2 Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
3 <http://rt2x00.serialmonkey.com>
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the
17 Free Software Foundation, Inc.,
18 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23 Abstract: rt2500pci device specific routines.
24 Supported chipsets: RT2560.
27 #include <linux/delay.h>
28 #include <linux/etherdevice.h>
29 #include <linux/init.h>
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/pci.h>
33 #include <linux/eeprom_93cx6.h>
34 #include <linux/slab.h>
37 #include "rt2x00pci.h"
38 #include "rt2500pci.h"
42 * All access to the CSR registers will go through the methods
43 * rt2x00pci_register_read and rt2x00pci_register_write.
44 * BBP and RF register require indirect register access,
45 * and use the CSR registers BBPCSR and RFCSR to achieve this.
46 * These indirect registers work with busy bits,
47 * and we will try maximal REGISTER_BUSY_COUNT times to access
48 * the register while taking a REGISTER_BUSY_DELAY us delay
49 * between each attampt. When the busy bit is still set at that time,
50 * the access attempt is considered to have failed,
51 * and we will print an error.
53 #define WAIT_FOR_BBP(__dev, __reg) \
54 rt2x00pci_regbusy_read((__dev), BBPCSR, BBPCSR_BUSY, (__reg))
55 #define WAIT_FOR_RF(__dev, __reg) \
56 rt2x00pci_regbusy_read((__dev), RFCSR, RFCSR_BUSY, (__reg))
58 static void rt2500pci_bbp_write(struct rt2x00_dev
*rt2x00dev
,
59 const unsigned int word
, const u8 value
)
63 mutex_lock(&rt2x00dev
->csr_mutex
);
66 * Wait until the BBP becomes available, afterwards we
67 * can safely write the new data into the register.
69 if (WAIT_FOR_BBP(rt2x00dev
, ®
)) {
71 rt2x00_set_field32(®
, BBPCSR_VALUE
, value
);
72 rt2x00_set_field32(®
, BBPCSR_REGNUM
, word
);
73 rt2x00_set_field32(®
, BBPCSR_BUSY
, 1);
74 rt2x00_set_field32(®
, BBPCSR_WRITE_CONTROL
, 1);
76 rt2x00pci_register_write(rt2x00dev
, BBPCSR
, reg
);
79 mutex_unlock(&rt2x00dev
->csr_mutex
);
82 static void rt2500pci_bbp_read(struct rt2x00_dev
*rt2x00dev
,
83 const unsigned int word
, u8
*value
)
87 mutex_lock(&rt2x00dev
->csr_mutex
);
90 * Wait until the BBP becomes available, afterwards we
91 * can safely write the read request into the register.
92 * After the data has been written, we wait until hardware
93 * returns the correct value, if at any time the register
94 * doesn't become available in time, reg will be 0xffffffff
95 * which means we return 0xff to the caller.
97 if (WAIT_FOR_BBP(rt2x00dev
, ®
)) {
99 rt2x00_set_field32(®
, BBPCSR_REGNUM
, word
);
100 rt2x00_set_field32(®
, BBPCSR_BUSY
, 1);
101 rt2x00_set_field32(®
, BBPCSR_WRITE_CONTROL
, 0);
103 rt2x00pci_register_write(rt2x00dev
, BBPCSR
, reg
);
105 WAIT_FOR_BBP(rt2x00dev
, ®
);
108 *value
= rt2x00_get_field32(reg
, BBPCSR_VALUE
);
110 mutex_unlock(&rt2x00dev
->csr_mutex
);
113 static void rt2500pci_rf_write(struct rt2x00_dev
*rt2x00dev
,
114 const unsigned int word
, const u32 value
)
118 mutex_lock(&rt2x00dev
->csr_mutex
);
121 * Wait until the RF becomes available, afterwards we
122 * can safely write the new data into the register.
124 if (WAIT_FOR_RF(rt2x00dev
, ®
)) {
126 rt2x00_set_field32(®
, RFCSR_VALUE
, value
);
127 rt2x00_set_field32(®
, RFCSR_NUMBER_OF_BITS
, 20);
128 rt2x00_set_field32(®
, RFCSR_IF_SELECT
, 0);
129 rt2x00_set_field32(®
, RFCSR_BUSY
, 1);
131 rt2x00pci_register_write(rt2x00dev
, RFCSR
, reg
);
132 rt2x00_rf_write(rt2x00dev
, word
, value
);
135 mutex_unlock(&rt2x00dev
->csr_mutex
);
138 static void rt2500pci_eepromregister_read(struct eeprom_93cx6
*eeprom
)
140 struct rt2x00_dev
*rt2x00dev
= eeprom
->data
;
143 rt2x00pci_register_read(rt2x00dev
, CSR21
, ®
);
145 eeprom
->reg_data_in
= !!rt2x00_get_field32(reg
, CSR21_EEPROM_DATA_IN
);
146 eeprom
->reg_data_out
= !!rt2x00_get_field32(reg
, CSR21_EEPROM_DATA_OUT
);
147 eeprom
->reg_data_clock
=
148 !!rt2x00_get_field32(reg
, CSR21_EEPROM_DATA_CLOCK
);
149 eeprom
->reg_chip_select
=
150 !!rt2x00_get_field32(reg
, CSR21_EEPROM_CHIP_SELECT
);
153 static void rt2500pci_eepromregister_write(struct eeprom_93cx6
*eeprom
)
155 struct rt2x00_dev
*rt2x00dev
= eeprom
->data
;
158 rt2x00_set_field32(®
, CSR21_EEPROM_DATA_IN
, !!eeprom
->reg_data_in
);
159 rt2x00_set_field32(®
, CSR21_EEPROM_DATA_OUT
, !!eeprom
->reg_data_out
);
160 rt2x00_set_field32(®
, CSR21_EEPROM_DATA_CLOCK
,
161 !!eeprom
->reg_data_clock
);
162 rt2x00_set_field32(®
, CSR21_EEPROM_CHIP_SELECT
,
163 !!eeprom
->reg_chip_select
);
165 rt2x00pci_register_write(rt2x00dev
, CSR21
, reg
);
168 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
169 static const struct rt2x00debug rt2500pci_rt2x00debug
= {
170 .owner
= THIS_MODULE
,
172 .read
= rt2x00pci_register_read
,
173 .write
= rt2x00pci_register_write
,
174 .flags
= RT2X00DEBUGFS_OFFSET
,
175 .word_base
= CSR_REG_BASE
,
176 .word_size
= sizeof(u32
),
177 .word_count
= CSR_REG_SIZE
/ sizeof(u32
),
180 .read
= rt2x00_eeprom_read
,
181 .write
= rt2x00_eeprom_write
,
182 .word_base
= EEPROM_BASE
,
183 .word_size
= sizeof(u16
),
184 .word_count
= EEPROM_SIZE
/ sizeof(u16
),
187 .read
= rt2500pci_bbp_read
,
188 .write
= rt2500pci_bbp_write
,
189 .word_base
= BBP_BASE
,
190 .word_size
= sizeof(u8
),
191 .word_count
= BBP_SIZE
/ sizeof(u8
),
194 .read
= rt2x00_rf_read
,
195 .write
= rt2500pci_rf_write
,
196 .word_base
= RF_BASE
,
197 .word_size
= sizeof(u32
),
198 .word_count
= RF_SIZE
/ sizeof(u32
),
201 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
203 static int rt2500pci_rfkill_poll(struct rt2x00_dev
*rt2x00dev
)
207 rt2x00pci_register_read(rt2x00dev
, GPIOCSR
, ®
);
208 return rt2x00_get_field32(reg
, GPIOCSR_BIT0
);
211 #ifdef CONFIG_RT2X00_LIB_LEDS
212 static void rt2500pci_brightness_set(struct led_classdev
*led_cdev
,
213 enum led_brightness brightness
)
215 struct rt2x00_led
*led
=
216 container_of(led_cdev
, struct rt2x00_led
, led_dev
);
217 unsigned int enabled
= brightness
!= LED_OFF
;
220 rt2x00pci_register_read(led
->rt2x00dev
, LEDCSR
, ®
);
222 if (led
->type
== LED_TYPE_RADIO
|| led
->type
== LED_TYPE_ASSOC
)
223 rt2x00_set_field32(®
, LEDCSR_LINK
, enabled
);
224 else if (led
->type
== LED_TYPE_ACTIVITY
)
225 rt2x00_set_field32(®
, LEDCSR_ACTIVITY
, enabled
);
227 rt2x00pci_register_write(led
->rt2x00dev
, LEDCSR
, reg
);
230 static int rt2500pci_blink_set(struct led_classdev
*led_cdev
,
231 unsigned long *delay_on
,
232 unsigned long *delay_off
)
234 struct rt2x00_led
*led
=
235 container_of(led_cdev
, struct rt2x00_led
, led_dev
);
238 rt2x00pci_register_read(led
->rt2x00dev
, LEDCSR
, ®
);
239 rt2x00_set_field32(®
, LEDCSR_ON_PERIOD
, *delay_on
);
240 rt2x00_set_field32(®
, LEDCSR_OFF_PERIOD
, *delay_off
);
241 rt2x00pci_register_write(led
->rt2x00dev
, LEDCSR
, reg
);
246 static void rt2500pci_init_led(struct rt2x00_dev
*rt2x00dev
,
247 struct rt2x00_led
*led
,
250 led
->rt2x00dev
= rt2x00dev
;
252 led
->led_dev
.brightness_set
= rt2500pci_brightness_set
;
253 led
->led_dev
.blink_set
= rt2500pci_blink_set
;
254 led
->flags
= LED_INITIALIZED
;
256 #endif /* CONFIG_RT2X00_LIB_LEDS */
259 * Configuration handlers.
261 static void rt2500pci_config_filter(struct rt2x00_dev
*rt2x00dev
,
262 const unsigned int filter_flags
)
267 * Start configuration steps.
268 * Note that the version error will always be dropped
269 * and broadcast frames will always be accepted since
270 * there is no filter for it at this time.
272 rt2x00pci_register_read(rt2x00dev
, RXCSR0
, ®
);
273 rt2x00_set_field32(®
, RXCSR0_DROP_CRC
,
274 !(filter_flags
& FIF_FCSFAIL
));
275 rt2x00_set_field32(®
, RXCSR0_DROP_PHYSICAL
,
276 !(filter_flags
& FIF_PLCPFAIL
));
277 rt2x00_set_field32(®
, RXCSR0_DROP_CONTROL
,
278 !(filter_flags
& FIF_CONTROL
));
279 rt2x00_set_field32(®
, RXCSR0_DROP_NOT_TO_ME
,
280 !(filter_flags
& FIF_PROMISC_IN_BSS
));
281 rt2x00_set_field32(®
, RXCSR0_DROP_TODS
,
282 !(filter_flags
& FIF_PROMISC_IN_BSS
) &&
283 !rt2x00dev
->intf_ap_count
);
284 rt2x00_set_field32(®
, RXCSR0_DROP_VERSION_ERROR
, 1);
285 rt2x00_set_field32(®
, RXCSR0_DROP_MCAST
,
286 !(filter_flags
& FIF_ALLMULTI
));
287 rt2x00_set_field32(®
, RXCSR0_DROP_BCAST
, 0);
288 rt2x00pci_register_write(rt2x00dev
, RXCSR0
, reg
);
291 static void rt2500pci_config_intf(struct rt2x00_dev
*rt2x00dev
,
292 struct rt2x00_intf
*intf
,
293 struct rt2x00intf_conf
*conf
,
294 const unsigned int flags
)
296 struct data_queue
*queue
= rt2x00queue_get_queue(rt2x00dev
, QID_BEACON
);
297 unsigned int bcn_preload
;
300 if (flags
& CONFIG_UPDATE_TYPE
) {
302 * Enable beacon config
304 bcn_preload
= PREAMBLE
+ GET_DURATION(IEEE80211_HEADER
, 20);
305 rt2x00pci_register_read(rt2x00dev
, BCNCSR1
, ®
);
306 rt2x00_set_field32(®
, BCNCSR1_PRELOAD
, bcn_preload
);
307 rt2x00_set_field32(®
, BCNCSR1_BEACON_CWMIN
, queue
->cw_min
);
308 rt2x00pci_register_write(rt2x00dev
, BCNCSR1
, reg
);
311 * Enable synchronisation.
313 rt2x00pci_register_read(rt2x00dev
, CSR14
, ®
);
314 rt2x00_set_field32(®
, CSR14_TSF_COUNT
, 1);
315 rt2x00_set_field32(®
, CSR14_TSF_SYNC
, conf
->sync
);
316 rt2x00_set_field32(®
, CSR14_TBCN
, 1);
317 rt2x00pci_register_write(rt2x00dev
, CSR14
, reg
);
320 if (flags
& CONFIG_UPDATE_MAC
)
321 rt2x00pci_register_multiwrite(rt2x00dev
, CSR3
,
322 conf
->mac
, sizeof(conf
->mac
));
324 if (flags
& CONFIG_UPDATE_BSSID
)
325 rt2x00pci_register_multiwrite(rt2x00dev
, CSR5
,
326 conf
->bssid
, sizeof(conf
->bssid
));
329 static void rt2500pci_config_erp(struct rt2x00_dev
*rt2x00dev
,
330 struct rt2x00lib_erp
*erp
,
337 * When short preamble is enabled, we should set bit 0x08
339 if (changed
& BSS_CHANGED_ERP_PREAMBLE
) {
340 preamble_mask
= erp
->short_preamble
<< 3;
342 rt2x00pci_register_read(rt2x00dev
, TXCSR1
, ®
);
343 rt2x00_set_field32(®
, TXCSR1_ACK_TIMEOUT
, 0x162);
344 rt2x00_set_field32(®
, TXCSR1_ACK_CONSUME_TIME
, 0xa2);
345 rt2x00_set_field32(®
, TXCSR1_TSF_OFFSET
, IEEE80211_HEADER
);
346 rt2x00_set_field32(®
, TXCSR1_AUTORESPONDER
, 1);
347 rt2x00pci_register_write(rt2x00dev
, TXCSR1
, reg
);
349 rt2x00pci_register_read(rt2x00dev
, ARCSR2
, ®
);
350 rt2x00_set_field32(®
, ARCSR2_SIGNAL
, 0x00);
351 rt2x00_set_field32(®
, ARCSR2_SERVICE
, 0x04);
352 rt2x00_set_field32(®
, ARCSR2_LENGTH
,
353 GET_DURATION(ACK_SIZE
, 10));
354 rt2x00pci_register_write(rt2x00dev
, ARCSR2
, reg
);
356 rt2x00pci_register_read(rt2x00dev
, ARCSR3
, ®
);
357 rt2x00_set_field32(®
, ARCSR3_SIGNAL
, 0x01 | preamble_mask
);
358 rt2x00_set_field32(®
, ARCSR3_SERVICE
, 0x04);
359 rt2x00_set_field32(®
, ARCSR2_LENGTH
,
360 GET_DURATION(ACK_SIZE
, 20));
361 rt2x00pci_register_write(rt2x00dev
, ARCSR3
, reg
);
363 rt2x00pci_register_read(rt2x00dev
, ARCSR4
, ®
);
364 rt2x00_set_field32(®
, ARCSR4_SIGNAL
, 0x02 | preamble_mask
);
365 rt2x00_set_field32(®
, ARCSR4_SERVICE
, 0x04);
366 rt2x00_set_field32(®
, ARCSR2_LENGTH
,
367 GET_DURATION(ACK_SIZE
, 55));
368 rt2x00pci_register_write(rt2x00dev
, ARCSR4
, reg
);
370 rt2x00pci_register_read(rt2x00dev
, ARCSR5
, ®
);
371 rt2x00_set_field32(®
, ARCSR5_SIGNAL
, 0x03 | preamble_mask
);
372 rt2x00_set_field32(®
, ARCSR5_SERVICE
, 0x84);
373 rt2x00_set_field32(®
, ARCSR2_LENGTH
,
374 GET_DURATION(ACK_SIZE
, 110));
375 rt2x00pci_register_write(rt2x00dev
, ARCSR5
, reg
);
378 if (changed
& BSS_CHANGED_BASIC_RATES
)
379 rt2x00pci_register_write(rt2x00dev
, ARCSR1
, erp
->basic_rates
);
381 if (changed
& BSS_CHANGED_ERP_SLOT
) {
382 rt2x00pci_register_read(rt2x00dev
, CSR11
, ®
);
383 rt2x00_set_field32(®
, CSR11_SLOT_TIME
, erp
->slot_time
);
384 rt2x00pci_register_write(rt2x00dev
, CSR11
, reg
);
386 rt2x00pci_register_read(rt2x00dev
, CSR18
, ®
);
387 rt2x00_set_field32(®
, CSR18_SIFS
, erp
->sifs
);
388 rt2x00_set_field32(®
, CSR18_PIFS
, erp
->pifs
);
389 rt2x00pci_register_write(rt2x00dev
, CSR18
, reg
);
391 rt2x00pci_register_read(rt2x00dev
, CSR19
, ®
);
392 rt2x00_set_field32(®
, CSR19_DIFS
, erp
->difs
);
393 rt2x00_set_field32(®
, CSR19_EIFS
, erp
->eifs
);
394 rt2x00pci_register_write(rt2x00dev
, CSR19
, reg
);
397 if (changed
& BSS_CHANGED_BEACON_INT
) {
398 rt2x00pci_register_read(rt2x00dev
, CSR12
, ®
);
399 rt2x00_set_field32(®
, CSR12_BEACON_INTERVAL
,
400 erp
->beacon_int
* 16);
401 rt2x00_set_field32(®
, CSR12_CFP_MAX_DURATION
,
402 erp
->beacon_int
* 16);
403 rt2x00pci_register_write(rt2x00dev
, CSR12
, reg
);
408 static void rt2500pci_config_ant(struct rt2x00_dev
*rt2x00dev
,
409 struct antenna_setup
*ant
)
416 * We should never come here because rt2x00lib is supposed
417 * to catch this and send us the correct antenna explicitely.
419 BUG_ON(ant
->rx
== ANTENNA_SW_DIVERSITY
||
420 ant
->tx
== ANTENNA_SW_DIVERSITY
);
422 rt2x00pci_register_read(rt2x00dev
, BBPCSR1
, ®
);
423 rt2500pci_bbp_read(rt2x00dev
, 14, &r14
);
424 rt2500pci_bbp_read(rt2x00dev
, 2, &r2
);
427 * Configure the TX antenna.
431 rt2x00_set_field8(&r2
, BBP_R2_TX_ANTENNA
, 0);
432 rt2x00_set_field32(®
, BBPCSR1_CCK
, 0);
433 rt2x00_set_field32(®
, BBPCSR1_OFDM
, 0);
437 rt2x00_set_field8(&r2
, BBP_R2_TX_ANTENNA
, 2);
438 rt2x00_set_field32(®
, BBPCSR1_CCK
, 2);
439 rt2x00_set_field32(®
, BBPCSR1_OFDM
, 2);
444 * Configure the RX antenna.
448 rt2x00_set_field8(&r14
, BBP_R14_RX_ANTENNA
, 0);
452 rt2x00_set_field8(&r14
, BBP_R14_RX_ANTENNA
, 2);
457 * RT2525E and RT5222 need to flip TX I/Q
459 if (rt2x00_rf(rt2x00dev
, RF2525E
) || rt2x00_rf(rt2x00dev
, RF5222
)) {
460 rt2x00_set_field8(&r2
, BBP_R2_TX_IQ_FLIP
, 1);
461 rt2x00_set_field32(®
, BBPCSR1_CCK_FLIP
, 1);
462 rt2x00_set_field32(®
, BBPCSR1_OFDM_FLIP
, 1);
465 * RT2525E does not need RX I/Q Flip.
467 if (rt2x00_rf(rt2x00dev
, RF2525E
))
468 rt2x00_set_field8(&r14
, BBP_R14_RX_IQ_FLIP
, 0);
470 rt2x00_set_field32(®
, BBPCSR1_CCK_FLIP
, 0);
471 rt2x00_set_field32(®
, BBPCSR1_OFDM_FLIP
, 0);
474 rt2x00pci_register_write(rt2x00dev
, BBPCSR1
, reg
);
475 rt2500pci_bbp_write(rt2x00dev
, 14, r14
);
476 rt2500pci_bbp_write(rt2x00dev
, 2, r2
);
479 static void rt2500pci_config_channel(struct rt2x00_dev
*rt2x00dev
,
480 struct rf_channel
*rf
, const int txpower
)
487 rt2x00_set_field32(&rf
->rf3
, RF3_TXPOWER
, TXPOWER_TO_DEV(txpower
));
490 * Switch on tuning bits.
491 * For RT2523 devices we do not need to update the R1 register.
493 if (!rt2x00_rf(rt2x00dev
, RF2523
))
494 rt2x00_set_field32(&rf
->rf1
, RF1_TUNER
, 1);
495 rt2x00_set_field32(&rf
->rf3
, RF3_TUNER
, 1);
498 * For RT2525 we should first set the channel to half band higher.
500 if (rt2x00_rf(rt2x00dev
, RF2525
)) {
501 static const u32 vals
[] = {
502 0x00080cbe, 0x00080d02, 0x00080d06, 0x00080d0a,
503 0x00080d0e, 0x00080d12, 0x00080d16, 0x00080d1a,
504 0x00080d1e, 0x00080d22, 0x00080d26, 0x00080d2a,
505 0x00080d2e, 0x00080d3a
508 rt2500pci_rf_write(rt2x00dev
, 1, rf
->rf1
);
509 rt2500pci_rf_write(rt2x00dev
, 2, vals
[rf
->channel
- 1]);
510 rt2500pci_rf_write(rt2x00dev
, 3, rf
->rf3
);
512 rt2500pci_rf_write(rt2x00dev
, 4, rf
->rf4
);
515 rt2500pci_rf_write(rt2x00dev
, 1, rf
->rf1
);
516 rt2500pci_rf_write(rt2x00dev
, 2, rf
->rf2
);
517 rt2500pci_rf_write(rt2x00dev
, 3, rf
->rf3
);
519 rt2500pci_rf_write(rt2x00dev
, 4, rf
->rf4
);
522 * Channel 14 requires the Japan filter bit to be set.
525 rt2x00_set_field8(&r70
, BBP_R70_JAPAN_FILTER
, rf
->channel
== 14);
526 rt2500pci_bbp_write(rt2x00dev
, 70, r70
);
531 * Switch off tuning bits.
532 * For RT2523 devices we do not need to update the R1 register.
534 if (!rt2x00_rf(rt2x00dev
, RF2523
)) {
535 rt2x00_set_field32(&rf
->rf1
, RF1_TUNER
, 0);
536 rt2500pci_rf_write(rt2x00dev
, 1, rf
->rf1
);
539 rt2x00_set_field32(&rf
->rf3
, RF3_TUNER
, 0);
540 rt2500pci_rf_write(rt2x00dev
, 3, rf
->rf3
);
543 * Clear false CRC during channel switch.
545 rt2x00pci_register_read(rt2x00dev
, CNT0
, &rf
->rf1
);
548 static void rt2500pci_config_txpower(struct rt2x00_dev
*rt2x00dev
,
553 rt2x00_rf_read(rt2x00dev
, 3, &rf3
);
554 rt2x00_set_field32(&rf3
, RF3_TXPOWER
, TXPOWER_TO_DEV(txpower
));
555 rt2500pci_rf_write(rt2x00dev
, 3, rf3
);
558 static void rt2500pci_config_retry_limit(struct rt2x00_dev
*rt2x00dev
,
559 struct rt2x00lib_conf
*libconf
)
563 rt2x00pci_register_read(rt2x00dev
, CSR11
, ®
);
564 rt2x00_set_field32(®
, CSR11_LONG_RETRY
,
565 libconf
->conf
->long_frame_max_tx_count
);
566 rt2x00_set_field32(®
, CSR11_SHORT_RETRY
,
567 libconf
->conf
->short_frame_max_tx_count
);
568 rt2x00pci_register_write(rt2x00dev
, CSR11
, reg
);
571 static void rt2500pci_config_ps(struct rt2x00_dev
*rt2x00dev
,
572 struct rt2x00lib_conf
*libconf
)
574 enum dev_state state
=
575 (libconf
->conf
->flags
& IEEE80211_CONF_PS
) ?
576 STATE_SLEEP
: STATE_AWAKE
;
579 if (state
== STATE_SLEEP
) {
580 rt2x00pci_register_read(rt2x00dev
, CSR20
, ®
);
581 rt2x00_set_field32(®
, CSR20_DELAY_AFTER_TBCN
,
582 (rt2x00dev
->beacon_int
- 20) * 16);
583 rt2x00_set_field32(®
, CSR20_TBCN_BEFORE_WAKEUP
,
584 libconf
->conf
->listen_interval
- 1);
586 /* We must first disable autowake before it can be enabled */
587 rt2x00_set_field32(®
, CSR20_AUTOWAKE
, 0);
588 rt2x00pci_register_write(rt2x00dev
, CSR20
, reg
);
590 rt2x00_set_field32(®
, CSR20_AUTOWAKE
, 1);
591 rt2x00pci_register_write(rt2x00dev
, CSR20
, reg
);
593 rt2x00pci_register_read(rt2x00dev
, CSR20
, ®
);
594 rt2x00_set_field32(®
, CSR20_AUTOWAKE
, 0);
595 rt2x00pci_register_write(rt2x00dev
, CSR20
, reg
);
598 rt2x00dev
->ops
->lib
->set_device_state(rt2x00dev
, state
);
601 static void rt2500pci_config(struct rt2x00_dev
*rt2x00dev
,
602 struct rt2x00lib_conf
*libconf
,
603 const unsigned int flags
)
605 if (flags
& IEEE80211_CONF_CHANGE_CHANNEL
)
606 rt2500pci_config_channel(rt2x00dev
, &libconf
->rf
,
607 libconf
->conf
->power_level
);
608 if ((flags
& IEEE80211_CONF_CHANGE_POWER
) &&
609 !(flags
& IEEE80211_CONF_CHANGE_CHANNEL
))
610 rt2500pci_config_txpower(rt2x00dev
,
611 libconf
->conf
->power_level
);
612 if (flags
& IEEE80211_CONF_CHANGE_RETRY_LIMITS
)
613 rt2500pci_config_retry_limit(rt2x00dev
, libconf
);
614 if (flags
& IEEE80211_CONF_CHANGE_PS
)
615 rt2500pci_config_ps(rt2x00dev
, libconf
);
621 static void rt2500pci_link_stats(struct rt2x00_dev
*rt2x00dev
,
622 struct link_qual
*qual
)
627 * Update FCS error count from register.
629 rt2x00pci_register_read(rt2x00dev
, CNT0
, ®
);
630 qual
->rx_failed
= rt2x00_get_field32(reg
, CNT0_FCS_ERROR
);
633 * Update False CCA count from register.
635 rt2x00pci_register_read(rt2x00dev
, CNT3
, ®
);
636 qual
->false_cca
= rt2x00_get_field32(reg
, CNT3_FALSE_CCA
);
639 static inline void rt2500pci_set_vgc(struct rt2x00_dev
*rt2x00dev
,
640 struct link_qual
*qual
, u8 vgc_level
)
642 if (qual
->vgc_level_reg
!= vgc_level
) {
643 rt2500pci_bbp_write(rt2x00dev
, 17, vgc_level
);
644 qual
->vgc_level
= vgc_level
;
645 qual
->vgc_level_reg
= vgc_level
;
649 static void rt2500pci_reset_tuner(struct rt2x00_dev
*rt2x00dev
,
650 struct link_qual
*qual
)
652 rt2500pci_set_vgc(rt2x00dev
, qual
, 0x48);
655 static void rt2500pci_link_tuner(struct rt2x00_dev
*rt2x00dev
,
656 struct link_qual
*qual
, const u32 count
)
659 * To prevent collisions with MAC ASIC on chipsets
660 * up to version C the link tuning should halt after 20
661 * seconds while being associated.
663 if (rt2x00_rev(rt2x00dev
) < RT2560_VERSION_D
&&
664 rt2x00dev
->intf_associated
&& count
> 20)
668 * Chipset versions C and lower should directly continue
669 * to the dynamic CCA tuning. Chipset version D and higher
670 * should go straight to dynamic CCA tuning when they
671 * are not associated.
673 if (rt2x00_rev(rt2x00dev
) < RT2560_VERSION_D
||
674 !rt2x00dev
->intf_associated
)
675 goto dynamic_cca_tune
;
678 * A too low RSSI will cause too much false CCA which will
679 * then corrupt the R17 tuning. To remidy this the tuning should
680 * be stopped (While making sure the R17 value will not exceed limits)
682 if (qual
->rssi
< -80 && count
> 20) {
683 if (qual
->vgc_level_reg
>= 0x41)
684 rt2500pci_set_vgc(rt2x00dev
, qual
, qual
->vgc_level
);
689 * Special big-R17 for short distance
691 if (qual
->rssi
>= -58) {
692 rt2500pci_set_vgc(rt2x00dev
, qual
, 0x50);
697 * Special mid-R17 for middle distance
699 if (qual
->rssi
>= -74) {
700 rt2500pci_set_vgc(rt2x00dev
, qual
, 0x41);
705 * Leave short or middle distance condition, restore r17
706 * to the dynamic tuning range.
708 if (qual
->vgc_level_reg
>= 0x41) {
709 rt2500pci_set_vgc(rt2x00dev
, qual
, qual
->vgc_level
);
716 * R17 is inside the dynamic tuning range,
717 * start tuning the link based on the false cca counter.
719 if (qual
->false_cca
> 512 && qual
->vgc_level_reg
< 0x40)
720 rt2500pci_set_vgc(rt2x00dev
, qual
, ++qual
->vgc_level_reg
);
721 else if (qual
->false_cca
< 100 && qual
->vgc_level_reg
> 0x32)
722 rt2500pci_set_vgc(rt2x00dev
, qual
, --qual
->vgc_level_reg
);
728 static void rt2500pci_start_queue(struct data_queue
*queue
)
730 struct rt2x00_dev
*rt2x00dev
= queue
->rt2x00dev
;
733 switch (queue
->qid
) {
735 rt2x00pci_register_read(rt2x00dev
, RXCSR0
, ®
);
736 rt2x00_set_field32(®
, RXCSR0_DISABLE_RX
, 0);
737 rt2x00pci_register_write(rt2x00dev
, RXCSR0
, reg
);
740 rt2x00pci_register_read(rt2x00dev
, CSR14
, ®
);
741 rt2x00_set_field32(®
, CSR14_TSF_COUNT
, 1);
742 rt2x00_set_field32(®
, CSR14_TBCN
, 1);
743 rt2x00_set_field32(®
, CSR14_BEACON_GEN
, 1);
744 rt2x00pci_register_write(rt2x00dev
, CSR14
, reg
);
751 static void rt2500pci_kick_queue(struct data_queue
*queue
)
753 struct rt2x00_dev
*rt2x00dev
= queue
->rt2x00dev
;
756 switch (queue
->qid
) {
758 rt2x00pci_register_read(rt2x00dev
, TXCSR0
, ®
);
759 rt2x00_set_field32(®
, TXCSR0_KICK_PRIO
, 1);
760 rt2x00pci_register_write(rt2x00dev
, TXCSR0
, reg
);
763 rt2x00pci_register_read(rt2x00dev
, TXCSR0
, ®
);
764 rt2x00_set_field32(®
, TXCSR0_KICK_TX
, 1);
765 rt2x00pci_register_write(rt2x00dev
, TXCSR0
, reg
);
768 rt2x00pci_register_read(rt2x00dev
, TXCSR0
, ®
);
769 rt2x00_set_field32(®
, TXCSR0_KICK_ATIM
, 1);
770 rt2x00pci_register_write(rt2x00dev
, TXCSR0
, reg
);
777 static void rt2500pci_stop_queue(struct data_queue
*queue
)
779 struct rt2x00_dev
*rt2x00dev
= queue
->rt2x00dev
;
782 switch (queue
->qid
) {
786 rt2x00pci_register_read(rt2x00dev
, TXCSR0
, ®
);
787 rt2x00_set_field32(®
, TXCSR0_ABORT
, 1);
788 rt2x00pci_register_write(rt2x00dev
, TXCSR0
, reg
);
791 rt2x00pci_register_read(rt2x00dev
, RXCSR0
, ®
);
792 rt2x00_set_field32(®
, RXCSR0_DISABLE_RX
, 1);
793 rt2x00pci_register_write(rt2x00dev
, RXCSR0
, reg
);
796 rt2x00pci_register_read(rt2x00dev
, CSR14
, ®
);
797 rt2x00_set_field32(®
, CSR14_TSF_COUNT
, 0);
798 rt2x00_set_field32(®
, CSR14_TBCN
, 0);
799 rt2x00_set_field32(®
, CSR14_BEACON_GEN
, 0);
800 rt2x00pci_register_write(rt2x00dev
, CSR14
, reg
);
808 * Initialization functions.
810 static bool rt2500pci_get_entry_state(struct queue_entry
*entry
)
812 struct queue_entry_priv_pci
*entry_priv
= entry
->priv_data
;
815 if (entry
->queue
->qid
== QID_RX
) {
816 rt2x00_desc_read(entry_priv
->desc
, 0, &word
);
818 return rt2x00_get_field32(word
, RXD_W0_OWNER_NIC
);
820 rt2x00_desc_read(entry_priv
->desc
, 0, &word
);
822 return (rt2x00_get_field32(word
, TXD_W0_OWNER_NIC
) ||
823 rt2x00_get_field32(word
, TXD_W0_VALID
));
827 static void rt2500pci_clear_entry(struct queue_entry
*entry
)
829 struct queue_entry_priv_pci
*entry_priv
= entry
->priv_data
;
830 struct skb_frame_desc
*skbdesc
= get_skb_frame_desc(entry
->skb
);
833 if (entry
->queue
->qid
== QID_RX
) {
834 rt2x00_desc_read(entry_priv
->desc
, 1, &word
);
835 rt2x00_set_field32(&word
, RXD_W1_BUFFER_ADDRESS
, skbdesc
->skb_dma
);
836 rt2x00_desc_write(entry_priv
->desc
, 1, word
);
838 rt2x00_desc_read(entry_priv
->desc
, 0, &word
);
839 rt2x00_set_field32(&word
, RXD_W0_OWNER_NIC
, 1);
840 rt2x00_desc_write(entry_priv
->desc
, 0, word
);
842 rt2x00_desc_read(entry_priv
->desc
, 0, &word
);
843 rt2x00_set_field32(&word
, TXD_W0_VALID
, 0);
844 rt2x00_set_field32(&word
, TXD_W0_OWNER_NIC
, 0);
845 rt2x00_desc_write(entry_priv
->desc
, 0, word
);
849 static int rt2500pci_init_queues(struct rt2x00_dev
*rt2x00dev
)
851 struct queue_entry_priv_pci
*entry_priv
;
855 * Initialize registers.
857 rt2x00pci_register_read(rt2x00dev
, TXCSR2
, ®
);
858 rt2x00_set_field32(®
, TXCSR2_TXD_SIZE
, rt2x00dev
->tx
[0].desc_size
);
859 rt2x00_set_field32(®
, TXCSR2_NUM_TXD
, rt2x00dev
->tx
[1].limit
);
860 rt2x00_set_field32(®
, TXCSR2_NUM_ATIM
, rt2x00dev
->bcn
[1].limit
);
861 rt2x00_set_field32(®
, TXCSR2_NUM_PRIO
, rt2x00dev
->tx
[0].limit
);
862 rt2x00pci_register_write(rt2x00dev
, TXCSR2
, reg
);
864 entry_priv
= rt2x00dev
->tx
[1].entries
[0].priv_data
;
865 rt2x00pci_register_read(rt2x00dev
, TXCSR3
, ®
);
866 rt2x00_set_field32(®
, TXCSR3_TX_RING_REGISTER
,
867 entry_priv
->desc_dma
);
868 rt2x00pci_register_write(rt2x00dev
, TXCSR3
, reg
);
870 entry_priv
= rt2x00dev
->tx
[0].entries
[0].priv_data
;
871 rt2x00pci_register_read(rt2x00dev
, TXCSR5
, ®
);
872 rt2x00_set_field32(®
, TXCSR5_PRIO_RING_REGISTER
,
873 entry_priv
->desc_dma
);
874 rt2x00pci_register_write(rt2x00dev
, TXCSR5
, reg
);
876 entry_priv
= rt2x00dev
->bcn
[1].entries
[0].priv_data
;
877 rt2x00pci_register_read(rt2x00dev
, TXCSR4
, ®
);
878 rt2x00_set_field32(®
, TXCSR4_ATIM_RING_REGISTER
,
879 entry_priv
->desc_dma
);
880 rt2x00pci_register_write(rt2x00dev
, TXCSR4
, reg
);
882 entry_priv
= rt2x00dev
->bcn
[0].entries
[0].priv_data
;
883 rt2x00pci_register_read(rt2x00dev
, TXCSR6
, ®
);
884 rt2x00_set_field32(®
, TXCSR6_BEACON_RING_REGISTER
,
885 entry_priv
->desc_dma
);
886 rt2x00pci_register_write(rt2x00dev
, TXCSR6
, reg
);
888 rt2x00pci_register_read(rt2x00dev
, RXCSR1
, ®
);
889 rt2x00_set_field32(®
, RXCSR1_RXD_SIZE
, rt2x00dev
->rx
->desc_size
);
890 rt2x00_set_field32(®
, RXCSR1_NUM_RXD
, rt2x00dev
->rx
->limit
);
891 rt2x00pci_register_write(rt2x00dev
, RXCSR1
, reg
);
893 entry_priv
= rt2x00dev
->rx
->entries
[0].priv_data
;
894 rt2x00pci_register_read(rt2x00dev
, RXCSR2
, ®
);
895 rt2x00_set_field32(®
, RXCSR2_RX_RING_REGISTER
,
896 entry_priv
->desc_dma
);
897 rt2x00pci_register_write(rt2x00dev
, RXCSR2
, reg
);
902 static int rt2500pci_init_registers(struct rt2x00_dev
*rt2x00dev
)
906 rt2x00pci_register_write(rt2x00dev
, PSCSR0
, 0x00020002);
907 rt2x00pci_register_write(rt2x00dev
, PSCSR1
, 0x00000002);
908 rt2x00pci_register_write(rt2x00dev
, PSCSR2
, 0x00020002);
909 rt2x00pci_register_write(rt2x00dev
, PSCSR3
, 0x00000002);
911 rt2x00pci_register_read(rt2x00dev
, TIMECSR
, ®
);
912 rt2x00_set_field32(®
, TIMECSR_US_COUNT
, 33);
913 rt2x00_set_field32(®
, TIMECSR_US_64_COUNT
, 63);
914 rt2x00_set_field32(®
, TIMECSR_BEACON_EXPECT
, 0);
915 rt2x00pci_register_write(rt2x00dev
, TIMECSR
, reg
);
917 rt2x00pci_register_read(rt2x00dev
, CSR9
, ®
);
918 rt2x00_set_field32(®
, CSR9_MAX_FRAME_UNIT
,
919 rt2x00dev
->rx
->data_size
/ 128);
920 rt2x00pci_register_write(rt2x00dev
, CSR9
, reg
);
923 * Always use CWmin and CWmax set in descriptor.
925 rt2x00pci_register_read(rt2x00dev
, CSR11
, ®
);
926 rt2x00_set_field32(®
, CSR11_CW_SELECT
, 0);
927 rt2x00pci_register_write(rt2x00dev
, CSR11
, reg
);
929 rt2x00pci_register_read(rt2x00dev
, CSR14
, ®
);
930 rt2x00_set_field32(®
, CSR14_TSF_COUNT
, 0);
931 rt2x00_set_field32(®
, CSR14_TSF_SYNC
, 0);
932 rt2x00_set_field32(®
, CSR14_TBCN
, 0);
933 rt2x00_set_field32(®
, CSR14_TCFP
, 0);
934 rt2x00_set_field32(®
, CSR14_TATIMW
, 0);
935 rt2x00_set_field32(®
, CSR14_BEACON_GEN
, 0);
936 rt2x00_set_field32(®
, CSR14_CFP_COUNT_PRELOAD
, 0);
937 rt2x00_set_field32(®
, CSR14_TBCM_PRELOAD
, 0);
938 rt2x00pci_register_write(rt2x00dev
, CSR14
, reg
);
940 rt2x00pci_register_write(rt2x00dev
, CNT3
, 0);
942 rt2x00pci_register_read(rt2x00dev
, TXCSR8
, ®
);
943 rt2x00_set_field32(®
, TXCSR8_BBP_ID0
, 10);
944 rt2x00_set_field32(®
, TXCSR8_BBP_ID0_VALID
, 1);
945 rt2x00_set_field32(®
, TXCSR8_BBP_ID1
, 11);
946 rt2x00_set_field32(®
, TXCSR8_BBP_ID1_VALID
, 1);
947 rt2x00_set_field32(®
, TXCSR8_BBP_ID2
, 13);
948 rt2x00_set_field32(®
, TXCSR8_BBP_ID2_VALID
, 1);
949 rt2x00_set_field32(®
, TXCSR8_BBP_ID3
, 12);
950 rt2x00_set_field32(®
, TXCSR8_BBP_ID3_VALID
, 1);
951 rt2x00pci_register_write(rt2x00dev
, TXCSR8
, reg
);
953 rt2x00pci_register_read(rt2x00dev
, ARTCSR0
, ®
);
954 rt2x00_set_field32(®
, ARTCSR0_ACK_CTS_1MBS
, 112);
955 rt2x00_set_field32(®
, ARTCSR0_ACK_CTS_2MBS
, 56);
956 rt2x00_set_field32(®
, ARTCSR0_ACK_CTS_5_5MBS
, 20);
957 rt2x00_set_field32(®
, ARTCSR0_ACK_CTS_11MBS
, 10);
958 rt2x00pci_register_write(rt2x00dev
, ARTCSR0
, reg
);
960 rt2x00pci_register_read(rt2x00dev
, ARTCSR1
, ®
);
961 rt2x00_set_field32(®
, ARTCSR1_ACK_CTS_6MBS
, 45);
962 rt2x00_set_field32(®
, ARTCSR1_ACK_CTS_9MBS
, 37);
963 rt2x00_set_field32(®
, ARTCSR1_ACK_CTS_12MBS
, 33);
964 rt2x00_set_field32(®
, ARTCSR1_ACK_CTS_18MBS
, 29);
965 rt2x00pci_register_write(rt2x00dev
, ARTCSR1
, reg
);
967 rt2x00pci_register_read(rt2x00dev
, ARTCSR2
, ®
);
968 rt2x00_set_field32(®
, ARTCSR2_ACK_CTS_24MBS
, 29);
969 rt2x00_set_field32(®
, ARTCSR2_ACK_CTS_36MBS
, 25);
970 rt2x00_set_field32(®
, ARTCSR2_ACK_CTS_48MBS
, 25);
971 rt2x00_set_field32(®
, ARTCSR2_ACK_CTS_54MBS
, 25);
972 rt2x00pci_register_write(rt2x00dev
, ARTCSR2
, reg
);
974 rt2x00pci_register_read(rt2x00dev
, RXCSR3
, ®
);
975 rt2x00_set_field32(®
, RXCSR3_BBP_ID0
, 47); /* CCK Signal */
976 rt2x00_set_field32(®
, RXCSR3_BBP_ID0_VALID
, 1);
977 rt2x00_set_field32(®
, RXCSR3_BBP_ID1
, 51); /* Rssi */
978 rt2x00_set_field32(®
, RXCSR3_BBP_ID1_VALID
, 1);
979 rt2x00_set_field32(®
, RXCSR3_BBP_ID2
, 42); /* OFDM Rate */
980 rt2x00_set_field32(®
, RXCSR3_BBP_ID2_VALID
, 1);
981 rt2x00_set_field32(®
, RXCSR3_BBP_ID3
, 51); /* RSSI */
982 rt2x00_set_field32(®
, RXCSR3_BBP_ID3_VALID
, 1);
983 rt2x00pci_register_write(rt2x00dev
, RXCSR3
, reg
);
985 rt2x00pci_register_read(rt2x00dev
, PCICSR
, ®
);
986 rt2x00_set_field32(®
, PCICSR_BIG_ENDIAN
, 0);
987 rt2x00_set_field32(®
, PCICSR_RX_TRESHOLD
, 0);
988 rt2x00_set_field32(®
, PCICSR_TX_TRESHOLD
, 3);
989 rt2x00_set_field32(®
, PCICSR_BURST_LENTH
, 1);
990 rt2x00_set_field32(®
, PCICSR_ENABLE_CLK
, 1);
991 rt2x00_set_field32(®
, PCICSR_READ_MULTIPLE
, 1);
992 rt2x00_set_field32(®
, PCICSR_WRITE_INVALID
, 1);
993 rt2x00pci_register_write(rt2x00dev
, PCICSR
, reg
);
995 rt2x00pci_register_write(rt2x00dev
, PWRCSR0
, 0x3f3b3100);
997 rt2x00pci_register_write(rt2x00dev
, GPIOCSR
, 0x0000ff00);
998 rt2x00pci_register_write(rt2x00dev
, TESTCSR
, 0x000000f0);
1000 if (rt2x00dev
->ops
->lib
->set_device_state(rt2x00dev
, STATE_AWAKE
))
1003 rt2x00pci_register_write(rt2x00dev
, MACCSR0
, 0x00213223);
1004 rt2x00pci_register_write(rt2x00dev
, MACCSR1
, 0x00235518);
1006 rt2x00pci_register_read(rt2x00dev
, MACCSR2
, ®
);
1007 rt2x00_set_field32(®
, MACCSR2_DELAY
, 64);
1008 rt2x00pci_register_write(rt2x00dev
, MACCSR2
, reg
);
1010 rt2x00pci_register_read(rt2x00dev
, RALINKCSR
, ®
);
1011 rt2x00_set_field32(®
, RALINKCSR_AR_BBP_DATA0
, 17);
1012 rt2x00_set_field32(®
, RALINKCSR_AR_BBP_ID0
, 26);
1013 rt2x00_set_field32(®
, RALINKCSR_AR_BBP_VALID0
, 1);
1014 rt2x00_set_field32(®
, RALINKCSR_AR_BBP_DATA1
, 0);
1015 rt2x00_set_field32(®
, RALINKCSR_AR_BBP_ID1
, 26);
1016 rt2x00_set_field32(®
, RALINKCSR_AR_BBP_VALID1
, 1);
1017 rt2x00pci_register_write(rt2x00dev
, RALINKCSR
, reg
);
1019 rt2x00pci_register_write(rt2x00dev
, BBPCSR1
, 0x82188200);
1021 rt2x00pci_register_write(rt2x00dev
, TXACKCSR0
, 0x00000020);
1023 rt2x00pci_register_read(rt2x00dev
, CSR1
, ®
);
1024 rt2x00_set_field32(®
, CSR1_SOFT_RESET
, 1);
1025 rt2x00_set_field32(®
, CSR1_BBP_RESET
, 0);
1026 rt2x00_set_field32(®
, CSR1_HOST_READY
, 0);
1027 rt2x00pci_register_write(rt2x00dev
, CSR1
, reg
);
1029 rt2x00pci_register_read(rt2x00dev
, CSR1
, ®
);
1030 rt2x00_set_field32(®
, CSR1_SOFT_RESET
, 0);
1031 rt2x00_set_field32(®
, CSR1_HOST_READY
, 1);
1032 rt2x00pci_register_write(rt2x00dev
, CSR1
, reg
);
1035 * We must clear the FCS and FIFO error count.
1036 * These registers are cleared on read,
1037 * so we may pass a useless variable to store the value.
1039 rt2x00pci_register_read(rt2x00dev
, CNT0
, ®
);
1040 rt2x00pci_register_read(rt2x00dev
, CNT4
, ®
);
1045 static int rt2500pci_wait_bbp_ready(struct rt2x00_dev
*rt2x00dev
)
1050 for (i
= 0; i
< REGISTER_BUSY_COUNT
; i
++) {
1051 rt2500pci_bbp_read(rt2x00dev
, 0, &value
);
1052 if ((value
!= 0xff) && (value
!= 0x00))
1054 udelay(REGISTER_BUSY_DELAY
);
1057 ERROR(rt2x00dev
, "BBP register access failed, aborting.\n");
1061 static int rt2500pci_init_bbp(struct rt2x00_dev
*rt2x00dev
)
1068 if (unlikely(rt2500pci_wait_bbp_ready(rt2x00dev
)))
1071 rt2500pci_bbp_write(rt2x00dev
, 3, 0x02);
1072 rt2500pci_bbp_write(rt2x00dev
, 4, 0x19);
1073 rt2500pci_bbp_write(rt2x00dev
, 14, 0x1c);
1074 rt2500pci_bbp_write(rt2x00dev
, 15, 0x30);
1075 rt2500pci_bbp_write(rt2x00dev
, 16, 0xac);
1076 rt2500pci_bbp_write(rt2x00dev
, 18, 0x18);
1077 rt2500pci_bbp_write(rt2x00dev
, 19, 0xff);
1078 rt2500pci_bbp_write(rt2x00dev
, 20, 0x1e);
1079 rt2500pci_bbp_write(rt2x00dev
, 21, 0x08);
1080 rt2500pci_bbp_write(rt2x00dev
, 22, 0x08);
1081 rt2500pci_bbp_write(rt2x00dev
, 23, 0x08);
1082 rt2500pci_bbp_write(rt2x00dev
, 24, 0x70);
1083 rt2500pci_bbp_write(rt2x00dev
, 25, 0x40);
1084 rt2500pci_bbp_write(rt2x00dev
, 26, 0x08);
1085 rt2500pci_bbp_write(rt2x00dev
, 27, 0x23);
1086 rt2500pci_bbp_write(rt2x00dev
, 30, 0x10);
1087 rt2500pci_bbp_write(rt2x00dev
, 31, 0x2b);
1088 rt2500pci_bbp_write(rt2x00dev
, 32, 0xb9);
1089 rt2500pci_bbp_write(rt2x00dev
, 34, 0x12);
1090 rt2500pci_bbp_write(rt2x00dev
, 35, 0x50);
1091 rt2500pci_bbp_write(rt2x00dev
, 39, 0xc4);
1092 rt2500pci_bbp_write(rt2x00dev
, 40, 0x02);
1093 rt2500pci_bbp_write(rt2x00dev
, 41, 0x60);
1094 rt2500pci_bbp_write(rt2x00dev
, 53, 0x10);
1095 rt2500pci_bbp_write(rt2x00dev
, 54, 0x18);
1096 rt2500pci_bbp_write(rt2x00dev
, 56, 0x08);
1097 rt2500pci_bbp_write(rt2x00dev
, 57, 0x10);
1098 rt2500pci_bbp_write(rt2x00dev
, 58, 0x08);
1099 rt2500pci_bbp_write(rt2x00dev
, 61, 0x6d);
1100 rt2500pci_bbp_write(rt2x00dev
, 62, 0x10);
1102 for (i
= 0; i
< EEPROM_BBP_SIZE
; i
++) {
1103 rt2x00_eeprom_read(rt2x00dev
, EEPROM_BBP_START
+ i
, &eeprom
);
1105 if (eeprom
!= 0xffff && eeprom
!= 0x0000) {
1106 reg_id
= rt2x00_get_field16(eeprom
, EEPROM_BBP_REG_ID
);
1107 value
= rt2x00_get_field16(eeprom
, EEPROM_BBP_VALUE
);
1108 rt2500pci_bbp_write(rt2x00dev
, reg_id
, value
);
1116 * Device state switch handlers.
1118 static void rt2500pci_toggle_irq(struct rt2x00_dev
*rt2x00dev
,
1119 enum dev_state state
)
1121 int mask
= (state
== STATE_RADIO_IRQ_OFF
) ||
1122 (state
== STATE_RADIO_IRQ_OFF_ISR
);
1126 * When interrupts are being enabled, the interrupt registers
1127 * should clear the register to assure a clean state.
1129 if (state
== STATE_RADIO_IRQ_ON
) {
1130 rt2x00pci_register_read(rt2x00dev
, CSR7
, ®
);
1131 rt2x00pci_register_write(rt2x00dev
, CSR7
, reg
);
1135 * Only toggle the interrupts bits we are going to use.
1136 * Non-checked interrupt bits are disabled by default.
1138 rt2x00pci_register_read(rt2x00dev
, CSR8
, ®
);
1139 rt2x00_set_field32(®
, CSR8_TBCN_EXPIRE
, mask
);
1140 rt2x00_set_field32(®
, CSR8_TXDONE_TXRING
, mask
);
1141 rt2x00_set_field32(®
, CSR8_TXDONE_ATIMRING
, mask
);
1142 rt2x00_set_field32(®
, CSR8_TXDONE_PRIORING
, mask
);
1143 rt2x00_set_field32(®
, CSR8_RXDONE
, mask
);
1144 rt2x00pci_register_write(rt2x00dev
, CSR8
, reg
);
1147 static int rt2500pci_enable_radio(struct rt2x00_dev
*rt2x00dev
)
1150 * Initialize all registers.
1152 if (unlikely(rt2500pci_init_queues(rt2x00dev
) ||
1153 rt2500pci_init_registers(rt2x00dev
) ||
1154 rt2500pci_init_bbp(rt2x00dev
)))
1160 static void rt2500pci_disable_radio(struct rt2x00_dev
*rt2x00dev
)
1165 rt2x00pci_register_write(rt2x00dev
, PWRCSR0
, 0);
1168 static int rt2500pci_set_state(struct rt2x00_dev
*rt2x00dev
,
1169 enum dev_state state
)
1177 put_to_sleep
= (state
!= STATE_AWAKE
);
1179 rt2x00pci_register_read(rt2x00dev
, PWRCSR1
, ®
);
1180 rt2x00_set_field32(®
, PWRCSR1_SET_STATE
, 1);
1181 rt2x00_set_field32(®
, PWRCSR1_BBP_DESIRE_STATE
, state
);
1182 rt2x00_set_field32(®
, PWRCSR1_RF_DESIRE_STATE
, state
);
1183 rt2x00_set_field32(®
, PWRCSR1_PUT_TO_SLEEP
, put_to_sleep
);
1184 rt2x00pci_register_write(rt2x00dev
, PWRCSR1
, reg
);
1187 * Device is not guaranteed to be in the requested state yet.
1188 * We must wait until the register indicates that the
1189 * device has entered the correct state.
1191 for (i
= 0; i
< REGISTER_BUSY_COUNT
; i
++) {
1192 rt2x00pci_register_read(rt2x00dev
, PWRCSR1
, ®2
);
1193 bbp_state
= rt2x00_get_field32(reg2
, PWRCSR1_BBP_CURR_STATE
);
1194 rf_state
= rt2x00_get_field32(reg2
, PWRCSR1_RF_CURR_STATE
);
1195 if (bbp_state
== state
&& rf_state
== state
)
1197 rt2x00pci_register_write(rt2x00dev
, PWRCSR1
, reg
);
1204 static int rt2500pci_set_device_state(struct rt2x00_dev
*rt2x00dev
,
1205 enum dev_state state
)
1210 case STATE_RADIO_ON
:
1211 retval
= rt2500pci_enable_radio(rt2x00dev
);
1213 case STATE_RADIO_OFF
:
1214 rt2500pci_disable_radio(rt2x00dev
);
1216 case STATE_RADIO_IRQ_ON
:
1217 case STATE_RADIO_IRQ_ON_ISR
:
1218 case STATE_RADIO_IRQ_OFF
:
1219 case STATE_RADIO_IRQ_OFF_ISR
:
1220 rt2500pci_toggle_irq(rt2x00dev
, state
);
1222 case STATE_DEEP_SLEEP
:
1226 retval
= rt2500pci_set_state(rt2x00dev
, state
);
1233 if (unlikely(retval
))
1234 ERROR(rt2x00dev
, "Device failed to enter state %d (%d).\n",
1241 * TX descriptor initialization
1243 static void rt2500pci_write_tx_desc(struct queue_entry
*entry
,
1244 struct txentry_desc
*txdesc
)
1246 struct skb_frame_desc
*skbdesc
= get_skb_frame_desc(entry
->skb
);
1247 struct queue_entry_priv_pci
*entry_priv
= entry
->priv_data
;
1248 __le32
*txd
= entry_priv
->desc
;
1252 * Start writing the descriptor words.
1254 rt2x00_desc_read(txd
, 1, &word
);
1255 rt2x00_set_field32(&word
, TXD_W1_BUFFER_ADDRESS
, skbdesc
->skb_dma
);
1256 rt2x00_desc_write(txd
, 1, word
);
1258 rt2x00_desc_read(txd
, 2, &word
);
1259 rt2x00_set_field32(&word
, TXD_W2_IV_OFFSET
, IEEE80211_HEADER
);
1260 rt2x00_set_field32(&word
, TXD_W2_AIFS
, entry
->queue
->aifs
);
1261 rt2x00_set_field32(&word
, TXD_W2_CWMIN
, entry
->queue
->cw_min
);
1262 rt2x00_set_field32(&word
, TXD_W2_CWMAX
, entry
->queue
->cw_max
);
1263 rt2x00_desc_write(txd
, 2, word
);
1265 rt2x00_desc_read(txd
, 3, &word
);
1266 rt2x00_set_field32(&word
, TXD_W3_PLCP_SIGNAL
, txdesc
->signal
);
1267 rt2x00_set_field32(&word
, TXD_W3_PLCP_SERVICE
, txdesc
->service
);
1268 rt2x00_set_field32(&word
, TXD_W3_PLCP_LENGTH_LOW
, txdesc
->length_low
);
1269 rt2x00_set_field32(&word
, TXD_W3_PLCP_LENGTH_HIGH
, txdesc
->length_high
);
1270 rt2x00_desc_write(txd
, 3, word
);
1272 rt2x00_desc_read(txd
, 10, &word
);
1273 rt2x00_set_field32(&word
, TXD_W10_RTS
,
1274 test_bit(ENTRY_TXD_RTS_FRAME
, &txdesc
->flags
));
1275 rt2x00_desc_write(txd
, 10, word
);
1278 * Writing TXD word 0 must the last to prevent a race condition with
1279 * the device, whereby the device may take hold of the TXD before we
1280 * finished updating it.
1282 rt2x00_desc_read(txd
, 0, &word
);
1283 rt2x00_set_field32(&word
, TXD_W0_OWNER_NIC
, 1);
1284 rt2x00_set_field32(&word
, TXD_W0_VALID
, 1);
1285 rt2x00_set_field32(&word
, TXD_W0_MORE_FRAG
,
1286 test_bit(ENTRY_TXD_MORE_FRAG
, &txdesc
->flags
));
1287 rt2x00_set_field32(&word
, TXD_W0_ACK
,
1288 test_bit(ENTRY_TXD_ACK
, &txdesc
->flags
));
1289 rt2x00_set_field32(&word
, TXD_W0_TIMESTAMP
,
1290 test_bit(ENTRY_TXD_REQ_TIMESTAMP
, &txdesc
->flags
));
1291 rt2x00_set_field32(&word
, TXD_W0_OFDM
,
1292 (txdesc
->rate_mode
== RATE_MODE_OFDM
));
1293 rt2x00_set_field32(&word
, TXD_W0_CIPHER_OWNER
, 1);
1294 rt2x00_set_field32(&word
, TXD_W0_IFS
, txdesc
->ifs
);
1295 rt2x00_set_field32(&word
, TXD_W0_RETRY_MODE
,
1296 test_bit(ENTRY_TXD_RETRY_MODE
, &txdesc
->flags
));
1297 rt2x00_set_field32(&word
, TXD_W0_DATABYTE_COUNT
, txdesc
->length
);
1298 rt2x00_set_field32(&word
, TXD_W0_CIPHER_ALG
, CIPHER_NONE
);
1299 rt2x00_desc_write(txd
, 0, word
);
1302 * Register descriptor details in skb frame descriptor.
1304 skbdesc
->desc
= txd
;
1305 skbdesc
->desc_len
= TXD_DESC_SIZE
;
1309 * TX data initialization
1311 static void rt2500pci_write_beacon(struct queue_entry
*entry
,
1312 struct txentry_desc
*txdesc
)
1314 struct rt2x00_dev
*rt2x00dev
= entry
->queue
->rt2x00dev
;
1318 * Disable beaconing while we are reloading the beacon data,
1319 * otherwise we might be sending out invalid data.
1321 rt2x00pci_register_read(rt2x00dev
, CSR14
, ®
);
1322 rt2x00_set_field32(®
, CSR14_BEACON_GEN
, 0);
1323 rt2x00pci_register_write(rt2x00dev
, CSR14
, reg
);
1325 rt2x00queue_map_txskb(entry
);
1328 * Write the TX descriptor for the beacon.
1330 rt2500pci_write_tx_desc(entry
, txdesc
);
1333 * Dump beacon to userspace through debugfs.
1335 rt2x00debug_dump_frame(rt2x00dev
, DUMP_FRAME_BEACON
, entry
->skb
);
1338 * Enable beaconing again.
1340 rt2x00_set_field32(®
, CSR14_TSF_COUNT
, 1);
1341 rt2x00_set_field32(®
, CSR14_TBCN
, 1);
1342 rt2x00_set_field32(®
, CSR14_BEACON_GEN
, 1);
1343 rt2x00pci_register_write(rt2x00dev
, CSR14
, reg
);
1347 * RX control handlers
1349 static void rt2500pci_fill_rxdone(struct queue_entry
*entry
,
1350 struct rxdone_entry_desc
*rxdesc
)
1352 struct queue_entry_priv_pci
*entry_priv
= entry
->priv_data
;
1356 rt2x00_desc_read(entry_priv
->desc
, 0, &word0
);
1357 rt2x00_desc_read(entry_priv
->desc
, 2, &word2
);
1359 if (rt2x00_get_field32(word0
, RXD_W0_CRC_ERROR
))
1360 rxdesc
->flags
|= RX_FLAG_FAILED_FCS_CRC
;
1361 if (rt2x00_get_field32(word0
, RXD_W0_PHYSICAL_ERROR
))
1362 rxdesc
->flags
|= RX_FLAG_FAILED_PLCP_CRC
;
1365 * Obtain the status about this packet.
1366 * When frame was received with an OFDM bitrate,
1367 * the signal is the PLCP value. If it was received with
1368 * a CCK bitrate the signal is the rate in 100kbit/s.
1370 rxdesc
->signal
= rt2x00_get_field32(word2
, RXD_W2_SIGNAL
);
1371 rxdesc
->rssi
= rt2x00_get_field32(word2
, RXD_W2_RSSI
) -
1372 entry
->queue
->rt2x00dev
->rssi_offset
;
1373 rxdesc
->size
= rt2x00_get_field32(word0
, RXD_W0_DATABYTE_COUNT
);
1375 if (rt2x00_get_field32(word0
, RXD_W0_OFDM
))
1376 rxdesc
->dev_flags
|= RXDONE_SIGNAL_PLCP
;
1378 rxdesc
->dev_flags
|= RXDONE_SIGNAL_BITRATE
;
1379 if (rt2x00_get_field32(word0
, RXD_W0_MY_BSS
))
1380 rxdesc
->dev_flags
|= RXDONE_MY_BSS
;
1384 * Interrupt functions.
1386 static void rt2500pci_txdone(struct rt2x00_dev
*rt2x00dev
,
1387 const enum data_queue_qid queue_idx
)
1389 struct data_queue
*queue
= rt2x00queue_get_queue(rt2x00dev
, queue_idx
);
1390 struct queue_entry_priv_pci
*entry_priv
;
1391 struct queue_entry
*entry
;
1392 struct txdone_entry_desc txdesc
;
1395 while (!rt2x00queue_empty(queue
)) {
1396 entry
= rt2x00queue_get_entry(queue
, Q_INDEX_DONE
);
1397 entry_priv
= entry
->priv_data
;
1398 rt2x00_desc_read(entry_priv
->desc
, 0, &word
);
1400 if (rt2x00_get_field32(word
, TXD_W0_OWNER_NIC
) ||
1401 !rt2x00_get_field32(word
, TXD_W0_VALID
))
1405 * Obtain the status about this packet.
1408 switch (rt2x00_get_field32(word
, TXD_W0_RESULT
)) {
1409 case 0: /* Success */
1410 case 1: /* Success with retry */
1411 __set_bit(TXDONE_SUCCESS
, &txdesc
.flags
);
1413 case 2: /* Failure, excessive retries */
1414 __set_bit(TXDONE_EXCESSIVE_RETRY
, &txdesc
.flags
);
1415 /* Don't break, this is a failed frame! */
1416 default: /* Failure */
1417 __set_bit(TXDONE_FAILURE
, &txdesc
.flags
);
1419 txdesc
.retry
= rt2x00_get_field32(word
, TXD_W0_RETRY_COUNT
);
1421 rt2x00lib_txdone(entry
, &txdesc
);
1425 static irqreturn_t
rt2500pci_interrupt_thread(int irq
, void *dev_instance
)
1427 struct rt2x00_dev
*rt2x00dev
= dev_instance
;
1428 u32 reg
= rt2x00dev
->irqvalue
[0];
1431 * Handle interrupts, walk through all bits
1432 * and run the tasks, the bits are checked in order of
1437 * 1 - Beacon timer expired interrupt.
1439 if (rt2x00_get_field32(reg
, CSR7_TBCN_EXPIRE
))
1440 rt2x00lib_beacondone(rt2x00dev
);
1443 * 2 - Rx ring done interrupt.
1445 if (rt2x00_get_field32(reg
, CSR7_RXDONE
))
1446 rt2x00pci_rxdone(rt2x00dev
);
1449 * 3 - Atim ring transmit done interrupt.
1451 if (rt2x00_get_field32(reg
, CSR7_TXDONE_ATIMRING
))
1452 rt2500pci_txdone(rt2x00dev
, QID_ATIM
);
1455 * 4 - Priority ring transmit done interrupt.
1457 if (rt2x00_get_field32(reg
, CSR7_TXDONE_PRIORING
))
1458 rt2500pci_txdone(rt2x00dev
, QID_AC_VO
);
1461 * 5 - Tx ring transmit done interrupt.
1463 if (rt2x00_get_field32(reg
, CSR7_TXDONE_TXRING
))
1464 rt2500pci_txdone(rt2x00dev
, QID_AC_VI
);
1466 /* Enable interrupts again. */
1467 rt2x00dev
->ops
->lib
->set_device_state(rt2x00dev
,
1468 STATE_RADIO_IRQ_ON_ISR
);
1473 static irqreturn_t
rt2500pci_interrupt(int irq
, void *dev_instance
)
1475 struct rt2x00_dev
*rt2x00dev
= dev_instance
;
1479 * Get the interrupt sources & saved to local variable.
1480 * Write register value back to clear pending interrupts.
1482 rt2x00pci_register_read(rt2x00dev
, CSR7
, ®
);
1483 rt2x00pci_register_write(rt2x00dev
, CSR7
, reg
);
1488 if (!test_bit(DEVICE_STATE_ENABLED_RADIO
, &rt2x00dev
->flags
))
1491 /* Store irqvalues for use in the interrupt thread. */
1492 rt2x00dev
->irqvalue
[0] = reg
;
1494 /* Disable interrupts, will be enabled again in the interrupt thread. */
1495 rt2x00dev
->ops
->lib
->set_device_state(rt2x00dev
,
1496 STATE_RADIO_IRQ_OFF_ISR
);
1498 return IRQ_WAKE_THREAD
;
1502 * Device probe functions.
1504 static int rt2500pci_validate_eeprom(struct rt2x00_dev
*rt2x00dev
)
1506 struct eeprom_93cx6 eeprom
;
1511 rt2x00pci_register_read(rt2x00dev
, CSR21
, ®
);
1513 eeprom
.data
= rt2x00dev
;
1514 eeprom
.register_read
= rt2500pci_eepromregister_read
;
1515 eeprom
.register_write
= rt2500pci_eepromregister_write
;
1516 eeprom
.width
= rt2x00_get_field32(reg
, CSR21_TYPE_93C46
) ?
1517 PCI_EEPROM_WIDTH_93C46
: PCI_EEPROM_WIDTH_93C66
;
1518 eeprom
.reg_data_in
= 0;
1519 eeprom
.reg_data_out
= 0;
1520 eeprom
.reg_data_clock
= 0;
1521 eeprom
.reg_chip_select
= 0;
1523 eeprom_93cx6_multiread(&eeprom
, EEPROM_BASE
, rt2x00dev
->eeprom
,
1524 EEPROM_SIZE
/ sizeof(u16
));
1527 * Start validation of the data that has been read.
1529 mac
= rt2x00_eeprom_addr(rt2x00dev
, EEPROM_MAC_ADDR_0
);
1530 if (!is_valid_ether_addr(mac
)) {
1531 random_ether_addr(mac
);
1532 EEPROM(rt2x00dev
, "MAC: %pM\n", mac
);
1535 rt2x00_eeprom_read(rt2x00dev
, EEPROM_ANTENNA
, &word
);
1536 if (word
== 0xffff) {
1537 rt2x00_set_field16(&word
, EEPROM_ANTENNA_NUM
, 2);
1538 rt2x00_set_field16(&word
, EEPROM_ANTENNA_TX_DEFAULT
,
1539 ANTENNA_SW_DIVERSITY
);
1540 rt2x00_set_field16(&word
, EEPROM_ANTENNA_RX_DEFAULT
,
1541 ANTENNA_SW_DIVERSITY
);
1542 rt2x00_set_field16(&word
, EEPROM_ANTENNA_LED_MODE
,
1544 rt2x00_set_field16(&word
, EEPROM_ANTENNA_DYN_TXAGC
, 0);
1545 rt2x00_set_field16(&word
, EEPROM_ANTENNA_HARDWARE_RADIO
, 0);
1546 rt2x00_set_field16(&word
, EEPROM_ANTENNA_RF_TYPE
, RF2522
);
1547 rt2x00_eeprom_write(rt2x00dev
, EEPROM_ANTENNA
, word
);
1548 EEPROM(rt2x00dev
, "Antenna: 0x%04x\n", word
);
1551 rt2x00_eeprom_read(rt2x00dev
, EEPROM_NIC
, &word
);
1552 if (word
== 0xffff) {
1553 rt2x00_set_field16(&word
, EEPROM_NIC_CARDBUS_ACCEL
, 0);
1554 rt2x00_set_field16(&word
, EEPROM_NIC_DYN_BBP_TUNE
, 0);
1555 rt2x00_set_field16(&word
, EEPROM_NIC_CCK_TX_POWER
, 0);
1556 rt2x00_eeprom_write(rt2x00dev
, EEPROM_NIC
, word
);
1557 EEPROM(rt2x00dev
, "NIC: 0x%04x\n", word
);
1560 rt2x00_eeprom_read(rt2x00dev
, EEPROM_CALIBRATE_OFFSET
, &word
);
1561 if (word
== 0xffff) {
1562 rt2x00_set_field16(&word
, EEPROM_CALIBRATE_OFFSET_RSSI
,
1563 DEFAULT_RSSI_OFFSET
);
1564 rt2x00_eeprom_write(rt2x00dev
, EEPROM_CALIBRATE_OFFSET
, word
);
1565 EEPROM(rt2x00dev
, "Calibrate offset: 0x%04x\n", word
);
1571 static int rt2500pci_init_eeprom(struct rt2x00_dev
*rt2x00dev
)
1578 * Read EEPROM word for configuration.
1580 rt2x00_eeprom_read(rt2x00dev
, EEPROM_ANTENNA
, &eeprom
);
1583 * Identify RF chipset.
1585 value
= rt2x00_get_field16(eeprom
, EEPROM_ANTENNA_RF_TYPE
);
1586 rt2x00pci_register_read(rt2x00dev
, CSR0
, ®
);
1587 rt2x00_set_chip(rt2x00dev
, RT2560
, value
,
1588 rt2x00_get_field32(reg
, CSR0_REVISION
));
1590 if (!rt2x00_rf(rt2x00dev
, RF2522
) &&
1591 !rt2x00_rf(rt2x00dev
, RF2523
) &&
1592 !rt2x00_rf(rt2x00dev
, RF2524
) &&
1593 !rt2x00_rf(rt2x00dev
, RF2525
) &&
1594 !rt2x00_rf(rt2x00dev
, RF2525E
) &&
1595 !rt2x00_rf(rt2x00dev
, RF5222
)) {
1596 ERROR(rt2x00dev
, "Invalid RF chipset detected.\n");
1601 * Identify default antenna configuration.
1603 rt2x00dev
->default_ant
.tx
=
1604 rt2x00_get_field16(eeprom
, EEPROM_ANTENNA_TX_DEFAULT
);
1605 rt2x00dev
->default_ant
.rx
=
1606 rt2x00_get_field16(eeprom
, EEPROM_ANTENNA_RX_DEFAULT
);
1609 * Store led mode, for correct led behaviour.
1611 #ifdef CONFIG_RT2X00_LIB_LEDS
1612 value
= rt2x00_get_field16(eeprom
, EEPROM_ANTENNA_LED_MODE
);
1614 rt2500pci_init_led(rt2x00dev
, &rt2x00dev
->led_radio
, LED_TYPE_RADIO
);
1615 if (value
== LED_MODE_TXRX_ACTIVITY
||
1616 value
== LED_MODE_DEFAULT
||
1617 value
== LED_MODE_ASUS
)
1618 rt2500pci_init_led(rt2x00dev
, &rt2x00dev
->led_qual
,
1620 #endif /* CONFIG_RT2X00_LIB_LEDS */
1623 * Detect if this device has an hardware controlled radio.
1625 if (rt2x00_get_field16(eeprom
, EEPROM_ANTENNA_HARDWARE_RADIO
))
1626 __set_bit(CONFIG_SUPPORT_HW_BUTTON
, &rt2x00dev
->flags
);
1629 * Check if the BBP tuning should be enabled.
1631 rt2x00_eeprom_read(rt2x00dev
, EEPROM_NIC
, &eeprom
);
1632 if (!rt2x00_get_field16(eeprom
, EEPROM_NIC_DYN_BBP_TUNE
))
1633 __set_bit(DRIVER_SUPPORT_LINK_TUNING
, &rt2x00dev
->flags
);
1636 * Read the RSSI <-> dBm offset information.
1638 rt2x00_eeprom_read(rt2x00dev
, EEPROM_CALIBRATE_OFFSET
, &eeprom
);
1639 rt2x00dev
->rssi_offset
=
1640 rt2x00_get_field16(eeprom
, EEPROM_CALIBRATE_OFFSET_RSSI
);
1646 * RF value list for RF2522
1649 static const struct rf_channel rf_vals_bg_2522
[] = {
1650 { 1, 0x00002050, 0x000c1fda, 0x00000101, 0 },
1651 { 2, 0x00002050, 0x000c1fee, 0x00000101, 0 },
1652 { 3, 0x00002050, 0x000c2002, 0x00000101, 0 },
1653 { 4, 0x00002050, 0x000c2016, 0x00000101, 0 },
1654 { 5, 0x00002050, 0x000c202a, 0x00000101, 0 },
1655 { 6, 0x00002050, 0x000c203e, 0x00000101, 0 },
1656 { 7, 0x00002050, 0x000c2052, 0x00000101, 0 },
1657 { 8, 0x00002050, 0x000c2066, 0x00000101, 0 },
1658 { 9, 0x00002050, 0x000c207a, 0x00000101, 0 },
1659 { 10, 0x00002050, 0x000c208e, 0x00000101, 0 },
1660 { 11, 0x00002050, 0x000c20a2, 0x00000101, 0 },
1661 { 12, 0x00002050, 0x000c20b6, 0x00000101, 0 },
1662 { 13, 0x00002050, 0x000c20ca, 0x00000101, 0 },
1663 { 14, 0x00002050, 0x000c20fa, 0x00000101, 0 },
1667 * RF value list for RF2523
1670 static const struct rf_channel rf_vals_bg_2523
[] = {
1671 { 1, 0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b },
1672 { 2, 0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b },
1673 { 3, 0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b },
1674 { 4, 0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b },
1675 { 5, 0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b },
1676 { 6, 0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b },
1677 { 7, 0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b },
1678 { 8, 0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b },
1679 { 9, 0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b },
1680 { 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b },
1681 { 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b },
1682 { 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b },
1683 { 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b },
1684 { 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 },
1688 * RF value list for RF2524
1691 static const struct rf_channel rf_vals_bg_2524
[] = {
1692 { 1, 0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b },
1693 { 2, 0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b },
1694 { 3, 0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b },
1695 { 4, 0x00032020, 0x00000caa, 0x00000101, 0x00000a1b },
1696 { 5, 0x00032020, 0x00000cae, 0x00000101, 0x00000a1b },
1697 { 6, 0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b },
1698 { 7, 0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b },
1699 { 8, 0x00032020, 0x00000cba, 0x00000101, 0x00000a1b },
1700 { 9, 0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b },
1701 { 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b },
1702 { 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b },
1703 { 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b },
1704 { 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b },
1705 { 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 },
1709 * RF value list for RF2525
1712 static const struct rf_channel rf_vals_bg_2525
[] = {
1713 { 1, 0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b },
1714 { 2, 0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b },
1715 { 3, 0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b },
1716 { 4, 0x00022020, 0x00080caa, 0x00060111, 0x00000a1b },
1717 { 5, 0x00022020, 0x00080cae, 0x00060111, 0x00000a1b },
1718 { 6, 0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b },
1719 { 7, 0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b },
1720 { 8, 0x00022020, 0x00080cba, 0x00060111, 0x00000a1b },
1721 { 9, 0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b },
1722 { 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b },
1723 { 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b },
1724 { 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b },
1725 { 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b },
1726 { 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 },
1730 * RF value list for RF2525e
1733 static const struct rf_channel rf_vals_bg_2525e
[] = {
1734 { 1, 0x00022020, 0x00081136, 0x00060111, 0x00000a0b },
1735 { 2, 0x00022020, 0x0008113a, 0x00060111, 0x00000a0b },
1736 { 3, 0x00022020, 0x0008113e, 0x00060111, 0x00000a0b },
1737 { 4, 0x00022020, 0x00081182, 0x00060111, 0x00000a0b },
1738 { 5, 0x00022020, 0x00081186, 0x00060111, 0x00000a0b },
1739 { 6, 0x00022020, 0x0008118a, 0x00060111, 0x00000a0b },
1740 { 7, 0x00022020, 0x0008118e, 0x00060111, 0x00000a0b },
1741 { 8, 0x00022020, 0x00081192, 0x00060111, 0x00000a0b },
1742 { 9, 0x00022020, 0x00081196, 0x00060111, 0x00000a0b },
1743 { 10, 0x00022020, 0x0008119a, 0x00060111, 0x00000a0b },
1744 { 11, 0x00022020, 0x0008119e, 0x00060111, 0x00000a0b },
1745 { 12, 0x00022020, 0x000811a2, 0x00060111, 0x00000a0b },
1746 { 13, 0x00022020, 0x000811a6, 0x00060111, 0x00000a0b },
1747 { 14, 0x00022020, 0x000811ae, 0x00060111, 0x00000a1b },
1751 * RF value list for RF5222
1752 * Supports: 2.4 GHz & 5.2 GHz
1754 static const struct rf_channel rf_vals_5222
[] = {
1755 { 1, 0x00022020, 0x00001136, 0x00000101, 0x00000a0b },
1756 { 2, 0x00022020, 0x0000113a, 0x00000101, 0x00000a0b },
1757 { 3, 0x00022020, 0x0000113e, 0x00000101, 0x00000a0b },
1758 { 4, 0x00022020, 0x00001182, 0x00000101, 0x00000a0b },
1759 { 5, 0x00022020, 0x00001186, 0x00000101, 0x00000a0b },
1760 { 6, 0x00022020, 0x0000118a, 0x00000101, 0x00000a0b },
1761 { 7, 0x00022020, 0x0000118e, 0x00000101, 0x00000a0b },
1762 { 8, 0x00022020, 0x00001192, 0x00000101, 0x00000a0b },
1763 { 9, 0x00022020, 0x00001196, 0x00000101, 0x00000a0b },
1764 { 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b },
1765 { 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b },
1766 { 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b },
1767 { 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b },
1768 { 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b },
1770 /* 802.11 UNI / HyperLan 2 */
1771 { 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f },
1772 { 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f },
1773 { 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f },
1774 { 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f },
1775 { 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f },
1776 { 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f },
1777 { 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f },
1778 { 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f },
1780 /* 802.11 HyperLan 2 */
1781 { 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f },
1782 { 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f },
1783 { 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f },
1784 { 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f },
1785 { 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f },
1786 { 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f },
1787 { 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f },
1788 { 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f },
1789 { 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f },
1790 { 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f },
1793 { 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f },
1794 { 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 },
1795 { 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 },
1796 { 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 },
1797 { 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 },
1800 static int rt2500pci_probe_hw_mode(struct rt2x00_dev
*rt2x00dev
)
1802 struct hw_mode_spec
*spec
= &rt2x00dev
->spec
;
1803 struct channel_info
*info
;
1808 * Initialize all hw fields.
1810 rt2x00dev
->hw
->flags
= IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING
|
1811 IEEE80211_HW_SIGNAL_DBM
|
1812 IEEE80211_HW_SUPPORTS_PS
|
1813 IEEE80211_HW_PS_NULLFUNC_STACK
;
1815 SET_IEEE80211_DEV(rt2x00dev
->hw
, rt2x00dev
->dev
);
1816 SET_IEEE80211_PERM_ADDR(rt2x00dev
->hw
,
1817 rt2x00_eeprom_addr(rt2x00dev
,
1818 EEPROM_MAC_ADDR_0
));
1821 * Initialize hw_mode information.
1823 spec
->supported_bands
= SUPPORT_BAND_2GHZ
;
1824 spec
->supported_rates
= SUPPORT_RATE_CCK
| SUPPORT_RATE_OFDM
;
1826 if (rt2x00_rf(rt2x00dev
, RF2522
)) {
1827 spec
->num_channels
= ARRAY_SIZE(rf_vals_bg_2522
);
1828 spec
->channels
= rf_vals_bg_2522
;
1829 } else if (rt2x00_rf(rt2x00dev
, RF2523
)) {
1830 spec
->num_channels
= ARRAY_SIZE(rf_vals_bg_2523
);
1831 spec
->channels
= rf_vals_bg_2523
;
1832 } else if (rt2x00_rf(rt2x00dev
, RF2524
)) {
1833 spec
->num_channels
= ARRAY_SIZE(rf_vals_bg_2524
);
1834 spec
->channels
= rf_vals_bg_2524
;
1835 } else if (rt2x00_rf(rt2x00dev
, RF2525
)) {
1836 spec
->num_channels
= ARRAY_SIZE(rf_vals_bg_2525
);
1837 spec
->channels
= rf_vals_bg_2525
;
1838 } else if (rt2x00_rf(rt2x00dev
, RF2525E
)) {
1839 spec
->num_channels
= ARRAY_SIZE(rf_vals_bg_2525e
);
1840 spec
->channels
= rf_vals_bg_2525e
;
1841 } else if (rt2x00_rf(rt2x00dev
, RF5222
)) {
1842 spec
->supported_bands
|= SUPPORT_BAND_5GHZ
;
1843 spec
->num_channels
= ARRAY_SIZE(rf_vals_5222
);
1844 spec
->channels
= rf_vals_5222
;
1848 * Create channel information array
1850 info
= kcalloc(spec
->num_channels
, sizeof(*info
), GFP_KERNEL
);
1854 spec
->channels_info
= info
;
1856 tx_power
= rt2x00_eeprom_addr(rt2x00dev
, EEPROM_TXPOWER_START
);
1857 for (i
= 0; i
< 14; i
++) {
1858 info
[i
].max_power
= MAX_TXPOWER
;
1859 info
[i
].default_power1
= TXPOWER_FROM_DEV(tx_power
[i
]);
1862 if (spec
->num_channels
> 14) {
1863 for (i
= 14; i
< spec
->num_channels
; i
++) {
1864 info
[i
].max_power
= MAX_TXPOWER
;
1865 info
[i
].default_power1
= DEFAULT_TXPOWER
;
1872 static int rt2500pci_probe_hw(struct rt2x00_dev
*rt2x00dev
)
1877 * Allocate eeprom data.
1879 retval
= rt2500pci_validate_eeprom(rt2x00dev
);
1883 retval
= rt2500pci_init_eeprom(rt2x00dev
);
1888 * Initialize hw specifications.
1890 retval
= rt2500pci_probe_hw_mode(rt2x00dev
);
1895 * This device requires the atim queue and DMA-mapped skbs.
1897 __set_bit(DRIVER_REQUIRE_ATIM_QUEUE
, &rt2x00dev
->flags
);
1898 __set_bit(DRIVER_REQUIRE_DMA
, &rt2x00dev
->flags
);
1901 * Set the rssi offset.
1903 rt2x00dev
->rssi_offset
= DEFAULT_RSSI_OFFSET
;
1909 * IEEE80211 stack callback functions.
1911 static u64
rt2500pci_get_tsf(struct ieee80211_hw
*hw
)
1913 struct rt2x00_dev
*rt2x00dev
= hw
->priv
;
1917 rt2x00pci_register_read(rt2x00dev
, CSR17
, ®
);
1918 tsf
= (u64
) rt2x00_get_field32(reg
, CSR17_HIGH_TSFTIMER
) << 32;
1919 rt2x00pci_register_read(rt2x00dev
, CSR16
, ®
);
1920 tsf
|= rt2x00_get_field32(reg
, CSR16_LOW_TSFTIMER
);
1925 static int rt2500pci_tx_last_beacon(struct ieee80211_hw
*hw
)
1927 struct rt2x00_dev
*rt2x00dev
= hw
->priv
;
1930 rt2x00pci_register_read(rt2x00dev
, CSR15
, ®
);
1931 return rt2x00_get_field32(reg
, CSR15_BEACON_SENT
);
1934 static const struct ieee80211_ops rt2500pci_mac80211_ops
= {
1936 .start
= rt2x00mac_start
,
1937 .stop
= rt2x00mac_stop
,
1938 .add_interface
= rt2x00mac_add_interface
,
1939 .remove_interface
= rt2x00mac_remove_interface
,
1940 .config
= rt2x00mac_config
,
1941 .configure_filter
= rt2x00mac_configure_filter
,
1942 .sw_scan_start
= rt2x00mac_sw_scan_start
,
1943 .sw_scan_complete
= rt2x00mac_sw_scan_complete
,
1944 .get_stats
= rt2x00mac_get_stats
,
1945 .bss_info_changed
= rt2x00mac_bss_info_changed
,
1946 .conf_tx
= rt2x00mac_conf_tx
,
1947 .get_tsf
= rt2500pci_get_tsf
,
1948 .tx_last_beacon
= rt2500pci_tx_last_beacon
,
1949 .rfkill_poll
= rt2x00mac_rfkill_poll
,
1950 .flush
= rt2x00mac_flush
,
1953 static const struct rt2x00lib_ops rt2500pci_rt2x00_ops
= {
1954 .irq_handler
= rt2500pci_interrupt
,
1955 .irq_handler_thread
= rt2500pci_interrupt_thread
,
1956 .probe_hw
= rt2500pci_probe_hw
,
1957 .initialize
= rt2x00pci_initialize
,
1958 .uninitialize
= rt2x00pci_uninitialize
,
1959 .get_entry_state
= rt2500pci_get_entry_state
,
1960 .clear_entry
= rt2500pci_clear_entry
,
1961 .set_device_state
= rt2500pci_set_device_state
,
1962 .rfkill_poll
= rt2500pci_rfkill_poll
,
1963 .link_stats
= rt2500pci_link_stats
,
1964 .reset_tuner
= rt2500pci_reset_tuner
,
1965 .link_tuner
= rt2500pci_link_tuner
,
1966 .start_queue
= rt2500pci_start_queue
,
1967 .kick_queue
= rt2500pci_kick_queue
,
1968 .stop_queue
= rt2500pci_stop_queue
,
1969 .write_tx_desc
= rt2500pci_write_tx_desc
,
1970 .write_beacon
= rt2500pci_write_beacon
,
1971 .fill_rxdone
= rt2500pci_fill_rxdone
,
1972 .config_filter
= rt2500pci_config_filter
,
1973 .config_intf
= rt2500pci_config_intf
,
1974 .config_erp
= rt2500pci_config_erp
,
1975 .config_ant
= rt2500pci_config_ant
,
1976 .config
= rt2500pci_config
,
1979 static const struct data_queue_desc rt2500pci_queue_rx
= {
1981 .data_size
= DATA_FRAME_SIZE
,
1982 .desc_size
= RXD_DESC_SIZE
,
1983 .priv_size
= sizeof(struct queue_entry_priv_pci
),
1986 static const struct data_queue_desc rt2500pci_queue_tx
= {
1988 .data_size
= DATA_FRAME_SIZE
,
1989 .desc_size
= TXD_DESC_SIZE
,
1990 .priv_size
= sizeof(struct queue_entry_priv_pci
),
1993 static const struct data_queue_desc rt2500pci_queue_bcn
= {
1995 .data_size
= MGMT_FRAME_SIZE
,
1996 .desc_size
= TXD_DESC_SIZE
,
1997 .priv_size
= sizeof(struct queue_entry_priv_pci
),
2000 static const struct data_queue_desc rt2500pci_queue_atim
= {
2002 .data_size
= DATA_FRAME_SIZE
,
2003 .desc_size
= TXD_DESC_SIZE
,
2004 .priv_size
= sizeof(struct queue_entry_priv_pci
),
2007 static const struct rt2x00_ops rt2500pci_ops
= {
2008 .name
= KBUILD_MODNAME
,
2011 .eeprom_size
= EEPROM_SIZE
,
2013 .tx_queues
= NUM_TX_QUEUES
,
2014 .extra_tx_headroom
= 0,
2015 .rx
= &rt2500pci_queue_rx
,
2016 .tx
= &rt2500pci_queue_tx
,
2017 .bcn
= &rt2500pci_queue_bcn
,
2018 .atim
= &rt2500pci_queue_atim
,
2019 .lib
= &rt2500pci_rt2x00_ops
,
2020 .hw
= &rt2500pci_mac80211_ops
,
2021 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
2022 .debugfs
= &rt2500pci_rt2x00debug
,
2023 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
2027 * RT2500pci module information.
2029 static DEFINE_PCI_DEVICE_TABLE(rt2500pci_device_table
) = {
2030 { PCI_DEVICE(0x1814, 0x0201), PCI_DEVICE_DATA(&rt2500pci_ops
) },
2034 MODULE_AUTHOR(DRV_PROJECT
);
2035 MODULE_VERSION(DRV_VERSION
);
2036 MODULE_DESCRIPTION("Ralink RT2500 PCI & PCMCIA Wireless LAN driver.");
2037 MODULE_SUPPORTED_DEVICE("Ralink RT2560 PCI & PCMCIA chipset based cards");
2038 MODULE_DEVICE_TABLE(pci
, rt2500pci_device_table
);
2039 MODULE_LICENSE("GPL");
2041 static struct pci_driver rt2500pci_driver
= {
2042 .name
= KBUILD_MODNAME
,
2043 .id_table
= rt2500pci_device_table
,
2044 .probe
= rt2x00pci_probe
,
2045 .remove
= __devexit_p(rt2x00pci_remove
),
2046 .suspend
= rt2x00pci_suspend
,
2047 .resume
= rt2x00pci_resume
,
2050 static int __init
rt2500pci_init(void)
2052 return pci_register_driver(&rt2500pci_driver
);
2055 static void __exit
rt2500pci_exit(void)
2057 pci_unregister_driver(&rt2500pci_driver
);
2060 module_init(rt2500pci_init
);
2061 module_exit(rt2500pci_exit
);