr_ofdm
=
369 min((u32
)ranges
->auto_corr_max_ofdm
, val
);
371 val
= data
->auto_corr_ofdm_mrc
+ AUTO_CORR_STEP_OFDM
;
372 data
->auto_corr_ofdm_mrc
=
373 min((u32
)ranges
->auto_corr_max_ofdm_mrc
, val
);
375 val
= data
->auto_corr_ofdm_x1
+ AUTO_CORR_STEP_OFDM
;
376 data
->auto_corr_ofdm_x1
=
377 min((u32
)ranges
->auto_corr_max_ofdm_x1
, val
);
379 val
= data
->auto_corr_ofdm_mrc_x1
+ AUTO_CORR_STEP_OFDM
;
380 data
->auto_corr_ofdm_mrc_x1
=
381 min((u32
)ranges
->auto_corr_max_ofdm_mrc_x1
, val
);
384 /* Else if we got fewer than desired, increase sensitivity */
385 else if (false_alarms
< min_false_alarms
) {
387 IWL_DEBUG_CALIB(priv
, "norm FA %u < min FA %u\n",
388 false_alarms
, min_false_alarms
);
390 val
= data
->auto_corr_ofdm
- AUTO_CORR_STEP_OFDM
;
391 data
->auto_corr_ofdm
=
392 max((u32
)ranges
->auto_corr_min_ofdm
, val
);
394 val
= data
->auto_corr_ofdm_mrc
- AUTO_CORR_STEP_OFDM
;
395 data
->auto_corr_ofdm_mrc
=
396 max((u32
)ranges
->auto_corr_min_ofdm_mrc
, val
);
398 val
= data
->auto_corr_ofdm_x1
- AUTO_CORR_STEP_OFDM
;
399 data
->auto_corr_ofdm_x1
=
400 max((u32
)ranges
->auto_corr_min_ofdm_x1
, val
);
402 val
= data
->auto_corr_ofdm_mrc_x1
- AUTO_CORR_STEP_OFDM
;
403 data
->auto_corr_ofdm_mrc_x1
=
404 max((u32
)ranges
->auto_corr_min_ofdm_mrc_x1
, val
);
406 IWL_DEBUG_CALIB(priv
, "min FA %u < norm FA %u < max FA %u OK\n",
407 min_false_alarms
, false_alarms
, max_false_alarms
);
412 static void iwl_prepare_legacy_sensitivity_tbl(struct iwl_priv
*priv
,
413 struct iwl_sensitivity_data
*data
,
416 tbl
[HD_AUTO_CORR32_X4_TH_ADD_MIN_INDEX
] =
417 cpu_to_le16((u16
)data
->auto_corr_ofdm
);
418 tbl
[HD_AUTO_CORR32_X4_TH_ADD_MIN_MRC_INDEX
] =
419 cpu_to_le16((u16
)data
->auto_corr_ofdm_mrc
);
420 tbl
[HD_AUTO_CORR32_X1_TH_ADD_MIN_INDEX
] =
421 cpu_to_le16((u16
)data
->auto_corr_ofdm_x1
);
422 tbl
[HD_AUTO_CORR32_X1_TH_ADD_MIN_MRC_INDEX
] =
423 cpu_to_le16((u16
)data
->auto_corr_ofdm_mrc_x1
);
425 tbl
[HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX
] =
426 cpu_to_le16((u16
)data
->auto_corr_cck
);
427 tbl
[HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX
] =
428 cpu_to_le16((u16
)data
->auto_corr_cck_mrc
);
430 tbl
[HD_MIN_ENERGY_CCK_DET_INDEX
] =
431 cpu_to_le16((u16
)data
->nrg_th_cck
);
432 tbl
[HD_MIN_ENERGY_OFDM_DET_INDEX
] =
433 cpu_to_le16((u16
)data
->nrg_th_ofdm
);
435 tbl
[HD_BARKER_CORR_TH_ADD_MIN_INDEX
] =
436 cpu_to_le16(data
->barker_corr_th_min
);
437 tbl
[HD_BARKER_CORR_TH_ADD_MIN_MRC_INDEX
] =
438 cpu_to_le16(data
->barker_corr_th_min_mrc
);
439 tbl
[HD_OFDM_ENERGY_TH_IN_INDEX
] =
440 cpu_to_le16(data
->nrg_th_cca
);
442 IWL_DEBUG_CALIB(priv
, "ofdm: ac %u mrc %u x1 %u mrc_x1 %u thresh %u\n",
443 data
->auto_corr_ofdm
, data
->auto_corr_ofdm_mrc
,
444 data
->auto_corr_ofdm_x1
, data
->auto_corr_ofdm_mrc_x1
,
447 IWL_DEBUG_CALIB(priv
, "cck: ac %u mrc %u thresh %u\n",
448 data
->auto_corr_cck
, data
->auto_corr_cck_mrc
,
452 /* Prepare a SENSITIVITY_CMD, send to uCode if values have changed */
453 static int iwl_sensitivity_write(struct iwl_priv
*priv
)
455 struct iwl_sensitivity_cmd cmd
;
456 struct iwl_sensitivity_data
*data
= NULL
;
457 struct iwl_host_cmd cmd_out
= {
458 .id
= SENSITIVITY_CMD
,
459 .len
= sizeof(struct iwl_sensitivity_cmd
),
464 data
= &(priv
->sensitivity_data
);
466 memset(&cmd
, 0, sizeof(cmd
));
468 iwl_prepare_legacy_sensitivity_tbl(priv
, data
, &cmd
.table
[0]);
470 /* Update uCode's "work" table, and copy it to DSP */
471 cmd
.control
= SENSITIVITY_CMD_CONTROL_WORK_TABLE
;
473 /* Don't send command to uCode if nothing has changed */
474 if (!memcmp(&cmd
.table
[0], &(priv
->sensitivity_tbl
[0]),
475 sizeof(u16
)*HD_TABLE_SIZE
)) {
476 IWL_DEBUG_CALIB(priv
, "No change in SENSITIVITY_CMD\n");
480 /* Copy table for comparison next time */
481 memcpy(&(priv
->sensitivity_tbl
[0]), &(cmd
.table
[0]),
482 sizeof(u16
)*HD_TABLE_SIZE
);
484 return iwl_send_cmd(priv
, &cmd_out
);
487 /* Prepare a SENSITIVITY_CMD, send to uCode if values have changed */
488 static int iwl_enhance_sensitivity_write(struct iwl_priv
*priv
)
490 struct iwl_enhance_sensitivity_cmd cmd
;
491 struct iwl_sensitivity_data
*data
= NULL
;
492 struct iwl_host_cmd cmd_out
= {
493 .id
= SENSITIVITY_CMD
,
494 .len
= sizeof(struct iwl_enhance_sensitivity_cmd
),
499 data
= &(priv
->sensitivity_data
);
501 memset(&cmd
, 0, sizeof(cmd
));
503 iwl_prepare_legacy_sensitivity_tbl(priv
, data
, &cmd
.enhance_table
[0]);
505 cmd
.enhance_table
[HD_INA_NON_SQUARE_DET_OFDM_INDEX
] =
506 HD_INA_NON_SQUARE_DET_OFDM_DATA
;
507 cmd
.enhance_table
[HD_INA_NON_SQUARE_DET_CCK_INDEX
] =
508 HD_INA_NON_SQUARE_DET_CCK_DATA
;
509 cmd
.enhance_table
[HD_CORR_11_INSTEAD_OF_CORR_9_EN_INDEX
] =
510 HD_CORR_11_INSTEAD_OF_CORR_9_EN_DATA
;
511 cmd
.enhance_table
[HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_INDEX
] =
512 HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_DATA
;
513 cmd
.enhance_table
[HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_INDEX
] =
514 HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_DATA
;
515 cmd
.enhance_table
[HD_OFDM_NON_SQUARE_DET_SLOPE_INDEX
] =
516 HD_OFDM_NON_SQUARE_DET_SLOPE_DATA
;
517 cmd
.enhance_table
[HD_OFDM_NON_SQUARE_DET_INTERCEPT_INDEX
] =
518 HD_OFDM_NON_SQUARE_DET_INTERCEPT_DATA
;
519 cmd
.enhance_table
[HD_CCK_NON_SQUARE_DET_SLOPE_MRC_INDEX
] =
520 HD_CCK_NON_SQUARE_DET_SLOPE_MRC_DATA
;
521 cmd
.enhance_table
[HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_INDEX
] =
522 HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_DATA
;
523 cmd
.enhance_table
[HD_CCK_NON_SQUARE_DET_SLOPE_INDEX
] =
524 HD_CCK_NON_SQUARE_DET_SLOPE_DATA
;
525 cmd
.enhance_table
[HD_CCK_NON_SQUARE_DET_INTERCEPT_INDEX
] =
526 HD_CCK_NON_SQUARE_DET_INTERCEPT_DATA
;
528 /* Update uCode's "work" table, and copy it to DSP */
529 cmd
.control
= SENSITIVITY_CMD_CONTROL_WORK_TABLE
;
531 /* Don't send command to uCode if nothing has changed */
532 if (!memcmp(&cmd
.enhance_table
[0], &(priv
->sensitivity_tbl
[0]),
533 sizeof(u16
)*HD_TABLE_SIZE
) &&
534 !memcmp(&cmd
.enhance_table
[HD_INA_NON_SQUARE_DET_OFDM_INDEX
],
535 &(priv
->enhance_sensitivity_tbl
[0]),
536 sizeof(u16
)*ENHANCE_HD_TABLE_ENTRIES
)) {
537 IWL_DEBUG_CALIB(priv
, "No change in SENSITIVITY_CMD\n");
541 /* Copy table for comparison next time */
542 memcpy(&(priv
->sensitivity_tbl
[0]), &(cmd
.enhance_table
[0]),
543 sizeof(u16
)*HD_TABLE_SIZE
);
544 memcpy(&(priv
->enhance_sensitivity_tbl
[0]),
545 &(cmd
.enhance_table
[HD_INA_NON_SQUARE_DET_OFDM_INDEX
]),
546 sizeof(u16
)*ENHANCE_HD_TABLE_ENTRIES
);
548 return iwl_send_cmd(priv
, &cmd_out
);
551 void iwl_init_sensitivity(struct iwl_priv
*priv
)
555 struct iwl_sensitivity_data
*data
= NULL
;
556 const struct iwl_sensitivity_ranges
*ranges
= priv
->hw_params
.sens
;
558 if (priv
->disable_sens_cal
)
561 IWL_DEBUG_CALIB(priv
, "Start iwl_init_sensitivity\n");
563 /* Clear driver's sensitivity algo data */
564 data
= &(priv
->sensitivity_data
);
569 memset(data
, 0, sizeof(struct iwl_sensitivity_data
));
571 data
->num_in_cck_no_fa
= 0;
572 data
->nrg_curr_state
= IWL_FA_TOO_MANY
;
573 data
->nrg_prev_state
= IWL_FA_TOO_MANY
;
574 data
->nrg_silence_ref
= 0;
575 data
->nrg_silence_idx
= 0;
576 data
->nrg_energy_idx
= 0;
578 for (i
= 0; i
< 10; i
++)
579 data
->nrg_value
[i
] = 0;
581 for (i
= 0; i
< NRG_NUM_PREV_STAT_L
; i
++)
582 data
->nrg_silence_rssi
[i
] = 0;
584 data
->auto_corr_ofdm
= ranges
->auto_corr_min_ofdm
;
585 data
->auto_corr_ofdm_mrc
= ranges
->auto_corr_min_ofdm_mrc
;
586 data
->auto_corr_ofdm_x1
= ranges
->auto_corr_min_ofdm_x1
;
587 data
->auto_corr_ofdm_mrc_x1
= ranges
->auto_corr_min_ofdm_mrc_x1
;
588 data
->auto_corr_cck
= AUTO_CORR_CCK_MIN_VAL_DEF
;
589 data
->auto_corr_cck_mrc
= ranges
->auto_corr_min_cck_mrc
;
590 data
->nrg_th_cck
= ranges
->nrg_th_cck
;
591 data
->nrg_th_ofdm
= ranges
->nrg_th_ofdm
;
592 data
->barker_corr_th_min
= ranges
->barker_corr_th_min
;
593 data
->barker_corr_th_min_mrc
= ranges
->barker_corr_th_min_mrc
;
594 data
->nrg_th_cca
= ranges
->nrg_th_cca
;
596 data
->last_bad_plcp_cnt_ofdm
= 0;
597 data
->last_fa_cnt_ofdm
= 0;
598 data
->last_bad_plcp_cnt_cck
= 0;
599 data
->last_fa_cnt_cck
= 0;
601 if (priv
->enhance_sensitivity_table
)
602 ret
|= iwl_enhance_sensitivity_write(priv
);
604 ret
|= iwl_sensitivity_write(priv
);
605 IWL_DEBUG_CALIB(priv
, "<<return 0x%X\n", ret
);
608 void iwl_sensitivity_calibration(struct iwl_priv
*priv
, void *resp
)
617 struct iwl_sensitivity_data
*data
= NULL
;
618 struct statistics_rx_non_phy
*rx_info
;
619 struct statistics_rx_phy
*ofdm
, *cck
;
621 struct statistics_general_data statis
;
623 if (priv
->disable_sens_cal
)
626 data
= &(priv
->sensitivity_data
);
628 if (!iwl_is_any_associated(priv
)) {
629 IWL_DEBUG_CALIB(priv
, "<< - not associated\n");
633 spin_lock_irqsave(&priv
->lock
, flags
);
634 if (priv
->cfg
->bt_params
&&
635 priv
->cfg
->bt_params
->bt_statistics
) {
636 rx_info
= &(((struct iwl_bt_notif_statistics
*)resp
)->
638 ofdm
= &(((struct iwl_bt_notif_statistics
*)resp
)->rx
.ofdm
);
639 cck
= &(((struct iwl_bt_notif_statistics
*)resp
)->rx
.cck
);
641 rx_info
= &(((struct iwl_notif_statistics
*)resp
)->rx
.general
);
642 ofdm
= &(((struct iwl_notif_statistics
*)resp
)->rx
.ofdm
);
643 cck
= &(((struct iwl_notif_statistics
*)resp
)->rx
.cck
);
645 if (rx_info
->interference_data_flag
!= INTERFERENCE_DATA_AVAILABLE
) {
646 IWL_DEBUG_CALIB(priv
, "<< invalid data.\n");
647 spin_unlock_irqrestore(&priv
->lock
, flags
);
651 /* Extract Statistics: */
652 rx_enable_time
= le32_to_cpu(rx_info
->channel_load
);
653 fa_cck
= le32_to_cpu(cck
->false_alarm_cnt
);
654 fa_ofdm
= le32_to_cpu(ofdm
->false_alarm_cnt
);
655 bad_plcp_cck
= le32_to_cpu(cck
->plcp_err
);
656 bad_plcp_ofdm
= le32_to_cpu(ofdm
->plcp_err
);
658 statis
.beacon_silence_rssi_a
=
659 le32_to_cpu(rx_info
->beacon_silence_rssi_a
);
660 statis
.beacon_silence_rssi_b
=
661 le32_to_cpu(rx_info
->beacon_silence_rssi_b
);
662 statis
.beacon_silence_rssi_c
=
663 le32_to_cpu(rx_info
->beacon_silence_rssi_c
);
664 statis
.beacon_energy_a
=
665 le32_to_cpu(rx_info
->beacon_energy_a
);
666 statis
.beacon_energy_b
=
667 le32_to_cpu(rx_info
->beacon_energy_b
);
668 statis
.beacon_energy_c
=
669 le32_to_cpu(rx_info
->beacon_energy_c
);
671 spin_unlock_irqrestore(&priv
->lock
, flags
);
673 IWL_DEBUG_CALIB(priv
, "rx_enable_time = %u usecs\n", rx_enable_time
);
675 if (!rx_enable_time
) {
676 IWL_DEBUG_CALIB(priv
, "<< RX Enable Time == 0!\n");
680 /* These statistics increase monotonically, and do not reset
681 * at each beacon. Calculate difference from last value, or just
682 * use the new statistics value if it has reset or wrapped around. */
683 if (data
->last_bad_plcp_cnt_cck
> bad_plcp_cck
)
684 data
->last_bad_plcp_cnt_cck
= bad_plcp_cck
;
686 bad_plcp_cck
-= data
->last_bad_plcp_cnt_cck
;
687 data
->last_bad_plcp_cnt_cck
+= bad_plcp_cck
;
690 if (data
->last_bad_plcp_cnt_ofdm
> bad_plcp_ofdm
)
691 data
->last_bad_plcp_cnt_ofdm
= bad_plcp_ofdm
;
693 bad_plcp_ofdm
-= data
->last_bad_plcp_cnt_ofdm
;
694 data
->last_bad_plcp_cnt_ofdm
+= bad_plcp_ofdm
;
697 if (data
->last_fa_cnt_ofdm
> fa_ofdm
)
698 data
->last_fa_cnt_ofdm
= fa_ofdm
;
700 fa_ofdm
-= data
->last_fa_cnt_ofdm
;
701 data
->last_fa_cnt_ofdm
+= fa_ofdm
;
704 if (data
->last_fa_cnt_cck
> fa_cck
)
705 data
->last_fa_cnt_cck
= fa_cck
;
707 fa_cck
-= data
->last_fa_cnt_cck
;
708 data
->last_fa_cnt_cck
+= fa_cck
;
711 /* Total aborted signal locks */
712 norm_fa_ofdm
= fa_ofdm
+ bad_plcp_ofdm
;
713 norm_fa_cck
= fa_cck
+ bad_plcp_cck
;
715 IWL_DEBUG_CALIB(priv
, "cck: fa %u badp %u ofdm: fa %u badp %u\n", fa_cck
,
716 bad_plcp_cck
, fa_ofdm
, bad_plcp_ofdm
);
718 iwl_sens_auto_corr_ofdm(priv
, norm_fa_ofdm
, rx_enable_time
);
719 iwl_sens_energy_cck(priv
, norm_fa_cck
, rx_enable_time
, &statis
);
720 if (priv
->enhance_sensitivity_table
)
721 iwl_enhance_sensitivity_write(priv
);
723 iwl_sensitivity_write(priv
);
726 static inline u8
find_first_chain(u8 mask
)
736 * Run disconnected antenna algorithm to find out which antennas are
739 static void iwl_find_disconn_antenna(struct iwl_priv
*priv
, u32
* average_sig
,
740 struct iwl_chain_noise_data
*data
)
742 u32 active_chains
= 0;
744 u16 max_average_sig_antenna_i
;
749 average_sig
[0] = data
->chain_signal_a
/
750 priv
->cfg
->base_params
->chain_noise_num_beacons
;
751 average_sig
[1] = data
->chain_signal_b
/
752 priv
->cfg
->base_params
->chain_noise_num_beacons
;
753 average_sig
[2] = data
->chain_signal_c
/
754 priv
->cfg
->base_params
->chain_noise_num_beacons
;
756 if (average_sig
[0] >= average_sig
[1]) {
757 max_average_sig
= average_sig
[0];
758 max_average_sig_antenna_i
= 0;
759 active_chains
= (1 << max_average_sig_antenna_i
);
761 max_average_sig
= average_sig
[1];
762 max_average_sig_antenna_i
= 1;
763 active_chains
= (1 << max_average_sig_antenna_i
);
766 if (average_sig
[2] >= max_average_sig
) {
767 max_average_sig
= average_sig
[2];
768 max_average_sig_antenna_i
= 2;
769 active_chains
= (1 << max_average_sig_antenna_i
);
772 IWL_DEBUG_CALIB(priv
, "average_sig: a %d b %d c %d\n",
773 average_sig
[0], average_sig
[1], average_sig
[2]);
774 IWL_DEBUG_CALIB(priv
, "max_average_sig = %d, antenna %d\n",
775 max_average_sig
, max_average_sig_antenna_i
);
777 /* Compare signal strengths for all 3 receivers. */
778 for (i
= 0; i
< NUM_RX_CHAINS
; i
++) {
779 if (i
!= max_average_sig_antenna_i
) {
780 s32 rssi_delta
= (max_average_sig
- average_sig
[i
]);
782 /* If signal is very weak, compared with
783 * strongest, mark it as disconnected. */
784 if (rssi_delta
> MAXIMUM_ALLOWED_PATHLOSS
)
785 data
->disconn_array
[i
] = 1;
787 active_chains
|= (1 << i
);
788 IWL_DEBUG_CALIB(priv
, "i = %d rssiDelta = %d "
789 "disconn_array[i] = %d\n",
790 i
, rssi_delta
, data
->disconn_array
[i
]);
795 * The above algorithm sometimes fails when the ucode
796 * reports 0 for all chains. It's not clear why that
797 * happens to start with, but it is then causing trouble
798 * because this can make us enable more chains than the
799 * hardware really has.
801 * To be safe, simply mask out any chains that we know
802 * are not on the device.
804 active_chains
&= priv
->hw_params
.valid_rx_ant
;
807 for (i
= 0; i
< NUM_RX_CHAINS
; i
++) {
808 /* loops on all the bits of
809 * priv->hw_setting.valid_tx_ant */
810 u8 ant_msk
= (1 << i
);
811 if (!(priv
->hw_params
.valid_tx_ant
& ant_msk
))
815 if (data
->disconn_array
[i
] == 0)
816 /* there is a Tx antenna connected */
818 if (num_tx_chains
== priv
->hw_params
.tx_chains_num
&&
819 data
->disconn_array
[i
]) {
821 * If all chains are disconnected
822 * connect the first valid tx chain
825 find_first_chain(priv
->cfg
->valid_tx_ant
);
826 data
->disconn_array
[first_chain
] = 0;
827 active_chains
|= BIT(first_chain
);
828 IWL_DEBUG_CALIB(priv
, "All Tx chains are disconnected \
829 W/A - declare %d as connected\n",
835 if (active_chains
!= priv
->hw_params
.valid_rx_ant
&&
836 active_chains
!= priv
->chain_noise_data
.active_chains
)
837 IWL_DEBUG_CALIB(priv
,
838 "Detected that not all antennas are connected! "
839 "Connected: %#x, valid: %#x.\n",
840 active_chains
, priv
->hw_params
.valid_rx_ant
);
842 /* Save for use within RXON, TX, SCAN commands, etc. */
843 data
->active_chains
= active_chains
;
844 IWL_DEBUG_CALIB(priv
, "active_chains (bitwise) = 0x%x\n",
850 * Accumulate 16 beacons of signal and noise statistics for each of
851 * 3 receivers/antennas/rx-chains, then figure out:
852 * 1) Which antennas are connected.
853 * 2) Differential rx gain settings to balance the 3 receivers.
855 void iwl_chain_noise_calibration(struct iwl_priv
*priv
, void *stat_resp
)
857 struct iwl_chain_noise_data
*data
= NULL
;
865 u32 average_sig
[NUM_RX_CHAINS
] = {INITIALIZATION_VALUE
};
866 u32 average_noise
[NUM_RX_CHAINS
] = {INITIALIZATION_VALUE
};
867 u32 min_average_noise
= MIN_AVERAGE_NOISE_MAX_VALUE
;
868 u16 min_average_noise_antenna_i
= INITIALIZATION_VALUE
;
870 u16 rxon_chnum
= INITIALIZATION_VALUE
;
871 u16 stat_chnum
= INITIALIZATION_VALUE
;
875 struct statistics_rx_non_phy
*rx_info
;
879 * When we support multiple interfaces on different channels,
880 * this must be modified/fixed.
882 struct iwl_rxon_context
*ctx
= &priv
->contexts
[IWL_RXON_CTX_BSS
];
884 if (priv
->disable_chain_noise_cal
)
887 data
= &(priv
->chain_noise_data
);
890 * Accumulate just the first "chain_noise_num_beacons" after
891 * the first association, then we're done forever.
893 if (data
->state
!= IWL_CHAIN_NOISE_ACCUMULATE
) {
894 if (data
->state
== IWL_CHAIN_NOISE_ALIVE
)
895 IWL_DEBUG_CALIB(priv
, "Wait for noise calib reset\n");
899 spin_lock_irqsave(&priv
->lock
, flags
);
900 if (priv
->cfg
->bt_params
&&
901 priv
->cfg
->bt_params
->bt_statistics
) {
902 rx_info
= &(((struct iwl_bt_notif_statistics
*)stat_resp
)->
905 rx_info
= &(((struct iwl_notif_statistics
*)stat_resp
)->
908 if (rx_info
->interference_data_flag
!= INTERFERENCE_DATA_AVAILABLE
) {
909 IWL_DEBUG_CALIB(priv
, " << Interference data unavailable\n");
910 spin_unlock_irqrestore(&priv
->lock
, flags
);
914 rxon_band24
= !!(ctx
->staging
.flags
& RXON_FLG_BAND_24G_MSK
);
915 rxon_chnum
= le16_to_cpu(ctx
->staging
.channel
);
916 if (priv
->cfg
->bt_params
&&
917 priv
->cfg
->bt_params
->bt_statistics
) {
918 stat_band24
= !!(((struct iwl_bt_notif_statistics
*)
920 STATISTICS_REPLY_FLG_BAND_24G_MSK
);
921 stat_chnum
= le32_to_cpu(((struct iwl_bt_notif_statistics
*)
922 stat_resp
)->flag
) >> 16;
924 stat_band24
= !!(((struct iwl_notif_statistics
*)
926 STATISTICS_REPLY_FLG_BAND_24G_MSK
);
927 stat_chnum
= le32_to_cpu(((struct iwl_notif_statistics
*)
928 stat_resp
)->flag
) >> 16;
931 /* Make sure we accumulate data for just the associated channel
932 * (even if scanning). */
933 if ((rxon_chnum
!= stat_chnum
) || (rxon_band24
!= stat_band24
)) {
934 IWL_DEBUG_CALIB(priv
, "Stats not from chan=%d, band24=%d\n",
935 rxon_chnum
, rxon_band24
);
936 spin_unlock_irqrestore(&priv
->lock
, flags
);
941 * Accumulate beacon statistics values across
942 * "chain_noise_num_beacons"
944 chain_noise_a
= le32_to_cpu(rx_info
->beacon_silence_rssi_a
) &
946 chain_noise_b
= le32_to_cpu(rx_info
->beacon_silence_rssi_b
) &
948 chain_noise_c
= le32_to_cpu(rx_info
->beacon_silence_rssi_c
) &
951 chain_sig_a
= le32_to_cpu(rx_info
->beacon_rssi_a
) & IN_BAND_FILTER
;
952 chain_sig_b
= le32_to_cpu(rx_info
->beacon_rssi_b
) & IN_BAND_FILTER
;
953 chain_sig_c
= le32_to_cpu(rx_info
->beacon_rssi_c
) & IN_BAND_FILTER
;
955 spin_unlock_irqrestore(&priv
->lock
, flags
);
957 data
->beacon_count
++;
959 data
->chain_noise_a
= (chain_noise_a
+ data
->chain_noise_a
);
960 data
->chain_noise_b
= (chain_noise_b
+ data
->chain_noise_b
);
961 data
->chain_noise_c
= (chain_noise_c
+ data
->chain_noise_c
);
963 data
->chain_signal_a
= (chain_sig_a
+ data
->chain_signal_a
);
964 data
->chain_signal_b
= (chain_sig_b
+ data
->chain_signal_b
);
965 data
->chain_signal_c
= (chain_sig_c
+ data
->chain_signal_c
);
967 IWL_DEBUG_CALIB(priv
, "chan=%d, band24=%d, beacon=%d\n",
968 rxon_chnum
, rxon_band24
, data
->beacon_count
);
969 IWL_DEBUG_CALIB(priv
, "chain_sig: a %d b %d c %d\n",
970 chain_sig_a
, chain_sig_b
, chain_sig_c
);
971 IWL_DEBUG_CALIB(priv
, "chain_noise: a %d b %d c %d\n",
972 chain_noise_a
, chain_noise_b
, chain_noise_c
);
974 /* If this is the "chain_noise_num_beacons", determine:
975 * 1) Disconnected antennas (using signal strengths)
976 * 2) Differential gain (using silence noise) to balance receivers */
977 if (data
->beacon_count
!=
978 priv
->cfg
->base_params
->chain_noise_num_beacons
)
981 /* Analyze signal for disconnected antenna */
982 if (priv
->cfg
->bt_params
&&
983 priv
->cfg
->bt_params
->advanced_bt_coexist
) {
984 /* Disable disconnected antenna algorithm for advanced
985 bt coex, assuming valid antennas are connected */
986 data
->active_chains
= priv
->hw_params
.valid_rx_ant
;
987 for (i
= 0; i
< NUM_RX_CHAINS
; i
++)
988 if (!(data
->active_chains
& (1<<i
)))
989 data
->disconn_array
[i
] = 1;
991 iwl_find_disconn_antenna(priv
, average_sig
, data
);
993 /* Analyze noise for rx balance */
994 average_noise
[0] = data
->chain_noise_a
/
995 priv
->cfg
->base_params
->chain_noise_num_beacons
;
996 average_noise
[1] = data
->chain_noise_b
/
997 priv
->cfg
->base_params
->chain_noise_num_beacons
;
998 average_noise
[2] = data
->chain_noise_c
/
999 priv
->cfg
->base_params
->chain_noise_num_beacons
;
1001 for (i
= 0; i
< NUM_RX_CHAINS
; i
++) {
1002 if (!(data
->disconn_array
[i
]) &&
1003 (average_noise
[i
] <= min_average_noise
)) {
1004 /* This means that chain i is active and has
1005 * lower noise values so far: */
1006 min_average_noise
= average_noise
[i
];
1007 min_average_noise_antenna_i
= i
;
1011 IWL_DEBUG_CALIB(priv
, "average_noise: a %d b %d c %d\n",
1012 average_noise
[0], average_noise
[1],
1015 IWL_DEBUG_CALIB(priv
, "min_average_noise = %d, antenna %d\n",
1016 min_average_noise
, min_average_noise_antenna_i
);
1018 if (priv
->cfg
->ops
->utils
->gain_computation
)
1019 priv
->cfg
->ops
->utils
->gain_computation(priv
, average_noise
,
1020 min_average_noise_antenna_i
, min_average_noise
,
1021 find_first_chain(priv
->cfg
->valid_rx_ant
));
1023 /* Some power changes may have been made during the calibration.
1024 * Update and commit the RXON
1026 if (priv
->cfg
->ops
->lib
->update_chain_flags
)
1027 priv
->cfg
->ops
->lib
->update_chain_flags(priv
);
1029 data
->state
= IWL_CHAIN_NOISE_DONE
;
1030 iwl_power_update_mode(priv
, false);
1033 void iwl_reset_run_time_calib(struct iwl_priv
*priv
)
1036 memset(&(priv
->sensitivity_data
), 0,
1037 sizeof(struct iwl_sensitivity_data
));
1038 memset(&(priv
->chain_noise_data
), 0,
1039 sizeof(struct iwl_chain_noise_data
));
1040 for (i
= 0; i
< NUM_RX_CHAINS
; i
++)
1041 priv
->chain_noise_data
.delta_gain_code
[i
] =
1042 CHAIN_NOISE_DELTA_GAIN_INIT_VAL
;
1044 /* Ask for statistics now, the uCode will send notification
1045 * periodically after association */
1046 iwl_send_statistics_request(priv
, CMD_ASYNC
, true);