2 Copyright (C) 2009 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
3 Copyright (C) 2009 Alban Browaeys <prahal@yahoo.com>
4 Copyright (C) 2009 Felix Fietkau <nbd@openwrt.org>
5 Copyright (C) 2009 Luis Correia <luis.f.correia@gmail.com>
6 Copyright (C) 2009 Mattias Nissler <mattias.nissler@gmx.de>
7 Copyright (C) 2009 Mark Asselstine <asselsm@gmail.com>
8 Copyright (C) 2009 Xose Vazquez Perez <xose.vazquez@gmail.com>
9 Copyright (C) 2009 Bart Zolnierkiewicz <bzolnier@gmail.com>
10 <http://rt2x00.serialmonkey.com>
12 This program is free software; you can redistribute it and/or modify
13 it under the terms of the GNU General Public License as published by
14 the Free Software Foundation; either version 2 of the License, or
15 (at your option) any later version.
17 This program is distributed in the hope that it will be useful,
18 but WITHOUT ANY WARRANTY; without even the implied warranty of
19 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 GNU General Public License for more details.
22 You should have received a copy of the GNU General Public License
23 along with this program; if not, write to the
24 Free Software Foundation, Inc.,
25 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
30 Abstract: rt2800pci device specific routines.
31 Supported chipsets: RT2800E & RT2800ED.
34 #include <linux/delay.h>
35 #include <linux/etherdevice.h>
36 #include <linux/init.h>
37 #include <linux/kernel.h>
38 #include <linux/module.h>
39 #include <linux/pci.h>
40 #include <linux/platform_device.h>
41 #include <linux/eeprom_93cx6.h>
44 #include "rt2x00pci.h"
45 #include "rt2x00soc.h"
46 #include "rt2800lib.h"
48 #include "rt2800pci.h"
51 * Allow hardware encryption to be disabled.
53 static int modparam_nohwcrypt
= 0;
54 module_param_named(nohwcrypt
, modparam_nohwcrypt
, bool, S_IRUGO
);
55 MODULE_PARM_DESC(nohwcrypt
, "Disable hardware encryption.");
57 static void rt2800pci_mcu_status(struct rt2x00_dev
*rt2x00dev
, const u8 token
)
63 * SOC devices don't support MCU requests.
65 if (rt2x00_is_soc(rt2x00dev
))
68 for (i
= 0; i
< 200; i
++) {
69 rt2800_register_read(rt2x00dev
, H2M_MAILBOX_CID
, ®
);
71 if ((rt2x00_get_field32(reg
, H2M_MAILBOX_CID_CMD0
) == token
) ||
72 (rt2x00_get_field32(reg
, H2M_MAILBOX_CID_CMD1
) == token
) ||
73 (rt2x00_get_field32(reg
, H2M_MAILBOX_CID_CMD2
) == token
) ||
74 (rt2x00_get_field32(reg
, H2M_MAILBOX_CID_CMD3
) == token
))
77 udelay(REGISTER_BUSY_DELAY
);
81 ERROR(rt2x00dev
, "MCU request failed, no response from hardware\n");
83 rt2800_register_write(rt2x00dev
, H2M_MAILBOX_STATUS
, ~0);
84 rt2800_register_write(rt2x00dev
, H2M_MAILBOX_CID
, ~0);
87 #if defined(CONFIG_RALINK_RT288X) || defined(CONFIG_RALINK_RT305X)
88 static void rt2800pci_read_eeprom_soc(struct rt2x00_dev
*rt2x00dev
)
90 void __iomem
*base_addr
= ioremap(0x1F040000, EEPROM_SIZE
);
92 memcpy_fromio(rt2x00dev
->eeprom
, base_addr
, EEPROM_SIZE
);
97 static inline void rt2800pci_read_eeprom_soc(struct rt2x00_dev
*rt2x00dev
)
100 #endif /* CONFIG_RALINK_RT288X || CONFIG_RALINK_RT305X */
103 static void rt2800pci_eepromregister_read(struct eeprom_93cx6
*eeprom
)
105 struct rt2x00_dev
*rt2x00dev
= eeprom
->data
;
108 rt2800_register_read(rt2x00dev
, E2PROM_CSR
, ®
);
110 eeprom
->reg_data_in
= !!rt2x00_get_field32(reg
, E2PROM_CSR_DATA_IN
);
111 eeprom
->reg_data_out
= !!rt2x00_get_field32(reg
, E2PROM_CSR_DATA_OUT
);
112 eeprom
->reg_data_clock
=
113 !!rt2x00_get_field32(reg
, E2PROM_CSR_DATA_CLOCK
);
114 eeprom
->reg_chip_select
=
115 !!rt2x00_get_field32(reg
, E2PROM_CSR_CHIP_SELECT
);
118 static void rt2800pci_eepromregister_write(struct eeprom_93cx6
*eeprom
)
120 struct rt2x00_dev
*rt2x00dev
= eeprom
->data
;
123 rt2x00_set_field32(®
, E2PROM_CSR_DATA_IN
, !!eeprom
->reg_data_in
);
124 rt2x00_set_field32(®
, E2PROM_CSR_DATA_OUT
, !!eeprom
->reg_data_out
);
125 rt2x00_set_field32(®
, E2PROM_CSR_DATA_CLOCK
,
126 !!eeprom
->reg_data_clock
);
127 rt2x00_set_field32(®
, E2PROM_CSR_CHIP_SELECT
,
128 !!eeprom
->reg_chip_select
);
130 rt2800_register_write(rt2x00dev
, E2PROM_CSR
, reg
);
133 static void rt2800pci_read_eeprom_pci(struct rt2x00_dev
*rt2x00dev
)
135 struct eeprom_93cx6 eeprom
;
138 rt2800_register_read(rt2x00dev
, E2PROM_CSR
, ®
);
140 eeprom
.data
= rt2x00dev
;
141 eeprom
.register_read
= rt2800pci_eepromregister_read
;
142 eeprom
.register_write
= rt2800pci_eepromregister_write
;
143 switch (rt2x00_get_field32(reg
, E2PROM_CSR_TYPE
))
146 eeprom
.width
= PCI_EEPROM_WIDTH_93C46
;
149 eeprom
.width
= PCI_EEPROM_WIDTH_93C66
;
152 eeprom
.width
= PCI_EEPROM_WIDTH_93C86
;
155 eeprom
.reg_data_in
= 0;
156 eeprom
.reg_data_out
= 0;
157 eeprom
.reg_data_clock
= 0;
158 eeprom
.reg_chip_select
= 0;
160 eeprom_93cx6_multiread(&eeprom
, EEPROM_BASE
, rt2x00dev
->eeprom
,
161 EEPROM_SIZE
/ sizeof(u16
));
164 static int rt2800pci_efuse_detect(struct rt2x00_dev
*rt2x00dev
)
166 return rt2800_efuse_detect(rt2x00dev
);
169 static inline void rt2800pci_read_eeprom_efuse(struct rt2x00_dev
*rt2x00dev
)
171 rt2800_read_eeprom_efuse(rt2x00dev
);
174 static inline void rt2800pci_read_eeprom_pci(struct rt2x00_dev
*rt2x00dev
)
178 static inline int rt2800pci_efuse_detect(struct rt2x00_dev
*rt2x00dev
)
183 static inline void rt2800pci_read_eeprom_efuse(struct rt2x00_dev
*rt2x00dev
)
186 #endif /* CONFIG_PCI */
191 static void rt2800pci_start_queue(struct data_queue
*queue
)
193 struct rt2x00_dev
*rt2x00dev
= queue
->rt2x00dev
;
196 switch (queue
->qid
) {
198 rt2800_register_read(rt2x00dev
, MAC_SYS_CTRL
, ®
);
199 rt2x00_set_field32(®
, MAC_SYS_CTRL_ENABLE_RX
, 1);
200 rt2800_register_write(rt2x00dev
, MAC_SYS_CTRL
, reg
);
203 rt2800_register_read(rt2x00dev
, BCN_TIME_CFG
, ®
);
204 rt2x00_set_field32(®
, BCN_TIME_CFG_TSF_TICKING
, 1);
205 rt2x00_set_field32(®
, BCN_TIME_CFG_TBTT_ENABLE
, 1);
206 rt2x00_set_field32(®
, BCN_TIME_CFG_BEACON_GEN
, 1);
207 rt2800_register_write(rt2x00dev
, BCN_TIME_CFG
, reg
);
214 static void rt2800pci_kick_queue(struct data_queue
*queue
)
216 struct rt2x00_dev
*rt2x00dev
= queue
->rt2x00dev
;
217 struct queue_entry
*entry
;
219 switch (queue
->qid
) {
224 entry
= rt2x00queue_get_entry(queue
, Q_INDEX
);
225 rt2800_register_write(rt2x00dev
, TX_CTX_IDX(queue
->qid
), entry
->entry_idx
);
228 entry
= rt2x00queue_get_entry(queue
, Q_INDEX
);
229 rt2800_register_write(rt2x00dev
, TX_CTX_IDX(5), entry
->entry_idx
);
236 static void rt2800pci_stop_queue(struct data_queue
*queue
)
238 struct rt2x00_dev
*rt2x00dev
= queue
->rt2x00dev
;
241 switch (queue
->qid
) {
243 rt2800_register_read(rt2x00dev
, MAC_SYS_CTRL
, ®
);
244 rt2x00_set_field32(®
, MAC_SYS_CTRL_ENABLE_RX
, 0);
245 rt2800_register_write(rt2x00dev
, MAC_SYS_CTRL
, reg
);
248 rt2800_register_read(rt2x00dev
, BCN_TIME_CFG
, ®
);
249 rt2x00_set_field32(®
, BCN_TIME_CFG_TSF_TICKING
, 0);
250 rt2x00_set_field32(®
, BCN_TIME_CFG_TBTT_ENABLE
, 0);
251 rt2x00_set_field32(®
, BCN_TIME_CFG_BEACON_GEN
, 0);
252 rt2800_register_write(rt2x00dev
, BCN_TIME_CFG
, reg
);
262 static char *rt2800pci_get_firmware_name(struct rt2x00_dev
*rt2x00dev
)
264 return FIRMWARE_RT2860
;
267 static int rt2800pci_write_firmware(struct rt2x00_dev
*rt2x00dev
,
268 const u8
*data
, const size_t len
)
273 * enable Host program ram write selection
276 rt2x00_set_field32(®
, PBF_SYS_CTRL_HOST_RAM_WRITE
, 1);
277 rt2800_register_write(rt2x00dev
, PBF_SYS_CTRL
, reg
);
280 * Write firmware to device.
282 rt2800_register_multiwrite(rt2x00dev
, FIRMWARE_IMAGE_BASE
,
285 rt2800_register_write(rt2x00dev
, PBF_SYS_CTRL
, 0x00000);
286 rt2800_register_write(rt2x00dev
, PBF_SYS_CTRL
, 0x00001);
288 rt2800_register_write(rt2x00dev
, H2M_BBP_AGENT
, 0);
289 rt2800_register_write(rt2x00dev
, H2M_MAILBOX_CSR
, 0);
295 * Initialization functions.
297 static bool rt2800pci_get_entry_state(struct queue_entry
*entry
)
299 struct queue_entry_priv_pci
*entry_priv
= entry
->priv_data
;
302 if (entry
->queue
->qid
== QID_RX
) {
303 rt2x00_desc_read(entry_priv
->desc
, 1, &word
);
305 return (!rt2x00_get_field32(word
, RXD_W1_DMA_DONE
));
307 rt2x00_desc_read(entry_priv
->desc
, 1, &word
);
309 return (!rt2x00_get_field32(word
, TXD_W1_DMA_DONE
));
313 static void rt2800pci_clear_entry(struct queue_entry
*entry
)
315 struct queue_entry_priv_pci
*entry_priv
= entry
->priv_data
;
316 struct skb_frame_desc
*skbdesc
= get_skb_frame_desc(entry
->skb
);
317 struct rt2x00_dev
*rt2x00dev
= entry
->queue
->rt2x00dev
;
320 if (entry
->queue
->qid
== QID_RX
) {
321 rt2x00_desc_read(entry_priv
->desc
, 0, &word
);
322 rt2x00_set_field32(&word
, RXD_W0_SDP0
, skbdesc
->skb_dma
);
323 rt2x00_desc_write(entry_priv
->desc
, 0, word
);
325 rt2x00_desc_read(entry_priv
->desc
, 1, &word
);
326 rt2x00_set_field32(&word
, RXD_W1_DMA_DONE
, 0);
327 rt2x00_desc_write(entry_priv
->desc
, 1, word
);
330 * Set RX IDX in register to inform hardware that we have
331 * handled this entry and it is available for reuse again.
333 rt2800_register_write(rt2x00dev
, RX_CRX_IDX
,
336 rt2x00_desc_read(entry_priv
->desc
, 1, &word
);
337 rt2x00_set_field32(&word
, TXD_W1_DMA_DONE
, 1);
338 rt2x00_desc_write(entry_priv
->desc
, 1, word
);
342 static int rt2800pci_init_queues(struct rt2x00_dev
*rt2x00dev
)
344 struct queue_entry_priv_pci
*entry_priv
;
348 * Initialize registers.
350 entry_priv
= rt2x00dev
->tx
[0].entries
[0].priv_data
;
351 rt2800_register_write(rt2x00dev
, TX_BASE_PTR0
, entry_priv
->desc_dma
);
352 rt2800_register_write(rt2x00dev
, TX_MAX_CNT0
, rt2x00dev
->tx
[0].limit
);
353 rt2800_register_write(rt2x00dev
, TX_CTX_IDX0
, 0);
354 rt2800_register_write(rt2x00dev
, TX_DTX_IDX0
, 0);
356 entry_priv
= rt2x00dev
->tx
[1].entries
[0].priv_data
;
357 rt2800_register_write(rt2x00dev
, TX_BASE_PTR1
, entry_priv
->desc_dma
);
358 rt2800_register_write(rt2x00dev
, TX_MAX_CNT1
, rt2x00dev
->tx
[1].limit
);
359 rt2800_register_write(rt2x00dev
, TX_CTX_IDX1
, 0);
360 rt2800_register_write(rt2x00dev
, TX_DTX_IDX1
, 0);
362 entry_priv
= rt2x00dev
->tx
[2].entries
[0].priv_data
;
363 rt2800_register_write(rt2x00dev
, TX_BASE_PTR2
, entry_priv
->desc_dma
);
364 rt2800_register_write(rt2x00dev
, TX_MAX_CNT2
, rt2x00dev
->tx
[2].limit
);
365 rt2800_register_write(rt2x00dev
, TX_CTX_IDX2
, 0);
366 rt2800_register_write(rt2x00dev
, TX_DTX_IDX2
, 0);
368 entry_priv
= rt2x00dev
->tx
[3].entries
[0].priv_data
;
369 rt2800_register_write(rt2x00dev
, TX_BASE_PTR3
, entry_priv
->desc_dma
);
370 rt2800_register_write(rt2x00dev
, TX_MAX_CNT3
, rt2x00dev
->tx
[3].limit
);
371 rt2800_register_write(rt2x00dev
, TX_CTX_IDX3
, 0);
372 rt2800_register_write(rt2x00dev
, TX_DTX_IDX3
, 0);
374 entry_priv
= rt2x00dev
->rx
->entries
[0].priv_data
;
375 rt2800_register_write(rt2x00dev
, RX_BASE_PTR
, entry_priv
->desc_dma
);
376 rt2800_register_write(rt2x00dev
, RX_MAX_CNT
, rt2x00dev
->rx
[0].limit
);
377 rt2800_register_write(rt2x00dev
, RX_CRX_IDX
, rt2x00dev
->rx
[0].limit
- 1);
378 rt2800_register_write(rt2x00dev
, RX_DRX_IDX
, 0);
381 * Enable global DMA configuration
383 rt2800_register_read(rt2x00dev
, WPDMA_GLO_CFG
, ®
);
384 rt2x00_set_field32(®
, WPDMA_GLO_CFG_ENABLE_TX_DMA
, 0);
385 rt2x00_set_field32(®
, WPDMA_GLO_CFG_ENABLE_RX_DMA
, 0);
386 rt2x00_set_field32(®
, WPDMA_GLO_CFG_TX_WRITEBACK_DONE
, 1);
387 rt2800_register_write(rt2x00dev
, WPDMA_GLO_CFG
, reg
);
389 rt2800_register_write(rt2x00dev
, DELAY_INT_CFG
, 0);
395 * Device state switch handlers.
397 static void rt2800pci_toggle_irq(struct rt2x00_dev
*rt2x00dev
,
398 enum dev_state state
)
400 int mask
= (state
== STATE_RADIO_IRQ_ON
) ||
401 (state
== STATE_RADIO_IRQ_ON_ISR
);
405 * When interrupts are being enabled, the interrupt registers
406 * should clear the register to assure a clean state.
408 if (state
== STATE_RADIO_IRQ_ON
) {
409 rt2800_register_read(rt2x00dev
, INT_SOURCE_CSR
, ®
);
410 rt2800_register_write(rt2x00dev
, INT_SOURCE_CSR
, reg
);
413 rt2800_register_read(rt2x00dev
, INT_MASK_CSR
, ®
);
414 rt2x00_set_field32(®
, INT_MASK_CSR_RXDELAYINT
, 0);
415 rt2x00_set_field32(®
, INT_MASK_CSR_TXDELAYINT
, 0);
416 rt2x00_set_field32(®
, INT_MASK_CSR_RX_DONE
, mask
);
417 rt2x00_set_field32(®
, INT_MASK_CSR_AC0_DMA_DONE
, 0);
418 rt2x00_set_field32(®
, INT_MASK_CSR_AC1_DMA_DONE
, 0);
419 rt2x00_set_field32(®
, INT_MASK_CSR_AC2_DMA_DONE
, 0);
420 rt2x00_set_field32(®
, INT_MASK_CSR_AC3_DMA_DONE
, 0);
421 rt2x00_set_field32(®
, INT_MASK_CSR_HCCA_DMA_DONE
, 0);
422 rt2x00_set_field32(®
, INT_MASK_CSR_MGMT_DMA_DONE
, 0);
423 rt2x00_set_field32(®
, INT_MASK_CSR_MCU_COMMAND
, 0);
424 rt2x00_set_field32(®
, INT_MASK_CSR_RXTX_COHERENT
, 0);
425 rt2x00_set_field32(®
, INT_MASK_CSR_TBTT
, mask
);
426 rt2x00_set_field32(®
, INT_MASK_CSR_PRE_TBTT
, mask
);
427 rt2x00_set_field32(®
, INT_MASK_CSR_TX_FIFO_STATUS
, mask
);
428 rt2x00_set_field32(®
, INT_MASK_CSR_AUTO_WAKEUP
, mask
);
429 rt2x00_set_field32(®
, INT_MASK_CSR_GPTIMER
, 0);
430 rt2x00_set_field32(®
, INT_MASK_CSR_RX_COHERENT
, 0);
431 rt2x00_set_field32(®
, INT_MASK_CSR_TX_COHERENT
, 0);
432 rt2800_register_write(rt2x00dev
, INT_MASK_CSR
, reg
);
435 static int rt2800pci_init_registers(struct rt2x00_dev
*rt2x00dev
)
442 rt2800_register_read(rt2x00dev
, WPDMA_RST_IDX
, ®
);
443 rt2x00_set_field32(®
, WPDMA_RST_IDX_DTX_IDX0
, 1);
444 rt2x00_set_field32(®
, WPDMA_RST_IDX_DTX_IDX1
, 1);
445 rt2x00_set_field32(®
, WPDMA_RST_IDX_DTX_IDX2
, 1);
446 rt2x00_set_field32(®
, WPDMA_RST_IDX_DTX_IDX3
, 1);
447 rt2x00_set_field32(®
, WPDMA_RST_IDX_DTX_IDX4
, 1);
448 rt2x00_set_field32(®
, WPDMA_RST_IDX_DTX_IDX5
, 1);
449 rt2x00_set_field32(®
, WPDMA_RST_IDX_DRX_IDX0
, 1);
450 rt2800_register_write(rt2x00dev
, WPDMA_RST_IDX
, reg
);
452 rt2800_register_write(rt2x00dev
, PBF_SYS_CTRL
, 0x00000e1f);
453 rt2800_register_write(rt2x00dev
, PBF_SYS_CTRL
, 0x00000e00);
455 rt2800_register_write(rt2x00dev
, PWR_PIN_CFG
, 0x00000003);
457 rt2800_register_read(rt2x00dev
, MAC_SYS_CTRL
, ®
);
458 rt2x00_set_field32(®
, MAC_SYS_CTRL_RESET_CSR
, 1);
459 rt2x00_set_field32(®
, MAC_SYS_CTRL_RESET_BBP
, 1);
460 rt2800_register_write(rt2x00dev
, MAC_SYS_CTRL
, reg
);
462 rt2800_register_write(rt2x00dev
, MAC_SYS_CTRL
, 0x00000000);
467 static int rt2800pci_enable_radio(struct rt2x00_dev
*rt2x00dev
)
469 if (unlikely(rt2800_wait_wpdma_ready(rt2x00dev
) ||
470 rt2800pci_init_queues(rt2x00dev
)))
473 return rt2800_enable_radio(rt2x00dev
);
476 static void rt2800pci_disable_radio(struct rt2x00_dev
*rt2x00dev
)
480 rt2800_disable_radio(rt2x00dev
);
482 rt2800_register_write(rt2x00dev
, PBF_SYS_CTRL
, 0x00001280);
484 rt2800_register_read(rt2x00dev
, WPDMA_RST_IDX
, ®
);
485 rt2x00_set_field32(®
, WPDMA_RST_IDX_DTX_IDX0
, 1);
486 rt2x00_set_field32(®
, WPDMA_RST_IDX_DTX_IDX1
, 1);
487 rt2x00_set_field32(®
, WPDMA_RST_IDX_DTX_IDX2
, 1);
488 rt2x00_set_field32(®
, WPDMA_RST_IDX_DTX_IDX3
, 1);
489 rt2x00_set_field32(®
, WPDMA_RST_IDX_DTX_IDX4
, 1);
490 rt2x00_set_field32(®
, WPDMA_RST_IDX_DTX_IDX5
, 1);
491 rt2x00_set_field32(®
, WPDMA_RST_IDX_DRX_IDX0
, 1);
492 rt2800_register_write(rt2x00dev
, WPDMA_RST_IDX
, reg
);
494 rt2800_register_write(rt2x00dev
, PBF_SYS_CTRL
, 0x00000e1f);
495 rt2800_register_write(rt2x00dev
, PBF_SYS_CTRL
, 0x00000e00);
498 static int rt2800pci_set_state(struct rt2x00_dev
*rt2x00dev
,
499 enum dev_state state
)
502 * Always put the device to sleep (even when we intend to wakeup!)
503 * if the device is booting and wasn't asleep it will return
504 * failure when attempting to wakeup.
506 rt2800_mcu_request(rt2x00dev
, MCU_SLEEP
, 0xff, 0xff, 2);
508 if (state
== STATE_AWAKE
) {
509 rt2800_mcu_request(rt2x00dev
, MCU_WAKEUP
, TOKEN_WAKUP
, 0, 0);
510 rt2800pci_mcu_status(rt2x00dev
, TOKEN_WAKUP
);
516 static int rt2800pci_set_device_state(struct rt2x00_dev
*rt2x00dev
,
517 enum dev_state state
)
524 * Before the radio can be enabled, the device first has
525 * to be woken up. After that it needs a bit of time
526 * to be fully awake and then the radio can be enabled.
528 rt2800pci_set_state(rt2x00dev
, STATE_AWAKE
);
530 retval
= rt2800pci_enable_radio(rt2x00dev
);
532 case STATE_RADIO_OFF
:
534 * After the radio has been disabled, the device should
535 * be put to sleep for powersaving.
537 rt2800pci_disable_radio(rt2x00dev
);
538 rt2800pci_set_state(rt2x00dev
, STATE_SLEEP
);
540 case STATE_RADIO_IRQ_ON
:
541 case STATE_RADIO_IRQ_ON_ISR
:
542 case STATE_RADIO_IRQ_OFF
:
543 case STATE_RADIO_IRQ_OFF_ISR
:
544 rt2800pci_toggle_irq(rt2x00dev
, state
);
546 case STATE_DEEP_SLEEP
:
550 retval
= rt2800pci_set_state(rt2x00dev
, state
);
557 if (unlikely(retval
))
558 ERROR(rt2x00dev
, "Device failed to enter state %d (%d).\n",
565 * TX descriptor initialization
567 static __le32
*rt2800pci_get_txwi(struct queue_entry
*entry
)
569 return (__le32
*) entry
->skb
->data
;
572 static void rt2800pci_write_tx_desc(struct queue_entry
*entry
,
573 struct txentry_desc
*txdesc
)
575 struct skb_frame_desc
*skbdesc
= get_skb_frame_desc(entry
->skb
);
576 struct queue_entry_priv_pci
*entry_priv
= entry
->priv_data
;
577 __le32
*txd
= entry_priv
->desc
;
581 * The buffers pointed by SD_PTR0/SD_LEN0 and SD_PTR1/SD_LEN1
582 * must contains a TXWI structure + 802.11 header + padding + 802.11
583 * data. We choose to have SD_PTR0/SD_LEN0 only contains TXWI and
584 * SD_PTR1/SD_LEN1 contains 802.11 header + padding + 802.11
585 * data. It means that LAST_SEC0 is always 0.
589 * Initialize TX descriptor
591 rt2x00_desc_read(txd
, 0, &word
);
592 rt2x00_set_field32(&word
, TXD_W0_SD_PTR0
, skbdesc
->skb_dma
);
593 rt2x00_desc_write(txd
, 0, word
);
595 rt2x00_desc_read(txd
, 1, &word
);
596 rt2x00_set_field32(&word
, TXD_W1_SD_LEN1
, entry
->skb
->len
);
597 rt2x00_set_field32(&word
, TXD_W1_LAST_SEC1
,
598 !test_bit(ENTRY_TXD_MORE_FRAG
, &txdesc
->flags
));
599 rt2x00_set_field32(&word
, TXD_W1_BURST
,
600 test_bit(ENTRY_TXD_BURST
, &txdesc
->flags
));
601 rt2x00_set_field32(&word
, TXD_W1_SD_LEN0
, TXWI_DESC_SIZE
);
602 rt2x00_set_field32(&word
, TXD_W1_LAST_SEC0
, 0);
603 rt2x00_set_field32(&word
, TXD_W1_DMA_DONE
, 0);
604 rt2x00_desc_write(txd
, 1, word
);
606 rt2x00_desc_read(txd
, 2, &word
);
607 rt2x00_set_field32(&word
, TXD_W2_SD_PTR1
,
608 skbdesc
->skb_dma
+ TXWI_DESC_SIZE
);
609 rt2x00_desc_write(txd
, 2, word
);
611 rt2x00_desc_read(txd
, 3, &word
);
612 rt2x00_set_field32(&word
, TXD_W3_WIV
,
613 !test_bit(ENTRY_TXD_ENCRYPT_IV
, &txdesc
->flags
));
614 rt2x00_set_field32(&word
, TXD_W3_QSEL
, 2);
615 rt2x00_desc_write(txd
, 3, word
);
618 * Register descriptor details in skb frame descriptor.
621 skbdesc
->desc_len
= TXD_DESC_SIZE
;
625 * RX control handlers
627 static void rt2800pci_fill_rxdone(struct queue_entry
*entry
,
628 struct rxdone_entry_desc
*rxdesc
)
630 struct queue_entry_priv_pci
*entry_priv
= entry
->priv_data
;
631 __le32
*rxd
= entry_priv
->desc
;
634 rt2x00_desc_read(rxd
, 3, &word
);
636 if (rt2x00_get_field32(word
, RXD_W3_CRC_ERROR
))
637 rxdesc
->flags
|= RX_FLAG_FAILED_FCS_CRC
;
640 * Unfortunately we don't know the cipher type used during
641 * decryption. This prevents us from correct providing
642 * correct statistics through debugfs.
644 rxdesc
->cipher_status
= rt2x00_get_field32(word
, RXD_W3_CIPHER_ERROR
);
646 if (rt2x00_get_field32(word
, RXD_W3_DECRYPTED
)) {
648 * Hardware has stripped IV/EIV data from 802.11 frame during
649 * decryption. Unfortunately the descriptor doesn't contain
650 * any fields with the EIV/IV data either, so they can't
651 * be restored by rt2x00lib.
653 rxdesc
->flags
|= RX_FLAG_IV_STRIPPED
;
655 if (rxdesc
->cipher_status
== RX_CRYPTO_SUCCESS
)
656 rxdesc
->flags
|= RX_FLAG_DECRYPTED
;
657 else if (rxdesc
->cipher_status
== RX_CRYPTO_FAIL_MIC
)
658 rxdesc
->flags
|= RX_FLAG_MMIC_ERROR
;
661 if (rt2x00_get_field32(word
, RXD_W3_MY_BSS
))
662 rxdesc
->dev_flags
|= RXDONE_MY_BSS
;
664 if (rt2x00_get_field32(word
, RXD_W3_L2PAD
))
665 rxdesc
->dev_flags
|= RXDONE_L2PAD
;
668 * Process the RXWI structure that is at the start of the buffer.
670 rt2800_process_rxwi(entry
, rxdesc
);
674 * Interrupt functions.
676 static void rt2800pci_wakeup(struct rt2x00_dev
*rt2x00dev
)
678 struct ieee80211_conf conf
= { .flags
= 0 };
679 struct rt2x00lib_conf libconf
= { .conf
= &conf
};
681 rt2800_config(rt2x00dev
, &libconf
, IEEE80211_CONF_CHANGE_PS
);
684 static void rt2800pci_txdone(struct rt2x00_dev
*rt2x00dev
)
686 struct data_queue
*queue
;
687 struct queue_entry
*entry
;
691 while (kfifo_get(&rt2x00dev
->txstatus_fifo
, &status
)) {
692 qid
= rt2x00_get_field32(status
, TX_STA_FIFO_PID_QUEUE
);
695 * Unknown queue, this shouldn't happen. Just drop
698 WARNING(rt2x00dev
, "Got TX status report with "
699 "unexpected pid %u, dropping\n", qid
);
703 queue
= rt2x00queue_get_queue(rt2x00dev
, qid
);
704 if (unlikely(queue
== NULL
)) {
706 * The queue is NULL, this shouldn't happen. Stop
707 * processing here and drop the tx status
709 WARNING(rt2x00dev
, "Got TX status for an unavailable "
710 "queue %u, dropping\n", qid
);
714 if (rt2x00queue_empty(queue
)) {
716 * The queue is empty. Stop processing here
717 * and drop the tx status.
719 WARNING(rt2x00dev
, "Got TX status for an empty "
720 "queue %u, dropping\n", qid
);
724 entry
= rt2x00queue_get_entry(queue
, Q_INDEX_DONE
);
725 rt2800_txdone_entry(entry
, status
);
729 static void rt2800pci_txstatus_tasklet(unsigned long data
)
731 rt2800pci_txdone((struct rt2x00_dev
*)data
);
734 static irqreturn_t
rt2800pci_interrupt_thread(int irq
, void *dev_instance
)
736 struct rt2x00_dev
*rt2x00dev
= dev_instance
;
737 u32 reg
= rt2x00dev
->irqvalue
[0];
740 * 1 - Pre TBTT interrupt.
742 if (rt2x00_get_field32(reg
, INT_SOURCE_CSR_PRE_TBTT
))
743 rt2x00lib_pretbtt(rt2x00dev
);
746 * 2 - Beacondone interrupt.
748 if (rt2x00_get_field32(reg
, INT_SOURCE_CSR_TBTT
))
749 rt2x00lib_beacondone(rt2x00dev
);
752 * 3 - Rx ring done interrupt.
754 if (rt2x00_get_field32(reg
, INT_SOURCE_CSR_RX_DONE
))
755 rt2x00pci_rxdone(rt2x00dev
);
758 * 4 - Auto wakeup interrupt.
760 if (rt2x00_get_field32(reg
, INT_SOURCE_CSR_AUTO_WAKEUP
))
761 rt2800pci_wakeup(rt2x00dev
);
763 /* Enable interrupts again. */
764 rt2x00dev
->ops
->lib
->set_device_state(rt2x00dev
,
765 STATE_RADIO_IRQ_ON_ISR
);
770 static void rt2800pci_txstatus_interrupt(struct rt2x00_dev
*rt2x00dev
)
776 * The TX_FIFO_STATUS interrupt needs special care. We should
777 * read TX_STA_FIFO but we should do it immediately as otherwise
778 * the register can overflow and we would lose status reports.
780 * Hence, read the TX_STA_FIFO register and copy all tx status
781 * reports into a kernel FIFO which is handled in the txstatus
782 * tasklet. We use a tasklet to process the tx status reports
783 * because we can schedule the tasklet multiple times (when the
784 * interrupt fires again during tx status processing).
786 * Furthermore we don't disable the TX_FIFO_STATUS
787 * interrupt here but leave it enabled so that the TX_STA_FIFO
788 * can also be read while the interrupt thread gets executed.
790 * Since we have only one producer and one consumer we don't
791 * need to lock the kfifo.
793 for (i
= 0; i
< rt2x00dev
->ops
->tx
->entry_num
; i
++) {
794 rt2800_register_read(rt2x00dev
, TX_STA_FIFO
, &status
);
796 if (!rt2x00_get_field32(status
, TX_STA_FIFO_VALID
))
799 if (!kfifo_put(&rt2x00dev
->txstatus_fifo
, &status
)) {
800 WARNING(rt2x00dev
, "TX status FIFO overrun,"
801 "drop tx status report.\n");
806 /* Schedule the tasklet for processing the tx status. */
807 tasklet_schedule(&rt2x00dev
->txstatus_tasklet
);
810 static irqreturn_t
rt2800pci_interrupt(int irq
, void *dev_instance
)
812 struct rt2x00_dev
*rt2x00dev
= dev_instance
;
814 irqreturn_t ret
= IRQ_HANDLED
;
816 /* Read status and ACK all interrupts */
817 rt2800_register_read(rt2x00dev
, INT_SOURCE_CSR
, ®
);
818 rt2800_register_write(rt2x00dev
, INT_SOURCE_CSR
, reg
);
823 if (!test_bit(DEVICE_STATE_ENABLED_RADIO
, &rt2x00dev
->flags
))
826 if (rt2x00_get_field32(reg
, INT_SOURCE_CSR_TX_FIFO_STATUS
))
827 rt2800pci_txstatus_interrupt(rt2x00dev
);
829 if (rt2x00_get_field32(reg
, INT_SOURCE_CSR_PRE_TBTT
) ||
830 rt2x00_get_field32(reg
, INT_SOURCE_CSR_TBTT
) ||
831 rt2x00_get_field32(reg
, INT_SOURCE_CSR_RX_DONE
) ||
832 rt2x00_get_field32(reg
, INT_SOURCE_CSR_AUTO_WAKEUP
)) {
834 * All other interrupts are handled in the interrupt thread.
835 * Store irqvalue for use in the interrupt thread.
837 rt2x00dev
->irqvalue
[0] = reg
;
840 * Disable interrupts, will be enabled again in the
843 rt2x00dev
->ops
->lib
->set_device_state(rt2x00dev
,
844 STATE_RADIO_IRQ_OFF_ISR
);
847 * Leave the TX_FIFO_STATUS interrupt enabled to not lose any
850 rt2800_register_read(rt2x00dev
, INT_MASK_CSR
, ®
);
851 rt2x00_set_field32(®
, INT_MASK_CSR_TX_FIFO_STATUS
, 1);
852 rt2800_register_write(rt2x00dev
, INT_MASK_CSR
, reg
);
854 ret
= IRQ_WAKE_THREAD
;
861 * Device probe functions.
863 static int rt2800pci_validate_eeprom(struct rt2x00_dev
*rt2x00dev
)
866 * Read EEPROM into buffer
868 if (rt2x00_is_soc(rt2x00dev
))
869 rt2800pci_read_eeprom_soc(rt2x00dev
);
870 else if (rt2800pci_efuse_detect(rt2x00dev
))
871 rt2800pci_read_eeprom_efuse(rt2x00dev
);
873 rt2800pci_read_eeprom_pci(rt2x00dev
);
875 return rt2800_validate_eeprom(rt2x00dev
);
878 static int rt2800pci_probe_hw(struct rt2x00_dev
*rt2x00dev
)
883 * Allocate eeprom data.
885 retval
= rt2800pci_validate_eeprom(rt2x00dev
);
889 retval
= rt2800_init_eeprom(rt2x00dev
);
894 * Initialize hw specifications.
896 retval
= rt2800_probe_hw_mode(rt2x00dev
);
901 * This device has multiple filters for control frames
902 * and has a separate filter for PS Poll frames.
904 __set_bit(DRIVER_SUPPORT_CONTROL_FILTERS
, &rt2x00dev
->flags
);
905 __set_bit(DRIVER_SUPPORT_CONTROL_FILTER_PSPOLL
, &rt2x00dev
->flags
);
908 * This device has a pre tbtt interrupt and thus fetches
909 * a new beacon directly prior to transmission.
911 __set_bit(DRIVER_SUPPORT_PRE_TBTT_INTERRUPT
, &rt2x00dev
->flags
);
914 * This device requires firmware.
916 if (!rt2x00_is_soc(rt2x00dev
))
917 __set_bit(DRIVER_REQUIRE_FIRMWARE
, &rt2x00dev
->flags
);
918 __set_bit(DRIVER_REQUIRE_DMA
, &rt2x00dev
->flags
);
919 __set_bit(DRIVER_REQUIRE_L2PAD
, &rt2x00dev
->flags
);
920 __set_bit(DRIVER_REQUIRE_TXSTATUS_FIFO
, &rt2x00dev
->flags
);
921 __set_bit(DRIVER_REQUIRE_TASKLET_CONTEXT
, &rt2x00dev
->flags
);
922 if (!modparam_nohwcrypt
)
923 __set_bit(CONFIG_SUPPORT_HW_CRYPTO
, &rt2x00dev
->flags
);
924 __set_bit(DRIVER_SUPPORT_LINK_TUNING
, &rt2x00dev
->flags
);
927 * Set the rssi offset.
929 rt2x00dev
->rssi_offset
= DEFAULT_RSSI_OFFSET
;
934 static const struct ieee80211_ops rt2800pci_mac80211_ops
= {
936 .start
= rt2x00mac_start
,
937 .stop
= rt2x00mac_stop
,
938 .add_interface
= rt2x00mac_add_interface
,
939 .remove_interface
= rt2x00mac_remove_interface
,
940 .config
= rt2x00mac_config
,
941 .configure_filter
= rt2x00mac_configure_filter
,
942 .set_key
= rt2x00mac_set_key
,
943 .sw_scan_start
= rt2x00mac_sw_scan_start
,
944 .sw_scan_complete
= rt2x00mac_sw_scan_complete
,
945 .get_stats
= rt2x00mac_get_stats
,
946 .get_tkip_seq
= rt2800_get_tkip_seq
,
947 .set_rts_threshold
= rt2800_set_rts_threshold
,
948 .bss_info_changed
= rt2x00mac_bss_info_changed
,
949 .conf_tx
= rt2800_conf_tx
,
950 .get_tsf
= rt2800_get_tsf
,
951 .rfkill_poll
= rt2x00mac_rfkill_poll
,
952 .ampdu_action
= rt2800_ampdu_action
,
953 .flush
= rt2x00mac_flush
,
954 .get_survey
= rt2800_get_survey
,
957 static const struct rt2800_ops rt2800pci_rt2800_ops
= {
958 .register_read
= rt2x00pci_register_read
,
959 .register_read_lock
= rt2x00pci_register_read
, /* same for PCI */
960 .register_write
= rt2x00pci_register_write
,
961 .register_write_lock
= rt2x00pci_register_write
, /* same for PCI */
962 .register_multiread
= rt2x00pci_register_multiread
,
963 .register_multiwrite
= rt2x00pci_register_multiwrite
,
964 .regbusy_read
= rt2x00pci_regbusy_read
,
965 .drv_write_firmware
= rt2800pci_write_firmware
,
966 .drv_init_registers
= rt2800pci_init_registers
,
967 .drv_get_txwi
= rt2800pci_get_txwi
,
970 static const struct rt2x00lib_ops rt2800pci_rt2x00_ops
= {
971 .irq_handler
= rt2800pci_interrupt
,
972 .irq_handler_thread
= rt2800pci_interrupt_thread
,
973 .txstatus_tasklet
= rt2800pci_txstatus_tasklet
,
974 .probe_hw
= rt2800pci_probe_hw
,
975 .get_firmware_name
= rt2800pci_get_firmware_name
,
976 .check_firmware
= rt2800_check_firmware
,
977 .load_firmware
= rt2800_load_firmware
,
978 .initialize
= rt2x00pci_initialize
,
979 .uninitialize
= rt2x00pci_uninitialize
,
980 .get_entry_state
= rt2800pci_get_entry_state
,
981 .clear_entry
= rt2800pci_clear_entry
,
982 .set_device_state
= rt2800pci_set_device_state
,
983 .rfkill_poll
= rt2800_rfkill_poll
,
984 .link_stats
= rt2800_link_stats
,
985 .reset_tuner
= rt2800_reset_tuner
,
986 .link_tuner
= rt2800_link_tuner
,
987 .start_queue
= rt2800pci_start_queue
,
988 .kick_queue
= rt2800pci_kick_queue
,
989 .stop_queue
= rt2800pci_stop_queue
,
990 .write_tx_desc
= rt2800pci_write_tx_desc
,
991 .write_tx_data
= rt2800_write_tx_data
,
992 .write_beacon
= rt2800_write_beacon
,
993 .fill_rxdone
= rt2800pci_fill_rxdone
,
994 .config_shared_key
= rt2800_config_shared_key
,
995 .config_pairwise_key
= rt2800_config_pairwise_key
,
996 .config_filter
= rt2800_config_filter
,
997 .config_intf
= rt2800_config_intf
,
998 .config_erp
= rt2800_config_erp
,
999 .config_ant
= rt2800_config_ant
,
1000 .config
= rt2800_config
,
1003 static const struct data_queue_desc rt2800pci_queue_rx
= {
1005 .data_size
= AGGREGATION_SIZE
,
1006 .desc_size
= RXD_DESC_SIZE
,
1007 .priv_size
= sizeof(struct queue_entry_priv_pci
),
1010 static const struct data_queue_desc rt2800pci_queue_tx
= {
1012 .data_size
= AGGREGATION_SIZE
,
1013 .desc_size
= TXD_DESC_SIZE
,
1014 .priv_size
= sizeof(struct queue_entry_priv_pci
),
1017 static const struct data_queue_desc rt2800pci_queue_bcn
= {
1019 .data_size
= 0, /* No DMA required for beacons */
1020 .desc_size
= TXWI_DESC_SIZE
,
1021 .priv_size
= sizeof(struct queue_entry_priv_pci
),
1024 static const struct rt2x00_ops rt2800pci_ops
= {
1025 .name
= KBUILD_MODNAME
,
1028 .eeprom_size
= EEPROM_SIZE
,
1030 .tx_queues
= NUM_TX_QUEUES
,
1031 .extra_tx_headroom
= TXWI_DESC_SIZE
,
1032 .rx
= &rt2800pci_queue_rx
,
1033 .tx
= &rt2800pci_queue_tx
,
1034 .bcn
= &rt2800pci_queue_bcn
,
1035 .lib
= &rt2800pci_rt2x00_ops
,
1036 .drv
= &rt2800pci_rt2800_ops
,
1037 .hw
= &rt2800pci_mac80211_ops
,
1038 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
1039 .debugfs
= &rt2800_rt2x00debug
,
1040 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1044 * RT2800pci module information.
1047 static DEFINE_PCI_DEVICE_TABLE(rt2800pci_device_table
) = {
1048 { PCI_DEVICE(0x1814, 0x0601), PCI_DEVICE_DATA(&rt2800pci_ops
) },
1049 { PCI_DEVICE(0x1814, 0x0681), PCI_DEVICE_DATA(&rt2800pci_ops
) },
1050 { PCI_DEVICE(0x1814, 0x0701), PCI_DEVICE_DATA(&rt2800pci_ops
) },
1051 { PCI_DEVICE(0x1814, 0x0781), PCI_DEVICE_DATA(&rt2800pci_ops
) },
1052 { PCI_DEVICE(0x1814, 0x3090), PCI_DEVICE_DATA(&rt2800pci_ops
) },
1053 { PCI_DEVICE(0x1814, 0x3091), PCI_DEVICE_DATA(&rt2800pci_ops
) },
1054 { PCI_DEVICE(0x1814, 0x3092), PCI_DEVICE_DATA(&rt2800pci_ops
) },
1055 { PCI_DEVICE(0x1432, 0x7708), PCI_DEVICE_DATA(&rt2800pci_ops
) },
1056 { PCI_DEVICE(0x1432, 0x7727), PCI_DEVICE_DATA(&rt2800pci_ops
) },
1057 { PCI_DEVICE(0x1432, 0x7728), PCI_DEVICE_DATA(&rt2800pci_ops
) },
1058 { PCI_DEVICE(0x1432, 0x7738), PCI_DEVICE_DATA(&rt2800pci_ops
) },
1059 { PCI_DEVICE(0x1432, 0x7748), PCI_DEVICE_DATA(&rt2800pci_ops
) },
1060 { PCI_DEVICE(0x1432, 0x7758), PCI_DEVICE_DATA(&rt2800pci_ops
) },
1061 { PCI_DEVICE(0x1432, 0x7768), PCI_DEVICE_DATA(&rt2800pci_ops
) },
1062 { PCI_DEVICE(0x1462, 0x891a), PCI_DEVICE_DATA(&rt2800pci_ops
) },
1063 { PCI_DEVICE(0x1a3b, 0x1059), PCI_DEVICE_DATA(&rt2800pci_ops
) },
1064 #ifdef CONFIG_RT2800PCI_RT33XX
1065 { PCI_DEVICE(0x1814, 0x3390), PCI_DEVICE_DATA(&rt2800pci_ops
) },
1067 #ifdef CONFIG_RT2800PCI_RT35XX
1068 { PCI_DEVICE(0x1814, 0x3060), PCI_DEVICE_DATA(&rt2800pci_ops
) },
1069 { PCI_DEVICE(0x1814, 0x3062), PCI_DEVICE_DATA(&rt2800pci_ops
) },
1070 { PCI_DEVICE(0x1814, 0x3562), PCI_DEVICE_DATA(&rt2800pci_ops
) },
1071 { PCI_DEVICE(0x1814, 0x3592), PCI_DEVICE_DATA(&rt2800pci_ops
) },
1072 { PCI_DEVICE(0x1814, 0x3593), PCI_DEVICE_DATA(&rt2800pci_ops
) },
1076 #endif /* CONFIG_PCI */
1078 MODULE_AUTHOR(DRV_PROJECT
);
1079 MODULE_VERSION(DRV_VERSION
);
1080 MODULE_DESCRIPTION("Ralink RT2800 PCI & PCMCIA Wireless LAN driver.");
1081 MODULE_SUPPORTED_DEVICE("Ralink RT2860 PCI & PCMCIA chipset based cards");
1083 MODULE_FIRMWARE(FIRMWARE_RT2860
);
1084 MODULE_DEVICE_TABLE(pci
, rt2800pci_device_table
);
1085 #endif /* CONFIG_PCI */
1086 MODULE_LICENSE("GPL");
1088 #if defined(CONFIG_RALINK_RT288X) || defined(CONFIG_RALINK_RT305X)
1089 static int rt2800soc_probe(struct platform_device
*pdev
)
1091 return rt2x00soc_probe(pdev
, &rt2800pci_ops
);
1094 static struct platform_driver rt2800soc_driver
= {
1096 .name
= "rt2800_wmac",
1097 .owner
= THIS_MODULE
,
1098 .mod_name
= KBUILD_MODNAME
,
1100 .probe
= rt2800soc_probe
,
1101 .remove
= __devexit_p(rt2x00soc_remove
),
1102 .suspend
= rt2x00soc_suspend
,
1103 .resume
= rt2x00soc_resume
,
1105 #endif /* CONFIG_RALINK_RT288X || CONFIG_RALINK_RT305X */
1108 static struct pci_driver rt2800pci_driver
= {
1109 .name
= KBUILD_MODNAME
,
1110 .id_table
= rt2800pci_device_table
,
1111 .probe
= rt2x00pci_probe
,
1112 .remove
= __devexit_p(rt2x00pci_remove
),
1113 .suspend
= rt2x00pci_suspend
,
1114 .resume
= rt2x00pci_resume
,
1116 #endif /* CONFIG_PCI */
1118 static int __init
rt2800pci_init(void)
1122 #if defined(CONFIG_RALINK_RT288X) || defined(CONFIG_RALINK_RT305X)
1123 ret
= platform_driver_register(&rt2800soc_driver
);
1128 ret
= pci_register_driver(&rt2800pci_driver
);
1130 #if defined(CONFIG_RALINK_RT288X) || defined(CONFIG_RALINK_RT305X)
1131 platform_driver_unregister(&rt2800soc_driver
);
1140 static void __exit
rt2800pci_exit(void)
1143 pci_unregister_driver(&rt2800pci_driver
);
1145 #if defined(CONFIG_RALINK_RT288X) || defined(CONFIG_RALINK_RT305X)
1146 platform_driver_unregister(&rt2800soc_driver
);
1150 module_init(rt2800pci_init
);
1151 module_exit(rt2800pci_exit
);