2 * amd5536.c -- AMD 5536 UDC high/full speed USB device controller
4 * Copyright (C) 2005-2007 AMD (http://www.amd.com)
5 * Author: Thomas Dahlmann
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23 * The AMD5536 UDC is part of the x86 southbridge AMD Geode CS5536.
24 * It is a USB Highspeed DMA capable USB device controller. Beside ep0 it
25 * provides 4 IN and 4 OUT endpoints (bulk or interrupt type).
27 * Make sure that UDC is assigned to port 4 by BIOS settings (port can also
28 * be used as host port) and UOC bits PAD_EN and APU are set (should be done
31 * UDC DMA requires 32-bit aligned buffers so DMA with gadget ether does not
32 * work without updating NET_IP_ALIGN. Or PIO mode (module param "use_dma=0")
33 * can be used with gadget ether.
37 /* #define UDC_VERBOSE */
40 #define UDC_MOD_DESCRIPTION "AMD 5536 UDC - USB Device Controller"
41 #define UDC_DRIVER_VERSION_STRING "01.00.0206 - $Revision: #3 $"
44 #include <linux/module.h>
45 #include <linux/pci.h>
46 #include <linux/kernel.h>
47 #include <linux/delay.h>
48 #include <linux/ioport.h>
49 #include <linux/sched.h>
50 #include <linux/slab.h>
51 #include <linux/errno.h>
52 #include <linux/init.h>
53 #include <linux/timer.h>
54 #include <linux/list.h>
55 #include <linux/interrupt.h>
56 #include <linux/ioctl.h>
58 #include <linux/dmapool.h>
59 #include <linux/moduleparam.h>
60 #include <linux/device.h>
62 #include <linux/irq.h>
64 #include <asm/byteorder.h>
65 #include <asm/system.h>
66 #include <asm/unaligned.h>
69 #include <linux/usb/ch9.h>
70 #include <linux/usb/gadget.h>
73 #include "amd5536udc.h"
76 static void udc_tasklet_disconnect(unsigned long);
77 static void empty_req_queue(struct udc_ep
*);
78 static int udc_probe(struct udc
*dev
);
79 static void udc_basic_init(struct udc
*dev
);
80 static void udc_setup_endpoints(struct udc
*dev
);
81 static void udc_soft_reset(struct udc
*dev
);
82 static struct udc_request
*udc_alloc_bna_dummy(struct udc_ep
*ep
);
83 static void udc_free_request(struct usb_ep
*usbep
, struct usb_request
*usbreq
);
84 static int udc_free_dma_chain(struct udc
*dev
, struct udc_request
*req
);
85 static int udc_create_dma_chain(struct udc_ep
*ep
, struct udc_request
*req
,
86 unsigned long buf_len
, gfp_t gfp_flags
);
87 static int udc_remote_wakeup(struct udc
*dev
);
88 static int udc_pci_probe(struct pci_dev
*pdev
, const struct pci_device_id
*id
);
89 static void udc_pci_remove(struct pci_dev
*pdev
);
92 static const char mod_desc
[] = UDC_MOD_DESCRIPTION
;
93 static const char name
[] = "amd5536udc";
95 /* structure to hold endpoint function pointers */
96 static const struct usb_ep_ops udc_ep_ops
;
98 /* received setup data */
99 static union udc_setup_data setup_data
;
101 /* pointer to device object */
102 static struct udc
*udc
;
104 /* irq spin lock for soft reset */
105 static DEFINE_SPINLOCK(udc_irq_spinlock
);
106 /* stall spin lock */
107 static DEFINE_SPINLOCK(udc_stall_spinlock
);
110 * slave mode: pending bytes in rx fifo after nyet,
111 * used if EPIN irq came but no req was available
113 static unsigned int udc_rxfifo_pending
;
115 /* count soft resets after suspend to avoid loop */
116 static int soft_reset_occured
;
117 static int soft_reset_after_usbreset_occured
;
120 static struct timer_list udc_timer
;
121 static int stop_timer
;
123 /* set_rde -- Is used to control enabling of RX DMA. Problem is
124 * that UDC has only one bit (RDE) to enable/disable RX DMA for
125 * all OUT endpoints. So we have to handle race conditions like
126 * when OUT data reaches the fifo but no request was queued yet.
127 * This cannot be solved by letting the RX DMA disabled until a
128 * request gets queued because there may be other OUT packets
129 * in the FIFO (important for not blocking control traffic).
130 * The value of set_rde controls the correspondig timer.
132 * set_rde -1 == not used, means it is alloed to be set to 0 or 1
133 * set_rde 0 == do not touch RDE, do no start the RDE timer
134 * set_rde 1 == timer function will look whether FIFO has data
135 * set_rde 2 == set by timer function to enable RX DMA on next call
137 static int set_rde
= -1;
139 static DECLARE_COMPLETION(on_exit
);
140 static struct timer_list udc_pollstall_timer
;
141 static int stop_pollstall_timer
;
142 static DECLARE_COMPLETION(on_pollstall_exit
);
144 /* tasklet for usb disconnect */
145 static DECLARE_TASKLET(disconnect_tasklet
, udc_tasklet_disconnect
,
146 (unsigned long) &udc
);
149 /* endpoint names used for print */
150 static const char ep0_string
[] = "ep0in";
151 static const char *ep_string
[] = {
153 "ep1in-int", "ep2in-bulk", "ep3in-bulk", "ep4in-bulk", "ep5in-bulk",
154 "ep6in-bulk", "ep7in-bulk", "ep8in-bulk", "ep9in-bulk", "ep10in-bulk",
155 "ep11in-bulk", "ep12in-bulk", "ep13in-bulk", "ep14in-bulk",
156 "ep15in-bulk", "ep0out", "ep1out-bulk", "ep2out-bulk", "ep3out-bulk",
157 "ep4out-bulk", "ep5out-bulk", "ep6out-bulk", "ep7out-bulk",
158 "ep8out-bulk", "ep9out-bulk", "ep10out-bulk", "ep11out-bulk",
159 "ep12out-bulk", "ep13out-bulk", "ep14out-bulk", "ep15out-bulk"
163 static int use_dma
= 1;
164 /* packet per buffer dma */
165 static int use_dma_ppb
= 1;
166 /* with per descr. update */
167 static int use_dma_ppb_du
;
168 /* buffer fill mode */
169 static int use_dma_bufferfill_mode
;
170 /* full speed only mode */
171 static int use_fullspeed
;
172 /* tx buffer size for high speed */
173 static unsigned long hs_tx_buf
= UDC_EPIN_BUFF_SIZE
;
175 /* module parameters */
176 module_param(use_dma
, bool, S_IRUGO
);
177 MODULE_PARM_DESC(use_dma
, "true for DMA");
178 module_param(use_dma_ppb
, bool, S_IRUGO
);
179 MODULE_PARM_DESC(use_dma_ppb
, "true for DMA in packet per buffer mode");
180 module_param(use_dma_ppb_du
, bool, S_IRUGO
);
181 MODULE_PARM_DESC(use_dma_ppb_du
,
182 "true for DMA in packet per buffer mode with descriptor update");
183 module_param(use_fullspeed
, bool, S_IRUGO
);
184 MODULE_PARM_DESC(use_fullspeed
, "true for fullspeed only");
186 /*---------------------------------------------------------------------------*/
187 /* Prints UDC device registers and endpoint irq registers */
188 static void print_regs(struct udc
*dev
)
190 DBG(dev
, "------- Device registers -------\n");
191 DBG(dev
, "dev config = %08x\n", readl(&dev
->regs
->cfg
));
192 DBG(dev
, "dev control = %08x\n", readl(&dev
->regs
->ctl
));
193 DBG(dev
, "dev status = %08x\n", readl(&dev
->regs
->sts
));
195 DBG(dev
, "dev int's = %08x\n", readl(&dev
->regs
->irqsts
));
196 DBG(dev
, "dev intmask = %08x\n", readl(&dev
->regs
->irqmsk
));
198 DBG(dev
, "dev ep int's = %08x\n", readl(&dev
->regs
->ep_irqsts
));
199 DBG(dev
, "dev ep intmask = %08x\n", readl(&dev
->regs
->ep_irqmsk
));
201 DBG(dev
, "USE DMA = %d\n", use_dma
);
202 if (use_dma
&& use_dma_ppb
&& !use_dma_ppb_du
) {
203 DBG(dev
, "DMA mode = PPBNDU (packet per buffer "
204 "WITHOUT desc. update)\n");
205 dev_info(&dev
->pdev
->dev
, "DMA mode (%s)\n", "PPBNDU");
206 } else if (use_dma
&& use_dma_ppb
&& use_dma_ppb_du
) {
207 DBG(dev
, "DMA mode = PPBDU (packet per buffer "
208 "WITH desc. update)\n");
209 dev_info(&dev
->pdev
->dev
, "DMA mode (%s)\n", "PPBDU");
211 if (use_dma
&& use_dma_bufferfill_mode
) {
212 DBG(dev
, "DMA mode = BF (buffer fill mode)\n");
213 dev_info(&dev
->pdev
->dev
, "DMA mode (%s)\n", "BF");
216 dev_info(&dev
->pdev
->dev
, "FIFO mode\n");
218 DBG(dev
, "-------------------------------------------------------\n");
221 /* Masks unused interrupts */
222 static int udc_mask_unused_interrupts(struct udc
*dev
)
226 /* mask all dev interrupts */
227 tmp
= AMD_BIT(UDC_DEVINT_SVC
) |
228 AMD_BIT(UDC_DEVINT_ENUM
) |
229 AMD_BIT(UDC_DEVINT_US
) |
230 AMD_BIT(UDC_DEVINT_UR
) |
231 AMD_BIT(UDC_DEVINT_ES
) |
232 AMD_BIT(UDC_DEVINT_SI
) |
233 AMD_BIT(UDC_DEVINT_SOF
)|
234 AMD_BIT(UDC_DEVINT_SC
);
235 writel(tmp
, &dev
->regs
->irqmsk
);
237 /* mask all ep interrupts */
238 writel(UDC_EPINT_MSK_DISABLE_ALL
, &dev
->regs
->ep_irqmsk
);
243 /* Enables endpoint 0 interrupts */
244 static int udc_enable_ep0_interrupts(struct udc
*dev
)
248 DBG(dev
, "udc_enable_ep0_interrupts()\n");
251 tmp
= readl(&dev
->regs
->ep_irqmsk
);
252 /* enable ep0 irq's */
253 tmp
&= AMD_UNMASK_BIT(UDC_EPINT_IN_EP0
)
254 & AMD_UNMASK_BIT(UDC_EPINT_OUT_EP0
);
255 writel(tmp
, &dev
->regs
->ep_irqmsk
);
260 /* Enables device interrupts for SET_INTF and SET_CONFIG */
261 static int udc_enable_dev_setup_interrupts(struct udc
*dev
)
265 DBG(dev
, "enable device interrupts for setup data\n");
268 tmp
= readl(&dev
->regs
->irqmsk
);
270 /* enable SET_INTERFACE, SET_CONFIG and other needed irq's */
271 tmp
&= AMD_UNMASK_BIT(UDC_DEVINT_SI
)
272 & AMD_UNMASK_BIT(UDC_DEVINT_SC
)
273 & AMD_UNMASK_BIT(UDC_DEVINT_UR
)
274 & AMD_UNMASK_BIT(UDC_DEVINT_SVC
)
275 & AMD_UNMASK_BIT(UDC_DEVINT_ENUM
);
276 writel(tmp
, &dev
->regs
->irqmsk
);
281 /* Calculates fifo start of endpoint based on preceeding endpoints */
282 static int udc_set_txfifo_addr(struct udc_ep
*ep
)
288 if (!ep
|| !(ep
->in
))
292 ep
->txfifo
= dev
->txfifo
;
295 for (i
= 0; i
< ep
->num
; i
++) {
296 if (dev
->ep
[i
].regs
) {
298 tmp
= readl(&dev
->ep
[i
].regs
->bufin_framenum
);
299 tmp
= AMD_GETBITS(tmp
, UDC_EPIN_BUFF_SIZE
);
306 /* CNAK pending field: bit0 = ep0in, bit16 = ep0out */
307 static u32 cnak_pending
;
309 static void UDC_QUEUE_CNAK(struct udc_ep
*ep
, unsigned num
)
311 if (readl(&ep
->regs
->ctl
) & AMD_BIT(UDC_EPCTL_NAK
)) {
312 DBG(ep
->dev
, "NAK could not be cleared for ep%d\n", num
);
313 cnak_pending
|= 1 << (num
);
316 cnak_pending
= cnak_pending
& (~(1 << (num
)));
320 /* Enables endpoint, is called by gadget driver */
322 udc_ep_enable(struct usb_ep
*usbep
, const struct usb_endpoint_descriptor
*desc
)
327 unsigned long iflags
;
332 || usbep
->name
== ep0_string
334 || desc
->bDescriptorType
!= USB_DT_ENDPOINT
)
337 ep
= container_of(usbep
, struct udc_ep
, ep
);
340 DBG(dev
, "udc_ep_enable() ep %d\n", ep
->num
);
342 if (!dev
->driver
|| dev
->gadget
.speed
== USB_SPEED_UNKNOWN
)
345 spin_lock_irqsave(&dev
->lock
, iflags
);
350 /* set traffic type */
351 tmp
= readl(&dev
->ep
[ep
->num
].regs
->ctl
);
352 tmp
= AMD_ADDBITS(tmp
, desc
->bmAttributes
, UDC_EPCTL_ET
);
353 writel(tmp
, &dev
->ep
[ep
->num
].regs
->ctl
);
355 /* set max packet size */
356 maxpacket
= le16_to_cpu(desc
->wMaxPacketSize
);
357 tmp
= readl(&dev
->ep
[ep
->num
].regs
->bufout_maxpkt
);
358 tmp
= AMD_ADDBITS(tmp
, maxpacket
, UDC_EP_MAX_PKT_SIZE
);
359 ep
->ep
.maxpacket
= maxpacket
;
360 writel(tmp
, &dev
->ep
[ep
->num
].regs
->bufout_maxpkt
);
365 /* ep ix in UDC CSR register space */
366 udc_csr_epix
= ep
->num
;
368 /* set buffer size (tx fifo entries) */
369 tmp
= readl(&dev
->ep
[ep
->num
].regs
->bufin_framenum
);
370 /* double buffering: fifo size = 2 x max packet size */
373 maxpacket
* UDC_EPIN_BUFF_SIZE_MULT
376 writel(tmp
, &dev
->ep
[ep
->num
].regs
->bufin_framenum
);
378 /* calc. tx fifo base addr */
379 udc_set_txfifo_addr(ep
);
382 tmp
= readl(&ep
->regs
->ctl
);
383 tmp
|= AMD_BIT(UDC_EPCTL_F
);
384 writel(tmp
, &ep
->regs
->ctl
);
388 /* ep ix in UDC CSR register space */
389 udc_csr_epix
= ep
->num
- UDC_CSR_EP_OUT_IX_OFS
;
391 /* set max packet size UDC CSR */
392 tmp
= readl(&dev
->csr
->ne
[ep
->num
- UDC_CSR_EP_OUT_IX_OFS
]);
393 tmp
= AMD_ADDBITS(tmp
, maxpacket
,
395 writel(tmp
, &dev
->csr
->ne
[ep
->num
- UDC_CSR_EP_OUT_IX_OFS
]);
397 if (use_dma
&& !ep
->in
) {
398 /* alloc and init BNA dummy request */
399 ep
->bna_dummy_req
= udc_alloc_bna_dummy(ep
);
400 ep
->bna_occurred
= 0;
403 if (ep
->num
!= UDC_EP0OUT_IX
)
404 dev
->data_ep_enabled
= 1;
408 tmp
= readl(&dev
->csr
->ne
[udc_csr_epix
]);
410 tmp
= AMD_ADDBITS(tmp
, maxpacket
, UDC_CSR_NE_MAX_PKT
);
412 tmp
= AMD_ADDBITS(tmp
, desc
->bEndpointAddress
, UDC_CSR_NE_NUM
);
414 tmp
= AMD_ADDBITS(tmp
, ep
->in
, UDC_CSR_NE_DIR
);
416 tmp
= AMD_ADDBITS(tmp
, desc
->bmAttributes
, UDC_CSR_NE_TYPE
);
418 tmp
= AMD_ADDBITS(tmp
, ep
->dev
->cur_config
, UDC_CSR_NE_CFG
);
420 tmp
= AMD_ADDBITS(tmp
, ep
->dev
->cur_intf
, UDC_CSR_NE_INTF
);
422 tmp
= AMD_ADDBITS(tmp
, ep
->dev
->cur_alt
, UDC_CSR_NE_ALT
);
424 writel(tmp
, &dev
->csr
->ne
[udc_csr_epix
]);
427 tmp
= readl(&dev
->regs
->ep_irqmsk
);
428 tmp
&= AMD_UNMASK_BIT(ep
->num
);
429 writel(tmp
, &dev
->regs
->ep_irqmsk
);
432 * clear NAK by writing CNAK
433 * avoid BNA for OUT DMA, don't clear NAK until DMA desc. written
435 if (!use_dma
|| ep
->in
) {
436 tmp
= readl(&ep
->regs
->ctl
);
437 tmp
|= AMD_BIT(UDC_EPCTL_CNAK
);
438 writel(tmp
, &ep
->regs
->ctl
);
440 UDC_QUEUE_CNAK(ep
, ep
->num
);
442 tmp
= desc
->bEndpointAddress
;
443 DBG(dev
, "%s enabled\n", usbep
->name
);
445 spin_unlock_irqrestore(&dev
->lock
, iflags
);
449 /* Resets endpoint */
450 static void ep_init(struct udc_regs __iomem
*regs
, struct udc_ep
*ep
)
454 VDBG(ep
->dev
, "ep-%d reset\n", ep
->num
);
456 ep
->ep
.ops
= &udc_ep_ops
;
457 INIT_LIST_HEAD(&ep
->queue
);
459 ep
->ep
.maxpacket
= (u16
) ~0;
461 tmp
= readl(&ep
->regs
->ctl
);
462 tmp
|= AMD_BIT(UDC_EPCTL_SNAK
);
463 writel(tmp
, &ep
->regs
->ctl
);
466 /* disable interrupt */
467 tmp
= readl(®s
->ep_irqmsk
);
468 tmp
|= AMD_BIT(ep
->num
);
469 writel(tmp
, ®s
->ep_irqmsk
);
472 /* unset P and IN bit of potential former DMA */
473 tmp
= readl(&ep
->regs
->ctl
);
474 tmp
&= AMD_UNMASK_BIT(UDC_EPCTL_P
);
475 writel(tmp
, &ep
->regs
->ctl
);
477 tmp
= readl(&ep
->regs
->sts
);
478 tmp
|= AMD_BIT(UDC_EPSTS_IN
);
479 writel(tmp
, &ep
->regs
->sts
);
482 tmp
= readl(&ep
->regs
->ctl
);
483 tmp
|= AMD_BIT(UDC_EPCTL_F
);
484 writel(tmp
, &ep
->regs
->ctl
);
487 /* reset desc pointer */
488 writel(0, &ep
->regs
->desptr
);
491 /* Disables endpoint, is called by gadget driver */
492 static int udc_ep_disable(struct usb_ep
*usbep
)
494 struct udc_ep
*ep
= NULL
;
495 unsigned long iflags
;
500 ep
= container_of(usbep
, struct udc_ep
, ep
);
501 if (usbep
->name
== ep0_string
|| !ep
->desc
)
504 DBG(ep
->dev
, "Disable ep-%d\n", ep
->num
);
506 spin_lock_irqsave(&ep
->dev
->lock
, iflags
);
507 udc_free_request(&ep
->ep
, &ep
->bna_dummy_req
->req
);
509 ep_init(ep
->dev
->regs
, ep
);
510 spin_unlock_irqrestore(&ep
->dev
->lock
, iflags
);
515 /* Allocates request packet, called by gadget driver */
516 static struct usb_request
*
517 udc_alloc_request(struct usb_ep
*usbep
, gfp_t gfp
)
519 struct udc_request
*req
;
520 struct udc_data_dma
*dma_desc
;
526 ep
= container_of(usbep
, struct udc_ep
, ep
);
528 VDBG(ep
->dev
, "udc_alloc_req(): ep%d\n", ep
->num
);
529 req
= kzalloc(sizeof(struct udc_request
), gfp
);
533 req
->req
.dma
= DMA_DONT_USE
;
534 INIT_LIST_HEAD(&req
->queue
);
537 /* ep0 in requests are allocated from data pool here */
538 dma_desc
= pci_pool_alloc(ep
->dev
->data_requests
, gfp
,
545 VDBG(ep
->dev
, "udc_alloc_req: req = %p dma_desc = %p, "
548 (unsigned long)req
->td_phys
);
549 /* prevent from using desc. - set HOST BUSY */
550 dma_desc
->status
= AMD_ADDBITS(dma_desc
->status
,
551 UDC_DMA_STP_STS_BS_HOST_BUSY
,
553 dma_desc
->bufptr
= cpu_to_le32(DMA_DONT_USE
);
554 req
->td_data
= dma_desc
;
555 req
->td_data_last
= NULL
;
562 /* Frees request packet, called by gadget driver */
564 udc_free_request(struct usb_ep
*usbep
, struct usb_request
*usbreq
)
567 struct udc_request
*req
;
569 if (!usbep
|| !usbreq
)
572 ep
= container_of(usbep
, struct udc_ep
, ep
);
573 req
= container_of(usbreq
, struct udc_request
, req
);
574 VDBG(ep
->dev
, "free_req req=%p\n", req
);
575 BUG_ON(!list_empty(&req
->queue
));
577 VDBG(ep
->dev
, "req->td_data=%p\n", req
->td_data
);
579 /* free dma chain if created */
580 if (req
->chain_len
> 1) {
581 udc_free_dma_chain(ep
->dev
, req
);
584 pci_pool_free(ep
->dev
->data_requests
, req
->td_data
,
590 /* Init BNA dummy descriptor for HOST BUSY and pointing to itself */
591 static void udc_init_bna_dummy(struct udc_request
*req
)
595 req
->td_data
->status
|= AMD_BIT(UDC_DMA_IN_STS_L
);
596 /* set next pointer to itself */
597 req
->td_data
->next
= req
->td_phys
;
600 = AMD_ADDBITS(req
->td_data
->status
,
601 UDC_DMA_STP_STS_BS_DMA_DONE
,
604 pr_debug("bna desc = %p, sts = %08x\n",
605 req
->td_data
, req
->td_data
->status
);
610 /* Allocate BNA dummy descriptor */
611 static struct udc_request
*udc_alloc_bna_dummy(struct udc_ep
*ep
)
613 struct udc_request
*req
= NULL
;
614 struct usb_request
*_req
= NULL
;
616 /* alloc the dummy request */
617 _req
= udc_alloc_request(&ep
->ep
, GFP_ATOMIC
);
619 req
= container_of(_req
, struct udc_request
, req
);
620 ep
->bna_dummy_req
= req
;
621 udc_init_bna_dummy(req
);
626 /* Write data to TX fifo for IN packets */
628 udc_txfifo_write(struct udc_ep
*ep
, struct usb_request
*req
)
634 unsigned remaining
= 0;
639 req_buf
= req
->buf
+ req
->actual
;
641 remaining
= req
->length
- req
->actual
;
643 buf
= (u32
*) req_buf
;
645 bytes
= ep
->ep
.maxpacket
;
646 if (bytes
> remaining
)
650 for (i
= 0; i
< bytes
/ UDC_DWORD_BYTES
; i
++) {
651 writel(*(buf
+ i
), ep
->txfifo
);
654 /* remaining bytes must be written by byte access */
655 for (j
= 0; j
< bytes
% UDC_DWORD_BYTES
; j
++) {
656 writeb((u8
)(*(buf
+ i
) >> (j
<< UDC_BITS_PER_BYTE_SHIFT
)),
660 /* dummy write confirm */
661 writel(0, &ep
->regs
->confirm
);
664 /* Read dwords from RX fifo for OUT transfers */
665 static int udc_rxfifo_read_dwords(struct udc
*dev
, u32
*buf
, int dwords
)
669 VDBG(dev
, "udc_read_dwords(): %d dwords\n", dwords
);
671 for (i
= 0; i
< dwords
; i
++) {
672 *(buf
+ i
) = readl(dev
->rxfifo
);
677 /* Read bytes from RX fifo for OUT transfers */
678 static int udc_rxfifo_read_bytes(struct udc
*dev
, u8
*buf
, int bytes
)
683 VDBG(dev
, "udc_read_bytes(): %d bytes\n", bytes
);
686 for (i
= 0; i
< bytes
/ UDC_DWORD_BYTES
; i
++) {
687 *((u32
*)(buf
+ (i
<<2))) = readl(dev
->rxfifo
);
690 /* remaining bytes must be read by byte access */
691 if (bytes
% UDC_DWORD_BYTES
) {
692 tmp
= readl(dev
->rxfifo
);
693 for (j
= 0; j
< bytes
% UDC_DWORD_BYTES
; j
++) {
694 *(buf
+ (i
<<2) + j
) = (u8
)(tmp
& UDC_BYTE_MASK
);
695 tmp
= tmp
>> UDC_BITS_PER_BYTE
;
702 /* Read data from RX fifo for OUT transfers */
704 udc_rxfifo_read(struct udc_ep
*ep
, struct udc_request
*req
)
709 unsigned finished
= 0;
711 /* received number bytes */
712 bytes
= readl(&ep
->regs
->sts
);
713 bytes
= AMD_GETBITS(bytes
, UDC_EPSTS_RX_PKT_SIZE
);
715 buf_space
= req
->req
.length
- req
->req
.actual
;
716 buf
= req
->req
.buf
+ req
->req
.actual
;
717 if (bytes
> buf_space
) {
718 if ((buf_space
% ep
->ep
.maxpacket
) != 0) {
720 "%s: rx %d bytes, rx-buf space = %d bytesn\n",
721 ep
->ep
.name
, bytes
, buf_space
);
722 req
->req
.status
= -EOVERFLOW
;
726 req
->req
.actual
+= bytes
;
729 if (((bytes
% ep
->ep
.maxpacket
) != 0) || (!bytes
)
730 || ((req
->req
.actual
== req
->req
.length
) && !req
->req
.zero
))
733 /* read rx fifo bytes */
734 VDBG(ep
->dev
, "ep %s: rxfifo read %d bytes\n", ep
->ep
.name
, bytes
);
735 udc_rxfifo_read_bytes(ep
->dev
, buf
, bytes
);
740 /* create/re-init a DMA descriptor or a DMA descriptor chain */
741 static int prep_dma(struct udc_ep
*ep
, struct udc_request
*req
, gfp_t gfp
)
746 VDBG(ep
->dev
, "prep_dma\n");
747 VDBG(ep
->dev
, "prep_dma ep%d req->td_data=%p\n",
748 ep
->num
, req
->td_data
);
750 /* set buffer pointer */
751 req
->td_data
->bufptr
= req
->req
.dma
;
754 req
->td_data
->status
|= AMD_BIT(UDC_DMA_IN_STS_L
);
756 /* build/re-init dma chain if maxpkt scatter mode, not for EP0 */
759 retval
= udc_create_dma_chain(ep
, req
, ep
->ep
.maxpacket
, gfp
);
761 if (retval
== -ENOMEM
)
762 DBG(ep
->dev
, "Out of DMA memory\n");
766 if (req
->req
.length
== ep
->ep
.maxpacket
) {
768 req
->td_data
->status
=
769 AMD_ADDBITS(req
->td_data
->status
,
771 UDC_DMA_IN_STS_TXBYTES
);
779 VDBG(ep
->dev
, "IN: use_dma_ppb=%d req->req.len=%d "
780 "maxpacket=%d ep%d\n",
781 use_dma_ppb
, req
->req
.length
,
782 ep
->ep
.maxpacket
, ep
->num
);
784 * if bytes < max packet then tx bytes must
785 * be written in packet per buffer mode
787 if (!use_dma_ppb
|| req
->req
.length
< ep
->ep
.maxpacket
788 || ep
->num
== UDC_EP0OUT_IX
789 || ep
->num
== UDC_EP0IN_IX
) {
791 req
->td_data
->status
=
792 AMD_ADDBITS(req
->td_data
->status
,
794 UDC_DMA_IN_STS_TXBYTES
);
795 /* reset frame num */
796 req
->td_data
->status
=
797 AMD_ADDBITS(req
->td_data
->status
,
799 UDC_DMA_IN_STS_FRAMENUM
);
802 req
->td_data
->status
=
803 AMD_ADDBITS(req
->td_data
->status
,
804 UDC_DMA_STP_STS_BS_HOST_BUSY
,
807 VDBG(ep
->dev
, "OUT set host ready\n");
809 req
->td_data
->status
=
810 AMD_ADDBITS(req
->td_data
->status
,
811 UDC_DMA_STP_STS_BS_HOST_READY
,
815 /* clear NAK by writing CNAK */
817 tmp
= readl(&ep
->regs
->ctl
);
818 tmp
|= AMD_BIT(UDC_EPCTL_CNAK
);
819 writel(tmp
, &ep
->regs
->ctl
);
821 UDC_QUEUE_CNAK(ep
, ep
->num
);
829 /* Completes request packet ... caller MUST hold lock */
831 complete_req(struct udc_ep
*ep
, struct udc_request
*req
, int sts
)
832 __releases(ep
->dev
->lock
)
833 __acquires(ep
->dev
->lock
)
838 VDBG(ep
->dev
, "complete_req(): ep%d\n", ep
->num
);
842 if (req
->dma_mapping
) {
844 pci_unmap_single(dev
->pdev
,
849 pci_unmap_single(dev
->pdev
,
853 req
->dma_mapping
= 0;
854 req
->req
.dma
= DMA_DONT_USE
;
860 /* set new status if pending */
861 if (req
->req
.status
== -EINPROGRESS
)
862 req
->req
.status
= sts
;
864 /* remove from ep queue */
865 list_del_init(&req
->queue
);
867 VDBG(ep
->dev
, "req %p => complete %d bytes at %s with sts %d\n",
868 &req
->req
, req
->req
.length
, ep
->ep
.name
, sts
);
870 spin_unlock(&dev
->lock
);
871 req
->req
.complete(&ep
->ep
, &req
->req
);
872 spin_lock(&dev
->lock
);
876 /* frees pci pool descriptors of a DMA chain */
877 static int udc_free_dma_chain(struct udc
*dev
, struct udc_request
*req
)
881 struct udc_data_dma
*td
;
882 struct udc_data_dma
*td_last
= NULL
;
885 DBG(dev
, "free chain req = %p\n", req
);
887 /* do not free first desc., will be done by free for request */
888 td_last
= req
->td_data
;
889 td
= phys_to_virt(td_last
->next
);
891 for (i
= 1; i
< req
->chain_len
; i
++) {
893 pci_pool_free(dev
->data_requests
, td
,
894 (dma_addr_t
) td_last
->next
);
896 td
= phys_to_virt(td_last
->next
);
902 /* Iterates to the end of a DMA chain and returns last descriptor */
903 static struct udc_data_dma
*udc_get_last_dma_desc(struct udc_request
*req
)
905 struct udc_data_dma
*td
;
908 while (td
&& !(td
->status
& AMD_BIT(UDC_DMA_IN_STS_L
))) {
909 td
= phys_to_virt(td
->next
);
916 /* Iterates to the end of a DMA chain and counts bytes received */
917 static u32
udc_get_ppbdu_rxbytes(struct udc_request
*req
)
919 struct udc_data_dma
*td
;
923 /* received number bytes */
924 count
= AMD_GETBITS(td
->status
, UDC_DMA_OUT_STS_RXBYTES
);
926 while (td
&& !(td
->status
& AMD_BIT(UDC_DMA_IN_STS_L
))) {
927 td
= phys_to_virt(td
->next
);
928 /* received number bytes */
930 count
+= AMD_GETBITS(td
->status
,
931 UDC_DMA_OUT_STS_RXBYTES
);
939 /* Creates or re-inits a DMA chain */
940 static int udc_create_dma_chain(
942 struct udc_request
*req
,
943 unsigned long buf_len
, gfp_t gfp_flags
946 unsigned long bytes
= req
->req
.length
;
949 struct udc_data_dma
*td
= NULL
;
950 struct udc_data_dma
*last
= NULL
;
951 unsigned long txbytes
;
952 unsigned create_new_chain
= 0;
955 VDBG(ep
->dev
, "udc_create_dma_chain: bytes=%ld buf_len=%ld\n",
957 dma_addr
= DMA_DONT_USE
;
959 /* unset L bit in first desc for OUT */
961 req
->td_data
->status
&= AMD_CLEAR_BIT(UDC_DMA_IN_STS_L
);
964 /* alloc only new desc's if not already available */
965 len
= req
->req
.length
/ ep
->ep
.maxpacket
;
966 if (req
->req
.length
% ep
->ep
.maxpacket
) {
970 if (len
> req
->chain_len
) {
971 /* shorter chain already allocated before */
972 if (req
->chain_len
> 1) {
973 udc_free_dma_chain(ep
->dev
, req
);
975 req
->chain_len
= len
;
976 create_new_chain
= 1;
980 /* gen. required number of descriptors and buffers */
981 for (i
= buf_len
; i
< bytes
; i
+= buf_len
) {
982 /* create or determine next desc. */
983 if (create_new_chain
) {
985 td
= pci_pool_alloc(ep
->dev
->data_requests
,
986 gfp_flags
, &dma_addr
);
991 } else if (i
== buf_len
) {
993 td
= (struct udc_data_dma
*) phys_to_virt(
997 td
= (struct udc_data_dma
*) phys_to_virt(last
->next
);
1003 td
->bufptr
= req
->req
.dma
+ i
; /* assign buffer */
1007 /* short packet ? */
1008 if ((bytes
- i
) >= buf_len
) {
1012 txbytes
= bytes
- i
;
1015 /* link td and assign tx bytes */
1017 if (create_new_chain
) {
1018 req
->td_data
->next
= dma_addr
;
1020 /* req->td_data->next = virt_to_phys(td); */
1022 /* write tx bytes */
1025 req
->td_data
->status
=
1026 AMD_ADDBITS(req
->td_data
->status
,
1028 UDC_DMA_IN_STS_TXBYTES
);
1030 td
->status
= AMD_ADDBITS(td
->status
,
1032 UDC_DMA_IN_STS_TXBYTES
);
1035 if (create_new_chain
) {
1036 last
->next
= dma_addr
;
1038 /* last->next = virt_to_phys(td); */
1041 /* write tx bytes */
1042 td
->status
= AMD_ADDBITS(td
->status
,
1044 UDC_DMA_IN_STS_TXBYTES
);
1051 td
->status
|= AMD_BIT(UDC_DMA_IN_STS_L
);
1052 /* last desc. points to itself */
1053 req
->td_data_last
= td
;
1059 /* Enabling RX DMA */
1060 static void udc_set_rde(struct udc
*dev
)
1064 VDBG(dev
, "udc_set_rde()\n");
1065 /* stop RDE timer */
1066 if (timer_pending(&udc_timer
)) {
1068 mod_timer(&udc_timer
, jiffies
- 1);
1071 tmp
= readl(&dev
->regs
->ctl
);
1072 tmp
|= AMD_BIT(UDC_DEVCTL_RDE
);
1073 writel(tmp
, &dev
->regs
->ctl
);
1076 /* Queues a request packet, called by gadget driver */
1078 udc_queue(struct usb_ep
*usbep
, struct usb_request
*usbreq
, gfp_t gfp
)
1082 unsigned long iflags
;
1084 struct udc_request
*req
;
1088 /* check the inputs */
1089 req
= container_of(usbreq
, struct udc_request
, req
);
1091 if (!usbep
|| !usbreq
|| !usbreq
->complete
|| !usbreq
->buf
1092 || !list_empty(&req
->queue
))
1095 ep
= container_of(usbep
, struct udc_ep
, ep
);
1096 if (!ep
->desc
&& (ep
->num
!= 0 && ep
->num
!= UDC_EP0OUT_IX
))
1099 VDBG(ep
->dev
, "udc_queue(): ep%d-in=%d\n", ep
->num
, ep
->in
);
1102 if (!dev
->driver
|| dev
->gadget
.speed
== USB_SPEED_UNKNOWN
)
1105 /* map dma (usually done before) */
1106 if (ep
->dma
&& usbreq
->length
!= 0
1107 && (usbreq
->dma
== DMA_DONT_USE
|| usbreq
->dma
== 0)) {
1108 VDBG(dev
, "DMA map req %p\n", req
);
1110 usbreq
->dma
= pci_map_single(dev
->pdev
,
1115 usbreq
->dma
= pci_map_single(dev
->pdev
,
1118 PCI_DMA_FROMDEVICE
);
1119 req
->dma_mapping
= 1;
1122 VDBG(dev
, "%s queue req %p, len %d req->td_data=%p buf %p\n",
1123 usbep
->name
, usbreq
, usbreq
->length
,
1124 req
->td_data
, usbreq
->buf
);
1126 spin_lock_irqsave(&dev
->lock
, iflags
);
1128 usbreq
->status
= -EINPROGRESS
;
1131 /* on empty queue just do first transfer */
1132 if (list_empty(&ep
->queue
)) {
1134 if (usbreq
->length
== 0) {
1135 /* IN zlp's are handled by hardware */
1136 complete_req(ep
, req
, 0);
1137 VDBG(dev
, "%s: zlp\n", ep
->ep
.name
);
1139 * if set_config or set_intf is waiting for ack by zlp
1142 if (dev
->set_cfg_not_acked
) {
1143 tmp
= readl(&dev
->regs
->ctl
);
1144 tmp
|= AMD_BIT(UDC_DEVCTL_CSR_DONE
);
1145 writel(tmp
, &dev
->regs
->ctl
);
1146 dev
->set_cfg_not_acked
= 0;
1148 /* setup command is ACK'ed now by zlp */
1149 if (dev
->waiting_zlp_ack_ep0in
) {
1150 /* clear NAK by writing CNAK in EP0_IN */
1151 tmp
= readl(&dev
->ep
[UDC_EP0IN_IX
].regs
->ctl
);
1152 tmp
|= AMD_BIT(UDC_EPCTL_CNAK
);
1153 writel(tmp
, &dev
->ep
[UDC_EP0IN_IX
].regs
->ctl
);
1154 dev
->ep
[UDC_EP0IN_IX
].naking
= 0;
1155 UDC_QUEUE_CNAK(&dev
->ep
[UDC_EP0IN_IX
],
1157 dev
->waiting_zlp_ack_ep0in
= 0;
1162 retval
= prep_dma(ep
, req
, gfp
);
1165 /* write desc pointer to enable DMA */
1167 /* set HOST READY */
1168 req
->td_data
->status
=
1169 AMD_ADDBITS(req
->td_data
->status
,
1170 UDC_DMA_IN_STS_BS_HOST_READY
,
1174 /* disabled rx dma while descriptor update */
1176 /* stop RDE timer */
1177 if (timer_pending(&udc_timer
)) {
1179 mod_timer(&udc_timer
, jiffies
- 1);
1182 tmp
= readl(&dev
->regs
->ctl
);
1183 tmp
&= AMD_UNMASK_BIT(UDC_DEVCTL_RDE
);
1184 writel(tmp
, &dev
->regs
->ctl
);
1188 * if BNA occurred then let BNA dummy desc.
1189 * point to current desc.
1191 if (ep
->bna_occurred
) {
1192 VDBG(dev
, "copy to BNA dummy desc.\n");
1193 memcpy(ep
->bna_dummy_req
->td_data
,
1195 sizeof(struct udc_data_dma
));
1198 /* write desc pointer */
1199 writel(req
->td_phys
, &ep
->regs
->desptr
);
1201 /* clear NAK by writing CNAK */
1203 tmp
= readl(&ep
->regs
->ctl
);
1204 tmp
|= AMD_BIT(UDC_EPCTL_CNAK
);
1205 writel(tmp
, &ep
->regs
->ctl
);
1207 UDC_QUEUE_CNAK(ep
, ep
->num
);
1212 tmp
= readl(&dev
->regs
->ep_irqmsk
);
1213 tmp
&= AMD_UNMASK_BIT(ep
->num
);
1214 writel(tmp
, &dev
->regs
->ep_irqmsk
);
1216 } else if (ep
->in
) {
1218 tmp
= readl(&dev
->regs
->ep_irqmsk
);
1219 tmp
&= AMD_UNMASK_BIT(ep
->num
);
1220 writel(tmp
, &dev
->regs
->ep_irqmsk
);
1223 } else if (ep
->dma
) {
1226 * prep_dma not used for OUT ep's, this is not possible
1227 * for PPB modes, because of chain creation reasons
1230 retval
= prep_dma(ep
, req
, gfp
);
1235 VDBG(dev
, "list_add\n");
1236 /* add request to ep queue */
1239 list_add_tail(&req
->queue
, &ep
->queue
);
1241 /* open rxfifo if out data queued */
1246 if (ep
->num
!= UDC_EP0OUT_IX
)
1247 dev
->data_ep_queued
= 1;
1249 /* stop OUT naking */
1251 if (!use_dma
&& udc_rxfifo_pending
) {
1252 DBG(dev
, "udc_queue(): pending bytes in "
1253 "rxfifo after nyet\n");
1255 * read pending bytes afer nyet:
1258 if (udc_rxfifo_read(ep
, req
)) {
1260 complete_req(ep
, req
, 0);
1262 udc_rxfifo_pending
= 0;
1269 spin_unlock_irqrestore(&dev
->lock
, iflags
);
1273 /* Empty request queue of an endpoint; caller holds spinlock */
1274 static void empty_req_queue(struct udc_ep
*ep
)
1276 struct udc_request
*req
;
1279 while (!list_empty(&ep
->queue
)) {
1280 req
= list_entry(ep
->queue
.next
,
1283 complete_req(ep
, req
, -ESHUTDOWN
);
1287 /* Dequeues a request packet, called by gadget driver */
1288 static int udc_dequeue(struct usb_ep
*usbep
, struct usb_request
*usbreq
)
1291 struct udc_request
*req
;
1293 unsigned long iflags
;
1295 ep
= container_of(usbep
, struct udc_ep
, ep
);
1296 if (!usbep
|| !usbreq
|| (!ep
->desc
&& (ep
->num
!= 0
1297 && ep
->num
!= UDC_EP0OUT_IX
)))
1300 req
= container_of(usbreq
, struct udc_request
, req
);
1302 spin_lock_irqsave(&ep
->dev
->lock
, iflags
);
1303 halted
= ep
->halted
;
1305 /* request in processing or next one */
1306 if (ep
->queue
.next
== &req
->queue
) {
1307 if (ep
->dma
&& req
->dma_going
) {
1309 ep
->cancel_transfer
= 1;
1313 /* stop potential receive DMA */
1314 tmp
= readl(&udc
->regs
->ctl
);
1315 writel(tmp
& AMD_UNMASK_BIT(UDC_DEVCTL_RDE
),
1318 * Cancel transfer later in ISR
1319 * if descriptor was touched.
1321 dma_sts
= AMD_GETBITS(req
->td_data
->status
,
1322 UDC_DMA_OUT_STS_BS
);
1323 if (dma_sts
!= UDC_DMA_OUT_STS_BS_HOST_READY
)
1324 ep
->cancel_transfer
= 1;
1326 udc_init_bna_dummy(ep
->req
);
1327 writel(ep
->bna_dummy_req
->td_phys
,
1330 writel(tmp
, &udc
->regs
->ctl
);
1334 complete_req(ep
, req
, -ECONNRESET
);
1335 ep
->halted
= halted
;
1337 spin_unlock_irqrestore(&ep
->dev
->lock
, iflags
);
1341 /* Halt or clear halt of endpoint */
1343 udc_set_halt(struct usb_ep
*usbep
, int halt
)
1347 unsigned long iflags
;
1353 pr_debug("set_halt %s: halt=%d\n", usbep
->name
, halt
);
1355 ep
= container_of(usbep
, struct udc_ep
, ep
);
1356 if (!ep
->desc
&& (ep
->num
!= 0 && ep
->num
!= UDC_EP0OUT_IX
))
1358 if (!ep
->dev
->driver
|| ep
->dev
->gadget
.speed
== USB_SPEED_UNKNOWN
)
1361 spin_lock_irqsave(&udc_stall_spinlock
, iflags
);
1362 /* halt or clear halt */
1365 ep
->dev
->stall_ep0in
= 1;
1369 * rxfifo empty not taken into acount
1371 tmp
= readl(&ep
->regs
->ctl
);
1372 tmp
|= AMD_BIT(UDC_EPCTL_S
);
1373 writel(tmp
, &ep
->regs
->ctl
);
1376 /* setup poll timer */
1377 if (!timer_pending(&udc_pollstall_timer
)) {
1378 udc_pollstall_timer
.expires
= jiffies
+
1379 HZ
* UDC_POLLSTALL_TIMER_USECONDS
1381 if (!stop_pollstall_timer
) {
1382 DBG(ep
->dev
, "start polltimer\n");
1383 add_timer(&udc_pollstall_timer
);
1388 /* ep is halted by set_halt() before */
1390 tmp
= readl(&ep
->regs
->ctl
);
1391 /* clear stall bit */
1392 tmp
= tmp
& AMD_CLEAR_BIT(UDC_EPCTL_S
);
1393 /* clear NAK by writing CNAK */
1394 tmp
|= AMD_BIT(UDC_EPCTL_CNAK
);
1395 writel(tmp
, &ep
->regs
->ctl
);
1397 UDC_QUEUE_CNAK(ep
, ep
->num
);
1400 spin_unlock_irqrestore(&udc_stall_spinlock
, iflags
);
1404 /* gadget interface */
1405 static const struct usb_ep_ops udc_ep_ops
= {
1406 .enable
= udc_ep_enable
,
1407 .disable
= udc_ep_disable
,
1409 .alloc_request
= udc_alloc_request
,
1410 .free_request
= udc_free_request
,
1413 .dequeue
= udc_dequeue
,
1415 .set_halt
= udc_set_halt
,
1416 /* fifo ops not implemented */
1419 /*-------------------------------------------------------------------------*/
1421 /* Get frame counter (not implemented) */
1422 static int udc_get_frame(struct usb_gadget
*gadget
)
1427 /* Remote wakeup gadget interface */
1428 static int udc_wakeup(struct usb_gadget
*gadget
)
1434 dev
= container_of(gadget
, struct udc
, gadget
);
1435 udc_remote_wakeup(dev
);
1440 /* gadget operations */
1441 static const struct usb_gadget_ops udc_ops
= {
1442 .wakeup
= udc_wakeup
,
1443 .get_frame
= udc_get_frame
,
1446 /* Setups endpoint parameters, adds endpoints to linked list */
1447 static void make_ep_lists(struct udc
*dev
)
1449 /* make gadget ep lists */
1450 INIT_LIST_HEAD(&dev
->gadget
.ep_list
);
1451 list_add_tail(&dev
->ep
[UDC_EPIN_STATUS_IX
].ep
.ep_list
,
1452 &dev
->gadget
.ep_list
);
1453 list_add_tail(&dev
->ep
[UDC_EPIN_IX
].ep
.ep_list
,
1454 &dev
->gadget
.ep_list
);
1455 list_add_tail(&dev
->ep
[UDC_EPOUT_IX
].ep
.ep_list
,
1456 &dev
->gadget
.ep_list
);
1459 dev
->ep
[UDC_EPIN_STATUS_IX
].fifo_depth
= UDC_EPIN_SMALLINT_BUFF_SIZE
;
1460 if (dev
->gadget
.speed
== USB_SPEED_FULL
)
1461 dev
->ep
[UDC_EPIN_IX
].fifo_depth
= UDC_FS_EPIN_BUFF_SIZE
;
1462 else if (dev
->gadget
.speed
== USB_SPEED_HIGH
)
1463 dev
->ep
[UDC_EPIN_IX
].fifo_depth
= hs_tx_buf
;
1464 dev
->ep
[UDC_EPOUT_IX
].fifo_depth
= UDC_RXFIFO_SIZE
;
1467 /* init registers at driver load time */
1468 static int startup_registers(struct udc
*dev
)
1472 /* init controller by soft reset */
1473 udc_soft_reset(dev
);
1475 /* mask not needed interrupts */
1476 udc_mask_unused_interrupts(dev
);
1478 /* put into initial config */
1479 udc_basic_init(dev
);
1480 /* link up all endpoints */
1481 udc_setup_endpoints(dev
);
1484 tmp
= readl(&dev
->regs
->cfg
);
1485 if (use_fullspeed
) {
1486 tmp
= AMD_ADDBITS(tmp
, UDC_DEVCFG_SPD_FS
, UDC_DEVCFG_SPD
);
1488 tmp
= AMD_ADDBITS(tmp
, UDC_DEVCFG_SPD_HS
, UDC_DEVCFG_SPD
);
1490 writel(tmp
, &dev
->regs
->cfg
);
1495 /* Inits UDC context */
1496 static void udc_basic_init(struct udc
*dev
)
1500 DBG(dev
, "udc_basic_init()\n");
1502 dev
->gadget
.speed
= USB_SPEED_UNKNOWN
;
1504 /* stop RDE timer */
1505 if (timer_pending(&udc_timer
)) {
1507 mod_timer(&udc_timer
, jiffies
- 1);
1509 /* stop poll stall timer */
1510 if (timer_pending(&udc_pollstall_timer
)) {
1511 mod_timer(&udc_pollstall_timer
, jiffies
- 1);
1514 tmp
= readl(&dev
->regs
->ctl
);
1515 tmp
&= AMD_UNMASK_BIT(UDC_DEVCTL_RDE
);
1516 tmp
&= AMD_UNMASK_BIT(UDC_DEVCTL_TDE
);
1517 writel(tmp
, &dev
->regs
->ctl
);
1519 /* enable dynamic CSR programming */
1520 tmp
= readl(&dev
->regs
->cfg
);
1521 tmp
|= AMD_BIT(UDC_DEVCFG_CSR_PRG
);
1522 /* set self powered */
1523 tmp
|= AMD_BIT(UDC_DEVCFG_SP
);
1524 /* set remote wakeupable */
1525 tmp
|= AMD_BIT(UDC_DEVCFG_RWKP
);
1526 writel(tmp
, &dev
->regs
->cfg
);
1530 dev
->data_ep_enabled
= 0;
1531 dev
->data_ep_queued
= 0;
1534 /* Sets initial endpoint parameters */
1535 static void udc_setup_endpoints(struct udc
*dev
)
1541 DBG(dev
, "udc_setup_endpoints()\n");
1543 /* read enum speed */
1544 tmp
= readl(&dev
->regs
->sts
);
1545 tmp
= AMD_GETBITS(tmp
, UDC_DEVSTS_ENUM_SPEED
);
1546 if (tmp
== UDC_DEVSTS_ENUM_SPEED_HIGH
) {
1547 dev
->gadget
.speed
= USB_SPEED_HIGH
;
1548 } else if (tmp
== UDC_DEVSTS_ENUM_SPEED_FULL
) {
1549 dev
->gadget
.speed
= USB_SPEED_FULL
;
1552 /* set basic ep parameters */
1553 for (tmp
= 0; tmp
< UDC_EP_NUM
; tmp
++) {
1556 ep
->ep
.name
= ep_string
[tmp
];
1558 /* txfifo size is calculated at enable time */
1559 ep
->txfifo
= dev
->txfifo
;
1562 if (tmp
< UDC_EPIN_NUM
) {
1563 ep
->fifo_depth
= UDC_TXFIFO_SIZE
;
1566 ep
->fifo_depth
= UDC_RXFIFO_SIZE
;
1570 ep
->regs
= &dev
->ep_regs
[tmp
];
1572 * ep will be reset only if ep was not enabled before to avoid
1573 * disabling ep interrupts when ENUM interrupt occurs but ep is
1574 * not enabled by gadget driver
1577 ep_init(dev
->regs
, ep
);
1582 * ep->dma is not really used, just to indicate that
1583 * DMA is active: remove this
1584 * dma regs = dev control regs
1586 ep
->dma
= &dev
->regs
->ctl
;
1588 /* nak OUT endpoints until enable - not for ep0 */
1589 if (tmp
!= UDC_EP0IN_IX
&& tmp
!= UDC_EP0OUT_IX
1590 && tmp
> UDC_EPIN_NUM
) {
1592 reg
= readl(&dev
->ep
[tmp
].regs
->ctl
);
1593 reg
|= AMD_BIT(UDC_EPCTL_SNAK
);
1594 writel(reg
, &dev
->ep
[tmp
].regs
->ctl
);
1595 dev
->ep
[tmp
].naking
= 1;
1600 /* EP0 max packet */
1601 if (dev
->gadget
.speed
== USB_SPEED_FULL
) {
1602 dev
->ep
[UDC_EP0IN_IX
].ep
.maxpacket
= UDC_FS_EP0IN_MAX_PKT_SIZE
;
1603 dev
->ep
[UDC_EP0OUT_IX
].ep
.maxpacket
=
1604 UDC_FS_EP0OUT_MAX_PKT_SIZE
;
1605 } else if (dev
->gadget
.speed
== USB_SPEED_HIGH
) {
1606 dev
->ep
[UDC_EP0IN_IX
].ep
.maxpacket
= UDC_EP0IN_MAX_PKT_SIZE
;
1607 dev
->ep
[UDC_EP0OUT_IX
].ep
.maxpacket
= UDC_EP0OUT_MAX_PKT_SIZE
;
1611 * with suspend bug workaround, ep0 params for gadget driver
1612 * are set at gadget driver bind() call
1614 dev
->gadget
.ep0
= &dev
->ep
[UDC_EP0IN_IX
].ep
;
1615 dev
->ep
[UDC_EP0IN_IX
].halted
= 0;
1616 INIT_LIST_HEAD(&dev
->gadget
.ep0
->ep_list
);
1618 /* init cfg/alt/int */
1619 dev
->cur_config
= 0;
1624 /* Bringup after Connect event, initial bringup to be ready for ep0 events */
1625 static void usb_connect(struct udc
*dev
)
1628 dev_info(&dev
->pdev
->dev
, "USB Connect\n");
1632 /* put into initial config */
1633 udc_basic_init(dev
);
1635 /* enable device setup interrupts */
1636 udc_enable_dev_setup_interrupts(dev
);
1640 * Calls gadget with disconnect event and resets the UDC and makes
1641 * initial bringup to be ready for ep0 events
1643 static void usb_disconnect(struct udc
*dev
)
1646 dev_info(&dev
->pdev
->dev
, "USB Disconnect\n");
1650 /* mask interrupts */
1651 udc_mask_unused_interrupts(dev
);
1653 /* REVISIT there doesn't seem to be a point to having this
1654 * talk to a tasklet ... do it directly, we already hold
1655 * the spinlock needed to process the disconnect.
1658 tasklet_schedule(&disconnect_tasklet
);
1661 /* Tasklet for disconnect to be outside of interrupt context */
1662 static void udc_tasklet_disconnect(unsigned long par
)
1664 struct udc
*dev
= (struct udc
*)(*((struct udc
**) par
));
1667 DBG(dev
, "Tasklet disconnect\n");
1668 spin_lock_irq(&dev
->lock
);
1671 spin_unlock(&dev
->lock
);
1672 dev
->driver
->disconnect(&dev
->gadget
);
1673 spin_lock(&dev
->lock
);
1676 for (tmp
= 0; tmp
< UDC_EP_NUM
; tmp
++) {
1677 empty_req_queue(&dev
->ep
[tmp
]);
1684 &dev
->ep
[UDC_EP0IN_IX
]);
1687 if (!soft_reset_occured
) {
1688 /* init controller by soft reset */
1689 udc_soft_reset(dev
);
1690 soft_reset_occured
++;
1693 /* re-enable dev interrupts */
1694 udc_enable_dev_setup_interrupts(dev
);
1695 /* back to full speed ? */
1696 if (use_fullspeed
) {
1697 tmp
= readl(&dev
->regs
->cfg
);
1698 tmp
= AMD_ADDBITS(tmp
, UDC_DEVCFG_SPD_FS
, UDC_DEVCFG_SPD
);
1699 writel(tmp
, &dev
->regs
->cfg
);
1702 spin_unlock_irq(&dev
->lock
);
1705 /* Reset the UDC core */
1706 static void udc_soft_reset(struct udc
*dev
)
1708 unsigned long flags
;
1710 DBG(dev
, "Soft reset\n");
1712 * reset possible waiting interrupts, because int.
1713 * status is lost after soft reset,
1714 * ep int. status reset
1716 writel(UDC_EPINT_MSK_DISABLE_ALL
, &dev
->regs
->ep_irqsts
);
1717 /* device int. status reset */
1718 writel(UDC_DEV_MSK_DISABLE
, &dev
->regs
->irqsts
);
1720 spin_lock_irqsave(&udc_irq_spinlock
, flags
);
1721 writel(AMD_BIT(UDC_DEVCFG_SOFTRESET
), &dev
->regs
->cfg
);
1722 readl(&dev
->regs
->cfg
);
1723 spin_unlock_irqrestore(&udc_irq_spinlock
, flags
);
1727 /* RDE timer callback to set RDE bit */
1728 static void udc_timer_function(unsigned long v
)
1732 spin_lock_irq(&udc_irq_spinlock
);
1736 * open the fifo if fifo was filled on last timer call
1740 /* set RDE to receive setup data */
1741 tmp
= readl(&udc
->regs
->ctl
);
1742 tmp
|= AMD_BIT(UDC_DEVCTL_RDE
);
1743 writel(tmp
, &udc
->regs
->ctl
);
1745 } else if (readl(&udc
->regs
->sts
)
1746 & AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY
)) {
1748 * if fifo empty setup polling, do not just
1751 udc_timer
.expires
= jiffies
+ HZ
/UDC_RDE_TIMER_DIV
;
1753 add_timer(&udc_timer
);
1757 * fifo contains data now, setup timer for opening
1758 * the fifo when timer expires to be able to receive
1759 * setup packets, when data packets gets queued by
1760 * gadget layer then timer will forced to expire with
1761 * set_rde=0 (RDE is set in udc_queue())
1764 /* debug: lhadmot_timer_start = 221070 */
1765 udc_timer
.expires
= jiffies
+ HZ
*UDC_RDE_TIMER_SECONDS
;
1767 add_timer(&udc_timer
);
1772 set_rde
= -1; /* RDE was set by udc_queue() */
1773 spin_unlock_irq(&udc_irq_spinlock
);
1779 /* Handle halt state, used in stall poll timer */
1780 static void udc_handle_halt_state(struct udc_ep
*ep
)
1783 /* set stall as long not halted */
1784 if (ep
->halted
== 1) {
1785 tmp
= readl(&ep
->regs
->ctl
);
1786 /* STALL cleared ? */
1787 if (!(tmp
& AMD_BIT(UDC_EPCTL_S
))) {
1789 * FIXME: MSC spec requires that stall remains
1790 * even on receivng of CLEAR_FEATURE HALT. So
1791 * we would set STALL again here to be compliant.
1792 * But with current mass storage drivers this does
1793 * not work (would produce endless host retries).
1794 * So we clear halt on CLEAR_FEATURE.
1796 DBG(ep->dev, "ep %d: set STALL again\n", ep->num);
1797 tmp |= AMD_BIT(UDC_EPCTL_S);
1798 writel(tmp, &ep->regs->ctl);*/
1800 /* clear NAK by writing CNAK */
1801 tmp
|= AMD_BIT(UDC_EPCTL_CNAK
);
1802 writel(tmp
, &ep
->regs
->ctl
);
1804 UDC_QUEUE_CNAK(ep
, ep
->num
);
1809 /* Stall timer callback to poll S bit and set it again after */
1810 static void udc_pollstall_timer_function(unsigned long v
)
1815 spin_lock_irq(&udc_stall_spinlock
);
1817 * only one IN and OUT endpoints are handled
1820 ep
= &udc
->ep
[UDC_EPIN_IX
];
1821 udc_handle_halt_state(ep
);
1824 /* OUT poll stall */
1825 ep
= &udc
->ep
[UDC_EPOUT_IX
];
1826 udc_handle_halt_state(ep
);
1830 /* setup timer again when still halted */
1831 if (!stop_pollstall_timer
&& halted
) {
1832 udc_pollstall_timer
.expires
= jiffies
+
1833 HZ
* UDC_POLLSTALL_TIMER_USECONDS
1835 add_timer(&udc_pollstall_timer
);
1837 spin_unlock_irq(&udc_stall_spinlock
);
1839 if (stop_pollstall_timer
)
1840 complete(&on_pollstall_exit
);
1843 /* Inits endpoint 0 so that SETUP packets are processed */
1844 static void activate_control_endpoints(struct udc
*dev
)
1848 DBG(dev
, "activate_control_endpoints\n");
1851 tmp
= readl(&dev
->ep
[UDC_EP0IN_IX
].regs
->ctl
);
1852 tmp
|= AMD_BIT(UDC_EPCTL_F
);
1853 writel(tmp
, &dev
->ep
[UDC_EP0IN_IX
].regs
->ctl
);
1855 /* set ep0 directions */
1856 dev
->ep
[UDC_EP0IN_IX
].in
= 1;
1857 dev
->ep
[UDC_EP0OUT_IX
].in
= 0;
1859 /* set buffer size (tx fifo entries) of EP0_IN */
1860 tmp
= readl(&dev
->ep
[UDC_EP0IN_IX
].regs
->bufin_framenum
);
1861 if (dev
->gadget
.speed
== USB_SPEED_FULL
)
1862 tmp
= AMD_ADDBITS(tmp
, UDC_FS_EPIN0_BUFF_SIZE
,
1863 UDC_EPIN_BUFF_SIZE
);
1864 else if (dev
->gadget
.speed
== USB_SPEED_HIGH
)
1865 tmp
= AMD_ADDBITS(tmp
, UDC_EPIN0_BUFF_SIZE
,
1866 UDC_EPIN_BUFF_SIZE
);
1867 writel(tmp
, &dev
->ep
[UDC_EP0IN_IX
].regs
->bufin_framenum
);
1869 /* set max packet size of EP0_IN */
1870 tmp
= readl(&dev
->ep
[UDC_EP0IN_IX
].regs
->bufout_maxpkt
);
1871 if (dev
->gadget
.speed
== USB_SPEED_FULL
)
1872 tmp
= AMD_ADDBITS(tmp
, UDC_FS_EP0IN_MAX_PKT_SIZE
,
1873 UDC_EP_MAX_PKT_SIZE
);
1874 else if (dev
->gadget
.speed
== USB_SPEED_HIGH
)
1875 tmp
= AMD_ADDBITS(tmp
, UDC_EP0IN_MAX_PKT_SIZE
,
1876 UDC_EP_MAX_PKT_SIZE
);
1877 writel(tmp
, &dev
->ep
[UDC_EP0IN_IX
].regs
->bufout_maxpkt
);
1879 /* set max packet size of EP0_OUT */
1880 tmp
= readl(&dev
->ep
[UDC_EP0OUT_IX
].regs
->bufout_maxpkt
);
1881 if (dev
->gadget
.speed
== USB_SPEED_FULL
)
1882 tmp
= AMD_ADDBITS(tmp
, UDC_FS_EP0OUT_MAX_PKT_SIZE
,
1883 UDC_EP_MAX_PKT_SIZE
);
1884 else if (dev
->gadget
.speed
== USB_SPEED_HIGH
)
1885 tmp
= AMD_ADDBITS(tmp
, UDC_EP0OUT_MAX_PKT_SIZE
,
1886 UDC_EP_MAX_PKT_SIZE
);
1887 writel(tmp
, &dev
->ep
[UDC_EP0OUT_IX
].regs
->bufout_maxpkt
);
1889 /* set max packet size of EP0 in UDC CSR */
1890 tmp
= readl(&dev
->csr
->ne
[0]);
1891 if (dev
->gadget
.speed
== USB_SPEED_FULL
)
1892 tmp
= AMD_ADDBITS(tmp
, UDC_FS_EP0OUT_MAX_PKT_SIZE
,
1893 UDC_CSR_NE_MAX_PKT
);
1894 else if (dev
->gadget
.speed
== USB_SPEED_HIGH
)
1895 tmp
= AMD_ADDBITS(tmp
, UDC_EP0OUT_MAX_PKT_SIZE
,
1896 UDC_CSR_NE_MAX_PKT
);
1897 writel(tmp
, &dev
->csr
->ne
[0]);
1900 dev
->ep
[UDC_EP0OUT_IX
].td
->status
|=
1901 AMD_BIT(UDC_DMA_OUT_STS_L
);
1902 /* write dma desc address */
1903 writel(dev
->ep
[UDC_EP0OUT_IX
].td_stp_dma
,
1904 &dev
->ep
[UDC_EP0OUT_IX
].regs
->subptr
);
1905 writel(dev
->ep
[UDC_EP0OUT_IX
].td_phys
,
1906 &dev
->ep
[UDC_EP0OUT_IX
].regs
->desptr
);
1907 /* stop RDE timer */
1908 if (timer_pending(&udc_timer
)) {
1910 mod_timer(&udc_timer
, jiffies
- 1);
1912 /* stop pollstall timer */
1913 if (timer_pending(&udc_pollstall_timer
)) {
1914 mod_timer(&udc_pollstall_timer
, jiffies
- 1);
1917 tmp
= readl(&dev
->regs
->ctl
);
1918 tmp
|= AMD_BIT(UDC_DEVCTL_MODE
)
1919 | AMD_BIT(UDC_DEVCTL_RDE
)
1920 | AMD_BIT(UDC_DEVCTL_TDE
);
1921 if (use_dma_bufferfill_mode
) {
1922 tmp
|= AMD_BIT(UDC_DEVCTL_BF
);
1923 } else if (use_dma_ppb_du
) {
1924 tmp
|= AMD_BIT(UDC_DEVCTL_DU
);
1926 writel(tmp
, &dev
->regs
->ctl
);
1929 /* clear NAK by writing CNAK for EP0IN */
1930 tmp
= readl(&dev
->ep
[UDC_EP0IN_IX
].regs
->ctl
);
1931 tmp
|= AMD_BIT(UDC_EPCTL_CNAK
);
1932 writel(tmp
, &dev
->ep
[UDC_EP0IN_IX
].regs
->ctl
);
1933 dev
->ep
[UDC_EP0IN_IX
].naking
= 0;
1934 UDC_QUEUE_CNAK(&dev
->ep
[UDC_EP0IN_IX
], UDC_EP0IN_IX
);
1936 /* clear NAK by writing CNAK for EP0OUT */
1937 tmp
= readl(&dev
->ep
[UDC_EP0OUT_IX
].regs
->ctl
);
1938 tmp
|= AMD_BIT(UDC_EPCTL_CNAK
);
1939 writel(tmp
, &dev
->ep
[UDC_EP0OUT_IX
].regs
->ctl
);
1940 dev
->ep
[UDC_EP0OUT_IX
].naking
= 0;
1941 UDC_QUEUE_CNAK(&dev
->ep
[UDC_EP0OUT_IX
], UDC_EP0OUT_IX
);
1944 /* Make endpoint 0 ready for control traffic */
1945 static int setup_ep0(struct udc
*dev
)
1947 activate_control_endpoints(dev
);
1948 /* enable ep0 interrupts */
1949 udc_enable_ep0_interrupts(dev
);
1950 /* enable device setup interrupts */
1951 udc_enable_dev_setup_interrupts(dev
);
1956 /* Called by gadget driver to register itself */
1957 int usb_gadget_probe_driver(struct usb_gadget_driver
*driver
,
1958 int (*bind
)(struct usb_gadget
*))
1960 struct udc
*dev
= udc
;
1964 if (!driver
|| !bind
|| !driver
->setup
1965 || driver
->speed
!= USB_SPEED_HIGH
)
1972 driver
->driver
.bus
= NULL
;
1973 dev
->driver
= driver
;
1974 dev
->gadget
.dev
.driver
= &driver
->driver
;
1976 retval
= bind(&dev
->gadget
);
1978 /* Some gadget drivers use both ep0 directions.
1979 * NOTE: to gadget driver, ep0 is just one endpoint...
1981 dev
->ep
[UDC_EP0OUT_IX
].ep
.driver_data
=
1982 dev
->ep
[UDC_EP0IN_IX
].ep
.driver_data
;
1985 DBG(dev
, "binding to %s returning %d\n",
1986 driver
->driver
.name
, retval
);
1988 dev
->gadget
.dev
.driver
= NULL
;
1992 /* get ready for ep0 traffic */
1996 tmp
= readl(&dev
->regs
->ctl
);
1997 tmp
= tmp
& AMD_CLEAR_BIT(UDC_DEVCTL_SD
);
1998 writel(tmp
, &dev
->regs
->ctl
);
2004 EXPORT_SYMBOL(usb_gadget_probe_driver
);
2006 /* shutdown requests and disconnect from gadget */
2008 shutdown(struct udc
*dev
, struct usb_gadget_driver
*driver
)
2009 __releases(dev
->lock
)
2010 __acquires(dev
->lock
)
2014 if (dev
->gadget
.speed
!= USB_SPEED_UNKNOWN
) {
2015 spin_unlock(&dev
->lock
);
2016 driver
->disconnect(&dev
->gadget
);
2017 spin_lock(&dev
->lock
);
2020 /* empty queues and init hardware */
2021 udc_basic_init(dev
);
2022 for (tmp
= 0; tmp
< UDC_EP_NUM
; tmp
++)
2023 empty_req_queue(&dev
->ep
[tmp
]);
2025 udc_setup_endpoints(dev
);
2028 /* Called by gadget driver to unregister itself */
2029 int usb_gadget_unregister_driver(struct usb_gadget_driver
*driver
)
2031 struct udc
*dev
= udc
;
2032 unsigned long flags
;
2037 if (!driver
|| driver
!= dev
->driver
|| !driver
->unbind
)
2040 spin_lock_irqsave(&dev
->lock
, flags
);
2041 udc_mask_unused_interrupts(dev
);
2042 shutdown(dev
, driver
);
2043 spin_unlock_irqrestore(&dev
->lock
, flags
);
2045 driver
->unbind(&dev
->gadget
);
2046 dev
->gadget
.dev
.driver
= NULL
;
2050 tmp
= readl(&dev
->regs
->ctl
);
2051 tmp
|= AMD_BIT(UDC_DEVCTL_SD
);
2052 writel(tmp
, &dev
->regs
->ctl
);
2055 DBG(dev
, "%s: unregistered\n", driver
->driver
.name
);
2059 EXPORT_SYMBOL(usb_gadget_unregister_driver
);
2062 /* Clear pending NAK bits */
2063 static void udc_process_cnak_queue(struct udc
*dev
)
2069 DBG(dev
, "CNAK pending queue processing\n");
2070 for (tmp
= 0; tmp
< UDC_EPIN_NUM_USED
; tmp
++) {
2071 if (cnak_pending
& (1 << tmp
)) {
2072 DBG(dev
, "CNAK pending for ep%d\n", tmp
);
2073 /* clear NAK by writing CNAK */
2074 reg
= readl(&dev
->ep
[tmp
].regs
->ctl
);
2075 reg
|= AMD_BIT(UDC_EPCTL_CNAK
);
2076 writel(reg
, &dev
->ep
[tmp
].regs
->ctl
);
2077 dev
->ep
[tmp
].naking
= 0;
2078 UDC_QUEUE_CNAK(&dev
->ep
[tmp
], dev
->ep
[tmp
].num
);
2081 /* ... and ep0out */
2082 if (cnak_pending
& (1 << UDC_EP0OUT_IX
)) {
2083 DBG(dev
, "CNAK pending for ep%d\n", UDC_EP0OUT_IX
);
2084 /* clear NAK by writing CNAK */
2085 reg
= readl(&dev
->ep
[UDC_EP0OUT_IX
].regs
->ctl
);
2086 reg
|= AMD_BIT(UDC_EPCTL_CNAK
);
2087 writel(reg
, &dev
->ep
[UDC_EP0OUT_IX
].regs
->ctl
);
2088 dev
->ep
[UDC_EP0OUT_IX
].naking
= 0;
2089 UDC_QUEUE_CNAK(&dev
->ep
[UDC_EP0OUT_IX
],
2090 dev
->ep
[UDC_EP0OUT_IX
].num
);
2094 /* Enabling RX DMA after setup packet */
2095 static void udc_ep0_set_rde(struct udc
*dev
)
2099 * only enable RXDMA when no data endpoint enabled
2102 if (!dev
->data_ep_enabled
|| dev
->data_ep_queued
) {
2106 * setup timer for enabling RDE (to not enable
2107 * RXFIFO DMA for data endpoints to early)
2109 if (set_rde
!= 0 && !timer_pending(&udc_timer
)) {
2111 jiffies
+ HZ
/UDC_RDE_TIMER_DIV
;
2114 add_timer(&udc_timer
);
2122 /* Interrupt handler for data OUT traffic */
2123 static irqreturn_t
udc_data_out_isr(struct udc
*dev
, int ep_ix
)
2125 irqreturn_t ret_val
= IRQ_NONE
;
2128 struct udc_request
*req
;
2130 struct udc_data_dma
*td
= NULL
;
2133 VDBG(dev
, "ep%d irq\n", ep_ix
);
2134 ep
= &dev
->ep
[ep_ix
];
2136 tmp
= readl(&ep
->regs
->sts
);
2139 if (tmp
& AMD_BIT(UDC_EPSTS_BNA
)) {
2140 DBG(dev
, "BNA ep%dout occured - DESPTR = %x \n",
2141 ep
->num
, readl(&ep
->regs
->desptr
));
2143 writel(tmp
| AMD_BIT(UDC_EPSTS_BNA
), &ep
->regs
->sts
);
2144 if (!ep
->cancel_transfer
)
2145 ep
->bna_occurred
= 1;
2147 ep
->cancel_transfer
= 0;
2148 ret_val
= IRQ_HANDLED
;
2153 if (tmp
& AMD_BIT(UDC_EPSTS_HE
)) {
2154 dev_err(&dev
->pdev
->dev
, "HE ep%dout occured\n", ep
->num
);
2157 writel(tmp
| AMD_BIT(UDC_EPSTS_HE
), &ep
->regs
->sts
);
2158 ret_val
= IRQ_HANDLED
;
2162 if (!list_empty(&ep
->queue
)) {
2165 req
= list_entry(ep
->queue
.next
,
2166 struct udc_request
, queue
);
2169 udc_rxfifo_pending
= 1;
2171 VDBG(dev
, "req = %p\n", req
);
2176 if (req
&& udc_rxfifo_read(ep
, req
)) {
2177 ret_val
= IRQ_HANDLED
;
2180 complete_req(ep
, req
, 0);
2182 if (!list_empty(&ep
->queue
) && !ep
->halted
) {
2183 req
= list_entry(ep
->queue
.next
,
2184 struct udc_request
, queue
);
2190 } else if (!ep
->cancel_transfer
&& req
!= NULL
) {
2191 ret_val
= IRQ_HANDLED
;
2193 /* check for DMA done */
2195 dma_done
= AMD_GETBITS(req
->td_data
->status
,
2196 UDC_DMA_OUT_STS_BS
);
2197 /* packet per buffer mode - rx bytes */
2200 * if BNA occurred then recover desc. from
2203 if (ep
->bna_occurred
) {
2204 VDBG(dev
, "Recover desc. from BNA dummy\n");
2205 memcpy(req
->td_data
, ep
->bna_dummy_req
->td_data
,
2206 sizeof(struct udc_data_dma
));
2207 ep
->bna_occurred
= 0;
2208 udc_init_bna_dummy(ep
->req
);
2210 td
= udc_get_last_dma_desc(req
);
2211 dma_done
= AMD_GETBITS(td
->status
, UDC_DMA_OUT_STS_BS
);
2213 if (dma_done
== UDC_DMA_OUT_STS_BS_DMA_DONE
) {
2214 /* buffer fill mode - rx bytes */
2216 /* received number bytes */
2217 count
= AMD_GETBITS(req
->td_data
->status
,
2218 UDC_DMA_OUT_STS_RXBYTES
);
2219 VDBG(dev
, "rx bytes=%u\n", count
);
2220 /* packet per buffer mode - rx bytes */
2222 VDBG(dev
, "req->td_data=%p\n", req
->td_data
);
2223 VDBG(dev
, "last desc = %p\n", td
);
2224 /* received number bytes */
2225 if (use_dma_ppb_du
) {
2226 /* every desc. counts bytes */
2227 count
= udc_get_ppbdu_rxbytes(req
);
2229 /* last desc. counts bytes */
2230 count
= AMD_GETBITS(td
->status
,
2231 UDC_DMA_OUT_STS_RXBYTES
);
2232 if (!count
&& req
->req
.length
2233 == UDC_DMA_MAXPACKET
) {
2235 * on 64k packets the RXBYTES
2238 count
= UDC_DMA_MAXPACKET
;
2241 VDBG(dev
, "last desc rx bytes=%u\n", count
);
2244 tmp
= req
->req
.length
- req
->req
.actual
;
2246 if ((tmp
% ep
->ep
.maxpacket
) != 0) {
2247 DBG(dev
, "%s: rx %db, space=%db\n",
2248 ep
->ep
.name
, count
, tmp
);
2249 req
->req
.status
= -EOVERFLOW
;
2253 req
->req
.actual
+= count
;
2255 /* complete request */
2256 complete_req(ep
, req
, 0);
2259 if (!list_empty(&ep
->queue
) && !ep
->halted
) {
2260 req
= list_entry(ep
->queue
.next
,
2264 * DMA may be already started by udc_queue()
2265 * called by gadget drivers completion
2266 * routine. This happens when queue
2267 * holds one request only.
2269 if (req
->dma_going
== 0) {
2271 if (prep_dma(ep
, req
, GFP_ATOMIC
) != 0)
2273 /* write desc pointer */
2274 writel(req
->td_phys
,
2282 * implant BNA dummy descriptor to allow
2283 * RXFIFO opening by RDE
2285 if (ep
->bna_dummy_req
) {
2286 /* write desc pointer */
2287 writel(ep
->bna_dummy_req
->td_phys
,
2289 ep
->bna_occurred
= 0;
2293 * schedule timer for setting RDE if queue
2294 * remains empty to allow ep0 packets pass
2298 && !timer_pending(&udc_timer
)) {
2301 + HZ
*UDC_RDE_TIMER_SECONDS
;
2304 add_timer(&udc_timer
);
2307 if (ep
->num
!= UDC_EP0OUT_IX
)
2308 dev
->data_ep_queued
= 0;
2313 * RX DMA must be reenabled for each desc in PPBDU mode
2314 * and must be enabled for PPBNDU mode in case of BNA
2319 } else if (ep
->cancel_transfer
) {
2320 ret_val
= IRQ_HANDLED
;
2321 ep
->cancel_transfer
= 0;
2324 /* check pending CNAKS */
2326 /* CNAk processing when rxfifo empty only */
2327 if (readl(&dev
->regs
->sts
) & AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY
)) {
2328 udc_process_cnak_queue(dev
);
2332 /* clear OUT bits in ep status */
2333 writel(UDC_EPSTS_OUT_CLEAR
, &ep
->regs
->sts
);
2338 /* Interrupt handler for data IN traffic */
2339 static irqreturn_t
udc_data_in_isr(struct udc
*dev
, int ep_ix
)
2341 irqreturn_t ret_val
= IRQ_NONE
;
2345 struct udc_request
*req
;
2346 struct udc_data_dma
*td
;
2350 ep
= &dev
->ep
[ep_ix
];
2352 epsts
= readl(&ep
->regs
->sts
);
2355 if (epsts
& AMD_BIT(UDC_EPSTS_BNA
)) {
2356 dev_err(&dev
->pdev
->dev
,
2357 "BNA ep%din occured - DESPTR = %08lx \n",
2359 (unsigned long) readl(&ep
->regs
->desptr
));
2362 writel(epsts
, &ep
->regs
->sts
);
2363 ret_val
= IRQ_HANDLED
;
2368 if (epsts
& AMD_BIT(UDC_EPSTS_HE
)) {
2369 dev_err(&dev
->pdev
->dev
,
2370 "HE ep%dn occured - DESPTR = %08lx \n",
2371 ep
->num
, (unsigned long) readl(&ep
->regs
->desptr
));
2374 writel(epsts
| AMD_BIT(UDC_EPSTS_HE
), &ep
->regs
->sts
);
2375 ret_val
= IRQ_HANDLED
;
2379 /* DMA completion */
2380 if (epsts
& AMD_BIT(UDC_EPSTS_TDC
)) {
2381 VDBG(dev
, "TDC set- completion\n");
2382 ret_val
= IRQ_HANDLED
;
2383 if (!ep
->cancel_transfer
&& !list_empty(&ep
->queue
)) {
2384 req
= list_entry(ep
->queue
.next
,
2385 struct udc_request
, queue
);
2387 * length bytes transfered
2388 * check dma done of last desc. in PPBDU mode
2390 if (use_dma_ppb_du
) {
2391 td
= udc_get_last_dma_desc(req
);
2394 AMD_GETBITS(td
->status
,
2396 /* don't care DMA done */
2397 req
->req
.actual
= req
->req
.length
;
2400 /* assume all bytes transferred */
2401 req
->req
.actual
= req
->req
.length
;
2404 if (req
->req
.actual
== req
->req
.length
) {
2406 complete_req(ep
, req
, 0);
2408 /* further request available ? */
2409 if (list_empty(&ep
->queue
)) {
2410 /* disable interrupt */
2411 tmp
= readl(&dev
->regs
->ep_irqmsk
);
2412 tmp
|= AMD_BIT(ep
->num
);
2413 writel(tmp
, &dev
->regs
->ep_irqmsk
);
2417 ep
->cancel_transfer
= 0;
2421 * status reg has IN bit set and TDC not set (if TDC was handled,
2422 * IN must not be handled (UDC defect) ?
2424 if ((epsts
& AMD_BIT(UDC_EPSTS_IN
))
2425 && !(epsts
& AMD_BIT(UDC_EPSTS_TDC
))) {
2426 ret_val
= IRQ_HANDLED
;
2427 if (!list_empty(&ep
->queue
)) {
2429 req
= list_entry(ep
->queue
.next
,
2430 struct udc_request
, queue
);
2434 udc_txfifo_write(ep
, &req
->req
);
2435 len
= req
->req
.length
- req
->req
.actual
;
2436 if (len
> ep
->ep
.maxpacket
)
2437 len
= ep
->ep
.maxpacket
;
2438 req
->req
.actual
+= len
;
2439 if (req
->req
.actual
== req
->req
.length
2440 || (len
!= ep
->ep
.maxpacket
)) {
2442 complete_req(ep
, req
, 0);
2445 } else if (req
&& !req
->dma_going
) {
2446 VDBG(dev
, "IN DMA : req=%p req->td_data=%p\n",
2453 * unset L bit of first desc.
2456 if (use_dma_ppb
&& req
->req
.length
>
2458 req
->td_data
->status
&=
2463 /* write desc pointer */
2464 writel(req
->td_phys
, &ep
->regs
->desptr
);
2466 /* set HOST READY */
2467 req
->td_data
->status
=
2469 req
->td_data
->status
,
2470 UDC_DMA_IN_STS_BS_HOST_READY
,
2473 /* set poll demand bit */
2474 tmp
= readl(&ep
->regs
->ctl
);
2475 tmp
|= AMD_BIT(UDC_EPCTL_P
);
2476 writel(tmp
, &ep
->regs
->ctl
);
2480 } else if (!use_dma
&& ep
->in
) {
2481 /* disable interrupt */
2483 &dev
->regs
->ep_irqmsk
);
2484 tmp
|= AMD_BIT(ep
->num
);
2486 &dev
->regs
->ep_irqmsk
);
2489 /* clear status bits */
2490 writel(epsts
, &ep
->regs
->sts
);
2497 /* Interrupt handler for Control OUT traffic */
2498 static irqreturn_t
udc_control_out_isr(struct udc
*dev
)
2499 __releases(dev
->lock
)
2500 __acquires(dev
->lock
)
2502 irqreturn_t ret_val
= IRQ_NONE
;
2504 int setup_supported
;
2508 struct udc_ep
*ep_tmp
;
2510 ep
= &dev
->ep
[UDC_EP0OUT_IX
];
2513 writel(AMD_BIT(UDC_EPINT_OUT_EP0
), &dev
->regs
->ep_irqsts
);
2515 tmp
= readl(&dev
->ep
[UDC_EP0OUT_IX
].regs
->sts
);
2516 /* check BNA and clear if set */
2517 if (tmp
& AMD_BIT(UDC_EPSTS_BNA
)) {
2518 VDBG(dev
, "ep0: BNA set\n");
2519 writel(AMD_BIT(UDC_EPSTS_BNA
),
2520 &dev
->ep
[UDC_EP0OUT_IX
].regs
->sts
);
2521 ep
->bna_occurred
= 1;
2522 ret_val
= IRQ_HANDLED
;
2526 /* type of data: SETUP or DATA 0 bytes */
2527 tmp
= AMD_GETBITS(tmp
, UDC_EPSTS_OUT
);
2528 VDBG(dev
, "data_typ = %x\n", tmp
);
2531 if (tmp
== UDC_EPSTS_OUT_SETUP
) {
2532 ret_val
= IRQ_HANDLED
;
2534 ep
->dev
->stall_ep0in
= 0;
2535 dev
->waiting_zlp_ack_ep0in
= 0;
2537 /* set NAK for EP0_IN */
2538 tmp
= readl(&dev
->ep
[UDC_EP0IN_IX
].regs
->ctl
);
2539 tmp
|= AMD_BIT(UDC_EPCTL_SNAK
);
2540 writel(tmp
, &dev
->ep
[UDC_EP0IN_IX
].regs
->ctl
);
2541 dev
->ep
[UDC_EP0IN_IX
].naking
= 1;
2542 /* get setup data */
2545 /* clear OUT bits in ep status */
2546 writel(UDC_EPSTS_OUT_CLEAR
,
2547 &dev
->ep
[UDC_EP0OUT_IX
].regs
->sts
);
2549 setup_data
.data
[0] =
2550 dev
->ep
[UDC_EP0OUT_IX
].td_stp
->data12
;
2551 setup_data
.data
[1] =
2552 dev
->ep
[UDC_EP0OUT_IX
].td_stp
->data34
;
2553 /* set HOST READY */
2554 dev
->ep
[UDC_EP0OUT_IX
].td_stp
->status
=
2555 UDC_DMA_STP_STS_BS_HOST_READY
;
2558 udc_rxfifo_read_dwords(dev
, setup_data
.data
, 2);
2561 /* determine direction of control data */
2562 if ((setup_data
.request
.bRequestType
& USB_DIR_IN
) != 0) {
2563 dev
->gadget
.ep0
= &dev
->ep
[UDC_EP0IN_IX
].ep
;
2565 udc_ep0_set_rde(dev
);
2568 dev
->gadget
.ep0
= &dev
->ep
[UDC_EP0OUT_IX
].ep
;
2570 * implant BNA dummy descriptor to allow RXFIFO opening
2573 if (ep
->bna_dummy_req
) {
2574 /* write desc pointer */
2575 writel(ep
->bna_dummy_req
->td_phys
,
2576 &dev
->ep
[UDC_EP0OUT_IX
].regs
->desptr
);
2577 ep
->bna_occurred
= 0;
2581 dev
->ep
[UDC_EP0OUT_IX
].naking
= 1;
2583 * setup timer for enabling RDE (to not enable
2584 * RXFIFO DMA for data to early)
2587 if (!timer_pending(&udc_timer
)) {
2588 udc_timer
.expires
= jiffies
+
2589 HZ
/UDC_RDE_TIMER_DIV
;
2591 add_timer(&udc_timer
);
2597 * mass storage reset must be processed here because
2598 * next packet may be a CLEAR_FEATURE HALT which would not
2599 * clear the stall bit when no STALL handshake was received
2600 * before (autostall can cause this)
2602 if (setup_data
.data
[0] == UDC_MSCRES_DWORD0
2603 && setup_data
.data
[1] == UDC_MSCRES_DWORD1
) {
2604 DBG(dev
, "MSC Reset\n");
2607 * only one IN and OUT endpoints are handled
2609 ep_tmp
= &udc
->ep
[UDC_EPIN_IX
];
2610 udc_set_halt(&ep_tmp
->ep
, 0);
2611 ep_tmp
= &udc
->ep
[UDC_EPOUT_IX
];
2612 udc_set_halt(&ep_tmp
->ep
, 0);
2615 /* call gadget with setup data received */
2616 spin_unlock(&dev
->lock
);
2617 setup_supported
= dev
->driver
->setup(&dev
->gadget
,
2618 &setup_data
.request
);
2619 spin_lock(&dev
->lock
);
2621 tmp
= readl(&dev
->ep
[UDC_EP0IN_IX
].regs
->ctl
);
2622 /* ep0 in returns data (not zlp) on IN phase */
2623 if (setup_supported
>= 0 && setup_supported
<
2624 UDC_EP0IN_MAXPACKET
) {
2625 /* clear NAK by writing CNAK in EP0_IN */
2626 tmp
|= AMD_BIT(UDC_EPCTL_CNAK
);
2627 writel(tmp
, &dev
->ep
[UDC_EP0IN_IX
].regs
->ctl
);
2628 dev
->ep
[UDC_EP0IN_IX
].naking
= 0;
2629 UDC_QUEUE_CNAK(&dev
->ep
[UDC_EP0IN_IX
], UDC_EP0IN_IX
);
2631 /* if unsupported request then stall */
2632 } else if (setup_supported
< 0) {
2633 tmp
|= AMD_BIT(UDC_EPCTL_S
);
2634 writel(tmp
, &dev
->ep
[UDC_EP0IN_IX
].regs
->ctl
);
2636 dev
->waiting_zlp_ack_ep0in
= 1;
2639 /* clear NAK by writing CNAK in EP0_OUT */
2641 tmp
= readl(&dev
->ep
[UDC_EP0OUT_IX
].regs
->ctl
);
2642 tmp
|= AMD_BIT(UDC_EPCTL_CNAK
);
2643 writel(tmp
, &dev
->ep
[UDC_EP0OUT_IX
].regs
->ctl
);
2644 dev
->ep
[UDC_EP0OUT_IX
].naking
= 0;
2645 UDC_QUEUE_CNAK(&dev
->ep
[UDC_EP0OUT_IX
], UDC_EP0OUT_IX
);
2649 /* clear OUT bits in ep status */
2650 writel(UDC_EPSTS_OUT_CLEAR
,
2651 &dev
->ep
[UDC_EP0OUT_IX
].regs
->sts
);
2654 /* data packet 0 bytes */
2655 } else if (tmp
== UDC_EPSTS_OUT_DATA
) {
2656 /* clear OUT bits in ep status */
2657 writel(UDC_EPSTS_OUT_CLEAR
, &dev
->ep
[UDC_EP0OUT_IX
].regs
->sts
);
2659 /* get setup data: only 0 packet */
2661 /* no req if 0 packet, just reactivate */
2662 if (list_empty(&dev
->ep
[UDC_EP0OUT_IX
].queue
)) {
2665 /* set HOST READY */
2666 dev
->ep
[UDC_EP0OUT_IX
].td
->status
=
2668 dev
->ep
[UDC_EP0OUT_IX
].td
->status
,
2669 UDC_DMA_OUT_STS_BS_HOST_READY
,
2670 UDC_DMA_OUT_STS_BS
);
2672 udc_ep0_set_rde(dev
);
2673 ret_val
= IRQ_HANDLED
;
2677 ret_val
|= udc_data_out_isr(dev
, UDC_EP0OUT_IX
);
2678 /* re-program desc. pointer for possible ZLPs */
2679 writel(dev
->ep
[UDC_EP0OUT_IX
].td_phys
,
2680 &dev
->ep
[UDC_EP0OUT_IX
].regs
->desptr
);
2682 udc_ep0_set_rde(dev
);
2686 /* received number bytes */
2687 count
= readl(&dev
->ep
[UDC_EP0OUT_IX
].regs
->sts
);
2688 count
= AMD_GETBITS(count
, UDC_EPSTS_RX_PKT_SIZE
);
2689 /* out data for fifo mode not working */
2692 /* 0 packet or real data ? */
2694 ret_val
|= udc_data_out_isr(dev
, UDC_EP0OUT_IX
);
2696 /* dummy read confirm */
2697 readl(&dev
->ep
[UDC_EP0OUT_IX
].regs
->confirm
);
2698 ret_val
= IRQ_HANDLED
;
2703 /* check pending CNAKS */
2705 /* CNAk processing when rxfifo empty only */
2706 if (readl(&dev
->regs
->sts
) & AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY
)) {
2707 udc_process_cnak_queue(dev
);
2715 /* Interrupt handler for Control IN traffic */
2716 static irqreturn_t
udc_control_in_isr(struct udc
*dev
)
2718 irqreturn_t ret_val
= IRQ_NONE
;
2721 struct udc_request
*req
;
2724 ep
= &dev
->ep
[UDC_EP0IN_IX
];
2727 writel(AMD_BIT(UDC_EPINT_IN_EP0
), &dev
->regs
->ep_irqsts
);
2729 tmp
= readl(&dev
->ep
[UDC_EP0IN_IX
].regs
->sts
);
2730 /* DMA completion */
2731 if (tmp
& AMD_BIT(UDC_EPSTS_TDC
)) {
2732 VDBG(dev
, "isr: TDC clear \n");
2733 ret_val
= IRQ_HANDLED
;
2736 writel(AMD_BIT(UDC_EPSTS_TDC
),
2737 &dev
->ep
[UDC_EP0IN_IX
].regs
->sts
);
2739 /* status reg has IN bit set ? */
2740 } else if (tmp
& AMD_BIT(UDC_EPSTS_IN
)) {
2741 ret_val
= IRQ_HANDLED
;
2745 writel(AMD_BIT(UDC_EPSTS_IN
),
2746 &dev
->ep
[UDC_EP0IN_IX
].regs
->sts
);
2748 if (dev
->stall_ep0in
) {
2749 DBG(dev
, "stall ep0in\n");
2751 tmp
= readl(&ep
->regs
->ctl
);
2752 tmp
|= AMD_BIT(UDC_EPCTL_S
);
2753 writel(tmp
, &ep
->regs
->ctl
);
2755 if (!list_empty(&ep
->queue
)) {
2757 req
= list_entry(ep
->queue
.next
,
2758 struct udc_request
, queue
);
2761 /* write desc pointer */
2762 writel(req
->td_phys
, &ep
->regs
->desptr
);
2763 /* set HOST READY */
2764 req
->td_data
->status
=
2766 req
->td_data
->status
,
2767 UDC_DMA_STP_STS_BS_HOST_READY
,
2768 UDC_DMA_STP_STS_BS
);
2770 /* set poll demand bit */
2772 readl(&dev
->ep
[UDC_EP0IN_IX
].regs
->ctl
);
2773 tmp
|= AMD_BIT(UDC_EPCTL_P
);
2775 &dev
->ep
[UDC_EP0IN_IX
].regs
->ctl
);
2777 /* all bytes will be transferred */
2778 req
->req
.actual
= req
->req
.length
;
2781 complete_req(ep
, req
, 0);
2785 udc_txfifo_write(ep
, &req
->req
);
2787 /* lengh bytes transfered */
2788 len
= req
->req
.length
- req
->req
.actual
;
2789 if (len
> ep
->ep
.maxpacket
)
2790 len
= ep
->ep
.maxpacket
;
2792 req
->req
.actual
+= len
;
2793 if (req
->req
.actual
== req
->req
.length
2794 || (len
!= ep
->ep
.maxpacket
)) {
2796 complete_req(ep
, req
, 0);
2803 dev
->stall_ep0in
= 0;
2806 writel(AMD_BIT(UDC_EPSTS_IN
),
2807 &dev
->ep
[UDC_EP0IN_IX
].regs
->sts
);
2815 /* Interrupt handler for global device events */
2816 static irqreturn_t
udc_dev_isr(struct udc
*dev
, u32 dev_irq
)
2817 __releases(dev
->lock
)
2818 __acquires(dev
->lock
)
2820 irqreturn_t ret_val
= IRQ_NONE
;
2827 /* SET_CONFIG irq ? */
2828 if (dev_irq
& AMD_BIT(UDC_DEVINT_SC
)) {
2829 ret_val
= IRQ_HANDLED
;
2831 /* read config value */
2832 tmp
= readl(&dev
->regs
->sts
);
2833 cfg
= AMD_GETBITS(tmp
, UDC_DEVSTS_CFG
);
2834 DBG(dev
, "SET_CONFIG interrupt: config=%d\n", cfg
);
2835 dev
->cur_config
= cfg
;
2836 dev
->set_cfg_not_acked
= 1;
2838 /* make usb request for gadget driver */
2839 memset(&setup_data
, 0 , sizeof(union udc_setup_data
));
2840 setup_data
.request
.bRequest
= USB_REQ_SET_CONFIGURATION
;
2841 setup_data
.request
.wValue
= cpu_to_le16(dev
->cur_config
);
2843 /* programm the NE registers */
2844 for (i
= 0; i
< UDC_EP_NUM
; i
++) {
2848 /* ep ix in UDC CSR register space */
2849 udc_csr_epix
= ep
->num
;
2854 /* ep ix in UDC CSR register space */
2855 udc_csr_epix
= ep
->num
- UDC_CSR_EP_OUT_IX_OFS
;
2858 tmp
= readl(&dev
->csr
->ne
[udc_csr_epix
]);
2860 tmp
= AMD_ADDBITS(tmp
, ep
->dev
->cur_config
,
2863 writel(tmp
, &dev
->csr
->ne
[udc_csr_epix
]);
2865 /* clear stall bits */
2867 tmp
= readl(&ep
->regs
->ctl
);
2868 tmp
= tmp
& AMD_CLEAR_BIT(UDC_EPCTL_S
);
2869 writel(tmp
, &ep
->regs
->ctl
);
2871 /* call gadget zero with setup data received */
2872 spin_unlock(&dev
->lock
);
2873 tmp
= dev
->driver
->setup(&dev
->gadget
, &setup_data
.request
);
2874 spin_lock(&dev
->lock
);
2876 } /* SET_INTERFACE ? */
2877 if (dev_irq
& AMD_BIT(UDC_DEVINT_SI
)) {
2878 ret_val
= IRQ_HANDLED
;
2880 dev
->set_cfg_not_acked
= 1;
2881 /* read interface and alt setting values */
2882 tmp
= readl(&dev
->regs
->sts
);
2883 dev
->cur_alt
= AMD_GETBITS(tmp
, UDC_DEVSTS_ALT
);
2884 dev
->cur_intf
= AMD_GETBITS(tmp
, UDC_DEVSTS_INTF
);
2886 /* make usb request for gadget driver */
2887 memset(&setup_data
, 0 , sizeof(union udc_setup_data
));
2888 setup_data
.request
.bRequest
= USB_REQ_SET_INTERFACE
;
2889 setup_data
.request
.bRequestType
= USB_RECIP_INTERFACE
;
2890 setup_data
.request
.wValue
= cpu_to_le16(dev
->cur_alt
);
2891 setup_data
.request
.wIndex
= cpu_to_le16(dev
->cur_intf
);
2893 DBG(dev
, "SET_INTERFACE interrupt: alt=%d intf=%d\n",
2894 dev
->cur_alt
, dev
->cur_intf
);
2896 /* programm the NE registers */
2897 for (i
= 0; i
< UDC_EP_NUM
; i
++) {
2901 /* ep ix in UDC CSR register space */
2902 udc_csr_epix
= ep
->num
;
2907 /* ep ix in UDC CSR register space */
2908 udc_csr_epix
= ep
->num
- UDC_CSR_EP_OUT_IX_OFS
;
2913 tmp
= readl(&dev
->csr
->ne
[udc_csr_epix
]);
2915 tmp
= AMD_ADDBITS(tmp
, ep
->dev
->cur_intf
,
2917 /* tmp = AMD_ADDBITS(tmp, 2, UDC_CSR_NE_INTF); */
2919 tmp
= AMD_ADDBITS(tmp
, ep
->dev
->cur_alt
,
2922 writel(tmp
, &dev
->csr
->ne
[udc_csr_epix
]);
2924 /* clear stall bits */
2926 tmp
= readl(&ep
->regs
->ctl
);
2927 tmp
= tmp
& AMD_CLEAR_BIT(UDC_EPCTL_S
);
2928 writel(tmp
, &ep
->regs
->ctl
);
2931 /* call gadget zero with setup data received */
2932 spin_unlock(&dev
->lock
);
2933 tmp
= dev
->driver
->setup(&dev
->gadget
, &setup_data
.request
);
2934 spin_lock(&dev
->lock
);
2937 if (dev_irq
& AMD_BIT(UDC_DEVINT_UR
)) {
2938 DBG(dev
, "USB Reset interrupt\n");
2939 ret_val
= IRQ_HANDLED
;
2941 /* allow soft reset when suspend occurs */
2942 soft_reset_occured
= 0;
2944 dev
->waiting_zlp_ack_ep0in
= 0;
2945 dev
->set_cfg_not_acked
= 0;
2947 /* mask not needed interrupts */
2948 udc_mask_unused_interrupts(dev
);
2950 /* call gadget to resume and reset configs etc. */
2951 spin_unlock(&dev
->lock
);
2952 if (dev
->sys_suspended
&& dev
->driver
->resume
) {
2953 dev
->driver
->resume(&dev
->gadget
);
2954 dev
->sys_suspended
= 0;
2956 dev
->driver
->disconnect(&dev
->gadget
);
2957 spin_lock(&dev
->lock
);
2959 /* disable ep0 to empty req queue */
2960 empty_req_queue(&dev
->ep
[UDC_EP0IN_IX
]);
2961 ep_init(dev
->regs
, &dev
->ep
[UDC_EP0IN_IX
]);
2963 /* soft reset when rxfifo not empty */
2964 tmp
= readl(&dev
->regs
->sts
);
2965 if (!(tmp
& AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY
))
2966 && !soft_reset_after_usbreset_occured
) {
2967 udc_soft_reset(dev
);
2968 soft_reset_after_usbreset_occured
++;
2972 * DMA reset to kill potential old DMA hw hang,
2973 * POLL bit is already reset by ep_init() through
2976 DBG(dev
, "DMA machine reset\n");
2977 tmp
= readl(&dev
->regs
->cfg
);
2978 writel(tmp
| AMD_BIT(UDC_DEVCFG_DMARST
), &dev
->regs
->cfg
);
2979 writel(tmp
, &dev
->regs
->cfg
);
2981 /* put into initial config */
2982 udc_basic_init(dev
);
2984 /* enable device setup interrupts */
2985 udc_enable_dev_setup_interrupts(dev
);
2987 /* enable suspend interrupt */
2988 tmp
= readl(&dev
->regs
->irqmsk
);
2989 tmp
&= AMD_UNMASK_BIT(UDC_DEVINT_US
);
2990 writel(tmp
, &dev
->regs
->irqmsk
);
2993 if (dev_irq
& AMD_BIT(UDC_DEVINT_US
)) {
2994 DBG(dev
, "USB Suspend interrupt\n");
2995 ret_val
= IRQ_HANDLED
;
2996 if (dev
->driver
->suspend
) {
2997 spin_unlock(&dev
->lock
);
2998 dev
->sys_suspended
= 1;
2999 dev
->driver
->suspend(&dev
->gadget
);
3000 spin_lock(&dev
->lock
);
3003 if (dev_irq
& AMD_BIT(UDC_DEVINT_ENUM
)) {
3004 DBG(dev
, "ENUM interrupt\n");
3005 ret_val
= IRQ_HANDLED
;
3006 soft_reset_after_usbreset_occured
= 0;
3008 /* disable ep0 to empty req queue */
3009 empty_req_queue(&dev
->ep
[UDC_EP0IN_IX
]);
3010 ep_init(dev
->regs
, &dev
->ep
[UDC_EP0IN_IX
]);
3012 /* link up all endpoints */
3013 udc_setup_endpoints(dev
);
3014 if (dev
->gadget
.speed
== USB_SPEED_HIGH
) {
3015 dev_info(&dev
->pdev
->dev
, "Connect: speed = %s\n",
3017 } else if (dev
->gadget
.speed
== USB_SPEED_FULL
) {
3018 dev_info(&dev
->pdev
->dev
, "Connect: speed = %s\n",
3023 activate_control_endpoints(dev
);
3025 /* enable ep0 interrupts */
3026 udc_enable_ep0_interrupts(dev
);
3028 /* session valid change interrupt */
3029 if (dev_irq
& AMD_BIT(UDC_DEVINT_SVC
)) {
3030 DBG(dev
, "USB SVC interrupt\n");
3031 ret_val
= IRQ_HANDLED
;
3033 /* check that session is not valid to detect disconnect */
3034 tmp
= readl(&dev
->regs
->sts
);
3035 if (!(tmp
& AMD_BIT(UDC_DEVSTS_SESSVLD
))) {
3036 /* disable suspend interrupt */
3037 tmp
= readl(&dev
->regs
->irqmsk
);
3038 tmp
|= AMD_BIT(UDC_DEVINT_US
);
3039 writel(tmp
, &dev
->regs
->irqmsk
);
3040 DBG(dev
, "USB Disconnect (session valid low)\n");
3041 /* cleanup on disconnect */
3042 usb_disconnect(udc
);
3050 /* Interrupt Service Routine, see Linux Kernel Doc for parameters */
3051 static irqreturn_t
udc_irq(int irq
, void *pdev
)
3053 struct udc
*dev
= pdev
;
3057 irqreturn_t ret_val
= IRQ_NONE
;
3059 spin_lock(&dev
->lock
);
3061 /* check for ep irq */
3062 reg
= readl(&dev
->regs
->ep_irqsts
);
3064 if (reg
& AMD_BIT(UDC_EPINT_OUT_EP0
))
3065 ret_val
|= udc_control_out_isr(dev
);
3066 if (reg
& AMD_BIT(UDC_EPINT_IN_EP0
))
3067 ret_val
|= udc_control_in_isr(dev
);
3073 for (i
= 1; i
< UDC_EP_NUM
; i
++) {
3075 if (!(reg
& ep_irq
) || i
== UDC_EPINT_OUT_EP0
)
3078 /* clear irq status */
3079 writel(ep_irq
, &dev
->regs
->ep_irqsts
);
3081 /* irq for out ep ? */
3082 if (i
> UDC_EPIN_NUM
)
3083 ret_val
|= udc_data_out_isr(dev
, i
);
3085 ret_val
|= udc_data_in_isr(dev
, i
);
3091 /* check for dev irq */
3092 reg
= readl(&dev
->regs
->irqsts
);
3095 writel(reg
, &dev
->regs
->irqsts
);
3096 ret_val
|= udc_dev_isr(dev
, reg
);
3100 spin_unlock(&dev
->lock
);
3104 /* Tears down device */
3105 static void gadget_release(struct device
*pdev
)
3107 struct amd5536udc
*dev
= dev_get_drvdata(pdev
);
3111 /* Cleanup on device remove */
3112 static void udc_remove(struct udc
*dev
)
3116 if (timer_pending(&udc_timer
))
3117 wait_for_completion(&on_exit
);
3119 del_timer_sync(&udc_timer
);
3120 /* remove pollstall timer */
3121 stop_pollstall_timer
++;
3122 if (timer_pending(&udc_pollstall_timer
))
3123 wait_for_completion(&on_pollstall_exit
);
3124 if (udc_pollstall_timer
.data
)
3125 del_timer_sync(&udc_pollstall_timer
);
3129 /* Reset all pci context */
3130 static void udc_pci_remove(struct pci_dev
*pdev
)
3134 dev
= pci_get_drvdata(pdev
);
3136 /* gadget driver must not be registered */
3137 BUG_ON(dev
->driver
!= NULL
);
3139 /* dma pool cleanup */
3140 if (dev
->data_requests
)
3141 pci_pool_destroy(dev
->data_requests
);
3143 if (dev
->stp_requests
) {
3144 /* cleanup DMA desc's for ep0in */
3145 pci_pool_free(dev
->stp_requests
,
3146 dev
->ep
[UDC_EP0OUT_IX
].td_stp
,
3147 dev
->ep
[UDC_EP0OUT_IX
].td_stp_dma
);
3148 pci_pool_free(dev
->stp_requests
,
3149 dev
->ep
[UDC_EP0OUT_IX
].td
,
3150 dev
->ep
[UDC_EP0OUT_IX
].td_phys
);
3152 pci_pool_destroy(dev
->stp_requests
);
3155 /* reset controller */
3156 writel(AMD_BIT(UDC_DEVCFG_SOFTRESET
), &dev
->regs
->cfg
);
3157 if (dev
->irq_registered
)
3158 free_irq(pdev
->irq
, dev
);
3161 if (dev
->mem_region
)
3162 release_mem_region(pci_resource_start(pdev
, 0),
3163 pci_resource_len(pdev
, 0));
3165 pci_disable_device(pdev
);
3167 device_unregister(&dev
->gadget
.dev
);
3168 pci_set_drvdata(pdev
, NULL
);
3173 /* create dma pools on init */
3174 static int init_dma_pools(struct udc
*dev
)
3176 struct udc_stp_dma
*td_stp
;
3177 struct udc_data_dma
*td_data
;
3180 /* consistent DMA mode setting ? */
3182 use_dma_bufferfill_mode
= 0;
3185 use_dma_bufferfill_mode
= 1;
3189 dev
->data_requests
= dma_pool_create("data_requests", NULL
,
3190 sizeof(struct udc_data_dma
), 0, 0);
3191 if (!dev
->data_requests
) {
3192 DBG(dev
, "can't get request data pool\n");
3197 /* EP0 in dma regs = dev control regs */
3198 dev
->ep
[UDC_EP0IN_IX
].dma
= &dev
->regs
->ctl
;
3200 /* dma desc for setup data */
3201 dev
->stp_requests
= dma_pool_create("setup requests", NULL
,
3202 sizeof(struct udc_stp_dma
), 0, 0);
3203 if (!dev
->stp_requests
) {
3204 DBG(dev
, "can't get stp request pool\n");
3209 td_stp
= dma_pool_alloc(dev
->stp_requests
, GFP_KERNEL
,
3210 &dev
->ep
[UDC_EP0OUT_IX
].td_stp_dma
);
3211 if (td_stp
== NULL
) {
3215 dev
->ep
[UDC_EP0OUT_IX
].td_stp
= td_stp
;
3217 /* data: 0 packets !? */
3218 td_data
= dma_pool_alloc(dev
->stp_requests
, GFP_KERNEL
,
3219 &dev
->ep
[UDC_EP0OUT_IX
].td_phys
);
3220 if (td_data
== NULL
) {
3224 dev
->ep
[UDC_EP0OUT_IX
].td
= td_data
;
3231 /* Called by pci bus driver to init pci context */
3232 static int udc_pci_probe(
3233 struct pci_dev
*pdev
,
3234 const struct pci_device_id
*id
3238 unsigned long resource
;
3244 dev_dbg(&pdev
->dev
, "already probed\n");
3249 dev
= kzalloc(sizeof(struct udc
), GFP_KERNEL
);
3256 if (pci_enable_device(pdev
) < 0) {
3264 /* PCI resource allocation */
3265 resource
= pci_resource_start(pdev
, 0);
3266 len
= pci_resource_len(pdev
, 0);
3268 if (!request_mem_region(resource
, len
, name
)) {
3269 dev_dbg(&pdev
->dev
, "pci device used already\n");
3275 dev
->mem_region
= 1;
3277 dev
->virt_addr
= ioremap_nocache(resource
, len
);
3278 if (dev
->virt_addr
== NULL
) {
3279 dev_dbg(&pdev
->dev
, "start address cannot be mapped\n");
3287 dev_err(&dev
->pdev
->dev
, "irq not set\n");
3294 spin_lock_init(&dev
->lock
);
3295 /* udc csr registers base */
3296 dev
->csr
= dev
->virt_addr
+ UDC_CSR_ADDR
;
3297 /* dev registers base */
3298 dev
->regs
= dev
->virt_addr
+ UDC_DEVCFG_ADDR
;
3299 /* ep registers base */
3300 dev
->ep_regs
= dev
->virt_addr
+ UDC_EPREGS_ADDR
;
3302 dev
->rxfifo
= (u32 __iomem
*)(dev
->virt_addr
+ UDC_RXFIFO_ADDR
);
3303 dev
->txfifo
= (u32 __iomem
*)(dev
->virt_addr
+ UDC_TXFIFO_ADDR
);
3305 if (request_irq(pdev
->irq
, udc_irq
, IRQF_SHARED
, name
, dev
) != 0) {
3306 dev_dbg(&dev
->pdev
->dev
, "request_irq(%d) fail\n", pdev
->irq
);
3312 dev
->irq_registered
= 1;
3314 pci_set_drvdata(pdev
, dev
);
3316 /* chip revision for Hs AMD5536 */
3317 dev
->chiprev
= pdev
->revision
;
3319 pci_set_master(pdev
);
3320 pci_try_set_mwi(pdev
);
3322 /* init dma pools */
3324 retval
= init_dma_pools(dev
);
3329 dev
->phys_addr
= resource
;
3330 dev
->irq
= pdev
->irq
;
3332 dev
->gadget
.dev
.parent
= &pdev
->dev
;
3333 dev
->gadget
.dev
.dma_mask
= pdev
->dev
.dma_mask
;
3335 /* general probing */
3336 if (udc_probe(dev
) == 0)
3341 udc_pci_remove(pdev
);
3346 static int udc_probe(struct udc
*dev
)
3352 /* mark timer as not initialized */
3354 udc_pollstall_timer
.data
= 0;
3356 /* device struct setup */
3357 dev
->gadget
.ops
= &udc_ops
;
3359 dev_set_name(&dev
->gadget
.dev
, "gadget");
3360 dev
->gadget
.dev
.release
= gadget_release
;
3361 dev
->gadget
.name
= name
;
3362 dev
->gadget
.is_dualspeed
= 1;
3364 /* init registers, interrupts, ... */
3365 startup_registers(dev
);
3367 dev_info(&dev
->pdev
->dev
, "%s\n", mod_desc
);
3369 snprintf(tmp
, sizeof tmp
, "%d", dev
->irq
);
3370 dev_info(&dev
->pdev
->dev
,
3371 "irq %s, pci mem %08lx, chip rev %02x(Geode5536 %s)\n",
3372 tmp
, dev
->phys_addr
, dev
->chiprev
,
3373 (dev
->chiprev
== UDC_HSA0_REV
) ? "A0" : "B1");
3374 strcpy(tmp
, UDC_DRIVER_VERSION_STRING
);
3375 if (dev
->chiprev
== UDC_HSA0_REV
) {
3376 dev_err(&dev
->pdev
->dev
, "chip revision is A0; too old\n");
3380 dev_info(&dev
->pdev
->dev
,
3381 "driver version: %s(for Geode5536 B1)\n", tmp
);
3384 retval
= device_register(&dev
->gadget
.dev
);
3386 put_device(&dev
->gadget
.dev
);
3391 init_timer(&udc_timer
);
3392 udc_timer
.function
= udc_timer_function
;
3394 /* timer pollstall init */
3395 init_timer(&udc_pollstall_timer
);
3396 udc_pollstall_timer
.function
= udc_pollstall_timer_function
;
3397 udc_pollstall_timer
.data
= 1;
3400 reg
= readl(&dev
->regs
->ctl
);
3401 reg
|= AMD_BIT(UDC_DEVCTL_SD
);
3402 writel(reg
, &dev
->regs
->ctl
);
3404 /* print dev register info */
3413 /* Initiates a remote wakeup */
3414 static int udc_remote_wakeup(struct udc
*dev
)
3416 unsigned long flags
;
3419 DBG(dev
, "UDC initiates remote wakeup\n");
3421 spin_lock_irqsave(&dev
->lock
, flags
);
3423 tmp
= readl(&dev
->regs
->ctl
);
3424 tmp
|= AMD_BIT(UDC_DEVCTL_RES
);
3425 writel(tmp
, &dev
->regs
->ctl
);
3426 tmp
&= AMD_CLEAR_BIT(UDC_DEVCTL_RES
);
3427 writel(tmp
, &dev
->regs
->ctl
);
3429 spin_unlock_irqrestore(&dev
->lock
, flags
);
3433 /* PCI device parameters */
3434 static const struct pci_device_id pci_id
[] = {
3436 PCI_DEVICE(PCI_VENDOR_ID_AMD
, 0x2096),
3437 .class = (PCI_CLASS_SERIAL_USB
<< 8) | 0xfe,
3438 .class_mask
= 0xffffffff,
3442 MODULE_DEVICE_TABLE(pci
, pci_id
);
3445 static struct pci_driver udc_pci_driver
= {
3446 .name
= (char *) name
,
3448 .probe
= udc_pci_probe
,
3449 .remove
= udc_pci_remove
,
3453 static int __init
init(void)
3455 return pci_register_driver(&udc_pci_driver
);
3460 static void __exit
cleanup(void)
3462 pci_unregister_driver(&udc_pci_driver
);
3464 module_exit(cleanup
);
3466 MODULE_DESCRIPTION(UDC_MOD_DESCRIPTION
);
3467 MODULE_AUTHOR("Thomas Dahlmann");
3468 MODULE_LICENSE("GPL");