proc: use seq_puts()/seq_putc() where possible
[linux-2.6/next.git] / drivers / net / wireless / rt2x00 / rt2800pci.c
blobaa97971a38afe57f0c56d0dbd0c09c40cd2f0ab5
1 /*
2 Copyright (C) 2009 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
3 Copyright (C) 2009 Alban Browaeys <prahal@yahoo.com>
4 Copyright (C) 2009 Felix Fietkau <nbd@openwrt.org>
5 Copyright (C) 2009 Luis Correia <luis.f.correia@gmail.com>
6 Copyright (C) 2009 Mattias Nissler <mattias.nissler@gmx.de>
7 Copyright (C) 2009 Mark Asselstine <asselsm@gmail.com>
8 Copyright (C) 2009 Xose Vazquez Perez <xose.vazquez@gmail.com>
9 Copyright (C) 2009 Bart Zolnierkiewicz <bzolnier@gmail.com>
10 <http://rt2x00.serialmonkey.com>
12 This program is free software; you can redistribute it and/or modify
13 it under the terms of the GNU General Public License as published by
14 the Free Software Foundation; either version 2 of the License, or
15 (at your option) any later version.
17 This program is distributed in the hope that it will be useful,
18 but WITHOUT ANY WARRANTY; without even the implied warranty of
19 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 GNU General Public License for more details.
22 You should have received a copy of the GNU General Public License
23 along with this program; if not, write to the
24 Free Software Foundation, Inc.,
25 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
29 Module: rt2800pci
30 Abstract: rt2800pci device specific routines.
31 Supported chipsets: RT2800E & RT2800ED.
34 #include <linux/delay.h>
35 #include <linux/etherdevice.h>
36 #include <linux/init.h>
37 #include <linux/kernel.h>
38 #include <linux/module.h>
39 #include <linux/pci.h>
40 #include <linux/platform_device.h>
41 #include <linux/eeprom_93cx6.h>
43 #include "rt2x00.h"
44 #include "rt2x00pci.h"
45 #include "rt2x00soc.h"
46 #include "rt2800lib.h"
47 #include "rt2800.h"
48 #include "rt2800pci.h"
51 * Allow hardware encryption to be disabled.
53 static int modparam_nohwcrypt = 0;
54 module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
55 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
57 static void rt2800pci_mcu_status(struct rt2x00_dev *rt2x00dev, const u8 token)
59 unsigned int i;
60 u32 reg;
63 * SOC devices don't support MCU requests.
65 if (rt2x00_is_soc(rt2x00dev))
66 return;
68 for (i = 0; i < 200; i++) {
69 rt2800_register_read(rt2x00dev, H2M_MAILBOX_CID, &reg);
71 if ((rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD0) == token) ||
72 (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD1) == token) ||
73 (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD2) == token) ||
74 (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD3) == token))
75 break;
77 udelay(REGISTER_BUSY_DELAY);
80 if (i == 200)
81 ERROR(rt2x00dev, "MCU request failed, no response from hardware\n");
83 rt2800_register_write(rt2x00dev, H2M_MAILBOX_STATUS, ~0);
84 rt2800_register_write(rt2x00dev, H2M_MAILBOX_CID, ~0);
87 #if defined(CONFIG_RALINK_RT288X) || defined(CONFIG_RALINK_RT305X)
88 static void rt2800pci_read_eeprom_soc(struct rt2x00_dev *rt2x00dev)
90 void __iomem *base_addr = ioremap(0x1F040000, EEPROM_SIZE);
92 memcpy_fromio(rt2x00dev->eeprom, base_addr, EEPROM_SIZE);
94 iounmap(base_addr);
96 #else
97 static inline void rt2800pci_read_eeprom_soc(struct rt2x00_dev *rt2x00dev)
100 #endif /* CONFIG_RALINK_RT288X || CONFIG_RALINK_RT305X */
102 #ifdef CONFIG_PCI
103 static void rt2800pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
105 struct rt2x00_dev *rt2x00dev = eeprom->data;
106 u32 reg;
108 rt2800_register_read(rt2x00dev, E2PROM_CSR, &reg);
110 eeprom->reg_data_in = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_IN);
111 eeprom->reg_data_out = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_OUT);
112 eeprom->reg_data_clock =
113 !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_CLOCK);
114 eeprom->reg_chip_select =
115 !!rt2x00_get_field32(reg, E2PROM_CSR_CHIP_SELECT);
118 static void rt2800pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
120 struct rt2x00_dev *rt2x00dev = eeprom->data;
121 u32 reg = 0;
123 rt2x00_set_field32(&reg, E2PROM_CSR_DATA_IN, !!eeprom->reg_data_in);
124 rt2x00_set_field32(&reg, E2PROM_CSR_DATA_OUT, !!eeprom->reg_data_out);
125 rt2x00_set_field32(&reg, E2PROM_CSR_DATA_CLOCK,
126 !!eeprom->reg_data_clock);
127 rt2x00_set_field32(&reg, E2PROM_CSR_CHIP_SELECT,
128 !!eeprom->reg_chip_select);
130 rt2800_register_write(rt2x00dev, E2PROM_CSR, reg);
133 static void rt2800pci_read_eeprom_pci(struct rt2x00_dev *rt2x00dev)
135 struct eeprom_93cx6 eeprom;
136 u32 reg;
138 rt2800_register_read(rt2x00dev, E2PROM_CSR, &reg);
140 eeprom.data = rt2x00dev;
141 eeprom.register_read = rt2800pci_eepromregister_read;
142 eeprom.register_write = rt2800pci_eepromregister_write;
143 switch (rt2x00_get_field32(reg, E2PROM_CSR_TYPE))
145 case 0:
146 eeprom.width = PCI_EEPROM_WIDTH_93C46;
147 break;
148 case 1:
149 eeprom.width = PCI_EEPROM_WIDTH_93C66;
150 break;
151 default:
152 eeprom.width = PCI_EEPROM_WIDTH_93C86;
153 break;
155 eeprom.reg_data_in = 0;
156 eeprom.reg_data_out = 0;
157 eeprom.reg_data_clock = 0;
158 eeprom.reg_chip_select = 0;
160 eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
161 EEPROM_SIZE / sizeof(u16));
164 static int rt2800pci_efuse_detect(struct rt2x00_dev *rt2x00dev)
166 return rt2800_efuse_detect(rt2x00dev);
169 static inline void rt2800pci_read_eeprom_efuse(struct rt2x00_dev *rt2x00dev)
171 rt2800_read_eeprom_efuse(rt2x00dev);
173 #else
174 static inline void rt2800pci_read_eeprom_pci(struct rt2x00_dev *rt2x00dev)
178 static inline int rt2800pci_efuse_detect(struct rt2x00_dev *rt2x00dev)
180 return 0;
183 static inline void rt2800pci_read_eeprom_efuse(struct rt2x00_dev *rt2x00dev)
186 #endif /* CONFIG_PCI */
189 * Queue handlers.
191 static void rt2800pci_start_queue(struct data_queue *queue)
193 struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
194 u32 reg;
196 switch (queue->qid) {
197 case QID_RX:
198 rt2800_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
199 rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 1);
200 rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
201 break;
202 case QID_BEACON:
203 rt2800_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
204 rt2x00_set_field32(&reg, BCN_TIME_CFG_TSF_TICKING, 1);
205 rt2x00_set_field32(&reg, BCN_TIME_CFG_TBTT_ENABLE, 1);
206 rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 1);
207 rt2800_register_write(rt2x00dev, BCN_TIME_CFG, reg);
208 break;
209 default:
210 break;
214 static void rt2800pci_kick_queue(struct data_queue *queue)
216 struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
217 struct queue_entry *entry;
219 switch (queue->qid) {
220 case QID_AC_VO:
221 case QID_AC_VI:
222 case QID_AC_BE:
223 case QID_AC_BK:
224 entry = rt2x00queue_get_entry(queue, Q_INDEX);
225 rt2800_register_write(rt2x00dev, TX_CTX_IDX(queue->qid), entry->entry_idx);
226 break;
227 case QID_MGMT:
228 entry = rt2x00queue_get_entry(queue, Q_INDEX);
229 rt2800_register_write(rt2x00dev, TX_CTX_IDX(5), entry->entry_idx);
230 break;
231 default:
232 break;
236 static void rt2800pci_stop_queue(struct data_queue *queue)
238 struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
239 u32 reg;
241 switch (queue->qid) {
242 case QID_RX:
243 rt2800_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
244 rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 0);
245 rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
246 break;
247 case QID_BEACON:
248 rt2800_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
249 rt2x00_set_field32(&reg, BCN_TIME_CFG_TSF_TICKING, 0);
250 rt2x00_set_field32(&reg, BCN_TIME_CFG_TBTT_ENABLE, 0);
251 rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 0);
252 rt2800_register_write(rt2x00dev, BCN_TIME_CFG, reg);
253 break;
254 default:
255 break;
260 * Firmware functions
262 static char *rt2800pci_get_firmware_name(struct rt2x00_dev *rt2x00dev)
264 return FIRMWARE_RT2860;
267 static int rt2800pci_write_firmware(struct rt2x00_dev *rt2x00dev,
268 const u8 *data, const size_t len)
270 u32 reg;
273 * enable Host program ram write selection
275 reg = 0;
276 rt2x00_set_field32(&reg, PBF_SYS_CTRL_HOST_RAM_WRITE, 1);
277 rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, reg);
280 * Write firmware to device.
282 rt2800_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE,
283 data, len);
285 rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000);
286 rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00001);
288 rt2800_register_write(rt2x00dev, H2M_BBP_AGENT, 0);
289 rt2800_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
291 return 0;
295 * Initialization functions.
297 static bool rt2800pci_get_entry_state(struct queue_entry *entry)
299 struct queue_entry_priv_pci *entry_priv = entry->priv_data;
300 u32 word;
302 if (entry->queue->qid == QID_RX) {
303 rt2x00_desc_read(entry_priv->desc, 1, &word);
305 return (!rt2x00_get_field32(word, RXD_W1_DMA_DONE));
306 } else {
307 rt2x00_desc_read(entry_priv->desc, 1, &word);
309 return (!rt2x00_get_field32(word, TXD_W1_DMA_DONE));
313 static void rt2800pci_clear_entry(struct queue_entry *entry)
315 struct queue_entry_priv_pci *entry_priv = entry->priv_data;
316 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
317 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
318 u32 word;
320 if (entry->queue->qid == QID_RX) {
321 rt2x00_desc_read(entry_priv->desc, 0, &word);
322 rt2x00_set_field32(&word, RXD_W0_SDP0, skbdesc->skb_dma);
323 rt2x00_desc_write(entry_priv->desc, 0, word);
325 rt2x00_desc_read(entry_priv->desc, 1, &word);
326 rt2x00_set_field32(&word, RXD_W1_DMA_DONE, 0);
327 rt2x00_desc_write(entry_priv->desc, 1, word);
330 * Set RX IDX in register to inform hardware that we have
331 * handled this entry and it is available for reuse again.
333 rt2800_register_write(rt2x00dev, RX_CRX_IDX,
334 entry->entry_idx);
335 } else {
336 rt2x00_desc_read(entry_priv->desc, 1, &word);
337 rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 1);
338 rt2x00_desc_write(entry_priv->desc, 1, word);
342 static int rt2800pci_init_queues(struct rt2x00_dev *rt2x00dev)
344 struct queue_entry_priv_pci *entry_priv;
345 u32 reg;
348 * Initialize registers.
350 entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
351 rt2800_register_write(rt2x00dev, TX_BASE_PTR0, entry_priv->desc_dma);
352 rt2800_register_write(rt2x00dev, TX_MAX_CNT0, rt2x00dev->tx[0].limit);
353 rt2800_register_write(rt2x00dev, TX_CTX_IDX0, 0);
354 rt2800_register_write(rt2x00dev, TX_DTX_IDX0, 0);
356 entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
357 rt2800_register_write(rt2x00dev, TX_BASE_PTR1, entry_priv->desc_dma);
358 rt2800_register_write(rt2x00dev, TX_MAX_CNT1, rt2x00dev->tx[1].limit);
359 rt2800_register_write(rt2x00dev, TX_CTX_IDX1, 0);
360 rt2800_register_write(rt2x00dev, TX_DTX_IDX1, 0);
362 entry_priv = rt2x00dev->tx[2].entries[0].priv_data;
363 rt2800_register_write(rt2x00dev, TX_BASE_PTR2, entry_priv->desc_dma);
364 rt2800_register_write(rt2x00dev, TX_MAX_CNT2, rt2x00dev->tx[2].limit);
365 rt2800_register_write(rt2x00dev, TX_CTX_IDX2, 0);
366 rt2800_register_write(rt2x00dev, TX_DTX_IDX2, 0);
368 entry_priv = rt2x00dev->tx[3].entries[0].priv_data;
369 rt2800_register_write(rt2x00dev, TX_BASE_PTR3, entry_priv->desc_dma);
370 rt2800_register_write(rt2x00dev, TX_MAX_CNT3, rt2x00dev->tx[3].limit);
371 rt2800_register_write(rt2x00dev, TX_CTX_IDX3, 0);
372 rt2800_register_write(rt2x00dev, TX_DTX_IDX3, 0);
374 entry_priv = rt2x00dev->rx->entries[0].priv_data;
375 rt2800_register_write(rt2x00dev, RX_BASE_PTR, entry_priv->desc_dma);
376 rt2800_register_write(rt2x00dev, RX_MAX_CNT, rt2x00dev->rx[0].limit);
377 rt2800_register_write(rt2x00dev, RX_CRX_IDX, rt2x00dev->rx[0].limit - 1);
378 rt2800_register_write(rt2x00dev, RX_DRX_IDX, 0);
381 * Enable global DMA configuration
383 rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
384 rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_TX_DMA, 0);
385 rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_RX_DMA, 0);
386 rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1);
387 rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg);
389 rt2800_register_write(rt2x00dev, DELAY_INT_CFG, 0);
391 return 0;
395 * Device state switch handlers.
397 static void rt2800pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
398 enum dev_state state)
400 int mask = (state == STATE_RADIO_IRQ_ON) ||
401 (state == STATE_RADIO_IRQ_ON_ISR);
402 u32 reg;
405 * When interrupts are being enabled, the interrupt registers
406 * should clear the register to assure a clean state.
408 if (state == STATE_RADIO_IRQ_ON) {
409 rt2800_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
410 rt2800_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
413 rt2800_register_read(rt2x00dev, INT_MASK_CSR, &reg);
414 rt2x00_set_field32(&reg, INT_MASK_CSR_RXDELAYINT, 0);
415 rt2x00_set_field32(&reg, INT_MASK_CSR_TXDELAYINT, 0);
416 rt2x00_set_field32(&reg, INT_MASK_CSR_RX_DONE, mask);
417 rt2x00_set_field32(&reg, INT_MASK_CSR_AC0_DMA_DONE, 0);
418 rt2x00_set_field32(&reg, INT_MASK_CSR_AC1_DMA_DONE, 0);
419 rt2x00_set_field32(&reg, INT_MASK_CSR_AC2_DMA_DONE, 0);
420 rt2x00_set_field32(&reg, INT_MASK_CSR_AC3_DMA_DONE, 0);
421 rt2x00_set_field32(&reg, INT_MASK_CSR_HCCA_DMA_DONE, 0);
422 rt2x00_set_field32(&reg, INT_MASK_CSR_MGMT_DMA_DONE, 0);
423 rt2x00_set_field32(&reg, INT_MASK_CSR_MCU_COMMAND, 0);
424 rt2x00_set_field32(&reg, INT_MASK_CSR_RXTX_COHERENT, 0);
425 rt2x00_set_field32(&reg, INT_MASK_CSR_TBTT, mask);
426 rt2x00_set_field32(&reg, INT_MASK_CSR_PRE_TBTT, mask);
427 rt2x00_set_field32(&reg, INT_MASK_CSR_TX_FIFO_STATUS, mask);
428 rt2x00_set_field32(&reg, INT_MASK_CSR_AUTO_WAKEUP, mask);
429 rt2x00_set_field32(&reg, INT_MASK_CSR_GPTIMER, 0);
430 rt2x00_set_field32(&reg, INT_MASK_CSR_RX_COHERENT, 0);
431 rt2x00_set_field32(&reg, INT_MASK_CSR_TX_COHERENT, 0);
432 rt2800_register_write(rt2x00dev, INT_MASK_CSR, reg);
435 static int rt2800pci_init_registers(struct rt2x00_dev *rt2x00dev)
437 u32 reg;
440 * Reset DMA indexes
442 rt2800_register_read(rt2x00dev, WPDMA_RST_IDX, &reg);
443 rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX0, 1);
444 rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX1, 1);
445 rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX2, 1);
446 rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX3, 1);
447 rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX4, 1);
448 rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX5, 1);
449 rt2x00_set_field32(&reg, WPDMA_RST_IDX_DRX_IDX0, 1);
450 rt2800_register_write(rt2x00dev, WPDMA_RST_IDX, reg);
452 rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e1f);
453 rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e00);
455 rt2800_register_write(rt2x00dev, PWR_PIN_CFG, 0x00000003);
457 rt2800_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
458 rt2x00_set_field32(&reg, MAC_SYS_CTRL_RESET_CSR, 1);
459 rt2x00_set_field32(&reg, MAC_SYS_CTRL_RESET_BBP, 1);
460 rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
462 rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, 0x00000000);
464 return 0;
467 static int rt2800pci_enable_radio(struct rt2x00_dev *rt2x00dev)
469 if (unlikely(rt2800_wait_wpdma_ready(rt2x00dev) ||
470 rt2800pci_init_queues(rt2x00dev)))
471 return -EIO;
473 return rt2800_enable_radio(rt2x00dev);
476 static void rt2800pci_disable_radio(struct rt2x00_dev *rt2x00dev)
478 u32 reg;
480 rt2800_disable_radio(rt2x00dev);
482 rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00001280);
484 rt2800_register_read(rt2x00dev, WPDMA_RST_IDX, &reg);
485 rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX0, 1);
486 rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX1, 1);
487 rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX2, 1);
488 rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX3, 1);
489 rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX4, 1);
490 rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX5, 1);
491 rt2x00_set_field32(&reg, WPDMA_RST_IDX_DRX_IDX0, 1);
492 rt2800_register_write(rt2x00dev, WPDMA_RST_IDX, reg);
494 rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e1f);
495 rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e00);
498 static int rt2800pci_set_state(struct rt2x00_dev *rt2x00dev,
499 enum dev_state state)
502 * Always put the device to sleep (even when we intend to wakeup!)
503 * if the device is booting and wasn't asleep it will return
504 * failure when attempting to wakeup.
506 rt2800_mcu_request(rt2x00dev, MCU_SLEEP, 0xff, 0xff, 2);
508 if (state == STATE_AWAKE) {
509 rt2800_mcu_request(rt2x00dev, MCU_WAKEUP, TOKEN_WAKUP, 0, 0);
510 rt2800pci_mcu_status(rt2x00dev, TOKEN_WAKUP);
513 return 0;
516 static int rt2800pci_set_device_state(struct rt2x00_dev *rt2x00dev,
517 enum dev_state state)
519 int retval = 0;
521 switch (state) {
522 case STATE_RADIO_ON:
524 * Before the radio can be enabled, the device first has
525 * to be woken up. After that it needs a bit of time
526 * to be fully awake and then the radio can be enabled.
528 rt2800pci_set_state(rt2x00dev, STATE_AWAKE);
529 msleep(1);
530 retval = rt2800pci_enable_radio(rt2x00dev);
531 break;
532 case STATE_RADIO_OFF:
534 * After the radio has been disabled, the device should
535 * be put to sleep for powersaving.
537 rt2800pci_disable_radio(rt2x00dev);
538 rt2800pci_set_state(rt2x00dev, STATE_SLEEP);
539 break;
540 case STATE_RADIO_IRQ_ON:
541 case STATE_RADIO_IRQ_ON_ISR:
542 case STATE_RADIO_IRQ_OFF:
543 case STATE_RADIO_IRQ_OFF_ISR:
544 rt2800pci_toggle_irq(rt2x00dev, state);
545 break;
546 case STATE_DEEP_SLEEP:
547 case STATE_SLEEP:
548 case STATE_STANDBY:
549 case STATE_AWAKE:
550 retval = rt2800pci_set_state(rt2x00dev, state);
551 break;
552 default:
553 retval = -ENOTSUPP;
554 break;
557 if (unlikely(retval))
558 ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
559 state, retval);
561 return retval;
565 * TX descriptor initialization
567 static __le32 *rt2800pci_get_txwi(struct queue_entry *entry)
569 return (__le32 *) entry->skb->data;
572 static void rt2800pci_write_tx_desc(struct queue_entry *entry,
573 struct txentry_desc *txdesc)
575 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
576 struct queue_entry_priv_pci *entry_priv = entry->priv_data;
577 __le32 *txd = entry_priv->desc;
578 u32 word;
581 * The buffers pointed by SD_PTR0/SD_LEN0 and SD_PTR1/SD_LEN1
582 * must contains a TXWI structure + 802.11 header + padding + 802.11
583 * data. We choose to have SD_PTR0/SD_LEN0 only contains TXWI and
584 * SD_PTR1/SD_LEN1 contains 802.11 header + padding + 802.11
585 * data. It means that LAST_SEC0 is always 0.
589 * Initialize TX descriptor
591 rt2x00_desc_read(txd, 0, &word);
592 rt2x00_set_field32(&word, TXD_W0_SD_PTR0, skbdesc->skb_dma);
593 rt2x00_desc_write(txd, 0, word);
595 rt2x00_desc_read(txd, 1, &word);
596 rt2x00_set_field32(&word, TXD_W1_SD_LEN1, entry->skb->len);
597 rt2x00_set_field32(&word, TXD_W1_LAST_SEC1,
598 !test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
599 rt2x00_set_field32(&word, TXD_W1_BURST,
600 test_bit(ENTRY_TXD_BURST, &txdesc->flags));
601 rt2x00_set_field32(&word, TXD_W1_SD_LEN0, TXWI_DESC_SIZE);
602 rt2x00_set_field32(&word, TXD_W1_LAST_SEC0, 0);
603 rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 0);
604 rt2x00_desc_write(txd, 1, word);
606 rt2x00_desc_read(txd, 2, &word);
607 rt2x00_set_field32(&word, TXD_W2_SD_PTR1,
608 skbdesc->skb_dma + TXWI_DESC_SIZE);
609 rt2x00_desc_write(txd, 2, word);
611 rt2x00_desc_read(txd, 3, &word);
612 rt2x00_set_field32(&word, TXD_W3_WIV,
613 !test_bit(ENTRY_TXD_ENCRYPT_IV, &txdesc->flags));
614 rt2x00_set_field32(&word, TXD_W3_QSEL, 2);
615 rt2x00_desc_write(txd, 3, word);
618 * Register descriptor details in skb frame descriptor.
620 skbdesc->desc = txd;
621 skbdesc->desc_len = TXD_DESC_SIZE;
625 * RX control handlers
627 static void rt2800pci_fill_rxdone(struct queue_entry *entry,
628 struct rxdone_entry_desc *rxdesc)
630 struct queue_entry_priv_pci *entry_priv = entry->priv_data;
631 __le32 *rxd = entry_priv->desc;
632 u32 word;
634 rt2x00_desc_read(rxd, 3, &word);
636 if (rt2x00_get_field32(word, RXD_W3_CRC_ERROR))
637 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
640 * Unfortunately we don't know the cipher type used during
641 * decryption. This prevents us from correct providing
642 * correct statistics through debugfs.
644 rxdesc->cipher_status = rt2x00_get_field32(word, RXD_W3_CIPHER_ERROR);
646 if (rt2x00_get_field32(word, RXD_W3_DECRYPTED)) {
648 * Hardware has stripped IV/EIV data from 802.11 frame during
649 * decryption. Unfortunately the descriptor doesn't contain
650 * any fields with the EIV/IV data either, so they can't
651 * be restored by rt2x00lib.
653 rxdesc->flags |= RX_FLAG_IV_STRIPPED;
655 if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
656 rxdesc->flags |= RX_FLAG_DECRYPTED;
657 else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
658 rxdesc->flags |= RX_FLAG_MMIC_ERROR;
661 if (rt2x00_get_field32(word, RXD_W3_MY_BSS))
662 rxdesc->dev_flags |= RXDONE_MY_BSS;
664 if (rt2x00_get_field32(word, RXD_W3_L2PAD))
665 rxdesc->dev_flags |= RXDONE_L2PAD;
668 * Process the RXWI structure that is at the start of the buffer.
670 rt2800_process_rxwi(entry, rxdesc);
674 * Interrupt functions.
676 static void rt2800pci_wakeup(struct rt2x00_dev *rt2x00dev)
678 struct ieee80211_conf conf = { .flags = 0 };
679 struct rt2x00lib_conf libconf = { .conf = &conf };
681 rt2800_config(rt2x00dev, &libconf, IEEE80211_CONF_CHANGE_PS);
684 static void rt2800pci_txdone(struct rt2x00_dev *rt2x00dev)
686 struct data_queue *queue;
687 struct queue_entry *entry;
688 u32 status;
689 u8 qid;
691 while (kfifo_get(&rt2x00dev->txstatus_fifo, &status)) {
692 qid = rt2x00_get_field32(status, TX_STA_FIFO_PID_QUEUE);
693 if (qid >= QID_RX) {
695 * Unknown queue, this shouldn't happen. Just drop
696 * this tx status.
698 WARNING(rt2x00dev, "Got TX status report with "
699 "unexpected pid %u, dropping\n", qid);
700 break;
703 queue = rt2x00queue_get_queue(rt2x00dev, qid);
704 if (unlikely(queue == NULL)) {
706 * The queue is NULL, this shouldn't happen. Stop
707 * processing here and drop the tx status
709 WARNING(rt2x00dev, "Got TX status for an unavailable "
710 "queue %u, dropping\n", qid);
711 break;
714 if (rt2x00queue_empty(queue)) {
716 * The queue is empty. Stop processing here
717 * and drop the tx status.
719 WARNING(rt2x00dev, "Got TX status for an empty "
720 "queue %u, dropping\n", qid);
721 break;
724 entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
725 rt2800_txdone_entry(entry, status);
729 static void rt2800pci_txstatus_tasklet(unsigned long data)
731 rt2800pci_txdone((struct rt2x00_dev *)data);
734 static irqreturn_t rt2800pci_interrupt_thread(int irq, void *dev_instance)
736 struct rt2x00_dev *rt2x00dev = dev_instance;
737 u32 reg = rt2x00dev->irqvalue[0];
740 * 1 - Pre TBTT interrupt.
742 if (rt2x00_get_field32(reg, INT_SOURCE_CSR_PRE_TBTT))
743 rt2x00lib_pretbtt(rt2x00dev);
746 * 2 - Beacondone interrupt.
748 if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TBTT))
749 rt2x00lib_beacondone(rt2x00dev);
752 * 3 - Rx ring done interrupt.
754 if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RX_DONE))
755 rt2x00pci_rxdone(rt2x00dev);
758 * 4 - Auto wakeup interrupt.
760 if (rt2x00_get_field32(reg, INT_SOURCE_CSR_AUTO_WAKEUP))
761 rt2800pci_wakeup(rt2x00dev);
763 /* Enable interrupts again. */
764 rt2x00dev->ops->lib->set_device_state(rt2x00dev,
765 STATE_RADIO_IRQ_ON_ISR);
767 return IRQ_HANDLED;
770 static void rt2800pci_txstatus_interrupt(struct rt2x00_dev *rt2x00dev)
772 u32 status;
773 int i;
776 * The TX_FIFO_STATUS interrupt needs special care. We should
777 * read TX_STA_FIFO but we should do it immediately as otherwise
778 * the register can overflow and we would lose status reports.
780 * Hence, read the TX_STA_FIFO register and copy all tx status
781 * reports into a kernel FIFO which is handled in the txstatus
782 * tasklet. We use a tasklet to process the tx status reports
783 * because we can schedule the tasklet multiple times (when the
784 * interrupt fires again during tx status processing).
786 * Furthermore we don't disable the TX_FIFO_STATUS
787 * interrupt here but leave it enabled so that the TX_STA_FIFO
788 * can also be read while the interrupt thread gets executed.
790 * Since we have only one producer and one consumer we don't
791 * need to lock the kfifo.
793 for (i = 0; i < rt2x00dev->ops->tx->entry_num; i++) {
794 rt2800_register_read(rt2x00dev, TX_STA_FIFO, &status);
796 if (!rt2x00_get_field32(status, TX_STA_FIFO_VALID))
797 break;
799 if (!kfifo_put(&rt2x00dev->txstatus_fifo, &status)) {
800 WARNING(rt2x00dev, "TX status FIFO overrun,"
801 "drop tx status report.\n");
802 break;
806 /* Schedule the tasklet for processing the tx status. */
807 tasklet_schedule(&rt2x00dev->txstatus_tasklet);
810 static irqreturn_t rt2800pci_interrupt(int irq, void *dev_instance)
812 struct rt2x00_dev *rt2x00dev = dev_instance;
813 u32 reg;
814 irqreturn_t ret = IRQ_HANDLED;
816 /* Read status and ACK all interrupts */
817 rt2800_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
818 rt2800_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
820 if (!reg)
821 return IRQ_NONE;
823 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
824 return IRQ_HANDLED;
826 if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TX_FIFO_STATUS))
827 rt2800pci_txstatus_interrupt(rt2x00dev);
829 if (rt2x00_get_field32(reg, INT_SOURCE_CSR_PRE_TBTT) ||
830 rt2x00_get_field32(reg, INT_SOURCE_CSR_TBTT) ||
831 rt2x00_get_field32(reg, INT_SOURCE_CSR_RX_DONE) ||
832 rt2x00_get_field32(reg, INT_SOURCE_CSR_AUTO_WAKEUP)) {
834 * All other interrupts are handled in the interrupt thread.
835 * Store irqvalue for use in the interrupt thread.
837 rt2x00dev->irqvalue[0] = reg;
840 * Disable interrupts, will be enabled again in the
841 * interrupt thread.
843 rt2x00dev->ops->lib->set_device_state(rt2x00dev,
844 STATE_RADIO_IRQ_OFF_ISR);
847 * Leave the TX_FIFO_STATUS interrupt enabled to not lose any
848 * tx status reports.
850 rt2800_register_read(rt2x00dev, INT_MASK_CSR, &reg);
851 rt2x00_set_field32(&reg, INT_MASK_CSR_TX_FIFO_STATUS, 1);
852 rt2800_register_write(rt2x00dev, INT_MASK_CSR, reg);
854 ret = IRQ_WAKE_THREAD;
857 return ret;
861 * Device probe functions.
863 static int rt2800pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
866 * Read EEPROM into buffer
868 if (rt2x00_is_soc(rt2x00dev))
869 rt2800pci_read_eeprom_soc(rt2x00dev);
870 else if (rt2800pci_efuse_detect(rt2x00dev))
871 rt2800pci_read_eeprom_efuse(rt2x00dev);
872 else
873 rt2800pci_read_eeprom_pci(rt2x00dev);
875 return rt2800_validate_eeprom(rt2x00dev);
878 static int rt2800pci_probe_hw(struct rt2x00_dev *rt2x00dev)
880 int retval;
883 * Allocate eeprom data.
885 retval = rt2800pci_validate_eeprom(rt2x00dev);
886 if (retval)
887 return retval;
889 retval = rt2800_init_eeprom(rt2x00dev);
890 if (retval)
891 return retval;
894 * Initialize hw specifications.
896 retval = rt2800_probe_hw_mode(rt2x00dev);
897 if (retval)
898 return retval;
901 * This device has multiple filters for control frames
902 * and has a separate filter for PS Poll frames.
904 __set_bit(DRIVER_SUPPORT_CONTROL_FILTERS, &rt2x00dev->flags);
905 __set_bit(DRIVER_SUPPORT_CONTROL_FILTER_PSPOLL, &rt2x00dev->flags);
908 * This device has a pre tbtt interrupt and thus fetches
909 * a new beacon directly prior to transmission.
911 __set_bit(DRIVER_SUPPORT_PRE_TBTT_INTERRUPT, &rt2x00dev->flags);
914 * This device requires firmware.
916 if (!rt2x00_is_soc(rt2x00dev))
917 __set_bit(DRIVER_REQUIRE_FIRMWARE, &rt2x00dev->flags);
918 __set_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags);
919 __set_bit(DRIVER_REQUIRE_L2PAD, &rt2x00dev->flags);
920 __set_bit(DRIVER_REQUIRE_TXSTATUS_FIFO, &rt2x00dev->flags);
921 __set_bit(DRIVER_REQUIRE_TASKLET_CONTEXT, &rt2x00dev->flags);
922 if (!modparam_nohwcrypt)
923 __set_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags);
924 __set_bit(DRIVER_SUPPORT_LINK_TUNING, &rt2x00dev->flags);
927 * Set the rssi offset.
929 rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
931 return 0;
934 static const struct ieee80211_ops rt2800pci_mac80211_ops = {
935 .tx = rt2x00mac_tx,
936 .start = rt2x00mac_start,
937 .stop = rt2x00mac_stop,
938 .add_interface = rt2x00mac_add_interface,
939 .remove_interface = rt2x00mac_remove_interface,
940 .config = rt2x00mac_config,
941 .configure_filter = rt2x00mac_configure_filter,
942 .set_key = rt2x00mac_set_key,
943 .sw_scan_start = rt2x00mac_sw_scan_start,
944 .sw_scan_complete = rt2x00mac_sw_scan_complete,
945 .get_stats = rt2x00mac_get_stats,
946 .get_tkip_seq = rt2800_get_tkip_seq,
947 .set_rts_threshold = rt2800_set_rts_threshold,
948 .bss_info_changed = rt2x00mac_bss_info_changed,
949 .conf_tx = rt2800_conf_tx,
950 .get_tsf = rt2800_get_tsf,
951 .rfkill_poll = rt2x00mac_rfkill_poll,
952 .ampdu_action = rt2800_ampdu_action,
953 .flush = rt2x00mac_flush,
954 .get_survey = rt2800_get_survey,
957 static const struct rt2800_ops rt2800pci_rt2800_ops = {
958 .register_read = rt2x00pci_register_read,
959 .register_read_lock = rt2x00pci_register_read, /* same for PCI */
960 .register_write = rt2x00pci_register_write,
961 .register_write_lock = rt2x00pci_register_write, /* same for PCI */
962 .register_multiread = rt2x00pci_register_multiread,
963 .register_multiwrite = rt2x00pci_register_multiwrite,
964 .regbusy_read = rt2x00pci_regbusy_read,
965 .drv_write_firmware = rt2800pci_write_firmware,
966 .drv_init_registers = rt2800pci_init_registers,
967 .drv_get_txwi = rt2800pci_get_txwi,
970 static const struct rt2x00lib_ops rt2800pci_rt2x00_ops = {
971 .irq_handler = rt2800pci_interrupt,
972 .irq_handler_thread = rt2800pci_interrupt_thread,
973 .txstatus_tasklet = rt2800pci_txstatus_tasklet,
974 .probe_hw = rt2800pci_probe_hw,
975 .get_firmware_name = rt2800pci_get_firmware_name,
976 .check_firmware = rt2800_check_firmware,
977 .load_firmware = rt2800_load_firmware,
978 .initialize = rt2x00pci_initialize,
979 .uninitialize = rt2x00pci_uninitialize,
980 .get_entry_state = rt2800pci_get_entry_state,
981 .clear_entry = rt2800pci_clear_entry,
982 .set_device_state = rt2800pci_set_device_state,
983 .rfkill_poll = rt2800_rfkill_poll,
984 .link_stats = rt2800_link_stats,
985 .reset_tuner = rt2800_reset_tuner,
986 .link_tuner = rt2800_link_tuner,
987 .start_queue = rt2800pci_start_queue,
988 .kick_queue = rt2800pci_kick_queue,
989 .stop_queue = rt2800pci_stop_queue,
990 .write_tx_desc = rt2800pci_write_tx_desc,
991 .write_tx_data = rt2800_write_tx_data,
992 .write_beacon = rt2800_write_beacon,
993 .fill_rxdone = rt2800pci_fill_rxdone,
994 .config_shared_key = rt2800_config_shared_key,
995 .config_pairwise_key = rt2800_config_pairwise_key,
996 .config_filter = rt2800_config_filter,
997 .config_intf = rt2800_config_intf,
998 .config_erp = rt2800_config_erp,
999 .config_ant = rt2800_config_ant,
1000 .config = rt2800_config,
1003 static const struct data_queue_desc rt2800pci_queue_rx = {
1004 .entry_num = 128,
1005 .data_size = AGGREGATION_SIZE,
1006 .desc_size = RXD_DESC_SIZE,
1007 .priv_size = sizeof(struct queue_entry_priv_pci),
1010 static const struct data_queue_desc rt2800pci_queue_tx = {
1011 .entry_num = 64,
1012 .data_size = AGGREGATION_SIZE,
1013 .desc_size = TXD_DESC_SIZE,
1014 .priv_size = sizeof(struct queue_entry_priv_pci),
1017 static const struct data_queue_desc rt2800pci_queue_bcn = {
1018 .entry_num = 8,
1019 .data_size = 0, /* No DMA required for beacons */
1020 .desc_size = TXWI_DESC_SIZE,
1021 .priv_size = sizeof(struct queue_entry_priv_pci),
1024 static const struct rt2x00_ops rt2800pci_ops = {
1025 .name = KBUILD_MODNAME,
1026 .max_sta_intf = 1,
1027 .max_ap_intf = 8,
1028 .eeprom_size = EEPROM_SIZE,
1029 .rf_size = RF_SIZE,
1030 .tx_queues = NUM_TX_QUEUES,
1031 .extra_tx_headroom = TXWI_DESC_SIZE,
1032 .rx = &rt2800pci_queue_rx,
1033 .tx = &rt2800pci_queue_tx,
1034 .bcn = &rt2800pci_queue_bcn,
1035 .lib = &rt2800pci_rt2x00_ops,
1036 .drv = &rt2800pci_rt2800_ops,
1037 .hw = &rt2800pci_mac80211_ops,
1038 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
1039 .debugfs = &rt2800_rt2x00debug,
1040 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1044 * RT2800pci module information.
1046 #ifdef CONFIG_PCI
1047 static DEFINE_PCI_DEVICE_TABLE(rt2800pci_device_table) = {
1048 { PCI_DEVICE(0x1814, 0x0601), PCI_DEVICE_DATA(&rt2800pci_ops) },
1049 { PCI_DEVICE(0x1814, 0x0681), PCI_DEVICE_DATA(&rt2800pci_ops) },
1050 { PCI_DEVICE(0x1814, 0x0701), PCI_DEVICE_DATA(&rt2800pci_ops) },
1051 { PCI_DEVICE(0x1814, 0x0781), PCI_DEVICE_DATA(&rt2800pci_ops) },
1052 { PCI_DEVICE(0x1814, 0x3090), PCI_DEVICE_DATA(&rt2800pci_ops) },
1053 { PCI_DEVICE(0x1814, 0x3091), PCI_DEVICE_DATA(&rt2800pci_ops) },
1054 { PCI_DEVICE(0x1814, 0x3092), PCI_DEVICE_DATA(&rt2800pci_ops) },
1055 { PCI_DEVICE(0x1432, 0x7708), PCI_DEVICE_DATA(&rt2800pci_ops) },
1056 { PCI_DEVICE(0x1432, 0x7727), PCI_DEVICE_DATA(&rt2800pci_ops) },
1057 { PCI_DEVICE(0x1432, 0x7728), PCI_DEVICE_DATA(&rt2800pci_ops) },
1058 { PCI_DEVICE(0x1432, 0x7738), PCI_DEVICE_DATA(&rt2800pci_ops) },
1059 { PCI_DEVICE(0x1432, 0x7748), PCI_DEVICE_DATA(&rt2800pci_ops) },
1060 { PCI_DEVICE(0x1432, 0x7758), PCI_DEVICE_DATA(&rt2800pci_ops) },
1061 { PCI_DEVICE(0x1432, 0x7768), PCI_DEVICE_DATA(&rt2800pci_ops) },
1062 { PCI_DEVICE(0x1462, 0x891a), PCI_DEVICE_DATA(&rt2800pci_ops) },
1063 { PCI_DEVICE(0x1a3b, 0x1059), PCI_DEVICE_DATA(&rt2800pci_ops) },
1064 #ifdef CONFIG_RT2800PCI_RT33XX
1065 { PCI_DEVICE(0x1814, 0x3390), PCI_DEVICE_DATA(&rt2800pci_ops) },
1066 #endif
1067 #ifdef CONFIG_RT2800PCI_RT35XX
1068 { PCI_DEVICE(0x1814, 0x3060), PCI_DEVICE_DATA(&rt2800pci_ops) },
1069 { PCI_DEVICE(0x1814, 0x3062), PCI_DEVICE_DATA(&rt2800pci_ops) },
1070 { PCI_DEVICE(0x1814, 0x3562), PCI_DEVICE_DATA(&rt2800pci_ops) },
1071 { PCI_DEVICE(0x1814, 0x3592), PCI_DEVICE_DATA(&rt2800pci_ops) },
1072 { PCI_DEVICE(0x1814, 0x3593), PCI_DEVICE_DATA(&rt2800pci_ops) },
1073 #endif
1074 { 0, }
1076 #endif /* CONFIG_PCI */
1078 MODULE_AUTHOR(DRV_PROJECT);
1079 MODULE_VERSION(DRV_VERSION);
1080 MODULE_DESCRIPTION("Ralink RT2800 PCI & PCMCIA Wireless LAN driver.");
1081 MODULE_SUPPORTED_DEVICE("Ralink RT2860 PCI & PCMCIA chipset based cards");
1082 #ifdef CONFIG_PCI
1083 MODULE_FIRMWARE(FIRMWARE_RT2860);
1084 MODULE_DEVICE_TABLE(pci, rt2800pci_device_table);
1085 #endif /* CONFIG_PCI */
1086 MODULE_LICENSE("GPL");
1088 #if defined(CONFIG_RALINK_RT288X) || defined(CONFIG_RALINK_RT305X)
1089 static int rt2800soc_probe(struct platform_device *pdev)
1091 return rt2x00soc_probe(pdev, &rt2800pci_ops);
1094 static struct platform_driver rt2800soc_driver = {
1095 .driver = {
1096 .name = "rt2800_wmac",
1097 .owner = THIS_MODULE,
1098 .mod_name = KBUILD_MODNAME,
1100 .probe = rt2800soc_probe,
1101 .remove = __devexit_p(rt2x00soc_remove),
1102 .suspend = rt2x00soc_suspend,
1103 .resume = rt2x00soc_resume,
1105 #endif /* CONFIG_RALINK_RT288X || CONFIG_RALINK_RT305X */
1107 #ifdef CONFIG_PCI
1108 static struct pci_driver rt2800pci_driver = {
1109 .name = KBUILD_MODNAME,
1110 .id_table = rt2800pci_device_table,
1111 .probe = rt2x00pci_probe,
1112 .remove = __devexit_p(rt2x00pci_remove),
1113 .suspend = rt2x00pci_suspend,
1114 .resume = rt2x00pci_resume,
1116 #endif /* CONFIG_PCI */
1118 static int __init rt2800pci_init(void)
1120 int ret = 0;
1122 #if defined(CONFIG_RALINK_RT288X) || defined(CONFIG_RALINK_RT305X)
1123 ret = platform_driver_register(&rt2800soc_driver);
1124 if (ret)
1125 return ret;
1126 #endif
1127 #ifdef CONFIG_PCI
1128 ret = pci_register_driver(&rt2800pci_driver);
1129 if (ret) {
1130 #if defined(CONFIG_RALINK_RT288X) || defined(CONFIG_RALINK_RT305X)
1131 platform_driver_unregister(&rt2800soc_driver);
1132 #endif
1133 return ret;
1135 #endif
1137 return ret;
1140 static void __exit rt2800pci_exit(void)
1142 #ifdef CONFIG_PCI
1143 pci_unregister_driver(&rt2800pci_driver);
1144 #endif
1145 #if defined(CONFIG_RALINK_RT288X) || defined(CONFIG_RALINK_RT305X)
1146 platform_driver_unregister(&rt2800soc_driver);
1147 #endif
1150 module_init(rt2800pci_init);
1151 module_exit(rt2800pci_exit);