proc: use seq_puts()/seq_putc() where possible
[linux-2.6/next.git] / drivers / net / wireless / rt2x00 / rt61pci.c
blob8de44dd401e0f80927dca2e992fed8952fd79caf
1 /*
2 Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
3 <http://rt2x00.serialmonkey.com>
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the
17 Free Software Foundation, Inc.,
18 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
22 Module: rt61pci
23 Abstract: rt61pci device specific routines.
24 Supported chipsets: RT2561, RT2561s, RT2661.
27 #include <linux/crc-itu-t.h>
28 #include <linux/delay.h>
29 #include <linux/etherdevice.h>
30 #include <linux/init.h>
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/slab.h>
34 #include <linux/pci.h>
35 #include <linux/eeprom_93cx6.h>
37 #include "rt2x00.h"
38 #include "rt2x00pci.h"
39 #include "rt61pci.h"
42 * Allow hardware encryption to be disabled.
44 static int modparam_nohwcrypt = 0;
45 module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
46 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
49 * Register access.
50 * BBP and RF register require indirect register access,
51 * and use the CSR registers PHY_CSR3 and PHY_CSR4 to achieve this.
52 * These indirect registers work with busy bits,
53 * and we will try maximal REGISTER_BUSY_COUNT times to access
54 * the register while taking a REGISTER_BUSY_DELAY us delay
55 * between each attempt. When the busy bit is still set at that time,
56 * the access attempt is considered to have failed,
57 * and we will print an error.
59 #define WAIT_FOR_BBP(__dev, __reg) \
60 rt2x00pci_regbusy_read((__dev), PHY_CSR3, PHY_CSR3_BUSY, (__reg))
61 #define WAIT_FOR_RF(__dev, __reg) \
62 rt2x00pci_regbusy_read((__dev), PHY_CSR4, PHY_CSR4_BUSY, (__reg))
63 #define WAIT_FOR_MCU(__dev, __reg) \
64 rt2x00pci_regbusy_read((__dev), H2M_MAILBOX_CSR, \
65 H2M_MAILBOX_CSR_OWNER, (__reg))
67 static void rt61pci_bbp_write(struct rt2x00_dev *rt2x00dev,
68 const unsigned int word, const u8 value)
70 u32 reg;
72 mutex_lock(&rt2x00dev->csr_mutex);
75 * Wait until the BBP becomes available, afterwards we
76 * can safely write the new data into the register.
78 if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
79 reg = 0;
80 rt2x00_set_field32(&reg, PHY_CSR3_VALUE, value);
81 rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
82 rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
83 rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 0);
85 rt2x00pci_register_write(rt2x00dev, PHY_CSR3, reg);
88 mutex_unlock(&rt2x00dev->csr_mutex);
91 static void rt61pci_bbp_read(struct rt2x00_dev *rt2x00dev,
92 const unsigned int word, u8 *value)
94 u32 reg;
96 mutex_lock(&rt2x00dev->csr_mutex);
99 * Wait until the BBP becomes available, afterwards we
100 * can safely write the read request into the register.
101 * After the data has been written, we wait until hardware
102 * returns the correct value, if at any time the register
103 * doesn't become available in time, reg will be 0xffffffff
104 * which means we return 0xff to the caller.
106 if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
107 reg = 0;
108 rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
109 rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
110 rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 1);
112 rt2x00pci_register_write(rt2x00dev, PHY_CSR3, reg);
114 WAIT_FOR_BBP(rt2x00dev, &reg);
117 *value = rt2x00_get_field32(reg, PHY_CSR3_VALUE);
119 mutex_unlock(&rt2x00dev->csr_mutex);
122 static void rt61pci_rf_write(struct rt2x00_dev *rt2x00dev,
123 const unsigned int word, const u32 value)
125 u32 reg;
127 mutex_lock(&rt2x00dev->csr_mutex);
130 * Wait until the RF becomes available, afterwards we
131 * can safely write the new data into the register.
133 if (WAIT_FOR_RF(rt2x00dev, &reg)) {
134 reg = 0;
135 rt2x00_set_field32(&reg, PHY_CSR4_VALUE, value);
136 rt2x00_set_field32(&reg, PHY_CSR4_NUMBER_OF_BITS, 21);
137 rt2x00_set_field32(&reg, PHY_CSR4_IF_SELECT, 0);
138 rt2x00_set_field32(&reg, PHY_CSR4_BUSY, 1);
140 rt2x00pci_register_write(rt2x00dev, PHY_CSR4, reg);
141 rt2x00_rf_write(rt2x00dev, word, value);
144 mutex_unlock(&rt2x00dev->csr_mutex);
147 static void rt61pci_mcu_request(struct rt2x00_dev *rt2x00dev,
148 const u8 command, const u8 token,
149 const u8 arg0, const u8 arg1)
151 u32 reg;
153 mutex_lock(&rt2x00dev->csr_mutex);
156 * Wait until the MCU becomes available, afterwards we
157 * can safely write the new data into the register.
159 if (WAIT_FOR_MCU(rt2x00dev, &reg)) {
160 rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_OWNER, 1);
161 rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_CMD_TOKEN, token);
162 rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_ARG0, arg0);
163 rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_ARG1, arg1);
164 rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CSR, reg);
166 rt2x00pci_register_read(rt2x00dev, HOST_CMD_CSR, &reg);
167 rt2x00_set_field32(&reg, HOST_CMD_CSR_HOST_COMMAND, command);
168 rt2x00_set_field32(&reg, HOST_CMD_CSR_INTERRUPT_MCU, 1);
169 rt2x00pci_register_write(rt2x00dev, HOST_CMD_CSR, reg);
172 mutex_unlock(&rt2x00dev->csr_mutex);
176 static void rt61pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
178 struct rt2x00_dev *rt2x00dev = eeprom->data;
179 u32 reg;
181 rt2x00pci_register_read(rt2x00dev, E2PROM_CSR, &reg);
183 eeprom->reg_data_in = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_IN);
184 eeprom->reg_data_out = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_OUT);
185 eeprom->reg_data_clock =
186 !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_CLOCK);
187 eeprom->reg_chip_select =
188 !!rt2x00_get_field32(reg, E2PROM_CSR_CHIP_SELECT);
191 static void rt61pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
193 struct rt2x00_dev *rt2x00dev = eeprom->data;
194 u32 reg = 0;
196 rt2x00_set_field32(&reg, E2PROM_CSR_DATA_IN, !!eeprom->reg_data_in);
197 rt2x00_set_field32(&reg, E2PROM_CSR_DATA_OUT, !!eeprom->reg_data_out);
198 rt2x00_set_field32(&reg, E2PROM_CSR_DATA_CLOCK,
199 !!eeprom->reg_data_clock);
200 rt2x00_set_field32(&reg, E2PROM_CSR_CHIP_SELECT,
201 !!eeprom->reg_chip_select);
203 rt2x00pci_register_write(rt2x00dev, E2PROM_CSR, reg);
206 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
207 static const struct rt2x00debug rt61pci_rt2x00debug = {
208 .owner = THIS_MODULE,
209 .csr = {
210 .read = rt2x00pci_register_read,
211 .write = rt2x00pci_register_write,
212 .flags = RT2X00DEBUGFS_OFFSET,
213 .word_base = CSR_REG_BASE,
214 .word_size = sizeof(u32),
215 .word_count = CSR_REG_SIZE / sizeof(u32),
217 .eeprom = {
218 .read = rt2x00_eeprom_read,
219 .write = rt2x00_eeprom_write,
220 .word_base = EEPROM_BASE,
221 .word_size = sizeof(u16),
222 .word_count = EEPROM_SIZE / sizeof(u16),
224 .bbp = {
225 .read = rt61pci_bbp_read,
226 .write = rt61pci_bbp_write,
227 .word_base = BBP_BASE,
228 .word_size = sizeof(u8),
229 .word_count = BBP_SIZE / sizeof(u8),
231 .rf = {
232 .read = rt2x00_rf_read,
233 .write = rt61pci_rf_write,
234 .word_base = RF_BASE,
235 .word_size = sizeof(u32),
236 .word_count = RF_SIZE / sizeof(u32),
239 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
241 static int rt61pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
243 u32 reg;
245 rt2x00pci_register_read(rt2x00dev, MAC_CSR13, &reg);
246 return rt2x00_get_field32(reg, MAC_CSR13_BIT5);
249 #ifdef CONFIG_RT2X00_LIB_LEDS
250 static void rt61pci_brightness_set(struct led_classdev *led_cdev,
251 enum led_brightness brightness)
253 struct rt2x00_led *led =
254 container_of(led_cdev, struct rt2x00_led, led_dev);
255 unsigned int enabled = brightness != LED_OFF;
256 unsigned int a_mode =
257 (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_5GHZ);
258 unsigned int bg_mode =
259 (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_2GHZ);
261 if (led->type == LED_TYPE_RADIO) {
262 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
263 MCU_LEDCS_RADIO_STATUS, enabled);
265 rt61pci_mcu_request(led->rt2x00dev, MCU_LED, 0xff,
266 (led->rt2x00dev->led_mcu_reg & 0xff),
267 ((led->rt2x00dev->led_mcu_reg >> 8)));
268 } else if (led->type == LED_TYPE_ASSOC) {
269 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
270 MCU_LEDCS_LINK_BG_STATUS, bg_mode);
271 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
272 MCU_LEDCS_LINK_A_STATUS, a_mode);
274 rt61pci_mcu_request(led->rt2x00dev, MCU_LED, 0xff,
275 (led->rt2x00dev->led_mcu_reg & 0xff),
276 ((led->rt2x00dev->led_mcu_reg >> 8)));
277 } else if (led->type == LED_TYPE_QUALITY) {
279 * The brightness is divided into 6 levels (0 - 5),
280 * this means we need to convert the brightness
281 * argument into the matching level within that range.
283 rt61pci_mcu_request(led->rt2x00dev, MCU_LED_STRENGTH, 0xff,
284 brightness / (LED_FULL / 6), 0);
288 static int rt61pci_blink_set(struct led_classdev *led_cdev,
289 unsigned long *delay_on,
290 unsigned long *delay_off)
292 struct rt2x00_led *led =
293 container_of(led_cdev, struct rt2x00_led, led_dev);
294 u32 reg;
296 rt2x00pci_register_read(led->rt2x00dev, MAC_CSR14, &reg);
297 rt2x00_set_field32(&reg, MAC_CSR14_ON_PERIOD, *delay_on);
298 rt2x00_set_field32(&reg, MAC_CSR14_OFF_PERIOD, *delay_off);
299 rt2x00pci_register_write(led->rt2x00dev, MAC_CSR14, reg);
301 return 0;
304 static void rt61pci_init_led(struct rt2x00_dev *rt2x00dev,
305 struct rt2x00_led *led,
306 enum led_type type)
308 led->rt2x00dev = rt2x00dev;
309 led->type = type;
310 led->led_dev.brightness_set = rt61pci_brightness_set;
311 led->led_dev.blink_set = rt61pci_blink_set;
312 led->flags = LED_INITIALIZED;
314 #endif /* CONFIG_RT2X00_LIB_LEDS */
317 * Configuration handlers.
319 static int rt61pci_config_shared_key(struct rt2x00_dev *rt2x00dev,
320 struct rt2x00lib_crypto *crypto,
321 struct ieee80211_key_conf *key)
323 struct hw_key_entry key_entry;
324 struct rt2x00_field32 field;
325 u32 mask;
326 u32 reg;
328 if (crypto->cmd == SET_KEY) {
330 * rt2x00lib can't determine the correct free
331 * key_idx for shared keys. We have 1 register
332 * with key valid bits. The goal is simple, read
333 * the register, if that is full we have no slots
334 * left.
335 * Note that each BSS is allowed to have up to 4
336 * shared keys, so put a mask over the allowed
337 * entries.
339 mask = (0xf << crypto->bssidx);
341 rt2x00pci_register_read(rt2x00dev, SEC_CSR0, &reg);
342 reg &= mask;
344 if (reg && reg == mask)
345 return -ENOSPC;
347 key->hw_key_idx += reg ? ffz(reg) : 0;
350 * Upload key to hardware
352 memcpy(key_entry.key, crypto->key,
353 sizeof(key_entry.key));
354 memcpy(key_entry.tx_mic, crypto->tx_mic,
355 sizeof(key_entry.tx_mic));
356 memcpy(key_entry.rx_mic, crypto->rx_mic,
357 sizeof(key_entry.rx_mic));
359 reg = SHARED_KEY_ENTRY(key->hw_key_idx);
360 rt2x00pci_register_multiwrite(rt2x00dev, reg,
361 &key_entry, sizeof(key_entry));
364 * The cipher types are stored over 2 registers.
365 * bssidx 0 and 1 keys are stored in SEC_CSR1 and
366 * bssidx 1 and 2 keys are stored in SEC_CSR5.
367 * Using the correct defines correctly will cause overhead,
368 * so just calculate the correct offset.
370 if (key->hw_key_idx < 8) {
371 field.bit_offset = (3 * key->hw_key_idx);
372 field.bit_mask = 0x7 << field.bit_offset;
374 rt2x00pci_register_read(rt2x00dev, SEC_CSR1, &reg);
375 rt2x00_set_field32(&reg, field, crypto->cipher);
376 rt2x00pci_register_write(rt2x00dev, SEC_CSR1, reg);
377 } else {
378 field.bit_offset = (3 * (key->hw_key_idx - 8));
379 field.bit_mask = 0x7 << field.bit_offset;
381 rt2x00pci_register_read(rt2x00dev, SEC_CSR5, &reg);
382 rt2x00_set_field32(&reg, field, crypto->cipher);
383 rt2x00pci_register_write(rt2x00dev, SEC_CSR5, reg);
387 * The driver does not support the IV/EIV generation
388 * in hardware. However it doesn't support the IV/EIV
389 * inside the ieee80211 frame either, but requires it
390 * to be provided separately for the descriptor.
391 * rt2x00lib will cut the IV/EIV data out of all frames
392 * given to us by mac80211, but we must tell mac80211
393 * to generate the IV/EIV data.
395 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
399 * SEC_CSR0 contains only single-bit fields to indicate
400 * a particular key is valid. Because using the FIELD32()
401 * defines directly will cause a lot of overhead, we use
402 * a calculation to determine the correct bit directly.
404 mask = 1 << key->hw_key_idx;
406 rt2x00pci_register_read(rt2x00dev, SEC_CSR0, &reg);
407 if (crypto->cmd == SET_KEY)
408 reg |= mask;
409 else if (crypto->cmd == DISABLE_KEY)
410 reg &= ~mask;
411 rt2x00pci_register_write(rt2x00dev, SEC_CSR0, reg);
413 return 0;
416 static int rt61pci_config_pairwise_key(struct rt2x00_dev *rt2x00dev,
417 struct rt2x00lib_crypto *crypto,
418 struct ieee80211_key_conf *key)
420 struct hw_pairwise_ta_entry addr_entry;
421 struct hw_key_entry key_entry;
422 u32 mask;
423 u32 reg;
425 if (crypto->cmd == SET_KEY) {
427 * rt2x00lib can't determine the correct free
428 * key_idx for pairwise keys. We have 2 registers
429 * with key valid bits. The goal is simple: read
430 * the first register. If that is full, move to
431 * the next register.
432 * When both registers are full, we drop the key.
433 * Otherwise, we use the first invalid entry.
435 rt2x00pci_register_read(rt2x00dev, SEC_CSR2, &reg);
436 if (reg && reg == ~0) {
437 key->hw_key_idx = 32;
438 rt2x00pci_register_read(rt2x00dev, SEC_CSR3, &reg);
439 if (reg && reg == ~0)
440 return -ENOSPC;
443 key->hw_key_idx += reg ? ffz(reg) : 0;
446 * Upload key to hardware
448 memcpy(key_entry.key, crypto->key,
449 sizeof(key_entry.key));
450 memcpy(key_entry.tx_mic, crypto->tx_mic,
451 sizeof(key_entry.tx_mic));
452 memcpy(key_entry.rx_mic, crypto->rx_mic,
453 sizeof(key_entry.rx_mic));
455 memset(&addr_entry, 0, sizeof(addr_entry));
456 memcpy(&addr_entry, crypto->address, ETH_ALEN);
457 addr_entry.cipher = crypto->cipher;
459 reg = PAIRWISE_KEY_ENTRY(key->hw_key_idx);
460 rt2x00pci_register_multiwrite(rt2x00dev, reg,
461 &key_entry, sizeof(key_entry));
463 reg = PAIRWISE_TA_ENTRY(key->hw_key_idx);
464 rt2x00pci_register_multiwrite(rt2x00dev, reg,
465 &addr_entry, sizeof(addr_entry));
468 * Enable pairwise lookup table for given BSS idx.
469 * Without this, received frames will not be decrypted
470 * by the hardware.
472 rt2x00pci_register_read(rt2x00dev, SEC_CSR4, &reg);
473 reg |= (1 << crypto->bssidx);
474 rt2x00pci_register_write(rt2x00dev, SEC_CSR4, reg);
477 * The driver does not support the IV/EIV generation
478 * in hardware. However it doesn't support the IV/EIV
479 * inside the ieee80211 frame either, but requires it
480 * to be provided separately for the descriptor.
481 * rt2x00lib will cut the IV/EIV data out of all frames
482 * given to us by mac80211, but we must tell mac80211
483 * to generate the IV/EIV data.
485 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
489 * SEC_CSR2 and SEC_CSR3 contain only single-bit fields to indicate
490 * a particular key is valid. Because using the FIELD32()
491 * defines directly will cause a lot of overhead, we use
492 * a calculation to determine the correct bit directly.
494 if (key->hw_key_idx < 32) {
495 mask = 1 << key->hw_key_idx;
497 rt2x00pci_register_read(rt2x00dev, SEC_CSR2, &reg);
498 if (crypto->cmd == SET_KEY)
499 reg |= mask;
500 else if (crypto->cmd == DISABLE_KEY)
501 reg &= ~mask;
502 rt2x00pci_register_write(rt2x00dev, SEC_CSR2, reg);
503 } else {
504 mask = 1 << (key->hw_key_idx - 32);
506 rt2x00pci_register_read(rt2x00dev, SEC_CSR3, &reg);
507 if (crypto->cmd == SET_KEY)
508 reg |= mask;
509 else if (crypto->cmd == DISABLE_KEY)
510 reg &= ~mask;
511 rt2x00pci_register_write(rt2x00dev, SEC_CSR3, reg);
514 return 0;
517 static void rt61pci_config_filter(struct rt2x00_dev *rt2x00dev,
518 const unsigned int filter_flags)
520 u32 reg;
523 * Start configuration steps.
524 * Note that the version error will always be dropped
525 * and broadcast frames will always be accepted since
526 * there is no filter for it at this time.
528 rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
529 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CRC,
530 !(filter_flags & FIF_FCSFAIL));
531 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_PHYSICAL,
532 !(filter_flags & FIF_PLCPFAIL));
533 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CONTROL,
534 !(filter_flags & (FIF_CONTROL | FIF_PSPOLL)));
535 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_NOT_TO_ME,
536 !(filter_flags & FIF_PROMISC_IN_BSS));
537 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_TO_DS,
538 !(filter_flags & FIF_PROMISC_IN_BSS) &&
539 !rt2x00dev->intf_ap_count);
540 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_VERSION_ERROR, 1);
541 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_MULTICAST,
542 !(filter_flags & FIF_ALLMULTI));
543 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_BROADCAST, 0);
544 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_ACK_CTS,
545 !(filter_flags & FIF_CONTROL));
546 rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
549 static void rt61pci_config_intf(struct rt2x00_dev *rt2x00dev,
550 struct rt2x00_intf *intf,
551 struct rt2x00intf_conf *conf,
552 const unsigned int flags)
554 unsigned int beacon_base;
555 u32 reg;
557 if (flags & CONFIG_UPDATE_TYPE) {
559 * Clear current synchronisation setup.
560 * For the Beacon base registers, we only need to clear
561 * the first byte since that byte contains the VALID and OWNER
562 * bits which (when set to 0) will invalidate the entire beacon.
564 beacon_base = HW_BEACON_OFFSET(intf->beacon->entry_idx);
565 rt2x00pci_register_write(rt2x00dev, beacon_base, 0);
568 * Enable synchronisation.
570 rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
571 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 1);
572 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, conf->sync);
573 rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 1);
574 rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
577 if (flags & CONFIG_UPDATE_MAC) {
578 reg = le32_to_cpu(conf->mac[1]);
579 rt2x00_set_field32(&reg, MAC_CSR3_UNICAST_TO_ME_MASK, 0xff);
580 conf->mac[1] = cpu_to_le32(reg);
582 rt2x00pci_register_multiwrite(rt2x00dev, MAC_CSR2,
583 conf->mac, sizeof(conf->mac));
586 if (flags & CONFIG_UPDATE_BSSID) {
587 reg = le32_to_cpu(conf->bssid[1]);
588 rt2x00_set_field32(&reg, MAC_CSR5_BSS_ID_MASK, 3);
589 conf->bssid[1] = cpu_to_le32(reg);
591 rt2x00pci_register_multiwrite(rt2x00dev, MAC_CSR4,
592 conf->bssid, sizeof(conf->bssid));
596 static void rt61pci_config_erp(struct rt2x00_dev *rt2x00dev,
597 struct rt2x00lib_erp *erp,
598 u32 changed)
600 u32 reg;
602 rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
603 rt2x00_set_field32(&reg, TXRX_CSR0_RX_ACK_TIMEOUT, 0x32);
604 rt2x00_set_field32(&reg, TXRX_CSR0_TSF_OFFSET, IEEE80211_HEADER);
605 rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
607 if (changed & BSS_CHANGED_ERP_PREAMBLE) {
608 rt2x00pci_register_read(rt2x00dev, TXRX_CSR4, &reg);
609 rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_ENABLE, 1);
610 rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_PREAMBLE,
611 !!erp->short_preamble);
612 rt2x00pci_register_write(rt2x00dev, TXRX_CSR4, reg);
615 if (changed & BSS_CHANGED_BASIC_RATES)
616 rt2x00pci_register_write(rt2x00dev, TXRX_CSR5,
617 erp->basic_rates);
619 if (changed & BSS_CHANGED_BEACON_INT) {
620 rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
621 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_INTERVAL,
622 erp->beacon_int * 16);
623 rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
626 if (changed & BSS_CHANGED_ERP_SLOT) {
627 rt2x00pci_register_read(rt2x00dev, MAC_CSR9, &reg);
628 rt2x00_set_field32(&reg, MAC_CSR9_SLOT_TIME, erp->slot_time);
629 rt2x00pci_register_write(rt2x00dev, MAC_CSR9, reg);
631 rt2x00pci_register_read(rt2x00dev, MAC_CSR8, &reg);
632 rt2x00_set_field32(&reg, MAC_CSR8_SIFS, erp->sifs);
633 rt2x00_set_field32(&reg, MAC_CSR8_SIFS_AFTER_RX_OFDM, 3);
634 rt2x00_set_field32(&reg, MAC_CSR8_EIFS, erp->eifs);
635 rt2x00pci_register_write(rt2x00dev, MAC_CSR8, reg);
639 static void rt61pci_config_antenna_5x(struct rt2x00_dev *rt2x00dev,
640 struct antenna_setup *ant)
642 u8 r3;
643 u8 r4;
644 u8 r77;
646 rt61pci_bbp_read(rt2x00dev, 3, &r3);
647 rt61pci_bbp_read(rt2x00dev, 4, &r4);
648 rt61pci_bbp_read(rt2x00dev, 77, &r77);
650 rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, rt2x00_rf(rt2x00dev, RF5325));
653 * Configure the RX antenna.
655 switch (ant->rx) {
656 case ANTENNA_HW_DIVERSITY:
657 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
658 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
659 (rt2x00dev->curr_band != IEEE80211_BAND_5GHZ));
660 break;
661 case ANTENNA_A:
662 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
663 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
664 if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ)
665 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
666 else
667 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
668 break;
669 case ANTENNA_B:
670 default:
671 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
672 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
673 if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ)
674 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
675 else
676 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
677 break;
680 rt61pci_bbp_write(rt2x00dev, 77, r77);
681 rt61pci_bbp_write(rt2x00dev, 3, r3);
682 rt61pci_bbp_write(rt2x00dev, 4, r4);
685 static void rt61pci_config_antenna_2x(struct rt2x00_dev *rt2x00dev,
686 struct antenna_setup *ant)
688 u8 r3;
689 u8 r4;
690 u8 r77;
692 rt61pci_bbp_read(rt2x00dev, 3, &r3);
693 rt61pci_bbp_read(rt2x00dev, 4, &r4);
694 rt61pci_bbp_read(rt2x00dev, 77, &r77);
696 rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, rt2x00_rf(rt2x00dev, RF2529));
697 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
698 !test_bit(CONFIG_FRAME_TYPE, &rt2x00dev->flags));
701 * Configure the RX antenna.
703 switch (ant->rx) {
704 case ANTENNA_HW_DIVERSITY:
705 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
706 break;
707 case ANTENNA_A:
708 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
709 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
710 break;
711 case ANTENNA_B:
712 default:
713 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
714 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
715 break;
718 rt61pci_bbp_write(rt2x00dev, 77, r77);
719 rt61pci_bbp_write(rt2x00dev, 3, r3);
720 rt61pci_bbp_write(rt2x00dev, 4, r4);
723 static void rt61pci_config_antenna_2529_rx(struct rt2x00_dev *rt2x00dev,
724 const int p1, const int p2)
726 u32 reg;
728 rt2x00pci_register_read(rt2x00dev, MAC_CSR13, &reg);
730 rt2x00_set_field32(&reg, MAC_CSR13_BIT4, p1);
731 rt2x00_set_field32(&reg, MAC_CSR13_BIT12, 0);
733 rt2x00_set_field32(&reg, MAC_CSR13_BIT3, !p2);
734 rt2x00_set_field32(&reg, MAC_CSR13_BIT11, 0);
736 rt2x00pci_register_write(rt2x00dev, MAC_CSR13, reg);
739 static void rt61pci_config_antenna_2529(struct rt2x00_dev *rt2x00dev,
740 struct antenna_setup *ant)
742 u8 r3;
743 u8 r4;
744 u8 r77;
746 rt61pci_bbp_read(rt2x00dev, 3, &r3);
747 rt61pci_bbp_read(rt2x00dev, 4, &r4);
748 rt61pci_bbp_read(rt2x00dev, 77, &r77);
751 * Configure the RX antenna.
753 switch (ant->rx) {
754 case ANTENNA_A:
755 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
756 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
757 rt61pci_config_antenna_2529_rx(rt2x00dev, 0, 0);
758 break;
759 case ANTENNA_HW_DIVERSITY:
761 * FIXME: Antenna selection for the rf 2529 is very confusing
762 * in the legacy driver. Just default to antenna B until the
763 * legacy code can be properly translated into rt2x00 code.
765 case ANTENNA_B:
766 default:
767 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
768 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
769 rt61pci_config_antenna_2529_rx(rt2x00dev, 1, 1);
770 break;
773 rt61pci_bbp_write(rt2x00dev, 77, r77);
774 rt61pci_bbp_write(rt2x00dev, 3, r3);
775 rt61pci_bbp_write(rt2x00dev, 4, r4);
778 struct antenna_sel {
779 u8 word;
781 * value[0] -> non-LNA
782 * value[1] -> LNA
784 u8 value[2];
787 static const struct antenna_sel antenna_sel_a[] = {
788 { 96, { 0x58, 0x78 } },
789 { 104, { 0x38, 0x48 } },
790 { 75, { 0xfe, 0x80 } },
791 { 86, { 0xfe, 0x80 } },
792 { 88, { 0xfe, 0x80 } },
793 { 35, { 0x60, 0x60 } },
794 { 97, { 0x58, 0x58 } },
795 { 98, { 0x58, 0x58 } },
798 static const struct antenna_sel antenna_sel_bg[] = {
799 { 96, { 0x48, 0x68 } },
800 { 104, { 0x2c, 0x3c } },
801 { 75, { 0xfe, 0x80 } },
802 { 86, { 0xfe, 0x80 } },
803 { 88, { 0xfe, 0x80 } },
804 { 35, { 0x50, 0x50 } },
805 { 97, { 0x48, 0x48 } },
806 { 98, { 0x48, 0x48 } },
809 static void rt61pci_config_ant(struct rt2x00_dev *rt2x00dev,
810 struct antenna_setup *ant)
812 const struct antenna_sel *sel;
813 unsigned int lna;
814 unsigned int i;
815 u32 reg;
818 * We should never come here because rt2x00lib is supposed
819 * to catch this and send us the correct antenna explicitely.
821 BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
822 ant->tx == ANTENNA_SW_DIVERSITY);
824 if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) {
825 sel = antenna_sel_a;
826 lna = test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags);
827 } else {
828 sel = antenna_sel_bg;
829 lna = test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags);
832 for (i = 0; i < ARRAY_SIZE(antenna_sel_a); i++)
833 rt61pci_bbp_write(rt2x00dev, sel[i].word, sel[i].value[lna]);
835 rt2x00pci_register_read(rt2x00dev, PHY_CSR0, &reg);
837 rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_BG,
838 rt2x00dev->curr_band == IEEE80211_BAND_2GHZ);
839 rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_A,
840 rt2x00dev->curr_band == IEEE80211_BAND_5GHZ);
842 rt2x00pci_register_write(rt2x00dev, PHY_CSR0, reg);
844 if (rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF5325))
845 rt61pci_config_antenna_5x(rt2x00dev, ant);
846 else if (rt2x00_rf(rt2x00dev, RF2527))
847 rt61pci_config_antenna_2x(rt2x00dev, ant);
848 else if (rt2x00_rf(rt2x00dev, RF2529)) {
849 if (test_bit(CONFIG_DOUBLE_ANTENNA, &rt2x00dev->flags))
850 rt61pci_config_antenna_2x(rt2x00dev, ant);
851 else
852 rt61pci_config_antenna_2529(rt2x00dev, ant);
856 static void rt61pci_config_lna_gain(struct rt2x00_dev *rt2x00dev,
857 struct rt2x00lib_conf *libconf)
859 u16 eeprom;
860 short lna_gain = 0;
862 if (libconf->conf->channel->band == IEEE80211_BAND_2GHZ) {
863 if (test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags))
864 lna_gain += 14;
866 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &eeprom);
867 lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_BG_1);
868 } else {
869 if (test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags))
870 lna_gain += 14;
872 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &eeprom);
873 lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_A_1);
876 rt2x00dev->lna_gain = lna_gain;
879 static void rt61pci_config_channel(struct rt2x00_dev *rt2x00dev,
880 struct rf_channel *rf, const int txpower)
882 u8 r3;
883 u8 r94;
884 u8 smart;
886 rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
887 rt2x00_set_field32(&rf->rf4, RF4_FREQ_OFFSET, rt2x00dev->freq_offset);
889 smart = !(rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF2527));
891 rt61pci_bbp_read(rt2x00dev, 3, &r3);
892 rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, smart);
893 rt61pci_bbp_write(rt2x00dev, 3, r3);
895 r94 = 6;
896 if (txpower > MAX_TXPOWER && txpower <= (MAX_TXPOWER + r94))
897 r94 += txpower - MAX_TXPOWER;
898 else if (txpower < MIN_TXPOWER && txpower >= (MIN_TXPOWER - r94))
899 r94 += txpower;
900 rt61pci_bbp_write(rt2x00dev, 94, r94);
902 rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
903 rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
904 rt61pci_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
905 rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
907 udelay(200);
909 rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
910 rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
911 rt61pci_rf_write(rt2x00dev, 3, rf->rf3 | 0x00000004);
912 rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
914 udelay(200);
916 rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
917 rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
918 rt61pci_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
919 rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
921 msleep(1);
924 static void rt61pci_config_txpower(struct rt2x00_dev *rt2x00dev,
925 const int txpower)
927 struct rf_channel rf;
929 rt2x00_rf_read(rt2x00dev, 1, &rf.rf1);
930 rt2x00_rf_read(rt2x00dev, 2, &rf.rf2);
931 rt2x00_rf_read(rt2x00dev, 3, &rf.rf3);
932 rt2x00_rf_read(rt2x00dev, 4, &rf.rf4);
934 rt61pci_config_channel(rt2x00dev, &rf, txpower);
937 static void rt61pci_config_retry_limit(struct rt2x00_dev *rt2x00dev,
938 struct rt2x00lib_conf *libconf)
940 u32 reg;
942 rt2x00pci_register_read(rt2x00dev, TXRX_CSR4, &reg);
943 rt2x00_set_field32(&reg, TXRX_CSR4_OFDM_TX_RATE_DOWN, 1);
944 rt2x00_set_field32(&reg, TXRX_CSR4_OFDM_TX_RATE_STEP, 0);
945 rt2x00_set_field32(&reg, TXRX_CSR4_OFDM_TX_FALLBACK_CCK, 0);
946 rt2x00_set_field32(&reg, TXRX_CSR4_LONG_RETRY_LIMIT,
947 libconf->conf->long_frame_max_tx_count);
948 rt2x00_set_field32(&reg, TXRX_CSR4_SHORT_RETRY_LIMIT,
949 libconf->conf->short_frame_max_tx_count);
950 rt2x00pci_register_write(rt2x00dev, TXRX_CSR4, reg);
953 static void rt61pci_config_ps(struct rt2x00_dev *rt2x00dev,
954 struct rt2x00lib_conf *libconf)
956 enum dev_state state =
957 (libconf->conf->flags & IEEE80211_CONF_PS) ?
958 STATE_SLEEP : STATE_AWAKE;
959 u32 reg;
961 if (state == STATE_SLEEP) {
962 rt2x00pci_register_read(rt2x00dev, MAC_CSR11, &reg);
963 rt2x00_set_field32(&reg, MAC_CSR11_DELAY_AFTER_TBCN,
964 rt2x00dev->beacon_int - 10);
965 rt2x00_set_field32(&reg, MAC_CSR11_TBCN_BEFORE_WAKEUP,
966 libconf->conf->listen_interval - 1);
967 rt2x00_set_field32(&reg, MAC_CSR11_WAKEUP_LATENCY, 5);
969 /* We must first disable autowake before it can be enabled */
970 rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 0);
971 rt2x00pci_register_write(rt2x00dev, MAC_CSR11, reg);
973 rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 1);
974 rt2x00pci_register_write(rt2x00dev, MAC_CSR11, reg);
976 rt2x00pci_register_write(rt2x00dev, SOFT_RESET_CSR, 0x00000005);
977 rt2x00pci_register_write(rt2x00dev, IO_CNTL_CSR, 0x0000001c);
978 rt2x00pci_register_write(rt2x00dev, PCI_USEC_CSR, 0x00000060);
980 rt61pci_mcu_request(rt2x00dev, MCU_SLEEP, 0xff, 0, 0);
981 } else {
982 rt2x00pci_register_read(rt2x00dev, MAC_CSR11, &reg);
983 rt2x00_set_field32(&reg, MAC_CSR11_DELAY_AFTER_TBCN, 0);
984 rt2x00_set_field32(&reg, MAC_CSR11_TBCN_BEFORE_WAKEUP, 0);
985 rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 0);
986 rt2x00_set_field32(&reg, MAC_CSR11_WAKEUP_LATENCY, 0);
987 rt2x00pci_register_write(rt2x00dev, MAC_CSR11, reg);
989 rt2x00pci_register_write(rt2x00dev, SOFT_RESET_CSR, 0x00000007);
990 rt2x00pci_register_write(rt2x00dev, IO_CNTL_CSR, 0x00000018);
991 rt2x00pci_register_write(rt2x00dev, PCI_USEC_CSR, 0x00000020);
993 rt61pci_mcu_request(rt2x00dev, MCU_WAKEUP, 0xff, 0, 0);
997 static void rt61pci_config(struct rt2x00_dev *rt2x00dev,
998 struct rt2x00lib_conf *libconf,
999 const unsigned int flags)
1001 /* Always recalculate LNA gain before changing configuration */
1002 rt61pci_config_lna_gain(rt2x00dev, libconf);
1004 if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
1005 rt61pci_config_channel(rt2x00dev, &libconf->rf,
1006 libconf->conf->power_level);
1007 if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
1008 !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
1009 rt61pci_config_txpower(rt2x00dev, libconf->conf->power_level);
1010 if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
1011 rt61pci_config_retry_limit(rt2x00dev, libconf);
1012 if (flags & IEEE80211_CONF_CHANGE_PS)
1013 rt61pci_config_ps(rt2x00dev, libconf);
1017 * Link tuning
1019 static void rt61pci_link_stats(struct rt2x00_dev *rt2x00dev,
1020 struct link_qual *qual)
1022 u32 reg;
1025 * Update FCS error count from register.
1027 rt2x00pci_register_read(rt2x00dev, STA_CSR0, &reg);
1028 qual->rx_failed = rt2x00_get_field32(reg, STA_CSR0_FCS_ERROR);
1031 * Update False CCA count from register.
1033 rt2x00pci_register_read(rt2x00dev, STA_CSR1, &reg);
1034 qual->false_cca = rt2x00_get_field32(reg, STA_CSR1_FALSE_CCA_ERROR);
1037 static inline void rt61pci_set_vgc(struct rt2x00_dev *rt2x00dev,
1038 struct link_qual *qual, u8 vgc_level)
1040 if (qual->vgc_level != vgc_level) {
1041 rt61pci_bbp_write(rt2x00dev, 17, vgc_level);
1042 qual->vgc_level = vgc_level;
1043 qual->vgc_level_reg = vgc_level;
1047 static void rt61pci_reset_tuner(struct rt2x00_dev *rt2x00dev,
1048 struct link_qual *qual)
1050 rt61pci_set_vgc(rt2x00dev, qual, 0x20);
1053 static void rt61pci_link_tuner(struct rt2x00_dev *rt2x00dev,
1054 struct link_qual *qual, const u32 count)
1056 u8 up_bound;
1057 u8 low_bound;
1060 * Determine r17 bounds.
1062 if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) {
1063 low_bound = 0x28;
1064 up_bound = 0x48;
1065 if (test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags)) {
1066 low_bound += 0x10;
1067 up_bound += 0x10;
1069 } else {
1070 low_bound = 0x20;
1071 up_bound = 0x40;
1072 if (test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags)) {
1073 low_bound += 0x10;
1074 up_bound += 0x10;
1079 * If we are not associated, we should go straight to the
1080 * dynamic CCA tuning.
1082 if (!rt2x00dev->intf_associated)
1083 goto dynamic_cca_tune;
1086 * Special big-R17 for very short distance
1088 if (qual->rssi >= -35) {
1089 rt61pci_set_vgc(rt2x00dev, qual, 0x60);
1090 return;
1094 * Special big-R17 for short distance
1096 if (qual->rssi >= -58) {
1097 rt61pci_set_vgc(rt2x00dev, qual, up_bound);
1098 return;
1102 * Special big-R17 for middle-short distance
1104 if (qual->rssi >= -66) {
1105 rt61pci_set_vgc(rt2x00dev, qual, low_bound + 0x10);
1106 return;
1110 * Special mid-R17 for middle distance
1112 if (qual->rssi >= -74) {
1113 rt61pci_set_vgc(rt2x00dev, qual, low_bound + 0x08);
1114 return;
1118 * Special case: Change up_bound based on the rssi.
1119 * Lower up_bound when rssi is weaker then -74 dBm.
1121 up_bound -= 2 * (-74 - qual->rssi);
1122 if (low_bound > up_bound)
1123 up_bound = low_bound;
1125 if (qual->vgc_level > up_bound) {
1126 rt61pci_set_vgc(rt2x00dev, qual, up_bound);
1127 return;
1130 dynamic_cca_tune:
1133 * r17 does not yet exceed upper limit, continue and base
1134 * the r17 tuning on the false CCA count.
1136 if ((qual->false_cca > 512) && (qual->vgc_level < up_bound))
1137 rt61pci_set_vgc(rt2x00dev, qual, ++qual->vgc_level);
1138 else if ((qual->false_cca < 100) && (qual->vgc_level > low_bound))
1139 rt61pci_set_vgc(rt2x00dev, qual, --qual->vgc_level);
1143 * Queue handlers.
1145 static void rt61pci_start_queue(struct data_queue *queue)
1147 struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
1148 u32 reg;
1150 switch (queue->qid) {
1151 case QID_RX:
1152 rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
1153 rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 0);
1154 rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
1155 break;
1156 case QID_BEACON:
1157 rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
1158 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 1);
1159 rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 1);
1160 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 1);
1161 rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
1162 break;
1163 default:
1164 break;
1168 static void rt61pci_kick_queue(struct data_queue *queue)
1170 struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
1171 u32 reg;
1173 switch (queue->qid) {
1174 case QID_AC_VO:
1175 rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1176 rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC0, 1);
1177 rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1178 break;
1179 case QID_AC_VI:
1180 rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1181 rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC1, 1);
1182 rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1183 break;
1184 case QID_AC_BE:
1185 rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1186 rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC2, 1);
1187 rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1188 break;
1189 case QID_AC_BK:
1190 rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1191 rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC3, 1);
1192 rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1193 break;
1194 default:
1195 break;
1199 static void rt61pci_stop_queue(struct data_queue *queue)
1201 struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
1202 u32 reg;
1204 switch (queue->qid) {
1205 case QID_AC_VO:
1206 rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1207 rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC0, 1);
1208 rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1209 break;
1210 case QID_AC_VI:
1211 rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1212 rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC1, 1);
1213 rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1214 break;
1215 case QID_AC_BE:
1216 rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1217 rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC2, 1);
1218 rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1219 break;
1220 case QID_AC_BK:
1221 rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1222 rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC3, 1);
1223 rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1224 break;
1225 case QID_RX:
1226 rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
1227 rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 1);
1228 rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
1229 break;
1230 case QID_BEACON:
1231 rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
1232 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 0);
1233 rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 0);
1234 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1235 rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
1236 break;
1237 default:
1238 break;
1243 * Firmware functions
1245 static char *rt61pci_get_firmware_name(struct rt2x00_dev *rt2x00dev)
1247 u16 chip;
1248 char *fw_name;
1250 pci_read_config_word(to_pci_dev(rt2x00dev->dev), PCI_DEVICE_ID, &chip);
1251 switch (chip) {
1252 case RT2561_PCI_ID:
1253 fw_name = FIRMWARE_RT2561;
1254 break;
1255 case RT2561s_PCI_ID:
1256 fw_name = FIRMWARE_RT2561s;
1257 break;
1258 case RT2661_PCI_ID:
1259 fw_name = FIRMWARE_RT2661;
1260 break;
1261 default:
1262 fw_name = NULL;
1263 break;
1266 return fw_name;
1269 static int rt61pci_check_firmware(struct rt2x00_dev *rt2x00dev,
1270 const u8 *data, const size_t len)
1272 u16 fw_crc;
1273 u16 crc;
1276 * Only support 8kb firmware files.
1278 if (len != 8192)
1279 return FW_BAD_LENGTH;
1282 * The last 2 bytes in the firmware array are the crc checksum itself.
1283 * This means that we should never pass those 2 bytes to the crc
1284 * algorithm.
1286 fw_crc = (data[len - 2] << 8 | data[len - 1]);
1289 * Use the crc itu-t algorithm.
1291 crc = crc_itu_t(0, data, len - 2);
1292 crc = crc_itu_t_byte(crc, 0);
1293 crc = crc_itu_t_byte(crc, 0);
1295 return (fw_crc == crc) ? FW_OK : FW_BAD_CRC;
1298 static int rt61pci_load_firmware(struct rt2x00_dev *rt2x00dev,
1299 const u8 *data, const size_t len)
1301 int i;
1302 u32 reg;
1305 * Wait for stable hardware.
1307 for (i = 0; i < 100; i++) {
1308 rt2x00pci_register_read(rt2x00dev, MAC_CSR0, &reg);
1309 if (reg)
1310 break;
1311 msleep(1);
1314 if (!reg) {
1315 ERROR(rt2x00dev, "Unstable hardware.\n");
1316 return -EBUSY;
1320 * Prepare MCU and mailbox for firmware loading.
1322 reg = 0;
1323 rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 1);
1324 rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1325 rt2x00pci_register_write(rt2x00dev, M2H_CMD_DONE_CSR, 0xffffffff);
1326 rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
1327 rt2x00pci_register_write(rt2x00dev, HOST_CMD_CSR, 0);
1330 * Write firmware to device.
1332 reg = 0;
1333 rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 1);
1334 rt2x00_set_field32(&reg, MCU_CNTL_CSR_SELECT_BANK, 1);
1335 rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1337 rt2x00pci_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE,
1338 data, len);
1340 rt2x00_set_field32(&reg, MCU_CNTL_CSR_SELECT_BANK, 0);
1341 rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1343 rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 0);
1344 rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1346 for (i = 0; i < 100; i++) {
1347 rt2x00pci_register_read(rt2x00dev, MCU_CNTL_CSR, &reg);
1348 if (rt2x00_get_field32(reg, MCU_CNTL_CSR_READY))
1349 break;
1350 msleep(1);
1353 if (i == 100) {
1354 ERROR(rt2x00dev, "MCU Control register not ready.\n");
1355 return -EBUSY;
1359 * Hardware needs another millisecond before it is ready.
1361 msleep(1);
1364 * Reset MAC and BBP registers.
1366 reg = 0;
1367 rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 1);
1368 rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 1);
1369 rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1371 rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1372 rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 0);
1373 rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 0);
1374 rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1376 rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1377 rt2x00_set_field32(&reg, MAC_CSR1_HOST_READY, 1);
1378 rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1380 return 0;
1384 * Initialization functions.
1386 static bool rt61pci_get_entry_state(struct queue_entry *entry)
1388 struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1389 u32 word;
1391 if (entry->queue->qid == QID_RX) {
1392 rt2x00_desc_read(entry_priv->desc, 0, &word);
1394 return rt2x00_get_field32(word, RXD_W0_OWNER_NIC);
1395 } else {
1396 rt2x00_desc_read(entry_priv->desc, 0, &word);
1398 return (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
1399 rt2x00_get_field32(word, TXD_W0_VALID));
1403 static void rt61pci_clear_entry(struct queue_entry *entry)
1405 struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1406 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1407 u32 word;
1409 if (entry->queue->qid == QID_RX) {
1410 rt2x00_desc_read(entry_priv->desc, 5, &word);
1411 rt2x00_set_field32(&word, RXD_W5_BUFFER_PHYSICAL_ADDRESS,
1412 skbdesc->skb_dma);
1413 rt2x00_desc_write(entry_priv->desc, 5, word);
1415 rt2x00_desc_read(entry_priv->desc, 0, &word);
1416 rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
1417 rt2x00_desc_write(entry_priv->desc, 0, word);
1418 } else {
1419 rt2x00_desc_read(entry_priv->desc, 0, &word);
1420 rt2x00_set_field32(&word, TXD_W0_VALID, 0);
1421 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
1422 rt2x00_desc_write(entry_priv->desc, 0, word);
1426 static int rt61pci_init_queues(struct rt2x00_dev *rt2x00dev)
1428 struct queue_entry_priv_pci *entry_priv;
1429 u32 reg;
1432 * Initialize registers.
1434 rt2x00pci_register_read(rt2x00dev, TX_RING_CSR0, &reg);
1435 rt2x00_set_field32(&reg, TX_RING_CSR0_AC0_RING_SIZE,
1436 rt2x00dev->tx[0].limit);
1437 rt2x00_set_field32(&reg, TX_RING_CSR0_AC1_RING_SIZE,
1438 rt2x00dev->tx[1].limit);
1439 rt2x00_set_field32(&reg, TX_RING_CSR0_AC2_RING_SIZE,
1440 rt2x00dev->tx[2].limit);
1441 rt2x00_set_field32(&reg, TX_RING_CSR0_AC3_RING_SIZE,
1442 rt2x00dev->tx[3].limit);
1443 rt2x00pci_register_write(rt2x00dev, TX_RING_CSR0, reg);
1445 rt2x00pci_register_read(rt2x00dev, TX_RING_CSR1, &reg);
1446 rt2x00_set_field32(&reg, TX_RING_CSR1_TXD_SIZE,
1447 rt2x00dev->tx[0].desc_size / 4);
1448 rt2x00pci_register_write(rt2x00dev, TX_RING_CSR1, reg);
1450 entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
1451 rt2x00pci_register_read(rt2x00dev, AC0_BASE_CSR, &reg);
1452 rt2x00_set_field32(&reg, AC0_BASE_CSR_RING_REGISTER,
1453 entry_priv->desc_dma);
1454 rt2x00pci_register_write(rt2x00dev, AC0_BASE_CSR, reg);
1456 entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
1457 rt2x00pci_register_read(rt2x00dev, AC1_BASE_CSR, &reg);
1458 rt2x00_set_field32(&reg, AC1_BASE_CSR_RING_REGISTER,
1459 entry_priv->desc_dma);
1460 rt2x00pci_register_write(rt2x00dev, AC1_BASE_CSR, reg);
1462 entry_priv = rt2x00dev->tx[2].entries[0].priv_data;
1463 rt2x00pci_register_read(rt2x00dev, AC2_BASE_CSR, &reg);
1464 rt2x00_set_field32(&reg, AC2_BASE_CSR_RING_REGISTER,
1465 entry_priv->desc_dma);
1466 rt2x00pci_register_write(rt2x00dev, AC2_BASE_CSR, reg);
1468 entry_priv = rt2x00dev->tx[3].entries[0].priv_data;
1469 rt2x00pci_register_read(rt2x00dev, AC3_BASE_CSR, &reg);
1470 rt2x00_set_field32(&reg, AC3_BASE_CSR_RING_REGISTER,
1471 entry_priv->desc_dma);
1472 rt2x00pci_register_write(rt2x00dev, AC3_BASE_CSR, reg);
1474 rt2x00pci_register_read(rt2x00dev, RX_RING_CSR, &reg);
1475 rt2x00_set_field32(&reg, RX_RING_CSR_RING_SIZE, rt2x00dev->rx->limit);
1476 rt2x00_set_field32(&reg, RX_RING_CSR_RXD_SIZE,
1477 rt2x00dev->rx->desc_size / 4);
1478 rt2x00_set_field32(&reg, RX_RING_CSR_RXD_WRITEBACK_SIZE, 4);
1479 rt2x00pci_register_write(rt2x00dev, RX_RING_CSR, reg);
1481 entry_priv = rt2x00dev->rx->entries[0].priv_data;
1482 rt2x00pci_register_read(rt2x00dev, RX_BASE_CSR, &reg);
1483 rt2x00_set_field32(&reg, RX_BASE_CSR_RING_REGISTER,
1484 entry_priv->desc_dma);
1485 rt2x00pci_register_write(rt2x00dev, RX_BASE_CSR, reg);
1487 rt2x00pci_register_read(rt2x00dev, TX_DMA_DST_CSR, &reg);
1488 rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC0, 2);
1489 rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC1, 2);
1490 rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC2, 2);
1491 rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC3, 2);
1492 rt2x00pci_register_write(rt2x00dev, TX_DMA_DST_CSR, reg);
1494 rt2x00pci_register_read(rt2x00dev, LOAD_TX_RING_CSR, &reg);
1495 rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC0, 1);
1496 rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC1, 1);
1497 rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC2, 1);
1498 rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC3, 1);
1499 rt2x00pci_register_write(rt2x00dev, LOAD_TX_RING_CSR, reg);
1501 rt2x00pci_register_read(rt2x00dev, RX_CNTL_CSR, &reg);
1502 rt2x00_set_field32(&reg, RX_CNTL_CSR_LOAD_RXD, 1);
1503 rt2x00pci_register_write(rt2x00dev, RX_CNTL_CSR, reg);
1505 return 0;
1508 static int rt61pci_init_registers(struct rt2x00_dev *rt2x00dev)
1510 u32 reg;
1512 rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
1513 rt2x00_set_field32(&reg, TXRX_CSR0_AUTO_TX_SEQ, 1);
1514 rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 0);
1515 rt2x00_set_field32(&reg, TXRX_CSR0_TX_WITHOUT_WAITING, 0);
1516 rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
1518 rt2x00pci_register_read(rt2x00dev, TXRX_CSR1, &reg);
1519 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0, 47); /* CCK Signal */
1520 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0_VALID, 1);
1521 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1, 30); /* Rssi */
1522 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1_VALID, 1);
1523 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2, 42); /* OFDM Rate */
1524 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2_VALID, 1);
1525 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3, 30); /* Rssi */
1526 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3_VALID, 1);
1527 rt2x00pci_register_write(rt2x00dev, TXRX_CSR1, reg);
1530 * CCK TXD BBP registers
1532 rt2x00pci_register_read(rt2x00dev, TXRX_CSR2, &reg);
1533 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0, 13);
1534 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0_VALID, 1);
1535 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1, 12);
1536 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1_VALID, 1);
1537 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2, 11);
1538 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2_VALID, 1);
1539 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3, 10);
1540 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3_VALID, 1);
1541 rt2x00pci_register_write(rt2x00dev, TXRX_CSR2, reg);
1544 * OFDM TXD BBP registers
1546 rt2x00pci_register_read(rt2x00dev, TXRX_CSR3, &reg);
1547 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0, 7);
1548 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0_VALID, 1);
1549 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1, 6);
1550 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1_VALID, 1);
1551 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2, 5);
1552 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2_VALID, 1);
1553 rt2x00pci_register_write(rt2x00dev, TXRX_CSR3, reg);
1555 rt2x00pci_register_read(rt2x00dev, TXRX_CSR7, &reg);
1556 rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_6MBS, 59);
1557 rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_9MBS, 53);
1558 rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_12MBS, 49);
1559 rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_18MBS, 46);
1560 rt2x00pci_register_write(rt2x00dev, TXRX_CSR7, reg);
1562 rt2x00pci_register_read(rt2x00dev, TXRX_CSR8, &reg);
1563 rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_24MBS, 44);
1564 rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_36MBS, 42);
1565 rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_48MBS, 42);
1566 rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_54MBS, 42);
1567 rt2x00pci_register_write(rt2x00dev, TXRX_CSR8, reg);
1569 rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
1570 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_INTERVAL, 0);
1571 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 0);
1572 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, 0);
1573 rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 0);
1574 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1575 rt2x00_set_field32(&reg, TXRX_CSR9_TIMESTAMP_COMPENSATE, 0);
1576 rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
1578 rt2x00pci_register_write(rt2x00dev, TXRX_CSR15, 0x0000000f);
1580 rt2x00pci_register_write(rt2x00dev, MAC_CSR6, 0x00000fff);
1582 rt2x00pci_register_read(rt2x00dev, MAC_CSR9, &reg);
1583 rt2x00_set_field32(&reg, MAC_CSR9_CW_SELECT, 0);
1584 rt2x00pci_register_write(rt2x00dev, MAC_CSR9, reg);
1586 rt2x00pci_register_write(rt2x00dev, MAC_CSR10, 0x0000071c);
1588 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
1589 return -EBUSY;
1591 rt2x00pci_register_write(rt2x00dev, MAC_CSR13, 0x0000e000);
1594 * Invalidate all Shared Keys (SEC_CSR0),
1595 * and clear the Shared key Cipher algorithms (SEC_CSR1 & SEC_CSR5)
1597 rt2x00pci_register_write(rt2x00dev, SEC_CSR0, 0x00000000);
1598 rt2x00pci_register_write(rt2x00dev, SEC_CSR1, 0x00000000);
1599 rt2x00pci_register_write(rt2x00dev, SEC_CSR5, 0x00000000);
1601 rt2x00pci_register_write(rt2x00dev, PHY_CSR1, 0x000023b0);
1602 rt2x00pci_register_write(rt2x00dev, PHY_CSR5, 0x060a100c);
1603 rt2x00pci_register_write(rt2x00dev, PHY_CSR6, 0x00080606);
1604 rt2x00pci_register_write(rt2x00dev, PHY_CSR7, 0x00000a08);
1606 rt2x00pci_register_write(rt2x00dev, PCI_CFG_CSR, 0x28ca4404);
1608 rt2x00pci_register_write(rt2x00dev, TEST_MODE_CSR, 0x00000200);
1610 rt2x00pci_register_write(rt2x00dev, M2H_CMD_DONE_CSR, 0xffffffff);
1613 * Clear all beacons
1614 * For the Beacon base registers we only need to clear
1615 * the first byte since that byte contains the VALID and OWNER
1616 * bits which (when set to 0) will invalidate the entire beacon.
1618 rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE0, 0);
1619 rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE1, 0);
1620 rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE2, 0);
1621 rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE3, 0);
1624 * We must clear the error counters.
1625 * These registers are cleared on read,
1626 * so we may pass a useless variable to store the value.
1628 rt2x00pci_register_read(rt2x00dev, STA_CSR0, &reg);
1629 rt2x00pci_register_read(rt2x00dev, STA_CSR1, &reg);
1630 rt2x00pci_register_read(rt2x00dev, STA_CSR2, &reg);
1633 * Reset MAC and BBP registers.
1635 rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1636 rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 1);
1637 rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 1);
1638 rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1640 rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1641 rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 0);
1642 rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 0);
1643 rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1645 rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1646 rt2x00_set_field32(&reg, MAC_CSR1_HOST_READY, 1);
1647 rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1649 return 0;
1652 static int rt61pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
1654 unsigned int i;
1655 u8 value;
1657 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1658 rt61pci_bbp_read(rt2x00dev, 0, &value);
1659 if ((value != 0xff) && (value != 0x00))
1660 return 0;
1661 udelay(REGISTER_BUSY_DELAY);
1664 ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
1665 return -EACCES;
1668 static int rt61pci_init_bbp(struct rt2x00_dev *rt2x00dev)
1670 unsigned int i;
1671 u16 eeprom;
1672 u8 reg_id;
1673 u8 value;
1675 if (unlikely(rt61pci_wait_bbp_ready(rt2x00dev)))
1676 return -EACCES;
1678 rt61pci_bbp_write(rt2x00dev, 3, 0x00);
1679 rt61pci_bbp_write(rt2x00dev, 15, 0x30);
1680 rt61pci_bbp_write(rt2x00dev, 21, 0xc8);
1681 rt61pci_bbp_write(rt2x00dev, 22, 0x38);
1682 rt61pci_bbp_write(rt2x00dev, 23, 0x06);
1683 rt61pci_bbp_write(rt2x00dev, 24, 0xfe);
1684 rt61pci_bbp_write(rt2x00dev, 25, 0x0a);
1685 rt61pci_bbp_write(rt2x00dev, 26, 0x0d);
1686 rt61pci_bbp_write(rt2x00dev, 34, 0x12);
1687 rt61pci_bbp_write(rt2x00dev, 37, 0x07);
1688 rt61pci_bbp_write(rt2x00dev, 39, 0xf8);
1689 rt61pci_bbp_write(rt2x00dev, 41, 0x60);
1690 rt61pci_bbp_write(rt2x00dev, 53, 0x10);
1691 rt61pci_bbp_write(rt2x00dev, 54, 0x18);
1692 rt61pci_bbp_write(rt2x00dev, 60, 0x10);
1693 rt61pci_bbp_write(rt2x00dev, 61, 0x04);
1694 rt61pci_bbp_write(rt2x00dev, 62, 0x04);
1695 rt61pci_bbp_write(rt2x00dev, 75, 0xfe);
1696 rt61pci_bbp_write(rt2x00dev, 86, 0xfe);
1697 rt61pci_bbp_write(rt2x00dev, 88, 0xfe);
1698 rt61pci_bbp_write(rt2x00dev, 90, 0x0f);
1699 rt61pci_bbp_write(rt2x00dev, 99, 0x00);
1700 rt61pci_bbp_write(rt2x00dev, 102, 0x16);
1701 rt61pci_bbp_write(rt2x00dev, 107, 0x04);
1703 for (i = 0; i < EEPROM_BBP_SIZE; i++) {
1704 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
1706 if (eeprom != 0xffff && eeprom != 0x0000) {
1707 reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
1708 value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
1709 rt61pci_bbp_write(rt2x00dev, reg_id, value);
1713 return 0;
1717 * Device state switch handlers.
1719 static void rt61pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
1720 enum dev_state state)
1722 int mask = (state == STATE_RADIO_IRQ_OFF) ||
1723 (state == STATE_RADIO_IRQ_OFF_ISR);
1724 u32 reg;
1727 * When interrupts are being enabled, the interrupt registers
1728 * should clear the register to assure a clean state.
1730 if (state == STATE_RADIO_IRQ_ON) {
1731 rt2x00pci_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
1732 rt2x00pci_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
1734 rt2x00pci_register_read(rt2x00dev, MCU_INT_SOURCE_CSR, &reg);
1735 rt2x00pci_register_write(rt2x00dev, MCU_INT_SOURCE_CSR, reg);
1739 * Only toggle the interrupts bits we are going to use.
1740 * Non-checked interrupt bits are disabled by default.
1742 rt2x00pci_register_read(rt2x00dev, INT_MASK_CSR, &reg);
1743 rt2x00_set_field32(&reg, INT_MASK_CSR_TXDONE, mask);
1744 rt2x00_set_field32(&reg, INT_MASK_CSR_RXDONE, mask);
1745 rt2x00_set_field32(&reg, INT_MASK_CSR_BEACON_DONE, mask);
1746 rt2x00_set_field32(&reg, INT_MASK_CSR_ENABLE_MITIGATION, mask);
1747 rt2x00_set_field32(&reg, INT_MASK_CSR_MITIGATION_PERIOD, 0xff);
1748 rt2x00pci_register_write(rt2x00dev, INT_MASK_CSR, reg);
1750 rt2x00pci_register_read(rt2x00dev, MCU_INT_MASK_CSR, &reg);
1751 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_0, mask);
1752 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_1, mask);
1753 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_2, mask);
1754 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_3, mask);
1755 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_4, mask);
1756 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_5, mask);
1757 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_6, mask);
1758 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_7, mask);
1759 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_TWAKEUP, mask);
1760 rt2x00pci_register_write(rt2x00dev, MCU_INT_MASK_CSR, reg);
1763 static int rt61pci_enable_radio(struct rt2x00_dev *rt2x00dev)
1765 u32 reg;
1768 * Initialize all registers.
1770 if (unlikely(rt61pci_init_queues(rt2x00dev) ||
1771 rt61pci_init_registers(rt2x00dev) ||
1772 rt61pci_init_bbp(rt2x00dev)))
1773 return -EIO;
1776 * Enable RX.
1778 rt2x00pci_register_read(rt2x00dev, RX_CNTL_CSR, &reg);
1779 rt2x00_set_field32(&reg, RX_CNTL_CSR_ENABLE_RX_DMA, 1);
1780 rt2x00pci_register_write(rt2x00dev, RX_CNTL_CSR, reg);
1782 return 0;
1785 static void rt61pci_disable_radio(struct rt2x00_dev *rt2x00dev)
1788 * Disable power
1790 rt2x00pci_register_write(rt2x00dev, MAC_CSR10, 0x00001818);
1793 static int rt61pci_set_state(struct rt2x00_dev *rt2x00dev, enum dev_state state)
1795 u32 reg, reg2;
1796 unsigned int i;
1797 char put_to_sleep;
1799 put_to_sleep = (state != STATE_AWAKE);
1801 rt2x00pci_register_read(rt2x00dev, MAC_CSR12, &reg);
1802 rt2x00_set_field32(&reg, MAC_CSR12_FORCE_WAKEUP, !put_to_sleep);
1803 rt2x00_set_field32(&reg, MAC_CSR12_PUT_TO_SLEEP, put_to_sleep);
1804 rt2x00pci_register_write(rt2x00dev, MAC_CSR12, reg);
1807 * Device is not guaranteed to be in the requested state yet.
1808 * We must wait until the register indicates that the
1809 * device has entered the correct state.
1811 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1812 rt2x00pci_register_read(rt2x00dev, MAC_CSR12, &reg2);
1813 state = rt2x00_get_field32(reg2, MAC_CSR12_BBP_CURRENT_STATE);
1814 if (state == !put_to_sleep)
1815 return 0;
1816 rt2x00pci_register_write(rt2x00dev, MAC_CSR12, reg);
1817 msleep(10);
1820 return -EBUSY;
1823 static int rt61pci_set_device_state(struct rt2x00_dev *rt2x00dev,
1824 enum dev_state state)
1826 int retval = 0;
1828 switch (state) {
1829 case STATE_RADIO_ON:
1830 retval = rt61pci_enable_radio(rt2x00dev);
1831 break;
1832 case STATE_RADIO_OFF:
1833 rt61pci_disable_radio(rt2x00dev);
1834 break;
1835 case STATE_RADIO_IRQ_ON:
1836 case STATE_RADIO_IRQ_ON_ISR:
1837 case STATE_RADIO_IRQ_OFF:
1838 case STATE_RADIO_IRQ_OFF_ISR:
1839 rt61pci_toggle_irq(rt2x00dev, state);
1840 break;
1841 case STATE_DEEP_SLEEP:
1842 case STATE_SLEEP:
1843 case STATE_STANDBY:
1844 case STATE_AWAKE:
1845 retval = rt61pci_set_state(rt2x00dev, state);
1846 break;
1847 default:
1848 retval = -ENOTSUPP;
1849 break;
1852 if (unlikely(retval))
1853 ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
1854 state, retval);
1856 return retval;
1860 * TX descriptor initialization
1862 static void rt61pci_write_tx_desc(struct queue_entry *entry,
1863 struct txentry_desc *txdesc)
1865 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1866 struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1867 __le32 *txd = entry_priv->desc;
1868 u32 word;
1871 * Start writing the descriptor words.
1873 rt2x00_desc_read(txd, 1, &word);
1874 rt2x00_set_field32(&word, TXD_W1_HOST_Q_ID, entry->queue->qid);
1875 rt2x00_set_field32(&word, TXD_W1_AIFSN, entry->queue->aifs);
1876 rt2x00_set_field32(&word, TXD_W1_CWMIN, entry->queue->cw_min);
1877 rt2x00_set_field32(&word, TXD_W1_CWMAX, entry->queue->cw_max);
1878 rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, txdesc->iv_offset);
1879 rt2x00_set_field32(&word, TXD_W1_HW_SEQUENCE,
1880 test_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags));
1881 rt2x00_set_field32(&word, TXD_W1_BUFFER_COUNT, 1);
1882 rt2x00_desc_write(txd, 1, word);
1884 rt2x00_desc_read(txd, 2, &word);
1885 rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->signal);
1886 rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->service);
1887 rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW, txdesc->length_low);
1888 rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH, txdesc->length_high);
1889 rt2x00_desc_write(txd, 2, word);
1891 if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags)) {
1892 _rt2x00_desc_write(txd, 3, skbdesc->iv[0]);
1893 _rt2x00_desc_write(txd, 4, skbdesc->iv[1]);
1896 rt2x00_desc_read(txd, 5, &word);
1897 rt2x00_set_field32(&word, TXD_W5_PID_TYPE, entry->queue->qid);
1898 rt2x00_set_field32(&word, TXD_W5_PID_SUBTYPE,
1899 skbdesc->entry->entry_idx);
1900 rt2x00_set_field32(&word, TXD_W5_TX_POWER,
1901 TXPOWER_TO_DEV(entry->queue->rt2x00dev->tx_power));
1902 rt2x00_set_field32(&word, TXD_W5_WAITING_DMA_DONE_INT, 1);
1903 rt2x00_desc_write(txd, 5, word);
1905 if (entry->queue->qid != QID_BEACON) {
1906 rt2x00_desc_read(txd, 6, &word);
1907 rt2x00_set_field32(&word, TXD_W6_BUFFER_PHYSICAL_ADDRESS,
1908 skbdesc->skb_dma);
1909 rt2x00_desc_write(txd, 6, word);
1911 rt2x00_desc_read(txd, 11, &word);
1912 rt2x00_set_field32(&word, TXD_W11_BUFFER_LENGTH0,
1913 txdesc->length);
1914 rt2x00_desc_write(txd, 11, word);
1918 * Writing TXD word 0 must the last to prevent a race condition with
1919 * the device, whereby the device may take hold of the TXD before we
1920 * finished updating it.
1922 rt2x00_desc_read(txd, 0, &word);
1923 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
1924 rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1925 rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1926 test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1927 rt2x00_set_field32(&word, TXD_W0_ACK,
1928 test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1929 rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1930 test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1931 rt2x00_set_field32(&word, TXD_W0_OFDM,
1932 (txdesc->rate_mode == RATE_MODE_OFDM));
1933 rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->ifs);
1934 rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1935 test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
1936 rt2x00_set_field32(&word, TXD_W0_TKIP_MIC,
1937 test_bit(ENTRY_TXD_ENCRYPT_MMIC, &txdesc->flags));
1938 rt2x00_set_field32(&word, TXD_W0_KEY_TABLE,
1939 test_bit(ENTRY_TXD_ENCRYPT_PAIRWISE, &txdesc->flags));
1940 rt2x00_set_field32(&word, TXD_W0_KEY_INDEX, txdesc->key_idx);
1941 rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, txdesc->length);
1942 rt2x00_set_field32(&word, TXD_W0_BURST,
1943 test_bit(ENTRY_TXD_BURST, &txdesc->flags));
1944 rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, txdesc->cipher);
1945 rt2x00_desc_write(txd, 0, word);
1948 * Register descriptor details in skb frame descriptor.
1950 skbdesc->desc = txd;
1951 skbdesc->desc_len = (entry->queue->qid == QID_BEACON) ? TXINFO_SIZE :
1952 TXD_DESC_SIZE;
1956 * TX data initialization
1958 static void rt61pci_write_beacon(struct queue_entry *entry,
1959 struct txentry_desc *txdesc)
1961 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1962 struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1963 unsigned int beacon_base;
1964 unsigned int padding_len;
1965 u32 reg;
1968 * Disable beaconing while we are reloading the beacon data,
1969 * otherwise we might be sending out invalid data.
1971 rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
1972 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1973 rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
1976 * Write the TX descriptor for the beacon.
1978 rt61pci_write_tx_desc(entry, txdesc);
1981 * Dump beacon to userspace through debugfs.
1983 rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry->skb);
1986 * Write entire beacon with descriptor and padding to register.
1988 padding_len = roundup(entry->skb->len, 4) - entry->skb->len;
1989 skb_pad(entry->skb, padding_len);
1990 beacon_base = HW_BEACON_OFFSET(entry->entry_idx);
1991 rt2x00pci_register_multiwrite(rt2x00dev, beacon_base,
1992 entry_priv->desc, TXINFO_SIZE);
1993 rt2x00pci_register_multiwrite(rt2x00dev, beacon_base + TXINFO_SIZE,
1994 entry->skb->data,
1995 entry->skb->len + padding_len);
1998 * Enable beaconing again.
2000 * For Wi-Fi faily generated beacons between participating
2001 * stations. Set TBTT phase adaptive adjustment step to 8us.
2003 rt2x00pci_register_write(rt2x00dev, TXRX_CSR10, 0x00001008);
2005 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 1);
2006 rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 1);
2007 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 1);
2008 rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
2011 * Clean up beacon skb.
2013 dev_kfree_skb_any(entry->skb);
2014 entry->skb = NULL;
2018 * RX control handlers
2020 static int rt61pci_agc_to_rssi(struct rt2x00_dev *rt2x00dev, int rxd_w1)
2022 u8 offset = rt2x00dev->lna_gain;
2023 u8 lna;
2025 lna = rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_LNA);
2026 switch (lna) {
2027 case 3:
2028 offset += 90;
2029 break;
2030 case 2:
2031 offset += 74;
2032 break;
2033 case 1:
2034 offset += 64;
2035 break;
2036 default:
2037 return 0;
2040 if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) {
2041 if (lna == 3 || lna == 2)
2042 offset += 10;
2045 return rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_AGC) * 2 - offset;
2048 static void rt61pci_fill_rxdone(struct queue_entry *entry,
2049 struct rxdone_entry_desc *rxdesc)
2051 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
2052 struct queue_entry_priv_pci *entry_priv = entry->priv_data;
2053 u32 word0;
2054 u32 word1;
2056 rt2x00_desc_read(entry_priv->desc, 0, &word0);
2057 rt2x00_desc_read(entry_priv->desc, 1, &word1);
2059 if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
2060 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
2062 rxdesc->cipher = rt2x00_get_field32(word0, RXD_W0_CIPHER_ALG);
2063 rxdesc->cipher_status = rt2x00_get_field32(word0, RXD_W0_CIPHER_ERROR);
2065 if (rxdesc->cipher != CIPHER_NONE) {
2066 _rt2x00_desc_read(entry_priv->desc, 2, &rxdesc->iv[0]);
2067 _rt2x00_desc_read(entry_priv->desc, 3, &rxdesc->iv[1]);
2068 rxdesc->dev_flags |= RXDONE_CRYPTO_IV;
2070 _rt2x00_desc_read(entry_priv->desc, 4, &rxdesc->icv);
2071 rxdesc->dev_flags |= RXDONE_CRYPTO_ICV;
2074 * Hardware has stripped IV/EIV data from 802.11 frame during
2075 * decryption. It has provided the data separately but rt2x00lib
2076 * should decide if it should be reinserted.
2078 rxdesc->flags |= RX_FLAG_IV_STRIPPED;
2081 * FIXME: Legacy driver indicates that the frame does
2082 * contain the Michael Mic. Unfortunately, in rt2x00
2083 * the MIC seems to be missing completely...
2085 rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
2087 if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
2088 rxdesc->flags |= RX_FLAG_DECRYPTED;
2089 else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
2090 rxdesc->flags |= RX_FLAG_MMIC_ERROR;
2094 * Obtain the status about this packet.
2095 * When frame was received with an OFDM bitrate,
2096 * the signal is the PLCP value. If it was received with
2097 * a CCK bitrate the signal is the rate in 100kbit/s.
2099 rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL);
2100 rxdesc->rssi = rt61pci_agc_to_rssi(rt2x00dev, word1);
2101 rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
2103 if (rt2x00_get_field32(word0, RXD_W0_OFDM))
2104 rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
2105 else
2106 rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
2107 if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
2108 rxdesc->dev_flags |= RXDONE_MY_BSS;
2112 * Interrupt functions.
2114 static void rt61pci_txdone(struct rt2x00_dev *rt2x00dev)
2116 struct data_queue *queue;
2117 struct queue_entry *entry;
2118 struct queue_entry *entry_done;
2119 struct queue_entry_priv_pci *entry_priv;
2120 struct txdone_entry_desc txdesc;
2121 u32 word;
2122 u32 reg;
2123 int type;
2124 int index;
2125 int i;
2128 * TX_STA_FIFO is a stack of X entries, hence read TX_STA_FIFO
2129 * at most X times and also stop processing once the TX_STA_FIFO_VALID
2130 * flag is not set anymore.
2132 * The legacy drivers use X=TX_RING_SIZE but state in a comment
2133 * that the TX_STA_FIFO stack has a size of 16. We stick to our
2134 * tx ring size for now.
2136 for (i = 0; i < rt2x00dev->ops->tx->entry_num; i++) {
2137 rt2x00pci_register_read(rt2x00dev, STA_CSR4, &reg);
2138 if (!rt2x00_get_field32(reg, STA_CSR4_VALID))
2139 break;
2142 * Skip this entry when it contains an invalid
2143 * queue identication number.
2145 type = rt2x00_get_field32(reg, STA_CSR4_PID_TYPE);
2146 queue = rt2x00queue_get_queue(rt2x00dev, type);
2147 if (unlikely(!queue))
2148 continue;
2151 * Skip this entry when it contains an invalid
2152 * index number.
2154 index = rt2x00_get_field32(reg, STA_CSR4_PID_SUBTYPE);
2155 if (unlikely(index >= queue->limit))
2156 continue;
2158 entry = &queue->entries[index];
2159 entry_priv = entry->priv_data;
2160 rt2x00_desc_read(entry_priv->desc, 0, &word);
2162 if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
2163 !rt2x00_get_field32(word, TXD_W0_VALID))
2164 return;
2166 entry_done = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
2167 while (entry != entry_done) {
2168 /* Catch up.
2169 * Just report any entries we missed as failed.
2171 WARNING(rt2x00dev,
2172 "TX status report missed for entry %d\n",
2173 entry_done->entry_idx);
2175 rt2x00lib_txdone_noinfo(entry_done, TXDONE_UNKNOWN);
2176 entry_done = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
2180 * Obtain the status about this packet.
2182 txdesc.flags = 0;
2183 switch (rt2x00_get_field32(reg, STA_CSR4_TX_RESULT)) {
2184 case 0: /* Success, maybe with retry */
2185 __set_bit(TXDONE_SUCCESS, &txdesc.flags);
2186 break;
2187 case 6: /* Failure, excessive retries */
2188 __set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags);
2189 /* Don't break, this is a failed frame! */
2190 default: /* Failure */
2191 __set_bit(TXDONE_FAILURE, &txdesc.flags);
2193 txdesc.retry = rt2x00_get_field32(reg, STA_CSR4_RETRY_COUNT);
2196 * the frame was retried at least once
2197 * -> hw used fallback rates
2199 if (txdesc.retry)
2200 __set_bit(TXDONE_FALLBACK, &txdesc.flags);
2202 rt2x00lib_txdone(entry, &txdesc);
2206 static void rt61pci_wakeup(struct rt2x00_dev *rt2x00dev)
2208 struct ieee80211_conf conf = { .flags = 0 };
2209 struct rt2x00lib_conf libconf = { .conf = &conf };
2211 rt61pci_config(rt2x00dev, &libconf, IEEE80211_CONF_CHANGE_PS);
2214 static irqreturn_t rt61pci_interrupt_thread(int irq, void *dev_instance)
2216 struct rt2x00_dev *rt2x00dev = dev_instance;
2217 u32 reg = rt2x00dev->irqvalue[0];
2218 u32 reg_mcu = rt2x00dev->irqvalue[1];
2221 * Handle interrupts, walk through all bits
2222 * and run the tasks, the bits are checked in order of
2223 * priority.
2227 * 1 - Rx ring done interrupt.
2229 if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RXDONE))
2230 rt2x00pci_rxdone(rt2x00dev);
2233 * 2 - Tx ring done interrupt.
2235 if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TXDONE))
2236 rt61pci_txdone(rt2x00dev);
2239 * 3 - Handle MCU command done.
2241 if (reg_mcu)
2242 rt2x00pci_register_write(rt2x00dev,
2243 M2H_CMD_DONE_CSR, 0xffffffff);
2246 * 4 - MCU Autowakeup interrupt.
2248 if (rt2x00_get_field32(reg_mcu, MCU_INT_SOURCE_CSR_TWAKEUP))
2249 rt61pci_wakeup(rt2x00dev);
2252 * 5 - Beacon done interrupt.
2254 if (rt2x00_get_field32(reg, INT_SOURCE_CSR_BEACON_DONE))
2255 rt2x00lib_beacondone(rt2x00dev);
2257 /* Enable interrupts again. */
2258 rt2x00dev->ops->lib->set_device_state(rt2x00dev,
2259 STATE_RADIO_IRQ_ON_ISR);
2260 return IRQ_HANDLED;
2264 static irqreturn_t rt61pci_interrupt(int irq, void *dev_instance)
2266 struct rt2x00_dev *rt2x00dev = dev_instance;
2267 u32 reg_mcu;
2268 u32 reg;
2271 * Get the interrupt sources & saved to local variable.
2272 * Write register value back to clear pending interrupts.
2274 rt2x00pci_register_read(rt2x00dev, MCU_INT_SOURCE_CSR, &reg_mcu);
2275 rt2x00pci_register_write(rt2x00dev, MCU_INT_SOURCE_CSR, reg_mcu);
2277 rt2x00pci_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
2278 rt2x00pci_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
2280 if (!reg && !reg_mcu)
2281 return IRQ_NONE;
2283 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
2284 return IRQ_HANDLED;
2286 /* Store irqvalues for use in the interrupt thread. */
2287 rt2x00dev->irqvalue[0] = reg;
2288 rt2x00dev->irqvalue[1] = reg_mcu;
2290 /* Disable interrupts, will be enabled again in the interrupt thread. */
2291 rt2x00dev->ops->lib->set_device_state(rt2x00dev,
2292 STATE_RADIO_IRQ_OFF_ISR);
2293 return IRQ_WAKE_THREAD;
2297 * Device probe functions.
2299 static int rt61pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
2301 struct eeprom_93cx6 eeprom;
2302 u32 reg;
2303 u16 word;
2304 u8 *mac;
2305 s8 value;
2307 rt2x00pci_register_read(rt2x00dev, E2PROM_CSR, &reg);
2309 eeprom.data = rt2x00dev;
2310 eeprom.register_read = rt61pci_eepromregister_read;
2311 eeprom.register_write = rt61pci_eepromregister_write;
2312 eeprom.width = rt2x00_get_field32(reg, E2PROM_CSR_TYPE_93C46) ?
2313 PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
2314 eeprom.reg_data_in = 0;
2315 eeprom.reg_data_out = 0;
2316 eeprom.reg_data_clock = 0;
2317 eeprom.reg_chip_select = 0;
2319 eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
2320 EEPROM_SIZE / sizeof(u16));
2323 * Start validation of the data that has been read.
2325 mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
2326 if (!is_valid_ether_addr(mac)) {
2327 random_ether_addr(mac);
2328 EEPROM(rt2x00dev, "MAC: %pM\n", mac);
2331 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
2332 if (word == 0xffff) {
2333 rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
2334 rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
2335 ANTENNA_B);
2336 rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
2337 ANTENNA_B);
2338 rt2x00_set_field16(&word, EEPROM_ANTENNA_FRAME_TYPE, 0);
2339 rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
2340 rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
2341 rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF5225);
2342 rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
2343 EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
2346 rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
2347 if (word == 0xffff) {
2348 rt2x00_set_field16(&word, EEPROM_NIC_ENABLE_DIVERSITY, 0);
2349 rt2x00_set_field16(&word, EEPROM_NIC_TX_DIVERSITY, 0);
2350 rt2x00_set_field16(&word, EEPROM_NIC_RX_FIXED, 0);
2351 rt2x00_set_field16(&word, EEPROM_NIC_TX_FIXED, 0);
2352 rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_BG, 0);
2353 rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
2354 rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_A, 0);
2355 rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
2356 EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
2359 rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &word);
2360 if (word == 0xffff) {
2361 rt2x00_set_field16(&word, EEPROM_LED_LED_MODE,
2362 LED_MODE_DEFAULT);
2363 rt2x00_eeprom_write(rt2x00dev, EEPROM_LED, word);
2364 EEPROM(rt2x00dev, "Led: 0x%04x\n", word);
2367 rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &word);
2368 if (word == 0xffff) {
2369 rt2x00_set_field16(&word, EEPROM_FREQ_OFFSET, 0);
2370 rt2x00_set_field16(&word, EEPROM_FREQ_SEQ, 0);
2371 rt2x00_eeprom_write(rt2x00dev, EEPROM_FREQ, word);
2372 EEPROM(rt2x00dev, "Freq: 0x%04x\n", word);
2375 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &word);
2376 if (word == 0xffff) {
2377 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
2378 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
2379 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
2380 EEPROM(rt2x00dev, "RSSI OFFSET BG: 0x%04x\n", word);
2381 } else {
2382 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_1);
2383 if (value < -10 || value > 10)
2384 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
2385 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_2);
2386 if (value < -10 || value > 10)
2387 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
2388 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
2391 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &word);
2392 if (word == 0xffff) {
2393 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
2394 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
2395 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
2396 EEPROM(rt2x00dev, "RSSI OFFSET A: 0x%04x\n", word);
2397 } else {
2398 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_1);
2399 if (value < -10 || value > 10)
2400 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
2401 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_2);
2402 if (value < -10 || value > 10)
2403 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
2404 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
2407 return 0;
2410 static int rt61pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
2412 u32 reg;
2413 u16 value;
2414 u16 eeprom;
2417 * Read EEPROM word for configuration.
2419 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
2422 * Identify RF chipset.
2424 value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
2425 rt2x00pci_register_read(rt2x00dev, MAC_CSR0, &reg);
2426 rt2x00_set_chip(rt2x00dev, rt2x00_get_field32(reg, MAC_CSR0_CHIPSET),
2427 value, rt2x00_get_field32(reg, MAC_CSR0_REVISION));
2429 if (!rt2x00_rf(rt2x00dev, RF5225) &&
2430 !rt2x00_rf(rt2x00dev, RF5325) &&
2431 !rt2x00_rf(rt2x00dev, RF2527) &&
2432 !rt2x00_rf(rt2x00dev, RF2529)) {
2433 ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
2434 return -ENODEV;
2438 * Determine number of antennas.
2440 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_NUM) == 2)
2441 __set_bit(CONFIG_DOUBLE_ANTENNA, &rt2x00dev->flags);
2444 * Identify default antenna configuration.
2446 rt2x00dev->default_ant.tx =
2447 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
2448 rt2x00dev->default_ant.rx =
2449 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
2452 * Read the Frame type.
2454 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_FRAME_TYPE))
2455 __set_bit(CONFIG_FRAME_TYPE, &rt2x00dev->flags);
2458 * Detect if this device has a hardware controlled radio.
2460 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
2461 __set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
2464 * Read frequency offset and RF programming sequence.
2466 rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &eeprom);
2467 if (rt2x00_get_field16(eeprom, EEPROM_FREQ_SEQ))
2468 __set_bit(CONFIG_RF_SEQUENCE, &rt2x00dev->flags);
2470 rt2x00dev->freq_offset = rt2x00_get_field16(eeprom, EEPROM_FREQ_OFFSET);
2473 * Read external LNA informations.
2475 rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
2477 if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_A))
2478 __set_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags);
2479 if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_BG))
2480 __set_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags);
2483 * When working with a RF2529 chip without double antenna,
2484 * the antenna settings should be gathered from the NIC
2485 * eeprom word.
2487 if (rt2x00_rf(rt2x00dev, RF2529) &&
2488 !test_bit(CONFIG_DOUBLE_ANTENNA, &rt2x00dev->flags)) {
2489 rt2x00dev->default_ant.rx =
2490 ANTENNA_A + rt2x00_get_field16(eeprom, EEPROM_NIC_RX_FIXED);
2491 rt2x00dev->default_ant.tx =
2492 ANTENNA_B - rt2x00_get_field16(eeprom, EEPROM_NIC_TX_FIXED);
2494 if (rt2x00_get_field16(eeprom, EEPROM_NIC_TX_DIVERSITY))
2495 rt2x00dev->default_ant.tx = ANTENNA_SW_DIVERSITY;
2496 if (rt2x00_get_field16(eeprom, EEPROM_NIC_ENABLE_DIVERSITY))
2497 rt2x00dev->default_ant.rx = ANTENNA_SW_DIVERSITY;
2501 * Store led settings, for correct led behaviour.
2502 * If the eeprom value is invalid,
2503 * switch to default led mode.
2505 #ifdef CONFIG_RT2X00_LIB_LEDS
2506 rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &eeprom);
2507 value = rt2x00_get_field16(eeprom, EEPROM_LED_LED_MODE);
2509 rt61pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
2510 rt61pci_init_led(rt2x00dev, &rt2x00dev->led_assoc, LED_TYPE_ASSOC);
2511 if (value == LED_MODE_SIGNAL_STRENGTH)
2512 rt61pci_init_led(rt2x00dev, &rt2x00dev->led_qual,
2513 LED_TYPE_QUALITY);
2515 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_LED_MODE, value);
2516 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_0,
2517 rt2x00_get_field16(eeprom,
2518 EEPROM_LED_POLARITY_GPIO_0));
2519 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_1,
2520 rt2x00_get_field16(eeprom,
2521 EEPROM_LED_POLARITY_GPIO_1));
2522 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_2,
2523 rt2x00_get_field16(eeprom,
2524 EEPROM_LED_POLARITY_GPIO_2));
2525 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_3,
2526 rt2x00_get_field16(eeprom,
2527 EEPROM_LED_POLARITY_GPIO_3));
2528 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_4,
2529 rt2x00_get_field16(eeprom,
2530 EEPROM_LED_POLARITY_GPIO_4));
2531 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_ACT,
2532 rt2x00_get_field16(eeprom, EEPROM_LED_POLARITY_ACT));
2533 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_BG,
2534 rt2x00_get_field16(eeprom,
2535 EEPROM_LED_POLARITY_RDY_G));
2536 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_A,
2537 rt2x00_get_field16(eeprom,
2538 EEPROM_LED_POLARITY_RDY_A));
2539 #endif /* CONFIG_RT2X00_LIB_LEDS */
2541 return 0;
2545 * RF value list for RF5225 & RF5325
2546 * Supports: 2.4 GHz & 5.2 GHz, rf_sequence disabled
2548 static const struct rf_channel rf_vals_noseq[] = {
2549 { 1, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
2550 { 2, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
2551 { 3, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
2552 { 4, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
2553 { 5, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
2554 { 6, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
2555 { 7, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
2556 { 8, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
2557 { 9, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
2558 { 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
2559 { 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
2560 { 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
2561 { 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
2562 { 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
2564 /* 802.11 UNI / HyperLan 2 */
2565 { 36, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa23 },
2566 { 40, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa03 },
2567 { 44, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa0b },
2568 { 48, 0x00002ccc, 0x000049aa, 0x0009be55, 0x000ffa13 },
2569 { 52, 0x00002ccc, 0x000049ae, 0x0009ae55, 0x000ffa1b },
2570 { 56, 0x00002ccc, 0x000049b2, 0x0009ae55, 0x000ffa23 },
2571 { 60, 0x00002ccc, 0x000049ba, 0x0009ae55, 0x000ffa03 },
2572 { 64, 0x00002ccc, 0x000049be, 0x0009ae55, 0x000ffa0b },
2574 /* 802.11 HyperLan 2 */
2575 { 100, 0x00002ccc, 0x00004a2a, 0x000bae55, 0x000ffa03 },
2576 { 104, 0x00002ccc, 0x00004a2e, 0x000bae55, 0x000ffa0b },
2577 { 108, 0x00002ccc, 0x00004a32, 0x000bae55, 0x000ffa13 },
2578 { 112, 0x00002ccc, 0x00004a36, 0x000bae55, 0x000ffa1b },
2579 { 116, 0x00002ccc, 0x00004a3a, 0x000bbe55, 0x000ffa23 },
2580 { 120, 0x00002ccc, 0x00004a82, 0x000bbe55, 0x000ffa03 },
2581 { 124, 0x00002ccc, 0x00004a86, 0x000bbe55, 0x000ffa0b },
2582 { 128, 0x00002ccc, 0x00004a8a, 0x000bbe55, 0x000ffa13 },
2583 { 132, 0x00002ccc, 0x00004a8e, 0x000bbe55, 0x000ffa1b },
2584 { 136, 0x00002ccc, 0x00004a92, 0x000bbe55, 0x000ffa23 },
2586 /* 802.11 UNII */
2587 { 140, 0x00002ccc, 0x00004a9a, 0x000bbe55, 0x000ffa03 },
2588 { 149, 0x00002ccc, 0x00004aa2, 0x000bbe55, 0x000ffa1f },
2589 { 153, 0x00002ccc, 0x00004aa6, 0x000bbe55, 0x000ffa27 },
2590 { 157, 0x00002ccc, 0x00004aae, 0x000bbe55, 0x000ffa07 },
2591 { 161, 0x00002ccc, 0x00004ab2, 0x000bbe55, 0x000ffa0f },
2592 { 165, 0x00002ccc, 0x00004ab6, 0x000bbe55, 0x000ffa17 },
2594 /* MMAC(Japan)J52 ch 34,38,42,46 */
2595 { 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa0b },
2596 { 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000ffa13 },
2597 { 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa1b },
2598 { 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa23 },
2602 * RF value list for RF5225 & RF5325
2603 * Supports: 2.4 GHz & 5.2 GHz, rf_sequence enabled
2605 static const struct rf_channel rf_vals_seq[] = {
2606 { 1, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
2607 { 2, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
2608 { 3, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
2609 { 4, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
2610 { 5, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
2611 { 6, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
2612 { 7, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
2613 { 8, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
2614 { 9, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
2615 { 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
2616 { 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
2617 { 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
2618 { 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
2619 { 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
2621 /* 802.11 UNI / HyperLan 2 */
2622 { 36, 0x00002cd4, 0x0004481a, 0x00098455, 0x000c0a03 },
2623 { 40, 0x00002cd0, 0x00044682, 0x00098455, 0x000c0a03 },
2624 { 44, 0x00002cd0, 0x00044686, 0x00098455, 0x000c0a1b },
2625 { 48, 0x00002cd0, 0x0004468e, 0x00098655, 0x000c0a0b },
2626 { 52, 0x00002cd0, 0x00044692, 0x00098855, 0x000c0a23 },
2627 { 56, 0x00002cd0, 0x0004469a, 0x00098c55, 0x000c0a13 },
2628 { 60, 0x00002cd0, 0x000446a2, 0x00098e55, 0x000c0a03 },
2629 { 64, 0x00002cd0, 0x000446a6, 0x00099255, 0x000c0a1b },
2631 /* 802.11 HyperLan 2 */
2632 { 100, 0x00002cd4, 0x0004489a, 0x000b9855, 0x000c0a03 },
2633 { 104, 0x00002cd4, 0x000448a2, 0x000b9855, 0x000c0a03 },
2634 { 108, 0x00002cd4, 0x000448aa, 0x000b9855, 0x000c0a03 },
2635 { 112, 0x00002cd4, 0x000448b2, 0x000b9a55, 0x000c0a03 },
2636 { 116, 0x00002cd4, 0x000448ba, 0x000b9a55, 0x000c0a03 },
2637 { 120, 0x00002cd0, 0x00044702, 0x000b9a55, 0x000c0a03 },
2638 { 124, 0x00002cd0, 0x00044706, 0x000b9a55, 0x000c0a1b },
2639 { 128, 0x00002cd0, 0x0004470e, 0x000b9c55, 0x000c0a0b },
2640 { 132, 0x00002cd0, 0x00044712, 0x000b9c55, 0x000c0a23 },
2641 { 136, 0x00002cd0, 0x0004471a, 0x000b9e55, 0x000c0a13 },
2643 /* 802.11 UNII */
2644 { 140, 0x00002cd0, 0x00044722, 0x000b9e55, 0x000c0a03 },
2645 { 149, 0x00002cd0, 0x0004472e, 0x000ba255, 0x000c0a1b },
2646 { 153, 0x00002cd0, 0x00044736, 0x000ba255, 0x000c0a0b },
2647 { 157, 0x00002cd4, 0x0004490a, 0x000ba255, 0x000c0a17 },
2648 { 161, 0x00002cd4, 0x00044912, 0x000ba255, 0x000c0a17 },
2649 { 165, 0x00002cd4, 0x0004491a, 0x000ba255, 0x000c0a17 },
2651 /* MMAC(Japan)J52 ch 34,38,42,46 */
2652 { 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000c0a0b },
2653 { 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000c0a13 },
2654 { 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000c0a1b },
2655 { 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000c0a23 },
2658 static int rt61pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
2660 struct hw_mode_spec *spec = &rt2x00dev->spec;
2661 struct channel_info *info;
2662 char *tx_power;
2663 unsigned int i;
2666 * Disable powersaving as default.
2668 rt2x00dev->hw->wiphy->flags &= ~WIPHY_FLAG_PS_ON_BY_DEFAULT;
2671 * Initialize all hw fields.
2673 rt2x00dev->hw->flags =
2674 IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
2675 IEEE80211_HW_SIGNAL_DBM |
2676 IEEE80211_HW_SUPPORTS_PS |
2677 IEEE80211_HW_PS_NULLFUNC_STACK;
2679 SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
2680 SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
2681 rt2x00_eeprom_addr(rt2x00dev,
2682 EEPROM_MAC_ADDR_0));
2685 * As rt61 has a global fallback table we cannot specify
2686 * more then one tx rate per frame but since the hw will
2687 * try several rates (based on the fallback table) we should
2688 * initialize max_report_rates to the maximum number of rates
2689 * we are going to try. Otherwise mac80211 will truncate our
2690 * reported tx rates and the rc algortihm will end up with
2691 * incorrect data.
2693 rt2x00dev->hw->max_rates = 1;
2694 rt2x00dev->hw->max_report_rates = 7;
2695 rt2x00dev->hw->max_rate_tries = 1;
2698 * Initialize hw_mode information.
2700 spec->supported_bands = SUPPORT_BAND_2GHZ;
2701 spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
2703 if (!test_bit(CONFIG_RF_SEQUENCE, &rt2x00dev->flags)) {
2704 spec->num_channels = 14;
2705 spec->channels = rf_vals_noseq;
2706 } else {
2707 spec->num_channels = 14;
2708 spec->channels = rf_vals_seq;
2711 if (rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF5325)) {
2712 spec->supported_bands |= SUPPORT_BAND_5GHZ;
2713 spec->num_channels = ARRAY_SIZE(rf_vals_seq);
2717 * Create channel information array
2719 info = kcalloc(spec->num_channels, sizeof(*info), GFP_KERNEL);
2720 if (!info)
2721 return -ENOMEM;
2723 spec->channels_info = info;
2725 tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_G_START);
2726 for (i = 0; i < 14; i++) {
2727 info[i].max_power = MAX_TXPOWER;
2728 info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]);
2731 if (spec->num_channels > 14) {
2732 tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_A_START);
2733 for (i = 14; i < spec->num_channels; i++) {
2734 info[i].max_power = MAX_TXPOWER;
2735 info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]);
2739 return 0;
2742 static int rt61pci_probe_hw(struct rt2x00_dev *rt2x00dev)
2744 int retval;
2747 * Disable power saving.
2749 rt2x00pci_register_write(rt2x00dev, SOFT_RESET_CSR, 0x00000007);
2752 * Allocate eeprom data.
2754 retval = rt61pci_validate_eeprom(rt2x00dev);
2755 if (retval)
2756 return retval;
2758 retval = rt61pci_init_eeprom(rt2x00dev);
2759 if (retval)
2760 return retval;
2763 * Initialize hw specifications.
2765 retval = rt61pci_probe_hw_mode(rt2x00dev);
2766 if (retval)
2767 return retval;
2770 * This device has multiple filters for control frames,
2771 * but has no a separate filter for PS Poll frames.
2773 __set_bit(DRIVER_SUPPORT_CONTROL_FILTERS, &rt2x00dev->flags);
2776 * This device requires firmware and DMA mapped skbs.
2778 __set_bit(DRIVER_REQUIRE_FIRMWARE, &rt2x00dev->flags);
2779 __set_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags);
2780 if (!modparam_nohwcrypt)
2781 __set_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags);
2782 __set_bit(DRIVER_SUPPORT_LINK_TUNING, &rt2x00dev->flags);
2785 * Set the rssi offset.
2787 rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
2789 return 0;
2793 * IEEE80211 stack callback functions.
2795 static int rt61pci_conf_tx(struct ieee80211_hw *hw, u16 queue_idx,
2796 const struct ieee80211_tx_queue_params *params)
2798 struct rt2x00_dev *rt2x00dev = hw->priv;
2799 struct data_queue *queue;
2800 struct rt2x00_field32 field;
2801 int retval;
2802 u32 reg;
2803 u32 offset;
2806 * First pass the configuration through rt2x00lib, that will
2807 * update the queue settings and validate the input. After that
2808 * we are free to update the registers based on the value
2809 * in the queue parameter.
2811 retval = rt2x00mac_conf_tx(hw, queue_idx, params);
2812 if (retval)
2813 return retval;
2816 * We only need to perform additional register initialization
2817 * for WMM queues.
2819 if (queue_idx >= 4)
2820 return 0;
2822 queue = rt2x00queue_get_queue(rt2x00dev, queue_idx);
2824 /* Update WMM TXOP register */
2825 offset = AC_TXOP_CSR0 + (sizeof(u32) * (!!(queue_idx & 2)));
2826 field.bit_offset = (queue_idx & 1) * 16;
2827 field.bit_mask = 0xffff << field.bit_offset;
2829 rt2x00pci_register_read(rt2x00dev, offset, &reg);
2830 rt2x00_set_field32(&reg, field, queue->txop);
2831 rt2x00pci_register_write(rt2x00dev, offset, reg);
2833 /* Update WMM registers */
2834 field.bit_offset = queue_idx * 4;
2835 field.bit_mask = 0xf << field.bit_offset;
2837 rt2x00pci_register_read(rt2x00dev, AIFSN_CSR, &reg);
2838 rt2x00_set_field32(&reg, field, queue->aifs);
2839 rt2x00pci_register_write(rt2x00dev, AIFSN_CSR, reg);
2841 rt2x00pci_register_read(rt2x00dev, CWMIN_CSR, &reg);
2842 rt2x00_set_field32(&reg, field, queue->cw_min);
2843 rt2x00pci_register_write(rt2x00dev, CWMIN_CSR, reg);
2845 rt2x00pci_register_read(rt2x00dev, CWMAX_CSR, &reg);
2846 rt2x00_set_field32(&reg, field, queue->cw_max);
2847 rt2x00pci_register_write(rt2x00dev, CWMAX_CSR, reg);
2849 return 0;
2852 static u64 rt61pci_get_tsf(struct ieee80211_hw *hw)
2854 struct rt2x00_dev *rt2x00dev = hw->priv;
2855 u64 tsf;
2856 u32 reg;
2858 rt2x00pci_register_read(rt2x00dev, TXRX_CSR13, &reg);
2859 tsf = (u64) rt2x00_get_field32(reg, TXRX_CSR13_HIGH_TSFTIMER) << 32;
2860 rt2x00pci_register_read(rt2x00dev, TXRX_CSR12, &reg);
2861 tsf |= rt2x00_get_field32(reg, TXRX_CSR12_LOW_TSFTIMER);
2863 return tsf;
2866 static const struct ieee80211_ops rt61pci_mac80211_ops = {
2867 .tx = rt2x00mac_tx,
2868 .start = rt2x00mac_start,
2869 .stop = rt2x00mac_stop,
2870 .add_interface = rt2x00mac_add_interface,
2871 .remove_interface = rt2x00mac_remove_interface,
2872 .config = rt2x00mac_config,
2873 .configure_filter = rt2x00mac_configure_filter,
2874 .set_key = rt2x00mac_set_key,
2875 .sw_scan_start = rt2x00mac_sw_scan_start,
2876 .sw_scan_complete = rt2x00mac_sw_scan_complete,
2877 .get_stats = rt2x00mac_get_stats,
2878 .bss_info_changed = rt2x00mac_bss_info_changed,
2879 .conf_tx = rt61pci_conf_tx,
2880 .get_tsf = rt61pci_get_tsf,
2881 .rfkill_poll = rt2x00mac_rfkill_poll,
2882 .flush = rt2x00mac_flush,
2885 static const struct rt2x00lib_ops rt61pci_rt2x00_ops = {
2886 .irq_handler = rt61pci_interrupt,
2887 .irq_handler_thread = rt61pci_interrupt_thread,
2888 .probe_hw = rt61pci_probe_hw,
2889 .get_firmware_name = rt61pci_get_firmware_name,
2890 .check_firmware = rt61pci_check_firmware,
2891 .load_firmware = rt61pci_load_firmware,
2892 .initialize = rt2x00pci_initialize,
2893 .uninitialize = rt2x00pci_uninitialize,
2894 .get_entry_state = rt61pci_get_entry_state,
2895 .clear_entry = rt61pci_clear_entry,
2896 .set_device_state = rt61pci_set_device_state,
2897 .rfkill_poll = rt61pci_rfkill_poll,
2898 .link_stats = rt61pci_link_stats,
2899 .reset_tuner = rt61pci_reset_tuner,
2900 .link_tuner = rt61pci_link_tuner,
2901 .start_queue = rt61pci_start_queue,
2902 .kick_queue = rt61pci_kick_queue,
2903 .stop_queue = rt61pci_stop_queue,
2904 .write_tx_desc = rt61pci_write_tx_desc,
2905 .write_beacon = rt61pci_write_beacon,
2906 .fill_rxdone = rt61pci_fill_rxdone,
2907 .config_shared_key = rt61pci_config_shared_key,
2908 .config_pairwise_key = rt61pci_config_pairwise_key,
2909 .config_filter = rt61pci_config_filter,
2910 .config_intf = rt61pci_config_intf,
2911 .config_erp = rt61pci_config_erp,
2912 .config_ant = rt61pci_config_ant,
2913 .config = rt61pci_config,
2916 static const struct data_queue_desc rt61pci_queue_rx = {
2917 .entry_num = 32,
2918 .data_size = DATA_FRAME_SIZE,
2919 .desc_size = RXD_DESC_SIZE,
2920 .priv_size = sizeof(struct queue_entry_priv_pci),
2923 static const struct data_queue_desc rt61pci_queue_tx = {
2924 .entry_num = 32,
2925 .data_size = DATA_FRAME_SIZE,
2926 .desc_size = TXD_DESC_SIZE,
2927 .priv_size = sizeof(struct queue_entry_priv_pci),
2930 static const struct data_queue_desc rt61pci_queue_bcn = {
2931 .entry_num = 4,
2932 .data_size = 0, /* No DMA required for beacons */
2933 .desc_size = TXINFO_SIZE,
2934 .priv_size = sizeof(struct queue_entry_priv_pci),
2937 static const struct rt2x00_ops rt61pci_ops = {
2938 .name = KBUILD_MODNAME,
2939 .max_sta_intf = 1,
2940 .max_ap_intf = 4,
2941 .eeprom_size = EEPROM_SIZE,
2942 .rf_size = RF_SIZE,
2943 .tx_queues = NUM_TX_QUEUES,
2944 .extra_tx_headroom = 0,
2945 .rx = &rt61pci_queue_rx,
2946 .tx = &rt61pci_queue_tx,
2947 .bcn = &rt61pci_queue_bcn,
2948 .lib = &rt61pci_rt2x00_ops,
2949 .hw = &rt61pci_mac80211_ops,
2950 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
2951 .debugfs = &rt61pci_rt2x00debug,
2952 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
2956 * RT61pci module information.
2958 static DEFINE_PCI_DEVICE_TABLE(rt61pci_device_table) = {
2959 /* RT2561s */
2960 { PCI_DEVICE(0x1814, 0x0301), PCI_DEVICE_DATA(&rt61pci_ops) },
2961 /* RT2561 v2 */
2962 { PCI_DEVICE(0x1814, 0x0302), PCI_DEVICE_DATA(&rt61pci_ops) },
2963 /* RT2661 */
2964 { PCI_DEVICE(0x1814, 0x0401), PCI_DEVICE_DATA(&rt61pci_ops) },
2965 { 0, }
2968 MODULE_AUTHOR(DRV_PROJECT);
2969 MODULE_VERSION(DRV_VERSION);
2970 MODULE_DESCRIPTION("Ralink RT61 PCI & PCMCIA Wireless LAN driver.");
2971 MODULE_SUPPORTED_DEVICE("Ralink RT2561, RT2561s & RT2661 "
2972 "PCI & PCMCIA chipset based cards");
2973 MODULE_DEVICE_TABLE(pci, rt61pci_device_table);
2974 MODULE_FIRMWARE(FIRMWARE_RT2561);
2975 MODULE_FIRMWARE(FIRMWARE_RT2561s);
2976 MODULE_FIRMWARE(FIRMWARE_RT2661);
2977 MODULE_LICENSE("GPL");
2979 static struct pci_driver rt61pci_driver = {
2980 .name = KBUILD_MODNAME,
2981 .id_table = rt61pci_device_table,
2982 .probe = rt2x00pci_probe,
2983 .remove = __devexit_p(rt2x00pci_remove),
2984 .suspend = rt2x00pci_suspend,
2985 .resume = rt2x00pci_resume,
2988 static int __init rt61pci_init(void)
2990 return pci_register_driver(&rt61pci_driver);
2993 static void __exit rt61pci_exit(void)
2995 pci_unregister_driver(&rt61pci_driver);
2998 module_init(rt61pci_init);
2999 module_exit(rt61pci_exit);