proc: use seq_puts()/seq_putc() where possible
[linux-2.6/next.git] / drivers / net / wireless / rt2x00 / rt2x00dev.c
blob9597a03242cceb7bbed7fd8b0d847741c2450097
1 /*
2 Copyright (C) 2010 Willow Garage <http://www.willowgarage.com>
3 Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
4 <http://rt2x00.serialmonkey.com>
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the
18 Free Software Foundation, Inc.,
19 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23 Module: rt2x00lib
24 Abstract: rt2x00 generic device routines.
27 #include <linux/kernel.h>
28 #include <linux/module.h>
29 #include <linux/slab.h>
31 #include "rt2x00.h"
32 #include "rt2x00lib.h"
35 * Radio control handlers.
37 int rt2x00lib_enable_radio(struct rt2x00_dev *rt2x00dev)
39 int status;
42 * Don't enable the radio twice.
43 * And check if the hardware button has been disabled.
45 if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
46 return 0;
49 * Initialize all data queues.
51 rt2x00queue_init_queues(rt2x00dev);
54 * Enable radio.
56 status =
57 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_ON);
58 if (status)
59 return status;
61 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_ON);
63 rt2x00leds_led_radio(rt2x00dev, true);
64 rt2x00led_led_activity(rt2x00dev, true);
66 set_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags);
69 * Enable queues.
71 rt2x00queue_start_queues(rt2x00dev);
72 rt2x00link_start_tuner(rt2x00dev);
75 * Start watchdog monitoring.
77 rt2x00link_start_watchdog(rt2x00dev);
79 return 0;
82 void rt2x00lib_disable_radio(struct rt2x00_dev *rt2x00dev)
84 if (!test_and_clear_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
85 return;
88 * Stop watchdog monitoring.
90 rt2x00link_stop_watchdog(rt2x00dev);
93 * Stop all queues
95 rt2x00link_stop_tuner(rt2x00dev);
96 rt2x00queue_stop_queues(rt2x00dev);
97 rt2x00queue_flush_queues(rt2x00dev, true);
100 * Disable radio.
102 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_OFF);
103 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_OFF);
104 rt2x00led_led_activity(rt2x00dev, false);
105 rt2x00leds_led_radio(rt2x00dev, false);
108 static void rt2x00lib_intf_scheduled_iter(void *data, u8 *mac,
109 struct ieee80211_vif *vif)
111 struct rt2x00_dev *rt2x00dev = data;
112 struct rt2x00_intf *intf = vif_to_intf(vif);
115 * It is possible the radio was disabled while the work had been
116 * scheduled. If that happens we should return here immediately,
117 * note that in the spinlock protected area above the delayed_flags
118 * have been cleared correctly.
120 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
121 return;
123 if (test_and_clear_bit(DELAYED_UPDATE_BEACON, &intf->delayed_flags))
124 rt2x00queue_update_beacon(rt2x00dev, vif, true);
127 static void rt2x00lib_intf_scheduled(struct work_struct *work)
129 struct rt2x00_dev *rt2x00dev =
130 container_of(work, struct rt2x00_dev, intf_work);
133 * Iterate over each interface and perform the
134 * requested configurations.
136 ieee80211_iterate_active_interfaces(rt2x00dev->hw,
137 rt2x00lib_intf_scheduled_iter,
138 rt2x00dev);
142 * Interrupt context handlers.
144 static void rt2x00lib_bc_buffer_iter(void *data, u8 *mac,
145 struct ieee80211_vif *vif)
147 struct rt2x00_dev *rt2x00dev = data;
148 struct sk_buff *skb;
151 * Only AP mode interfaces do broad- and multicast buffering
153 if (vif->type != NL80211_IFTYPE_AP)
154 return;
157 * Send out buffered broad- and multicast frames
159 skb = ieee80211_get_buffered_bc(rt2x00dev->hw, vif);
160 while (skb) {
161 rt2x00mac_tx(rt2x00dev->hw, skb);
162 skb = ieee80211_get_buffered_bc(rt2x00dev->hw, vif);
166 static void rt2x00lib_beaconupdate_iter(void *data, u8 *mac,
167 struct ieee80211_vif *vif)
169 struct rt2x00_dev *rt2x00dev = data;
171 if (vif->type != NL80211_IFTYPE_AP &&
172 vif->type != NL80211_IFTYPE_ADHOC &&
173 vif->type != NL80211_IFTYPE_MESH_POINT &&
174 vif->type != NL80211_IFTYPE_WDS)
175 return;
177 rt2x00queue_update_beacon(rt2x00dev, vif, true);
180 void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev)
182 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
183 return;
185 /* send buffered bc/mc frames out for every bssid */
186 ieee80211_iterate_active_interfaces(rt2x00dev->hw,
187 rt2x00lib_bc_buffer_iter,
188 rt2x00dev);
190 * Devices with pre tbtt interrupt don't need to update the beacon
191 * here as they will fetch the next beacon directly prior to
192 * transmission.
194 if (test_bit(DRIVER_SUPPORT_PRE_TBTT_INTERRUPT, &rt2x00dev->flags))
195 return;
197 /* fetch next beacon */
198 ieee80211_iterate_active_interfaces(rt2x00dev->hw,
199 rt2x00lib_beaconupdate_iter,
200 rt2x00dev);
202 EXPORT_SYMBOL_GPL(rt2x00lib_beacondone);
204 void rt2x00lib_pretbtt(struct rt2x00_dev *rt2x00dev)
206 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
207 return;
209 /* fetch next beacon */
210 ieee80211_iterate_active_interfaces(rt2x00dev->hw,
211 rt2x00lib_beaconupdate_iter,
212 rt2x00dev);
214 EXPORT_SYMBOL_GPL(rt2x00lib_pretbtt);
216 void rt2x00lib_dmastart(struct queue_entry *entry)
218 set_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
219 rt2x00queue_index_inc(entry->queue, Q_INDEX);
221 EXPORT_SYMBOL_GPL(rt2x00lib_dmastart);
223 void rt2x00lib_dmadone(struct queue_entry *entry)
225 set_bit(ENTRY_DATA_STATUS_PENDING, &entry->flags);
226 clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
227 rt2x00queue_index_inc(entry->queue, Q_INDEX_DMA_DONE);
229 EXPORT_SYMBOL_GPL(rt2x00lib_dmadone);
231 void rt2x00lib_txdone(struct queue_entry *entry,
232 struct txdone_entry_desc *txdesc)
234 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
235 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
236 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
237 unsigned int header_length, i;
238 u8 rate_idx, rate_flags, retry_rates;
239 u8 skbdesc_flags = skbdesc->flags;
240 bool success;
243 * Unmap the skb.
245 rt2x00queue_unmap_skb(entry);
248 * Remove the extra tx headroom from the skb.
250 skb_pull(entry->skb, rt2x00dev->ops->extra_tx_headroom);
253 * Signal that the TX descriptor is no longer in the skb.
255 skbdesc->flags &= ~SKBDESC_DESC_IN_SKB;
258 * Determine the length of 802.11 header.
260 header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
263 * Remove L2 padding which was added during
265 if (test_bit(DRIVER_REQUIRE_L2PAD, &rt2x00dev->flags))
266 rt2x00queue_remove_l2pad(entry->skb, header_length);
269 * If the IV/EIV data was stripped from the frame before it was
270 * passed to the hardware, we should now reinsert it again because
271 * mac80211 will expect the same data to be present it the
272 * frame as it was passed to us.
274 if (test_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags))
275 rt2x00crypto_tx_insert_iv(entry->skb, header_length);
278 * Send frame to debugfs immediately, after this call is completed
279 * we are going to overwrite the skb->cb array.
281 rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TXDONE, entry->skb);
284 * Determine if the frame has been successfully transmitted.
286 success =
287 test_bit(TXDONE_SUCCESS, &txdesc->flags) ||
288 test_bit(TXDONE_UNKNOWN, &txdesc->flags);
291 * Update TX statistics.
293 rt2x00dev->link.qual.tx_success += success;
294 rt2x00dev->link.qual.tx_failed += !success;
296 rate_idx = skbdesc->tx_rate_idx;
297 rate_flags = skbdesc->tx_rate_flags;
298 retry_rates = test_bit(TXDONE_FALLBACK, &txdesc->flags) ?
299 (txdesc->retry + 1) : 1;
302 * Initialize TX status
304 memset(&tx_info->status, 0, sizeof(tx_info->status));
305 tx_info->status.ack_signal = 0;
308 * Frame was send with retries, hardware tried
309 * different rates to send out the frame, at each
310 * retry it lowered the rate 1 step except when the
311 * lowest rate was used.
313 for (i = 0; i < retry_rates && i < IEEE80211_TX_MAX_RATES; i++) {
314 tx_info->status.rates[i].idx = rate_idx - i;
315 tx_info->status.rates[i].flags = rate_flags;
317 if (rate_idx - i == 0) {
319 * The lowest rate (index 0) was used until the
320 * number of max retries was reached.
322 tx_info->status.rates[i].count = retry_rates - i;
323 i++;
324 break;
326 tx_info->status.rates[i].count = 1;
328 if (i < (IEEE80211_TX_MAX_RATES - 1))
329 tx_info->status.rates[i].idx = -1; /* terminate */
331 if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK)) {
332 if (success)
333 tx_info->flags |= IEEE80211_TX_STAT_ACK;
334 else
335 rt2x00dev->low_level_stats.dot11ACKFailureCount++;
339 * Every single frame has it's own tx status, hence report
340 * every frame as ampdu of size 1.
342 * TODO: if we can find out how many frames were aggregated
343 * by the hw we could provide the real ampdu_len to mac80211
344 * which would allow the rc algorithm to better decide on
345 * which rates are suitable.
347 if (tx_info->flags & IEEE80211_TX_CTL_AMPDU) {
348 tx_info->flags |= IEEE80211_TX_STAT_AMPDU;
349 tx_info->status.ampdu_len = 1;
350 tx_info->status.ampdu_ack_len = success ? 1 : 0;
353 if (rate_flags & IEEE80211_TX_RC_USE_RTS_CTS) {
354 if (success)
355 rt2x00dev->low_level_stats.dot11RTSSuccessCount++;
356 else
357 rt2x00dev->low_level_stats.dot11RTSFailureCount++;
361 * Only send the status report to mac80211 when it's a frame
362 * that originated in mac80211. If this was a extra frame coming
363 * through a mac80211 library call (RTS/CTS) then we should not
364 * send the status report back.
366 if (!(skbdesc_flags & SKBDESC_NOT_MAC80211)) {
367 if (test_bit(DRIVER_REQUIRE_TASKLET_CONTEXT, &rt2x00dev->flags))
368 ieee80211_tx_status(rt2x00dev->hw, entry->skb);
369 else
370 ieee80211_tx_status_ni(rt2x00dev->hw, entry->skb);
371 } else
372 dev_kfree_skb_any(entry->skb);
375 * Make this entry available for reuse.
377 entry->skb = NULL;
378 entry->flags = 0;
380 rt2x00dev->ops->lib->clear_entry(entry);
382 rt2x00queue_index_inc(entry->queue, Q_INDEX_DONE);
385 * If the data queue was below the threshold before the txdone
386 * handler we must make sure the packet queue in the mac80211 stack
387 * is reenabled when the txdone handler has finished.
389 if (!rt2x00queue_threshold(entry->queue))
390 rt2x00queue_unpause_queue(entry->queue);
392 EXPORT_SYMBOL_GPL(rt2x00lib_txdone);
394 void rt2x00lib_txdone_noinfo(struct queue_entry *entry, u32 status)
396 struct txdone_entry_desc txdesc;
398 txdesc.flags = 0;
399 __set_bit(status, &txdesc.flags);
400 txdesc.retry = 0;
402 rt2x00lib_txdone(entry, &txdesc);
404 EXPORT_SYMBOL_GPL(rt2x00lib_txdone_noinfo);
406 static int rt2x00lib_rxdone_read_signal(struct rt2x00_dev *rt2x00dev,
407 struct rxdone_entry_desc *rxdesc)
409 struct ieee80211_supported_band *sband;
410 const struct rt2x00_rate *rate;
411 unsigned int i;
412 int signal = rxdesc->signal;
413 int type = (rxdesc->dev_flags & RXDONE_SIGNAL_MASK);
415 switch (rxdesc->rate_mode) {
416 case RATE_MODE_CCK:
417 case RATE_MODE_OFDM:
419 * For non-HT rates the MCS value needs to contain the
420 * actually used rate modulation (CCK or OFDM).
422 if (rxdesc->dev_flags & RXDONE_SIGNAL_MCS)
423 signal = RATE_MCS(rxdesc->rate_mode, signal);
425 sband = &rt2x00dev->bands[rt2x00dev->curr_band];
426 for (i = 0; i < sband->n_bitrates; i++) {
427 rate = rt2x00_get_rate(sband->bitrates[i].hw_value);
428 if (((type == RXDONE_SIGNAL_PLCP) &&
429 (rate->plcp == signal)) ||
430 ((type == RXDONE_SIGNAL_BITRATE) &&
431 (rate->bitrate == signal)) ||
432 ((type == RXDONE_SIGNAL_MCS) &&
433 (rate->mcs == signal))) {
434 return i;
437 break;
438 case RATE_MODE_HT_MIX:
439 case RATE_MODE_HT_GREENFIELD:
440 if (signal >= 0 && signal <= 76)
441 return signal;
442 break;
443 default:
444 break;
447 WARNING(rt2x00dev, "Frame received with unrecognized signal, "
448 "mode=0x%.4x, signal=0x%.4x, type=%d.\n",
449 rxdesc->rate_mode, signal, type);
450 return 0;
453 void rt2x00lib_rxdone(struct queue_entry *entry)
455 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
456 struct rxdone_entry_desc rxdesc;
457 struct sk_buff *skb;
458 struct ieee80211_rx_status *rx_status;
459 unsigned int header_length;
460 int rate_idx;
462 if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) ||
463 !test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
464 goto submit_entry;
466 if (test_bit(ENTRY_DATA_IO_FAILED, &entry->flags))
467 goto submit_entry;
470 * Allocate a new sk_buffer. If no new buffer available, drop the
471 * received frame and reuse the existing buffer.
473 skb = rt2x00queue_alloc_rxskb(entry);
474 if (!skb)
475 goto submit_entry;
478 * Unmap the skb.
480 rt2x00queue_unmap_skb(entry);
483 * Extract the RXD details.
485 memset(&rxdesc, 0, sizeof(rxdesc));
486 rt2x00dev->ops->lib->fill_rxdone(entry, &rxdesc);
489 * The data behind the ieee80211 header must be
490 * aligned on a 4 byte boundary.
492 header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
495 * Hardware might have stripped the IV/EIV/ICV data,
496 * in that case it is possible that the data was
497 * provided separately (through hardware descriptor)
498 * in which case we should reinsert the data into the frame.
500 if ((rxdesc.dev_flags & RXDONE_CRYPTO_IV) &&
501 (rxdesc.flags & RX_FLAG_IV_STRIPPED))
502 rt2x00crypto_rx_insert_iv(entry->skb, header_length,
503 &rxdesc);
504 else if (header_length &&
505 (rxdesc.size > header_length) &&
506 (rxdesc.dev_flags & RXDONE_L2PAD))
507 rt2x00queue_remove_l2pad(entry->skb, header_length);
508 else
509 rt2x00queue_align_payload(entry->skb, header_length);
511 /* Trim buffer to correct size */
512 skb_trim(entry->skb, rxdesc.size);
515 * Translate the signal to the correct bitrate index.
517 rate_idx = rt2x00lib_rxdone_read_signal(rt2x00dev, &rxdesc);
518 if (rxdesc.rate_mode == RATE_MODE_HT_MIX ||
519 rxdesc.rate_mode == RATE_MODE_HT_GREENFIELD)
520 rxdesc.flags |= RX_FLAG_HT;
523 * Update extra components
525 rt2x00link_update_stats(rt2x00dev, entry->skb, &rxdesc);
526 rt2x00debug_update_crypto(rt2x00dev, &rxdesc);
527 rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_RXDONE, entry->skb);
530 * Initialize RX status information, and send frame
531 * to mac80211.
533 rx_status = IEEE80211_SKB_RXCB(entry->skb);
534 rx_status->mactime = rxdesc.timestamp;
535 rx_status->band = rt2x00dev->curr_band;
536 rx_status->freq = rt2x00dev->curr_freq;
537 rx_status->rate_idx = rate_idx;
538 rx_status->signal = rxdesc.rssi;
539 rx_status->flag = rxdesc.flags;
540 rx_status->antenna = rt2x00dev->link.ant.active.rx;
542 ieee80211_rx_ni(rt2x00dev->hw, entry->skb);
545 * Replace the skb with the freshly allocated one.
547 entry->skb = skb;
549 submit_entry:
550 entry->flags = 0;
551 rt2x00queue_index_inc(entry->queue, Q_INDEX_DONE);
552 if (test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) &&
553 test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
554 rt2x00dev->ops->lib->clear_entry(entry);
556 EXPORT_SYMBOL_GPL(rt2x00lib_rxdone);
559 * Driver initialization handlers.
561 const struct rt2x00_rate rt2x00_supported_rates[12] = {
563 .flags = DEV_RATE_CCK,
564 .bitrate = 10,
565 .ratemask = BIT(0),
566 .plcp = 0x00,
567 .mcs = RATE_MCS(RATE_MODE_CCK, 0),
570 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
571 .bitrate = 20,
572 .ratemask = BIT(1),
573 .plcp = 0x01,
574 .mcs = RATE_MCS(RATE_MODE_CCK, 1),
577 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
578 .bitrate = 55,
579 .ratemask = BIT(2),
580 .plcp = 0x02,
581 .mcs = RATE_MCS(RATE_MODE_CCK, 2),
584 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
585 .bitrate = 110,
586 .ratemask = BIT(3),
587 .plcp = 0x03,
588 .mcs = RATE_MCS(RATE_MODE_CCK, 3),
591 .flags = DEV_RATE_OFDM,
592 .bitrate = 60,
593 .ratemask = BIT(4),
594 .plcp = 0x0b,
595 .mcs = RATE_MCS(RATE_MODE_OFDM, 0),
598 .flags = DEV_RATE_OFDM,
599 .bitrate = 90,
600 .ratemask = BIT(5),
601 .plcp = 0x0f,
602 .mcs = RATE_MCS(RATE_MODE_OFDM, 1),
605 .flags = DEV_RATE_OFDM,
606 .bitrate = 120,
607 .ratemask = BIT(6),
608 .plcp = 0x0a,
609 .mcs = RATE_MCS(RATE_MODE_OFDM, 2),
612 .flags = DEV_RATE_OFDM,
613 .bitrate = 180,
614 .ratemask = BIT(7),
615 .plcp = 0x0e,
616 .mcs = RATE_MCS(RATE_MODE_OFDM, 3),
619 .flags = DEV_RATE_OFDM,
620 .bitrate = 240,
621 .ratemask = BIT(8),
622 .plcp = 0x09,
623 .mcs = RATE_MCS(RATE_MODE_OFDM, 4),
626 .flags = DEV_RATE_OFDM,
627 .bitrate = 360,
628 .ratemask = BIT(9),
629 .plcp = 0x0d,
630 .mcs = RATE_MCS(RATE_MODE_OFDM, 5),
633 .flags = DEV_RATE_OFDM,
634 .bitrate = 480,
635 .ratemask = BIT(10),
636 .plcp = 0x08,
637 .mcs = RATE_MCS(RATE_MODE_OFDM, 6),
640 .flags = DEV_RATE_OFDM,
641 .bitrate = 540,
642 .ratemask = BIT(11),
643 .plcp = 0x0c,
644 .mcs = RATE_MCS(RATE_MODE_OFDM, 7),
648 static void rt2x00lib_channel(struct ieee80211_channel *entry,
649 const int channel, const int tx_power,
650 const int value)
652 entry->center_freq = ieee80211_channel_to_frequency(channel);
653 entry->hw_value = value;
654 entry->max_power = tx_power;
655 entry->max_antenna_gain = 0xff;
658 static void rt2x00lib_rate(struct ieee80211_rate *entry,
659 const u16 index, const struct rt2x00_rate *rate)
661 entry->flags = 0;
662 entry->bitrate = rate->bitrate;
663 entry->hw_value = index;
664 entry->hw_value_short = index;
666 if (rate->flags & DEV_RATE_SHORT_PREAMBLE)
667 entry->flags |= IEEE80211_RATE_SHORT_PREAMBLE;
670 static int rt2x00lib_probe_hw_modes(struct rt2x00_dev *rt2x00dev,
671 struct hw_mode_spec *spec)
673 struct ieee80211_hw *hw = rt2x00dev->hw;
674 struct ieee80211_channel *channels;
675 struct ieee80211_rate *rates;
676 unsigned int num_rates;
677 unsigned int i;
679 num_rates = 0;
680 if (spec->supported_rates & SUPPORT_RATE_CCK)
681 num_rates += 4;
682 if (spec->supported_rates & SUPPORT_RATE_OFDM)
683 num_rates += 8;
685 channels = kzalloc(sizeof(*channels) * spec->num_channels, GFP_KERNEL);
686 if (!channels)
687 return -ENOMEM;
689 rates = kzalloc(sizeof(*rates) * num_rates, GFP_KERNEL);
690 if (!rates)
691 goto exit_free_channels;
694 * Initialize Rate list.
696 for (i = 0; i < num_rates; i++)
697 rt2x00lib_rate(&rates[i], i, rt2x00_get_rate(i));
700 * Initialize Channel list.
702 for (i = 0; i < spec->num_channels; i++) {
703 rt2x00lib_channel(&channels[i],
704 spec->channels[i].channel,
705 spec->channels_info[i].max_power, i);
709 * Intitialize 802.11b, 802.11g
710 * Rates: CCK, OFDM.
711 * Channels: 2.4 GHz
713 if (spec->supported_bands & SUPPORT_BAND_2GHZ) {
714 rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_channels = 14;
715 rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_bitrates = num_rates;
716 rt2x00dev->bands[IEEE80211_BAND_2GHZ].channels = channels;
717 rt2x00dev->bands[IEEE80211_BAND_2GHZ].bitrates = rates;
718 hw->wiphy->bands[IEEE80211_BAND_2GHZ] =
719 &rt2x00dev->bands[IEEE80211_BAND_2GHZ];
720 memcpy(&rt2x00dev->bands[IEEE80211_BAND_2GHZ].ht_cap,
721 &spec->ht, sizeof(spec->ht));
725 * Intitialize 802.11a
726 * Rates: OFDM.
727 * Channels: OFDM, UNII, HiperLAN2.
729 if (spec->supported_bands & SUPPORT_BAND_5GHZ) {
730 rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_channels =
731 spec->num_channels - 14;
732 rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_bitrates =
733 num_rates - 4;
734 rt2x00dev->bands[IEEE80211_BAND_5GHZ].channels = &channels[14];
735 rt2x00dev->bands[IEEE80211_BAND_5GHZ].bitrates = &rates[4];
736 hw->wiphy->bands[IEEE80211_BAND_5GHZ] =
737 &rt2x00dev->bands[IEEE80211_BAND_5GHZ];
738 memcpy(&rt2x00dev->bands[IEEE80211_BAND_5GHZ].ht_cap,
739 &spec->ht, sizeof(spec->ht));
742 return 0;
744 exit_free_channels:
745 kfree(channels);
746 ERROR(rt2x00dev, "Allocation ieee80211 modes failed.\n");
747 return -ENOMEM;
750 static void rt2x00lib_remove_hw(struct rt2x00_dev *rt2x00dev)
752 if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
753 ieee80211_unregister_hw(rt2x00dev->hw);
755 if (likely(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ])) {
756 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->channels);
757 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->bitrates);
758 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ] = NULL;
759 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_5GHZ] = NULL;
762 kfree(rt2x00dev->spec.channels_info);
765 static int rt2x00lib_probe_hw(struct rt2x00_dev *rt2x00dev)
767 struct hw_mode_spec *spec = &rt2x00dev->spec;
768 int status;
770 if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
771 return 0;
774 * Initialize HW modes.
776 status = rt2x00lib_probe_hw_modes(rt2x00dev, spec);
777 if (status)
778 return status;
781 * Initialize HW fields.
783 rt2x00dev->hw->queues = rt2x00dev->ops->tx_queues;
786 * Initialize extra TX headroom required.
788 rt2x00dev->hw->extra_tx_headroom =
789 max_t(unsigned int, IEEE80211_TX_STATUS_HEADROOM,
790 rt2x00dev->ops->extra_tx_headroom);
793 * Take TX headroom required for alignment into account.
795 if (test_bit(DRIVER_REQUIRE_L2PAD, &rt2x00dev->flags))
796 rt2x00dev->hw->extra_tx_headroom += RT2X00_L2PAD_SIZE;
797 else if (test_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags))
798 rt2x00dev->hw->extra_tx_headroom += RT2X00_ALIGN_SIZE;
801 * Allocate tx status FIFO for driver use.
803 if (test_bit(DRIVER_REQUIRE_TXSTATUS_FIFO, &rt2x00dev->flags)) {
805 * Allocate txstatus fifo and tasklet, we use a size of 512
806 * for the kfifo which is big enough to store 512/4=128 tx
807 * status reports. In the worst case (tx status for all tx
808 * queues gets reported before we've got a chance to handle
809 * them) 24*4=384 tx status reports need to be cached.
811 status = kfifo_alloc(&rt2x00dev->txstatus_fifo, 512,
812 GFP_KERNEL);
813 if (status)
814 return status;
816 /* tasklet for processing the tx status reports. */
817 if (rt2x00dev->ops->lib->txstatus_tasklet)
818 tasklet_init(&rt2x00dev->txstatus_tasklet,
819 rt2x00dev->ops->lib->txstatus_tasklet,
820 (unsigned long)rt2x00dev);
825 * Register HW.
827 status = ieee80211_register_hw(rt2x00dev->hw);
828 if (status)
829 return status;
831 set_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags);
833 return 0;
837 * Initialization/uninitialization handlers.
839 static void rt2x00lib_uninitialize(struct rt2x00_dev *rt2x00dev)
841 if (!test_and_clear_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
842 return;
845 * Unregister extra components.
847 rt2x00rfkill_unregister(rt2x00dev);
850 * Allow the HW to uninitialize.
852 rt2x00dev->ops->lib->uninitialize(rt2x00dev);
855 * Free allocated queue entries.
857 rt2x00queue_uninitialize(rt2x00dev);
860 static int rt2x00lib_initialize(struct rt2x00_dev *rt2x00dev)
862 int status;
864 if (test_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
865 return 0;
868 * Allocate all queue entries.
870 status = rt2x00queue_initialize(rt2x00dev);
871 if (status)
872 return status;
875 * Initialize the device.
877 status = rt2x00dev->ops->lib->initialize(rt2x00dev);
878 if (status) {
879 rt2x00queue_uninitialize(rt2x00dev);
880 return status;
883 set_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags);
886 * Register the extra components.
888 rt2x00rfkill_register(rt2x00dev);
890 return 0;
893 int rt2x00lib_start(struct rt2x00_dev *rt2x00dev)
895 int retval;
897 if (test_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
898 return 0;
901 * If this is the first interface which is added,
902 * we should load the firmware now.
904 retval = rt2x00lib_load_firmware(rt2x00dev);
905 if (retval)
906 return retval;
909 * Initialize the device.
911 retval = rt2x00lib_initialize(rt2x00dev);
912 if (retval)
913 return retval;
915 rt2x00dev->intf_ap_count = 0;
916 rt2x00dev->intf_sta_count = 0;
917 rt2x00dev->intf_associated = 0;
919 /* Enable the radio */
920 retval = rt2x00lib_enable_radio(rt2x00dev);
921 if (retval)
922 return retval;
924 set_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags);
926 return 0;
929 void rt2x00lib_stop(struct rt2x00_dev *rt2x00dev)
931 if (!test_and_clear_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
932 return;
935 * Perhaps we can add something smarter here,
936 * but for now just disabling the radio should do.
938 rt2x00lib_disable_radio(rt2x00dev);
940 rt2x00dev->intf_ap_count = 0;
941 rt2x00dev->intf_sta_count = 0;
942 rt2x00dev->intf_associated = 0;
946 * driver allocation handlers.
948 int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev)
950 int retval = -ENOMEM;
952 mutex_init(&rt2x00dev->csr_mutex);
954 set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
957 * Make room for rt2x00_intf inside the per-interface
958 * structure ieee80211_vif.
960 rt2x00dev->hw->vif_data_size = sizeof(struct rt2x00_intf);
963 * Determine which operating modes are supported, all modes
964 * which require beaconing, depend on the availability of
965 * beacon entries.
967 rt2x00dev->hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION);
968 if (rt2x00dev->ops->bcn->entry_num > 0)
969 rt2x00dev->hw->wiphy->interface_modes |=
970 BIT(NL80211_IFTYPE_ADHOC) |
971 BIT(NL80211_IFTYPE_AP) |
972 BIT(NL80211_IFTYPE_MESH_POINT) |
973 BIT(NL80211_IFTYPE_WDS);
976 * Initialize configuration work.
978 INIT_WORK(&rt2x00dev->intf_work, rt2x00lib_intf_scheduled);
981 * Let the driver probe the device to detect the capabilities.
983 retval = rt2x00dev->ops->lib->probe_hw(rt2x00dev);
984 if (retval) {
985 ERROR(rt2x00dev, "Failed to allocate device.\n");
986 goto exit;
990 * Allocate queue array.
992 retval = rt2x00queue_allocate(rt2x00dev);
993 if (retval)
994 goto exit;
997 * Initialize ieee80211 structure.
999 retval = rt2x00lib_probe_hw(rt2x00dev);
1000 if (retval) {
1001 ERROR(rt2x00dev, "Failed to initialize hw.\n");
1002 goto exit;
1006 * Register extra components.
1008 rt2x00link_register(rt2x00dev);
1009 rt2x00leds_register(rt2x00dev);
1010 rt2x00debug_register(rt2x00dev);
1012 return 0;
1014 exit:
1015 rt2x00lib_remove_dev(rt2x00dev);
1017 return retval;
1019 EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev);
1021 void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev)
1023 clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1026 * Disable radio.
1028 rt2x00lib_disable_radio(rt2x00dev);
1031 * Stop all work.
1033 cancel_work_sync(&rt2x00dev->intf_work);
1034 cancel_work_sync(&rt2x00dev->rxdone_work);
1035 cancel_work_sync(&rt2x00dev->txdone_work);
1038 * Free the tx status fifo.
1040 kfifo_free(&rt2x00dev->txstatus_fifo);
1043 * Kill the tx status tasklet.
1045 tasklet_kill(&rt2x00dev->txstatus_tasklet);
1048 * Uninitialize device.
1050 rt2x00lib_uninitialize(rt2x00dev);
1053 * Free extra components
1055 rt2x00debug_deregister(rt2x00dev);
1056 rt2x00leds_unregister(rt2x00dev);
1059 * Free ieee80211_hw memory.
1061 rt2x00lib_remove_hw(rt2x00dev);
1064 * Free firmware image.
1066 rt2x00lib_free_firmware(rt2x00dev);
1069 * Free queue structures.
1071 rt2x00queue_free(rt2x00dev);
1073 EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev);
1076 * Device state handlers
1078 #ifdef CONFIG_PM
1079 int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state)
1081 NOTICE(rt2x00dev, "Going to sleep.\n");
1084 * Prevent mac80211 from accessing driver while suspended.
1086 if (!test_and_clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
1087 return 0;
1090 * Cleanup as much as possible.
1092 rt2x00lib_uninitialize(rt2x00dev);
1095 * Suspend/disable extra components.
1097 rt2x00leds_suspend(rt2x00dev);
1098 rt2x00debug_deregister(rt2x00dev);
1101 * Set device mode to sleep for power management,
1102 * on some hardware this call seems to consistently fail.
1103 * From the specifications it is hard to tell why it fails,
1104 * and if this is a "bad thing".
1105 * Overall it is safe to just ignore the failure and
1106 * continue suspending. The only downside is that the
1107 * device will not be in optimal power save mode, but with
1108 * the radio and the other components already disabled the
1109 * device is as good as disabled.
1111 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_SLEEP))
1112 WARNING(rt2x00dev, "Device failed to enter sleep state, "
1113 "continue suspending.\n");
1115 return 0;
1117 EXPORT_SYMBOL_GPL(rt2x00lib_suspend);
1119 int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev)
1121 NOTICE(rt2x00dev, "Waking up.\n");
1124 * Restore/enable extra components.
1126 rt2x00debug_register(rt2x00dev);
1127 rt2x00leds_resume(rt2x00dev);
1130 * We are ready again to receive requests from mac80211.
1132 set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1134 return 0;
1136 EXPORT_SYMBOL_GPL(rt2x00lib_resume);
1137 #endif /* CONFIG_PM */
1140 * rt2x00lib module information.
1142 MODULE_AUTHOR(DRV_PROJECT);
1143 MODULE_VERSION(DRV_VERSION);
1144 MODULE_DESCRIPTION("rt2x00 library");
1145 MODULE_LICENSE("GPL");