Add linux-next specific files for 20110831
[linux-2.6/next.git] / arch / mips / alchemy / common / dbdma.c
blob3a5abb54d5052980c879e81d8ce983e576c2c9b1
1 /*
3 * BRIEF MODULE DESCRIPTION
4 * The Descriptor Based DMA channel manager that first appeared
5 * on the Au1550. I started with dma.c, but I think all that is
6 * left is this initial comment :-)
8 * Copyright 2004 Embedded Edge, LLC
9 * dan@embeddededge.com
11 * This program is free software; you can redistribute it and/or modify it
12 * under the terms of the GNU General Public License as published by the
13 * Free Software Foundation; either version 2 of the License, or (at your
14 * option) any later version.
16 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
17 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
18 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
19 * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
22 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
23 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 * You should have received a copy of the GNU General Public License along
28 * with this program; if not, write to the Free Software Foundation, Inc.,
29 * 675 Mass Ave, Cambridge, MA 02139, USA.
33 #include <linux/init.h>
34 #include <linux/kernel.h>
35 #include <linux/slab.h>
36 #include <linux/spinlock.h>
37 #include <linux/interrupt.h>
38 #include <linux/module.h>
39 #include <linux/syscore_ops.h>
40 #include <asm/mach-au1x00/au1000.h>
41 #include <asm/mach-au1x00/au1xxx_dbdma.h>
43 #if defined(CONFIG_SOC_AU1550) || defined(CONFIG_SOC_AU1200)
46 * The Descriptor Based DMA supports up to 16 channels.
48 * There are 32 devices defined. We keep an internal structure
49 * of devices using these channels, along with additional
50 * information.
52 * We allocate the descriptors and allow access to them through various
53 * functions. The drivers allocate the data buffers and assign them
54 * to the descriptors.
56 static DEFINE_SPINLOCK(au1xxx_dbdma_spin_lock);
58 /* I couldn't find a macro that did this... */
59 #define ALIGN_ADDR(x, a) ((((u32)(x)) + (a-1)) & ~(a-1))
61 static dbdma_global_t *dbdma_gptr =
62 (dbdma_global_t *)KSEG1ADDR(AU1550_DBDMA_CONF_PHYS_ADDR);
63 static int dbdma_initialized;
65 static dbdev_tab_t dbdev_tab[] = {
66 #ifdef CONFIG_SOC_AU1550
67 /* UARTS */
68 { DSCR_CMD0_UART0_TX, DEV_FLAGS_OUT, 0, 8, 0x11100004, 0, 0 },
69 { DSCR_CMD0_UART0_RX, DEV_FLAGS_IN, 0, 8, 0x11100000, 0, 0 },
70 { DSCR_CMD0_UART3_TX, DEV_FLAGS_OUT, 0, 8, 0x11400004, 0, 0 },
71 { DSCR_CMD0_UART3_RX, DEV_FLAGS_IN, 0, 8, 0x11400000, 0, 0 },
73 /* EXT DMA */
74 { DSCR_CMD0_DMA_REQ0, 0, 0, 0, 0x00000000, 0, 0 },
75 { DSCR_CMD0_DMA_REQ1, 0, 0, 0, 0x00000000, 0, 0 },
76 { DSCR_CMD0_DMA_REQ2, 0, 0, 0, 0x00000000, 0, 0 },
77 { DSCR_CMD0_DMA_REQ3, 0, 0, 0, 0x00000000, 0, 0 },
79 /* USB DEV */
80 { DSCR_CMD0_USBDEV_RX0, DEV_FLAGS_IN, 4, 8, 0x10200000, 0, 0 },
81 { DSCR_CMD0_USBDEV_TX0, DEV_FLAGS_OUT, 4, 8, 0x10200004, 0, 0 },
82 { DSCR_CMD0_USBDEV_TX1, DEV_FLAGS_OUT, 4, 8, 0x10200008, 0, 0 },
83 { DSCR_CMD0_USBDEV_TX2, DEV_FLAGS_OUT, 4, 8, 0x1020000c, 0, 0 },
84 { DSCR_CMD0_USBDEV_RX3, DEV_FLAGS_IN, 4, 8, 0x10200010, 0, 0 },
85 { DSCR_CMD0_USBDEV_RX4, DEV_FLAGS_IN, 4, 8, 0x10200014, 0, 0 },
87 /* PSC 0 */
88 { DSCR_CMD0_PSC0_TX, DEV_FLAGS_OUT, 0, 0, 0x11a0001c, 0, 0 },
89 { DSCR_CMD0_PSC0_RX, DEV_FLAGS_IN, 0, 0, 0x11a0001c, 0, 0 },
91 /* PSC 1 */
92 { DSCR_CMD0_PSC1_TX, DEV_FLAGS_OUT, 0, 0, 0x11b0001c, 0, 0 },
93 { DSCR_CMD0_PSC1_RX, DEV_FLAGS_IN, 0, 0, 0x11b0001c, 0, 0 },
95 /* PSC 2 */
96 { DSCR_CMD0_PSC2_TX, DEV_FLAGS_OUT, 0, 0, 0x10a0001c, 0, 0 },
97 { DSCR_CMD0_PSC2_RX, DEV_FLAGS_IN, 0, 0, 0x10a0001c, 0, 0 },
99 /* PSC 3 */
100 { DSCR_CMD0_PSC3_TX, DEV_FLAGS_OUT, 0, 0, 0x10b0001c, 0, 0 },
101 { DSCR_CMD0_PSC3_RX, DEV_FLAGS_IN, 0, 0, 0x10b0001c, 0, 0 },
103 { DSCR_CMD0_PCI_WRITE, 0, 0, 0, 0x00000000, 0, 0 }, /* PCI */
104 { DSCR_CMD0_NAND_FLASH, 0, 0, 0, 0x00000000, 0, 0 }, /* NAND */
106 /* MAC 0 */
107 { DSCR_CMD0_MAC0_RX, DEV_FLAGS_IN, 0, 0, 0x00000000, 0, 0 },
108 { DSCR_CMD0_MAC0_TX, DEV_FLAGS_OUT, 0, 0, 0x00000000, 0, 0 },
110 /* MAC 1 */
111 { DSCR_CMD0_MAC1_RX, DEV_FLAGS_IN, 0, 0, 0x00000000, 0, 0 },
112 { DSCR_CMD0_MAC1_TX, DEV_FLAGS_OUT, 0, 0, 0x00000000, 0, 0 },
114 #endif /* CONFIG_SOC_AU1550 */
116 #ifdef CONFIG_SOC_AU1200
117 { DSCR_CMD0_UART0_TX, DEV_FLAGS_OUT, 0, 8, 0x11100004, 0, 0 },
118 { DSCR_CMD0_UART0_RX, DEV_FLAGS_IN, 0, 8, 0x11100000, 0, 0 },
119 { DSCR_CMD0_UART1_TX, DEV_FLAGS_OUT, 0, 8, 0x11200004, 0, 0 },
120 { DSCR_CMD0_UART1_RX, DEV_FLAGS_IN, 0, 8, 0x11200000, 0, 0 },
122 { DSCR_CMD0_DMA_REQ0, 0, 0, 0, 0x00000000, 0, 0 },
123 { DSCR_CMD0_DMA_REQ1, 0, 0, 0, 0x00000000, 0, 0 },
125 { DSCR_CMD0_MAE_BE, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
126 { DSCR_CMD0_MAE_FE, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
127 { DSCR_CMD0_MAE_BOTH, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
128 { DSCR_CMD0_LCD, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
130 { DSCR_CMD0_SDMS_TX0, DEV_FLAGS_OUT, 4, 8, 0x10600000, 0, 0 },
131 { DSCR_CMD0_SDMS_RX0, DEV_FLAGS_IN, 4, 8, 0x10600004, 0, 0 },
132 { DSCR_CMD0_SDMS_TX1, DEV_FLAGS_OUT, 4, 8, 0x10680000, 0, 0 },
133 { DSCR_CMD0_SDMS_RX1, DEV_FLAGS_IN, 4, 8, 0x10680004, 0, 0 },
135 { DSCR_CMD0_AES_RX, DEV_FLAGS_IN , 4, 32, 0x10300008, 0, 0 },
136 { DSCR_CMD0_AES_TX, DEV_FLAGS_OUT, 4, 32, 0x10300004, 0, 0 },
138 { DSCR_CMD0_PSC0_TX, DEV_FLAGS_OUT, 0, 16, 0x11a0001c, 0, 0 },
139 { DSCR_CMD0_PSC0_RX, DEV_FLAGS_IN, 0, 16, 0x11a0001c, 0, 0 },
140 { DSCR_CMD0_PSC0_SYNC, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
142 { DSCR_CMD0_PSC1_TX, DEV_FLAGS_OUT, 0, 16, 0x11b0001c, 0, 0 },
143 { DSCR_CMD0_PSC1_RX, DEV_FLAGS_IN, 0, 16, 0x11b0001c, 0, 0 },
144 { DSCR_CMD0_PSC1_SYNC, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
146 { DSCR_CMD0_CIM_RXA, DEV_FLAGS_IN, 0, 32, 0x14004020, 0, 0 },
147 { DSCR_CMD0_CIM_RXB, DEV_FLAGS_IN, 0, 32, 0x14004040, 0, 0 },
148 { DSCR_CMD0_CIM_RXC, DEV_FLAGS_IN, 0, 32, 0x14004060, 0, 0 },
149 { DSCR_CMD0_CIM_SYNC, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
151 { DSCR_CMD0_NAND_FLASH, DEV_FLAGS_IN, 0, 0, 0x00000000, 0, 0 },
153 #endif /* CONFIG_SOC_AU1200 */
155 { DSCR_CMD0_THROTTLE, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
156 { DSCR_CMD0_ALWAYS, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
158 /* Provide 16 user definable device types */
159 { ~0, 0, 0, 0, 0, 0, 0 },
160 { ~0, 0, 0, 0, 0, 0, 0 },
161 { ~0, 0, 0, 0, 0, 0, 0 },
162 { ~0, 0, 0, 0, 0, 0, 0 },
163 { ~0, 0, 0, 0, 0, 0, 0 },
164 { ~0, 0, 0, 0, 0, 0, 0 },
165 { ~0, 0, 0, 0, 0, 0, 0 },
166 { ~0, 0, 0, 0, 0, 0, 0 },
167 { ~0, 0, 0, 0, 0, 0, 0 },
168 { ~0, 0, 0, 0, 0, 0, 0 },
169 { ~0, 0, 0, 0, 0, 0, 0 },
170 { ~0, 0, 0, 0, 0, 0, 0 },
171 { ~0, 0, 0, 0, 0, 0, 0 },
172 { ~0, 0, 0, 0, 0, 0, 0 },
173 { ~0, 0, 0, 0, 0, 0, 0 },
174 { ~0, 0, 0, 0, 0, 0, 0 },
177 #define DBDEV_TAB_SIZE ARRAY_SIZE(dbdev_tab)
180 static chan_tab_t *chan_tab_ptr[NUM_DBDMA_CHANS];
182 static dbdev_tab_t *find_dbdev_id(u32 id)
184 int i;
185 dbdev_tab_t *p;
186 for (i = 0; i < DBDEV_TAB_SIZE; ++i) {
187 p = &dbdev_tab[i];
188 if (p->dev_id == id)
189 return p;
191 return NULL;
194 void *au1xxx_ddma_get_nextptr_virt(au1x_ddma_desc_t *dp)
196 return phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
198 EXPORT_SYMBOL(au1xxx_ddma_get_nextptr_virt);
200 u32 au1xxx_ddma_add_device(dbdev_tab_t *dev)
202 u32 ret = 0;
203 dbdev_tab_t *p;
204 static u16 new_id = 0x1000;
206 p = find_dbdev_id(~0);
207 if (NULL != p) {
208 memcpy(p, dev, sizeof(dbdev_tab_t));
209 p->dev_id = DSCR_DEV2CUSTOM_ID(new_id, dev->dev_id);
210 ret = p->dev_id;
211 new_id++;
212 #if 0
213 printk(KERN_DEBUG "add_device: id:%x flags:%x padd:%x\n",
214 p->dev_id, p->dev_flags, p->dev_physaddr);
215 #endif
218 return ret;
220 EXPORT_SYMBOL(au1xxx_ddma_add_device);
222 void au1xxx_ddma_del_device(u32 devid)
224 dbdev_tab_t *p = find_dbdev_id(devid);
226 if (p != NULL) {
227 memset(p, 0, sizeof(dbdev_tab_t));
228 p->dev_id = ~0;
231 EXPORT_SYMBOL(au1xxx_ddma_del_device);
233 /* Allocate a channel and return a non-zero descriptor if successful. */
234 u32 au1xxx_dbdma_chan_alloc(u32 srcid, u32 destid,
235 void (*callback)(int, void *), void *callparam)
237 unsigned long flags;
238 u32 used, chan;
239 u32 dcp;
240 int i;
241 dbdev_tab_t *stp, *dtp;
242 chan_tab_t *ctp;
243 au1x_dma_chan_t *cp;
246 * We do the intialization on the first channel allocation.
247 * We have to wait because of the interrupt handler initialization
248 * which can't be done successfully during board set up.
250 if (!dbdma_initialized)
251 return 0;
253 stp = find_dbdev_id(srcid);
254 if (stp == NULL)
255 return 0;
256 dtp = find_dbdev_id(destid);
257 if (dtp == NULL)
258 return 0;
260 used = 0;
262 /* Check to see if we can get both channels. */
263 spin_lock_irqsave(&au1xxx_dbdma_spin_lock, flags);
264 if (!(stp->dev_flags & DEV_FLAGS_INUSE) ||
265 (stp->dev_flags & DEV_FLAGS_ANYUSE)) {
266 /* Got source */
267 stp->dev_flags |= DEV_FLAGS_INUSE;
268 if (!(dtp->dev_flags & DEV_FLAGS_INUSE) ||
269 (dtp->dev_flags & DEV_FLAGS_ANYUSE)) {
270 /* Got destination */
271 dtp->dev_flags |= DEV_FLAGS_INUSE;
272 } else {
273 /* Can't get dest. Release src. */
274 stp->dev_flags &= ~DEV_FLAGS_INUSE;
275 used++;
277 } else
278 used++;
279 spin_unlock_irqrestore(&au1xxx_dbdma_spin_lock, flags);
281 if (used)
282 return 0;
284 /* Let's see if we can allocate a channel for it. */
285 ctp = NULL;
286 chan = 0;
287 spin_lock_irqsave(&au1xxx_dbdma_spin_lock, flags);
288 for (i = 0; i < NUM_DBDMA_CHANS; i++)
289 if (chan_tab_ptr[i] == NULL) {
291 * If kmalloc fails, it is caught below same
292 * as a channel not available.
294 ctp = kmalloc(sizeof(chan_tab_t), GFP_ATOMIC);
295 chan_tab_ptr[i] = ctp;
296 break;
298 spin_unlock_irqrestore(&au1xxx_dbdma_spin_lock, flags);
300 if (ctp != NULL) {
301 memset(ctp, 0, sizeof(chan_tab_t));
302 ctp->chan_index = chan = i;
303 dcp = KSEG1ADDR(AU1550_DBDMA_PHYS_ADDR);
304 dcp += (0x0100 * chan);
305 ctp->chan_ptr = (au1x_dma_chan_t *)dcp;
306 cp = (au1x_dma_chan_t *)dcp;
307 ctp->chan_src = stp;
308 ctp->chan_dest = dtp;
309 ctp->chan_callback = callback;
310 ctp->chan_callparam = callparam;
312 /* Initialize channel configuration. */
313 i = 0;
314 if (stp->dev_intlevel)
315 i |= DDMA_CFG_SED;
316 if (stp->dev_intpolarity)
317 i |= DDMA_CFG_SP;
318 if (dtp->dev_intlevel)
319 i |= DDMA_CFG_DED;
320 if (dtp->dev_intpolarity)
321 i |= DDMA_CFG_DP;
322 if ((stp->dev_flags & DEV_FLAGS_SYNC) ||
323 (dtp->dev_flags & DEV_FLAGS_SYNC))
324 i |= DDMA_CFG_SYNC;
325 cp->ddma_cfg = i;
326 au_sync();
329 * Return a non-zero value that can be used to find the channel
330 * information in subsequent operations.
332 return (u32)(&chan_tab_ptr[chan]);
335 /* Release devices */
336 stp->dev_flags &= ~DEV_FLAGS_INUSE;
337 dtp->dev_flags &= ~DEV_FLAGS_INUSE;
339 return 0;
341 EXPORT_SYMBOL(au1xxx_dbdma_chan_alloc);
344 * Set the device width if source or destination is a FIFO.
345 * Should be 8, 16, or 32 bits.
347 u32 au1xxx_dbdma_set_devwidth(u32 chanid, int bits)
349 u32 rv;
350 chan_tab_t *ctp;
351 dbdev_tab_t *stp, *dtp;
353 ctp = *((chan_tab_t **)chanid);
354 stp = ctp->chan_src;
355 dtp = ctp->chan_dest;
356 rv = 0;
358 if (stp->dev_flags & DEV_FLAGS_IN) { /* Source in fifo */
359 rv = stp->dev_devwidth;
360 stp->dev_devwidth = bits;
362 if (dtp->dev_flags & DEV_FLAGS_OUT) { /* Destination out fifo */
363 rv = dtp->dev_devwidth;
364 dtp->dev_devwidth = bits;
367 return rv;
369 EXPORT_SYMBOL(au1xxx_dbdma_set_devwidth);
371 /* Allocate a descriptor ring, initializing as much as possible. */
372 u32 au1xxx_dbdma_ring_alloc(u32 chanid, int entries)
374 int i;
375 u32 desc_base, srcid, destid;
376 u32 cmd0, cmd1, src1, dest1;
377 u32 src0, dest0;
378 chan_tab_t *ctp;
379 dbdev_tab_t *stp, *dtp;
380 au1x_ddma_desc_t *dp;
383 * I guess we could check this to be within the
384 * range of the table......
386 ctp = *((chan_tab_t **)chanid);
387 stp = ctp->chan_src;
388 dtp = ctp->chan_dest;
391 * The descriptors must be 32-byte aligned. There is a
392 * possibility the allocation will give us such an address,
393 * and if we try that first we are likely to not waste larger
394 * slabs of memory.
396 desc_base = (u32)kmalloc(entries * sizeof(au1x_ddma_desc_t),
397 GFP_KERNEL|GFP_DMA);
398 if (desc_base == 0)
399 return 0;
401 if (desc_base & 0x1f) {
403 * Lost....do it again, allocate extra, and round
404 * the address base.
406 kfree((const void *)desc_base);
407 i = entries * sizeof(au1x_ddma_desc_t);
408 i += (sizeof(au1x_ddma_desc_t) - 1);
409 desc_base = (u32)kmalloc(i, GFP_KERNEL|GFP_DMA);
410 if (desc_base == 0)
411 return 0;
413 ctp->cdb_membase = desc_base;
414 desc_base = ALIGN_ADDR(desc_base, sizeof(au1x_ddma_desc_t));
415 } else
416 ctp->cdb_membase = desc_base;
418 dp = (au1x_ddma_desc_t *)desc_base;
420 /* Keep track of the base descriptor. */
421 ctp->chan_desc_base = dp;
423 /* Initialize the rings with as much information as we know. */
424 srcid = stp->dev_id;
425 destid = dtp->dev_id;
427 cmd0 = cmd1 = src1 = dest1 = 0;
428 src0 = dest0 = 0;
430 cmd0 |= DSCR_CMD0_SID(srcid);
431 cmd0 |= DSCR_CMD0_DID(destid);
432 cmd0 |= DSCR_CMD0_IE | DSCR_CMD0_CV;
433 cmd0 |= DSCR_CMD0_ST(DSCR_CMD0_ST_NOCHANGE);
435 /* Is it mem to mem transfer? */
436 if (((DSCR_CUSTOM2DEV_ID(srcid) == DSCR_CMD0_THROTTLE) ||
437 (DSCR_CUSTOM2DEV_ID(srcid) == DSCR_CMD0_ALWAYS)) &&
438 ((DSCR_CUSTOM2DEV_ID(destid) == DSCR_CMD0_THROTTLE) ||
439 (DSCR_CUSTOM2DEV_ID(destid) == DSCR_CMD0_ALWAYS)))
440 cmd0 |= DSCR_CMD0_MEM;
442 switch (stp->dev_devwidth) {
443 case 8:
444 cmd0 |= DSCR_CMD0_SW(DSCR_CMD0_BYTE);
445 break;
446 case 16:
447 cmd0 |= DSCR_CMD0_SW(DSCR_CMD0_HALFWORD);
448 break;
449 case 32:
450 default:
451 cmd0 |= DSCR_CMD0_SW(DSCR_CMD0_WORD);
452 break;
455 switch (dtp->dev_devwidth) {
456 case 8:
457 cmd0 |= DSCR_CMD0_DW(DSCR_CMD0_BYTE);
458 break;
459 case 16:
460 cmd0 |= DSCR_CMD0_DW(DSCR_CMD0_HALFWORD);
461 break;
462 case 32:
463 default:
464 cmd0 |= DSCR_CMD0_DW(DSCR_CMD0_WORD);
465 break;
469 * If the device is marked as an in/out FIFO, ensure it is
470 * set non-coherent.
472 if (stp->dev_flags & DEV_FLAGS_IN)
473 cmd0 |= DSCR_CMD0_SN; /* Source in FIFO */
474 if (dtp->dev_flags & DEV_FLAGS_OUT)
475 cmd0 |= DSCR_CMD0_DN; /* Destination out FIFO */
478 * Set up source1. For now, assume no stride and increment.
479 * A channel attribute update can change this later.
481 switch (stp->dev_tsize) {
482 case 1:
483 src1 |= DSCR_SRC1_STS(DSCR_xTS_SIZE1);
484 break;
485 case 2:
486 src1 |= DSCR_SRC1_STS(DSCR_xTS_SIZE2);
487 break;
488 case 4:
489 src1 |= DSCR_SRC1_STS(DSCR_xTS_SIZE4);
490 break;
491 case 8:
492 default:
493 src1 |= DSCR_SRC1_STS(DSCR_xTS_SIZE8);
494 break;
497 /* If source input is FIFO, set static address. */
498 if (stp->dev_flags & DEV_FLAGS_IN) {
499 if (stp->dev_flags & DEV_FLAGS_BURSTABLE)
500 src1 |= DSCR_SRC1_SAM(DSCR_xAM_BURST);
501 else
502 src1 |= DSCR_SRC1_SAM(DSCR_xAM_STATIC);
505 if (stp->dev_physaddr)
506 src0 = stp->dev_physaddr;
509 * Set up dest1. For now, assume no stride and increment.
510 * A channel attribute update can change this later.
512 switch (dtp->dev_tsize) {
513 case 1:
514 dest1 |= DSCR_DEST1_DTS(DSCR_xTS_SIZE1);
515 break;
516 case 2:
517 dest1 |= DSCR_DEST1_DTS(DSCR_xTS_SIZE2);
518 break;
519 case 4:
520 dest1 |= DSCR_DEST1_DTS(DSCR_xTS_SIZE4);
521 break;
522 case 8:
523 default:
524 dest1 |= DSCR_DEST1_DTS(DSCR_xTS_SIZE8);
525 break;
528 /* If destination output is FIFO, set static address. */
529 if (dtp->dev_flags & DEV_FLAGS_OUT) {
530 if (dtp->dev_flags & DEV_FLAGS_BURSTABLE)
531 dest1 |= DSCR_DEST1_DAM(DSCR_xAM_BURST);
532 else
533 dest1 |= DSCR_DEST1_DAM(DSCR_xAM_STATIC);
536 if (dtp->dev_physaddr)
537 dest0 = dtp->dev_physaddr;
539 #if 0
540 printk(KERN_DEBUG "did:%x sid:%x cmd0:%x cmd1:%x source0:%x "
541 "source1:%x dest0:%x dest1:%x\n",
542 dtp->dev_id, stp->dev_id, cmd0, cmd1, src0,
543 src1, dest0, dest1);
544 #endif
545 for (i = 0; i < entries; i++) {
546 dp->dscr_cmd0 = cmd0;
547 dp->dscr_cmd1 = cmd1;
548 dp->dscr_source0 = src0;
549 dp->dscr_source1 = src1;
550 dp->dscr_dest0 = dest0;
551 dp->dscr_dest1 = dest1;
552 dp->dscr_stat = 0;
553 dp->sw_context = 0;
554 dp->sw_status = 0;
555 dp->dscr_nxtptr = DSCR_NXTPTR(virt_to_phys(dp + 1));
556 dp++;
559 /* Make last descrptor point to the first. */
560 dp--;
561 dp->dscr_nxtptr = DSCR_NXTPTR(virt_to_phys(ctp->chan_desc_base));
562 ctp->get_ptr = ctp->put_ptr = ctp->cur_ptr = ctp->chan_desc_base;
564 return (u32)ctp->chan_desc_base;
566 EXPORT_SYMBOL(au1xxx_dbdma_ring_alloc);
569 * Put a source buffer into the DMA ring.
570 * This updates the source pointer and byte count. Normally used
571 * for memory to fifo transfers.
573 u32 au1xxx_dbdma_put_source(u32 chanid, dma_addr_t buf, int nbytes, u32 flags)
575 chan_tab_t *ctp;
576 au1x_ddma_desc_t *dp;
579 * I guess we could check this to be within the
580 * range of the table......
582 ctp = *(chan_tab_t **)chanid;
585 * We should have multiple callers for a particular channel,
586 * an interrupt doesn't affect this pointer nor the descriptor,
587 * so no locking should be needed.
589 dp = ctp->put_ptr;
592 * If the descriptor is valid, we are way ahead of the DMA
593 * engine, so just return an error condition.
595 if (dp->dscr_cmd0 & DSCR_CMD0_V)
596 return 0;
598 /* Load up buffer address and byte count. */
599 dp->dscr_source0 = buf & ~0UL;
600 dp->dscr_cmd1 = nbytes;
601 /* Check flags */
602 if (flags & DDMA_FLAGS_IE)
603 dp->dscr_cmd0 |= DSCR_CMD0_IE;
604 if (flags & DDMA_FLAGS_NOIE)
605 dp->dscr_cmd0 &= ~DSCR_CMD0_IE;
608 * There is an errata on the Au1200/Au1550 parts that could result
609 * in "stale" data being DMA'ed. It has to do with the snoop logic on
610 * the cache eviction buffer. DMA_NONCOHERENT is on by default for
611 * these parts. If it is fixed in the future, these dma_cache_inv will
612 * just be nothing more than empty macros. See io.h.
614 dma_cache_wback_inv((unsigned long)buf, nbytes);
615 dp->dscr_cmd0 |= DSCR_CMD0_V; /* Let it rip */
616 au_sync();
617 dma_cache_wback_inv((unsigned long)dp, sizeof(*dp));
618 ctp->chan_ptr->ddma_dbell = 0;
620 /* Get next descriptor pointer. */
621 ctp->put_ptr = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
623 /* Return something non-zero. */
624 return nbytes;
626 EXPORT_SYMBOL(au1xxx_dbdma_put_source);
628 /* Put a destination buffer into the DMA ring.
629 * This updates the destination pointer and byte count. Normally used
630 * to place an empty buffer into the ring for fifo to memory transfers.
632 u32 au1xxx_dbdma_put_dest(u32 chanid, dma_addr_t buf, int nbytes, u32 flags)
634 chan_tab_t *ctp;
635 au1x_ddma_desc_t *dp;
637 /* I guess we could check this to be within the
638 * range of the table......
640 ctp = *((chan_tab_t **)chanid);
642 /* We should have multiple callers for a particular channel,
643 * an interrupt doesn't affect this pointer nor the descriptor,
644 * so no locking should be needed.
646 dp = ctp->put_ptr;
648 /* If the descriptor is valid, we are way ahead of the DMA
649 * engine, so just return an error condition.
651 if (dp->dscr_cmd0 & DSCR_CMD0_V)
652 return 0;
654 /* Load up buffer address and byte count */
656 /* Check flags */
657 if (flags & DDMA_FLAGS_IE)
658 dp->dscr_cmd0 |= DSCR_CMD0_IE;
659 if (flags & DDMA_FLAGS_NOIE)
660 dp->dscr_cmd0 &= ~DSCR_CMD0_IE;
662 dp->dscr_dest0 = buf & ~0UL;
663 dp->dscr_cmd1 = nbytes;
664 #if 0
665 printk(KERN_DEBUG "cmd0:%x cmd1:%x source0:%x source1:%x dest0:%x dest1:%x\n",
666 dp->dscr_cmd0, dp->dscr_cmd1, dp->dscr_source0,
667 dp->dscr_source1, dp->dscr_dest0, dp->dscr_dest1);
668 #endif
670 * There is an errata on the Au1200/Au1550 parts that could result in
671 * "stale" data being DMA'ed. It has to do with the snoop logic on the
672 * cache eviction buffer. DMA_NONCOHERENT is on by default for these
673 * parts. If it is fixed in the future, these dma_cache_inv will just
674 * be nothing more than empty macros. See io.h.
676 dma_cache_inv((unsigned long)buf, nbytes);
677 dp->dscr_cmd0 |= DSCR_CMD0_V; /* Let it rip */
678 au_sync();
679 dma_cache_wback_inv((unsigned long)dp, sizeof(*dp));
680 ctp->chan_ptr->ddma_dbell = 0;
682 /* Get next descriptor pointer. */
683 ctp->put_ptr = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
685 /* Return something non-zero. */
686 return nbytes;
688 EXPORT_SYMBOL(au1xxx_dbdma_put_dest);
691 * Get a destination buffer into the DMA ring.
692 * Normally used to get a full buffer from the ring during fifo
693 * to memory transfers. This does not set the valid bit, you will
694 * have to put another destination buffer to keep the DMA going.
696 u32 au1xxx_dbdma_get_dest(u32 chanid, void **buf, int *nbytes)
698 chan_tab_t *ctp;
699 au1x_ddma_desc_t *dp;
700 u32 rv;
703 * I guess we could check this to be within the
704 * range of the table......
706 ctp = *((chan_tab_t **)chanid);
709 * We should have multiple callers for a particular channel,
710 * an interrupt doesn't affect this pointer nor the descriptor,
711 * so no locking should be needed.
713 dp = ctp->get_ptr;
716 * If the descriptor is valid, we are way ahead of the DMA
717 * engine, so just return an error condition.
719 if (dp->dscr_cmd0 & DSCR_CMD0_V)
720 return 0;
722 /* Return buffer address and byte count. */
723 *buf = (void *)(phys_to_virt(dp->dscr_dest0));
724 *nbytes = dp->dscr_cmd1;
725 rv = dp->dscr_stat;
727 /* Get next descriptor pointer. */
728 ctp->get_ptr = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
730 /* Return something non-zero. */
731 return rv;
733 EXPORT_SYMBOL_GPL(au1xxx_dbdma_get_dest);
735 void au1xxx_dbdma_stop(u32 chanid)
737 chan_tab_t *ctp;
738 au1x_dma_chan_t *cp;
739 int halt_timeout = 0;
741 ctp = *((chan_tab_t **)chanid);
743 cp = ctp->chan_ptr;
744 cp->ddma_cfg &= ~DDMA_CFG_EN; /* Disable channel */
745 au_sync();
746 while (!(cp->ddma_stat & DDMA_STAT_H)) {
747 udelay(1);
748 halt_timeout++;
749 if (halt_timeout > 100) {
750 printk(KERN_WARNING "warning: DMA channel won't halt\n");
751 break;
754 /* clear current desc valid and doorbell */
755 cp->ddma_stat |= (DDMA_STAT_DB | DDMA_STAT_V);
756 au_sync();
758 EXPORT_SYMBOL(au1xxx_dbdma_stop);
761 * Start using the current descriptor pointer. If the DBDMA encounters
762 * a non-valid descriptor, it will stop. In this case, we can just
763 * continue by adding a buffer to the list and starting again.
765 void au1xxx_dbdma_start(u32 chanid)
767 chan_tab_t *ctp;
768 au1x_dma_chan_t *cp;
770 ctp = *((chan_tab_t **)chanid);
771 cp = ctp->chan_ptr;
772 cp->ddma_desptr = virt_to_phys(ctp->cur_ptr);
773 cp->ddma_cfg |= DDMA_CFG_EN; /* Enable channel */
774 au_sync();
775 cp->ddma_dbell = 0;
776 au_sync();
778 EXPORT_SYMBOL(au1xxx_dbdma_start);
780 void au1xxx_dbdma_reset(u32 chanid)
782 chan_tab_t *ctp;
783 au1x_ddma_desc_t *dp;
785 au1xxx_dbdma_stop(chanid);
787 ctp = *((chan_tab_t **)chanid);
788 ctp->get_ptr = ctp->put_ptr = ctp->cur_ptr = ctp->chan_desc_base;
790 /* Run through the descriptors and reset the valid indicator. */
791 dp = ctp->chan_desc_base;
793 do {
794 dp->dscr_cmd0 &= ~DSCR_CMD0_V;
796 * Reset our software status -- this is used to determine
797 * if a descriptor is in use by upper level software. Since
798 * posting can reset 'V' bit.
800 dp->sw_status = 0;
801 dp = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
802 } while (dp != ctp->chan_desc_base);
804 EXPORT_SYMBOL(au1xxx_dbdma_reset);
806 u32 au1xxx_get_dma_residue(u32 chanid)
808 chan_tab_t *ctp;
809 au1x_dma_chan_t *cp;
810 u32 rv;
812 ctp = *((chan_tab_t **)chanid);
813 cp = ctp->chan_ptr;
815 /* This is only valid if the channel is stopped. */
816 rv = cp->ddma_bytecnt;
817 au_sync();
819 return rv;
821 EXPORT_SYMBOL_GPL(au1xxx_get_dma_residue);
823 void au1xxx_dbdma_chan_free(u32 chanid)
825 chan_tab_t *ctp;
826 dbdev_tab_t *stp, *dtp;
828 ctp = *((chan_tab_t **)chanid);
829 stp = ctp->chan_src;
830 dtp = ctp->chan_dest;
832 au1xxx_dbdma_stop(chanid);
834 kfree((void *)ctp->cdb_membase);
836 stp->dev_flags &= ~DEV_FLAGS_INUSE;
837 dtp->dev_flags &= ~DEV_FLAGS_INUSE;
838 chan_tab_ptr[ctp->chan_index] = NULL;
840 kfree(ctp);
842 EXPORT_SYMBOL(au1xxx_dbdma_chan_free);
844 static irqreturn_t dbdma_interrupt(int irq, void *dev_id)
846 u32 intstat;
847 u32 chan_index;
848 chan_tab_t *ctp;
849 au1x_ddma_desc_t *dp;
850 au1x_dma_chan_t *cp;
852 intstat = dbdma_gptr->ddma_intstat;
853 au_sync();
854 chan_index = __ffs(intstat);
856 ctp = chan_tab_ptr[chan_index];
857 cp = ctp->chan_ptr;
858 dp = ctp->cur_ptr;
860 /* Reset interrupt. */
861 cp->ddma_irq = 0;
862 au_sync();
864 if (ctp->chan_callback)
865 ctp->chan_callback(irq, ctp->chan_callparam);
867 ctp->cur_ptr = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
868 return IRQ_RETVAL(1);
871 void au1xxx_dbdma_dump(u32 chanid)
873 chan_tab_t *ctp;
874 au1x_ddma_desc_t *dp;
875 dbdev_tab_t *stp, *dtp;
876 au1x_dma_chan_t *cp;
877 u32 i = 0;
879 ctp = *((chan_tab_t **)chanid);
880 stp = ctp->chan_src;
881 dtp = ctp->chan_dest;
882 cp = ctp->chan_ptr;
884 printk(KERN_DEBUG "Chan %x, stp %x (dev %d) dtp %x (dev %d)\n",
885 (u32)ctp, (u32)stp, stp - dbdev_tab, (u32)dtp,
886 dtp - dbdev_tab);
887 printk(KERN_DEBUG "desc base %x, get %x, put %x, cur %x\n",
888 (u32)(ctp->chan_desc_base), (u32)(ctp->get_ptr),
889 (u32)(ctp->put_ptr), (u32)(ctp->cur_ptr));
891 printk(KERN_DEBUG "dbdma chan %x\n", (u32)cp);
892 printk(KERN_DEBUG "cfg %08x, desptr %08x, statptr %08x\n",
893 cp->ddma_cfg, cp->ddma_desptr, cp->ddma_statptr);
894 printk(KERN_DEBUG "dbell %08x, irq %08x, stat %08x, bytecnt %08x\n",
895 cp->ddma_dbell, cp->ddma_irq, cp->ddma_stat,
896 cp->ddma_bytecnt);
898 /* Run through the descriptors */
899 dp = ctp->chan_desc_base;
901 do {
902 printk(KERN_DEBUG "Dp[%d]= %08x, cmd0 %08x, cmd1 %08x\n",
903 i++, (u32)dp, dp->dscr_cmd0, dp->dscr_cmd1);
904 printk(KERN_DEBUG "src0 %08x, src1 %08x, dest0 %08x, dest1 %08x\n",
905 dp->dscr_source0, dp->dscr_source1,
906 dp->dscr_dest0, dp->dscr_dest1);
907 printk(KERN_DEBUG "stat %08x, nxtptr %08x\n",
908 dp->dscr_stat, dp->dscr_nxtptr);
909 dp = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
910 } while (dp != ctp->chan_desc_base);
913 /* Put a descriptor into the DMA ring.
914 * This updates the source/destination pointers and byte count.
916 u32 au1xxx_dbdma_put_dscr(u32 chanid, au1x_ddma_desc_t *dscr)
918 chan_tab_t *ctp;
919 au1x_ddma_desc_t *dp;
920 u32 nbytes = 0;
923 * I guess we could check this to be within the
924 * range of the table......
926 ctp = *((chan_tab_t **)chanid);
929 * We should have multiple callers for a particular channel,
930 * an interrupt doesn't affect this pointer nor the descriptor,
931 * so no locking should be needed.
933 dp = ctp->put_ptr;
936 * If the descriptor is valid, we are way ahead of the DMA
937 * engine, so just return an error condition.
939 if (dp->dscr_cmd0 & DSCR_CMD0_V)
940 return 0;
942 /* Load up buffer addresses and byte count. */
943 dp->dscr_dest0 = dscr->dscr_dest0;
944 dp->dscr_source0 = dscr->dscr_source0;
945 dp->dscr_dest1 = dscr->dscr_dest1;
946 dp->dscr_source1 = dscr->dscr_source1;
947 dp->dscr_cmd1 = dscr->dscr_cmd1;
948 nbytes = dscr->dscr_cmd1;
949 /* Allow the caller to specifiy if an interrupt is generated */
950 dp->dscr_cmd0 &= ~DSCR_CMD0_IE;
951 dp->dscr_cmd0 |= dscr->dscr_cmd0 | DSCR_CMD0_V;
952 ctp->chan_ptr->ddma_dbell = 0;
954 /* Get next descriptor pointer. */
955 ctp->put_ptr = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
957 /* Return something non-zero. */
958 return nbytes;
962 static unsigned long alchemy_dbdma_pm_data[NUM_DBDMA_CHANS + 1][6];
964 static int alchemy_dbdma_suspend(void)
966 int i;
967 void __iomem *addr;
969 addr = (void __iomem *)KSEG1ADDR(AU1550_DBDMA_CONF_PHYS_ADDR);
970 alchemy_dbdma_pm_data[0][0] = __raw_readl(addr + 0x00);
971 alchemy_dbdma_pm_data[0][1] = __raw_readl(addr + 0x04);
972 alchemy_dbdma_pm_data[0][2] = __raw_readl(addr + 0x08);
973 alchemy_dbdma_pm_data[0][3] = __raw_readl(addr + 0x0c);
975 /* save channel configurations */
976 addr = (void __iomem *)KSEG1ADDR(AU1550_DBDMA_PHYS_ADDR);
977 for (i = 1; i <= NUM_DBDMA_CHANS; i++) {
978 alchemy_dbdma_pm_data[i][0] = __raw_readl(addr + 0x00);
979 alchemy_dbdma_pm_data[i][1] = __raw_readl(addr + 0x04);
980 alchemy_dbdma_pm_data[i][2] = __raw_readl(addr + 0x08);
981 alchemy_dbdma_pm_data[i][3] = __raw_readl(addr + 0x0c);
982 alchemy_dbdma_pm_data[i][4] = __raw_readl(addr + 0x10);
983 alchemy_dbdma_pm_data[i][5] = __raw_readl(addr + 0x14);
985 /* halt channel */
986 __raw_writel(alchemy_dbdma_pm_data[i][0] & ~1, addr + 0x00);
987 wmb();
988 while (!(__raw_readl(addr + 0x14) & 1))
989 wmb();
991 addr += 0x100; /* next channel base */
993 /* disable channel interrupts */
994 addr = (void __iomem *)KSEG1ADDR(AU1550_DBDMA_CONF_PHYS_ADDR);
995 __raw_writel(0, addr + 0x0c);
996 wmb();
998 return 0;
1001 static void alchemy_dbdma_resume(void)
1003 int i;
1004 void __iomem *addr;
1006 addr = (void __iomem *)KSEG1ADDR(AU1550_DBDMA_CONF_PHYS_ADDR);
1007 __raw_writel(alchemy_dbdma_pm_data[0][0], addr + 0x00);
1008 __raw_writel(alchemy_dbdma_pm_data[0][1], addr + 0x04);
1009 __raw_writel(alchemy_dbdma_pm_data[0][2], addr + 0x08);
1010 __raw_writel(alchemy_dbdma_pm_data[0][3], addr + 0x0c);
1012 /* restore channel configurations */
1013 addr = (void __iomem *)KSEG1ADDR(AU1550_DBDMA_PHYS_ADDR);
1014 for (i = 1; i <= NUM_DBDMA_CHANS; i++) {
1015 __raw_writel(alchemy_dbdma_pm_data[i][0], addr + 0x00);
1016 __raw_writel(alchemy_dbdma_pm_data[i][1], addr + 0x04);
1017 __raw_writel(alchemy_dbdma_pm_data[i][2], addr + 0x08);
1018 __raw_writel(alchemy_dbdma_pm_data[i][3], addr + 0x0c);
1019 __raw_writel(alchemy_dbdma_pm_data[i][4], addr + 0x10);
1020 __raw_writel(alchemy_dbdma_pm_data[i][5], addr + 0x14);
1021 wmb();
1022 addr += 0x100; /* next channel base */
1026 static struct syscore_ops alchemy_dbdma_syscore_ops = {
1027 .suspend = alchemy_dbdma_suspend,
1028 .resume = alchemy_dbdma_resume,
1031 static int __init au1xxx_dbdma_init(void)
1033 int irq_nr, ret;
1035 dbdma_gptr->ddma_config = 0;
1036 dbdma_gptr->ddma_throttle = 0;
1037 dbdma_gptr->ddma_inten = 0xffff;
1038 au_sync();
1040 switch (alchemy_get_cputype()) {
1041 case ALCHEMY_CPU_AU1550:
1042 irq_nr = AU1550_DDMA_INT;
1043 break;
1044 case ALCHEMY_CPU_AU1200:
1045 irq_nr = AU1200_DDMA_INT;
1046 break;
1047 default:
1048 return -ENODEV;
1051 ret = request_irq(irq_nr, dbdma_interrupt, IRQF_DISABLED,
1052 "Au1xxx dbdma", (void *)dbdma_gptr);
1053 if (ret)
1054 printk(KERN_ERR "Cannot grab DBDMA interrupt!\n");
1055 else {
1056 dbdma_initialized = 1;
1057 printk(KERN_INFO "Alchemy DBDMA initialized\n");
1058 register_syscore_ops(&alchemy_dbdma_syscore_ops);
1061 return ret;
1063 subsys_initcall(au1xxx_dbdma_init);
1065 #endif /* defined(CONFIG_SOC_AU1550) || defined(CONFIG_SOC_AU1200) */