2 Copyright (C) 2010 Willow Garage <http://www.willowgarage.com>
3 Copyright (C) 2010 Ivo van Doorn <IvDoorn@gmail.com>
4 Copyright (C) 2009 Bartlomiej Zolnierkiewicz <bzolnier@gmail.com>
5 Copyright (C) 2009 Gertjan van Wingerde <gwingerde@gmail.com>
7 Based on the original rt2800pci.c and rt2800usb.c.
8 Copyright (C) 2009 Alban Browaeys <prahal@yahoo.com>
9 Copyright (C) 2009 Felix Fietkau <nbd@openwrt.org>
10 Copyright (C) 2009 Luis Correia <luis.f.correia@gmail.com>
11 Copyright (C) 2009 Mattias Nissler <mattias.nissler@gmx.de>
12 Copyright (C) 2009 Mark Asselstine <asselsm@gmail.com>
13 Copyright (C) 2009 Xose Vazquez Perez <xose.vazquez@gmail.com>
14 <http://rt2x00.serialmonkey.com>
16 This program is free software; you can redistribute it and/or modify
17 it under the terms of the GNU General Public License as published by
18 the Free Software Foundation; either version 2 of the License, or
19 (at your option) any later version.
21 This program is distributed in the hope that it will be useful,
22 but WITHOUT ANY WARRANTY; without even the implied warranty of
23 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
24 GNU General Public License for more details.
26 You should have received a copy of the GNU General Public License
27 along with this program; if not, write to the
28 Free Software Foundation, Inc.,
29 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
34 Abstract: rt2800 generic device routines.
37 #include <linux/crc-ccitt.h>
38 #include <linux/kernel.h>
39 #include <linux/module.h>
40 #include <linux/slab.h>
43 #include "rt2800lib.h"
48 * All access to the CSR registers will go through the methods
49 * rt2800_register_read and rt2800_register_write.
50 * BBP and RF register require indirect register access,
51 * and use the CSR registers BBPCSR and RFCSR to achieve this.
52 * These indirect registers work with busy bits,
53 * and we will try maximal REGISTER_BUSY_COUNT times to access
54 * the register while taking a REGISTER_BUSY_DELAY us delay
55 * between each attampt. When the busy bit is still set at that time,
56 * the access attempt is considered to have failed,
57 * and we will print an error.
58 * The _lock versions must be used if you already hold the csr_mutex
60 #define WAIT_FOR_BBP(__dev, __reg) \
61 rt2800_regbusy_read((__dev), BBP_CSR_CFG, BBP_CSR_CFG_BUSY, (__reg))
62 #define WAIT_FOR_RFCSR(__dev, __reg) \
63 rt2800_regbusy_read((__dev), RF_CSR_CFG, RF_CSR_CFG_BUSY, (__reg))
64 #define WAIT_FOR_RF(__dev, __reg) \
65 rt2800_regbusy_read((__dev), RF_CSR_CFG0, RF_CSR_CFG0_BUSY, (__reg))
66 #define WAIT_FOR_MCU(__dev, __reg) \
67 rt2800_regbusy_read((__dev), H2M_MAILBOX_CSR, \
68 H2M_MAILBOX_CSR_OWNER, (__reg))
70 static inline bool rt2800_is_305x_soc(struct rt2x00_dev
*rt2x00dev
)
72 /* check for rt2872 on SoC */
73 if (!rt2x00_is_soc(rt2x00dev
) ||
74 !rt2x00_rt(rt2x00dev
, RT2872
))
77 /* we know for sure that these rf chipsets are used on rt305x boards */
78 if (rt2x00_rf(rt2x00dev
, RF3020
) ||
79 rt2x00_rf(rt2x00dev
, RF3021
) ||
80 rt2x00_rf(rt2x00dev
, RF3022
))
83 NOTICE(rt2x00dev
, "Unknown RF chipset on rt305x\n");
87 static void rt2800_bbp_write(struct rt2x00_dev
*rt2x00dev
,
88 const unsigned int word
, const u8 value
)
92 mutex_lock(&rt2x00dev
->csr_mutex
);
95 * Wait until the BBP becomes available, afterwards we
96 * can safely write the new data into the register.
98 if (WAIT_FOR_BBP(rt2x00dev
, ®
)) {
100 rt2x00_set_field32(®
, BBP_CSR_CFG_VALUE
, value
);
101 rt2x00_set_field32(®
, BBP_CSR_CFG_REGNUM
, word
);
102 rt2x00_set_field32(®
, BBP_CSR_CFG_BUSY
, 1);
103 rt2x00_set_field32(®
, BBP_CSR_CFG_READ_CONTROL
, 0);
104 rt2x00_set_field32(®
, BBP_CSR_CFG_BBP_RW_MODE
, 1);
106 rt2800_register_write_lock(rt2x00dev
, BBP_CSR_CFG
, reg
);
109 mutex_unlock(&rt2x00dev
->csr_mutex
);
112 static void rt2800_bbp_read(struct rt2x00_dev
*rt2x00dev
,
113 const unsigned int word
, u8
*value
)
117 mutex_lock(&rt2x00dev
->csr_mutex
);
120 * Wait until the BBP becomes available, afterwards we
121 * can safely write the read request into the register.
122 * After the data has been written, we wait until hardware
123 * returns the correct value, if at any time the register
124 * doesn't become available in time, reg will be 0xffffffff
125 * which means we return 0xff to the caller.
127 if (WAIT_FOR_BBP(rt2x00dev
, ®
)) {
129 rt2x00_set_field32(®
, BBP_CSR_CFG_REGNUM
, word
);
130 rt2x00_set_field32(®
, BBP_CSR_CFG_BUSY
, 1);
131 rt2x00_set_field32(®
, BBP_CSR_CFG_READ_CONTROL
, 1);
132 rt2x00_set_field32(®
, BBP_CSR_CFG_BBP_RW_MODE
, 1);
134 rt2800_register_write_lock(rt2x00dev
, BBP_CSR_CFG
, reg
);
136 WAIT_FOR_BBP(rt2x00dev
, ®
);
139 *value
= rt2x00_get_field32(reg
, BBP_CSR_CFG_VALUE
);
141 mutex_unlock(&rt2x00dev
->csr_mutex
);
144 static void rt2800_rfcsr_write(struct rt2x00_dev
*rt2x00dev
,
145 const unsigned int word
, const u8 value
)
149 mutex_lock(&rt2x00dev
->csr_mutex
);
152 * Wait until the RFCSR becomes available, afterwards we
153 * can safely write the new data into the register.
155 if (WAIT_FOR_RFCSR(rt2x00dev
, ®
)) {
157 rt2x00_set_field32(®
, RF_CSR_CFG_DATA
, value
);
158 rt2x00_set_field32(®
, RF_CSR_CFG_REGNUM
, word
);
159 rt2x00_set_field32(®
, RF_CSR_CFG_WRITE
, 1);
160 rt2x00_set_field32(®
, RF_CSR_CFG_BUSY
, 1);
162 rt2800_register_write_lock(rt2x00dev
, RF_CSR_CFG
, reg
);
165 mutex_unlock(&rt2x00dev
->csr_mutex
);
168 static void rt2800_rfcsr_read(struct rt2x00_dev
*rt2x00dev
,
169 const unsigned int word
, u8
*value
)
173 mutex_lock(&rt2x00dev
->csr_mutex
);
176 * Wait until the RFCSR becomes available, afterwards we
177 * can safely write the read request into the register.
178 * After the data has been written, we wait until hardware
179 * returns the correct value, if at any time the register
180 * doesn't become available in time, reg will be 0xffffffff
181 * which means we return 0xff to the caller.
183 if (WAIT_FOR_RFCSR(rt2x00dev
, ®
)) {
185 rt2x00_set_field32(®
, RF_CSR_CFG_REGNUM
, word
);
186 rt2x00_set_field32(®
, RF_CSR_CFG_WRITE
, 0);
187 rt2x00_set_field32(®
, RF_CSR_CFG_BUSY
, 1);
189 rt2800_register_write_lock(rt2x00dev
, RF_CSR_CFG
, reg
);
191 WAIT_FOR_RFCSR(rt2x00dev
, ®
);
194 *value
= rt2x00_get_field32(reg
, RF_CSR_CFG_DATA
);
196 mutex_unlock(&rt2x00dev
->csr_mutex
);
199 static void rt2800_rf_write(struct rt2x00_dev
*rt2x00dev
,
200 const unsigned int word
, const u32 value
)
204 mutex_lock(&rt2x00dev
->csr_mutex
);
207 * Wait until the RF becomes available, afterwards we
208 * can safely write the new data into the register.
210 if (WAIT_FOR_RF(rt2x00dev
, ®
)) {
212 rt2x00_set_field32(®
, RF_CSR_CFG0_REG_VALUE_BW
, value
);
213 rt2x00_set_field32(®
, RF_CSR_CFG0_STANDBYMODE
, 0);
214 rt2x00_set_field32(®
, RF_CSR_CFG0_SEL
, 0);
215 rt2x00_set_field32(®
, RF_CSR_CFG0_BUSY
, 1);
217 rt2800_register_write_lock(rt2x00dev
, RF_CSR_CFG0
, reg
);
218 rt2x00_rf_write(rt2x00dev
, word
, value
);
221 mutex_unlock(&rt2x00dev
->csr_mutex
);
224 void rt2800_mcu_request(struct rt2x00_dev
*rt2x00dev
,
225 const u8 command
, const u8 token
,
226 const u8 arg0
, const u8 arg1
)
231 * SOC devices don't support MCU requests.
233 if (rt2x00_is_soc(rt2x00dev
))
236 mutex_lock(&rt2x00dev
->csr_mutex
);
239 * Wait until the MCU becomes available, afterwards we
240 * can safely write the new data into the register.
242 if (WAIT_FOR_MCU(rt2x00dev
, ®
)) {
243 rt2x00_set_field32(®
, H2M_MAILBOX_CSR_OWNER
, 1);
244 rt2x00_set_field32(®
, H2M_MAILBOX_CSR_CMD_TOKEN
, token
);
245 rt2x00_set_field32(®
, H2M_MAILBOX_CSR_ARG0
, arg0
);
246 rt2x00_set_field32(®
, H2M_MAILBOX_CSR_ARG1
, arg1
);
247 rt2800_register_write_lock(rt2x00dev
, H2M_MAILBOX_CSR
, reg
);
250 rt2x00_set_field32(®
, HOST_CMD_CSR_HOST_COMMAND
, command
);
251 rt2800_register_write_lock(rt2x00dev
, HOST_CMD_CSR
, reg
);
254 mutex_unlock(&rt2x00dev
->csr_mutex
);
256 EXPORT_SYMBOL_GPL(rt2800_mcu_request
);
258 int rt2800_wait_csr_ready(struct rt2x00_dev
*rt2x00dev
)
263 for (i
= 0; i
< REGISTER_BUSY_COUNT
; i
++) {
264 rt2800_register_read(rt2x00dev
, MAC_CSR0
, ®
);
265 if (reg
&& reg
!= ~0)
270 ERROR(rt2x00dev
, "Unstable hardware.\n");
273 EXPORT_SYMBOL_GPL(rt2800_wait_csr_ready
);
275 int rt2800_wait_wpdma_ready(struct rt2x00_dev
*rt2x00dev
)
281 * Some devices are really slow to respond here. Wait a whole second
284 for (i
= 0; i
< REGISTER_BUSY_COUNT
; i
++) {
285 rt2800_register_read(rt2x00dev
, WPDMA_GLO_CFG
, ®
);
286 if (!rt2x00_get_field32(reg
, WPDMA_GLO_CFG_TX_DMA_BUSY
) &&
287 !rt2x00_get_field32(reg
, WPDMA_GLO_CFG_RX_DMA_BUSY
))
293 ERROR(rt2x00dev
, "WPDMA TX/RX busy, aborting.\n");
296 EXPORT_SYMBOL_GPL(rt2800_wait_wpdma_ready
);
298 static bool rt2800_check_firmware_crc(const u8
*data
, const size_t len
)
304 * The last 2 bytes in the firmware array are the crc checksum itself,
305 * this means that we should never pass those 2 bytes to the crc
308 fw_crc
= (data
[len
- 2] << 8 | data
[len
- 1]);
311 * Use the crc ccitt algorithm.
312 * This will return the same value as the legacy driver which
313 * used bit ordering reversion on the both the firmware bytes
314 * before input input as well as on the final output.
315 * Obviously using crc ccitt directly is much more efficient.
317 crc
= crc_ccitt(~0, data
, len
- 2);
320 * There is a small difference between the crc-itu-t + bitrev and
321 * the crc-ccitt crc calculation. In the latter method the 2 bytes
322 * will be swapped, use swab16 to convert the crc to the correct
327 return fw_crc
== crc
;
330 int rt2800_check_firmware(struct rt2x00_dev
*rt2x00dev
,
331 const u8
*data
, const size_t len
)
338 * PCI(e) & SOC devices require firmware with a length
339 * of 8kb. USB devices require firmware files with a length
340 * of 4kb. Certain USB chipsets however require different firmware,
341 * which Ralink only provides attached to the original firmware
342 * file. Thus for USB devices, firmware files have a length
343 * which is a multiple of 4kb.
345 if (rt2x00_is_usb(rt2x00dev
)) {
354 * Validate the firmware length
356 if (len
!= fw_len
&& (!multiple
|| (len
% fw_len
) != 0))
357 return FW_BAD_LENGTH
;
360 * Check if the chipset requires one of the upper parts
363 if (rt2x00_is_usb(rt2x00dev
) &&
364 !rt2x00_rt(rt2x00dev
, RT2860
) &&
365 !rt2x00_rt(rt2x00dev
, RT2872
) &&
366 !rt2x00_rt(rt2x00dev
, RT3070
) &&
367 ((len
/ fw_len
) == 1))
368 return FW_BAD_VERSION
;
371 * 8kb firmware files must be checked as if it were
372 * 2 separate firmware files.
374 while (offset
< len
) {
375 if (!rt2800_check_firmware_crc(data
+ offset
, fw_len
))
383 EXPORT_SYMBOL_GPL(rt2800_check_firmware
);
385 int rt2800_load_firmware(struct rt2x00_dev
*rt2x00dev
,
386 const u8
*data
, const size_t len
)
392 * If driver doesn't wake up firmware here,
393 * rt2800_load_firmware will hang forever when interface is up again.
395 rt2800_register_write(rt2x00dev
, AUTOWAKEUP_CFG
, 0x00000000);
398 * Wait for stable hardware.
400 if (rt2800_wait_csr_ready(rt2x00dev
))
403 if (rt2x00_is_pci(rt2x00dev
))
404 rt2800_register_write(rt2x00dev
, PWR_PIN_CFG
, 0x00000002);
407 * Disable DMA, will be reenabled later when enabling
410 rt2800_register_read(rt2x00dev
, WPDMA_GLO_CFG
, ®
);
411 rt2x00_set_field32(®
, WPDMA_GLO_CFG_ENABLE_TX_DMA
, 0);
412 rt2x00_set_field32(®
, WPDMA_GLO_CFG_TX_DMA_BUSY
, 0);
413 rt2x00_set_field32(®
, WPDMA_GLO_CFG_ENABLE_RX_DMA
, 0);
414 rt2x00_set_field32(®
, WPDMA_GLO_CFG_RX_DMA_BUSY
, 0);
415 rt2x00_set_field32(®
, WPDMA_GLO_CFG_TX_WRITEBACK_DONE
, 1);
416 rt2800_register_write(rt2x00dev
, WPDMA_GLO_CFG
, reg
);
419 * Write firmware to the device.
421 rt2800_drv_write_firmware(rt2x00dev
, data
, len
);
424 * Wait for device to stabilize.
426 for (i
= 0; i
< REGISTER_BUSY_COUNT
; i
++) {
427 rt2800_register_read(rt2x00dev
, PBF_SYS_CTRL
, ®
);
428 if (rt2x00_get_field32(reg
, PBF_SYS_CTRL_READY
))
433 if (i
== REGISTER_BUSY_COUNT
) {
434 ERROR(rt2x00dev
, "PBF system register not ready.\n");
439 * Initialize firmware.
441 rt2800_register_write(rt2x00dev
, H2M_BBP_AGENT
, 0);
442 rt2800_register_write(rt2x00dev
, H2M_MAILBOX_CSR
, 0);
447 EXPORT_SYMBOL_GPL(rt2800_load_firmware
);
449 void rt2800_write_tx_data(struct queue_entry
*entry
,
450 struct txentry_desc
*txdesc
)
452 __le32
*txwi
= rt2800_drv_get_txwi(entry
);
456 * Initialize TX Info descriptor
458 rt2x00_desc_read(txwi
, 0, &word
);
459 rt2x00_set_field32(&word
, TXWI_W0_FRAG
,
460 test_bit(ENTRY_TXD_MORE_FRAG
, &txdesc
->flags
));
461 rt2x00_set_field32(&word
, TXWI_W0_MIMO_PS
,
462 test_bit(ENTRY_TXD_HT_MIMO_PS
, &txdesc
->flags
));
463 rt2x00_set_field32(&word
, TXWI_W0_CF_ACK
, 0);
464 rt2x00_set_field32(&word
, TXWI_W0_TS
,
465 test_bit(ENTRY_TXD_REQ_TIMESTAMP
, &txdesc
->flags
));
466 rt2x00_set_field32(&word
, TXWI_W0_AMPDU
,
467 test_bit(ENTRY_TXD_HT_AMPDU
, &txdesc
->flags
));
468 rt2x00_set_field32(&word
, TXWI_W0_MPDU_DENSITY
, txdesc
->mpdu_density
);
469 rt2x00_set_field32(&word
, TXWI_W0_TX_OP
, txdesc
->txop
);
470 rt2x00_set_field32(&word
, TXWI_W0_MCS
, txdesc
->mcs
);
471 rt2x00_set_field32(&word
, TXWI_W0_BW
,
472 test_bit(ENTRY_TXD_HT_BW_40
, &txdesc
->flags
));
473 rt2x00_set_field32(&word
, TXWI_W0_SHORT_GI
,
474 test_bit(ENTRY_TXD_HT_SHORT_GI
, &txdesc
->flags
));
475 rt2x00_set_field32(&word
, TXWI_W0_STBC
, txdesc
->stbc
);
476 rt2x00_set_field32(&word
, TXWI_W0_PHYMODE
, txdesc
->rate_mode
);
477 rt2x00_desc_write(txwi
, 0, word
);
479 rt2x00_desc_read(txwi
, 1, &word
);
480 rt2x00_set_field32(&word
, TXWI_W1_ACK
,
481 test_bit(ENTRY_TXD_ACK
, &txdesc
->flags
));
482 rt2x00_set_field32(&word
, TXWI_W1_NSEQ
,
483 test_bit(ENTRY_TXD_GENERATE_SEQ
, &txdesc
->flags
));
484 rt2x00_set_field32(&word
, TXWI_W1_BW_WIN_SIZE
, txdesc
->ba_size
);
485 rt2x00_set_field32(&word
, TXWI_W1_WIRELESS_CLI_ID
,
486 test_bit(ENTRY_TXD_ENCRYPT
, &txdesc
->flags
) ?
487 txdesc
->key_idx
: 0xff);
488 rt2x00_set_field32(&word
, TXWI_W1_MPDU_TOTAL_BYTE_COUNT
,
490 rt2x00_set_field32(&word
, TXWI_W1_PACKETID_QUEUE
, entry
->queue
->qid
);
491 rt2x00_set_field32(&word
, TXWI_W1_PACKETID_ENTRY
, (entry
->entry_idx
% 3) + 1);
492 rt2x00_desc_write(txwi
, 1, word
);
495 * Always write 0 to IV/EIV fields, hardware will insert the IV
496 * from the IVEIV register when TXD_W3_WIV is set to 0.
497 * When TXD_W3_WIV is set to 1 it will use the IV data
498 * from the descriptor. The TXWI_W1_WIRELESS_CLI_ID indicates which
499 * crypto entry in the registers should be used to encrypt the frame.
501 _rt2x00_desc_write(txwi
, 2, 0 /* skbdesc->iv[0] */);
502 _rt2x00_desc_write(txwi
, 3, 0 /* skbdesc->iv[1] */);
504 EXPORT_SYMBOL_GPL(rt2800_write_tx_data
);
506 static int rt2800_agc_to_rssi(struct rt2x00_dev
*rt2x00dev
, u32 rxwi_w2
)
508 int rssi0
= rt2x00_get_field32(rxwi_w2
, RXWI_W2_RSSI0
);
509 int rssi1
= rt2x00_get_field32(rxwi_w2
, RXWI_W2_RSSI1
);
510 int rssi2
= rt2x00_get_field32(rxwi_w2
, RXWI_W2_RSSI2
);
516 if (rt2x00dev
->curr_band
== IEEE80211_BAND_2GHZ
) {
517 rt2x00_eeprom_read(rt2x00dev
, EEPROM_RSSI_BG
, &eeprom
);
518 offset0
= rt2x00_get_field16(eeprom
, EEPROM_RSSI_BG_OFFSET0
);
519 offset1
= rt2x00_get_field16(eeprom
, EEPROM_RSSI_BG_OFFSET1
);
520 rt2x00_eeprom_read(rt2x00dev
, EEPROM_RSSI_BG2
, &eeprom
);
521 offset2
= rt2x00_get_field16(eeprom
, EEPROM_RSSI_BG2_OFFSET2
);
523 rt2x00_eeprom_read(rt2x00dev
, EEPROM_RSSI_A
, &eeprom
);
524 offset0
= rt2x00_get_field16(eeprom
, EEPROM_RSSI_A_OFFSET0
);
525 offset1
= rt2x00_get_field16(eeprom
, EEPROM_RSSI_A_OFFSET1
);
526 rt2x00_eeprom_read(rt2x00dev
, EEPROM_RSSI_A2
, &eeprom
);
527 offset2
= rt2x00_get_field16(eeprom
, EEPROM_RSSI_A2_OFFSET2
);
531 * Convert the value from the descriptor into the RSSI value
532 * If the value in the descriptor is 0, it is considered invalid
533 * and the default (extremely low) rssi value is assumed
535 rssi0
= (rssi0
) ? (-12 - offset0
- rt2x00dev
->lna_gain
- rssi0
) : -128;
536 rssi1
= (rssi1
) ? (-12 - offset1
- rt2x00dev
->lna_gain
- rssi1
) : -128;
537 rssi2
= (rssi2
) ? (-12 - offset2
- rt2x00dev
->lna_gain
- rssi2
) : -128;
540 * mac80211 only accepts a single RSSI value. Calculating the
541 * average doesn't deliver a fair answer either since -60:-60 would
542 * be considered equally good as -50:-70 while the second is the one
543 * which gives less energy...
545 rssi0
= max(rssi0
, rssi1
);
546 return max(rssi0
, rssi2
);
549 void rt2800_process_rxwi(struct queue_entry
*entry
,
550 struct rxdone_entry_desc
*rxdesc
)
552 __le32
*rxwi
= (__le32
*) entry
->skb
->data
;
555 rt2x00_desc_read(rxwi
, 0, &word
);
557 rxdesc
->cipher
= rt2x00_get_field32(word
, RXWI_W0_UDF
);
558 rxdesc
->size
= rt2x00_get_field32(word
, RXWI_W0_MPDU_TOTAL_BYTE_COUNT
);
560 rt2x00_desc_read(rxwi
, 1, &word
);
562 if (rt2x00_get_field32(word
, RXWI_W1_SHORT_GI
))
563 rxdesc
->flags
|= RX_FLAG_SHORT_GI
;
565 if (rt2x00_get_field32(word
, RXWI_W1_BW
))
566 rxdesc
->flags
|= RX_FLAG_40MHZ
;
569 * Detect RX rate, always use MCS as signal type.
571 rxdesc
->dev_flags
|= RXDONE_SIGNAL_MCS
;
572 rxdesc
->signal
= rt2x00_get_field32(word
, RXWI_W1_MCS
);
573 rxdesc
->rate_mode
= rt2x00_get_field32(word
, RXWI_W1_PHYMODE
);
576 * Mask of 0x8 bit to remove the short preamble flag.
578 if (rxdesc
->rate_mode
== RATE_MODE_CCK
)
579 rxdesc
->signal
&= ~0x8;
581 rt2x00_desc_read(rxwi
, 2, &word
);
584 * Convert descriptor AGC value to RSSI value.
586 rxdesc
->rssi
= rt2800_agc_to_rssi(entry
->queue
->rt2x00dev
, word
);
589 * Remove RXWI descriptor from start of buffer.
591 skb_pull(entry
->skb
, RXWI_DESC_SIZE
);
593 EXPORT_SYMBOL_GPL(rt2800_process_rxwi
);
595 static bool rt2800_txdone_entry_check(struct queue_entry
*entry
, u32 reg
)
600 int tx_wcid
, tx_ack
, tx_pid
;
602 wcid
= rt2x00_get_field32(reg
, TX_STA_FIFO_WCID
);
603 ack
= rt2x00_get_field32(reg
, TX_STA_FIFO_TX_ACK_REQUIRED
);
604 pid
= rt2x00_get_field32(reg
, TX_STA_FIFO_PID_TYPE
);
607 * This frames has returned with an IO error,
608 * so the status report is not intended for this
611 if (test_bit(ENTRY_DATA_IO_FAILED
, &entry
->flags
)) {
612 rt2x00lib_txdone_noinfo(entry
, TXDONE_FAILURE
);
617 * Validate if this TX status report is intended for
618 * this entry by comparing the WCID/ACK/PID fields.
620 txwi
= rt2800_drv_get_txwi(entry
);
622 rt2x00_desc_read(txwi
, 1, &word
);
623 tx_wcid
= rt2x00_get_field32(word
, TXWI_W1_WIRELESS_CLI_ID
);
624 tx_ack
= rt2x00_get_field32(word
, TXWI_W1_ACK
);
625 tx_pid
= rt2x00_get_field32(word
, TXWI_W1_PACKETID
);
627 if ((wcid
!= tx_wcid
) || (ack
!= tx_ack
) || (pid
!= tx_pid
)) {
628 WARNING(entry
->queue
->rt2x00dev
,
629 "TX status report missed for queue %d entry %d\n",
630 entry
->queue
->qid
, entry
->entry_idx
);
631 rt2x00lib_txdone_noinfo(entry
, TXDONE_UNKNOWN
);
638 void rt2800_txdone_entry(struct queue_entry
*entry
, u32 status
)
640 struct rt2x00_dev
*rt2x00dev
= entry
->queue
->rt2x00dev
;
641 struct skb_frame_desc
*skbdesc
= get_skb_frame_desc(entry
->skb
);
642 struct txdone_entry_desc txdesc
;
649 * Obtain the status about this packet.
652 txwi
= rt2800_drv_get_txwi(entry
);
653 rt2x00_desc_read(txwi
, 0, &word
);
655 mcs
= rt2x00_get_field32(word
, TXWI_W0_MCS
);
656 ampdu
= rt2x00_get_field32(word
, TXWI_W0_AMPDU
);
658 real_mcs
= rt2x00_get_field32(status
, TX_STA_FIFO_MCS
);
659 aggr
= rt2x00_get_field32(status
, TX_STA_FIFO_TX_AGGRE
);
662 * If a frame was meant to be sent as a single non-aggregated MPDU
663 * but ended up in an aggregate the used tx rate doesn't correlate
664 * with the one specified in the TXWI as the whole aggregate is sent
665 * with the same rate.
667 * For example: two frames are sent to rt2x00, the first one sets
668 * AMPDU=1 and requests MCS7 whereas the second frame sets AMDPU=0
669 * and requests MCS15. If the hw aggregates both frames into one
670 * AMDPU the tx status for both frames will contain MCS7 although
671 * the frame was sent successfully.
673 * Hence, replace the requested rate with the real tx rate to not
674 * confuse the rate control algortihm by providing clearly wrong
677 if (aggr
== 1 && ampdu
== 0 && real_mcs
!= mcs
) {
678 skbdesc
->tx_rate_idx
= real_mcs
;
683 * Ralink has a retry mechanism using a global fallback
684 * table. We setup this fallback table to try the immediate
685 * lower rate for all rates. In the TX_STA_FIFO, the MCS field
686 * always contains the MCS used for the last transmission, be
687 * it successful or not.
689 if (rt2x00_get_field32(status
, TX_STA_FIFO_TX_SUCCESS
)) {
691 * Transmission succeeded. The number of retries is
694 __set_bit(TXDONE_SUCCESS
, &txdesc
.flags
);
695 txdesc
.retry
= ((mcs
> real_mcs
) ? mcs
- real_mcs
: 0);
698 * Transmission failed. The number of retries is
699 * always 7 in this case (for a total number of 8
702 __set_bit(TXDONE_FAILURE
, &txdesc
.flags
);
703 txdesc
.retry
= rt2x00dev
->long_retry
;
707 * the frame was retried at least once
708 * -> hw used fallback rates
711 __set_bit(TXDONE_FALLBACK
, &txdesc
.flags
);
713 rt2x00lib_txdone(entry
, &txdesc
);
715 EXPORT_SYMBOL_GPL(rt2800_txdone_entry
);
717 void rt2800_txdone(struct rt2x00_dev
*rt2x00dev
)
719 struct data_queue
*queue
;
720 struct queue_entry
*entry
;
726 * TX_STA_FIFO is a stack of X entries, hence read TX_STA_FIFO
727 * at most X times and also stop processing once the TX_STA_FIFO_VALID
728 * flag is not set anymore.
730 * The legacy drivers use X=TX_RING_SIZE but state in a comment
731 * that the TX_STA_FIFO stack has a size of 16. We stick to our
732 * tx ring size for now.
734 for (i
= 0; i
< rt2x00dev
->ops
->tx
->entry_num
; i
++) {
735 rt2800_register_read(rt2x00dev
, TX_STA_FIFO
, ®
);
736 if (!rt2x00_get_field32(reg
, TX_STA_FIFO_VALID
))
740 * Skip this entry when it contains an invalid
741 * queue identication number.
743 pid
= rt2x00_get_field32(reg
, TX_STA_FIFO_PID_QUEUE
);
747 queue
= rt2x00queue_get_queue(rt2x00dev
, pid
);
748 if (unlikely(!queue
))
752 * Inside each queue, we process each entry in a chronological
753 * order. We first check that the queue is not empty.
756 while (!rt2x00queue_empty(queue
)) {
757 entry
= rt2x00queue_get_entry(queue
, Q_INDEX_DONE
);
758 if (rt2800_txdone_entry_check(entry
, reg
))
762 if (!entry
|| rt2x00queue_empty(queue
))
765 rt2800_txdone_entry(entry
, reg
);
768 EXPORT_SYMBOL_GPL(rt2800_txdone
);
770 void rt2800_write_beacon(struct queue_entry
*entry
, struct txentry_desc
*txdesc
)
772 struct rt2x00_dev
*rt2x00dev
= entry
->queue
->rt2x00dev
;
773 struct skb_frame_desc
*skbdesc
= get_skb_frame_desc(entry
->skb
);
774 unsigned int beacon_base
;
775 unsigned int padding_len
;
779 * Disable beaconing while we are reloading the beacon data,
780 * otherwise we might be sending out invalid data.
782 rt2800_register_read(rt2x00dev
, BCN_TIME_CFG
, ®
);
783 rt2x00_set_field32(®
, BCN_TIME_CFG_BEACON_GEN
, 0);
784 rt2800_register_write(rt2x00dev
, BCN_TIME_CFG
, reg
);
787 * Add space for the TXWI in front of the skb.
789 skb_push(entry
->skb
, TXWI_DESC_SIZE
);
790 memset(entry
->skb
, 0, TXWI_DESC_SIZE
);
793 * Register descriptor details in skb frame descriptor.
795 skbdesc
->flags
|= SKBDESC_DESC_IN_SKB
;
796 skbdesc
->desc
= entry
->skb
->data
;
797 skbdesc
->desc_len
= TXWI_DESC_SIZE
;
800 * Add the TXWI for the beacon to the skb.
802 rt2800_write_tx_data(entry
, txdesc
);
805 * Dump beacon to userspace through debugfs.
807 rt2x00debug_dump_frame(rt2x00dev
, DUMP_FRAME_BEACON
, entry
->skb
);
810 * Write entire beacon with TXWI and padding to register.
812 padding_len
= roundup(entry
->skb
->len
, 4) - entry
->skb
->len
;
813 skb_pad(entry
->skb
, padding_len
);
814 beacon_base
= HW_BEACON_OFFSET(entry
->entry_idx
);
815 rt2800_register_multiwrite(rt2x00dev
, beacon_base
, entry
->skb
->data
,
816 entry
->skb
->len
+ padding_len
);
819 * Enable beaconing again.
821 rt2x00_set_field32(®
, BCN_TIME_CFG_TSF_TICKING
, 1);
822 rt2x00_set_field32(®
, BCN_TIME_CFG_TBTT_ENABLE
, 1);
823 rt2x00_set_field32(®
, BCN_TIME_CFG_BEACON_GEN
, 1);
824 rt2800_register_write(rt2x00dev
, BCN_TIME_CFG
, reg
);
827 * Clean up beacon skb.
829 dev_kfree_skb_any(entry
->skb
);
832 EXPORT_SYMBOL_GPL(rt2800_write_beacon
);
834 static inline void rt2800_clear_beacon(struct rt2x00_dev
*rt2x00dev
,
835 unsigned int beacon_base
)
840 * For the Beacon base registers we only need to clear
841 * the whole TXWI which (when set to 0) will invalidate
844 for (i
= 0; i
< TXWI_DESC_SIZE
; i
+= sizeof(__le32
))
845 rt2800_register_write(rt2x00dev
, beacon_base
+ i
, 0);
848 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
849 const struct rt2x00debug rt2800_rt2x00debug
= {
850 .owner
= THIS_MODULE
,
852 .read
= rt2800_register_read
,
853 .write
= rt2800_register_write
,
854 .flags
= RT2X00DEBUGFS_OFFSET
,
855 .word_base
= CSR_REG_BASE
,
856 .word_size
= sizeof(u32
),
857 .word_count
= CSR_REG_SIZE
/ sizeof(u32
),
860 .read
= rt2x00_eeprom_read
,
861 .write
= rt2x00_eeprom_write
,
862 .word_base
= EEPROM_BASE
,
863 .word_size
= sizeof(u16
),
864 .word_count
= EEPROM_SIZE
/ sizeof(u16
),
867 .read
= rt2800_bbp_read
,
868 .write
= rt2800_bbp_write
,
869 .word_base
= BBP_BASE
,
870 .word_size
= sizeof(u8
),
871 .word_count
= BBP_SIZE
/ sizeof(u8
),
874 .read
= rt2x00_rf_read
,
875 .write
= rt2800_rf_write
,
876 .word_base
= RF_BASE
,
877 .word_size
= sizeof(u32
),
878 .word_count
= RF_SIZE
/ sizeof(u32
),
881 EXPORT_SYMBOL_GPL(rt2800_rt2x00debug
);
882 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
884 int rt2800_rfkill_poll(struct rt2x00_dev
*rt2x00dev
)
888 rt2800_register_read(rt2x00dev
, GPIO_CTRL_CFG
, ®
);
889 return rt2x00_get_field32(reg
, GPIO_CTRL_CFG_BIT2
);
891 EXPORT_SYMBOL_GPL(rt2800_rfkill_poll
);
893 #ifdef CONFIG_RT2X00_LIB_LEDS
894 static void rt2800_brightness_set(struct led_classdev
*led_cdev
,
895 enum led_brightness brightness
)
897 struct rt2x00_led
*led
=
898 container_of(led_cdev
, struct rt2x00_led
, led_dev
);
899 unsigned int enabled
= brightness
!= LED_OFF
;
900 unsigned int bg_mode
=
901 (enabled
&& led
->rt2x00dev
->curr_band
== IEEE80211_BAND_2GHZ
);
902 unsigned int polarity
=
903 rt2x00_get_field16(led
->rt2x00dev
->led_mcu_reg
,
904 EEPROM_FREQ_LED_POLARITY
);
905 unsigned int ledmode
=
906 rt2x00_get_field16(led
->rt2x00dev
->led_mcu_reg
,
907 EEPROM_FREQ_LED_MODE
);
909 if (led
->type
== LED_TYPE_RADIO
) {
910 rt2800_mcu_request(led
->rt2x00dev
, MCU_LED
, 0xff, ledmode
,
912 } else if (led
->type
== LED_TYPE_ASSOC
) {
913 rt2800_mcu_request(led
->rt2x00dev
, MCU_LED
, 0xff, ledmode
,
914 enabled
? (bg_mode
? 0x60 : 0xa0) : 0x20);
915 } else if (led
->type
== LED_TYPE_QUALITY
) {
917 * The brightness is divided into 6 levels (0 - 5),
918 * The specs tell us the following levels:
920 * to determine the level in a simple way we can simply
921 * work with bitshifting:
924 rt2800_mcu_request(led
->rt2x00dev
, MCU_LED_STRENGTH
, 0xff,
925 (1 << brightness
/ (LED_FULL
/ 6)) - 1,
930 static int rt2800_blink_set(struct led_classdev
*led_cdev
,
931 unsigned long *delay_on
, unsigned long *delay_off
)
933 struct rt2x00_led
*led
=
934 container_of(led_cdev
, struct rt2x00_led
, led_dev
);
937 rt2800_register_read(led
->rt2x00dev
, LED_CFG
, ®
);
938 rt2x00_set_field32(®
, LED_CFG_ON_PERIOD
, *delay_on
);
939 rt2x00_set_field32(®
, LED_CFG_OFF_PERIOD
, *delay_off
);
940 rt2800_register_write(led
->rt2x00dev
, LED_CFG
, reg
);
945 static void rt2800_init_led(struct rt2x00_dev
*rt2x00dev
,
946 struct rt2x00_led
*led
, enum led_type type
)
948 led
->rt2x00dev
= rt2x00dev
;
950 led
->led_dev
.brightness_set
= rt2800_brightness_set
;
951 led
->led_dev
.blink_set
= rt2800_blink_set
;
952 led
->flags
= LED_INITIALIZED
;
954 #endif /* CONFIG_RT2X00_LIB_LEDS */
957 * Configuration handlers.
959 static void rt2800_config_wcid_attr(struct rt2x00_dev
*rt2x00dev
,
960 struct rt2x00lib_crypto
*crypto
,
961 struct ieee80211_key_conf
*key
)
963 struct mac_wcid_entry wcid_entry
;
964 struct mac_iveiv_entry iveiv_entry
;
968 offset
= MAC_WCID_ATTR_ENTRY(key
->hw_key_idx
);
970 if (crypto
->cmd
== SET_KEY
) {
971 rt2800_register_read(rt2x00dev
, offset
, ®
);
972 rt2x00_set_field32(®
, MAC_WCID_ATTRIBUTE_KEYTAB
,
973 !!(key
->flags
& IEEE80211_KEY_FLAG_PAIRWISE
));
975 * Both the cipher as the BSS Idx numbers are split in a main
976 * value of 3 bits, and a extended field for adding one additional
979 rt2x00_set_field32(®
, MAC_WCID_ATTRIBUTE_CIPHER
,
980 (crypto
->cipher
& 0x7));
981 rt2x00_set_field32(®
, MAC_WCID_ATTRIBUTE_CIPHER_EXT
,
982 (crypto
->cipher
& 0x8) >> 3);
983 rt2x00_set_field32(®
, MAC_WCID_ATTRIBUTE_BSS_IDX
,
984 (crypto
->bssidx
& 0x7));
985 rt2x00_set_field32(®
, MAC_WCID_ATTRIBUTE_BSS_IDX_EXT
,
986 (crypto
->bssidx
& 0x8) >> 3);
987 rt2x00_set_field32(®
, MAC_WCID_ATTRIBUTE_RX_WIUDF
, crypto
->cipher
);
988 rt2800_register_write(rt2x00dev
, offset
, reg
);
990 rt2800_register_write(rt2x00dev
, offset
, 0);
993 offset
= MAC_IVEIV_ENTRY(key
->hw_key_idx
);
995 memset(&iveiv_entry
, 0, sizeof(iveiv_entry
));
996 if ((crypto
->cipher
== CIPHER_TKIP
) ||
997 (crypto
->cipher
== CIPHER_TKIP_NO_MIC
) ||
998 (crypto
->cipher
== CIPHER_AES
))
999 iveiv_entry
.iv
[3] |= 0x20;
1000 iveiv_entry
.iv
[3] |= key
->keyidx
<< 6;
1001 rt2800_register_multiwrite(rt2x00dev
, offset
,
1002 &iveiv_entry
, sizeof(iveiv_entry
));
1004 offset
= MAC_WCID_ENTRY(key
->hw_key_idx
);
1006 memset(&wcid_entry
, 0, sizeof(wcid_entry
));
1007 if (crypto
->cmd
== SET_KEY
)
1008 memcpy(&wcid_entry
, crypto
->address
, ETH_ALEN
);
1009 rt2800_register_multiwrite(rt2x00dev
, offset
,
1010 &wcid_entry
, sizeof(wcid_entry
));
1013 int rt2800_config_shared_key(struct rt2x00_dev
*rt2x00dev
,
1014 struct rt2x00lib_crypto
*crypto
,
1015 struct ieee80211_key_conf
*key
)
1017 struct hw_key_entry key_entry
;
1018 struct rt2x00_field32 field
;
1022 if (crypto
->cmd
== SET_KEY
) {
1023 key
->hw_key_idx
= (4 * crypto
->bssidx
) + key
->keyidx
;
1025 memcpy(key_entry
.key
, crypto
->key
,
1026 sizeof(key_entry
.key
));
1027 memcpy(key_entry
.tx_mic
, crypto
->tx_mic
,
1028 sizeof(key_entry
.tx_mic
));
1029 memcpy(key_entry
.rx_mic
, crypto
->rx_mic
,
1030 sizeof(key_entry
.rx_mic
));
1032 offset
= SHARED_KEY_ENTRY(key
->hw_key_idx
);
1033 rt2800_register_multiwrite(rt2x00dev
, offset
,
1034 &key_entry
, sizeof(key_entry
));
1038 * The cipher types are stored over multiple registers
1039 * starting with SHARED_KEY_MODE_BASE each word will have
1040 * 32 bits and contains the cipher types for 2 bssidx each.
1041 * Using the correct defines correctly will cause overhead,
1042 * so just calculate the correct offset.
1044 field
.bit_offset
= 4 * (key
->hw_key_idx
% 8);
1045 field
.bit_mask
= 0x7 << field
.bit_offset
;
1047 offset
= SHARED_KEY_MODE_ENTRY(key
->hw_key_idx
/ 8);
1049 rt2800_register_read(rt2x00dev
, offset
, ®
);
1050 rt2x00_set_field32(®
, field
,
1051 (crypto
->cmd
== SET_KEY
) * crypto
->cipher
);
1052 rt2800_register_write(rt2x00dev
, offset
, reg
);
1055 * Update WCID information
1057 rt2800_config_wcid_attr(rt2x00dev
, crypto
, key
);
1061 EXPORT_SYMBOL_GPL(rt2800_config_shared_key
);
1063 int rt2800_config_pairwise_key(struct rt2x00_dev
*rt2x00dev
,
1064 struct rt2x00lib_crypto
*crypto
,
1065 struct ieee80211_key_conf
*key
)
1067 struct hw_key_entry key_entry
;
1070 if (crypto
->cmd
== SET_KEY
) {
1072 * 1 pairwise key is possible per AID, this means that the AID
1073 * equals our hw_key_idx. Make sure the WCID starts _after_ the
1074 * last possible shared key entry.
1076 * Since parts of the pairwise key table might be shared with
1077 * the beacon frame buffers 6 & 7 we should only write into the
1078 * first 222 entries.
1080 if (crypto
->aid
> (222 - 32))
1083 key
->hw_key_idx
= 32 + crypto
->aid
;
1085 memcpy(key_entry
.key
, crypto
->key
,
1086 sizeof(key_entry
.key
));
1087 memcpy(key_entry
.tx_mic
, crypto
->tx_mic
,
1088 sizeof(key_entry
.tx_mic
));
1089 memcpy(key_entry
.rx_mic
, crypto
->rx_mic
,
1090 sizeof(key_entry
.rx_mic
));
1092 offset
= PAIRWISE_KEY_ENTRY(key
->hw_key_idx
);
1093 rt2800_register_multiwrite(rt2x00dev
, offset
,
1094 &key_entry
, sizeof(key_entry
));
1098 * Update WCID information
1100 rt2800_config_wcid_attr(rt2x00dev
, crypto
, key
);
1104 EXPORT_SYMBOL_GPL(rt2800_config_pairwise_key
);
1106 void rt2800_config_filter(struct rt2x00_dev
*rt2x00dev
,
1107 const unsigned int filter_flags
)
1112 * Start configuration steps.
1113 * Note that the version error will always be dropped
1114 * and broadcast frames will always be accepted since
1115 * there is no filter for it at this time.
1117 rt2800_register_read(rt2x00dev
, RX_FILTER_CFG
, ®
);
1118 rt2x00_set_field32(®
, RX_FILTER_CFG_DROP_CRC_ERROR
,
1119 !(filter_flags
& FIF_FCSFAIL
));
1120 rt2x00_set_field32(®
, RX_FILTER_CFG_DROP_PHY_ERROR
,
1121 !(filter_flags
& FIF_PLCPFAIL
));
1122 rt2x00_set_field32(®
, RX_FILTER_CFG_DROP_NOT_TO_ME
,
1123 !(filter_flags
& FIF_PROMISC_IN_BSS
));
1124 rt2x00_set_field32(®
, RX_FILTER_CFG_DROP_NOT_MY_BSSD
, 0);
1125 rt2x00_set_field32(®
, RX_FILTER_CFG_DROP_VER_ERROR
, 1);
1126 rt2x00_set_field32(®
, RX_FILTER_CFG_DROP_MULTICAST
,
1127 !(filter_flags
& FIF_ALLMULTI
));
1128 rt2x00_set_field32(®
, RX_FILTER_CFG_DROP_BROADCAST
, 0);
1129 rt2x00_set_field32(®
, RX_FILTER_CFG_DROP_DUPLICATE
, 1);
1130 rt2x00_set_field32(®
, RX_FILTER_CFG_DROP_CF_END_ACK
,
1131 !(filter_flags
& FIF_CONTROL
));
1132 rt2x00_set_field32(®
, RX_FILTER_CFG_DROP_CF_END
,
1133 !(filter_flags
& FIF_CONTROL
));
1134 rt2x00_set_field32(®
, RX_FILTER_CFG_DROP_ACK
,
1135 !(filter_flags
& FIF_CONTROL
));
1136 rt2x00_set_field32(®
, RX_FILTER_CFG_DROP_CTS
,
1137 !(filter_flags
& FIF_CONTROL
));
1138 rt2x00_set_field32(®
, RX_FILTER_CFG_DROP_RTS
,
1139 !(filter_flags
& FIF_CONTROL
));
1140 rt2x00_set_field32(®
, RX_FILTER_CFG_DROP_PSPOLL
,
1141 !(filter_flags
& FIF_PSPOLL
));
1142 rt2x00_set_field32(®
, RX_FILTER_CFG_DROP_BA
, 1);
1143 rt2x00_set_field32(®
, RX_FILTER_CFG_DROP_BAR
, 0);
1144 rt2x00_set_field32(®
, RX_FILTER_CFG_DROP_CNTL
,
1145 !(filter_flags
& FIF_CONTROL
));
1146 rt2800_register_write(rt2x00dev
, RX_FILTER_CFG
, reg
);
1148 EXPORT_SYMBOL_GPL(rt2800_config_filter
);
1150 void rt2800_config_intf(struct rt2x00_dev
*rt2x00dev
, struct rt2x00_intf
*intf
,
1151 struct rt2x00intf_conf
*conf
, const unsigned int flags
)
1154 bool update_bssid
= false;
1156 if (flags
& CONFIG_UPDATE_TYPE
) {
1158 * Clear current synchronisation setup.
1160 rt2800_clear_beacon(rt2x00dev
,
1161 HW_BEACON_OFFSET(intf
->beacon
->entry_idx
));
1163 * Enable synchronisation.
1165 rt2800_register_read(rt2x00dev
, BCN_TIME_CFG
, ®
);
1166 rt2x00_set_field32(®
, BCN_TIME_CFG_TSF_TICKING
, 1);
1167 rt2x00_set_field32(®
, BCN_TIME_CFG_TSF_SYNC
, conf
->sync
);
1168 rt2x00_set_field32(®
, BCN_TIME_CFG_TBTT_ENABLE
,
1169 (conf
->sync
== TSF_SYNC_ADHOC
||
1170 conf
->sync
== TSF_SYNC_AP_NONE
));
1171 rt2800_register_write(rt2x00dev
, BCN_TIME_CFG
, reg
);
1174 * Enable pre tbtt interrupt for beaconing modes
1176 rt2800_register_read(rt2x00dev
, INT_TIMER_EN
, ®
);
1177 rt2x00_set_field32(®
, INT_TIMER_EN_PRE_TBTT_TIMER
,
1178 (conf
->sync
== TSF_SYNC_AP_NONE
));
1179 rt2800_register_write(rt2x00dev
, INT_TIMER_EN
, reg
);
1183 if (flags
& CONFIG_UPDATE_MAC
) {
1184 if (flags
& CONFIG_UPDATE_TYPE
&&
1185 conf
->sync
== TSF_SYNC_AP_NONE
) {
1187 * The BSSID register has to be set to our own mac
1188 * address in AP mode.
1190 memcpy(conf
->bssid
, conf
->mac
, sizeof(conf
->mac
));
1191 update_bssid
= true;
1194 if (!is_zero_ether_addr((const u8
*)conf
->mac
)) {
1195 reg
= le32_to_cpu(conf
->mac
[1]);
1196 rt2x00_set_field32(®
, MAC_ADDR_DW1_UNICAST_TO_ME_MASK
, 0xff);
1197 conf
->mac
[1] = cpu_to_le32(reg
);
1200 rt2800_register_multiwrite(rt2x00dev
, MAC_ADDR_DW0
,
1201 conf
->mac
, sizeof(conf
->mac
));
1204 if ((flags
& CONFIG_UPDATE_BSSID
) || update_bssid
) {
1205 if (!is_zero_ether_addr((const u8
*)conf
->bssid
)) {
1206 reg
= le32_to_cpu(conf
->bssid
[1]);
1207 rt2x00_set_field32(®
, MAC_BSSID_DW1_BSS_ID_MASK
, 3);
1208 rt2x00_set_field32(®
, MAC_BSSID_DW1_BSS_BCN_NUM
, 7);
1209 conf
->bssid
[1] = cpu_to_le32(reg
);
1212 rt2800_register_multiwrite(rt2x00dev
, MAC_BSSID_DW0
,
1213 conf
->bssid
, sizeof(conf
->bssid
));
1216 EXPORT_SYMBOL_GPL(rt2800_config_intf
);
1218 static void rt2800_config_ht_opmode(struct rt2x00_dev
*rt2x00dev
,
1219 struct rt2x00lib_erp
*erp
)
1221 bool any_sta_nongf
= !!(erp
->ht_opmode
&
1222 IEEE80211_HT_OP_MODE_NON_GF_STA_PRSNT
);
1223 u8 protection
= erp
->ht_opmode
& IEEE80211_HT_OP_MODE_PROTECTION
;
1224 u8 mm20_mode
, mm40_mode
, gf20_mode
, gf40_mode
;
1225 u16 mm20_rate
, mm40_rate
, gf20_rate
, gf40_rate
;
1228 /* default protection rate for HT20: OFDM 24M */
1229 mm20_rate
= gf20_rate
= 0x4004;
1231 /* default protection rate for HT40: duplicate OFDM 24M */
1232 mm40_rate
= gf40_rate
= 0x4084;
1234 switch (protection
) {
1235 case IEEE80211_HT_OP_MODE_PROTECTION_NONE
:
1237 * All STAs in this BSS are HT20/40 but there might be
1238 * STAs not supporting greenfield mode.
1239 * => Disable protection for HT transmissions.
1241 mm20_mode
= mm40_mode
= gf20_mode
= gf40_mode
= 0;
1244 case IEEE80211_HT_OP_MODE_PROTECTION_20MHZ
:
1246 * All STAs in this BSS are HT20 or HT20/40 but there
1247 * might be STAs not supporting greenfield mode.
1248 * => Protect all HT40 transmissions.
1250 mm20_mode
= gf20_mode
= 0;
1251 mm40_mode
= gf40_mode
= 2;
1254 case IEEE80211_HT_OP_MODE_PROTECTION_NONMEMBER
:
1256 * Nonmember protection:
1257 * According to 802.11n we _should_ protect all
1258 * HT transmissions (but we don't have to).
1260 * But if cts_protection is enabled we _shall_ protect
1261 * all HT transmissions using a CCK rate.
1263 * And if any station is non GF we _shall_ protect
1266 * We decide to protect everything
1267 * -> fall through to mixed mode.
1269 case IEEE80211_HT_OP_MODE_PROTECTION_NONHT_MIXED
:
1271 * Legacy STAs are present
1272 * => Protect all HT transmissions.
1274 mm20_mode
= mm40_mode
= gf20_mode
= gf40_mode
= 2;
1277 * If erp protection is needed we have to protect HT
1278 * transmissions with CCK 11M long preamble.
1280 if (erp
->cts_protection
) {
1281 /* don't duplicate RTS/CTS in CCK mode */
1282 mm20_rate
= mm40_rate
= 0x0003;
1283 gf20_rate
= gf40_rate
= 0x0003;
1288 /* check for STAs not supporting greenfield mode */
1290 gf20_mode
= gf40_mode
= 2;
1292 /* Update HT protection config */
1293 rt2800_register_read(rt2x00dev
, MM20_PROT_CFG
, ®
);
1294 rt2x00_set_field32(®
, MM20_PROT_CFG_PROTECT_RATE
, mm20_rate
);
1295 rt2x00_set_field32(®
, MM20_PROT_CFG_PROTECT_CTRL
, mm20_mode
);
1296 rt2800_register_write(rt2x00dev
, MM20_PROT_CFG
, reg
);
1298 rt2800_register_read(rt2x00dev
, MM40_PROT_CFG
, ®
);
1299 rt2x00_set_field32(®
, MM40_PROT_CFG_PROTECT_RATE
, mm40_rate
);
1300 rt2x00_set_field32(®
, MM40_PROT_CFG_PROTECT_CTRL
, mm40_mode
);
1301 rt2800_register_write(rt2x00dev
, MM40_PROT_CFG
, reg
);
1303 rt2800_register_read(rt2x00dev
, GF20_PROT_CFG
, ®
);
1304 rt2x00_set_field32(®
, GF20_PROT_CFG_PROTECT_RATE
, gf20_rate
);
1305 rt2x00_set_field32(®
, GF20_PROT_CFG_PROTECT_CTRL
, gf20_mode
);
1306 rt2800_register_write(rt2x00dev
, GF20_PROT_CFG
, reg
);
1308 rt2800_register_read(rt2x00dev
, GF40_PROT_CFG
, ®
);
1309 rt2x00_set_field32(®
, GF40_PROT_CFG_PROTECT_RATE
, gf40_rate
);
1310 rt2x00_set_field32(®
, GF40_PROT_CFG_PROTECT_CTRL
, gf40_mode
);
1311 rt2800_register_write(rt2x00dev
, GF40_PROT_CFG
, reg
);
1314 void rt2800_config_erp(struct rt2x00_dev
*rt2x00dev
, struct rt2x00lib_erp
*erp
,
1319 if (changed
& BSS_CHANGED_ERP_PREAMBLE
) {
1320 rt2800_register_read(rt2x00dev
, AUTO_RSP_CFG
, ®
);
1321 rt2x00_set_field32(®
, AUTO_RSP_CFG_BAC_ACK_POLICY
,
1322 !!erp
->short_preamble
);
1323 rt2x00_set_field32(®
, AUTO_RSP_CFG_AR_PREAMBLE
,
1324 !!erp
->short_preamble
);
1325 rt2800_register_write(rt2x00dev
, AUTO_RSP_CFG
, reg
);
1328 if (changed
& BSS_CHANGED_ERP_CTS_PROT
) {
1329 rt2800_register_read(rt2x00dev
, OFDM_PROT_CFG
, ®
);
1330 rt2x00_set_field32(®
, OFDM_PROT_CFG_PROTECT_CTRL
,
1331 erp
->cts_protection
? 2 : 0);
1332 rt2800_register_write(rt2x00dev
, OFDM_PROT_CFG
, reg
);
1335 if (changed
& BSS_CHANGED_BASIC_RATES
) {
1336 rt2800_register_write(rt2x00dev
, LEGACY_BASIC_RATE
,
1338 rt2800_register_write(rt2x00dev
, HT_BASIC_RATE
, 0x00008003);
1341 if (changed
& BSS_CHANGED_ERP_SLOT
) {
1342 rt2800_register_read(rt2x00dev
, BKOFF_SLOT_CFG
, ®
);
1343 rt2x00_set_field32(®
, BKOFF_SLOT_CFG_SLOT_TIME
,
1345 rt2800_register_write(rt2x00dev
, BKOFF_SLOT_CFG
, reg
);
1347 rt2800_register_read(rt2x00dev
, XIFS_TIME_CFG
, ®
);
1348 rt2x00_set_field32(®
, XIFS_TIME_CFG_EIFS
, erp
->eifs
);
1349 rt2800_register_write(rt2x00dev
, XIFS_TIME_CFG
, reg
);
1352 if (changed
& BSS_CHANGED_BEACON_INT
) {
1353 rt2800_register_read(rt2x00dev
, BCN_TIME_CFG
, ®
);
1354 rt2x00_set_field32(®
, BCN_TIME_CFG_BEACON_INTERVAL
,
1355 erp
->beacon_int
* 16);
1356 rt2800_register_write(rt2x00dev
, BCN_TIME_CFG
, reg
);
1359 if (changed
& BSS_CHANGED_HT
)
1360 rt2800_config_ht_opmode(rt2x00dev
, erp
);
1362 EXPORT_SYMBOL_GPL(rt2800_config_erp
);
1364 void rt2800_config_ant(struct rt2x00_dev
*rt2x00dev
, struct antenna_setup
*ant
)
1369 rt2800_bbp_read(rt2x00dev
, 1, &r1
);
1370 rt2800_bbp_read(rt2x00dev
, 3, &r3
);
1373 * Configure the TX antenna.
1375 switch ((int)ant
->tx
) {
1377 rt2x00_set_field8(&r1
, BBP1_TX_ANTENNA
, 0);
1380 rt2x00_set_field8(&r1
, BBP1_TX_ANTENNA
, 2);
1383 rt2x00_set_field8(&r1
, BBP1_TX_ANTENNA
, 0);
1388 * Configure the RX antenna.
1390 switch ((int)ant
->rx
) {
1392 rt2x00_set_field8(&r3
, BBP3_RX_ANTENNA
, 0);
1395 rt2x00_set_field8(&r3
, BBP3_RX_ANTENNA
, 1);
1398 rt2x00_set_field8(&r3
, BBP3_RX_ANTENNA
, 2);
1402 rt2800_bbp_write(rt2x00dev
, 3, r3
);
1403 rt2800_bbp_write(rt2x00dev
, 1, r1
);
1405 EXPORT_SYMBOL_GPL(rt2800_config_ant
);
1407 static void rt2800_config_lna_gain(struct rt2x00_dev
*rt2x00dev
,
1408 struct rt2x00lib_conf
*libconf
)
1413 if (libconf
->rf
.channel
<= 14) {
1414 rt2x00_eeprom_read(rt2x00dev
, EEPROM_LNA
, &eeprom
);
1415 lna_gain
= rt2x00_get_field16(eeprom
, EEPROM_LNA_BG
);
1416 } else if (libconf
->rf
.channel
<= 64) {
1417 rt2x00_eeprom_read(rt2x00dev
, EEPROM_LNA
, &eeprom
);
1418 lna_gain
= rt2x00_get_field16(eeprom
, EEPROM_LNA_A0
);
1419 } else if (libconf
->rf
.channel
<= 128) {
1420 rt2x00_eeprom_read(rt2x00dev
, EEPROM_RSSI_BG2
, &eeprom
);
1421 lna_gain
= rt2x00_get_field16(eeprom
, EEPROM_RSSI_BG2_LNA_A1
);
1423 rt2x00_eeprom_read(rt2x00dev
, EEPROM_RSSI_A2
, &eeprom
);
1424 lna_gain
= rt2x00_get_field16(eeprom
, EEPROM_RSSI_A2_LNA_A2
);
1427 rt2x00dev
->lna_gain
= lna_gain
;
1430 static void rt2800_config_channel_rf2xxx(struct rt2x00_dev
*rt2x00dev
,
1431 struct ieee80211_conf
*conf
,
1432 struct rf_channel
*rf
,
1433 struct channel_info
*info
)
1435 rt2x00_set_field32(&rf
->rf4
, RF4_FREQ_OFFSET
, rt2x00dev
->freq_offset
);
1437 if (rt2x00dev
->default_ant
.tx
== 1)
1438 rt2x00_set_field32(&rf
->rf2
, RF2_ANTENNA_TX1
, 1);
1440 if (rt2x00dev
->default_ant
.rx
== 1) {
1441 rt2x00_set_field32(&rf
->rf2
, RF2_ANTENNA_RX1
, 1);
1442 rt2x00_set_field32(&rf
->rf2
, RF2_ANTENNA_RX2
, 1);
1443 } else if (rt2x00dev
->default_ant
.rx
== 2)
1444 rt2x00_set_field32(&rf
->rf2
, RF2_ANTENNA_RX2
, 1);
1446 if (rf
->channel
> 14) {
1448 * When TX power is below 0, we should increase it by 7 to
1449 * make it a positive value (Minumum value is -7).
1450 * However this means that values between 0 and 7 have
1451 * double meaning, and we should set a 7DBm boost flag.
1453 rt2x00_set_field32(&rf
->rf3
, RF3_TXPOWER_A_7DBM_BOOST
,
1454 (info
->default_power1
>= 0));
1456 if (info
->default_power1
< 0)
1457 info
->default_power1
+= 7;
1459 rt2x00_set_field32(&rf
->rf3
, RF3_TXPOWER_A
, info
->default_power1
);
1461 rt2x00_set_field32(&rf
->rf4
, RF4_TXPOWER_A_7DBM_BOOST
,
1462 (info
->default_power2
>= 0));
1464 if (info
->default_power2
< 0)
1465 info
->default_power2
+= 7;
1467 rt2x00_set_field32(&rf
->rf4
, RF4_TXPOWER_A
, info
->default_power2
);
1469 rt2x00_set_field32(&rf
->rf3
, RF3_TXPOWER_G
, info
->default_power1
);
1470 rt2x00_set_field32(&rf
->rf4
, RF4_TXPOWER_G
, info
->default_power2
);
1473 rt2x00_set_field32(&rf
->rf4
, RF4_HT40
, conf_is_ht40(conf
));
1475 rt2800_rf_write(rt2x00dev
, 1, rf
->rf1
);
1476 rt2800_rf_write(rt2x00dev
, 2, rf
->rf2
);
1477 rt2800_rf_write(rt2x00dev
, 3, rf
->rf3
& ~0x00000004);
1478 rt2800_rf_write(rt2x00dev
, 4, rf
->rf4
);
1482 rt2800_rf_write(rt2x00dev
, 1, rf
->rf1
);
1483 rt2800_rf_write(rt2x00dev
, 2, rf
->rf2
);
1484 rt2800_rf_write(rt2x00dev
, 3, rf
->rf3
| 0x00000004);
1485 rt2800_rf_write(rt2x00dev
, 4, rf
->rf4
);
1489 rt2800_rf_write(rt2x00dev
, 1, rf
->rf1
);
1490 rt2800_rf_write(rt2x00dev
, 2, rf
->rf2
);
1491 rt2800_rf_write(rt2x00dev
, 3, rf
->rf3
& ~0x00000004);
1492 rt2800_rf_write(rt2x00dev
, 4, rf
->rf4
);
1495 static void rt2800_config_channel_rf3xxx(struct rt2x00_dev
*rt2x00dev
,
1496 struct ieee80211_conf
*conf
,
1497 struct rf_channel
*rf
,
1498 struct channel_info
*info
)
1502 rt2800_rfcsr_write(rt2x00dev
, 2, rf
->rf1
);
1503 rt2800_rfcsr_write(rt2x00dev
, 3, rf
->rf3
);
1505 rt2800_rfcsr_read(rt2x00dev
, 6, &rfcsr
);
1506 rt2x00_set_field8(&rfcsr
, RFCSR6_R1
, rf
->rf2
);
1507 rt2800_rfcsr_write(rt2x00dev
, 6, rfcsr
);
1509 rt2800_rfcsr_read(rt2x00dev
, 12, &rfcsr
);
1510 rt2x00_set_field8(&rfcsr
, RFCSR12_TX_POWER
, info
->default_power1
);
1511 rt2800_rfcsr_write(rt2x00dev
, 12, rfcsr
);
1513 rt2800_rfcsr_read(rt2x00dev
, 13, &rfcsr
);
1514 rt2x00_set_field8(&rfcsr
, RFCSR13_TX_POWER
, info
->default_power2
);
1515 rt2800_rfcsr_write(rt2x00dev
, 13, rfcsr
);
1517 rt2800_rfcsr_read(rt2x00dev
, 23, &rfcsr
);
1518 rt2x00_set_field8(&rfcsr
, RFCSR23_FREQ_OFFSET
, rt2x00dev
->freq_offset
);
1519 rt2800_rfcsr_write(rt2x00dev
, 23, rfcsr
);
1521 rt2800_rfcsr_write(rt2x00dev
, 24,
1522 rt2x00dev
->calibration
[conf_is_ht40(conf
)]);
1524 rt2800_rfcsr_read(rt2x00dev
, 7, &rfcsr
);
1525 rt2x00_set_field8(&rfcsr
, RFCSR7_RF_TUNING
, 1);
1526 rt2800_rfcsr_write(rt2x00dev
, 7, rfcsr
);
1529 static void rt2800_config_channel(struct rt2x00_dev
*rt2x00dev
,
1530 struct ieee80211_conf
*conf
,
1531 struct rf_channel
*rf
,
1532 struct channel_info
*info
)
1535 unsigned int tx_pin
;
1538 if (rf
->channel
<= 14) {
1539 info
->default_power1
= TXPOWER_G_TO_DEV(info
->default_power1
);
1540 info
->default_power2
= TXPOWER_G_TO_DEV(info
->default_power2
);
1542 info
->default_power1
= TXPOWER_A_TO_DEV(info
->default_power1
);
1543 info
->default_power2
= TXPOWER_A_TO_DEV(info
->default_power2
);
1546 if (rt2x00_rf(rt2x00dev
, RF2020
) ||
1547 rt2x00_rf(rt2x00dev
, RF3020
) ||
1548 rt2x00_rf(rt2x00dev
, RF3021
) ||
1549 rt2x00_rf(rt2x00dev
, RF3022
) ||
1550 rt2x00_rf(rt2x00dev
, RF3052
) ||
1551 rt2x00_rf(rt2x00dev
, RF3320
))
1552 rt2800_config_channel_rf3xxx(rt2x00dev
, conf
, rf
, info
);
1554 rt2800_config_channel_rf2xxx(rt2x00dev
, conf
, rf
, info
);
1557 * Change BBP settings
1559 rt2800_bbp_write(rt2x00dev
, 62, 0x37 - rt2x00dev
->lna_gain
);
1560 rt2800_bbp_write(rt2x00dev
, 63, 0x37 - rt2x00dev
->lna_gain
);
1561 rt2800_bbp_write(rt2x00dev
, 64, 0x37 - rt2x00dev
->lna_gain
);
1562 rt2800_bbp_write(rt2x00dev
, 86, 0);
1564 if (rf
->channel
<= 14) {
1565 if (test_bit(CONFIG_EXTERNAL_LNA_BG
, &rt2x00dev
->flags
)) {
1566 rt2800_bbp_write(rt2x00dev
, 82, 0x62);
1567 rt2800_bbp_write(rt2x00dev
, 75, 0x46);
1569 rt2800_bbp_write(rt2x00dev
, 82, 0x84);
1570 rt2800_bbp_write(rt2x00dev
, 75, 0x50);
1573 rt2800_bbp_write(rt2x00dev
, 82, 0xf2);
1575 if (test_bit(CONFIG_EXTERNAL_LNA_A
, &rt2x00dev
->flags
))
1576 rt2800_bbp_write(rt2x00dev
, 75, 0x46);
1578 rt2800_bbp_write(rt2x00dev
, 75, 0x50);
1581 rt2800_register_read(rt2x00dev
, TX_BAND_CFG
, ®
);
1582 rt2x00_set_field32(®
, TX_BAND_CFG_HT40_MINUS
, conf_is_ht40_minus(conf
));
1583 rt2x00_set_field32(®
, TX_BAND_CFG_A
, rf
->channel
> 14);
1584 rt2x00_set_field32(®
, TX_BAND_CFG_BG
, rf
->channel
<= 14);
1585 rt2800_register_write(rt2x00dev
, TX_BAND_CFG
, reg
);
1589 /* Turn on unused PA or LNA when not using 1T or 1R */
1590 if (rt2x00dev
->default_ant
.tx
!= 1) {
1591 rt2x00_set_field32(&tx_pin
, TX_PIN_CFG_PA_PE_A1_EN
, 1);
1592 rt2x00_set_field32(&tx_pin
, TX_PIN_CFG_PA_PE_G1_EN
, 1);
1595 /* Turn on unused PA or LNA when not using 1T or 1R */
1596 if (rt2x00dev
->default_ant
.rx
!= 1) {
1597 rt2x00_set_field32(&tx_pin
, TX_PIN_CFG_LNA_PE_A1_EN
, 1);
1598 rt2x00_set_field32(&tx_pin
, TX_PIN_CFG_LNA_PE_G1_EN
, 1);
1601 rt2x00_set_field32(&tx_pin
, TX_PIN_CFG_LNA_PE_A0_EN
, 1);
1602 rt2x00_set_field32(&tx_pin
, TX_PIN_CFG_LNA_PE_G0_EN
, 1);
1603 rt2x00_set_field32(&tx_pin
, TX_PIN_CFG_RFTR_EN
, 1);
1604 rt2x00_set_field32(&tx_pin
, TX_PIN_CFG_TRSW_EN
, 1);
1605 rt2x00_set_field32(&tx_pin
, TX_PIN_CFG_PA_PE_G0_EN
, rf
->channel
<= 14);
1606 rt2x00_set_field32(&tx_pin
, TX_PIN_CFG_PA_PE_A0_EN
, rf
->channel
> 14);
1608 rt2800_register_write(rt2x00dev
, TX_PIN_CFG
, tx_pin
);
1610 rt2800_bbp_read(rt2x00dev
, 4, &bbp
);
1611 rt2x00_set_field8(&bbp
, BBP4_BANDWIDTH
, 2 * conf_is_ht40(conf
));
1612 rt2800_bbp_write(rt2x00dev
, 4, bbp
);
1614 rt2800_bbp_read(rt2x00dev
, 3, &bbp
);
1615 rt2x00_set_field8(&bbp
, BBP3_HT40_MINUS
, conf_is_ht40_minus(conf
));
1616 rt2800_bbp_write(rt2x00dev
, 3, bbp
);
1618 if (rt2x00_rt_rev(rt2x00dev
, RT2860
, REV_RT2860C
)) {
1619 if (conf_is_ht40(conf
)) {
1620 rt2800_bbp_write(rt2x00dev
, 69, 0x1a);
1621 rt2800_bbp_write(rt2x00dev
, 70, 0x0a);
1622 rt2800_bbp_write(rt2x00dev
, 73, 0x16);
1624 rt2800_bbp_write(rt2x00dev
, 69, 0x16);
1625 rt2800_bbp_write(rt2x00dev
, 70, 0x08);
1626 rt2800_bbp_write(rt2x00dev
, 73, 0x11);
1633 * Clear channel statistic counters
1635 rt2800_register_read(rt2x00dev
, CH_IDLE_STA
, ®
);
1636 rt2800_register_read(rt2x00dev
, CH_BUSY_STA
, ®
);
1637 rt2800_register_read(rt2x00dev
, CH_BUSY_STA_SEC
, ®
);
1640 static void rt2800_config_txpower(struct rt2x00_dev
*rt2x00dev
,
1641 const int max_txpower
)
1644 u8 max_value
= (u8
)max_txpower
;
1652 * set to normal tx power mode: +/- 0dBm
1654 rt2800_bbp_read(rt2x00dev
, 1, &r1
);
1655 rt2x00_set_field8(&r1
, BBP1_TX_POWER
, 0);
1656 rt2800_bbp_write(rt2x00dev
, 1, r1
);
1659 * The eeprom contains the tx power values for each rate. These
1660 * values map to 100% tx power. Each 16bit word contains four tx
1661 * power values and the order is the same as used in the TX_PWR_CFG
1664 offset
= TX_PWR_CFG_0
;
1666 for (i
= 0; i
< EEPROM_TXPOWER_BYRATE_SIZE
; i
+= 2) {
1667 /* just to be safe */
1668 if (offset
> TX_PWR_CFG_4
)
1671 rt2800_register_read(rt2x00dev
, offset
, ®
);
1673 /* read the next four txpower values */
1674 rt2x00_eeprom_read(rt2x00dev
, EEPROM_TXPOWER_BYRATE
+ i
,
1677 /* TX_PWR_CFG_0: 1MBS, TX_PWR_CFG_1: 24MBS,
1678 * TX_PWR_CFG_2: MCS4, TX_PWR_CFG_3: MCS12,
1679 * TX_PWR_CFG_4: unknown */
1680 txpower
= rt2x00_get_field16(eeprom
,
1681 EEPROM_TXPOWER_BYRATE_RATE0
);
1682 rt2x00_set_field32(®
, TX_PWR_CFG_RATE0
,
1683 min(txpower
, max_value
));
1685 /* TX_PWR_CFG_0: 2MBS, TX_PWR_CFG_1: 36MBS,
1686 * TX_PWR_CFG_2: MCS5, TX_PWR_CFG_3: MCS13,
1687 * TX_PWR_CFG_4: unknown */
1688 txpower
= rt2x00_get_field16(eeprom
,
1689 EEPROM_TXPOWER_BYRATE_RATE1
);
1690 rt2x00_set_field32(®
, TX_PWR_CFG_RATE1
,
1691 min(txpower
, max_value
));
1693 /* TX_PWR_CFG_0: 55MBS, TX_PWR_CFG_1: 48MBS,
1694 * TX_PWR_CFG_2: MCS6, TX_PWR_CFG_3: MCS14,
1695 * TX_PWR_CFG_4: unknown */
1696 txpower
= rt2x00_get_field16(eeprom
,
1697 EEPROM_TXPOWER_BYRATE_RATE2
);
1698 rt2x00_set_field32(®
, TX_PWR_CFG_RATE2
,
1699 min(txpower
, max_value
));
1701 /* TX_PWR_CFG_0: 11MBS, TX_PWR_CFG_1: 54MBS,
1702 * TX_PWR_CFG_2: MCS7, TX_PWR_CFG_3: MCS15,
1703 * TX_PWR_CFG_4: unknown */
1704 txpower
= rt2x00_get_field16(eeprom
,
1705 EEPROM_TXPOWER_BYRATE_RATE3
);
1706 rt2x00_set_field32(®
, TX_PWR_CFG_RATE3
,
1707 min(txpower
, max_value
));
1709 /* read the next four txpower values */
1710 rt2x00_eeprom_read(rt2x00dev
, EEPROM_TXPOWER_BYRATE
+ i
+ 1,
1713 /* TX_PWR_CFG_0: 6MBS, TX_PWR_CFG_1: MCS0,
1714 * TX_PWR_CFG_2: MCS8, TX_PWR_CFG_3: unknown,
1715 * TX_PWR_CFG_4: unknown */
1716 txpower
= rt2x00_get_field16(eeprom
,
1717 EEPROM_TXPOWER_BYRATE_RATE0
);
1718 rt2x00_set_field32(®
, TX_PWR_CFG_RATE4
,
1719 min(txpower
, max_value
));
1721 /* TX_PWR_CFG_0: 9MBS, TX_PWR_CFG_1: MCS1,
1722 * TX_PWR_CFG_2: MCS9, TX_PWR_CFG_3: unknown,
1723 * TX_PWR_CFG_4: unknown */
1724 txpower
= rt2x00_get_field16(eeprom
,
1725 EEPROM_TXPOWER_BYRATE_RATE1
);
1726 rt2x00_set_field32(®
, TX_PWR_CFG_RATE5
,
1727 min(txpower
, max_value
));
1729 /* TX_PWR_CFG_0: 12MBS, TX_PWR_CFG_1: MCS2,
1730 * TX_PWR_CFG_2: MCS10, TX_PWR_CFG_3: unknown,
1731 * TX_PWR_CFG_4: unknown */
1732 txpower
= rt2x00_get_field16(eeprom
,
1733 EEPROM_TXPOWER_BYRATE_RATE2
);
1734 rt2x00_set_field32(®
, TX_PWR_CFG_RATE6
,
1735 min(txpower
, max_value
));
1737 /* TX_PWR_CFG_0: 18MBS, TX_PWR_CFG_1: MCS3,
1738 * TX_PWR_CFG_2: MCS11, TX_PWR_CFG_3: unknown,
1739 * TX_PWR_CFG_4: unknown */
1740 txpower
= rt2x00_get_field16(eeprom
,
1741 EEPROM_TXPOWER_BYRATE_RATE3
);
1742 rt2x00_set_field32(®
, TX_PWR_CFG_RATE7
,
1743 min(txpower
, max_value
));
1745 rt2800_register_write(rt2x00dev
, offset
, reg
);
1747 /* next TX_PWR_CFG register */
1752 static void rt2800_config_retry_limit(struct rt2x00_dev
*rt2x00dev
,
1753 struct rt2x00lib_conf
*libconf
)
1757 rt2800_register_read(rt2x00dev
, TX_RTY_CFG
, ®
);
1758 rt2x00_set_field32(®
, TX_RTY_CFG_SHORT_RTY_LIMIT
,
1759 libconf
->conf
->short_frame_max_tx_count
);
1760 rt2x00_set_field32(®
, TX_RTY_CFG_LONG_RTY_LIMIT
,
1761 libconf
->conf
->long_frame_max_tx_count
);
1762 rt2800_register_write(rt2x00dev
, TX_RTY_CFG
, reg
);
1765 static void rt2800_config_ps(struct rt2x00_dev
*rt2x00dev
,
1766 struct rt2x00lib_conf
*libconf
)
1768 enum dev_state state
=
1769 (libconf
->conf
->flags
& IEEE80211_CONF_PS
) ?
1770 STATE_SLEEP
: STATE_AWAKE
;
1773 if (state
== STATE_SLEEP
) {
1774 rt2800_register_write(rt2x00dev
, AUTOWAKEUP_CFG
, 0);
1776 rt2800_register_read(rt2x00dev
, AUTOWAKEUP_CFG
, ®
);
1777 rt2x00_set_field32(®
, AUTOWAKEUP_CFG_AUTO_LEAD_TIME
, 5);
1778 rt2x00_set_field32(®
, AUTOWAKEUP_CFG_TBCN_BEFORE_WAKE
,
1779 libconf
->conf
->listen_interval
- 1);
1780 rt2x00_set_field32(®
, AUTOWAKEUP_CFG_AUTOWAKE
, 1);
1781 rt2800_register_write(rt2x00dev
, AUTOWAKEUP_CFG
, reg
);
1783 rt2x00dev
->ops
->lib
->set_device_state(rt2x00dev
, state
);
1785 rt2800_register_read(rt2x00dev
, AUTOWAKEUP_CFG
, ®
);
1786 rt2x00_set_field32(®
, AUTOWAKEUP_CFG_AUTO_LEAD_TIME
, 0);
1787 rt2x00_set_field32(®
, AUTOWAKEUP_CFG_TBCN_BEFORE_WAKE
, 0);
1788 rt2x00_set_field32(®
, AUTOWAKEUP_CFG_AUTOWAKE
, 0);
1789 rt2800_register_write(rt2x00dev
, AUTOWAKEUP_CFG
, reg
);
1791 rt2x00dev
->ops
->lib
->set_device_state(rt2x00dev
, state
);
1795 void rt2800_config(struct rt2x00_dev
*rt2x00dev
,
1796 struct rt2x00lib_conf
*libconf
,
1797 const unsigned int flags
)
1799 /* Always recalculate LNA gain before changing configuration */
1800 rt2800_config_lna_gain(rt2x00dev
, libconf
);
1802 if (flags
& IEEE80211_CONF_CHANGE_CHANNEL
)
1803 rt2800_config_channel(rt2x00dev
, libconf
->conf
,
1804 &libconf
->rf
, &libconf
->channel
);
1805 if (flags
& IEEE80211_CONF_CHANGE_POWER
)
1806 rt2800_config_txpower(rt2x00dev
, libconf
->conf
->power_level
);
1807 if (flags
& IEEE80211_CONF_CHANGE_RETRY_LIMITS
)
1808 rt2800_config_retry_limit(rt2x00dev
, libconf
);
1809 if (flags
& IEEE80211_CONF_CHANGE_PS
)
1810 rt2800_config_ps(rt2x00dev
, libconf
);
1812 EXPORT_SYMBOL_GPL(rt2800_config
);
1817 void rt2800_link_stats(struct rt2x00_dev
*rt2x00dev
, struct link_qual
*qual
)
1822 * Update FCS error count from register.
1824 rt2800_register_read(rt2x00dev
, RX_STA_CNT0
, ®
);
1825 qual
->rx_failed
= rt2x00_get_field32(reg
, RX_STA_CNT0_CRC_ERR
);
1827 EXPORT_SYMBOL_GPL(rt2800_link_stats
);
1829 static u8
rt2800_get_default_vgc(struct rt2x00_dev
*rt2x00dev
)
1831 if (rt2x00dev
->curr_band
== IEEE80211_BAND_2GHZ
) {
1832 if (rt2x00_rt(rt2x00dev
, RT3070
) ||
1833 rt2x00_rt(rt2x00dev
, RT3071
) ||
1834 rt2x00_rt(rt2x00dev
, RT3090
) ||
1835 rt2x00_rt(rt2x00dev
, RT3390
))
1836 return 0x1c + (2 * rt2x00dev
->lna_gain
);
1838 return 0x2e + rt2x00dev
->lna_gain
;
1841 if (!test_bit(CONFIG_CHANNEL_HT40
, &rt2x00dev
->flags
))
1842 return 0x32 + (rt2x00dev
->lna_gain
* 5) / 3;
1844 return 0x3a + (rt2x00dev
->lna_gain
* 5) / 3;
1847 static inline void rt2800_set_vgc(struct rt2x00_dev
*rt2x00dev
,
1848 struct link_qual
*qual
, u8 vgc_level
)
1850 if (qual
->vgc_level
!= vgc_level
) {
1851 rt2800_bbp_write(rt2x00dev
, 66, vgc_level
);
1852 qual
->vgc_level
= vgc_level
;
1853 qual
->vgc_level_reg
= vgc_level
;
1857 void rt2800_reset_tuner(struct rt2x00_dev
*rt2x00dev
, struct link_qual
*qual
)
1859 rt2800_set_vgc(rt2x00dev
, qual
, rt2800_get_default_vgc(rt2x00dev
));
1861 EXPORT_SYMBOL_GPL(rt2800_reset_tuner
);
1863 void rt2800_link_tuner(struct rt2x00_dev
*rt2x00dev
, struct link_qual
*qual
,
1866 if (rt2x00_rt_rev(rt2x00dev
, RT2860
, REV_RT2860C
))
1870 * When RSSI is better then -80 increase VGC level with 0x10
1872 rt2800_set_vgc(rt2x00dev
, qual
,
1873 rt2800_get_default_vgc(rt2x00dev
) +
1874 ((qual
->rssi
> -80) * 0x10));
1876 EXPORT_SYMBOL_GPL(rt2800_link_tuner
);
1879 * Initialization functions.
1881 static int rt2800_init_registers(struct rt2x00_dev
*rt2x00dev
)
1888 rt2800_register_read(rt2x00dev
, WPDMA_GLO_CFG
, ®
);
1889 rt2x00_set_field32(®
, WPDMA_GLO_CFG_ENABLE_TX_DMA
, 0);
1890 rt2x00_set_field32(®
, WPDMA_GLO_CFG_TX_DMA_BUSY
, 0);
1891 rt2x00_set_field32(®
, WPDMA_GLO_CFG_ENABLE_RX_DMA
, 0);
1892 rt2x00_set_field32(®
, WPDMA_GLO_CFG_RX_DMA_BUSY
, 0);
1893 rt2x00_set_field32(®
, WPDMA_GLO_CFG_TX_WRITEBACK_DONE
, 1);
1894 rt2800_register_write(rt2x00dev
, WPDMA_GLO_CFG
, reg
);
1896 ret
= rt2800_drv_init_registers(rt2x00dev
);
1900 rt2800_register_read(rt2x00dev
, BCN_OFFSET0
, ®
);
1901 rt2x00_set_field32(®
, BCN_OFFSET0_BCN0
, 0xe0); /* 0x3800 */
1902 rt2x00_set_field32(®
, BCN_OFFSET0_BCN1
, 0xe8); /* 0x3a00 */
1903 rt2x00_set_field32(®
, BCN_OFFSET0_BCN2
, 0xf0); /* 0x3c00 */
1904 rt2x00_set_field32(®
, BCN_OFFSET0_BCN3
, 0xf8); /* 0x3e00 */
1905 rt2800_register_write(rt2x00dev
, BCN_OFFSET0
, reg
);
1907 rt2800_register_read(rt2x00dev
, BCN_OFFSET1
, ®
);
1908 rt2x00_set_field32(®
, BCN_OFFSET1_BCN4
, 0xc8); /* 0x3200 */
1909 rt2x00_set_field32(®
, BCN_OFFSET1_BCN5
, 0xd0); /* 0x3400 */
1910 rt2x00_set_field32(®
, BCN_OFFSET1_BCN6
, 0x77); /* 0x1dc0 */
1911 rt2x00_set_field32(®
, BCN_OFFSET1_BCN7
, 0x6f); /* 0x1bc0 */
1912 rt2800_register_write(rt2x00dev
, BCN_OFFSET1
, reg
);
1914 rt2800_register_write(rt2x00dev
, LEGACY_BASIC_RATE
, 0x0000013f);
1915 rt2800_register_write(rt2x00dev
, HT_BASIC_RATE
, 0x00008003);
1917 rt2800_register_write(rt2x00dev
, MAC_SYS_CTRL
, 0x00000000);
1919 rt2800_register_read(rt2x00dev
, BCN_TIME_CFG
, ®
);
1920 rt2x00_set_field32(®
, BCN_TIME_CFG_BEACON_INTERVAL
, 1600);
1921 rt2x00_set_field32(®
, BCN_TIME_CFG_TSF_TICKING
, 0);
1922 rt2x00_set_field32(®
, BCN_TIME_CFG_TSF_SYNC
, 0);
1923 rt2x00_set_field32(®
, BCN_TIME_CFG_TBTT_ENABLE
, 0);
1924 rt2x00_set_field32(®
, BCN_TIME_CFG_BEACON_GEN
, 0);
1925 rt2x00_set_field32(®
, BCN_TIME_CFG_TX_TIME_COMPENSATE
, 0);
1926 rt2800_register_write(rt2x00dev
, BCN_TIME_CFG
, reg
);
1928 rt2800_config_filter(rt2x00dev
, FIF_ALLMULTI
);
1930 rt2800_register_read(rt2x00dev
, BKOFF_SLOT_CFG
, ®
);
1931 rt2x00_set_field32(®
, BKOFF_SLOT_CFG_SLOT_TIME
, 9);
1932 rt2x00_set_field32(®
, BKOFF_SLOT_CFG_CC_DELAY_TIME
, 2);
1933 rt2800_register_write(rt2x00dev
, BKOFF_SLOT_CFG
, reg
);
1935 if (rt2x00_rt(rt2x00dev
, RT3071
) ||
1936 rt2x00_rt(rt2x00dev
, RT3090
) ||
1937 rt2x00_rt(rt2x00dev
, RT3390
)) {
1938 rt2800_register_write(rt2x00dev
, TX_SW_CFG0
, 0x00000400);
1939 rt2800_register_write(rt2x00dev
, TX_SW_CFG1
, 0x00000000);
1940 if (rt2x00_rt_rev_lt(rt2x00dev
, RT3071
, REV_RT3071E
) ||
1941 rt2x00_rt_rev_lt(rt2x00dev
, RT3090
, REV_RT3090E
) ||
1942 rt2x00_rt_rev_lt(rt2x00dev
, RT3390
, REV_RT3390E
)) {
1943 rt2x00_eeprom_read(rt2x00dev
, EEPROM_NIC_CONF1
, &eeprom
);
1944 if (rt2x00_get_field16(eeprom
, EEPROM_NIC_CONF1_DAC_TEST
))
1945 rt2800_register_write(rt2x00dev
, TX_SW_CFG2
,
1948 rt2800_register_write(rt2x00dev
, TX_SW_CFG2
,
1951 rt2800_register_write(rt2x00dev
, TX_SW_CFG2
, 0x00000000);
1953 } else if (rt2x00_rt(rt2x00dev
, RT3070
)) {
1954 rt2800_register_write(rt2x00dev
, TX_SW_CFG0
, 0x00000400);
1956 if (rt2x00_rt_rev_lt(rt2x00dev
, RT3070
, REV_RT3070F
)) {
1957 rt2800_register_write(rt2x00dev
, TX_SW_CFG1
, 0x00000000);
1958 rt2800_register_write(rt2x00dev
, TX_SW_CFG2
, 0x0000002c);
1960 rt2800_register_write(rt2x00dev
, TX_SW_CFG1
, 0x00080606);
1961 rt2800_register_write(rt2x00dev
, TX_SW_CFG2
, 0x00000000);
1963 } else if (rt2800_is_305x_soc(rt2x00dev
)) {
1964 rt2800_register_write(rt2x00dev
, TX_SW_CFG0
, 0x00000400);
1965 rt2800_register_write(rt2x00dev
, TX_SW_CFG1
, 0x00000000);
1966 rt2800_register_write(rt2x00dev
, TX_SW_CFG2
, 0x0000001f);
1968 rt2800_register_write(rt2x00dev
, TX_SW_CFG0
, 0x00000000);
1969 rt2800_register_write(rt2x00dev
, TX_SW_CFG1
, 0x00080606);
1972 rt2800_register_read(rt2x00dev
, TX_LINK_CFG
, ®
);
1973 rt2x00_set_field32(®
, TX_LINK_CFG_REMOTE_MFB_LIFETIME
, 32);
1974 rt2x00_set_field32(®
, TX_LINK_CFG_MFB_ENABLE
, 0);
1975 rt2x00_set_field32(®
, TX_LINK_CFG_REMOTE_UMFS_ENABLE
, 0);
1976 rt2x00_set_field32(®
, TX_LINK_CFG_TX_MRQ_EN
, 0);
1977 rt2x00_set_field32(®
, TX_LINK_CFG_TX_RDG_EN
, 0);
1978 rt2x00_set_field32(®
, TX_LINK_CFG_TX_CF_ACK_EN
, 1);
1979 rt2x00_set_field32(®
, TX_LINK_CFG_REMOTE_MFB
, 0);
1980 rt2x00_set_field32(®
, TX_LINK_CFG_REMOTE_MFS
, 0);
1981 rt2800_register_write(rt2x00dev
, TX_LINK_CFG
, reg
);
1983 rt2800_register_read(rt2x00dev
, TX_TIMEOUT_CFG
, ®
);
1984 rt2x00_set_field32(®
, TX_TIMEOUT_CFG_MPDU_LIFETIME
, 9);
1985 rt2x00_set_field32(®
, TX_TIMEOUT_CFG_RX_ACK_TIMEOUT
, 32);
1986 rt2x00_set_field32(®
, TX_TIMEOUT_CFG_TX_OP_TIMEOUT
, 10);
1987 rt2800_register_write(rt2x00dev
, TX_TIMEOUT_CFG
, reg
);
1989 rt2800_register_read(rt2x00dev
, MAX_LEN_CFG
, ®
);
1990 rt2x00_set_field32(®
, MAX_LEN_CFG_MAX_MPDU
, AGGREGATION_SIZE
);
1991 if (rt2x00_rt_rev_gte(rt2x00dev
, RT2872
, REV_RT2872E
) ||
1992 rt2x00_rt(rt2x00dev
, RT2883
) ||
1993 rt2x00_rt_rev_lt(rt2x00dev
, RT3070
, REV_RT3070E
))
1994 rt2x00_set_field32(®
, MAX_LEN_CFG_MAX_PSDU
, 2);
1996 rt2x00_set_field32(®
, MAX_LEN_CFG_MAX_PSDU
, 1);
1997 rt2x00_set_field32(®
, MAX_LEN_CFG_MIN_PSDU
, 0);
1998 rt2x00_set_field32(®
, MAX_LEN_CFG_MIN_MPDU
, 0);
1999 rt2800_register_write(rt2x00dev
, MAX_LEN_CFG
, reg
);
2001 rt2800_register_read(rt2x00dev
, LED_CFG
, ®
);
2002 rt2x00_set_field32(®
, LED_CFG_ON_PERIOD
, 70);
2003 rt2x00_set_field32(®
, LED_CFG_OFF_PERIOD
, 30);
2004 rt2x00_set_field32(®
, LED_CFG_SLOW_BLINK_PERIOD
, 3);
2005 rt2x00_set_field32(®
, LED_CFG_R_LED_MODE
, 3);
2006 rt2x00_set_field32(®
, LED_CFG_G_LED_MODE
, 3);
2007 rt2x00_set_field32(®
, LED_CFG_Y_LED_MODE
, 3);
2008 rt2x00_set_field32(®
, LED_CFG_LED_POLAR
, 1);
2009 rt2800_register_write(rt2x00dev
, LED_CFG
, reg
);
2011 rt2800_register_write(rt2x00dev
, PBF_MAX_PCNT
, 0x1f3fbf9f);
2013 rt2800_register_read(rt2x00dev
, TX_RTY_CFG
, ®
);
2014 rt2x00_set_field32(®
, TX_RTY_CFG_SHORT_RTY_LIMIT
, 15);
2015 rt2x00_set_field32(®
, TX_RTY_CFG_LONG_RTY_LIMIT
, 31);
2016 rt2x00_set_field32(®
, TX_RTY_CFG_LONG_RTY_THRE
, 2000);
2017 rt2x00_set_field32(®
, TX_RTY_CFG_NON_AGG_RTY_MODE
, 0);
2018 rt2x00_set_field32(®
, TX_RTY_CFG_AGG_RTY_MODE
, 0);
2019 rt2x00_set_field32(®
, TX_RTY_CFG_TX_AUTO_FB_ENABLE
, 1);
2020 rt2800_register_write(rt2x00dev
, TX_RTY_CFG
, reg
);
2022 rt2800_register_read(rt2x00dev
, AUTO_RSP_CFG
, ®
);
2023 rt2x00_set_field32(®
, AUTO_RSP_CFG_AUTORESPONDER
, 1);
2024 rt2x00_set_field32(®
, AUTO_RSP_CFG_BAC_ACK_POLICY
, 1);
2025 rt2x00_set_field32(®
, AUTO_RSP_CFG_CTS_40_MMODE
, 0);
2026 rt2x00_set_field32(®
, AUTO_RSP_CFG_CTS_40_MREF
, 0);
2027 rt2x00_set_field32(®
, AUTO_RSP_CFG_AR_PREAMBLE
, 1);
2028 rt2x00_set_field32(®
, AUTO_RSP_CFG_DUAL_CTS_EN
, 0);
2029 rt2x00_set_field32(®
, AUTO_RSP_CFG_ACK_CTS_PSM_BIT
, 0);
2030 rt2800_register_write(rt2x00dev
, AUTO_RSP_CFG
, reg
);
2032 rt2800_register_read(rt2x00dev
, CCK_PROT_CFG
, ®
);
2033 rt2x00_set_field32(®
, CCK_PROT_CFG_PROTECT_RATE
, 3);
2034 rt2x00_set_field32(®
, CCK_PROT_CFG_PROTECT_CTRL
, 0);
2035 rt2x00_set_field32(®
, CCK_PROT_CFG_PROTECT_NAV
, 1);
2036 rt2x00_set_field32(®
, CCK_PROT_CFG_TX_OP_ALLOW_CCK
, 1);
2037 rt2x00_set_field32(®
, CCK_PROT_CFG_TX_OP_ALLOW_OFDM
, 1);
2038 rt2x00_set_field32(®
, CCK_PROT_CFG_TX_OP_ALLOW_MM20
, 1);
2039 rt2x00_set_field32(®
, CCK_PROT_CFG_TX_OP_ALLOW_MM40
, 0);
2040 rt2x00_set_field32(®
, CCK_PROT_CFG_TX_OP_ALLOW_GF20
, 1);
2041 rt2x00_set_field32(®
, CCK_PROT_CFG_TX_OP_ALLOW_GF40
, 0);
2042 rt2x00_set_field32(®
, CCK_PROT_CFG_RTS_TH_EN
, 1);
2043 rt2800_register_write(rt2x00dev
, CCK_PROT_CFG
, reg
);
2045 rt2800_register_read(rt2x00dev
, OFDM_PROT_CFG
, ®
);
2046 rt2x00_set_field32(®
, OFDM_PROT_CFG_PROTECT_RATE
, 3);
2047 rt2x00_set_field32(®
, OFDM_PROT_CFG_PROTECT_CTRL
, 0);
2048 rt2x00_set_field32(®
, OFDM_PROT_CFG_PROTECT_NAV
, 1);
2049 rt2x00_set_field32(®
, OFDM_PROT_CFG_TX_OP_ALLOW_CCK
, 1);
2050 rt2x00_set_field32(®
, OFDM_PROT_CFG_TX_OP_ALLOW_OFDM
, 1);
2051 rt2x00_set_field32(®
, OFDM_PROT_CFG_TX_OP_ALLOW_MM20
, 1);
2052 rt2x00_set_field32(®
, OFDM_PROT_CFG_TX_OP_ALLOW_MM40
, 0);
2053 rt2x00_set_field32(®
, OFDM_PROT_CFG_TX_OP_ALLOW_GF20
, 1);
2054 rt2x00_set_field32(®
, OFDM_PROT_CFG_TX_OP_ALLOW_GF40
, 0);
2055 rt2x00_set_field32(®
, OFDM_PROT_CFG_RTS_TH_EN
, 1);
2056 rt2800_register_write(rt2x00dev
, OFDM_PROT_CFG
, reg
);
2058 rt2800_register_read(rt2x00dev
, MM20_PROT_CFG
, ®
);
2059 rt2x00_set_field32(®
, MM20_PROT_CFG_PROTECT_RATE
, 0x4004);
2060 rt2x00_set_field32(®
, MM20_PROT_CFG_PROTECT_CTRL
, 0);
2061 rt2x00_set_field32(®
, MM20_PROT_CFG_PROTECT_NAV
, 1);
2062 rt2x00_set_field32(®
, MM20_PROT_CFG_TX_OP_ALLOW_CCK
, 1);
2063 rt2x00_set_field32(®
, MM20_PROT_CFG_TX_OP_ALLOW_OFDM
, 1);
2064 rt2x00_set_field32(®
, MM20_PROT_CFG_TX_OP_ALLOW_MM20
, 1);
2065 rt2x00_set_field32(®
, MM20_PROT_CFG_TX_OP_ALLOW_MM40
, 0);
2066 rt2x00_set_field32(®
, MM20_PROT_CFG_TX_OP_ALLOW_GF20
, 1);
2067 rt2x00_set_field32(®
, MM20_PROT_CFG_TX_OP_ALLOW_GF40
, 0);
2068 rt2x00_set_field32(®
, MM20_PROT_CFG_RTS_TH_EN
, 0);
2069 rt2800_register_write(rt2x00dev
, MM20_PROT_CFG
, reg
);
2071 rt2800_register_read(rt2x00dev
, MM40_PROT_CFG
, ®
);
2072 rt2x00_set_field32(®
, MM40_PROT_CFG_PROTECT_RATE
, 0x4084);
2073 rt2x00_set_field32(®
, MM40_PROT_CFG_PROTECT_CTRL
, 0);
2074 rt2x00_set_field32(®
, MM40_PROT_CFG_PROTECT_NAV
, 1);
2075 rt2x00_set_field32(®
, MM40_PROT_CFG_TX_OP_ALLOW_CCK
, 1);
2076 rt2x00_set_field32(®
, MM40_PROT_CFG_TX_OP_ALLOW_OFDM
, 1);
2077 rt2x00_set_field32(®
, MM40_PROT_CFG_TX_OP_ALLOW_MM20
, 1);
2078 rt2x00_set_field32(®
, MM40_PROT_CFG_TX_OP_ALLOW_MM40
, 1);
2079 rt2x00_set_field32(®
, MM40_PROT_CFG_TX_OP_ALLOW_GF20
, 1);
2080 rt2x00_set_field32(®
, MM40_PROT_CFG_TX_OP_ALLOW_GF40
, 1);
2081 rt2x00_set_field32(®
, MM40_PROT_CFG_RTS_TH_EN
, 0);
2082 rt2800_register_write(rt2x00dev
, MM40_PROT_CFG
, reg
);
2084 rt2800_register_read(rt2x00dev
, GF20_PROT_CFG
, ®
);
2085 rt2x00_set_field32(®
, GF20_PROT_CFG_PROTECT_RATE
, 0x4004);
2086 rt2x00_set_field32(®
, GF20_PROT_CFG_PROTECT_CTRL
, 0);
2087 rt2x00_set_field32(®
, GF20_PROT_CFG_PROTECT_NAV
, 1);
2088 rt2x00_set_field32(®
, GF20_PROT_CFG_TX_OP_ALLOW_CCK
, 1);
2089 rt2x00_set_field32(®
, GF20_PROT_CFG_TX_OP_ALLOW_OFDM
, 1);
2090 rt2x00_set_field32(®
, GF20_PROT_CFG_TX_OP_ALLOW_MM20
, 1);
2091 rt2x00_set_field32(®
, GF20_PROT_CFG_TX_OP_ALLOW_MM40
, 0);
2092 rt2x00_set_field32(®
, GF20_PROT_CFG_TX_OP_ALLOW_GF20
, 1);
2093 rt2x00_set_field32(®
, GF20_PROT_CFG_TX_OP_ALLOW_GF40
, 0);
2094 rt2x00_set_field32(®
, GF20_PROT_CFG_RTS_TH_EN
, 0);
2095 rt2800_register_write(rt2x00dev
, GF20_PROT_CFG
, reg
);
2097 rt2800_register_read(rt2x00dev
, GF40_PROT_CFG
, ®
);
2098 rt2x00_set_field32(®
, GF40_PROT_CFG_PROTECT_RATE
, 0x4084);
2099 rt2x00_set_field32(®
, GF40_PROT_CFG_PROTECT_CTRL
, 0);
2100 rt2x00_set_field32(®
, GF40_PROT_CFG_PROTECT_NAV
, 1);
2101 rt2x00_set_field32(®
, GF40_PROT_CFG_TX_OP_ALLOW_CCK
, 1);
2102 rt2x00_set_field32(®
, GF40_PROT_CFG_TX_OP_ALLOW_OFDM
, 1);
2103 rt2x00_set_field32(®
, GF40_PROT_CFG_TX_OP_ALLOW_MM20
, 1);
2104 rt2x00_set_field32(®
, GF40_PROT_CFG_TX_OP_ALLOW_MM40
, 1);
2105 rt2x00_set_field32(®
, GF40_PROT_CFG_TX_OP_ALLOW_GF20
, 1);
2106 rt2x00_set_field32(®
, GF40_PROT_CFG_TX_OP_ALLOW_GF40
, 1);
2107 rt2x00_set_field32(®
, GF40_PROT_CFG_RTS_TH_EN
, 0);
2108 rt2800_register_write(rt2x00dev
, GF40_PROT_CFG
, reg
);
2110 if (rt2x00_is_usb(rt2x00dev
)) {
2111 rt2800_register_write(rt2x00dev
, PBF_CFG
, 0xf40006);
2113 rt2800_register_read(rt2x00dev
, WPDMA_GLO_CFG
, ®
);
2114 rt2x00_set_field32(®
, WPDMA_GLO_CFG_ENABLE_TX_DMA
, 0);
2115 rt2x00_set_field32(®
, WPDMA_GLO_CFG_TX_DMA_BUSY
, 0);
2116 rt2x00_set_field32(®
, WPDMA_GLO_CFG_ENABLE_RX_DMA
, 0);
2117 rt2x00_set_field32(®
, WPDMA_GLO_CFG_RX_DMA_BUSY
, 0);
2118 rt2x00_set_field32(®
, WPDMA_GLO_CFG_WP_DMA_BURST_SIZE
, 3);
2119 rt2x00_set_field32(®
, WPDMA_GLO_CFG_TX_WRITEBACK_DONE
, 0);
2120 rt2x00_set_field32(®
, WPDMA_GLO_CFG_BIG_ENDIAN
, 0);
2121 rt2x00_set_field32(®
, WPDMA_GLO_CFG_RX_HDR_SCATTER
, 0);
2122 rt2x00_set_field32(®
, WPDMA_GLO_CFG_HDR_SEG_LEN
, 0);
2123 rt2800_register_write(rt2x00dev
, WPDMA_GLO_CFG
, reg
);
2127 * The legacy driver also sets TXOP_CTRL_CFG_RESERVED_TRUN_EN to 1
2128 * although it is reserved.
2130 rt2800_register_read(rt2x00dev
, TXOP_CTRL_CFG
, ®
);
2131 rt2x00_set_field32(®
, TXOP_CTRL_CFG_TIMEOUT_TRUN_EN
, 1);
2132 rt2x00_set_field32(®
, TXOP_CTRL_CFG_AC_TRUN_EN
, 1);
2133 rt2x00_set_field32(®
, TXOP_CTRL_CFG_TXRATEGRP_TRUN_EN
, 1);
2134 rt2x00_set_field32(®
, TXOP_CTRL_CFG_USER_MODE_TRUN_EN
, 1);
2135 rt2x00_set_field32(®
, TXOP_CTRL_CFG_MIMO_PS_TRUN_EN
, 1);
2136 rt2x00_set_field32(®
, TXOP_CTRL_CFG_RESERVED_TRUN_EN
, 1);
2137 rt2x00_set_field32(®
, TXOP_CTRL_CFG_LSIG_TXOP_EN
, 0);
2138 rt2x00_set_field32(®
, TXOP_CTRL_CFG_EXT_CCA_EN
, 0);
2139 rt2x00_set_field32(®
, TXOP_CTRL_CFG_EXT_CCA_DLY
, 88);
2140 rt2x00_set_field32(®
, TXOP_CTRL_CFG_EXT_CWMIN
, 0);
2141 rt2800_register_write(rt2x00dev
, TXOP_CTRL_CFG
, reg
);
2143 rt2800_register_write(rt2x00dev
, TXOP_HLDR_ET
, 0x00000002);
2145 rt2800_register_read(rt2x00dev
, TX_RTS_CFG
, ®
);
2146 rt2x00_set_field32(®
, TX_RTS_CFG_AUTO_RTS_RETRY_LIMIT
, 32);
2147 rt2x00_set_field32(®
, TX_RTS_CFG_RTS_THRES
,
2148 IEEE80211_MAX_RTS_THRESHOLD
);
2149 rt2x00_set_field32(®
, TX_RTS_CFG_RTS_FBK_EN
, 0);
2150 rt2800_register_write(rt2x00dev
, TX_RTS_CFG
, reg
);
2152 rt2800_register_write(rt2x00dev
, EXP_ACK_TIME
, 0x002400ca);
2155 * Usually the CCK SIFS time should be set to 10 and the OFDM SIFS
2156 * time should be set to 16. However, the original Ralink driver uses
2157 * 16 for both and indeed using a value of 10 for CCK SIFS results in
2158 * connection problems with 11g + CTS protection. Hence, use the same
2159 * defaults as the Ralink driver: 16 for both, CCK and OFDM SIFS.
2161 rt2800_register_read(rt2x00dev
, XIFS_TIME_CFG
, ®
);
2162 rt2x00_set_field32(®
, XIFS_TIME_CFG_CCKM_SIFS_TIME
, 16);
2163 rt2x00_set_field32(®
, XIFS_TIME_CFG_OFDM_SIFS_TIME
, 16);
2164 rt2x00_set_field32(®
, XIFS_TIME_CFG_OFDM_XIFS_TIME
, 4);
2165 rt2x00_set_field32(®
, XIFS_TIME_CFG_EIFS
, 314);
2166 rt2x00_set_field32(®
, XIFS_TIME_CFG_BB_RXEND_ENABLE
, 1);
2167 rt2800_register_write(rt2x00dev
, XIFS_TIME_CFG
, reg
);
2169 rt2800_register_write(rt2x00dev
, PWR_PIN_CFG
, 0x00000003);
2172 * ASIC will keep garbage value after boot, clear encryption keys.
2174 for (i
= 0; i
< 4; i
++)
2175 rt2800_register_write(rt2x00dev
,
2176 SHARED_KEY_MODE_ENTRY(i
), 0);
2178 for (i
= 0; i
< 256; i
++) {
2179 static const u32 wcid
[2] = { 0xffffffff, 0x00ffffff };
2180 rt2800_register_multiwrite(rt2x00dev
, MAC_WCID_ENTRY(i
),
2181 wcid
, sizeof(wcid
));
2183 rt2800_register_write(rt2x00dev
, MAC_WCID_ATTR_ENTRY(i
), 1);
2184 rt2800_register_write(rt2x00dev
, MAC_IVEIV_ENTRY(i
), 0);
2190 rt2800_clear_beacon(rt2x00dev
, HW_BEACON_BASE0
);
2191 rt2800_clear_beacon(rt2x00dev
, HW_BEACON_BASE1
);
2192 rt2800_clear_beacon(rt2x00dev
, HW_BEACON_BASE2
);
2193 rt2800_clear_beacon(rt2x00dev
, HW_BEACON_BASE3
);
2194 rt2800_clear_beacon(rt2x00dev
, HW_BEACON_BASE4
);
2195 rt2800_clear_beacon(rt2x00dev
, HW_BEACON_BASE5
);
2196 rt2800_clear_beacon(rt2x00dev
, HW_BEACON_BASE6
);
2197 rt2800_clear_beacon(rt2x00dev
, HW_BEACON_BASE7
);
2199 if (rt2x00_is_usb(rt2x00dev
)) {
2200 rt2800_register_read(rt2x00dev
, US_CYC_CNT
, ®
);
2201 rt2x00_set_field32(®
, US_CYC_CNT_CLOCK_CYCLE
, 30);
2202 rt2800_register_write(rt2x00dev
, US_CYC_CNT
, reg
);
2205 rt2800_register_read(rt2x00dev
, HT_FBK_CFG0
, ®
);
2206 rt2x00_set_field32(®
, HT_FBK_CFG0_HTMCS0FBK
, 0);
2207 rt2x00_set_field32(®
, HT_FBK_CFG0_HTMCS1FBK
, 0);
2208 rt2x00_set_field32(®
, HT_FBK_CFG0_HTMCS2FBK
, 1);
2209 rt2x00_set_field32(®
, HT_FBK_CFG0_HTMCS3FBK
, 2);
2210 rt2x00_set_field32(®
, HT_FBK_CFG0_HTMCS4FBK
, 3);
2211 rt2x00_set_field32(®
, HT_FBK_CFG0_HTMCS5FBK
, 4);
2212 rt2x00_set_field32(®
, HT_FBK_CFG0_HTMCS6FBK
, 5);
2213 rt2x00_set_field32(®
, HT_FBK_CFG0_HTMCS7FBK
, 6);
2214 rt2800_register_write(rt2x00dev
, HT_FBK_CFG0
, reg
);
2216 rt2800_register_read(rt2x00dev
, HT_FBK_CFG1
, ®
);
2217 rt2x00_set_field32(®
, HT_FBK_CFG1_HTMCS8FBK
, 8);
2218 rt2x00_set_field32(®
, HT_FBK_CFG1_HTMCS9FBK
, 8);
2219 rt2x00_set_field32(®
, HT_FBK_CFG1_HTMCS10FBK
, 9);
2220 rt2x00_set_field32(®
, HT_FBK_CFG1_HTMCS11FBK
, 10);
2221 rt2x00_set_field32(®
, HT_FBK_CFG1_HTMCS12FBK
, 11);
2222 rt2x00_set_field32(®
, HT_FBK_CFG1_HTMCS13FBK
, 12);
2223 rt2x00_set_field32(®
, HT_FBK_CFG1_HTMCS14FBK
, 13);
2224 rt2x00_set_field32(®
, HT_FBK_CFG1_HTMCS15FBK
, 14);
2225 rt2800_register_write(rt2x00dev
, HT_FBK_CFG1
, reg
);
2227 rt2800_register_read(rt2x00dev
, LG_FBK_CFG0
, ®
);
2228 rt2x00_set_field32(®
, LG_FBK_CFG0_OFDMMCS0FBK
, 8);
2229 rt2x00_set_field32(®
, LG_FBK_CFG0_OFDMMCS1FBK
, 8);
2230 rt2x00_set_field32(®
, LG_FBK_CFG0_OFDMMCS2FBK
, 9);
2231 rt2x00_set_field32(®
, LG_FBK_CFG0_OFDMMCS3FBK
, 10);
2232 rt2x00_set_field32(®
, LG_FBK_CFG0_OFDMMCS4FBK
, 11);
2233 rt2x00_set_field32(®
, LG_FBK_CFG0_OFDMMCS5FBK
, 12);
2234 rt2x00_set_field32(®
, LG_FBK_CFG0_OFDMMCS6FBK
, 13);
2235 rt2x00_set_field32(®
, LG_FBK_CFG0_OFDMMCS7FBK
, 14);
2236 rt2800_register_write(rt2x00dev
, LG_FBK_CFG0
, reg
);
2238 rt2800_register_read(rt2x00dev
, LG_FBK_CFG1
, ®
);
2239 rt2x00_set_field32(®
, LG_FBK_CFG0_CCKMCS0FBK
, 0);
2240 rt2x00_set_field32(®
, LG_FBK_CFG0_CCKMCS1FBK
, 0);
2241 rt2x00_set_field32(®
, LG_FBK_CFG0_CCKMCS2FBK
, 1);
2242 rt2x00_set_field32(®
, LG_FBK_CFG0_CCKMCS3FBK
, 2);
2243 rt2800_register_write(rt2x00dev
, LG_FBK_CFG1
, reg
);
2246 * Do not force the BA window size, we use the TXWI to set it
2248 rt2800_register_read(rt2x00dev
, AMPDU_BA_WINSIZE
, ®
);
2249 rt2x00_set_field32(®
, AMPDU_BA_WINSIZE_FORCE_WINSIZE_ENABLE
, 0);
2250 rt2x00_set_field32(®
, AMPDU_BA_WINSIZE_FORCE_WINSIZE
, 0);
2251 rt2800_register_write(rt2x00dev
, AMPDU_BA_WINSIZE
, reg
);
2254 * We must clear the error counters.
2255 * These registers are cleared on read,
2256 * so we may pass a useless variable to store the value.
2258 rt2800_register_read(rt2x00dev
, RX_STA_CNT0
, ®
);
2259 rt2800_register_read(rt2x00dev
, RX_STA_CNT1
, ®
);
2260 rt2800_register_read(rt2x00dev
, RX_STA_CNT2
, ®
);
2261 rt2800_register_read(rt2x00dev
, TX_STA_CNT0
, ®
);
2262 rt2800_register_read(rt2x00dev
, TX_STA_CNT1
, ®
);
2263 rt2800_register_read(rt2x00dev
, TX_STA_CNT2
, ®
);
2266 * Setup leadtime for pre tbtt interrupt to 6ms
2268 rt2800_register_read(rt2x00dev
, INT_TIMER_CFG
, ®
);
2269 rt2x00_set_field32(®
, INT_TIMER_CFG_PRE_TBTT_TIMER
, 6 << 4);
2270 rt2800_register_write(rt2x00dev
, INT_TIMER_CFG
, reg
);
2273 * Set up channel statistics timer
2275 rt2800_register_read(rt2x00dev
, CH_TIME_CFG
, ®
);
2276 rt2x00_set_field32(®
, CH_TIME_CFG_EIFS_BUSY
, 1);
2277 rt2x00_set_field32(®
, CH_TIME_CFG_NAV_BUSY
, 1);
2278 rt2x00_set_field32(®
, CH_TIME_CFG_RX_BUSY
, 1);
2279 rt2x00_set_field32(®
, CH_TIME_CFG_TX_BUSY
, 1);
2280 rt2x00_set_field32(®
, CH_TIME_CFG_TMR_EN
, 1);
2281 rt2800_register_write(rt2x00dev
, CH_TIME_CFG
, reg
);
2286 static int rt2800_wait_bbp_rf_ready(struct rt2x00_dev
*rt2x00dev
)
2291 for (i
= 0; i
< REGISTER_BUSY_COUNT
; i
++) {
2292 rt2800_register_read(rt2x00dev
, MAC_STATUS_CFG
, ®
);
2293 if (!rt2x00_get_field32(reg
, MAC_STATUS_CFG_BBP_RF_BUSY
))
2296 udelay(REGISTER_BUSY_DELAY
);
2299 ERROR(rt2x00dev
, "BBP/RF register access failed, aborting.\n");
2303 static int rt2800_wait_bbp_ready(struct rt2x00_dev
*rt2x00dev
)
2309 * BBP was enabled after firmware was loaded,
2310 * but we need to reactivate it now.
2312 rt2800_register_write(rt2x00dev
, H2M_BBP_AGENT
, 0);
2313 rt2800_register_write(rt2x00dev
, H2M_MAILBOX_CSR
, 0);
2316 for (i
= 0; i
< REGISTER_BUSY_COUNT
; i
++) {
2317 rt2800_bbp_read(rt2x00dev
, 0, &value
);
2318 if ((value
!= 0xff) && (value
!= 0x00))
2320 udelay(REGISTER_BUSY_DELAY
);
2323 ERROR(rt2x00dev
, "BBP register access failed, aborting.\n");
2327 static int rt2800_init_bbp(struct rt2x00_dev
*rt2x00dev
)
2334 if (unlikely(rt2800_wait_bbp_rf_ready(rt2x00dev
) ||
2335 rt2800_wait_bbp_ready(rt2x00dev
)))
2338 if (rt2800_is_305x_soc(rt2x00dev
))
2339 rt2800_bbp_write(rt2x00dev
, 31, 0x08);
2341 rt2800_bbp_write(rt2x00dev
, 65, 0x2c);
2342 rt2800_bbp_write(rt2x00dev
, 66, 0x38);
2344 if (rt2x00_rt_rev(rt2x00dev
, RT2860
, REV_RT2860C
)) {
2345 rt2800_bbp_write(rt2x00dev
, 69, 0x16);
2346 rt2800_bbp_write(rt2x00dev
, 73, 0x12);
2348 rt2800_bbp_write(rt2x00dev
, 69, 0x12);
2349 rt2800_bbp_write(rt2x00dev
, 73, 0x10);
2352 rt2800_bbp_write(rt2x00dev
, 70, 0x0a);
2354 if (rt2x00_rt(rt2x00dev
, RT3070
) ||
2355 rt2x00_rt(rt2x00dev
, RT3071
) ||
2356 rt2x00_rt(rt2x00dev
, RT3090
) ||
2357 rt2x00_rt(rt2x00dev
, RT3390
)) {
2358 rt2800_bbp_write(rt2x00dev
, 79, 0x13);
2359 rt2800_bbp_write(rt2x00dev
, 80, 0x05);
2360 rt2800_bbp_write(rt2x00dev
, 81, 0x33);
2361 } else if (rt2800_is_305x_soc(rt2x00dev
)) {
2362 rt2800_bbp_write(rt2x00dev
, 78, 0x0e);
2363 rt2800_bbp_write(rt2x00dev
, 80, 0x08);
2365 rt2800_bbp_write(rt2x00dev
, 81, 0x37);
2368 rt2800_bbp_write(rt2x00dev
, 82, 0x62);
2369 rt2800_bbp_write(rt2x00dev
, 83, 0x6a);
2371 if (rt2x00_rt_rev(rt2x00dev
, RT2860
, REV_RT2860D
))
2372 rt2800_bbp_write(rt2x00dev
, 84, 0x19);
2374 rt2800_bbp_write(rt2x00dev
, 84, 0x99);
2376 rt2800_bbp_write(rt2x00dev
, 86, 0x00);
2377 rt2800_bbp_write(rt2x00dev
, 91, 0x04);
2378 rt2800_bbp_write(rt2x00dev
, 92, 0x00);
2380 if (rt2x00_rt_rev_gte(rt2x00dev
, RT3070
, REV_RT3070F
) ||
2381 rt2x00_rt_rev_gte(rt2x00dev
, RT3071
, REV_RT3071E
) ||
2382 rt2x00_rt_rev_gte(rt2x00dev
, RT3090
, REV_RT3090E
) ||
2383 rt2x00_rt_rev_gte(rt2x00dev
, RT3390
, REV_RT3390E
) ||
2384 rt2800_is_305x_soc(rt2x00dev
))
2385 rt2800_bbp_write(rt2x00dev
, 103, 0xc0);
2387 rt2800_bbp_write(rt2x00dev
, 103, 0x00);
2389 if (rt2800_is_305x_soc(rt2x00dev
))
2390 rt2800_bbp_write(rt2x00dev
, 105, 0x01);
2392 rt2800_bbp_write(rt2x00dev
, 105, 0x05);
2393 rt2800_bbp_write(rt2x00dev
, 106, 0x35);
2395 if (rt2x00_rt(rt2x00dev
, RT3071
) ||
2396 rt2x00_rt(rt2x00dev
, RT3090
) ||
2397 rt2x00_rt(rt2x00dev
, RT3390
)) {
2398 rt2800_bbp_read(rt2x00dev
, 138, &value
);
2400 rt2x00_eeprom_read(rt2x00dev
, EEPROM_NIC_CONF0
, &eeprom
);
2401 if (rt2x00_get_field16(eeprom
, EEPROM_NIC_CONF0_TXPATH
) == 1)
2403 if (rt2x00_get_field16(eeprom
, EEPROM_NIC_CONF0_RXPATH
) == 1)
2406 rt2800_bbp_write(rt2x00dev
, 138, value
);
2410 for (i
= 0; i
< EEPROM_BBP_SIZE
; i
++) {
2411 rt2x00_eeprom_read(rt2x00dev
, EEPROM_BBP_START
+ i
, &eeprom
);
2413 if (eeprom
!= 0xffff && eeprom
!= 0x0000) {
2414 reg_id
= rt2x00_get_field16(eeprom
, EEPROM_BBP_REG_ID
);
2415 value
= rt2x00_get_field16(eeprom
, EEPROM_BBP_VALUE
);
2416 rt2800_bbp_write(rt2x00dev
, reg_id
, value
);
2423 static u8
rt2800_init_rx_filter(struct rt2x00_dev
*rt2x00dev
,
2424 bool bw40
, u8 rfcsr24
, u8 filter_target
)
2433 rt2800_rfcsr_write(rt2x00dev
, 24, rfcsr24
);
2435 rt2800_bbp_read(rt2x00dev
, 4, &bbp
);
2436 rt2x00_set_field8(&bbp
, BBP4_BANDWIDTH
, 2 * bw40
);
2437 rt2800_bbp_write(rt2x00dev
, 4, bbp
);
2439 rt2800_rfcsr_read(rt2x00dev
, 22, &rfcsr
);
2440 rt2x00_set_field8(&rfcsr
, RFCSR22_BASEBAND_LOOPBACK
, 1);
2441 rt2800_rfcsr_write(rt2x00dev
, 22, rfcsr
);
2444 * Set power & frequency of passband test tone
2446 rt2800_bbp_write(rt2x00dev
, 24, 0);
2448 for (i
= 0; i
< 100; i
++) {
2449 rt2800_bbp_write(rt2x00dev
, 25, 0x90);
2452 rt2800_bbp_read(rt2x00dev
, 55, &passband
);
2458 * Set power & frequency of stopband test tone
2460 rt2800_bbp_write(rt2x00dev
, 24, 0x06);
2462 for (i
= 0; i
< 100; i
++) {
2463 rt2800_bbp_write(rt2x00dev
, 25, 0x90);
2466 rt2800_bbp_read(rt2x00dev
, 55, &stopband
);
2468 if ((passband
- stopband
) <= filter_target
) {
2470 overtuned
+= ((passband
- stopband
) == filter_target
);
2474 rt2800_rfcsr_write(rt2x00dev
, 24, rfcsr24
);
2477 rfcsr24
-= !!overtuned
;
2479 rt2800_rfcsr_write(rt2x00dev
, 24, rfcsr24
);
2483 static int rt2800_init_rfcsr(struct rt2x00_dev
*rt2x00dev
)
2490 if (!rt2x00_rt(rt2x00dev
, RT3070
) &&
2491 !rt2x00_rt(rt2x00dev
, RT3071
) &&
2492 !rt2x00_rt(rt2x00dev
, RT3090
) &&
2493 !rt2x00_rt(rt2x00dev
, RT3390
) &&
2494 !rt2800_is_305x_soc(rt2x00dev
))
2498 * Init RF calibration.
2500 rt2800_rfcsr_read(rt2x00dev
, 30, &rfcsr
);
2501 rt2x00_set_field8(&rfcsr
, RFCSR30_RF_CALIBRATION
, 1);
2502 rt2800_rfcsr_write(rt2x00dev
, 30, rfcsr
);
2504 rt2x00_set_field8(&rfcsr
, RFCSR30_RF_CALIBRATION
, 0);
2505 rt2800_rfcsr_write(rt2x00dev
, 30, rfcsr
);
2507 if (rt2x00_rt(rt2x00dev
, RT3070
) ||
2508 rt2x00_rt(rt2x00dev
, RT3071
) ||
2509 rt2x00_rt(rt2x00dev
, RT3090
)) {
2510 rt2800_rfcsr_write(rt2x00dev
, 4, 0x40);
2511 rt2800_rfcsr_write(rt2x00dev
, 5, 0x03);
2512 rt2800_rfcsr_write(rt2x00dev
, 6, 0x02);
2513 rt2800_rfcsr_write(rt2x00dev
, 7, 0x70);
2514 rt2800_rfcsr_write(rt2x00dev
, 9, 0x0f);
2515 rt2800_rfcsr_write(rt2x00dev
, 10, 0x41);
2516 rt2800_rfcsr_write(rt2x00dev
, 11, 0x21);
2517 rt2800_rfcsr_write(rt2x00dev
, 12, 0x7b);
2518 rt2800_rfcsr_write(rt2x00dev
, 14, 0x90);
2519 rt2800_rfcsr_write(rt2x00dev
, 15, 0x58);
2520 rt2800_rfcsr_write(rt2x00dev
, 16, 0xb3);
2521 rt2800_rfcsr_write(rt2x00dev
, 17, 0x92);
2522 rt2800_rfcsr_write(rt2x00dev
, 18, 0x2c);
2523 rt2800_rfcsr_write(rt2x00dev
, 19, 0x02);
2524 rt2800_rfcsr_write(rt2x00dev
, 20, 0xba);
2525 rt2800_rfcsr_write(rt2x00dev
, 21, 0xdb);
2526 rt2800_rfcsr_write(rt2x00dev
, 24, 0x16);
2527 rt2800_rfcsr_write(rt2x00dev
, 25, 0x01);
2528 rt2800_rfcsr_write(rt2x00dev
, 29, 0x1f);
2529 } else if (rt2x00_rt(rt2x00dev
, RT3390
)) {
2530 rt2800_rfcsr_write(rt2x00dev
, 0, 0xa0);
2531 rt2800_rfcsr_write(rt2x00dev
, 1, 0xe1);
2532 rt2800_rfcsr_write(rt2x00dev
, 2, 0xf1);
2533 rt2800_rfcsr_write(rt2x00dev
, 3, 0x62);
2534 rt2800_rfcsr_write(rt2x00dev
, 4, 0x40);
2535 rt2800_rfcsr_write(rt2x00dev
, 5, 0x8b);
2536 rt2800_rfcsr_write(rt2x00dev
, 6, 0x42);
2537 rt2800_rfcsr_write(rt2x00dev
, 7, 0x34);
2538 rt2800_rfcsr_write(rt2x00dev
, 8, 0x00);
2539 rt2800_rfcsr_write(rt2x00dev
, 9, 0xc0);
2540 rt2800_rfcsr_write(rt2x00dev
, 10, 0x61);
2541 rt2800_rfcsr_write(rt2x00dev
, 11, 0x21);
2542 rt2800_rfcsr_write(rt2x00dev
, 12, 0x3b);
2543 rt2800_rfcsr_write(rt2x00dev
, 13, 0xe0);
2544 rt2800_rfcsr_write(rt2x00dev
, 14, 0x90);
2545 rt2800_rfcsr_write(rt2x00dev
, 15, 0x53);
2546 rt2800_rfcsr_write(rt2x00dev
, 16, 0xe0);
2547 rt2800_rfcsr_write(rt2x00dev
, 17, 0x94);
2548 rt2800_rfcsr_write(rt2x00dev
, 18, 0x5c);
2549 rt2800_rfcsr_write(rt2x00dev
, 19, 0x4a);
2550 rt2800_rfcsr_write(rt2x00dev
, 20, 0xb2);
2551 rt2800_rfcsr_write(rt2x00dev
, 21, 0xf6);
2552 rt2800_rfcsr_write(rt2x00dev
, 22, 0x00);
2553 rt2800_rfcsr_write(rt2x00dev
, 23, 0x14);
2554 rt2800_rfcsr_write(rt2x00dev
, 24, 0x08);
2555 rt2800_rfcsr_write(rt2x00dev
, 25, 0x3d);
2556 rt2800_rfcsr_write(rt2x00dev
, 26, 0x85);
2557 rt2800_rfcsr_write(rt2x00dev
, 27, 0x00);
2558 rt2800_rfcsr_write(rt2x00dev
, 28, 0x41);
2559 rt2800_rfcsr_write(rt2x00dev
, 29, 0x8f);
2560 rt2800_rfcsr_write(rt2x00dev
, 30, 0x20);
2561 rt2800_rfcsr_write(rt2x00dev
, 31, 0x0f);
2562 } else if (rt2800_is_305x_soc(rt2x00dev
)) {
2563 rt2800_rfcsr_write(rt2x00dev
, 0, 0x50);
2564 rt2800_rfcsr_write(rt2x00dev
, 1, 0x01);
2565 rt2800_rfcsr_write(rt2x00dev
, 2, 0xf7);
2566 rt2800_rfcsr_write(rt2x00dev
, 3, 0x75);
2567 rt2800_rfcsr_write(rt2x00dev
, 4, 0x40);
2568 rt2800_rfcsr_write(rt2x00dev
, 5, 0x03);
2569 rt2800_rfcsr_write(rt2x00dev
, 6, 0x02);
2570 rt2800_rfcsr_write(rt2x00dev
, 7, 0x50);
2571 rt2800_rfcsr_write(rt2x00dev
, 8, 0x39);
2572 rt2800_rfcsr_write(rt2x00dev
, 9, 0x0f);
2573 rt2800_rfcsr_write(rt2x00dev
, 10, 0x60);
2574 rt2800_rfcsr_write(rt2x00dev
, 11, 0x21);
2575 rt2800_rfcsr_write(rt2x00dev
, 12, 0x75);
2576 rt2800_rfcsr_write(rt2x00dev
, 13, 0x75);
2577 rt2800_rfcsr_write(rt2x00dev
, 14, 0x90);
2578 rt2800_rfcsr_write(rt2x00dev
, 15, 0x58);
2579 rt2800_rfcsr_write(rt2x00dev
, 16, 0xb3);
2580 rt2800_rfcsr_write(rt2x00dev
, 17, 0x92);
2581 rt2800_rfcsr_write(rt2x00dev
, 18, 0x2c);
2582 rt2800_rfcsr_write(rt2x00dev
, 19, 0x02);
2583 rt2800_rfcsr_write(rt2x00dev
, 20, 0xba);
2584 rt2800_rfcsr_write(rt2x00dev
, 21, 0xdb);
2585 rt2800_rfcsr_write(rt2x00dev
, 22, 0x00);
2586 rt2800_rfcsr_write(rt2x00dev
, 23, 0x31);
2587 rt2800_rfcsr_write(rt2x00dev
, 24, 0x08);
2588 rt2800_rfcsr_write(rt2x00dev
, 25, 0x01);
2589 rt2800_rfcsr_write(rt2x00dev
, 26, 0x25);
2590 rt2800_rfcsr_write(rt2x00dev
, 27, 0x23);
2591 rt2800_rfcsr_write(rt2x00dev
, 28, 0x13);
2592 rt2800_rfcsr_write(rt2x00dev
, 29, 0x83);
2593 rt2800_rfcsr_write(rt2x00dev
, 30, 0x00);
2594 rt2800_rfcsr_write(rt2x00dev
, 31, 0x00);
2598 if (rt2x00_rt_rev_lt(rt2x00dev
, RT3070
, REV_RT3070F
)) {
2599 rt2800_register_read(rt2x00dev
, LDO_CFG0
, ®
);
2600 rt2x00_set_field32(®
, LDO_CFG0_BGSEL
, 1);
2601 rt2x00_set_field32(®
, LDO_CFG0_LDO_CORE_VLEVEL
, 3);
2602 rt2800_register_write(rt2x00dev
, LDO_CFG0
, reg
);
2603 } else if (rt2x00_rt(rt2x00dev
, RT3071
) ||
2604 rt2x00_rt(rt2x00dev
, RT3090
)) {
2605 rt2800_rfcsr_read(rt2x00dev
, 6, &rfcsr
);
2606 rt2x00_set_field8(&rfcsr
, RFCSR6_R2
, 1);
2607 rt2800_rfcsr_write(rt2x00dev
, 6, rfcsr
);
2609 rt2800_rfcsr_write(rt2x00dev
, 31, 0x14);
2611 rt2800_register_read(rt2x00dev
, LDO_CFG0
, ®
);
2612 rt2x00_set_field32(®
, LDO_CFG0_BGSEL
, 1);
2613 if (rt2x00_rt_rev_lt(rt2x00dev
, RT3071
, REV_RT3071E
) ||
2614 rt2x00_rt_rev_lt(rt2x00dev
, RT3090
, REV_RT3090E
)) {
2615 rt2x00_eeprom_read(rt2x00dev
, EEPROM_NIC_CONF1
, &eeprom
);
2616 if (rt2x00_get_field16(eeprom
, EEPROM_NIC_CONF1_DAC_TEST
))
2617 rt2x00_set_field32(®
, LDO_CFG0_LDO_CORE_VLEVEL
, 3);
2619 rt2x00_set_field32(®
, LDO_CFG0_LDO_CORE_VLEVEL
, 0);
2621 rt2800_register_write(rt2x00dev
, LDO_CFG0
, reg
);
2622 } else if (rt2x00_rt(rt2x00dev
, RT3390
)) {
2623 rt2800_register_read(rt2x00dev
, GPIO_SWITCH
, ®
);
2624 rt2x00_set_field32(®
, GPIO_SWITCH_5
, 0);
2625 rt2800_register_write(rt2x00dev
, GPIO_SWITCH
, reg
);
2629 * Set RX Filter calibration for 20MHz and 40MHz
2631 if (rt2x00_rt(rt2x00dev
, RT3070
)) {
2632 rt2x00dev
->calibration
[0] =
2633 rt2800_init_rx_filter(rt2x00dev
, false, 0x07, 0x16);
2634 rt2x00dev
->calibration
[1] =
2635 rt2800_init_rx_filter(rt2x00dev
, true, 0x27, 0x19);
2636 } else if (rt2x00_rt(rt2x00dev
, RT3071
) ||
2637 rt2x00_rt(rt2x00dev
, RT3090
) ||
2638 rt2x00_rt(rt2x00dev
, RT3390
)) {
2639 rt2x00dev
->calibration
[0] =
2640 rt2800_init_rx_filter(rt2x00dev
, false, 0x07, 0x13);
2641 rt2x00dev
->calibration
[1] =
2642 rt2800_init_rx_filter(rt2x00dev
, true, 0x27, 0x15);
2646 * Set back to initial state
2648 rt2800_bbp_write(rt2x00dev
, 24, 0);
2650 rt2800_rfcsr_read(rt2x00dev
, 22, &rfcsr
);
2651 rt2x00_set_field8(&rfcsr
, RFCSR22_BASEBAND_LOOPBACK
, 0);
2652 rt2800_rfcsr_write(rt2x00dev
, 22, rfcsr
);
2655 * set BBP back to BW20
2657 rt2800_bbp_read(rt2x00dev
, 4, &bbp
);
2658 rt2x00_set_field8(&bbp
, BBP4_BANDWIDTH
, 0);
2659 rt2800_bbp_write(rt2x00dev
, 4, bbp
);
2661 if (rt2x00_rt_rev_lt(rt2x00dev
, RT3070
, REV_RT3070F
) ||
2662 rt2x00_rt_rev_lt(rt2x00dev
, RT3071
, REV_RT3071E
) ||
2663 rt2x00_rt_rev_lt(rt2x00dev
, RT3090
, REV_RT3090E
) ||
2664 rt2x00_rt_rev_lt(rt2x00dev
, RT3390
, REV_RT3390E
))
2665 rt2800_rfcsr_write(rt2x00dev
, 27, 0x03);
2667 rt2800_register_read(rt2x00dev
, OPT_14_CSR
, ®
);
2668 rt2x00_set_field32(®
, OPT_14_CSR_BIT0
, 1);
2669 rt2800_register_write(rt2x00dev
, OPT_14_CSR
, reg
);
2671 rt2800_rfcsr_read(rt2x00dev
, 17, &rfcsr
);
2672 rt2x00_set_field8(&rfcsr
, RFCSR17_TX_LO1_EN
, 0);
2673 if (rt2x00_rt_rev_lt(rt2x00dev
, RT3071
, REV_RT3071E
) ||
2674 rt2x00_rt_rev_lt(rt2x00dev
, RT3090
, REV_RT3090E
) ||
2675 rt2x00_rt_rev_lt(rt2x00dev
, RT3390
, REV_RT3390E
)) {
2676 if (test_bit(CONFIG_EXTERNAL_LNA_BG
, &rt2x00dev
->flags
))
2677 rt2x00_set_field8(&rfcsr
, RFCSR17_R
, 1);
2679 rt2x00_eeprom_read(rt2x00dev
, EEPROM_TXMIXER_GAIN_BG
, &eeprom
);
2680 if (rt2x00_get_field16(eeprom
, EEPROM_TXMIXER_GAIN_BG_VAL
) >= 1)
2681 rt2x00_set_field8(&rfcsr
, RFCSR17_TXMIXER_GAIN
,
2682 rt2x00_get_field16(eeprom
,
2683 EEPROM_TXMIXER_GAIN_BG_VAL
));
2684 rt2800_rfcsr_write(rt2x00dev
, 17, rfcsr
);
2686 if (rt2x00_rt(rt2x00dev
, RT3090
)) {
2687 rt2800_bbp_read(rt2x00dev
, 138, &bbp
);
2689 rt2x00_eeprom_read(rt2x00dev
, EEPROM_NIC_CONF0
, &eeprom
);
2690 if (rt2x00_get_field16(eeprom
, EEPROM_NIC_CONF0_RXPATH
) == 1)
2691 rt2x00_set_field8(&bbp
, BBP138_RX_ADC1
, 0);
2692 if (rt2x00_get_field16(eeprom
, EEPROM_NIC_CONF0_TXPATH
) == 1)
2693 rt2x00_set_field8(&bbp
, BBP138_TX_DAC1
, 1);
2695 rt2800_bbp_write(rt2x00dev
, 138, bbp
);
2698 if (rt2x00_rt(rt2x00dev
, RT3071
) ||
2699 rt2x00_rt(rt2x00dev
, RT3090
) ||
2700 rt2x00_rt(rt2x00dev
, RT3390
)) {
2701 rt2800_rfcsr_read(rt2x00dev
, 1, &rfcsr
);
2702 rt2x00_set_field8(&rfcsr
, RFCSR1_RF_BLOCK_EN
, 1);
2703 rt2x00_set_field8(&rfcsr
, RFCSR1_RX0_PD
, 0);
2704 rt2x00_set_field8(&rfcsr
, RFCSR1_TX0_PD
, 0);
2705 rt2x00_set_field8(&rfcsr
, RFCSR1_RX1_PD
, 1);
2706 rt2x00_set_field8(&rfcsr
, RFCSR1_TX1_PD
, 1);
2707 rt2800_rfcsr_write(rt2x00dev
, 1, rfcsr
);
2709 rt2800_rfcsr_read(rt2x00dev
, 15, &rfcsr
);
2710 rt2x00_set_field8(&rfcsr
, RFCSR15_TX_LO2_EN
, 0);
2711 rt2800_rfcsr_write(rt2x00dev
, 15, rfcsr
);
2713 rt2800_rfcsr_read(rt2x00dev
, 20, &rfcsr
);
2714 rt2x00_set_field8(&rfcsr
, RFCSR20_RX_LO1_EN
, 0);
2715 rt2800_rfcsr_write(rt2x00dev
, 20, rfcsr
);
2717 rt2800_rfcsr_read(rt2x00dev
, 21, &rfcsr
);
2718 rt2x00_set_field8(&rfcsr
, RFCSR21_RX_LO2_EN
, 0);
2719 rt2800_rfcsr_write(rt2x00dev
, 21, rfcsr
);
2722 if (rt2x00_rt(rt2x00dev
, RT3070
) || rt2x00_rt(rt2x00dev
, RT3071
)) {
2723 rt2800_rfcsr_read(rt2x00dev
, 27, &rfcsr
);
2724 if (rt2x00_rt_rev_lt(rt2x00dev
, RT3070
, REV_RT3070F
) ||
2725 rt2x00_rt_rev_lt(rt2x00dev
, RT3071
, REV_RT3071E
))
2726 rt2x00_set_field8(&rfcsr
, RFCSR27_R1
, 3);
2728 rt2x00_set_field8(&rfcsr
, RFCSR27_R1
, 0);
2729 rt2x00_set_field8(&rfcsr
, RFCSR27_R2
, 0);
2730 rt2x00_set_field8(&rfcsr
, RFCSR27_R3
, 0);
2731 rt2x00_set_field8(&rfcsr
, RFCSR27_R4
, 0);
2732 rt2800_rfcsr_write(rt2x00dev
, 27, rfcsr
);
2738 int rt2800_enable_radio(struct rt2x00_dev
*rt2x00dev
)
2744 * Initialize all registers.
2746 if (unlikely(rt2800_wait_wpdma_ready(rt2x00dev
) ||
2747 rt2800_init_registers(rt2x00dev
) ||
2748 rt2800_init_bbp(rt2x00dev
) ||
2749 rt2800_init_rfcsr(rt2x00dev
)))
2753 * Send signal to firmware during boot time.
2755 rt2800_mcu_request(rt2x00dev
, MCU_BOOT_SIGNAL
, 0, 0, 0);
2757 if (rt2x00_is_usb(rt2x00dev
) &&
2758 (rt2x00_rt(rt2x00dev
, RT3070
) ||
2759 rt2x00_rt(rt2x00dev
, RT3071
) ||
2760 rt2x00_rt(rt2x00dev
, RT3572
))) {
2762 rt2800_mcu_request(rt2x00dev
, MCU_CURRENT
, 0, 0, 0);
2769 rt2800_register_read(rt2x00dev
, MAC_SYS_CTRL
, ®
);
2770 rt2x00_set_field32(®
, MAC_SYS_CTRL_ENABLE_TX
, 1);
2771 rt2x00_set_field32(®
, MAC_SYS_CTRL_ENABLE_RX
, 0);
2772 rt2800_register_write(rt2x00dev
, MAC_SYS_CTRL
, reg
);
2776 rt2800_register_read(rt2x00dev
, WPDMA_GLO_CFG
, ®
);
2777 rt2x00_set_field32(®
, WPDMA_GLO_CFG_ENABLE_TX_DMA
, 1);
2778 rt2x00_set_field32(®
, WPDMA_GLO_CFG_ENABLE_RX_DMA
, 1);
2779 rt2x00_set_field32(®
, WPDMA_GLO_CFG_WP_DMA_BURST_SIZE
, 2);
2780 rt2x00_set_field32(®
, WPDMA_GLO_CFG_TX_WRITEBACK_DONE
, 1);
2781 rt2800_register_write(rt2x00dev
, WPDMA_GLO_CFG
, reg
);
2783 rt2800_register_read(rt2x00dev
, MAC_SYS_CTRL
, ®
);
2784 rt2x00_set_field32(®
, MAC_SYS_CTRL_ENABLE_TX
, 1);
2785 rt2x00_set_field32(®
, MAC_SYS_CTRL_ENABLE_RX
, 1);
2786 rt2800_register_write(rt2x00dev
, MAC_SYS_CTRL
, reg
);
2789 * Initialize LED control
2791 rt2x00_eeprom_read(rt2x00dev
, EEPROM_LED_AG_CONF
, &word
);
2792 rt2800_mcu_request(rt2x00dev
, MCU_LED_AG_CONF
, 0xff,
2793 word
& 0xff, (word
>> 8) & 0xff);
2795 rt2x00_eeprom_read(rt2x00dev
, EEPROM_LED_ACT_CONF
, &word
);
2796 rt2800_mcu_request(rt2x00dev
, MCU_LED_ACT_CONF
, 0xff,
2797 word
& 0xff, (word
>> 8) & 0xff);
2799 rt2x00_eeprom_read(rt2x00dev
, EEPROM_LED_POLARITY
, &word
);
2800 rt2800_mcu_request(rt2x00dev
, MCU_LED_LED_POLARITY
, 0xff,
2801 word
& 0xff, (word
>> 8) & 0xff);
2805 EXPORT_SYMBOL_GPL(rt2800_enable_radio
);
2807 void rt2800_disable_radio(struct rt2x00_dev
*rt2x00dev
)
2811 rt2800_register_read(rt2x00dev
, WPDMA_GLO_CFG
, ®
);
2812 rt2x00_set_field32(®
, WPDMA_GLO_CFG_ENABLE_TX_DMA
, 0);
2813 rt2x00_set_field32(®
, WPDMA_GLO_CFG_TX_DMA_BUSY
, 0);
2814 rt2x00_set_field32(®
, WPDMA_GLO_CFG_ENABLE_RX_DMA
, 0);
2815 rt2x00_set_field32(®
, WPDMA_GLO_CFG_RX_DMA_BUSY
, 0);
2816 rt2x00_set_field32(®
, WPDMA_GLO_CFG_TX_WRITEBACK_DONE
, 1);
2817 rt2800_register_write(rt2x00dev
, WPDMA_GLO_CFG
, reg
);
2819 /* Wait for DMA, ignore error */
2820 rt2800_wait_wpdma_ready(rt2x00dev
);
2822 rt2800_register_read(rt2x00dev
, MAC_SYS_CTRL
, ®
);
2823 rt2x00_set_field32(®
, MAC_SYS_CTRL_ENABLE_TX
, 0);
2824 rt2x00_set_field32(®
, MAC_SYS_CTRL_ENABLE_RX
, 0);
2825 rt2800_register_write(rt2x00dev
, MAC_SYS_CTRL
, reg
);
2827 rt2800_register_write(rt2x00dev
, PWR_PIN_CFG
, 0);
2828 rt2800_register_write(rt2x00dev
, TX_PIN_CFG
, 0);
2830 EXPORT_SYMBOL_GPL(rt2800_disable_radio
);
2832 int rt2800_efuse_detect(struct rt2x00_dev
*rt2x00dev
)
2836 rt2800_register_read(rt2x00dev
, EFUSE_CTRL
, ®
);
2838 return rt2x00_get_field32(reg
, EFUSE_CTRL_PRESENT
);
2840 EXPORT_SYMBOL_GPL(rt2800_efuse_detect
);
2842 static void rt2800_efuse_read(struct rt2x00_dev
*rt2x00dev
, unsigned int i
)
2846 mutex_lock(&rt2x00dev
->csr_mutex
);
2848 rt2800_register_read_lock(rt2x00dev
, EFUSE_CTRL
, ®
);
2849 rt2x00_set_field32(®
, EFUSE_CTRL_ADDRESS_IN
, i
);
2850 rt2x00_set_field32(®
, EFUSE_CTRL_MODE
, 0);
2851 rt2x00_set_field32(®
, EFUSE_CTRL_KICK
, 1);
2852 rt2800_register_write_lock(rt2x00dev
, EFUSE_CTRL
, reg
);
2854 /* Wait until the EEPROM has been loaded */
2855 rt2800_regbusy_read(rt2x00dev
, EFUSE_CTRL
, EFUSE_CTRL_KICK
, ®
);
2857 /* Apparently the data is read from end to start */
2858 rt2800_register_read_lock(rt2x00dev
, EFUSE_DATA3
,
2859 (u32
*)&rt2x00dev
->eeprom
[i
]);
2860 rt2800_register_read_lock(rt2x00dev
, EFUSE_DATA2
,
2861 (u32
*)&rt2x00dev
->eeprom
[i
+ 2]);
2862 rt2800_register_read_lock(rt2x00dev
, EFUSE_DATA1
,
2863 (u32
*)&rt2x00dev
->eeprom
[i
+ 4]);
2864 rt2800_register_read_lock(rt2x00dev
, EFUSE_DATA0
,
2865 (u32
*)&rt2x00dev
->eeprom
[i
+ 6]);
2867 mutex_unlock(&rt2x00dev
->csr_mutex
);
2870 void rt2800_read_eeprom_efuse(struct rt2x00_dev
*rt2x00dev
)
2874 for (i
= 0; i
< EEPROM_SIZE
/ sizeof(u16
); i
+= 8)
2875 rt2800_efuse_read(rt2x00dev
, i
);
2877 EXPORT_SYMBOL_GPL(rt2800_read_eeprom_efuse
);
2879 int rt2800_validate_eeprom(struct rt2x00_dev
*rt2x00dev
)
2883 u8 default_lna_gain
;
2886 * Start validation of the data that has been read.
2888 mac
= rt2x00_eeprom_addr(rt2x00dev
, EEPROM_MAC_ADDR_0
);
2889 if (!is_valid_ether_addr(mac
)) {
2890 random_ether_addr(mac
);
2891 EEPROM(rt2x00dev
, "MAC: %pM\n", mac
);
2894 rt2x00_eeprom_read(rt2x00dev
, EEPROM_NIC_CONF0
, &word
);
2895 if (word
== 0xffff) {
2896 rt2x00_set_field16(&word
, EEPROM_NIC_CONF0_RXPATH
, 2);
2897 rt2x00_set_field16(&word
, EEPROM_NIC_CONF0_TXPATH
, 1);
2898 rt2x00_set_field16(&word
, EEPROM_NIC_CONF0_RF_TYPE
, RF2820
);
2899 rt2x00_eeprom_write(rt2x00dev
, EEPROM_NIC_CONF0
, word
);
2900 EEPROM(rt2x00dev
, "Antenna: 0x%04x\n", word
);
2901 } else if (rt2x00_rt(rt2x00dev
, RT2860
) ||
2902 rt2x00_rt(rt2x00dev
, RT2872
)) {
2904 * There is a max of 2 RX streams for RT28x0 series
2906 if (rt2x00_get_field16(word
, EEPROM_NIC_CONF0_RXPATH
) > 2)
2907 rt2x00_set_field16(&word
, EEPROM_NIC_CONF0_RXPATH
, 2);
2908 rt2x00_eeprom_write(rt2x00dev
, EEPROM_NIC_CONF0
, word
);
2911 rt2x00_eeprom_read(rt2x00dev
, EEPROM_NIC_CONF1
, &word
);
2912 if (word
== 0xffff) {
2913 rt2x00_set_field16(&word
, EEPROM_NIC_CONF1_HW_RADIO
, 0);
2914 rt2x00_set_field16(&word
, EEPROM_NIC_CONF1_EXTERNAL_TX_ALC
, 0);
2915 rt2x00_set_field16(&word
, EEPROM_NIC_CONF1_EXTERNAL_LNA_2G
, 0);
2916 rt2x00_set_field16(&word
, EEPROM_NIC_CONF1_EXTERNAL_LNA_5G
, 0);
2917 rt2x00_set_field16(&word
, EEPROM_NIC_CONF1_CARDBUS_ACCEL
, 0);
2918 rt2x00_set_field16(&word
, EEPROM_NIC_CONF1_BW40M_SB_2G
, 0);
2919 rt2x00_set_field16(&word
, EEPROM_NIC_CONF1_BW40M_SB_5G
, 0);
2920 rt2x00_set_field16(&word
, EEPROM_NIC_CONF1_WPS_PBC
, 0);
2921 rt2x00_set_field16(&word
, EEPROM_NIC_CONF1_BW40M_2G
, 0);
2922 rt2x00_set_field16(&word
, EEPROM_NIC_CONF1_BW40M_5G
, 0);
2923 rt2x00_set_field16(&word
, EEPROM_NIC_CONF1_BROADBAND_EXT_LNA
, 0);
2924 rt2x00_set_field16(&word
, EEPROM_NIC_CONF1_ANT_DIVERSITY
, 0);
2925 rt2x00_set_field16(&word
, EEPROM_NIC_CONF1_INTERNAL_TX_ALC
, 0);
2926 rt2x00_set_field16(&word
, EEPROM_NIC_CONF1_BT_COEXIST
, 0);
2927 rt2x00_set_field16(&word
, EEPROM_NIC_CONF1_DAC_TEST
, 0);
2928 rt2x00_eeprom_write(rt2x00dev
, EEPROM_NIC_CONF1
, word
);
2929 EEPROM(rt2x00dev
, "NIC: 0x%04x\n", word
);
2932 rt2x00_eeprom_read(rt2x00dev
, EEPROM_FREQ
, &word
);
2933 if ((word
& 0x00ff) == 0x00ff) {
2934 rt2x00_set_field16(&word
, EEPROM_FREQ_OFFSET
, 0);
2935 rt2x00_eeprom_write(rt2x00dev
, EEPROM_FREQ
, word
);
2936 EEPROM(rt2x00dev
, "Freq: 0x%04x\n", word
);
2938 if ((word
& 0xff00) == 0xff00) {
2939 rt2x00_set_field16(&word
, EEPROM_FREQ_LED_MODE
,
2940 LED_MODE_TXRX_ACTIVITY
);
2941 rt2x00_set_field16(&word
, EEPROM_FREQ_LED_POLARITY
, 0);
2942 rt2x00_eeprom_write(rt2x00dev
, EEPROM_FREQ
, word
);
2943 rt2x00_eeprom_write(rt2x00dev
, EEPROM_LED_AG_CONF
, 0x5555);
2944 rt2x00_eeprom_write(rt2x00dev
, EEPROM_LED_ACT_CONF
, 0x2221);
2945 rt2x00_eeprom_write(rt2x00dev
, EEPROM_LED_POLARITY
, 0xa9f8);
2946 EEPROM(rt2x00dev
, "Led Mode: 0x%04x\n", word
);
2950 * During the LNA validation we are going to use
2951 * lna0 as correct value. Note that EEPROM_LNA
2952 * is never validated.
2954 rt2x00_eeprom_read(rt2x00dev
, EEPROM_LNA
, &word
);
2955 default_lna_gain
= rt2x00_get_field16(word
, EEPROM_LNA_A0
);
2957 rt2x00_eeprom_read(rt2x00dev
, EEPROM_RSSI_BG
, &word
);
2958 if (abs(rt2x00_get_field16(word
, EEPROM_RSSI_BG_OFFSET0
)) > 10)
2959 rt2x00_set_field16(&word
, EEPROM_RSSI_BG_OFFSET0
, 0);
2960 if (abs(rt2x00_get_field16(word
, EEPROM_RSSI_BG_OFFSET1
)) > 10)
2961 rt2x00_set_field16(&word
, EEPROM_RSSI_BG_OFFSET1
, 0);
2962 rt2x00_eeprom_write(rt2x00dev
, EEPROM_RSSI_BG
, word
);
2964 rt2x00_eeprom_read(rt2x00dev
, EEPROM_RSSI_BG2
, &word
);
2965 if (abs(rt2x00_get_field16(word
, EEPROM_RSSI_BG2_OFFSET2
)) > 10)
2966 rt2x00_set_field16(&word
, EEPROM_RSSI_BG2_OFFSET2
, 0);
2967 if (rt2x00_get_field16(word
, EEPROM_RSSI_BG2_LNA_A1
) == 0x00 ||
2968 rt2x00_get_field16(word
, EEPROM_RSSI_BG2_LNA_A1
) == 0xff)
2969 rt2x00_set_field16(&word
, EEPROM_RSSI_BG2_LNA_A1
,
2971 rt2x00_eeprom_write(rt2x00dev
, EEPROM_RSSI_BG2
, word
);
2973 rt2x00_eeprom_read(rt2x00dev
, EEPROM_RSSI_A
, &word
);
2974 if (abs(rt2x00_get_field16(word
, EEPROM_RSSI_A_OFFSET0
)) > 10)
2975 rt2x00_set_field16(&word
, EEPROM_RSSI_A_OFFSET0
, 0);
2976 if (abs(rt2x00_get_field16(word
, EEPROM_RSSI_A_OFFSET1
)) > 10)
2977 rt2x00_set_field16(&word
, EEPROM_RSSI_A_OFFSET1
, 0);
2978 rt2x00_eeprom_write(rt2x00dev
, EEPROM_RSSI_A
, word
);
2980 rt2x00_eeprom_read(rt2x00dev
, EEPROM_RSSI_A2
, &word
);
2981 if (abs(rt2x00_get_field16(word
, EEPROM_RSSI_A2_OFFSET2
)) > 10)
2982 rt2x00_set_field16(&word
, EEPROM_RSSI_A2_OFFSET2
, 0);
2983 if (rt2x00_get_field16(word
, EEPROM_RSSI_A2_LNA_A2
) == 0x00 ||
2984 rt2x00_get_field16(word
, EEPROM_RSSI_A2_LNA_A2
) == 0xff)
2985 rt2x00_set_field16(&word
, EEPROM_RSSI_A2_LNA_A2
,
2987 rt2x00_eeprom_write(rt2x00dev
, EEPROM_RSSI_A2
, word
);
2989 rt2x00_eeprom_read(rt2x00dev
, EEPROM_MAX_TX_POWER
, &word
);
2990 if (rt2x00_get_field16(word
, EEPROM_MAX_TX_POWER_24GHZ
) == 0xff)
2991 rt2x00_set_field16(&word
, EEPROM_MAX_TX_POWER_24GHZ
, MAX_G_TXPOWER
);
2992 if (rt2x00_get_field16(word
, EEPROM_MAX_TX_POWER_5GHZ
) == 0xff)
2993 rt2x00_set_field16(&word
, EEPROM_MAX_TX_POWER_5GHZ
, MAX_A_TXPOWER
);
2994 rt2x00_eeprom_write(rt2x00dev
, EEPROM_MAX_TX_POWER
, word
);
2998 EXPORT_SYMBOL_GPL(rt2800_validate_eeprom
);
3000 int rt2800_init_eeprom(struct rt2x00_dev
*rt2x00dev
)
3007 * Read EEPROM word for configuration.
3009 rt2x00_eeprom_read(rt2x00dev
, EEPROM_NIC_CONF0
, &eeprom
);
3012 * Identify RF chipset.
3014 value
= rt2x00_get_field16(eeprom
, EEPROM_NIC_CONF0_RF_TYPE
);
3015 rt2800_register_read(rt2x00dev
, MAC_CSR0
, ®
);
3017 rt2x00_set_chip(rt2x00dev
, rt2x00_get_field32(reg
, MAC_CSR0_CHIPSET
),
3018 value
, rt2x00_get_field32(reg
, MAC_CSR0_REVISION
));
3020 if (!rt2x00_rt(rt2x00dev
, RT2860
) &&
3021 !rt2x00_rt(rt2x00dev
, RT2872
) &&
3022 !rt2x00_rt(rt2x00dev
, RT2883
) &&
3023 !rt2x00_rt(rt2x00dev
, RT3070
) &&
3024 !rt2x00_rt(rt2x00dev
, RT3071
) &&
3025 !rt2x00_rt(rt2x00dev
, RT3090
) &&
3026 !rt2x00_rt(rt2x00dev
, RT3390
) &&
3027 !rt2x00_rt(rt2x00dev
, RT3572
)) {
3028 ERROR(rt2x00dev
, "Invalid RT chipset detected.\n");
3032 if (!rt2x00_rf(rt2x00dev
, RF2820
) &&
3033 !rt2x00_rf(rt2x00dev
, RF2850
) &&
3034 !rt2x00_rf(rt2x00dev
, RF2720
) &&
3035 !rt2x00_rf(rt2x00dev
, RF2750
) &&
3036 !rt2x00_rf(rt2x00dev
, RF3020
) &&
3037 !rt2x00_rf(rt2x00dev
, RF2020
) &&
3038 !rt2x00_rf(rt2x00dev
, RF3021
) &&
3039 !rt2x00_rf(rt2x00dev
, RF3022
) &&
3040 !rt2x00_rf(rt2x00dev
, RF3052
) &&
3041 !rt2x00_rf(rt2x00dev
, RF3320
)) {
3042 ERROR(rt2x00dev
, "Invalid RF chipset detected.\n");
3047 * Identify default antenna configuration.
3049 rt2x00dev
->default_ant
.tx
=
3050 rt2x00_get_field16(eeprom
, EEPROM_NIC_CONF0_TXPATH
);
3051 rt2x00dev
->default_ant
.rx
=
3052 rt2x00_get_field16(eeprom
, EEPROM_NIC_CONF0_RXPATH
);
3055 * Read frequency offset and RF programming sequence.
3057 rt2x00_eeprom_read(rt2x00dev
, EEPROM_FREQ
, &eeprom
);
3058 rt2x00dev
->freq_offset
= rt2x00_get_field16(eeprom
, EEPROM_FREQ_OFFSET
);
3061 * Read external LNA informations.
3063 rt2x00_eeprom_read(rt2x00dev
, EEPROM_NIC_CONF1
, &eeprom
);
3065 if (rt2x00_get_field16(eeprom
, EEPROM_NIC_CONF1_EXTERNAL_LNA_5G
))
3066 __set_bit(CONFIG_EXTERNAL_LNA_A
, &rt2x00dev
->flags
);
3067 if (rt2x00_get_field16(eeprom
, EEPROM_NIC_CONF1_EXTERNAL_LNA_2G
))
3068 __set_bit(CONFIG_EXTERNAL_LNA_BG
, &rt2x00dev
->flags
);
3071 * Detect if this device has an hardware controlled radio.
3073 if (rt2x00_get_field16(eeprom
, EEPROM_NIC_CONF1_HW_RADIO
))
3074 __set_bit(CONFIG_SUPPORT_HW_BUTTON
, &rt2x00dev
->flags
);
3077 * Store led settings, for correct led behaviour.
3079 #ifdef CONFIG_RT2X00_LIB_LEDS
3080 rt2800_init_led(rt2x00dev
, &rt2x00dev
->led_radio
, LED_TYPE_RADIO
);
3081 rt2800_init_led(rt2x00dev
, &rt2x00dev
->led_assoc
, LED_TYPE_ASSOC
);
3082 rt2800_init_led(rt2x00dev
, &rt2x00dev
->led_qual
, LED_TYPE_QUALITY
);
3084 rt2x00_eeprom_read(rt2x00dev
, EEPROM_FREQ
, &rt2x00dev
->led_mcu_reg
);
3085 #endif /* CONFIG_RT2X00_LIB_LEDS */
3089 EXPORT_SYMBOL_GPL(rt2800_init_eeprom
);
3092 * RF value list for rt28xx
3093 * Supports: 2.4 GHz (all) & 5.2 GHz (RF2850 & RF2750)
3095 static const struct rf_channel rf_vals
[] = {
3096 { 1, 0x18402ecc, 0x184c0786, 0x1816b455, 0x1800510b },
3097 { 2, 0x18402ecc, 0x184c0786, 0x18168a55, 0x1800519f },
3098 { 3, 0x18402ecc, 0x184c078a, 0x18168a55, 0x1800518b },
3099 { 4, 0x18402ecc, 0x184c078a, 0x18168a55, 0x1800519f },
3100 { 5, 0x18402ecc, 0x184c078e, 0x18168a55, 0x1800518b },
3101 { 6, 0x18402ecc, 0x184c078e, 0x18168a55, 0x1800519f },
3102 { 7, 0x18402ecc, 0x184c0792, 0x18168a55, 0x1800518b },
3103 { 8, 0x18402ecc, 0x184c0792, 0x18168a55, 0x1800519f },
3104 { 9, 0x18402ecc, 0x184c0796, 0x18168a55, 0x1800518b },
3105 { 10, 0x18402ecc, 0x184c0796, 0x18168a55, 0x1800519f },
3106 { 11, 0x18402ecc, 0x184c079a, 0x18168a55, 0x1800518b },
3107 { 12, 0x18402ecc, 0x184c079a, 0x18168a55, 0x1800519f },
3108 { 13, 0x18402ecc, 0x184c079e, 0x18168a55, 0x1800518b },
3109 { 14, 0x18402ecc, 0x184c07a2, 0x18168a55, 0x18005193 },
3111 /* 802.11 UNI / HyperLan 2 */
3112 { 36, 0x18402ecc, 0x184c099a, 0x18158a55, 0x180ed1a3 },
3113 { 38, 0x18402ecc, 0x184c099e, 0x18158a55, 0x180ed193 },
3114 { 40, 0x18402ec8, 0x184c0682, 0x18158a55, 0x180ed183 },
3115 { 44, 0x18402ec8, 0x184c0682, 0x18158a55, 0x180ed1a3 },
3116 { 46, 0x18402ec8, 0x184c0686, 0x18158a55, 0x180ed18b },
3117 { 48, 0x18402ec8, 0x184c0686, 0x18158a55, 0x180ed19b },
3118 { 52, 0x18402ec8, 0x184c068a, 0x18158a55, 0x180ed193 },
3119 { 54, 0x18402ec8, 0x184c068a, 0x18158a55, 0x180ed1a3 },
3120 { 56, 0x18402ec8, 0x184c068e, 0x18158a55, 0x180ed18b },
3121 { 60, 0x18402ec8, 0x184c0692, 0x18158a55, 0x180ed183 },
3122 { 62, 0x18402ec8, 0x184c0692, 0x18158a55, 0x180ed193 },
3123 { 64, 0x18402ec8, 0x184c0692, 0x18158a55, 0x180ed1a3 },
3125 /* 802.11 HyperLan 2 */
3126 { 100, 0x18402ec8, 0x184c06b2, 0x18178a55, 0x180ed783 },
3127 { 102, 0x18402ec8, 0x184c06b2, 0x18578a55, 0x180ed793 },
3128 { 104, 0x18402ec8, 0x185c06b2, 0x18578a55, 0x180ed1a3 },
3129 { 108, 0x18402ecc, 0x185c0a32, 0x18578a55, 0x180ed193 },
3130 { 110, 0x18402ecc, 0x184c0a36, 0x18178a55, 0x180ed183 },
3131 { 112, 0x18402ecc, 0x184c0a36, 0x18178a55, 0x180ed19b },
3132 { 116, 0x18402ecc, 0x184c0a3a, 0x18178a55, 0x180ed1a3 },
3133 { 118, 0x18402ecc, 0x184c0a3e, 0x18178a55, 0x180ed193 },
3134 { 120, 0x18402ec4, 0x184c0382, 0x18178a55, 0x180ed183 },
3135 { 124, 0x18402ec4, 0x184c0382, 0x18178a55, 0x180ed193 },
3136 { 126, 0x18402ec4, 0x184c0382, 0x18178a55, 0x180ed15b },
3137 { 128, 0x18402ec4, 0x184c0382, 0x18178a55, 0x180ed1a3 },
3138 { 132, 0x18402ec4, 0x184c0386, 0x18178a55, 0x180ed18b },
3139 { 134, 0x18402ec4, 0x184c0386, 0x18178a55, 0x180ed193 },
3140 { 136, 0x18402ec4, 0x184c0386, 0x18178a55, 0x180ed19b },
3141 { 140, 0x18402ec4, 0x184c038a, 0x18178a55, 0x180ed183 },
3144 { 149, 0x18402ec4, 0x184c038a, 0x18178a55, 0x180ed1a7 },
3145 { 151, 0x18402ec4, 0x184c038e, 0x18178a55, 0x180ed187 },
3146 { 153, 0x18402ec4, 0x184c038e, 0x18178a55, 0x180ed18f },
3147 { 157, 0x18402ec4, 0x184c038e, 0x18178a55, 0x180ed19f },
3148 { 159, 0x18402ec4, 0x184c038e, 0x18178a55, 0x180ed1a7 },
3149 { 161, 0x18402ec4, 0x184c0392, 0x18178a55, 0x180ed187 },
3150 { 165, 0x18402ec4, 0x184c0392, 0x18178a55, 0x180ed197 },
3151 { 167, 0x18402ec4, 0x184c03d2, 0x18179855, 0x1815531f },
3152 { 169, 0x18402ec4, 0x184c03d2, 0x18179855, 0x18155327 },
3153 { 171, 0x18402ec4, 0x184c03d6, 0x18179855, 0x18155307 },
3154 { 173, 0x18402ec4, 0x184c03d6, 0x18179855, 0x1815530f },
3157 { 184, 0x15002ccc, 0x1500491e, 0x1509be55, 0x150c0a0b },
3158 { 188, 0x15002ccc, 0x15004922, 0x1509be55, 0x150c0a13 },
3159 { 192, 0x15002ccc, 0x15004926, 0x1509be55, 0x150c0a1b },
3160 { 196, 0x15002ccc, 0x1500492a, 0x1509be55, 0x150c0a23 },
3161 { 208, 0x15002ccc, 0x1500493a, 0x1509be55, 0x150c0a13 },
3162 { 212, 0x15002ccc, 0x1500493e, 0x1509be55, 0x150c0a1b },
3163 { 216, 0x15002ccc, 0x15004982, 0x1509be55, 0x150c0a23 },
3167 * RF value list for rt3xxx
3168 * Supports: 2.4 GHz (all) & 5.2 GHz (RF3052)
3170 static const struct rf_channel rf_vals_3x
[] = {
3186 /* 802.11 UNI / HyperLan 2 */
3200 /* 802.11 HyperLan 2 */
3232 int rt2800_probe_hw_mode(struct rt2x00_dev
*rt2x00dev
)
3234 struct hw_mode_spec
*spec
= &rt2x00dev
->spec
;
3235 struct channel_info
*info
;
3236 char *default_power1
;
3237 char *default_power2
;
3239 unsigned short max_power
;
3243 * Disable powersaving as default on PCI devices.
3245 if (rt2x00_is_pci(rt2x00dev
) || rt2x00_is_soc(rt2x00dev
))
3246 rt2x00dev
->hw
->wiphy
->flags
&= ~WIPHY_FLAG_PS_ON_BY_DEFAULT
;
3249 * Initialize all hw fields.
3251 rt2x00dev
->hw
->flags
=
3252 IEEE80211_HW_SIGNAL_DBM
|
3253 IEEE80211_HW_SUPPORTS_PS
|
3254 IEEE80211_HW_PS_NULLFUNC_STACK
|
3255 IEEE80211_HW_AMPDU_AGGREGATION
;
3257 * Don't set IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING for USB devices
3258 * unless we are capable of sending the buffered frames out after the
3259 * DTIM transmission using rt2x00lib_beacondone. This will send out
3260 * multicast and broadcast traffic immediately instead of buffering it
3261 * infinitly and thus dropping it after some time.
3263 if (!rt2x00_is_usb(rt2x00dev
))
3264 rt2x00dev
->hw
->flags
|=
3265 IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING
;
3267 SET_IEEE80211_DEV(rt2x00dev
->hw
, rt2x00dev
->dev
);
3268 SET_IEEE80211_PERM_ADDR(rt2x00dev
->hw
,
3269 rt2x00_eeprom_addr(rt2x00dev
,
3270 EEPROM_MAC_ADDR_0
));
3273 * As rt2800 has a global fallback table we cannot specify
3274 * more then one tx rate per frame but since the hw will
3275 * try several rates (based on the fallback table) we should
3276 * initialize max_report_rates to the maximum number of rates
3277 * we are going to try. Otherwise mac80211 will truncate our
3278 * reported tx rates and the rc algortihm will end up with
3281 rt2x00dev
->hw
->max_rates
= 1;
3282 rt2x00dev
->hw
->max_report_rates
= 7;
3283 rt2x00dev
->hw
->max_rate_tries
= 1;
3285 rt2x00_eeprom_read(rt2x00dev
, EEPROM_NIC_CONF0
, &eeprom
);
3288 * Initialize hw_mode information.
3290 spec
->supported_bands
= SUPPORT_BAND_2GHZ
;
3291 spec
->supported_rates
= SUPPORT_RATE_CCK
| SUPPORT_RATE_OFDM
;
3293 if (rt2x00_rf(rt2x00dev
, RF2820
) ||
3294 rt2x00_rf(rt2x00dev
, RF2720
)) {
3295 spec
->num_channels
= 14;
3296 spec
->channels
= rf_vals
;
3297 } else if (rt2x00_rf(rt2x00dev
, RF2850
) ||
3298 rt2x00_rf(rt2x00dev
, RF2750
)) {
3299 spec
->supported_bands
|= SUPPORT_BAND_5GHZ
;
3300 spec
->num_channels
= ARRAY_SIZE(rf_vals
);
3301 spec
->channels
= rf_vals
;
3302 } else if (rt2x00_rf(rt2x00dev
, RF3020
) ||
3303 rt2x00_rf(rt2x00dev
, RF2020
) ||
3304 rt2x00_rf(rt2x00dev
, RF3021
) ||
3305 rt2x00_rf(rt2x00dev
, RF3022
) ||
3306 rt2x00_rf(rt2x00dev
, RF3320
)) {
3307 spec
->num_channels
= 14;
3308 spec
->channels
= rf_vals_3x
;
3309 } else if (rt2x00_rf(rt2x00dev
, RF3052
)) {
3310 spec
->supported_bands
|= SUPPORT_BAND_5GHZ
;
3311 spec
->num_channels
= ARRAY_SIZE(rf_vals_3x
);
3312 spec
->channels
= rf_vals_3x
;
3316 * Initialize HT information.
3318 if (!rt2x00_rf(rt2x00dev
, RF2020
))
3319 spec
->ht
.ht_supported
= true;
3321 spec
->ht
.ht_supported
= false;
3324 IEEE80211_HT_CAP_SUP_WIDTH_20_40
|
3325 IEEE80211_HT_CAP_GRN_FLD
|
3326 IEEE80211_HT_CAP_SGI_20
|
3327 IEEE80211_HT_CAP_SGI_40
;
3329 if (rt2x00_get_field16(eeprom
, EEPROM_NIC_CONF0_TXPATH
) >= 2)
3330 spec
->ht
.cap
|= IEEE80211_HT_CAP_TX_STBC
;
3333 rt2x00_get_field16(eeprom
, EEPROM_NIC_CONF0_RXPATH
) <<
3334 IEEE80211_HT_CAP_RX_STBC_SHIFT
;
3336 spec
->ht
.ampdu_factor
= 3;
3337 spec
->ht
.ampdu_density
= 4;
3338 spec
->ht
.mcs
.tx_params
=
3339 IEEE80211_HT_MCS_TX_DEFINED
|
3340 IEEE80211_HT_MCS_TX_RX_DIFF
|
3341 ((rt2x00_get_field16(eeprom
, EEPROM_NIC_CONF0_TXPATH
) - 1) <<
3342 IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT
);
3344 switch (rt2x00_get_field16(eeprom
, EEPROM_NIC_CONF0_RXPATH
)) {
3346 spec
->ht
.mcs
.rx_mask
[2] = 0xff;
3348 spec
->ht
.mcs
.rx_mask
[1] = 0xff;
3350 spec
->ht
.mcs
.rx_mask
[0] = 0xff;
3351 spec
->ht
.mcs
.rx_mask
[4] = 0x1; /* MCS32 */
3356 * Create channel information array
3358 info
= kcalloc(spec
->num_channels
, sizeof(*info
), GFP_KERNEL
);
3362 spec
->channels_info
= info
;
3364 rt2x00_eeprom_read(rt2x00dev
, EEPROM_MAX_TX_POWER
, &eeprom
);
3365 max_power
= rt2x00_get_field16(eeprom
, EEPROM_MAX_TX_POWER_24GHZ
);
3366 default_power1
= rt2x00_eeprom_addr(rt2x00dev
, EEPROM_TXPOWER_BG1
);
3367 default_power2
= rt2x00_eeprom_addr(rt2x00dev
, EEPROM_TXPOWER_BG2
);
3369 for (i
= 0; i
< 14; i
++) {
3370 info
[i
].max_power
= max_power
;
3371 info
[i
].default_power1
= TXPOWER_G_FROM_DEV(default_power1
[i
]);
3372 info
[i
].default_power2
= TXPOWER_G_FROM_DEV(default_power2
[i
]);
3375 if (spec
->num_channels
> 14) {
3376 max_power
= rt2x00_get_field16(eeprom
, EEPROM_MAX_TX_POWER_5GHZ
);
3377 default_power1
= rt2x00_eeprom_addr(rt2x00dev
, EEPROM_TXPOWER_A1
);
3378 default_power2
= rt2x00_eeprom_addr(rt2x00dev
, EEPROM_TXPOWER_A2
);
3380 for (i
= 14; i
< spec
->num_channels
; i
++) {
3381 info
[i
].max_power
= max_power
;
3382 info
[i
].default_power1
= TXPOWER_A_FROM_DEV(default_power1
[i
]);
3383 info
[i
].default_power2
= TXPOWER_A_FROM_DEV(default_power2
[i
]);
3389 EXPORT_SYMBOL_GPL(rt2800_probe_hw_mode
);
3392 * IEEE80211 stack callback functions.
3394 void rt2800_get_tkip_seq(struct ieee80211_hw
*hw
, u8 hw_key_idx
, u32
*iv32
,
3397 struct rt2x00_dev
*rt2x00dev
= hw
->priv
;
3398 struct mac_iveiv_entry iveiv_entry
;
3401 offset
= MAC_IVEIV_ENTRY(hw_key_idx
);
3402 rt2800_register_multiread(rt2x00dev
, offset
,
3403 &iveiv_entry
, sizeof(iveiv_entry
));
3405 memcpy(iv16
, &iveiv_entry
.iv
[0], sizeof(*iv16
));
3406 memcpy(iv32
, &iveiv_entry
.iv
[4], sizeof(*iv32
));
3408 EXPORT_SYMBOL_GPL(rt2800_get_tkip_seq
);
3410 int rt2800_set_rts_threshold(struct ieee80211_hw
*hw
, u32 value
)
3412 struct rt2x00_dev
*rt2x00dev
= hw
->priv
;
3414 bool enabled
= (value
< IEEE80211_MAX_RTS_THRESHOLD
);
3416 rt2800_register_read(rt2x00dev
, TX_RTS_CFG
, ®
);
3417 rt2x00_set_field32(®
, TX_RTS_CFG_RTS_THRES
, value
);
3418 rt2800_register_write(rt2x00dev
, TX_RTS_CFG
, reg
);
3420 rt2800_register_read(rt2x00dev
, CCK_PROT_CFG
, ®
);
3421 rt2x00_set_field32(®
, CCK_PROT_CFG_RTS_TH_EN
, enabled
);
3422 rt2800_register_write(rt2x00dev
, CCK_PROT_CFG
, reg
);
3424 rt2800_register_read(rt2x00dev
, OFDM_PROT_CFG
, ®
);
3425 rt2x00_set_field32(®
, OFDM_PROT_CFG_RTS_TH_EN
, enabled
);
3426 rt2800_register_write(rt2x00dev
, OFDM_PROT_CFG
, reg
);
3428 rt2800_register_read(rt2x00dev
, MM20_PROT_CFG
, ®
);
3429 rt2x00_set_field32(®
, MM20_PROT_CFG_RTS_TH_EN
, enabled
);
3430 rt2800_register_write(rt2x00dev
, MM20_PROT_CFG
, reg
);
3432 rt2800_register_read(rt2x00dev
, MM40_PROT_CFG
, ®
);
3433 rt2x00_set_field32(®
, MM40_PROT_CFG_RTS_TH_EN
, enabled
);
3434 rt2800_register_write(rt2x00dev
, MM40_PROT_CFG
, reg
);
3436 rt2800_register_read(rt2x00dev
, GF20_PROT_CFG
, ®
);
3437 rt2x00_set_field32(®
, GF20_PROT_CFG_RTS_TH_EN
, enabled
);
3438 rt2800_register_write(rt2x00dev
, GF20_PROT_CFG
, reg
);
3440 rt2800_register_read(rt2x00dev
, GF40_PROT_CFG
, ®
);
3441 rt2x00_set_field32(®
, GF40_PROT_CFG_RTS_TH_EN
, enabled
);
3442 rt2800_register_write(rt2x00dev
, GF40_PROT_CFG
, reg
);
3446 EXPORT_SYMBOL_GPL(rt2800_set_rts_threshold
);
3448 int rt2800_conf_tx(struct ieee80211_hw
*hw
, u16 queue_idx
,
3449 const struct ieee80211_tx_queue_params
*params
)
3451 struct rt2x00_dev
*rt2x00dev
= hw
->priv
;
3452 struct data_queue
*queue
;
3453 struct rt2x00_field32 field
;
3459 * First pass the configuration through rt2x00lib, that will
3460 * update the queue settings and validate the input. After that
3461 * we are free to update the registers based on the value
3462 * in the queue parameter.
3464 retval
= rt2x00mac_conf_tx(hw
, queue_idx
, params
);
3469 * We only need to perform additional register initialization
3475 queue
= rt2x00queue_get_queue(rt2x00dev
, queue_idx
);
3477 /* Update WMM TXOP register */
3478 offset
= WMM_TXOP0_CFG
+ (sizeof(u32
) * (!!(queue_idx
& 2)));
3479 field
.bit_offset
= (queue_idx
& 1) * 16;
3480 field
.bit_mask
= 0xffff << field
.bit_offset
;
3482 rt2800_register_read(rt2x00dev
, offset
, ®
);
3483 rt2x00_set_field32(®
, field
, queue
->txop
);
3484 rt2800_register_write(rt2x00dev
, offset
, reg
);
3486 /* Update WMM registers */
3487 field
.bit_offset
= queue_idx
* 4;
3488 field
.bit_mask
= 0xf << field
.bit_offset
;
3490 rt2800_register_read(rt2x00dev
, WMM_AIFSN_CFG
, ®
);
3491 rt2x00_set_field32(®
, field
, queue
->aifs
);
3492 rt2800_register_write(rt2x00dev
, WMM_AIFSN_CFG
, reg
);
3494 rt2800_register_read(rt2x00dev
, WMM_CWMIN_CFG
, ®
);
3495 rt2x00_set_field32(®
, field
, queue
->cw_min
);
3496 rt2800_register_write(rt2x00dev
, WMM_CWMIN_CFG
, reg
);
3498 rt2800_register_read(rt2x00dev
, WMM_CWMAX_CFG
, ®
);
3499 rt2x00_set_field32(®
, field
, queue
->cw_max
);
3500 rt2800_register_write(rt2x00dev
, WMM_CWMAX_CFG
, reg
);
3502 /* Update EDCA registers */
3503 offset
= EDCA_AC0_CFG
+ (sizeof(u32
) * queue_idx
);
3505 rt2800_register_read(rt2x00dev
, offset
, ®
);
3506 rt2x00_set_field32(®
, EDCA_AC0_CFG_TX_OP
, queue
->txop
);
3507 rt2x00_set_field32(®
, EDCA_AC0_CFG_AIFSN
, queue
->aifs
);
3508 rt2x00_set_field32(®
, EDCA_AC0_CFG_CWMIN
, queue
->cw_min
);
3509 rt2x00_set_field32(®
, EDCA_AC0_CFG_CWMAX
, queue
->cw_max
);
3510 rt2800_register_write(rt2x00dev
, offset
, reg
);
3514 EXPORT_SYMBOL_GPL(rt2800_conf_tx
);
3516 u64
rt2800_get_tsf(struct ieee80211_hw
*hw
)
3518 struct rt2x00_dev
*rt2x00dev
= hw
->priv
;
3522 rt2800_register_read(rt2x00dev
, TSF_TIMER_DW1
, ®
);
3523 tsf
= (u64
) rt2x00_get_field32(reg
, TSF_TIMER_DW1_HIGH_WORD
) << 32;
3524 rt2800_register_read(rt2x00dev
, TSF_TIMER_DW0
, ®
);
3525 tsf
|= rt2x00_get_field32(reg
, TSF_TIMER_DW0_LOW_WORD
);
3529 EXPORT_SYMBOL_GPL(rt2800_get_tsf
);
3531 int rt2800_ampdu_action(struct ieee80211_hw
*hw
, struct ieee80211_vif
*vif
,
3532 enum ieee80211_ampdu_mlme_action action
,
3533 struct ieee80211_sta
*sta
, u16 tid
, u16
*ssn
)
3538 case IEEE80211_AMPDU_RX_START
:
3539 case IEEE80211_AMPDU_RX_STOP
:
3541 * The hw itself takes care of setting up BlockAck mechanisms.
3542 * So, we only have to allow mac80211 to nagotiate a BlockAck
3543 * agreement. Once that is done, the hw will BlockAck incoming
3544 * AMPDUs without further setup.
3547 case IEEE80211_AMPDU_TX_START
:
3548 ieee80211_start_tx_ba_cb_irqsafe(vif
, sta
->addr
, tid
);
3550 case IEEE80211_AMPDU_TX_STOP
:
3551 ieee80211_stop_tx_ba_cb_irqsafe(vif
, sta
->addr
, tid
);
3553 case IEEE80211_AMPDU_TX_OPERATIONAL
:
3556 WARNING((struct rt2x00_dev
*)hw
->priv
, "Unknown AMPDU action\n");
3561 EXPORT_SYMBOL_GPL(rt2800_ampdu_action
);
3563 int rt2800_get_survey(struct ieee80211_hw
*hw
, int idx
,
3564 struct survey_info
*survey
)
3566 struct rt2x00_dev
*rt2x00dev
= hw
->priv
;
3567 struct ieee80211_conf
*conf
= &hw
->conf
;
3568 u32 idle
, busy
, busy_ext
;
3573 survey
->channel
= conf
->channel
;
3575 rt2800_register_read(rt2x00dev
, CH_IDLE_STA
, &idle
);
3576 rt2800_register_read(rt2x00dev
, CH_BUSY_STA
, &busy
);
3577 rt2800_register_read(rt2x00dev
, CH_BUSY_STA_SEC
, &busy_ext
);
3580 survey
->filled
= SURVEY_INFO_CHANNEL_TIME
|
3581 SURVEY_INFO_CHANNEL_TIME_BUSY
|
3582 SURVEY_INFO_CHANNEL_TIME_EXT_BUSY
;
3584 survey
->channel_time
= (idle
+ busy
) / 1000;
3585 survey
->channel_time_busy
= busy
/ 1000;
3586 survey
->channel_time_ext_busy
= busy_ext
/ 1000;
3592 EXPORT_SYMBOL_GPL(rt2800_get_survey
);
3594 MODULE_AUTHOR(DRV_PROJECT
", Bartlomiej Zolnierkiewicz");
3595 MODULE_VERSION(DRV_VERSION
);
3596 MODULE_DESCRIPTION("Ralink RT2800 library");
3597 MODULE_LICENSE("GPL");