proc: use seq_puts()/seq_putc() where possible
[linux-2.6/next.git] / drivers / net / wireless / rt2x00 / rt73usb.c
blob0b4e8590cbb77e067902f9d176043db0a713c4c9
1 /*
2 Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
3 <http://rt2x00.serialmonkey.com>
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the
17 Free Software Foundation, Inc.,
18 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
22 Module: rt73usb
23 Abstract: rt73usb device specific routines.
24 Supported chipsets: rt2571W & rt2671.
27 #include <linux/crc-itu-t.h>
28 #include <linux/delay.h>
29 #include <linux/etherdevice.h>
30 #include <linux/init.h>
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/slab.h>
34 #include <linux/usb.h>
36 #include "rt2x00.h"
37 #include "rt2x00usb.h"
38 #include "rt73usb.h"
41 * Allow hardware encryption to be disabled.
43 static int modparam_nohwcrypt;
44 module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
45 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
48 * Register access.
49 * All access to the CSR registers will go through the methods
50 * rt2x00usb_register_read and rt2x00usb_register_write.
51 * BBP and RF register require indirect register access,
52 * and use the CSR registers BBPCSR and RFCSR to achieve this.
53 * These indirect registers work with busy bits,
54 * and we will try maximal REGISTER_BUSY_COUNT times to access
55 * the register while taking a REGISTER_BUSY_DELAY us delay
56 * between each attampt. When the busy bit is still set at that time,
57 * the access attempt is considered to have failed,
58 * and we will print an error.
59 * The _lock versions must be used if you already hold the csr_mutex
61 #define WAIT_FOR_BBP(__dev, __reg) \
62 rt2x00usb_regbusy_read((__dev), PHY_CSR3, PHY_CSR3_BUSY, (__reg))
63 #define WAIT_FOR_RF(__dev, __reg) \
64 rt2x00usb_regbusy_read((__dev), PHY_CSR4, PHY_CSR4_BUSY, (__reg))
66 static void rt73usb_bbp_write(struct rt2x00_dev *rt2x00dev,
67 const unsigned int word, const u8 value)
69 u32 reg;
71 mutex_lock(&rt2x00dev->csr_mutex);
74 * Wait until the BBP becomes available, afterwards we
75 * can safely write the new data into the register.
77 if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
78 reg = 0;
79 rt2x00_set_field32(&reg, PHY_CSR3_VALUE, value);
80 rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
81 rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
82 rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 0);
84 rt2x00usb_register_write_lock(rt2x00dev, PHY_CSR3, reg);
87 mutex_unlock(&rt2x00dev->csr_mutex);
90 static void rt73usb_bbp_read(struct rt2x00_dev *rt2x00dev,
91 const unsigned int word, u8 *value)
93 u32 reg;
95 mutex_lock(&rt2x00dev->csr_mutex);
98 * Wait until the BBP becomes available, afterwards we
99 * can safely write the read request into the register.
100 * After the data has been written, we wait until hardware
101 * returns the correct value, if at any time the register
102 * doesn't become available in time, reg will be 0xffffffff
103 * which means we return 0xff to the caller.
105 if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
106 reg = 0;
107 rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
108 rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
109 rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 1);
111 rt2x00usb_register_write_lock(rt2x00dev, PHY_CSR3, reg);
113 WAIT_FOR_BBP(rt2x00dev, &reg);
116 *value = rt2x00_get_field32(reg, PHY_CSR3_VALUE);
118 mutex_unlock(&rt2x00dev->csr_mutex);
121 static void rt73usb_rf_write(struct rt2x00_dev *rt2x00dev,
122 const unsigned int word, const u32 value)
124 u32 reg;
126 mutex_lock(&rt2x00dev->csr_mutex);
129 * Wait until the RF becomes available, afterwards we
130 * can safely write the new data into the register.
132 if (WAIT_FOR_RF(rt2x00dev, &reg)) {
133 reg = 0;
134 rt2x00_set_field32(&reg, PHY_CSR4_VALUE, value);
136 * RF5225 and RF2527 contain 21 bits per RF register value,
137 * all others contain 20 bits.
139 rt2x00_set_field32(&reg, PHY_CSR4_NUMBER_OF_BITS,
140 20 + (rt2x00_rf(rt2x00dev, RF5225) ||
141 rt2x00_rf(rt2x00dev, RF2527)));
142 rt2x00_set_field32(&reg, PHY_CSR4_IF_SELECT, 0);
143 rt2x00_set_field32(&reg, PHY_CSR4_BUSY, 1);
145 rt2x00usb_register_write_lock(rt2x00dev, PHY_CSR4, reg);
146 rt2x00_rf_write(rt2x00dev, word, value);
149 mutex_unlock(&rt2x00dev->csr_mutex);
152 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
153 static const struct rt2x00debug rt73usb_rt2x00debug = {
154 .owner = THIS_MODULE,
155 .csr = {
156 .read = rt2x00usb_register_read,
157 .write = rt2x00usb_register_write,
158 .flags = RT2X00DEBUGFS_OFFSET,
159 .word_base = CSR_REG_BASE,
160 .word_size = sizeof(u32),
161 .word_count = CSR_REG_SIZE / sizeof(u32),
163 .eeprom = {
164 .read = rt2x00_eeprom_read,
165 .write = rt2x00_eeprom_write,
166 .word_base = EEPROM_BASE,
167 .word_size = sizeof(u16),
168 .word_count = EEPROM_SIZE / sizeof(u16),
170 .bbp = {
171 .read = rt73usb_bbp_read,
172 .write = rt73usb_bbp_write,
173 .word_base = BBP_BASE,
174 .word_size = sizeof(u8),
175 .word_count = BBP_SIZE / sizeof(u8),
177 .rf = {
178 .read = rt2x00_rf_read,
179 .write = rt73usb_rf_write,
180 .word_base = RF_BASE,
181 .word_size = sizeof(u32),
182 .word_count = RF_SIZE / sizeof(u32),
185 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
187 static int rt73usb_rfkill_poll(struct rt2x00_dev *rt2x00dev)
189 u32 reg;
191 rt2x00usb_register_read(rt2x00dev, MAC_CSR13, &reg);
192 return rt2x00_get_field32(reg, MAC_CSR13_BIT7);
195 #ifdef CONFIG_RT2X00_LIB_LEDS
196 static void rt73usb_brightness_set(struct led_classdev *led_cdev,
197 enum led_brightness brightness)
199 struct rt2x00_led *led =
200 container_of(led_cdev, struct rt2x00_led, led_dev);
201 unsigned int enabled = brightness != LED_OFF;
202 unsigned int a_mode =
203 (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_5GHZ);
204 unsigned int bg_mode =
205 (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_2GHZ);
207 if (led->type == LED_TYPE_RADIO) {
208 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
209 MCU_LEDCS_RADIO_STATUS, enabled);
211 rt2x00usb_vendor_request_sw(led->rt2x00dev, USB_LED_CONTROL,
212 0, led->rt2x00dev->led_mcu_reg,
213 REGISTER_TIMEOUT);
214 } else if (led->type == LED_TYPE_ASSOC) {
215 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
216 MCU_LEDCS_LINK_BG_STATUS, bg_mode);
217 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
218 MCU_LEDCS_LINK_A_STATUS, a_mode);
220 rt2x00usb_vendor_request_sw(led->rt2x00dev, USB_LED_CONTROL,
221 0, led->rt2x00dev->led_mcu_reg,
222 REGISTER_TIMEOUT);
223 } else if (led->type == LED_TYPE_QUALITY) {
225 * The brightness is divided into 6 levels (0 - 5),
226 * this means we need to convert the brightness
227 * argument into the matching level within that range.
229 rt2x00usb_vendor_request_sw(led->rt2x00dev, USB_LED_CONTROL,
230 brightness / (LED_FULL / 6),
231 led->rt2x00dev->led_mcu_reg,
232 REGISTER_TIMEOUT);
236 static int rt73usb_blink_set(struct led_classdev *led_cdev,
237 unsigned long *delay_on,
238 unsigned long *delay_off)
240 struct rt2x00_led *led =
241 container_of(led_cdev, struct rt2x00_led, led_dev);
242 u32 reg;
244 rt2x00usb_register_read(led->rt2x00dev, MAC_CSR14, &reg);
245 rt2x00_set_field32(&reg, MAC_CSR14_ON_PERIOD, *delay_on);
246 rt2x00_set_field32(&reg, MAC_CSR14_OFF_PERIOD, *delay_off);
247 rt2x00usb_register_write(led->rt2x00dev, MAC_CSR14, reg);
249 return 0;
252 static void rt73usb_init_led(struct rt2x00_dev *rt2x00dev,
253 struct rt2x00_led *led,
254 enum led_type type)
256 led->rt2x00dev = rt2x00dev;
257 led->type = type;
258 led->led_dev.brightness_set = rt73usb_brightness_set;
259 led->led_dev.blink_set = rt73usb_blink_set;
260 led->flags = LED_INITIALIZED;
262 #endif /* CONFIG_RT2X00_LIB_LEDS */
265 * Configuration handlers.
267 static int rt73usb_config_shared_key(struct rt2x00_dev *rt2x00dev,
268 struct rt2x00lib_crypto *crypto,
269 struct ieee80211_key_conf *key)
271 struct hw_key_entry key_entry;
272 struct rt2x00_field32 field;
273 u32 mask;
274 u32 reg;
276 if (crypto->cmd == SET_KEY) {
278 * rt2x00lib can't determine the correct free
279 * key_idx for shared keys. We have 1 register
280 * with key valid bits. The goal is simple, read
281 * the register, if that is full we have no slots
282 * left.
283 * Note that each BSS is allowed to have up to 4
284 * shared keys, so put a mask over the allowed
285 * entries.
287 mask = (0xf << crypto->bssidx);
289 rt2x00usb_register_read(rt2x00dev, SEC_CSR0, &reg);
290 reg &= mask;
292 if (reg && reg == mask)
293 return -ENOSPC;
295 key->hw_key_idx += reg ? ffz(reg) : 0;
298 * Upload key to hardware
300 memcpy(key_entry.key, crypto->key,
301 sizeof(key_entry.key));
302 memcpy(key_entry.tx_mic, crypto->tx_mic,
303 sizeof(key_entry.tx_mic));
304 memcpy(key_entry.rx_mic, crypto->rx_mic,
305 sizeof(key_entry.rx_mic));
307 reg = SHARED_KEY_ENTRY(key->hw_key_idx);
308 rt2x00usb_register_multiwrite(rt2x00dev, reg,
309 &key_entry, sizeof(key_entry));
312 * The cipher types are stored over 2 registers.
313 * bssidx 0 and 1 keys are stored in SEC_CSR1 and
314 * bssidx 1 and 2 keys are stored in SEC_CSR5.
315 * Using the correct defines correctly will cause overhead,
316 * so just calculate the correct offset.
318 if (key->hw_key_idx < 8) {
319 field.bit_offset = (3 * key->hw_key_idx);
320 field.bit_mask = 0x7 << field.bit_offset;
322 rt2x00usb_register_read(rt2x00dev, SEC_CSR1, &reg);
323 rt2x00_set_field32(&reg, field, crypto->cipher);
324 rt2x00usb_register_write(rt2x00dev, SEC_CSR1, reg);
325 } else {
326 field.bit_offset = (3 * (key->hw_key_idx - 8));
327 field.bit_mask = 0x7 << field.bit_offset;
329 rt2x00usb_register_read(rt2x00dev, SEC_CSR5, &reg);
330 rt2x00_set_field32(&reg, field, crypto->cipher);
331 rt2x00usb_register_write(rt2x00dev, SEC_CSR5, reg);
335 * The driver does not support the IV/EIV generation
336 * in hardware. However it doesn't support the IV/EIV
337 * inside the ieee80211 frame either, but requires it
338 * to be provided separately for the descriptor.
339 * rt2x00lib will cut the IV/EIV data out of all frames
340 * given to us by mac80211, but we must tell mac80211
341 * to generate the IV/EIV data.
343 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
347 * SEC_CSR0 contains only single-bit fields to indicate
348 * a particular key is valid. Because using the FIELD32()
349 * defines directly will cause a lot of overhead we use
350 * a calculation to determine the correct bit directly.
352 mask = 1 << key->hw_key_idx;
354 rt2x00usb_register_read(rt2x00dev, SEC_CSR0, &reg);
355 if (crypto->cmd == SET_KEY)
356 reg |= mask;
357 else if (crypto->cmd == DISABLE_KEY)
358 reg &= ~mask;
359 rt2x00usb_register_write(rt2x00dev, SEC_CSR0, reg);
361 return 0;
364 static int rt73usb_config_pairwise_key(struct rt2x00_dev *rt2x00dev,
365 struct rt2x00lib_crypto *crypto,
366 struct ieee80211_key_conf *key)
368 struct hw_pairwise_ta_entry addr_entry;
369 struct hw_key_entry key_entry;
370 u32 mask;
371 u32 reg;
373 if (crypto->cmd == SET_KEY) {
375 * rt2x00lib can't determine the correct free
376 * key_idx for pairwise keys. We have 2 registers
377 * with key valid bits. The goal is simple, read
378 * the first register, if that is full move to
379 * the next register.
380 * When both registers are full, we drop the key,
381 * otherwise we use the first invalid entry.
383 rt2x00usb_register_read(rt2x00dev, SEC_CSR2, &reg);
384 if (reg && reg == ~0) {
385 key->hw_key_idx = 32;
386 rt2x00usb_register_read(rt2x00dev, SEC_CSR3, &reg);
387 if (reg && reg == ~0)
388 return -ENOSPC;
391 key->hw_key_idx += reg ? ffz(reg) : 0;
394 * Upload key to hardware
396 memcpy(key_entry.key, crypto->key,
397 sizeof(key_entry.key));
398 memcpy(key_entry.tx_mic, crypto->tx_mic,
399 sizeof(key_entry.tx_mic));
400 memcpy(key_entry.rx_mic, crypto->rx_mic,
401 sizeof(key_entry.rx_mic));
403 reg = PAIRWISE_KEY_ENTRY(key->hw_key_idx);
404 rt2x00usb_register_multiwrite(rt2x00dev, reg,
405 &key_entry, sizeof(key_entry));
408 * Send the address and cipher type to the hardware register.
410 memset(&addr_entry, 0, sizeof(addr_entry));
411 memcpy(&addr_entry, crypto->address, ETH_ALEN);
412 addr_entry.cipher = crypto->cipher;
414 reg = PAIRWISE_TA_ENTRY(key->hw_key_idx);
415 rt2x00usb_register_multiwrite(rt2x00dev, reg,
416 &addr_entry, sizeof(addr_entry));
419 * Enable pairwise lookup table for given BSS idx,
420 * without this received frames will not be decrypted
421 * by the hardware.
423 rt2x00usb_register_read(rt2x00dev, SEC_CSR4, &reg);
424 reg |= (1 << crypto->bssidx);
425 rt2x00usb_register_write(rt2x00dev, SEC_CSR4, reg);
428 * The driver does not support the IV/EIV generation
429 * in hardware. However it doesn't support the IV/EIV
430 * inside the ieee80211 frame either, but requires it
431 * to be provided separately for the descriptor.
432 * rt2x00lib will cut the IV/EIV data out of all frames
433 * given to us by mac80211, but we must tell mac80211
434 * to generate the IV/EIV data.
436 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
440 * SEC_CSR2 and SEC_CSR3 contain only single-bit fields to indicate
441 * a particular key is valid. Because using the FIELD32()
442 * defines directly will cause a lot of overhead we use
443 * a calculation to determine the correct bit directly.
445 if (key->hw_key_idx < 32) {
446 mask = 1 << key->hw_key_idx;
448 rt2x00usb_register_read(rt2x00dev, SEC_CSR2, &reg);
449 if (crypto->cmd == SET_KEY)
450 reg |= mask;
451 else if (crypto->cmd == DISABLE_KEY)
452 reg &= ~mask;
453 rt2x00usb_register_write(rt2x00dev, SEC_CSR2, reg);
454 } else {
455 mask = 1 << (key->hw_key_idx - 32);
457 rt2x00usb_register_read(rt2x00dev, SEC_CSR3, &reg);
458 if (crypto->cmd == SET_KEY)
459 reg |= mask;
460 else if (crypto->cmd == DISABLE_KEY)
461 reg &= ~mask;
462 rt2x00usb_register_write(rt2x00dev, SEC_CSR3, reg);
465 return 0;
468 static void rt73usb_config_filter(struct rt2x00_dev *rt2x00dev,
469 const unsigned int filter_flags)
471 u32 reg;
474 * Start configuration steps.
475 * Note that the version error will always be dropped
476 * and broadcast frames will always be accepted since
477 * there is no filter for it at this time.
479 rt2x00usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
480 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CRC,
481 !(filter_flags & FIF_FCSFAIL));
482 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_PHYSICAL,
483 !(filter_flags & FIF_PLCPFAIL));
484 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CONTROL,
485 !(filter_flags & (FIF_CONTROL | FIF_PSPOLL)));
486 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_NOT_TO_ME,
487 !(filter_flags & FIF_PROMISC_IN_BSS));
488 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_TO_DS,
489 !(filter_flags & FIF_PROMISC_IN_BSS) &&
490 !rt2x00dev->intf_ap_count);
491 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_VERSION_ERROR, 1);
492 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_MULTICAST,
493 !(filter_flags & FIF_ALLMULTI));
494 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_BROADCAST, 0);
495 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_ACK_CTS,
496 !(filter_flags & FIF_CONTROL));
497 rt2x00usb_register_write(rt2x00dev, TXRX_CSR0, reg);
500 static void rt73usb_config_intf(struct rt2x00_dev *rt2x00dev,
501 struct rt2x00_intf *intf,
502 struct rt2x00intf_conf *conf,
503 const unsigned int flags)
505 unsigned int beacon_base;
506 u32 reg;
508 if (flags & CONFIG_UPDATE_TYPE) {
510 * Clear current synchronisation setup.
511 * For the Beacon base registers we only need to clear
512 * the first byte since that byte contains the VALID and OWNER
513 * bits which (when set to 0) will invalidate the entire beacon.
515 beacon_base = HW_BEACON_OFFSET(intf->beacon->entry_idx);
516 rt2x00usb_register_write(rt2x00dev, beacon_base, 0);
519 * Enable synchronisation.
521 rt2x00usb_register_read(rt2x00dev, TXRX_CSR9, &reg);
522 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 1);
523 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, conf->sync);
524 rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 1);
525 rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg);
528 if (flags & CONFIG_UPDATE_MAC) {
529 reg = le32_to_cpu(conf->mac[1]);
530 rt2x00_set_field32(&reg, MAC_CSR3_UNICAST_TO_ME_MASK, 0xff);
531 conf->mac[1] = cpu_to_le32(reg);
533 rt2x00usb_register_multiwrite(rt2x00dev, MAC_CSR2,
534 conf->mac, sizeof(conf->mac));
537 if (flags & CONFIG_UPDATE_BSSID) {
538 reg = le32_to_cpu(conf->bssid[1]);
539 rt2x00_set_field32(&reg, MAC_CSR5_BSS_ID_MASK, 3);
540 conf->bssid[1] = cpu_to_le32(reg);
542 rt2x00usb_register_multiwrite(rt2x00dev, MAC_CSR4,
543 conf->bssid, sizeof(conf->bssid));
547 static void rt73usb_config_erp(struct rt2x00_dev *rt2x00dev,
548 struct rt2x00lib_erp *erp,
549 u32 changed)
551 u32 reg;
553 rt2x00usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
554 rt2x00_set_field32(&reg, TXRX_CSR0_RX_ACK_TIMEOUT, 0x32);
555 rt2x00_set_field32(&reg, TXRX_CSR0_TSF_OFFSET, IEEE80211_HEADER);
556 rt2x00usb_register_write(rt2x00dev, TXRX_CSR0, reg);
558 if (changed & BSS_CHANGED_ERP_PREAMBLE) {
559 rt2x00usb_register_read(rt2x00dev, TXRX_CSR4, &reg);
560 rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_ENABLE, 1);
561 rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_PREAMBLE,
562 !!erp->short_preamble);
563 rt2x00usb_register_write(rt2x00dev, TXRX_CSR4, reg);
566 if (changed & BSS_CHANGED_BASIC_RATES)
567 rt2x00usb_register_write(rt2x00dev, TXRX_CSR5,
568 erp->basic_rates);
570 if (changed & BSS_CHANGED_BEACON_INT) {
571 rt2x00usb_register_read(rt2x00dev, TXRX_CSR9, &reg);
572 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_INTERVAL,
573 erp->beacon_int * 16);
574 rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg);
577 if (changed & BSS_CHANGED_ERP_SLOT) {
578 rt2x00usb_register_read(rt2x00dev, MAC_CSR9, &reg);
579 rt2x00_set_field32(&reg, MAC_CSR9_SLOT_TIME, erp->slot_time);
580 rt2x00usb_register_write(rt2x00dev, MAC_CSR9, reg);
582 rt2x00usb_register_read(rt2x00dev, MAC_CSR8, &reg);
583 rt2x00_set_field32(&reg, MAC_CSR8_SIFS, erp->sifs);
584 rt2x00_set_field32(&reg, MAC_CSR8_SIFS_AFTER_RX_OFDM, 3);
585 rt2x00_set_field32(&reg, MAC_CSR8_EIFS, erp->eifs);
586 rt2x00usb_register_write(rt2x00dev, MAC_CSR8, reg);
590 static void rt73usb_config_antenna_5x(struct rt2x00_dev *rt2x00dev,
591 struct antenna_setup *ant)
593 u8 r3;
594 u8 r4;
595 u8 r77;
596 u8 temp;
598 rt73usb_bbp_read(rt2x00dev, 3, &r3);
599 rt73usb_bbp_read(rt2x00dev, 4, &r4);
600 rt73usb_bbp_read(rt2x00dev, 77, &r77);
602 rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, 0);
605 * Configure the RX antenna.
607 switch (ant->rx) {
608 case ANTENNA_HW_DIVERSITY:
609 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
610 temp = !test_bit(CONFIG_FRAME_TYPE, &rt2x00dev->flags)
611 && (rt2x00dev->curr_band != IEEE80211_BAND_5GHZ);
612 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, temp);
613 break;
614 case ANTENNA_A:
615 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
616 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
617 if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ)
618 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
619 else
620 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
621 break;
622 case ANTENNA_B:
623 default:
624 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
625 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
626 if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ)
627 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
628 else
629 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
630 break;
633 rt73usb_bbp_write(rt2x00dev, 77, r77);
634 rt73usb_bbp_write(rt2x00dev, 3, r3);
635 rt73usb_bbp_write(rt2x00dev, 4, r4);
638 static void rt73usb_config_antenna_2x(struct rt2x00_dev *rt2x00dev,
639 struct antenna_setup *ant)
641 u8 r3;
642 u8 r4;
643 u8 r77;
645 rt73usb_bbp_read(rt2x00dev, 3, &r3);
646 rt73usb_bbp_read(rt2x00dev, 4, &r4);
647 rt73usb_bbp_read(rt2x00dev, 77, &r77);
649 rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, 0);
650 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
651 !test_bit(CONFIG_FRAME_TYPE, &rt2x00dev->flags));
654 * Configure the RX antenna.
656 switch (ant->rx) {
657 case ANTENNA_HW_DIVERSITY:
658 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
659 break;
660 case ANTENNA_A:
661 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
662 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
663 break;
664 case ANTENNA_B:
665 default:
666 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
667 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
668 break;
671 rt73usb_bbp_write(rt2x00dev, 77, r77);
672 rt73usb_bbp_write(rt2x00dev, 3, r3);
673 rt73usb_bbp_write(rt2x00dev, 4, r4);
676 struct antenna_sel {
677 u8 word;
679 * value[0] -> non-LNA
680 * value[1] -> LNA
682 u8 value[2];
685 static const struct antenna_sel antenna_sel_a[] = {
686 { 96, { 0x58, 0x78 } },
687 { 104, { 0x38, 0x48 } },
688 { 75, { 0xfe, 0x80 } },
689 { 86, { 0xfe, 0x80 } },
690 { 88, { 0xfe, 0x80 } },
691 { 35, { 0x60, 0x60 } },
692 { 97, { 0x58, 0x58 } },
693 { 98, { 0x58, 0x58 } },
696 static const struct antenna_sel antenna_sel_bg[] = {
697 { 96, { 0x48, 0x68 } },
698 { 104, { 0x2c, 0x3c } },
699 { 75, { 0xfe, 0x80 } },
700 { 86, { 0xfe, 0x80 } },
701 { 88, { 0xfe, 0x80 } },
702 { 35, { 0x50, 0x50 } },
703 { 97, { 0x48, 0x48 } },
704 { 98, { 0x48, 0x48 } },
707 static void rt73usb_config_ant(struct rt2x00_dev *rt2x00dev,
708 struct antenna_setup *ant)
710 const struct antenna_sel *sel;
711 unsigned int lna;
712 unsigned int i;
713 u32 reg;
716 * We should never come here because rt2x00lib is supposed
717 * to catch this and send us the correct antenna explicitely.
719 BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
720 ant->tx == ANTENNA_SW_DIVERSITY);
722 if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) {
723 sel = antenna_sel_a;
724 lna = test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags);
725 } else {
726 sel = antenna_sel_bg;
727 lna = test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags);
730 for (i = 0; i < ARRAY_SIZE(antenna_sel_a); i++)
731 rt73usb_bbp_write(rt2x00dev, sel[i].word, sel[i].value[lna]);
733 rt2x00usb_register_read(rt2x00dev, PHY_CSR0, &reg);
735 rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_BG,
736 (rt2x00dev->curr_band == IEEE80211_BAND_2GHZ));
737 rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_A,
738 (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ));
740 rt2x00usb_register_write(rt2x00dev, PHY_CSR0, reg);
742 if (rt2x00_rf(rt2x00dev, RF5226) || rt2x00_rf(rt2x00dev, RF5225))
743 rt73usb_config_antenna_5x(rt2x00dev, ant);
744 else if (rt2x00_rf(rt2x00dev, RF2528) || rt2x00_rf(rt2x00dev, RF2527))
745 rt73usb_config_antenna_2x(rt2x00dev, ant);
748 static void rt73usb_config_lna_gain(struct rt2x00_dev *rt2x00dev,
749 struct rt2x00lib_conf *libconf)
751 u16 eeprom;
752 short lna_gain = 0;
754 if (libconf->conf->channel->band == IEEE80211_BAND_2GHZ) {
755 if (test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags))
756 lna_gain += 14;
758 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &eeprom);
759 lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_BG_1);
760 } else {
761 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &eeprom);
762 lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_A_1);
765 rt2x00dev->lna_gain = lna_gain;
768 static void rt73usb_config_channel(struct rt2x00_dev *rt2x00dev,
769 struct rf_channel *rf, const int txpower)
771 u8 r3;
772 u8 r94;
773 u8 smart;
775 rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
776 rt2x00_set_field32(&rf->rf4, RF4_FREQ_OFFSET, rt2x00dev->freq_offset);
778 smart = !(rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF2527));
780 rt73usb_bbp_read(rt2x00dev, 3, &r3);
781 rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, smart);
782 rt73usb_bbp_write(rt2x00dev, 3, r3);
784 r94 = 6;
785 if (txpower > MAX_TXPOWER && txpower <= (MAX_TXPOWER + r94))
786 r94 += txpower - MAX_TXPOWER;
787 else if (txpower < MIN_TXPOWER && txpower >= (MIN_TXPOWER - r94))
788 r94 += txpower;
789 rt73usb_bbp_write(rt2x00dev, 94, r94);
791 rt73usb_rf_write(rt2x00dev, 1, rf->rf1);
792 rt73usb_rf_write(rt2x00dev, 2, rf->rf2);
793 rt73usb_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
794 rt73usb_rf_write(rt2x00dev, 4, rf->rf4);
796 rt73usb_rf_write(rt2x00dev, 1, rf->rf1);
797 rt73usb_rf_write(rt2x00dev, 2, rf->rf2);
798 rt73usb_rf_write(rt2x00dev, 3, rf->rf3 | 0x00000004);
799 rt73usb_rf_write(rt2x00dev, 4, rf->rf4);
801 rt73usb_rf_write(rt2x00dev, 1, rf->rf1);
802 rt73usb_rf_write(rt2x00dev, 2, rf->rf2);
803 rt73usb_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
804 rt73usb_rf_write(rt2x00dev, 4, rf->rf4);
806 udelay(10);
809 static void rt73usb_config_txpower(struct rt2x00_dev *rt2x00dev,
810 const int txpower)
812 struct rf_channel rf;
814 rt2x00_rf_read(rt2x00dev, 1, &rf.rf1);
815 rt2x00_rf_read(rt2x00dev, 2, &rf.rf2);
816 rt2x00_rf_read(rt2x00dev, 3, &rf.rf3);
817 rt2x00_rf_read(rt2x00dev, 4, &rf.rf4);
819 rt73usb_config_channel(rt2x00dev, &rf, txpower);
822 static void rt73usb_config_retry_limit(struct rt2x00_dev *rt2x00dev,
823 struct rt2x00lib_conf *libconf)
825 u32 reg;
827 rt2x00usb_register_read(rt2x00dev, TXRX_CSR4, &reg);
828 rt2x00_set_field32(&reg, TXRX_CSR4_OFDM_TX_RATE_DOWN, 1);
829 rt2x00_set_field32(&reg, TXRX_CSR4_OFDM_TX_RATE_STEP, 0);
830 rt2x00_set_field32(&reg, TXRX_CSR4_OFDM_TX_FALLBACK_CCK, 0);
831 rt2x00_set_field32(&reg, TXRX_CSR4_LONG_RETRY_LIMIT,
832 libconf->conf->long_frame_max_tx_count);
833 rt2x00_set_field32(&reg, TXRX_CSR4_SHORT_RETRY_LIMIT,
834 libconf->conf->short_frame_max_tx_count);
835 rt2x00usb_register_write(rt2x00dev, TXRX_CSR4, reg);
838 static void rt73usb_config_ps(struct rt2x00_dev *rt2x00dev,
839 struct rt2x00lib_conf *libconf)
841 enum dev_state state =
842 (libconf->conf->flags & IEEE80211_CONF_PS) ?
843 STATE_SLEEP : STATE_AWAKE;
844 u32 reg;
846 if (state == STATE_SLEEP) {
847 rt2x00usb_register_read(rt2x00dev, MAC_CSR11, &reg);
848 rt2x00_set_field32(&reg, MAC_CSR11_DELAY_AFTER_TBCN,
849 rt2x00dev->beacon_int - 10);
850 rt2x00_set_field32(&reg, MAC_CSR11_TBCN_BEFORE_WAKEUP,
851 libconf->conf->listen_interval - 1);
852 rt2x00_set_field32(&reg, MAC_CSR11_WAKEUP_LATENCY, 5);
854 /* We must first disable autowake before it can be enabled */
855 rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 0);
856 rt2x00usb_register_write(rt2x00dev, MAC_CSR11, reg);
858 rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 1);
859 rt2x00usb_register_write(rt2x00dev, MAC_CSR11, reg);
861 rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE, 0,
862 USB_MODE_SLEEP, REGISTER_TIMEOUT);
863 } else {
864 rt2x00usb_register_read(rt2x00dev, MAC_CSR11, &reg);
865 rt2x00_set_field32(&reg, MAC_CSR11_DELAY_AFTER_TBCN, 0);
866 rt2x00_set_field32(&reg, MAC_CSR11_TBCN_BEFORE_WAKEUP, 0);
867 rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 0);
868 rt2x00_set_field32(&reg, MAC_CSR11_WAKEUP_LATENCY, 0);
869 rt2x00usb_register_write(rt2x00dev, MAC_CSR11, reg);
871 rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE, 0,
872 USB_MODE_WAKEUP, REGISTER_TIMEOUT);
876 static void rt73usb_config(struct rt2x00_dev *rt2x00dev,
877 struct rt2x00lib_conf *libconf,
878 const unsigned int flags)
880 /* Always recalculate LNA gain before changing configuration */
881 rt73usb_config_lna_gain(rt2x00dev, libconf);
883 if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
884 rt73usb_config_channel(rt2x00dev, &libconf->rf,
885 libconf->conf->power_level);
886 if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
887 !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
888 rt73usb_config_txpower(rt2x00dev, libconf->conf->power_level);
889 if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
890 rt73usb_config_retry_limit(rt2x00dev, libconf);
891 if (flags & IEEE80211_CONF_CHANGE_PS)
892 rt73usb_config_ps(rt2x00dev, libconf);
896 * Link tuning
898 static void rt73usb_link_stats(struct rt2x00_dev *rt2x00dev,
899 struct link_qual *qual)
901 u32 reg;
904 * Update FCS error count from register.
906 rt2x00usb_register_read(rt2x00dev, STA_CSR0, &reg);
907 qual->rx_failed = rt2x00_get_field32(reg, STA_CSR0_FCS_ERROR);
910 * Update False CCA count from register.
912 rt2x00usb_register_read(rt2x00dev, STA_CSR1, &reg);
913 qual->false_cca = rt2x00_get_field32(reg, STA_CSR1_FALSE_CCA_ERROR);
916 static inline void rt73usb_set_vgc(struct rt2x00_dev *rt2x00dev,
917 struct link_qual *qual, u8 vgc_level)
919 if (qual->vgc_level != vgc_level) {
920 rt73usb_bbp_write(rt2x00dev, 17, vgc_level);
921 qual->vgc_level = vgc_level;
922 qual->vgc_level_reg = vgc_level;
926 static void rt73usb_reset_tuner(struct rt2x00_dev *rt2x00dev,
927 struct link_qual *qual)
929 rt73usb_set_vgc(rt2x00dev, qual, 0x20);
932 static void rt73usb_link_tuner(struct rt2x00_dev *rt2x00dev,
933 struct link_qual *qual, const u32 count)
935 u8 up_bound;
936 u8 low_bound;
939 * Determine r17 bounds.
941 if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) {
942 low_bound = 0x28;
943 up_bound = 0x48;
945 if (test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags)) {
946 low_bound += 0x10;
947 up_bound += 0x10;
949 } else {
950 if (qual->rssi > -82) {
951 low_bound = 0x1c;
952 up_bound = 0x40;
953 } else if (qual->rssi > -84) {
954 low_bound = 0x1c;
955 up_bound = 0x20;
956 } else {
957 low_bound = 0x1c;
958 up_bound = 0x1c;
961 if (test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags)) {
962 low_bound += 0x14;
963 up_bound += 0x10;
968 * If we are not associated, we should go straight to the
969 * dynamic CCA tuning.
971 if (!rt2x00dev->intf_associated)
972 goto dynamic_cca_tune;
975 * Special big-R17 for very short distance
977 if (qual->rssi > -35) {
978 rt73usb_set_vgc(rt2x00dev, qual, 0x60);
979 return;
983 * Special big-R17 for short distance
985 if (qual->rssi >= -58) {
986 rt73usb_set_vgc(rt2x00dev, qual, up_bound);
987 return;
991 * Special big-R17 for middle-short distance
993 if (qual->rssi >= -66) {
994 rt73usb_set_vgc(rt2x00dev, qual, low_bound + 0x10);
995 return;
999 * Special mid-R17 for middle distance
1001 if (qual->rssi >= -74) {
1002 rt73usb_set_vgc(rt2x00dev, qual, low_bound + 0x08);
1003 return;
1007 * Special case: Change up_bound based on the rssi.
1008 * Lower up_bound when rssi is weaker then -74 dBm.
1010 up_bound -= 2 * (-74 - qual->rssi);
1011 if (low_bound > up_bound)
1012 up_bound = low_bound;
1014 if (qual->vgc_level > up_bound) {
1015 rt73usb_set_vgc(rt2x00dev, qual, up_bound);
1016 return;
1019 dynamic_cca_tune:
1022 * r17 does not yet exceed upper limit, continue and base
1023 * the r17 tuning on the false CCA count.
1025 if ((qual->false_cca > 512) && (qual->vgc_level < up_bound))
1026 rt73usb_set_vgc(rt2x00dev, qual,
1027 min_t(u8, qual->vgc_level + 4, up_bound));
1028 else if ((qual->false_cca < 100) && (qual->vgc_level > low_bound))
1029 rt73usb_set_vgc(rt2x00dev, qual,
1030 max_t(u8, qual->vgc_level - 4, low_bound));
1034 * Queue handlers.
1036 static void rt73usb_start_queue(struct data_queue *queue)
1038 struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
1039 u32 reg;
1041 switch (queue->qid) {
1042 case QID_RX:
1043 rt2x00usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
1044 rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 0);
1045 rt2x00usb_register_write(rt2x00dev, TXRX_CSR0, reg);
1046 break;
1047 case QID_BEACON:
1048 rt2x00usb_register_read(rt2x00dev, TXRX_CSR9, &reg);
1049 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 1);
1050 rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 1);
1051 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 1);
1052 rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg);
1053 break;
1054 default:
1055 break;
1059 static void rt73usb_stop_queue(struct data_queue *queue)
1061 struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
1062 u32 reg;
1064 switch (queue->qid) {
1065 case QID_RX:
1066 rt2x00usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
1067 rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 1);
1068 rt2x00usb_register_write(rt2x00dev, TXRX_CSR0, reg);
1069 break;
1070 case QID_BEACON:
1071 rt2x00usb_register_read(rt2x00dev, TXRX_CSR9, &reg);
1072 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 0);
1073 rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 0);
1074 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1075 rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg);
1076 break;
1077 default:
1078 break;
1083 * Firmware functions
1085 static char *rt73usb_get_firmware_name(struct rt2x00_dev *rt2x00dev)
1087 return FIRMWARE_RT2571;
1090 static int rt73usb_check_firmware(struct rt2x00_dev *rt2x00dev,
1091 const u8 *data, const size_t len)
1093 u16 fw_crc;
1094 u16 crc;
1097 * Only support 2kb firmware files.
1099 if (len != 2048)
1100 return FW_BAD_LENGTH;
1103 * The last 2 bytes in the firmware array are the crc checksum itself,
1104 * this means that we should never pass those 2 bytes to the crc
1105 * algorithm.
1107 fw_crc = (data[len - 2] << 8 | data[len - 1]);
1110 * Use the crc itu-t algorithm.
1112 crc = crc_itu_t(0, data, len - 2);
1113 crc = crc_itu_t_byte(crc, 0);
1114 crc = crc_itu_t_byte(crc, 0);
1116 return (fw_crc == crc) ? FW_OK : FW_BAD_CRC;
1119 static int rt73usb_load_firmware(struct rt2x00_dev *rt2x00dev,
1120 const u8 *data, const size_t len)
1122 unsigned int i;
1123 int status;
1124 u32 reg;
1127 * Wait for stable hardware.
1129 for (i = 0; i < 100; i++) {
1130 rt2x00usb_register_read(rt2x00dev, MAC_CSR0, &reg);
1131 if (reg)
1132 break;
1133 msleep(1);
1136 if (!reg) {
1137 ERROR(rt2x00dev, "Unstable hardware.\n");
1138 return -EBUSY;
1142 * Write firmware to device.
1144 rt2x00usb_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE, data, len);
1147 * Send firmware request to device to load firmware,
1148 * we need to specify a long timeout time.
1150 status = rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE,
1151 0, USB_MODE_FIRMWARE,
1152 REGISTER_TIMEOUT_FIRMWARE);
1153 if (status < 0) {
1154 ERROR(rt2x00dev, "Failed to write Firmware to device.\n");
1155 return status;
1158 return 0;
1162 * Initialization functions.
1164 static int rt73usb_init_registers(struct rt2x00_dev *rt2x00dev)
1166 u32 reg;
1168 rt2x00usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
1169 rt2x00_set_field32(&reg, TXRX_CSR0_AUTO_TX_SEQ, 1);
1170 rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 0);
1171 rt2x00_set_field32(&reg, TXRX_CSR0_TX_WITHOUT_WAITING, 0);
1172 rt2x00usb_register_write(rt2x00dev, TXRX_CSR0, reg);
1174 rt2x00usb_register_read(rt2x00dev, TXRX_CSR1, &reg);
1175 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0, 47); /* CCK Signal */
1176 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0_VALID, 1);
1177 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1, 30); /* Rssi */
1178 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1_VALID, 1);
1179 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2, 42); /* OFDM Rate */
1180 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2_VALID, 1);
1181 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3, 30); /* Rssi */
1182 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3_VALID, 1);
1183 rt2x00usb_register_write(rt2x00dev, TXRX_CSR1, reg);
1186 * CCK TXD BBP registers
1188 rt2x00usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
1189 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0, 13);
1190 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0_VALID, 1);
1191 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1, 12);
1192 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1_VALID, 1);
1193 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2, 11);
1194 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2_VALID, 1);
1195 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3, 10);
1196 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3_VALID, 1);
1197 rt2x00usb_register_write(rt2x00dev, TXRX_CSR2, reg);
1200 * OFDM TXD BBP registers
1202 rt2x00usb_register_read(rt2x00dev, TXRX_CSR3, &reg);
1203 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0, 7);
1204 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0_VALID, 1);
1205 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1, 6);
1206 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1_VALID, 1);
1207 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2, 5);
1208 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2_VALID, 1);
1209 rt2x00usb_register_write(rt2x00dev, TXRX_CSR3, reg);
1211 rt2x00usb_register_read(rt2x00dev, TXRX_CSR7, &reg);
1212 rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_6MBS, 59);
1213 rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_9MBS, 53);
1214 rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_12MBS, 49);
1215 rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_18MBS, 46);
1216 rt2x00usb_register_write(rt2x00dev, TXRX_CSR7, reg);
1218 rt2x00usb_register_read(rt2x00dev, TXRX_CSR8, &reg);
1219 rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_24MBS, 44);
1220 rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_36MBS, 42);
1221 rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_48MBS, 42);
1222 rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_54MBS, 42);
1223 rt2x00usb_register_write(rt2x00dev, TXRX_CSR8, reg);
1225 rt2x00usb_register_read(rt2x00dev, TXRX_CSR9, &reg);
1226 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_INTERVAL, 0);
1227 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 0);
1228 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, 0);
1229 rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 0);
1230 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1231 rt2x00_set_field32(&reg, TXRX_CSR9_TIMESTAMP_COMPENSATE, 0);
1232 rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg);
1234 rt2x00usb_register_write(rt2x00dev, TXRX_CSR15, 0x0000000f);
1236 rt2x00usb_register_read(rt2x00dev, MAC_CSR6, &reg);
1237 rt2x00_set_field32(&reg, MAC_CSR6_MAX_FRAME_UNIT, 0xfff);
1238 rt2x00usb_register_write(rt2x00dev, MAC_CSR6, reg);
1240 rt2x00usb_register_write(rt2x00dev, MAC_CSR10, 0x00000718);
1242 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
1243 return -EBUSY;
1245 rt2x00usb_register_write(rt2x00dev, MAC_CSR13, 0x00007f00);
1248 * Invalidate all Shared Keys (SEC_CSR0),
1249 * and clear the Shared key Cipher algorithms (SEC_CSR1 & SEC_CSR5)
1251 rt2x00usb_register_write(rt2x00dev, SEC_CSR0, 0x00000000);
1252 rt2x00usb_register_write(rt2x00dev, SEC_CSR1, 0x00000000);
1253 rt2x00usb_register_write(rt2x00dev, SEC_CSR5, 0x00000000);
1255 reg = 0x000023b0;
1256 if (rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF2527))
1257 rt2x00_set_field32(&reg, PHY_CSR1_RF_RPI, 1);
1258 rt2x00usb_register_write(rt2x00dev, PHY_CSR1, reg);
1260 rt2x00usb_register_write(rt2x00dev, PHY_CSR5, 0x00040a06);
1261 rt2x00usb_register_write(rt2x00dev, PHY_CSR6, 0x00080606);
1262 rt2x00usb_register_write(rt2x00dev, PHY_CSR7, 0x00000408);
1264 rt2x00usb_register_read(rt2x00dev, MAC_CSR9, &reg);
1265 rt2x00_set_field32(&reg, MAC_CSR9_CW_SELECT, 0);
1266 rt2x00usb_register_write(rt2x00dev, MAC_CSR9, reg);
1269 * Clear all beacons
1270 * For the Beacon base registers we only need to clear
1271 * the first byte since that byte contains the VALID and OWNER
1272 * bits which (when set to 0) will invalidate the entire beacon.
1274 rt2x00usb_register_write(rt2x00dev, HW_BEACON_BASE0, 0);
1275 rt2x00usb_register_write(rt2x00dev, HW_BEACON_BASE1, 0);
1276 rt2x00usb_register_write(rt2x00dev, HW_BEACON_BASE2, 0);
1277 rt2x00usb_register_write(rt2x00dev, HW_BEACON_BASE3, 0);
1280 * We must clear the error counters.
1281 * These registers are cleared on read,
1282 * so we may pass a useless variable to store the value.
1284 rt2x00usb_register_read(rt2x00dev, STA_CSR0, &reg);
1285 rt2x00usb_register_read(rt2x00dev, STA_CSR1, &reg);
1286 rt2x00usb_register_read(rt2x00dev, STA_CSR2, &reg);
1289 * Reset MAC and BBP registers.
1291 rt2x00usb_register_read(rt2x00dev, MAC_CSR1, &reg);
1292 rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 1);
1293 rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 1);
1294 rt2x00usb_register_write(rt2x00dev, MAC_CSR1, reg);
1296 rt2x00usb_register_read(rt2x00dev, MAC_CSR1, &reg);
1297 rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 0);
1298 rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 0);
1299 rt2x00usb_register_write(rt2x00dev, MAC_CSR1, reg);
1301 rt2x00usb_register_read(rt2x00dev, MAC_CSR1, &reg);
1302 rt2x00_set_field32(&reg, MAC_CSR1_HOST_READY, 1);
1303 rt2x00usb_register_write(rt2x00dev, MAC_CSR1, reg);
1305 return 0;
1308 static int rt73usb_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
1310 unsigned int i;
1311 u8 value;
1313 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1314 rt73usb_bbp_read(rt2x00dev, 0, &value);
1315 if ((value != 0xff) && (value != 0x00))
1316 return 0;
1317 udelay(REGISTER_BUSY_DELAY);
1320 ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
1321 return -EACCES;
1324 static int rt73usb_init_bbp(struct rt2x00_dev *rt2x00dev)
1326 unsigned int i;
1327 u16 eeprom;
1328 u8 reg_id;
1329 u8 value;
1331 if (unlikely(rt73usb_wait_bbp_ready(rt2x00dev)))
1332 return -EACCES;
1334 rt73usb_bbp_write(rt2x00dev, 3, 0x80);
1335 rt73usb_bbp_write(rt2x00dev, 15, 0x30);
1336 rt73usb_bbp_write(rt2x00dev, 21, 0xc8);
1337 rt73usb_bbp_write(rt2x00dev, 22, 0x38);
1338 rt73usb_bbp_write(rt2x00dev, 23, 0x06);
1339 rt73usb_bbp_write(rt2x00dev, 24, 0xfe);
1340 rt73usb_bbp_write(rt2x00dev, 25, 0x0a);
1341 rt73usb_bbp_write(rt2x00dev, 26, 0x0d);
1342 rt73usb_bbp_write(rt2x00dev, 32, 0x0b);
1343 rt73usb_bbp_write(rt2x00dev, 34, 0x12);
1344 rt73usb_bbp_write(rt2x00dev, 37, 0x07);
1345 rt73usb_bbp_write(rt2x00dev, 39, 0xf8);
1346 rt73usb_bbp_write(rt2x00dev, 41, 0x60);
1347 rt73usb_bbp_write(rt2x00dev, 53, 0x10);
1348 rt73usb_bbp_write(rt2x00dev, 54, 0x18);
1349 rt73usb_bbp_write(rt2x00dev, 60, 0x10);
1350 rt73usb_bbp_write(rt2x00dev, 61, 0x04);
1351 rt73usb_bbp_write(rt2x00dev, 62, 0x04);
1352 rt73usb_bbp_write(rt2x00dev, 75, 0xfe);
1353 rt73usb_bbp_write(rt2x00dev, 86, 0xfe);
1354 rt73usb_bbp_write(rt2x00dev, 88, 0xfe);
1355 rt73usb_bbp_write(rt2x00dev, 90, 0x0f);
1356 rt73usb_bbp_write(rt2x00dev, 99, 0x00);
1357 rt73usb_bbp_write(rt2x00dev, 102, 0x16);
1358 rt73usb_bbp_write(rt2x00dev, 107, 0x04);
1360 for (i = 0; i < EEPROM_BBP_SIZE; i++) {
1361 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
1363 if (eeprom != 0xffff && eeprom != 0x0000) {
1364 reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
1365 value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
1366 rt73usb_bbp_write(rt2x00dev, reg_id, value);
1370 return 0;
1374 * Device state switch handlers.
1376 static int rt73usb_enable_radio(struct rt2x00_dev *rt2x00dev)
1379 * Initialize all registers.
1381 if (unlikely(rt73usb_init_registers(rt2x00dev) ||
1382 rt73usb_init_bbp(rt2x00dev)))
1383 return -EIO;
1385 return 0;
1388 static void rt73usb_disable_radio(struct rt2x00_dev *rt2x00dev)
1390 rt2x00usb_register_write(rt2x00dev, MAC_CSR10, 0x00001818);
1393 * Disable synchronisation.
1395 rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, 0);
1397 rt2x00usb_disable_radio(rt2x00dev);
1400 static int rt73usb_set_state(struct rt2x00_dev *rt2x00dev, enum dev_state state)
1402 u32 reg, reg2;
1403 unsigned int i;
1404 char put_to_sleep;
1406 put_to_sleep = (state != STATE_AWAKE);
1408 rt2x00usb_register_read(rt2x00dev, MAC_CSR12, &reg);
1409 rt2x00_set_field32(&reg, MAC_CSR12_FORCE_WAKEUP, !put_to_sleep);
1410 rt2x00_set_field32(&reg, MAC_CSR12_PUT_TO_SLEEP, put_to_sleep);
1411 rt2x00usb_register_write(rt2x00dev, MAC_CSR12, reg);
1414 * Device is not guaranteed to be in the requested state yet.
1415 * We must wait until the register indicates that the
1416 * device has entered the correct state.
1418 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1419 rt2x00usb_register_read(rt2x00dev, MAC_CSR12, &reg2);
1420 state = rt2x00_get_field32(reg2, MAC_CSR12_BBP_CURRENT_STATE);
1421 if (state == !put_to_sleep)
1422 return 0;
1423 rt2x00usb_register_write(rt2x00dev, MAC_CSR12, reg);
1424 msleep(10);
1427 return -EBUSY;
1430 static int rt73usb_set_device_state(struct rt2x00_dev *rt2x00dev,
1431 enum dev_state state)
1433 int retval = 0;
1435 switch (state) {
1436 case STATE_RADIO_ON:
1437 retval = rt73usb_enable_radio(rt2x00dev);
1438 break;
1439 case STATE_RADIO_OFF:
1440 rt73usb_disable_radio(rt2x00dev);
1441 break;
1442 case STATE_RADIO_IRQ_ON:
1443 case STATE_RADIO_IRQ_ON_ISR:
1444 case STATE_RADIO_IRQ_OFF:
1445 case STATE_RADIO_IRQ_OFF_ISR:
1446 /* No support, but no error either */
1447 break;
1448 case STATE_DEEP_SLEEP:
1449 case STATE_SLEEP:
1450 case STATE_STANDBY:
1451 case STATE_AWAKE:
1452 retval = rt73usb_set_state(rt2x00dev, state);
1453 break;
1454 default:
1455 retval = -ENOTSUPP;
1456 break;
1459 if (unlikely(retval))
1460 ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
1461 state, retval);
1463 return retval;
1467 * TX descriptor initialization
1469 static void rt73usb_write_tx_desc(struct queue_entry *entry,
1470 struct txentry_desc *txdesc)
1472 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1473 __le32 *txd = (__le32 *) entry->skb->data;
1474 u32 word;
1477 * Start writing the descriptor words.
1479 rt2x00_desc_read(txd, 0, &word);
1480 rt2x00_set_field32(&word, TXD_W0_BURST,
1481 test_bit(ENTRY_TXD_BURST, &txdesc->flags));
1482 rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1483 rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1484 test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1485 rt2x00_set_field32(&word, TXD_W0_ACK,
1486 test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1487 rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1488 test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1489 rt2x00_set_field32(&word, TXD_W0_OFDM,
1490 (txdesc->rate_mode == RATE_MODE_OFDM));
1491 rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->ifs);
1492 rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1493 test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
1494 rt2x00_set_field32(&word, TXD_W0_TKIP_MIC,
1495 test_bit(ENTRY_TXD_ENCRYPT_MMIC, &txdesc->flags));
1496 rt2x00_set_field32(&word, TXD_W0_KEY_TABLE,
1497 test_bit(ENTRY_TXD_ENCRYPT_PAIRWISE, &txdesc->flags));
1498 rt2x00_set_field32(&word, TXD_W0_KEY_INDEX, txdesc->key_idx);
1499 rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, txdesc->length);
1500 rt2x00_set_field32(&word, TXD_W0_BURST2,
1501 test_bit(ENTRY_TXD_BURST, &txdesc->flags));
1502 rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, txdesc->cipher);
1503 rt2x00_desc_write(txd, 0, word);
1505 rt2x00_desc_read(txd, 1, &word);
1506 rt2x00_set_field32(&word, TXD_W1_HOST_Q_ID, entry->queue->qid);
1507 rt2x00_set_field32(&word, TXD_W1_AIFSN, entry->queue->aifs);
1508 rt2x00_set_field32(&word, TXD_W1_CWMIN, entry->queue->cw_min);
1509 rt2x00_set_field32(&word, TXD_W1_CWMAX, entry->queue->cw_max);
1510 rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, txdesc->iv_offset);
1511 rt2x00_set_field32(&word, TXD_W1_HW_SEQUENCE,
1512 test_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags));
1513 rt2x00_desc_write(txd, 1, word);
1515 rt2x00_desc_read(txd, 2, &word);
1516 rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->signal);
1517 rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->service);
1518 rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW, txdesc->length_low);
1519 rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH, txdesc->length_high);
1520 rt2x00_desc_write(txd, 2, word);
1522 if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags)) {
1523 _rt2x00_desc_write(txd, 3, skbdesc->iv[0]);
1524 _rt2x00_desc_write(txd, 4, skbdesc->iv[1]);
1527 rt2x00_desc_read(txd, 5, &word);
1528 rt2x00_set_field32(&word, TXD_W5_TX_POWER,
1529 TXPOWER_TO_DEV(entry->queue->rt2x00dev->tx_power));
1530 rt2x00_set_field32(&word, TXD_W5_WAITING_DMA_DONE_INT, 1);
1531 rt2x00_desc_write(txd, 5, word);
1534 * Register descriptor details in skb frame descriptor.
1536 skbdesc->flags |= SKBDESC_DESC_IN_SKB;
1537 skbdesc->desc = txd;
1538 skbdesc->desc_len = TXD_DESC_SIZE;
1542 * TX data initialization
1544 static void rt73usb_write_beacon(struct queue_entry *entry,
1545 struct txentry_desc *txdesc)
1547 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1548 unsigned int beacon_base;
1549 unsigned int padding_len;
1550 u32 reg;
1553 * Disable beaconing while we are reloading the beacon data,
1554 * otherwise we might be sending out invalid data.
1556 rt2x00usb_register_read(rt2x00dev, TXRX_CSR9, &reg);
1557 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1558 rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg);
1561 * Add space for the descriptor in front of the skb.
1563 skb_push(entry->skb, TXD_DESC_SIZE);
1564 memset(entry->skb->data, 0, TXD_DESC_SIZE);
1567 * Write the TX descriptor for the beacon.
1569 rt73usb_write_tx_desc(entry, txdesc);
1572 * Dump beacon to userspace through debugfs.
1574 rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry->skb);
1577 * Write entire beacon with descriptor and padding to register.
1579 padding_len = roundup(entry->skb->len, 4) - entry->skb->len;
1580 skb_pad(entry->skb, padding_len);
1581 beacon_base = HW_BEACON_OFFSET(entry->entry_idx);
1582 rt2x00usb_register_multiwrite(rt2x00dev, beacon_base, entry->skb->data,
1583 entry->skb->len + padding_len);
1586 * Enable beaconing again.
1588 * For Wi-Fi faily generated beacons between participating stations.
1589 * Set TBTT phase adaptive adjustment step to 8us (default 16us)
1591 rt2x00usb_register_write(rt2x00dev, TXRX_CSR10, 0x00001008);
1593 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 1);
1594 rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 1);
1595 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 1);
1596 rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg);
1599 * Clean up the beacon skb.
1601 dev_kfree_skb(entry->skb);
1602 entry->skb = NULL;
1605 static int rt73usb_get_tx_data_len(struct queue_entry *entry)
1607 int length;
1610 * The length _must_ be a multiple of 4,
1611 * but it must _not_ be a multiple of the USB packet size.
1613 length = roundup(entry->skb->len, 4);
1614 length += (4 * !(length % entry->queue->usb_maxpacket));
1616 return length;
1620 * RX control handlers
1622 static int rt73usb_agc_to_rssi(struct rt2x00_dev *rt2x00dev, int rxd_w1)
1624 u8 offset = rt2x00dev->lna_gain;
1625 u8 lna;
1627 lna = rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_LNA);
1628 switch (lna) {
1629 case 3:
1630 offset += 90;
1631 break;
1632 case 2:
1633 offset += 74;
1634 break;
1635 case 1:
1636 offset += 64;
1637 break;
1638 default:
1639 return 0;
1642 if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) {
1643 if (test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags)) {
1644 if (lna == 3 || lna == 2)
1645 offset += 10;
1646 } else {
1647 if (lna == 3)
1648 offset += 6;
1649 else if (lna == 2)
1650 offset += 8;
1654 return rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_AGC) * 2 - offset;
1657 static void rt73usb_fill_rxdone(struct queue_entry *entry,
1658 struct rxdone_entry_desc *rxdesc)
1660 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1661 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1662 __le32 *rxd = (__le32 *)entry->skb->data;
1663 u32 word0;
1664 u32 word1;
1667 * Copy descriptor to the skbdesc->desc buffer, making it safe from moving of
1668 * frame data in rt2x00usb.
1670 memcpy(skbdesc->desc, rxd, skbdesc->desc_len);
1671 rxd = (__le32 *)skbdesc->desc;
1674 * It is now safe to read the descriptor on all architectures.
1676 rt2x00_desc_read(rxd, 0, &word0);
1677 rt2x00_desc_read(rxd, 1, &word1);
1679 if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1680 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1682 rxdesc->cipher = rt2x00_get_field32(word0, RXD_W0_CIPHER_ALG);
1683 rxdesc->cipher_status = rt2x00_get_field32(word0, RXD_W0_CIPHER_ERROR);
1685 if (rxdesc->cipher != CIPHER_NONE) {
1686 _rt2x00_desc_read(rxd, 2, &rxdesc->iv[0]);
1687 _rt2x00_desc_read(rxd, 3, &rxdesc->iv[1]);
1688 rxdesc->dev_flags |= RXDONE_CRYPTO_IV;
1690 _rt2x00_desc_read(rxd, 4, &rxdesc->icv);
1691 rxdesc->dev_flags |= RXDONE_CRYPTO_ICV;
1694 * Hardware has stripped IV/EIV data from 802.11 frame during
1695 * decryption. It has provided the data separately but rt2x00lib
1696 * should decide if it should be reinserted.
1698 rxdesc->flags |= RX_FLAG_IV_STRIPPED;
1701 * FIXME: Legacy driver indicates that the frame does
1702 * contain the Michael Mic. Unfortunately, in rt2x00
1703 * the MIC seems to be missing completely...
1705 rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
1707 if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
1708 rxdesc->flags |= RX_FLAG_DECRYPTED;
1709 else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
1710 rxdesc->flags |= RX_FLAG_MMIC_ERROR;
1714 * Obtain the status about this packet.
1715 * When frame was received with an OFDM bitrate,
1716 * the signal is the PLCP value. If it was received with
1717 * a CCK bitrate the signal is the rate in 100kbit/s.
1719 rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL);
1720 rxdesc->rssi = rt73usb_agc_to_rssi(rt2x00dev, word1);
1721 rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1723 if (rt2x00_get_field32(word0, RXD_W0_OFDM))
1724 rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
1725 else
1726 rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
1727 if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
1728 rxdesc->dev_flags |= RXDONE_MY_BSS;
1731 * Set skb pointers, and update frame information.
1733 skb_pull(entry->skb, entry->queue->desc_size);
1734 skb_trim(entry->skb, rxdesc->size);
1738 * Device probe functions.
1740 static int rt73usb_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1742 u16 word;
1743 u8 *mac;
1744 s8 value;
1746 rt2x00usb_eeprom_read(rt2x00dev, rt2x00dev->eeprom, EEPROM_SIZE);
1749 * Start validation of the data that has been read.
1751 mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1752 if (!is_valid_ether_addr(mac)) {
1753 random_ether_addr(mac);
1754 EEPROM(rt2x00dev, "MAC: %pM\n", mac);
1757 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
1758 if (word == 0xffff) {
1759 rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
1760 rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
1761 ANTENNA_B);
1762 rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
1763 ANTENNA_B);
1764 rt2x00_set_field16(&word, EEPROM_ANTENNA_FRAME_TYPE, 0);
1765 rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
1766 rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
1767 rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF5226);
1768 rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
1769 EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
1772 rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
1773 if (word == 0xffff) {
1774 rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA, 0);
1775 rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
1776 EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
1779 rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &word);
1780 if (word == 0xffff) {
1781 rt2x00_set_field16(&word, EEPROM_LED_POLARITY_RDY_G, 0);
1782 rt2x00_set_field16(&word, EEPROM_LED_POLARITY_RDY_A, 0);
1783 rt2x00_set_field16(&word, EEPROM_LED_POLARITY_ACT, 0);
1784 rt2x00_set_field16(&word, EEPROM_LED_POLARITY_GPIO_0, 0);
1785 rt2x00_set_field16(&word, EEPROM_LED_POLARITY_GPIO_1, 0);
1786 rt2x00_set_field16(&word, EEPROM_LED_POLARITY_GPIO_2, 0);
1787 rt2x00_set_field16(&word, EEPROM_LED_POLARITY_GPIO_3, 0);
1788 rt2x00_set_field16(&word, EEPROM_LED_POLARITY_GPIO_4, 0);
1789 rt2x00_set_field16(&word, EEPROM_LED_LED_MODE,
1790 LED_MODE_DEFAULT);
1791 rt2x00_eeprom_write(rt2x00dev, EEPROM_LED, word);
1792 EEPROM(rt2x00dev, "Led: 0x%04x\n", word);
1795 rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &word);
1796 if (word == 0xffff) {
1797 rt2x00_set_field16(&word, EEPROM_FREQ_OFFSET, 0);
1798 rt2x00_set_field16(&word, EEPROM_FREQ_SEQ, 0);
1799 rt2x00_eeprom_write(rt2x00dev, EEPROM_FREQ, word);
1800 EEPROM(rt2x00dev, "Freq: 0x%04x\n", word);
1803 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &word);
1804 if (word == 0xffff) {
1805 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
1806 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
1807 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
1808 EEPROM(rt2x00dev, "RSSI OFFSET BG: 0x%04x\n", word);
1809 } else {
1810 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_1);
1811 if (value < -10 || value > 10)
1812 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
1813 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_2);
1814 if (value < -10 || value > 10)
1815 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
1816 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
1819 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &word);
1820 if (word == 0xffff) {
1821 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
1822 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
1823 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
1824 EEPROM(rt2x00dev, "RSSI OFFSET A: 0x%04x\n", word);
1825 } else {
1826 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_1);
1827 if (value < -10 || value > 10)
1828 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
1829 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_2);
1830 if (value < -10 || value > 10)
1831 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
1832 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
1835 return 0;
1838 static int rt73usb_init_eeprom(struct rt2x00_dev *rt2x00dev)
1840 u32 reg;
1841 u16 value;
1842 u16 eeprom;
1845 * Read EEPROM word for configuration.
1847 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
1850 * Identify RF chipset.
1852 value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1853 rt2x00usb_register_read(rt2x00dev, MAC_CSR0, &reg);
1854 rt2x00_set_chip(rt2x00dev, rt2x00_get_field32(reg, MAC_CSR0_CHIPSET),
1855 value, rt2x00_get_field32(reg, MAC_CSR0_REVISION));
1857 if (!rt2x00_rt(rt2x00dev, RT2573) || (rt2x00_rev(rt2x00dev) == 0)) {
1858 ERROR(rt2x00dev, "Invalid RT chipset detected.\n");
1859 return -ENODEV;
1862 if (!rt2x00_rf(rt2x00dev, RF5226) &&
1863 !rt2x00_rf(rt2x00dev, RF2528) &&
1864 !rt2x00_rf(rt2x00dev, RF5225) &&
1865 !rt2x00_rf(rt2x00dev, RF2527)) {
1866 ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
1867 return -ENODEV;
1871 * Identify default antenna configuration.
1873 rt2x00dev->default_ant.tx =
1874 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1875 rt2x00dev->default_ant.rx =
1876 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1879 * Read the Frame type.
1881 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_FRAME_TYPE))
1882 __set_bit(CONFIG_FRAME_TYPE, &rt2x00dev->flags);
1885 * Detect if this device has an hardware controlled radio.
1887 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
1888 __set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
1891 * Read frequency offset.
1893 rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &eeprom);
1894 rt2x00dev->freq_offset = rt2x00_get_field16(eeprom, EEPROM_FREQ_OFFSET);
1897 * Read external LNA informations.
1899 rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
1901 if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA)) {
1902 __set_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags);
1903 __set_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags);
1907 * Store led settings, for correct led behaviour.
1909 #ifdef CONFIG_RT2X00_LIB_LEDS
1910 rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &eeprom);
1912 rt73usb_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
1913 rt73usb_init_led(rt2x00dev, &rt2x00dev->led_assoc, LED_TYPE_ASSOC);
1914 if (value == LED_MODE_SIGNAL_STRENGTH)
1915 rt73usb_init_led(rt2x00dev, &rt2x00dev->led_qual,
1916 LED_TYPE_QUALITY);
1918 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_LED_MODE, value);
1919 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_0,
1920 rt2x00_get_field16(eeprom,
1921 EEPROM_LED_POLARITY_GPIO_0));
1922 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_1,
1923 rt2x00_get_field16(eeprom,
1924 EEPROM_LED_POLARITY_GPIO_1));
1925 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_2,
1926 rt2x00_get_field16(eeprom,
1927 EEPROM_LED_POLARITY_GPIO_2));
1928 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_3,
1929 rt2x00_get_field16(eeprom,
1930 EEPROM_LED_POLARITY_GPIO_3));
1931 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_4,
1932 rt2x00_get_field16(eeprom,
1933 EEPROM_LED_POLARITY_GPIO_4));
1934 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_ACT,
1935 rt2x00_get_field16(eeprom, EEPROM_LED_POLARITY_ACT));
1936 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_BG,
1937 rt2x00_get_field16(eeprom,
1938 EEPROM_LED_POLARITY_RDY_G));
1939 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_A,
1940 rt2x00_get_field16(eeprom,
1941 EEPROM_LED_POLARITY_RDY_A));
1942 #endif /* CONFIG_RT2X00_LIB_LEDS */
1944 return 0;
1948 * RF value list for RF2528
1949 * Supports: 2.4 GHz
1951 static const struct rf_channel rf_vals_bg_2528[] = {
1952 { 1, 0x00002c0c, 0x00000786, 0x00068255, 0x000fea0b },
1953 { 2, 0x00002c0c, 0x00000786, 0x00068255, 0x000fea1f },
1954 { 3, 0x00002c0c, 0x0000078a, 0x00068255, 0x000fea0b },
1955 { 4, 0x00002c0c, 0x0000078a, 0x00068255, 0x000fea1f },
1956 { 5, 0x00002c0c, 0x0000078e, 0x00068255, 0x000fea0b },
1957 { 6, 0x00002c0c, 0x0000078e, 0x00068255, 0x000fea1f },
1958 { 7, 0x00002c0c, 0x00000792, 0x00068255, 0x000fea0b },
1959 { 8, 0x00002c0c, 0x00000792, 0x00068255, 0x000fea1f },
1960 { 9, 0x00002c0c, 0x00000796, 0x00068255, 0x000fea0b },
1961 { 10, 0x00002c0c, 0x00000796, 0x00068255, 0x000fea1f },
1962 { 11, 0x00002c0c, 0x0000079a, 0x00068255, 0x000fea0b },
1963 { 12, 0x00002c0c, 0x0000079a, 0x00068255, 0x000fea1f },
1964 { 13, 0x00002c0c, 0x0000079e, 0x00068255, 0x000fea0b },
1965 { 14, 0x00002c0c, 0x000007a2, 0x00068255, 0x000fea13 },
1969 * RF value list for RF5226
1970 * Supports: 2.4 GHz & 5.2 GHz
1972 static const struct rf_channel rf_vals_5226[] = {
1973 { 1, 0x00002c0c, 0x00000786, 0x00068255, 0x000fea0b },
1974 { 2, 0x00002c0c, 0x00000786, 0x00068255, 0x000fea1f },
1975 { 3, 0x00002c0c, 0x0000078a, 0x00068255, 0x000fea0b },
1976 { 4, 0x00002c0c, 0x0000078a, 0x00068255, 0x000fea1f },
1977 { 5, 0x00002c0c, 0x0000078e, 0x00068255, 0x000fea0b },
1978 { 6, 0x00002c0c, 0x0000078e, 0x00068255, 0x000fea1f },
1979 { 7, 0x00002c0c, 0x00000792, 0x00068255, 0x000fea0b },
1980 { 8, 0x00002c0c, 0x00000792, 0x00068255, 0x000fea1f },
1981 { 9, 0x00002c0c, 0x00000796, 0x00068255, 0x000fea0b },
1982 { 10, 0x00002c0c, 0x00000796, 0x00068255, 0x000fea1f },
1983 { 11, 0x00002c0c, 0x0000079a, 0x00068255, 0x000fea0b },
1984 { 12, 0x00002c0c, 0x0000079a, 0x00068255, 0x000fea1f },
1985 { 13, 0x00002c0c, 0x0000079e, 0x00068255, 0x000fea0b },
1986 { 14, 0x00002c0c, 0x000007a2, 0x00068255, 0x000fea13 },
1988 /* 802.11 UNI / HyperLan 2 */
1989 { 36, 0x00002c0c, 0x0000099a, 0x00098255, 0x000fea23 },
1990 { 40, 0x00002c0c, 0x000009a2, 0x00098255, 0x000fea03 },
1991 { 44, 0x00002c0c, 0x000009a6, 0x00098255, 0x000fea0b },
1992 { 48, 0x00002c0c, 0x000009aa, 0x00098255, 0x000fea13 },
1993 { 52, 0x00002c0c, 0x000009ae, 0x00098255, 0x000fea1b },
1994 { 56, 0x00002c0c, 0x000009b2, 0x00098255, 0x000fea23 },
1995 { 60, 0x00002c0c, 0x000009ba, 0x00098255, 0x000fea03 },
1996 { 64, 0x00002c0c, 0x000009be, 0x00098255, 0x000fea0b },
1998 /* 802.11 HyperLan 2 */
1999 { 100, 0x00002c0c, 0x00000a2a, 0x000b8255, 0x000fea03 },
2000 { 104, 0x00002c0c, 0x00000a2e, 0x000b8255, 0x000fea0b },
2001 { 108, 0x00002c0c, 0x00000a32, 0x000b8255, 0x000fea13 },
2002 { 112, 0x00002c0c, 0x00000a36, 0x000b8255, 0x000fea1b },
2003 { 116, 0x00002c0c, 0x00000a3a, 0x000b8255, 0x000fea23 },
2004 { 120, 0x00002c0c, 0x00000a82, 0x000b8255, 0x000fea03 },
2005 { 124, 0x00002c0c, 0x00000a86, 0x000b8255, 0x000fea0b },
2006 { 128, 0x00002c0c, 0x00000a8a, 0x000b8255, 0x000fea13 },
2007 { 132, 0x00002c0c, 0x00000a8e, 0x000b8255, 0x000fea1b },
2008 { 136, 0x00002c0c, 0x00000a92, 0x000b8255, 0x000fea23 },
2010 /* 802.11 UNII */
2011 { 140, 0x00002c0c, 0x00000a9a, 0x000b8255, 0x000fea03 },
2012 { 149, 0x00002c0c, 0x00000aa2, 0x000b8255, 0x000fea1f },
2013 { 153, 0x00002c0c, 0x00000aa6, 0x000b8255, 0x000fea27 },
2014 { 157, 0x00002c0c, 0x00000aae, 0x000b8255, 0x000fea07 },
2015 { 161, 0x00002c0c, 0x00000ab2, 0x000b8255, 0x000fea0f },
2016 { 165, 0x00002c0c, 0x00000ab6, 0x000b8255, 0x000fea17 },
2018 /* MMAC(Japan)J52 ch 34,38,42,46 */
2019 { 34, 0x00002c0c, 0x0008099a, 0x000da255, 0x000d3a0b },
2020 { 38, 0x00002c0c, 0x0008099e, 0x000da255, 0x000d3a13 },
2021 { 42, 0x00002c0c, 0x000809a2, 0x000da255, 0x000d3a1b },
2022 { 46, 0x00002c0c, 0x000809a6, 0x000da255, 0x000d3a23 },
2026 * RF value list for RF5225 & RF2527
2027 * Supports: 2.4 GHz & 5.2 GHz
2029 static const struct rf_channel rf_vals_5225_2527[] = {
2030 { 1, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
2031 { 2, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
2032 { 3, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
2033 { 4, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
2034 { 5, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
2035 { 6, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
2036 { 7, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
2037 { 8, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
2038 { 9, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
2039 { 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
2040 { 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
2041 { 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
2042 { 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
2043 { 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
2045 /* 802.11 UNI / HyperLan 2 */
2046 { 36, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa23 },
2047 { 40, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa03 },
2048 { 44, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa0b },
2049 { 48, 0x00002ccc, 0x000049aa, 0x0009be55, 0x000ffa13 },
2050 { 52, 0x00002ccc, 0x000049ae, 0x0009ae55, 0x000ffa1b },
2051 { 56, 0x00002ccc, 0x000049b2, 0x0009ae55, 0x000ffa23 },
2052 { 60, 0x00002ccc, 0x000049ba, 0x0009ae55, 0x000ffa03 },
2053 { 64, 0x00002ccc, 0x000049be, 0x0009ae55, 0x000ffa0b },
2055 /* 802.11 HyperLan 2 */
2056 { 100, 0x00002ccc, 0x00004a2a, 0x000bae55, 0x000ffa03 },
2057 { 104, 0x00002ccc, 0x00004a2e, 0x000bae55, 0x000ffa0b },
2058 { 108, 0x00002ccc, 0x00004a32, 0x000bae55, 0x000ffa13 },
2059 { 112, 0x00002ccc, 0x00004a36, 0x000bae55, 0x000ffa1b },
2060 { 116, 0x00002ccc, 0x00004a3a, 0x000bbe55, 0x000ffa23 },
2061 { 120, 0x00002ccc, 0x00004a82, 0x000bbe55, 0x000ffa03 },
2062 { 124, 0x00002ccc, 0x00004a86, 0x000bbe55, 0x000ffa0b },
2063 { 128, 0x00002ccc, 0x00004a8a, 0x000bbe55, 0x000ffa13 },
2064 { 132, 0x00002ccc, 0x00004a8e, 0x000bbe55, 0x000ffa1b },
2065 { 136, 0x00002ccc, 0x00004a92, 0x000bbe55, 0x000ffa23 },
2067 /* 802.11 UNII */
2068 { 140, 0x00002ccc, 0x00004a9a, 0x000bbe55, 0x000ffa03 },
2069 { 149, 0x00002ccc, 0x00004aa2, 0x000bbe55, 0x000ffa1f },
2070 { 153, 0x00002ccc, 0x00004aa6, 0x000bbe55, 0x000ffa27 },
2071 { 157, 0x00002ccc, 0x00004aae, 0x000bbe55, 0x000ffa07 },
2072 { 161, 0x00002ccc, 0x00004ab2, 0x000bbe55, 0x000ffa0f },
2073 { 165, 0x00002ccc, 0x00004ab6, 0x000bbe55, 0x000ffa17 },
2075 /* MMAC(Japan)J52 ch 34,38,42,46 */
2076 { 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa0b },
2077 { 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000ffa13 },
2078 { 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa1b },
2079 { 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa23 },
2083 static int rt73usb_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
2085 struct hw_mode_spec *spec = &rt2x00dev->spec;
2086 struct channel_info *info;
2087 char *tx_power;
2088 unsigned int i;
2091 * Initialize all hw fields.
2093 * Don't set IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING unless we are
2094 * capable of sending the buffered frames out after the DTIM
2095 * transmission using rt2x00lib_beacondone. This will send out
2096 * multicast and broadcast traffic immediately instead of buffering it
2097 * infinitly and thus dropping it after some time.
2099 rt2x00dev->hw->flags =
2100 IEEE80211_HW_SIGNAL_DBM |
2101 IEEE80211_HW_SUPPORTS_PS |
2102 IEEE80211_HW_PS_NULLFUNC_STACK;
2104 SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
2105 SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
2106 rt2x00_eeprom_addr(rt2x00dev,
2107 EEPROM_MAC_ADDR_0));
2110 * Initialize hw_mode information.
2112 spec->supported_bands = SUPPORT_BAND_2GHZ;
2113 spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
2115 if (rt2x00_rf(rt2x00dev, RF2528)) {
2116 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2528);
2117 spec->channels = rf_vals_bg_2528;
2118 } else if (rt2x00_rf(rt2x00dev, RF5226)) {
2119 spec->supported_bands |= SUPPORT_BAND_5GHZ;
2120 spec->num_channels = ARRAY_SIZE(rf_vals_5226);
2121 spec->channels = rf_vals_5226;
2122 } else if (rt2x00_rf(rt2x00dev, RF2527)) {
2123 spec->num_channels = 14;
2124 spec->channels = rf_vals_5225_2527;
2125 } else if (rt2x00_rf(rt2x00dev, RF5225)) {
2126 spec->supported_bands |= SUPPORT_BAND_5GHZ;
2127 spec->num_channels = ARRAY_SIZE(rf_vals_5225_2527);
2128 spec->channels = rf_vals_5225_2527;
2132 * Create channel information array
2134 info = kcalloc(spec->num_channels, sizeof(*info), GFP_KERNEL);
2135 if (!info)
2136 return -ENOMEM;
2138 spec->channels_info = info;
2140 tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_G_START);
2141 for (i = 0; i < 14; i++) {
2142 info[i].max_power = MAX_TXPOWER;
2143 info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]);
2146 if (spec->num_channels > 14) {
2147 tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_A_START);
2148 for (i = 14; i < spec->num_channels; i++) {
2149 info[i].max_power = MAX_TXPOWER;
2150 info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]);
2154 return 0;
2157 static int rt73usb_probe_hw(struct rt2x00_dev *rt2x00dev)
2159 int retval;
2162 * Allocate eeprom data.
2164 retval = rt73usb_validate_eeprom(rt2x00dev);
2165 if (retval)
2166 return retval;
2168 retval = rt73usb_init_eeprom(rt2x00dev);
2169 if (retval)
2170 return retval;
2173 * Initialize hw specifications.
2175 retval = rt73usb_probe_hw_mode(rt2x00dev);
2176 if (retval)
2177 return retval;
2180 * This device has multiple filters for control frames,
2181 * but has no a separate filter for PS Poll frames.
2183 __set_bit(DRIVER_SUPPORT_CONTROL_FILTERS, &rt2x00dev->flags);
2186 * This device requires firmware.
2188 __set_bit(DRIVER_REQUIRE_FIRMWARE, &rt2x00dev->flags);
2189 if (!modparam_nohwcrypt)
2190 __set_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags);
2191 __set_bit(DRIVER_SUPPORT_LINK_TUNING, &rt2x00dev->flags);
2192 __set_bit(DRIVER_SUPPORT_WATCHDOG, &rt2x00dev->flags);
2195 * Set the rssi offset.
2197 rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
2199 return 0;
2203 * IEEE80211 stack callback functions.
2205 static int rt73usb_conf_tx(struct ieee80211_hw *hw, u16 queue_idx,
2206 const struct ieee80211_tx_queue_params *params)
2208 struct rt2x00_dev *rt2x00dev = hw->priv;
2209 struct data_queue *queue;
2210 struct rt2x00_field32 field;
2211 int retval;
2212 u32 reg;
2213 u32 offset;
2216 * First pass the configuration through rt2x00lib, that will
2217 * update the queue settings and validate the input. After that
2218 * we are free to update the registers based on the value
2219 * in the queue parameter.
2221 retval = rt2x00mac_conf_tx(hw, queue_idx, params);
2222 if (retval)
2223 return retval;
2226 * We only need to perform additional register initialization
2227 * for WMM queues/
2229 if (queue_idx >= 4)
2230 return 0;
2232 queue = rt2x00queue_get_queue(rt2x00dev, queue_idx);
2234 /* Update WMM TXOP register */
2235 offset = AC_TXOP_CSR0 + (sizeof(u32) * (!!(queue_idx & 2)));
2236 field.bit_offset = (queue_idx & 1) * 16;
2237 field.bit_mask = 0xffff << field.bit_offset;
2239 rt2x00usb_register_read(rt2x00dev, offset, &reg);
2240 rt2x00_set_field32(&reg, field, queue->txop);
2241 rt2x00usb_register_write(rt2x00dev, offset, reg);
2243 /* Update WMM registers */
2244 field.bit_offset = queue_idx * 4;
2245 field.bit_mask = 0xf << field.bit_offset;
2247 rt2x00usb_register_read(rt2x00dev, AIFSN_CSR, &reg);
2248 rt2x00_set_field32(&reg, field, queue->aifs);
2249 rt2x00usb_register_write(rt2x00dev, AIFSN_CSR, reg);
2251 rt2x00usb_register_read(rt2x00dev, CWMIN_CSR, &reg);
2252 rt2x00_set_field32(&reg, field, queue->cw_min);
2253 rt2x00usb_register_write(rt2x00dev, CWMIN_CSR, reg);
2255 rt2x00usb_register_read(rt2x00dev, CWMAX_CSR, &reg);
2256 rt2x00_set_field32(&reg, field, queue->cw_max);
2257 rt2x00usb_register_write(rt2x00dev, CWMAX_CSR, reg);
2259 return 0;
2262 static u64 rt73usb_get_tsf(struct ieee80211_hw *hw)
2264 struct rt2x00_dev *rt2x00dev = hw->priv;
2265 u64 tsf;
2266 u32 reg;
2268 rt2x00usb_register_read(rt2x00dev, TXRX_CSR13, &reg);
2269 tsf = (u64) rt2x00_get_field32(reg, TXRX_CSR13_HIGH_TSFTIMER) << 32;
2270 rt2x00usb_register_read(rt2x00dev, TXRX_CSR12, &reg);
2271 tsf |= rt2x00_get_field32(reg, TXRX_CSR12_LOW_TSFTIMER);
2273 return tsf;
2276 static const struct ieee80211_ops rt73usb_mac80211_ops = {
2277 .tx = rt2x00mac_tx,
2278 .start = rt2x00mac_start,
2279 .stop = rt2x00mac_stop,
2280 .add_interface = rt2x00mac_add_interface,
2281 .remove_interface = rt2x00mac_remove_interface,
2282 .config = rt2x00mac_config,
2283 .configure_filter = rt2x00mac_configure_filter,
2284 .set_tim = rt2x00mac_set_tim,
2285 .set_key = rt2x00mac_set_key,
2286 .sw_scan_start = rt2x00mac_sw_scan_start,
2287 .sw_scan_complete = rt2x00mac_sw_scan_complete,
2288 .get_stats = rt2x00mac_get_stats,
2289 .bss_info_changed = rt2x00mac_bss_info_changed,
2290 .conf_tx = rt73usb_conf_tx,
2291 .get_tsf = rt73usb_get_tsf,
2292 .rfkill_poll = rt2x00mac_rfkill_poll,
2293 .flush = rt2x00mac_flush,
2296 static const struct rt2x00lib_ops rt73usb_rt2x00_ops = {
2297 .probe_hw = rt73usb_probe_hw,
2298 .get_firmware_name = rt73usb_get_firmware_name,
2299 .check_firmware = rt73usb_check_firmware,
2300 .load_firmware = rt73usb_load_firmware,
2301 .initialize = rt2x00usb_initialize,
2302 .uninitialize = rt2x00usb_uninitialize,
2303 .clear_entry = rt2x00usb_clear_entry,
2304 .set_device_state = rt73usb_set_device_state,
2305 .rfkill_poll = rt73usb_rfkill_poll,
2306 .link_stats = rt73usb_link_stats,
2307 .reset_tuner = rt73usb_reset_tuner,
2308 .link_tuner = rt73usb_link_tuner,
2309 .watchdog = rt2x00usb_watchdog,
2310 .start_queue = rt73usb_start_queue,
2311 .kick_queue = rt2x00usb_kick_queue,
2312 .stop_queue = rt73usb_stop_queue,
2313 .flush_queue = rt2x00usb_flush_queue,
2314 .write_tx_desc = rt73usb_write_tx_desc,
2315 .write_beacon = rt73usb_write_beacon,
2316 .get_tx_data_len = rt73usb_get_tx_data_len,
2317 .fill_rxdone = rt73usb_fill_rxdone,
2318 .config_shared_key = rt73usb_config_shared_key,
2319 .config_pairwise_key = rt73usb_config_pairwise_key,
2320 .config_filter = rt73usb_config_filter,
2321 .config_intf = rt73usb_config_intf,
2322 .config_erp = rt73usb_config_erp,
2323 .config_ant = rt73usb_config_ant,
2324 .config = rt73usb_config,
2327 static const struct data_queue_desc rt73usb_queue_rx = {
2328 .entry_num = 32,
2329 .data_size = DATA_FRAME_SIZE,
2330 .desc_size = RXD_DESC_SIZE,
2331 .priv_size = sizeof(struct queue_entry_priv_usb),
2334 static const struct data_queue_desc rt73usb_queue_tx = {
2335 .entry_num = 32,
2336 .data_size = DATA_FRAME_SIZE,
2337 .desc_size = TXD_DESC_SIZE,
2338 .priv_size = sizeof(struct queue_entry_priv_usb),
2341 static const struct data_queue_desc rt73usb_queue_bcn = {
2342 .entry_num = 4,
2343 .data_size = MGMT_FRAME_SIZE,
2344 .desc_size = TXINFO_SIZE,
2345 .priv_size = sizeof(struct queue_entry_priv_usb),
2348 static const struct rt2x00_ops rt73usb_ops = {
2349 .name = KBUILD_MODNAME,
2350 .max_sta_intf = 1,
2351 .max_ap_intf = 4,
2352 .eeprom_size = EEPROM_SIZE,
2353 .rf_size = RF_SIZE,
2354 .tx_queues = NUM_TX_QUEUES,
2355 .extra_tx_headroom = TXD_DESC_SIZE,
2356 .rx = &rt73usb_queue_rx,
2357 .tx = &rt73usb_queue_tx,
2358 .bcn = &rt73usb_queue_bcn,
2359 .lib = &rt73usb_rt2x00_ops,
2360 .hw = &rt73usb_mac80211_ops,
2361 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
2362 .debugfs = &rt73usb_rt2x00debug,
2363 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
2367 * rt73usb module information.
2369 static struct usb_device_id rt73usb_device_table[] = {
2370 /* AboCom */
2371 { USB_DEVICE(0x07b8, 0xb21b), USB_DEVICE_DATA(&rt73usb_ops) },
2372 { USB_DEVICE(0x07b8, 0xb21c), USB_DEVICE_DATA(&rt73usb_ops) },
2373 { USB_DEVICE(0x07b8, 0xb21d), USB_DEVICE_DATA(&rt73usb_ops) },
2374 { USB_DEVICE(0x07b8, 0xb21e), USB_DEVICE_DATA(&rt73usb_ops) },
2375 { USB_DEVICE(0x07b8, 0xb21f), USB_DEVICE_DATA(&rt73usb_ops) },
2376 /* AL */
2377 { USB_DEVICE(0x14b2, 0x3c10), USB_DEVICE_DATA(&rt73usb_ops) },
2378 /* Amigo */
2379 { USB_DEVICE(0x148f, 0x9021), USB_DEVICE_DATA(&rt73usb_ops) },
2380 { USB_DEVICE(0x0eb0, 0x9021), USB_DEVICE_DATA(&rt73usb_ops) },
2381 /* AMIT */
2382 { USB_DEVICE(0x18c5, 0x0002), USB_DEVICE_DATA(&rt73usb_ops) },
2383 /* Askey */
2384 { USB_DEVICE(0x1690, 0x0722), USB_DEVICE_DATA(&rt73usb_ops) },
2385 /* ASUS */
2386 { USB_DEVICE(0x0b05, 0x1723), USB_DEVICE_DATA(&rt73usb_ops) },
2387 { USB_DEVICE(0x0b05, 0x1724), USB_DEVICE_DATA(&rt73usb_ops) },
2388 /* Belkin */
2389 { USB_DEVICE(0x050d, 0x7050), USB_DEVICE_DATA(&rt73usb_ops) },
2390 { USB_DEVICE(0x050d, 0x705a), USB_DEVICE_DATA(&rt73usb_ops) },
2391 { USB_DEVICE(0x050d, 0x905b), USB_DEVICE_DATA(&rt73usb_ops) },
2392 { USB_DEVICE(0x050d, 0x905c), USB_DEVICE_DATA(&rt73usb_ops) },
2393 /* Billionton */
2394 { USB_DEVICE(0x1631, 0xc019), USB_DEVICE_DATA(&rt73usb_ops) },
2395 { USB_DEVICE(0x08dd, 0x0120), USB_DEVICE_DATA(&rt73usb_ops) },
2396 /* Buffalo */
2397 { USB_DEVICE(0x0411, 0x00d8), USB_DEVICE_DATA(&rt73usb_ops) },
2398 { USB_DEVICE(0x0411, 0x00d9), USB_DEVICE_DATA(&rt73usb_ops) },
2399 { USB_DEVICE(0x0411, 0x00f4), USB_DEVICE_DATA(&rt73usb_ops) },
2400 { USB_DEVICE(0x0411, 0x0116), USB_DEVICE_DATA(&rt73usb_ops) },
2401 { USB_DEVICE(0x0411, 0x0119), USB_DEVICE_DATA(&rt73usb_ops) },
2402 { USB_DEVICE(0x0411, 0x0137), USB_DEVICE_DATA(&rt73usb_ops) },
2403 /* CEIVA */
2404 { USB_DEVICE(0x178d, 0x02be), USB_DEVICE_DATA(&rt73usb_ops) },
2405 /* CNet */
2406 { USB_DEVICE(0x1371, 0x9022), USB_DEVICE_DATA(&rt73usb_ops) },
2407 { USB_DEVICE(0x1371, 0x9032), USB_DEVICE_DATA(&rt73usb_ops) },
2408 /* Conceptronic */
2409 { USB_DEVICE(0x14b2, 0x3c22), USB_DEVICE_DATA(&rt73usb_ops) },
2410 /* Corega */
2411 { USB_DEVICE(0x07aa, 0x002e), USB_DEVICE_DATA(&rt73usb_ops) },
2412 /* D-Link */
2413 { USB_DEVICE(0x07d1, 0x3c03), USB_DEVICE_DATA(&rt73usb_ops) },
2414 { USB_DEVICE(0x07d1, 0x3c04), USB_DEVICE_DATA(&rt73usb_ops) },
2415 { USB_DEVICE(0x07d1, 0x3c06), USB_DEVICE_DATA(&rt73usb_ops) },
2416 { USB_DEVICE(0x07d1, 0x3c07), USB_DEVICE_DATA(&rt73usb_ops) },
2417 /* Edimax */
2418 { USB_DEVICE(0x7392, 0x7318), USB_DEVICE_DATA(&rt73usb_ops) },
2419 { USB_DEVICE(0x7392, 0x7618), USB_DEVICE_DATA(&rt73usb_ops) },
2420 /* EnGenius */
2421 { USB_DEVICE(0x1740, 0x3701), USB_DEVICE_DATA(&rt73usb_ops) },
2422 /* Gemtek */
2423 { USB_DEVICE(0x15a9, 0x0004), USB_DEVICE_DATA(&rt73usb_ops) },
2424 /* Gigabyte */
2425 { USB_DEVICE(0x1044, 0x8008), USB_DEVICE_DATA(&rt73usb_ops) },
2426 { USB_DEVICE(0x1044, 0x800a), USB_DEVICE_DATA(&rt73usb_ops) },
2427 /* Huawei-3Com */
2428 { USB_DEVICE(0x1472, 0x0009), USB_DEVICE_DATA(&rt73usb_ops) },
2429 /* Hercules */
2430 { USB_DEVICE(0x06f8, 0xe002), USB_DEVICE_DATA(&rt73usb_ops) },
2431 { USB_DEVICE(0x06f8, 0xe010), USB_DEVICE_DATA(&rt73usb_ops) },
2432 { USB_DEVICE(0x06f8, 0xe020), USB_DEVICE_DATA(&rt73usb_ops) },
2433 /* Linksys */
2434 { USB_DEVICE(0x13b1, 0x0020), USB_DEVICE_DATA(&rt73usb_ops) },
2435 { USB_DEVICE(0x13b1, 0x0023), USB_DEVICE_DATA(&rt73usb_ops) },
2436 { USB_DEVICE(0x13b1, 0x0028), USB_DEVICE_DATA(&rt73usb_ops) },
2437 /* MSI */
2438 { USB_DEVICE(0x0db0, 0x4600), USB_DEVICE_DATA(&rt73usb_ops) },
2439 { USB_DEVICE(0x0db0, 0x6877), USB_DEVICE_DATA(&rt73usb_ops) },
2440 { USB_DEVICE(0x0db0, 0x6874), USB_DEVICE_DATA(&rt73usb_ops) },
2441 { USB_DEVICE(0x0db0, 0xa861), USB_DEVICE_DATA(&rt73usb_ops) },
2442 { USB_DEVICE(0x0db0, 0xa874), USB_DEVICE_DATA(&rt73usb_ops) },
2443 /* Ovislink */
2444 { USB_DEVICE(0x1b75, 0x7318), USB_DEVICE_DATA(&rt73usb_ops) },
2445 /* Ralink */
2446 { USB_DEVICE(0x04bb, 0x093d), USB_DEVICE_DATA(&rt73usb_ops) },
2447 { USB_DEVICE(0x148f, 0x2573), USB_DEVICE_DATA(&rt73usb_ops) },
2448 { USB_DEVICE(0x148f, 0x2671), USB_DEVICE_DATA(&rt73usb_ops) },
2449 /* Qcom */
2450 { USB_DEVICE(0x18e8, 0x6196), USB_DEVICE_DATA(&rt73usb_ops) },
2451 { USB_DEVICE(0x18e8, 0x6229), USB_DEVICE_DATA(&rt73usb_ops) },
2452 { USB_DEVICE(0x18e8, 0x6238), USB_DEVICE_DATA(&rt73usb_ops) },
2453 /* Samsung */
2454 { USB_DEVICE(0x04e8, 0x4471), USB_DEVICE_DATA(&rt73usb_ops) },
2455 /* Senao */
2456 { USB_DEVICE(0x1740, 0x7100), USB_DEVICE_DATA(&rt73usb_ops) },
2457 /* Sitecom */
2458 { USB_DEVICE(0x0df6, 0x0024), USB_DEVICE_DATA(&rt73usb_ops) },
2459 { USB_DEVICE(0x0df6, 0x0027), USB_DEVICE_DATA(&rt73usb_ops) },
2460 { USB_DEVICE(0x0df6, 0x002f), USB_DEVICE_DATA(&rt73usb_ops) },
2461 { USB_DEVICE(0x0df6, 0x90ac), USB_DEVICE_DATA(&rt73usb_ops) },
2462 { USB_DEVICE(0x0df6, 0x9712), USB_DEVICE_DATA(&rt73usb_ops) },
2463 /* Surecom */
2464 { USB_DEVICE(0x0769, 0x31f3), USB_DEVICE_DATA(&rt73usb_ops) },
2465 /* Tilgin */
2466 { USB_DEVICE(0x6933, 0x5001), USB_DEVICE_DATA(&rt73usb_ops) },
2467 /* Philips */
2468 { USB_DEVICE(0x0471, 0x200a), USB_DEVICE_DATA(&rt73usb_ops) },
2469 /* Planex */
2470 { USB_DEVICE(0x2019, 0xab01), USB_DEVICE_DATA(&rt73usb_ops) },
2471 { USB_DEVICE(0x2019, 0xab50), USB_DEVICE_DATA(&rt73usb_ops) },
2472 /* WideTell */
2473 { USB_DEVICE(0x7167, 0x3840), USB_DEVICE_DATA(&rt73usb_ops) },
2474 /* Zcom */
2475 { USB_DEVICE(0x0cde, 0x001c), USB_DEVICE_DATA(&rt73usb_ops) },
2476 /* ZyXEL */
2477 { USB_DEVICE(0x0586, 0x3415), USB_DEVICE_DATA(&rt73usb_ops) },
2478 { 0, }
2481 MODULE_AUTHOR(DRV_PROJECT);
2482 MODULE_VERSION(DRV_VERSION);
2483 MODULE_DESCRIPTION("Ralink RT73 USB Wireless LAN driver.");
2484 MODULE_SUPPORTED_DEVICE("Ralink RT2571W & RT2671 USB chipset based cards");
2485 MODULE_DEVICE_TABLE(usb, rt73usb_device_table);
2486 MODULE_FIRMWARE(FIRMWARE_RT2571);
2487 MODULE_LICENSE("GPL");
2489 static struct usb_driver rt73usb_driver = {
2490 .name = KBUILD_MODNAME,
2491 .id_table = rt73usb_device_table,
2492 .probe = rt2x00usb_probe,
2493 .disconnect = rt2x00usb_disconnect,
2494 .suspend = rt2x00usb_suspend,
2495 .resume = rt2x00usb_resume,
2498 static int __init rt73usb_init(void)
2500 return usb_register(&rt73usb_driver);
2503 static void __exit rt73usb_exit(void)
2505 usb_deregister(&rt73usb_driver);
2508 module_init(rt73usb_init);
2509 module_exit(rt73usb_exit);