2 * PowerPC64 port by Mike Corrigan and Dave Engebretsen
3 * {mikejc|engebret}@us.ibm.com
5 * Copyright (c) 2000 Mike Corrigan <mikejc@us.ibm.com>
7 * SMP scalability work:
8 * Copyright (C) 2001 Anton Blanchard <anton@au.ibm.com>, IBM
13 * PowerPC Hashed Page Table functions
15 * This program is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU General Public License
17 * as published by the Free Software Foundation; either version
18 * 2 of the License, or (at your option) any later version.
24 #include <linux/spinlock.h>
25 #include <linux/errno.h>
26 #include <linux/sched.h>
27 #include <linux/proc_fs.h>
28 #include <linux/stat.h>
29 #include <linux/sysctl.h>
30 #include <linux/export.h>
31 #include <linux/ctype.h>
32 #include <linux/cache.h>
33 #include <linux/init.h>
34 #include <linux/signal.h>
35 #include <linux/memblock.h>
37 #include <asm/processor.h>
38 #include <asm/pgtable.h>
40 #include <asm/mmu_context.h>
42 #include <asm/types.h>
43 #include <asm/system.h>
44 #include <asm/uaccess.h>
45 #include <asm/machdep.h>
47 #include <asm/abs_addr.h>
48 #include <asm/tlbflush.h>
52 #include <asm/cacheflush.h>
53 #include <asm/cputable.h>
54 #include <asm/sections.h>
57 #include <asm/code-patching.h>
60 #define DBG(fmt...) udbg_printf(fmt)
66 #define DBG_LOW(fmt...) udbg_printf(fmt)
68 #define DBG_LOW(fmt...)
76 * Note: pte --> Linux PTE
77 * HPTE --> PowerPC Hashed Page Table Entry
80 * htab_initialize is called with the MMU off (of course), but
81 * the kernel has been copied down to zero so it can directly
82 * reference global data. At this point it is very difficult
83 * to print debug info.
88 extern unsigned long dart_tablebase
;
89 #endif /* CONFIG_U3_DART */
91 static unsigned long _SDR1
;
92 struct mmu_psize_def mmu_psize_defs
[MMU_PAGE_COUNT
];
94 struct hash_pte
*htab_address
;
95 unsigned long htab_size_bytes
;
96 unsigned long htab_hash_mask
;
97 EXPORT_SYMBOL_GPL(htab_hash_mask
);
98 int mmu_linear_psize
= MMU_PAGE_4K
;
99 int mmu_virtual_psize
= MMU_PAGE_4K
;
100 int mmu_vmalloc_psize
= MMU_PAGE_4K
;
101 #ifdef CONFIG_SPARSEMEM_VMEMMAP
102 int mmu_vmemmap_psize
= MMU_PAGE_4K
;
104 int mmu_io_psize
= MMU_PAGE_4K
;
105 int mmu_kernel_ssize
= MMU_SEGSIZE_256M
;
106 int mmu_highuser_ssize
= MMU_SEGSIZE_256M
;
107 u16 mmu_slb_size
= 64;
108 EXPORT_SYMBOL_GPL(mmu_slb_size
);
109 #ifdef CONFIG_HUGETLB_PAGE
110 unsigned int HPAGE_SHIFT
;
112 #ifdef CONFIG_PPC_64K_PAGES
113 int mmu_ci_restrictions
;
115 #ifdef CONFIG_DEBUG_PAGEALLOC
116 static u8
*linear_map_hash_slots
;
117 static unsigned long linear_map_hash_count
;
118 static DEFINE_SPINLOCK(linear_map_hash_lock
);
119 #endif /* CONFIG_DEBUG_PAGEALLOC */
121 /* There are definitions of page sizes arrays to be used when none
122 * is provided by the firmware.
125 /* Pre-POWER4 CPUs (4k pages only)
127 static struct mmu_psize_def mmu_psize_defaults_old
[] = {
137 /* POWER4, GPUL, POWER5
139 * Support for 16Mb large pages
141 static struct mmu_psize_def mmu_psize_defaults_gp
[] = {
158 static unsigned long htab_convert_pte_flags(unsigned long pteflags
)
160 unsigned long rflags
= pteflags
& 0x1fa;
162 /* _PAGE_EXEC -> NOEXEC */
163 if ((pteflags
& _PAGE_EXEC
) == 0)
166 /* PP bits. PAGE_USER is already PP bit 0x2, so we only
167 * need to add in 0x1 if it's a read-only user page
169 if ((pteflags
& _PAGE_USER
) && !((pteflags
& _PAGE_RW
) &&
170 (pteflags
& _PAGE_DIRTY
)))
174 return rflags
| HPTE_R_C
;
177 int htab_bolt_mapping(unsigned long vstart
, unsigned long vend
,
178 unsigned long pstart
, unsigned long prot
,
179 int psize
, int ssize
)
181 unsigned long vaddr
, paddr
;
182 unsigned int step
, shift
;
185 shift
= mmu_psize_defs
[psize
].shift
;
188 prot
= htab_convert_pte_flags(prot
);
190 DBG("htab_bolt_mapping(%lx..%lx -> %lx (%lx,%d,%d)\n",
191 vstart
, vend
, pstart
, prot
, psize
, ssize
);
193 for (vaddr
= vstart
, paddr
= pstart
; vaddr
< vend
;
194 vaddr
+= step
, paddr
+= step
) {
195 unsigned long hash
, hpteg
;
196 unsigned long vsid
= get_kernel_vsid(vaddr
, ssize
);
197 unsigned long va
= hpt_va(vaddr
, vsid
, ssize
);
198 unsigned long tprot
= prot
;
200 /* Make kernel text executable */
201 if (overlaps_kernel_text(vaddr
, vaddr
+ step
))
204 hash
= hpt_hash(va
, shift
, ssize
);
205 hpteg
= ((hash
& htab_hash_mask
) * HPTES_PER_GROUP
);
207 BUG_ON(!ppc_md
.hpte_insert
);
208 ret
= ppc_md
.hpte_insert(hpteg
, va
, paddr
, tprot
,
209 HPTE_V_BOLTED
, psize
, ssize
);
213 #ifdef CONFIG_DEBUG_PAGEALLOC
214 if ((paddr
>> PAGE_SHIFT
) < linear_map_hash_count
)
215 linear_map_hash_slots
[paddr
>> PAGE_SHIFT
] = ret
| 0x80;
216 #endif /* CONFIG_DEBUG_PAGEALLOC */
218 return ret
< 0 ? ret
: 0;
221 #ifdef CONFIG_MEMORY_HOTPLUG
222 static int htab_remove_mapping(unsigned long vstart
, unsigned long vend
,
223 int psize
, int ssize
)
226 unsigned int step
, shift
;
228 shift
= mmu_psize_defs
[psize
].shift
;
231 if (!ppc_md
.hpte_removebolted
) {
232 printk(KERN_WARNING
"Platform doesn't implement "
233 "hpte_removebolted\n");
237 for (vaddr
= vstart
; vaddr
< vend
; vaddr
+= step
)
238 ppc_md
.hpte_removebolted(vaddr
, psize
, ssize
);
242 #endif /* CONFIG_MEMORY_HOTPLUG */
244 static int __init
htab_dt_scan_seg_sizes(unsigned long node
,
245 const char *uname
, int depth
,
248 char *type
= of_get_flat_dt_prop(node
, "device_type", NULL
);
250 unsigned long size
= 0;
252 /* We are scanning "cpu" nodes only */
253 if (type
== NULL
|| strcmp(type
, "cpu") != 0)
256 prop
= (u32
*)of_get_flat_dt_prop(node
, "ibm,processor-segment-sizes",
260 for (; size
>= 4; size
-= 4, ++prop
) {
262 DBG("1T segment support detected\n");
263 cur_cpu_spec
->mmu_features
|= MMU_FTR_1T_SEGMENT
;
267 cur_cpu_spec
->mmu_features
&= ~MMU_FTR_NO_SLBIE_B
;
271 static void __init
htab_init_seg_sizes(void)
273 of_scan_flat_dt(htab_dt_scan_seg_sizes
, NULL
);
276 static int __init
htab_dt_scan_page_sizes(unsigned long node
,
277 const char *uname
, int depth
,
280 char *type
= of_get_flat_dt_prop(node
, "device_type", NULL
);
282 unsigned long size
= 0;
284 /* We are scanning "cpu" nodes only */
285 if (type
== NULL
|| strcmp(type
, "cpu") != 0)
288 prop
= (u32
*)of_get_flat_dt_prop(node
,
289 "ibm,segment-page-sizes", &size
);
291 DBG("Page sizes from device-tree:\n");
293 cur_cpu_spec
->mmu_features
&= ~(MMU_FTR_16M_PAGE
);
295 unsigned int shift
= prop
[0];
296 unsigned int slbenc
= prop
[1];
297 unsigned int lpnum
= prop
[2];
298 unsigned int lpenc
= 0;
299 struct mmu_psize_def
*def
;
302 size
-= 3; prop
+= 3;
303 while(size
> 0 && lpnum
) {
304 if (prop
[0] == shift
)
306 prop
+= 2; size
-= 2;
321 cur_cpu_spec
->mmu_features
|= MMU_FTR_16M_PAGE
;
329 def
= &mmu_psize_defs
[idx
];
334 def
->avpnm
= (1 << (shift
- 23)) - 1;
337 /* We don't know for sure what's up with tlbiel, so
338 * for now we only set it for 4K and 64K pages
340 if (idx
== MMU_PAGE_4K
|| idx
== MMU_PAGE_64K
)
345 DBG(" %d: shift=%02x, sllp=%04lx, avpnm=%08lx, "
346 "tlbiel=%d, penc=%d\n",
347 idx
, shift
, def
->sllp
, def
->avpnm
, def
->tlbiel
,
355 #ifdef CONFIG_HUGETLB_PAGE
356 /* Scan for 16G memory blocks that have been set aside for huge pages
357 * and reserve those blocks for 16G huge pages.
359 static int __init
htab_dt_scan_hugepage_blocks(unsigned long node
,
360 const char *uname
, int depth
,
362 char *type
= of_get_flat_dt_prop(node
, "device_type", NULL
);
363 unsigned long *addr_prop
;
364 u32
*page_count_prop
;
365 unsigned int expected_pages
;
366 long unsigned int phys_addr
;
367 long unsigned int block_size
;
369 /* We are scanning "memory" nodes only */
370 if (type
== NULL
|| strcmp(type
, "memory") != 0)
373 /* This property is the log base 2 of the number of virtual pages that
374 * will represent this memory block. */
375 page_count_prop
= of_get_flat_dt_prop(node
, "ibm,expected#pages", NULL
);
376 if (page_count_prop
== NULL
)
378 expected_pages
= (1 << page_count_prop
[0]);
379 addr_prop
= of_get_flat_dt_prop(node
, "reg", NULL
);
380 if (addr_prop
== NULL
)
382 phys_addr
= addr_prop
[0];
383 block_size
= addr_prop
[1];
384 if (block_size
!= (16 * GB
))
386 printk(KERN_INFO
"Huge page(16GB) memory: "
387 "addr = 0x%lX size = 0x%lX pages = %d\n",
388 phys_addr
, block_size
, expected_pages
);
389 if (phys_addr
+ (16 * GB
) <= memblock_end_of_DRAM()) {
390 memblock_reserve(phys_addr
, block_size
* expected_pages
);
391 add_gpage(phys_addr
, block_size
, expected_pages
);
395 #endif /* CONFIG_HUGETLB_PAGE */
397 static void __init
htab_init_page_sizes(void)
401 /* Default to 4K pages only */
402 memcpy(mmu_psize_defs
, mmu_psize_defaults_old
,
403 sizeof(mmu_psize_defaults_old
));
406 * Try to find the available page sizes in the device-tree
408 rc
= of_scan_flat_dt(htab_dt_scan_page_sizes
, NULL
);
409 if (rc
!= 0) /* Found */
413 * Not in the device-tree, let's fallback on known size
414 * list for 16M capable GP & GR
416 if (mmu_has_feature(MMU_FTR_16M_PAGE
))
417 memcpy(mmu_psize_defs
, mmu_psize_defaults_gp
,
418 sizeof(mmu_psize_defaults_gp
));
420 #ifndef CONFIG_DEBUG_PAGEALLOC
422 * Pick a size for the linear mapping. Currently, we only support
423 * 16M, 1M and 4K which is the default
425 if (mmu_psize_defs
[MMU_PAGE_16M
].shift
)
426 mmu_linear_psize
= MMU_PAGE_16M
;
427 else if (mmu_psize_defs
[MMU_PAGE_1M
].shift
)
428 mmu_linear_psize
= MMU_PAGE_1M
;
429 #endif /* CONFIG_DEBUG_PAGEALLOC */
431 #ifdef CONFIG_PPC_64K_PAGES
433 * Pick a size for the ordinary pages. Default is 4K, we support
434 * 64K for user mappings and vmalloc if supported by the processor.
435 * We only use 64k for ioremap if the processor
436 * (and firmware) support cache-inhibited large pages.
437 * If not, we use 4k and set mmu_ci_restrictions so that
438 * hash_page knows to switch processes that use cache-inhibited
439 * mappings to 4k pages.
441 if (mmu_psize_defs
[MMU_PAGE_64K
].shift
) {
442 mmu_virtual_psize
= MMU_PAGE_64K
;
443 mmu_vmalloc_psize
= MMU_PAGE_64K
;
444 if (mmu_linear_psize
== MMU_PAGE_4K
)
445 mmu_linear_psize
= MMU_PAGE_64K
;
446 if (mmu_has_feature(MMU_FTR_CI_LARGE_PAGE
)) {
448 * Don't use 64k pages for ioremap on pSeries, since
449 * that would stop us accessing the HEA ethernet.
451 if (!machine_is(pseries
))
452 mmu_io_psize
= MMU_PAGE_64K
;
454 mmu_ci_restrictions
= 1;
456 #endif /* CONFIG_PPC_64K_PAGES */
458 #ifdef CONFIG_SPARSEMEM_VMEMMAP
459 /* We try to use 16M pages for vmemmap if that is supported
460 * and we have at least 1G of RAM at boot
462 if (mmu_psize_defs
[MMU_PAGE_16M
].shift
&&
463 memblock_phys_mem_size() >= 0x40000000)
464 mmu_vmemmap_psize
= MMU_PAGE_16M
;
465 else if (mmu_psize_defs
[MMU_PAGE_64K
].shift
)
466 mmu_vmemmap_psize
= MMU_PAGE_64K
;
468 mmu_vmemmap_psize
= MMU_PAGE_4K
;
469 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
471 printk(KERN_DEBUG
"Page orders: linear mapping = %d, "
472 "virtual = %d, io = %d"
473 #ifdef CONFIG_SPARSEMEM_VMEMMAP
477 mmu_psize_defs
[mmu_linear_psize
].shift
,
478 mmu_psize_defs
[mmu_virtual_psize
].shift
,
479 mmu_psize_defs
[mmu_io_psize
].shift
480 #ifdef CONFIG_SPARSEMEM_VMEMMAP
481 ,mmu_psize_defs
[mmu_vmemmap_psize
].shift
485 #ifdef CONFIG_HUGETLB_PAGE
486 /* Reserve 16G huge page memory sections for huge pages */
487 of_scan_flat_dt(htab_dt_scan_hugepage_blocks
, NULL
);
488 #endif /* CONFIG_HUGETLB_PAGE */
491 static int __init
htab_dt_scan_pftsize(unsigned long node
,
492 const char *uname
, int depth
,
495 char *type
= of_get_flat_dt_prop(node
, "device_type", NULL
);
498 /* We are scanning "cpu" nodes only */
499 if (type
== NULL
|| strcmp(type
, "cpu") != 0)
502 prop
= (u32
*)of_get_flat_dt_prop(node
, "ibm,pft-size", NULL
);
504 /* pft_size[0] is the NUMA CEC cookie */
505 ppc64_pft_size
= prop
[1];
511 static unsigned long __init
htab_get_table_size(void)
513 unsigned long mem_size
, rnd_mem_size
, pteg_count
, psize
;
515 /* If hash size isn't already provided by the platform, we try to
516 * retrieve it from the device-tree. If it's not there neither, we
517 * calculate it now based on the total RAM size
519 if (ppc64_pft_size
== 0)
520 of_scan_flat_dt(htab_dt_scan_pftsize
, NULL
);
522 return 1UL << ppc64_pft_size
;
524 /* round mem_size up to next power of 2 */
525 mem_size
= memblock_phys_mem_size();
526 rnd_mem_size
= 1UL << __ilog2(mem_size
);
527 if (rnd_mem_size
< mem_size
)
531 psize
= mmu_psize_defs
[mmu_virtual_psize
].shift
;
532 pteg_count
= max(rnd_mem_size
>> (psize
+ 1), 1UL << 11);
534 return pteg_count
<< 7;
537 #ifdef CONFIG_MEMORY_HOTPLUG
538 void create_section_mapping(unsigned long start
, unsigned long end
)
540 BUG_ON(htab_bolt_mapping(start
, end
, __pa(start
),
541 pgprot_val(PAGE_KERNEL
), mmu_linear_psize
,
545 int remove_section_mapping(unsigned long start
, unsigned long end
)
547 return htab_remove_mapping(start
, end
, mmu_linear_psize
,
550 #endif /* CONFIG_MEMORY_HOTPLUG */
552 #define FUNCTION_TEXT(A) ((*(unsigned long *)(A)))
554 static void __init
htab_finish_init(void)
556 extern unsigned int *htab_call_hpte_insert1
;
557 extern unsigned int *htab_call_hpte_insert2
;
558 extern unsigned int *htab_call_hpte_remove
;
559 extern unsigned int *htab_call_hpte_updatepp
;
561 #ifdef CONFIG_PPC_HAS_HASH_64K
562 extern unsigned int *ht64_call_hpte_insert1
;
563 extern unsigned int *ht64_call_hpte_insert2
;
564 extern unsigned int *ht64_call_hpte_remove
;
565 extern unsigned int *ht64_call_hpte_updatepp
;
567 patch_branch(ht64_call_hpte_insert1
,
568 FUNCTION_TEXT(ppc_md
.hpte_insert
),
570 patch_branch(ht64_call_hpte_insert2
,
571 FUNCTION_TEXT(ppc_md
.hpte_insert
),
573 patch_branch(ht64_call_hpte_remove
,
574 FUNCTION_TEXT(ppc_md
.hpte_remove
),
576 patch_branch(ht64_call_hpte_updatepp
,
577 FUNCTION_TEXT(ppc_md
.hpte_updatepp
),
580 #endif /* CONFIG_PPC_HAS_HASH_64K */
582 patch_branch(htab_call_hpte_insert1
,
583 FUNCTION_TEXT(ppc_md
.hpte_insert
),
585 patch_branch(htab_call_hpte_insert2
,
586 FUNCTION_TEXT(ppc_md
.hpte_insert
),
588 patch_branch(htab_call_hpte_remove
,
589 FUNCTION_TEXT(ppc_md
.hpte_remove
),
591 patch_branch(htab_call_hpte_updatepp
,
592 FUNCTION_TEXT(ppc_md
.hpte_updatepp
),
596 static void __init
htab_initialize(void)
599 unsigned long pteg_count
;
601 unsigned long base
= 0, size
= 0, limit
;
602 struct memblock_region
*reg
;
604 DBG(" -> htab_initialize()\n");
606 /* Initialize segment sizes */
607 htab_init_seg_sizes();
609 /* Initialize page sizes */
610 htab_init_page_sizes();
612 if (mmu_has_feature(MMU_FTR_1T_SEGMENT
)) {
613 mmu_kernel_ssize
= MMU_SEGSIZE_1T
;
614 mmu_highuser_ssize
= MMU_SEGSIZE_1T
;
615 printk(KERN_INFO
"Using 1TB segments\n");
619 * Calculate the required size of the htab. We want the number of
620 * PTEGs to equal one half the number of real pages.
622 htab_size_bytes
= htab_get_table_size();
623 pteg_count
= htab_size_bytes
>> 7;
625 htab_hash_mask
= pteg_count
- 1;
627 if (firmware_has_feature(FW_FEATURE_LPAR
)) {
628 /* Using a hypervisor which owns the htab */
632 /* Find storage for the HPT. Must be contiguous in
633 * the absolute address space. On cell we want it to be
634 * in the first 2 Gig so we can use it for IOMMU hacks.
636 if (machine_is(cell
))
639 limit
= MEMBLOCK_ALLOC_ANYWHERE
;
641 table
= memblock_alloc_base(htab_size_bytes
, htab_size_bytes
, limit
);
643 DBG("Hash table allocated at %lx, size: %lx\n", table
,
646 htab_address
= abs_to_virt(table
);
648 /* htab absolute addr + encoded htabsize */
649 _SDR1
= table
+ __ilog2(pteg_count
) - 11;
651 /* Initialize the HPT with no entries */
652 memset((void *)table
, 0, htab_size_bytes
);
655 mtspr(SPRN_SDR1
, _SDR1
);
658 prot
= pgprot_val(PAGE_KERNEL
);
660 #ifdef CONFIG_DEBUG_PAGEALLOC
661 linear_map_hash_count
= memblock_end_of_DRAM() >> PAGE_SHIFT
;
662 linear_map_hash_slots
= __va(memblock_alloc_base(linear_map_hash_count
,
664 memset(linear_map_hash_slots
, 0, linear_map_hash_count
);
665 #endif /* CONFIG_DEBUG_PAGEALLOC */
667 /* On U3 based machines, we need to reserve the DART area and
668 * _NOT_ map it to avoid cache paradoxes as it's remapped non
672 /* create bolted the linear mapping in the hash table */
673 for_each_memblock(memory
, reg
) {
674 base
= (unsigned long)__va(reg
->base
);
677 DBG("creating mapping for region: %lx..%lx (prot: %lx)\n",
680 #ifdef CONFIG_U3_DART
681 /* Do not map the DART space. Fortunately, it will be aligned
682 * in such a way that it will not cross two memblock regions and
683 * will fit within a single 16Mb page.
684 * The DART space is assumed to be a full 16Mb region even if
685 * we only use 2Mb of that space. We will use more of it later
686 * for AGP GART. We have to use a full 16Mb large page.
688 DBG("DART base: %lx\n", dart_tablebase
);
690 if (dart_tablebase
!= 0 && dart_tablebase
>= base
691 && dart_tablebase
< (base
+ size
)) {
692 unsigned long dart_table_end
= dart_tablebase
+ 16 * MB
;
693 if (base
!= dart_tablebase
)
694 BUG_ON(htab_bolt_mapping(base
, dart_tablebase
,
698 if ((base
+ size
) > dart_table_end
)
699 BUG_ON(htab_bolt_mapping(dart_tablebase
+16*MB
,
701 __pa(dart_table_end
),
707 #endif /* CONFIG_U3_DART */
708 BUG_ON(htab_bolt_mapping(base
, base
+ size
, __pa(base
),
709 prot
, mmu_linear_psize
, mmu_kernel_ssize
));
711 memblock_set_current_limit(MEMBLOCK_ALLOC_ANYWHERE
);
714 * If we have a memory_limit and we've allocated TCEs then we need to
715 * explicitly map the TCE area at the top of RAM. We also cope with the
716 * case that the TCEs start below memory_limit.
717 * tce_alloc_start/end are 16MB aligned so the mapping should work
718 * for either 4K or 16MB pages.
720 if (tce_alloc_start
) {
721 tce_alloc_start
= (unsigned long)__va(tce_alloc_start
);
722 tce_alloc_end
= (unsigned long)__va(tce_alloc_end
);
724 if (base
+ size
>= tce_alloc_start
)
725 tce_alloc_start
= base
+ size
+ 1;
727 BUG_ON(htab_bolt_mapping(tce_alloc_start
, tce_alloc_end
,
728 __pa(tce_alloc_start
), prot
,
729 mmu_linear_psize
, mmu_kernel_ssize
));
734 DBG(" <- htab_initialize()\n");
739 void __init
early_init_mmu(void)
741 /* Setup initial STAB address in the PACA */
742 get_paca()->stab_real
= __pa((u64
)&initial_stab
);
743 get_paca()->stab_addr
= (u64
)&initial_stab
;
745 /* Initialize the MMU Hash table and create the linear mapping
746 * of memory. Has to be done before stab/slb initialization as
747 * this is currently where the page size encoding is obtained
751 /* Initialize stab / SLB management except on iSeries
753 if (mmu_has_feature(MMU_FTR_SLB
))
755 else if (!firmware_has_feature(FW_FEATURE_ISERIES
))
756 stab_initialize(get_paca()->stab_real
);
760 void __cpuinit
early_init_mmu_secondary(void)
762 /* Initialize hash table for that CPU */
763 if (!firmware_has_feature(FW_FEATURE_LPAR
))
764 mtspr(SPRN_SDR1
, _SDR1
);
766 /* Initialize STAB/SLB. We use a virtual address as it works
767 * in real mode on pSeries and we want a virtual address on
770 if (mmu_has_feature(MMU_FTR_SLB
))
773 stab_initialize(get_paca()->stab_addr
);
775 #endif /* CONFIG_SMP */
778 * Called by asm hashtable.S for doing lazy icache flush
780 unsigned int hash_page_do_lazy_icache(unsigned int pp
, pte_t pte
, int trap
)
784 if (!pfn_valid(pte_pfn(pte
)))
787 page
= pte_page(pte
);
790 if (!test_bit(PG_arch_1
, &page
->flags
) && !PageReserved(page
)) {
792 flush_dcache_icache_page(page
);
793 set_bit(PG_arch_1
, &page
->flags
);
800 #ifdef CONFIG_PPC_MM_SLICES
801 unsigned int get_paca_psize(unsigned long addr
)
803 unsigned long index
, slices
;
805 if (addr
< SLICE_LOW_TOP
) {
806 slices
= get_paca()->context
.low_slices_psize
;
807 index
= GET_LOW_SLICE_INDEX(addr
);
809 slices
= get_paca()->context
.high_slices_psize
;
810 index
= GET_HIGH_SLICE_INDEX(addr
);
812 return (slices
>> (index
* 4)) & 0xF;
816 unsigned int get_paca_psize(unsigned long addr
)
818 return get_paca()->context
.user_psize
;
823 * Demote a segment to using 4k pages.
824 * For now this makes the whole process use 4k pages.
826 #ifdef CONFIG_PPC_64K_PAGES
827 void demote_segment_4k(struct mm_struct
*mm
, unsigned long addr
)
829 if (get_slice_psize(mm
, addr
) == MMU_PAGE_4K
)
831 slice_set_range_psize(mm
, addr
, 1, MMU_PAGE_4K
);
832 #ifdef CONFIG_SPU_BASE
833 spu_flush_all_slbs(mm
);
835 if (get_paca_psize(addr
) != MMU_PAGE_4K
) {
836 get_paca()->context
= mm
->context
;
837 slb_flush_and_rebolt();
840 #endif /* CONFIG_PPC_64K_PAGES */
842 #ifdef CONFIG_PPC_SUBPAGE_PROT
844 * This looks up a 2-bit protection code for a 4k subpage of a 64k page.
845 * Userspace sets the subpage permissions using the subpage_prot system call.
847 * Result is 0: full permissions, _PAGE_RW: read-only,
848 * _PAGE_USER or _PAGE_USER|_PAGE_RW: no access.
850 static int subpage_protection(struct mm_struct
*mm
, unsigned long ea
)
852 struct subpage_prot_table
*spt
= &mm
->context
.spt
;
856 if (ea
>= spt
->maxaddr
)
858 if (ea
< 0x100000000) {
859 /* addresses below 4GB use spt->low_prot */
860 sbpm
= spt
->low_prot
;
862 sbpm
= spt
->protptrs
[ea
>> SBP_L3_SHIFT
];
866 sbpp
= sbpm
[(ea
>> SBP_L2_SHIFT
) & (SBP_L2_COUNT
- 1)];
869 spp
= sbpp
[(ea
>> PAGE_SHIFT
) & (SBP_L1_COUNT
- 1)];
871 /* extract 2-bit bitfield for this 4k subpage */
872 spp
>>= 30 - 2 * ((ea
>> 12) & 0xf);
874 /* turn 0,1,2,3 into combination of _PAGE_USER and _PAGE_RW */
875 spp
= ((spp
& 2) ? _PAGE_USER
: 0) | ((spp
& 1) ? _PAGE_RW
: 0);
879 #else /* CONFIG_PPC_SUBPAGE_PROT */
880 static inline int subpage_protection(struct mm_struct
*mm
, unsigned long ea
)
886 void hash_failure_debug(unsigned long ea
, unsigned long access
,
887 unsigned long vsid
, unsigned long trap
,
888 int ssize
, int psize
, unsigned long pte
)
890 if (!printk_ratelimit())
892 pr_info("mm: Hashing failure ! EA=0x%lx access=0x%lx current=%s\n",
893 ea
, access
, current
->comm
);
894 pr_info(" trap=0x%lx vsid=0x%lx ssize=%d psize=%d pte=0x%lx\n",
895 trap
, vsid
, ssize
, psize
, pte
);
900 * 1 - normal page fault
901 * -1 - critical hash insertion error
902 * -2 - access not permitted by subpage protection mechanism
904 int hash_page(unsigned long ea
, unsigned long access
, unsigned long trap
)
908 struct mm_struct
*mm
;
911 const struct cpumask
*tmp
;
912 int rc
, user_region
= 0, local
= 0;
915 DBG_LOW("hash_page(ea=%016lx, access=%lx, trap=%lx\n",
918 if ((ea
& ~REGION_MASK
) >= PGTABLE_RANGE
) {
919 DBG_LOW(" out of pgtable range !\n");
923 /* Get region & vsid */
924 switch (REGION_ID(ea
)) {
929 DBG_LOW(" user region with no mm !\n");
932 psize
= get_slice_psize(mm
, ea
);
933 ssize
= user_segment_size(ea
);
934 vsid
= get_vsid(mm
->context
.id
, ea
, ssize
);
936 case VMALLOC_REGION_ID
:
938 vsid
= get_kernel_vsid(ea
, mmu_kernel_ssize
);
939 if (ea
< VMALLOC_END
)
940 psize
= mmu_vmalloc_psize
;
942 psize
= mmu_io_psize
;
943 ssize
= mmu_kernel_ssize
;
947 * Send the problem up to do_page_fault
951 DBG_LOW(" mm=%p, mm->pgdir=%p, vsid=%016lx\n", mm
, mm
->pgd
, vsid
);
958 /* Check CPU locality */
959 tmp
= cpumask_of(smp_processor_id());
960 if (user_region
&& cpumask_equal(mm_cpumask(mm
), tmp
))
963 #ifndef CONFIG_PPC_64K_PAGES
964 /* If we use 4K pages and our psize is not 4K, then we might
965 * be hitting a special driver mapping, and need to align the
966 * address before we fetch the PTE.
968 * It could also be a hugepage mapping, in which case this is
969 * not necessary, but it's not harmful, either.
971 if (psize
!= MMU_PAGE_4K
)
972 ea
&= ~((1ul << mmu_psize_defs
[psize
].shift
) - 1);
973 #endif /* CONFIG_PPC_64K_PAGES */
975 /* Get PTE and page size from page tables */
976 ptep
= find_linux_pte_or_hugepte(pgdir
, ea
, &hugeshift
);
977 if (ptep
== NULL
|| !pte_present(*ptep
)) {
978 DBG_LOW(" no PTE !\n");
982 /* Add _PAGE_PRESENT to the required access perm */
983 access
|= _PAGE_PRESENT
;
985 /* Pre-check access permissions (will be re-checked atomically
986 * in __hash_page_XX but this pre-check is a fast path
988 if (access
& ~pte_val(*ptep
)) {
989 DBG_LOW(" no access !\n");
993 #ifdef CONFIG_HUGETLB_PAGE
995 return __hash_page_huge(ea
, access
, vsid
, ptep
, trap
, local
,
996 ssize
, hugeshift
, psize
);
997 #endif /* CONFIG_HUGETLB_PAGE */
999 #ifndef CONFIG_PPC_64K_PAGES
1000 DBG_LOW(" i-pte: %016lx\n", pte_val(*ptep
));
1002 DBG_LOW(" i-pte: %016lx %016lx\n", pte_val(*ptep
),
1003 pte_val(*(ptep
+ PTRS_PER_PTE
)));
1005 /* Do actual hashing */
1006 #ifdef CONFIG_PPC_64K_PAGES
1007 /* If _PAGE_4K_PFN is set, make sure this is a 4k segment */
1008 if ((pte_val(*ptep
) & _PAGE_4K_PFN
) && psize
== MMU_PAGE_64K
) {
1009 demote_segment_4k(mm
, ea
);
1010 psize
= MMU_PAGE_4K
;
1013 /* If this PTE is non-cacheable and we have restrictions on
1014 * using non cacheable large pages, then we switch to 4k
1016 if (mmu_ci_restrictions
&& psize
== MMU_PAGE_64K
&&
1017 (pte_val(*ptep
) & _PAGE_NO_CACHE
)) {
1019 demote_segment_4k(mm
, ea
);
1020 psize
= MMU_PAGE_4K
;
1021 } else if (ea
< VMALLOC_END
) {
1023 * some driver did a non-cacheable mapping
1024 * in vmalloc space, so switch vmalloc
1027 printk(KERN_ALERT
"Reducing vmalloc segment "
1028 "to 4kB pages because of "
1029 "non-cacheable mapping\n");
1030 psize
= mmu_vmalloc_psize
= MMU_PAGE_4K
;
1031 #ifdef CONFIG_SPU_BASE
1032 spu_flush_all_slbs(mm
);
1037 if (psize
!= get_paca_psize(ea
)) {
1038 get_paca()->context
= mm
->context
;
1039 slb_flush_and_rebolt();
1041 } else if (get_paca()->vmalloc_sllp
!=
1042 mmu_psize_defs
[mmu_vmalloc_psize
].sllp
) {
1043 get_paca()->vmalloc_sllp
=
1044 mmu_psize_defs
[mmu_vmalloc_psize
].sllp
;
1045 slb_vmalloc_update();
1047 #endif /* CONFIG_PPC_64K_PAGES */
1049 #ifdef CONFIG_PPC_HAS_HASH_64K
1050 if (psize
== MMU_PAGE_64K
)
1051 rc
= __hash_page_64K(ea
, access
, vsid
, ptep
, trap
, local
, ssize
);
1053 #endif /* CONFIG_PPC_HAS_HASH_64K */
1055 int spp
= subpage_protection(mm
, ea
);
1059 rc
= __hash_page_4K(ea
, access
, vsid
, ptep
, trap
,
1063 /* Dump some info in case of hash insertion failure, they should
1064 * never happen so it is really useful to know if/when they do
1067 hash_failure_debug(ea
, access
, vsid
, trap
, ssize
, psize
,
1069 #ifndef CONFIG_PPC_64K_PAGES
1070 DBG_LOW(" o-pte: %016lx\n", pte_val(*ptep
));
1072 DBG_LOW(" o-pte: %016lx %016lx\n", pte_val(*ptep
),
1073 pte_val(*(ptep
+ PTRS_PER_PTE
)));
1075 DBG_LOW(" -> rc=%d\n", rc
);
1078 EXPORT_SYMBOL_GPL(hash_page
);
1080 void hash_preload(struct mm_struct
*mm
, unsigned long ea
,
1081 unsigned long access
, unsigned long trap
)
1086 unsigned long flags
;
1087 int rc
, ssize
, local
= 0;
1089 BUG_ON(REGION_ID(ea
) != USER_REGION_ID
);
1091 #ifdef CONFIG_PPC_MM_SLICES
1092 /* We only prefault standard pages for now */
1093 if (unlikely(get_slice_psize(mm
, ea
) != mm
->context
.user_psize
))
1097 DBG_LOW("hash_preload(mm=%p, mm->pgdir=%p, ea=%016lx, access=%lx,"
1098 " trap=%lx\n", mm
, mm
->pgd
, ea
, access
, trap
);
1100 /* Get Linux PTE if available */
1104 ptep
= find_linux_pte(pgdir
, ea
);
1108 #ifdef CONFIG_PPC_64K_PAGES
1109 /* If either _PAGE_4K_PFN or _PAGE_NO_CACHE is set (and we are on
1110 * a 64K kernel), then we don't preload, hash_page() will take
1111 * care of it once we actually try to access the page.
1112 * That way we don't have to duplicate all of the logic for segment
1113 * page size demotion here
1115 if (pte_val(*ptep
) & (_PAGE_4K_PFN
| _PAGE_NO_CACHE
))
1117 #endif /* CONFIG_PPC_64K_PAGES */
1120 ssize
= user_segment_size(ea
);
1121 vsid
= get_vsid(mm
->context
.id
, ea
, ssize
);
1123 /* Hash doesn't like irqs */
1124 local_irq_save(flags
);
1126 /* Is that local to this CPU ? */
1127 if (cpumask_equal(mm_cpumask(mm
), cpumask_of(smp_processor_id())))
1131 #ifdef CONFIG_PPC_HAS_HASH_64K
1132 if (mm
->context
.user_psize
== MMU_PAGE_64K
)
1133 rc
= __hash_page_64K(ea
, access
, vsid
, ptep
, trap
, local
, ssize
);
1135 #endif /* CONFIG_PPC_HAS_HASH_64K */
1136 rc
= __hash_page_4K(ea
, access
, vsid
, ptep
, trap
, local
, ssize
,
1137 subpage_protection(mm
, ea
));
1139 /* Dump some info in case of hash insertion failure, they should
1140 * never happen so it is really useful to know if/when they do
1143 hash_failure_debug(ea
, access
, vsid
, trap
, ssize
,
1144 mm
->context
.user_psize
, pte_val(*ptep
));
1146 local_irq_restore(flags
);
1149 /* WARNING: This is called from hash_low_64.S, if you change this prototype,
1150 * do not forget to update the assembly call site !
1152 void flush_hash_page(unsigned long va
, real_pte_t pte
, int psize
, int ssize
,
1155 unsigned long hash
, index
, shift
, hidx
, slot
;
1157 DBG_LOW("flush_hash_page(va=%016lx)\n", va
);
1158 pte_iterate_hashed_subpages(pte
, psize
, va
, index
, shift
) {
1159 hash
= hpt_hash(va
, shift
, ssize
);
1160 hidx
= __rpte_to_hidx(pte
, index
);
1161 if (hidx
& _PTEIDX_SECONDARY
)
1163 slot
= (hash
& htab_hash_mask
) * HPTES_PER_GROUP
;
1164 slot
+= hidx
& _PTEIDX_GROUP_IX
;
1165 DBG_LOW(" sub %ld: hash=%lx, hidx=%lx\n", index
, slot
, hidx
);
1166 ppc_md
.hpte_invalidate(slot
, va
, psize
, ssize
, local
);
1167 } pte_iterate_hashed_end();
1170 void flush_hash_range(unsigned long number
, int local
)
1172 if (ppc_md
.flush_hash_range
)
1173 ppc_md
.flush_hash_range(number
, local
);
1176 struct ppc64_tlb_batch
*batch
=
1177 &__get_cpu_var(ppc64_tlb_batch
);
1179 for (i
= 0; i
< number
; i
++)
1180 flush_hash_page(batch
->vaddr
[i
], batch
->pte
[i
],
1181 batch
->psize
, batch
->ssize
, local
);
1186 * low_hash_fault is called when we the low level hash code failed
1187 * to instert a PTE due to an hypervisor error
1189 void low_hash_fault(struct pt_regs
*regs
, unsigned long address
, int rc
)
1191 if (user_mode(regs
)) {
1192 #ifdef CONFIG_PPC_SUBPAGE_PROT
1194 _exception(SIGSEGV
, regs
, SEGV_ACCERR
, address
);
1197 _exception(SIGBUS
, regs
, BUS_ADRERR
, address
);
1199 bad_page_fault(regs
, address
, SIGBUS
);
1202 #ifdef CONFIG_DEBUG_PAGEALLOC
1203 static void kernel_map_linear_page(unsigned long vaddr
, unsigned long lmi
)
1205 unsigned long hash
, hpteg
;
1206 unsigned long vsid
= get_kernel_vsid(vaddr
, mmu_kernel_ssize
);
1207 unsigned long va
= hpt_va(vaddr
, vsid
, mmu_kernel_ssize
);
1208 unsigned long mode
= htab_convert_pte_flags(PAGE_KERNEL
);
1211 hash
= hpt_hash(va
, PAGE_SHIFT
, mmu_kernel_ssize
);
1212 hpteg
= ((hash
& htab_hash_mask
) * HPTES_PER_GROUP
);
1214 ret
= ppc_md
.hpte_insert(hpteg
, va
, __pa(vaddr
),
1215 mode
, HPTE_V_BOLTED
,
1216 mmu_linear_psize
, mmu_kernel_ssize
);
1218 spin_lock(&linear_map_hash_lock
);
1219 BUG_ON(linear_map_hash_slots
[lmi
] & 0x80);
1220 linear_map_hash_slots
[lmi
] = ret
| 0x80;
1221 spin_unlock(&linear_map_hash_lock
);
1224 static void kernel_unmap_linear_page(unsigned long vaddr
, unsigned long lmi
)
1226 unsigned long hash
, hidx
, slot
;
1227 unsigned long vsid
= get_kernel_vsid(vaddr
, mmu_kernel_ssize
);
1228 unsigned long va
= hpt_va(vaddr
, vsid
, mmu_kernel_ssize
);
1230 hash
= hpt_hash(va
, PAGE_SHIFT
, mmu_kernel_ssize
);
1231 spin_lock(&linear_map_hash_lock
);
1232 BUG_ON(!(linear_map_hash_slots
[lmi
] & 0x80));
1233 hidx
= linear_map_hash_slots
[lmi
] & 0x7f;
1234 linear_map_hash_slots
[lmi
] = 0;
1235 spin_unlock(&linear_map_hash_lock
);
1236 if (hidx
& _PTEIDX_SECONDARY
)
1238 slot
= (hash
& htab_hash_mask
) * HPTES_PER_GROUP
;
1239 slot
+= hidx
& _PTEIDX_GROUP_IX
;
1240 ppc_md
.hpte_invalidate(slot
, va
, mmu_linear_psize
, mmu_kernel_ssize
, 0);
1243 void kernel_map_pages(struct page
*page
, int numpages
, int enable
)
1245 unsigned long flags
, vaddr
, lmi
;
1248 local_irq_save(flags
);
1249 for (i
= 0; i
< numpages
; i
++, page
++) {
1250 vaddr
= (unsigned long)page_address(page
);
1251 lmi
= __pa(vaddr
) >> PAGE_SHIFT
;
1252 if (lmi
>= linear_map_hash_count
)
1255 kernel_map_linear_page(vaddr
, lmi
);
1257 kernel_unmap_linear_page(vaddr
, lmi
);
1259 local_irq_restore(flags
);
1261 #endif /* CONFIG_DEBUG_PAGEALLOC */
1263 void setup_initial_memory_limit(phys_addr_t first_memblock_base
,
1264 phys_addr_t first_memblock_size
)
1266 /* We don't currently support the first MEMBLOCK not mapping 0
1267 * physical on those processors
1269 BUG_ON(first_memblock_base
!= 0);
1271 /* On LPAR systems, the first entry is our RMA region,
1272 * non-LPAR 64-bit hash MMU systems don't have a limitation
1273 * on real mode access, but using the first entry works well
1274 * enough. We also clamp it to 1G to avoid some funky things
1275 * such as RTAS bugs etc...
1277 ppc64_rma_size
= min_t(u64
, first_memblock_size
, 0x40000000);
1279 /* Finally limit subsequent allocations */
1280 memblock_set_current_limit(ppc64_rma_size
);