2 * include/asm-s390/pgtable.h
5 * Copyright (C) 1999,2000 IBM Deutschland Entwicklung GmbH, IBM Corporation
6 * Author(s): Hartmut Penner (hp@de.ibm.com)
7 * Ulrich Weigand (weigand@de.ibm.com)
8 * Martin Schwidefsky (schwidefsky@de.ibm.com)
10 * Derived from "include/asm-i386/pgtable.h"
13 #ifndef _ASM_S390_PGTABLE_H
14 #define _ASM_S390_PGTABLE_H
17 * The Linux memory management assumes a three-level page table setup. For
18 * s390 31 bit we "fold" the mid level into the top-level page table, so
19 * that we physically have the same two-level page table as the s390 mmu
20 * expects in 31 bit mode. For s390 64 bit we use three of the five levels
21 * the hardware provides (region first and region second tables are not
24 * The "pgd_xxx()" functions are trivial for a folded two-level
25 * setup: the pgd is never bad, and a pmd always exists (as it's folded
28 * This file contains the functions and defines necessary to modify and use
29 * the S390 page table tree.
32 #include <linux/sched.h>
33 #include <linux/mm_types.h>
37 extern pgd_t swapper_pg_dir
[] __attribute__ ((aligned (4096)));
38 extern void paging_init(void);
39 extern void vmem_map_init(void);
40 extern void fault_init(void);
43 * The S390 doesn't have any external MMU info: the kernel page
44 * tables contain all the necessary information.
46 #define update_mmu_cache(vma, address, ptep) do { } while (0)
49 * ZERO_PAGE is a global shared page that is always zero; used
50 * for zero-mapped memory areas etc..
53 extern unsigned long empty_zero_page
;
54 extern unsigned long zero_page_mask
;
56 #define ZERO_PAGE(vaddr) \
57 (virt_to_page((void *)(empty_zero_page + \
58 (((unsigned long)(vaddr)) &zero_page_mask))))
60 #define is_zero_pfn is_zero_pfn
61 static inline int is_zero_pfn(unsigned long pfn
)
63 extern unsigned long zero_pfn
;
64 unsigned long offset_from_zero_pfn
= pfn
- zero_pfn
;
65 return offset_from_zero_pfn
<= (zero_page_mask
>> PAGE_SHIFT
);
68 #define my_zero_pfn(addr) page_to_pfn(ZERO_PAGE(addr))
70 #endif /* !__ASSEMBLY__ */
73 * PMD_SHIFT determines the size of the area a second-level page
75 * PGDIR_SHIFT determines what a third-level page table entry can map
80 # define PGDIR_SHIFT 20
84 # define PGDIR_SHIFT 42
85 #endif /* __s390x__ */
87 #define PMD_SIZE (1UL << PMD_SHIFT)
88 #define PMD_MASK (~(PMD_SIZE-1))
89 #define PUD_SIZE (1UL << PUD_SHIFT)
90 #define PUD_MASK (~(PUD_SIZE-1))
91 #define PGDIR_SIZE (1UL << PGDIR_SHIFT)
92 #define PGDIR_MASK (~(PGDIR_SIZE-1))
95 * entries per page directory level: the S390 is two-level, so
96 * we don't really have any PMD directory physically.
97 * for S390 segment-table entries are combined to one PGD
98 * that leads to 1024 pte per pgd
100 #define PTRS_PER_PTE 256
102 #define PTRS_PER_PMD 1
103 #define PTRS_PER_PUD 1
104 #else /* __s390x__ */
105 #define PTRS_PER_PMD 2048
106 #define PTRS_PER_PUD 2048
107 #endif /* __s390x__ */
108 #define PTRS_PER_PGD 2048
110 #define FIRST_USER_ADDRESS 0
112 #define pte_ERROR(e) \
113 printk("%s:%d: bad pte %p.\n", __FILE__, __LINE__, (void *) pte_val(e))
114 #define pmd_ERROR(e) \
115 printk("%s:%d: bad pmd %p.\n", __FILE__, __LINE__, (void *) pmd_val(e))
116 #define pud_ERROR(e) \
117 printk("%s:%d: bad pud %p.\n", __FILE__, __LINE__, (void *) pud_val(e))
118 #define pgd_ERROR(e) \
119 printk("%s:%d: bad pgd %p.\n", __FILE__, __LINE__, (void *) pgd_val(e))
123 * The vmalloc area will always be on the topmost area of the kernel
124 * mapping. We reserve 96MB (31bit) / 128GB (64bit) for vmalloc,
125 * which should be enough for any sane case.
126 * By putting vmalloc at the top, we maximise the gap between physical
127 * memory and vmalloc to catch misplaced memory accesses. As a side
128 * effect, this also makes sure that 64 bit module code cannot be used
129 * as system call address.
132 extern unsigned long VMALLOC_START
;
135 #define VMALLOC_SIZE (96UL << 20)
136 #define VMALLOC_END 0x7e000000UL
137 #define VMEM_MAP_END 0x80000000UL
138 #else /* __s390x__ */
139 #define VMALLOC_SIZE (128UL << 30)
140 #define VMALLOC_END 0x3e000000000UL
141 #define VMEM_MAP_END 0x40000000000UL
142 #endif /* __s390x__ */
145 * VMEM_MAX_PHYS is the highest physical address that can be added to the 1:1
146 * mapping. This needs to be calculated at compile time since the size of the
147 * VMEM_MAP is static but the size of struct page can change.
149 #define VMEM_MAX_PAGES ((VMEM_MAP_END - VMALLOC_END) / sizeof(struct page))
150 #define VMEM_MAX_PFN min(VMALLOC_START >> PAGE_SHIFT, VMEM_MAX_PAGES)
151 #define VMEM_MAX_PHYS ((VMEM_MAX_PFN << PAGE_SHIFT) & ~((16 << 20) - 1))
152 #define vmemmap ((struct page *) VMALLOC_END)
155 * A 31 bit pagetable entry of S390 has following format:
158 * 00000000001111111111222222222233
159 * 01234567890123456789012345678901
161 * I Page-Invalid Bit: Page is not available for address-translation
162 * P Page-Protection Bit: Store access not possible for page
164 * A 31 bit segmenttable entry of S390 has following format:
165 * | P-table origin | |PTL
167 * 00000000001111111111222222222233
168 * 01234567890123456789012345678901
170 * I Segment-Invalid Bit: Segment is not available for address-translation
171 * C Common-Segment Bit: Segment is not private (PoP 3-30)
172 * PTL Page-Table-Length: Page-table length (PTL+1*16 entries -> up to 256)
174 * The 31 bit segmenttable origin of S390 has following format:
176 * |S-table origin | | STL |
178 * 00000000001111111111222222222233
179 * 01234567890123456789012345678901
181 * X Space-Switch event:
182 * G Segment-Invalid Bit: *
183 * P Private-Space Bit: Segment is not private (PoP 3-30)
184 * S Storage-Alteration:
185 * STL Segment-Table-Length: Segment-table length (STL+1*16 entries -> up to 2048)
187 * A 64 bit pagetable entry of S390 has following format:
189 * 0000000000111111111122222222223333333333444444444455555555556666
190 * 0123456789012345678901234567890123456789012345678901234567890123
192 * I Page-Invalid Bit: Page is not available for address-translation
193 * P Page-Protection Bit: Store access not possible for page
194 * C Change-bit override: HW is not required to set change bit
196 * A 64 bit segmenttable entry of S390 has following format:
197 * | P-table origin | TT
198 * 0000000000111111111122222222223333333333444444444455555555556666
199 * 0123456789012345678901234567890123456789012345678901234567890123
201 * I Segment-Invalid Bit: Segment is not available for address-translation
202 * C Common-Segment Bit: Segment is not private (PoP 3-30)
203 * P Page-Protection Bit: Store access not possible for page
206 * A 64 bit region table entry of S390 has following format:
207 * | S-table origin | TF TTTL
208 * 0000000000111111111122222222223333333333444444444455555555556666
209 * 0123456789012345678901234567890123456789012345678901234567890123
211 * I Segment-Invalid Bit: Segment is not available for address-translation
216 * The 64 bit regiontable origin of S390 has following format:
217 * | region table origon | DTTL
218 * 0000000000111111111122222222223333333333444444444455555555556666
219 * 0123456789012345678901234567890123456789012345678901234567890123
221 * X Space-Switch event:
222 * G Segment-Invalid Bit:
223 * P Private-Space Bit:
224 * S Storage-Alteration:
228 * A storage key has the following format:
232 * F : fetch protection bit
237 /* Hardware bits in the page table entry */
238 #define _PAGE_CO 0x100 /* HW Change-bit override */
239 #define _PAGE_RO 0x200 /* HW read-only bit */
240 #define _PAGE_INVALID 0x400 /* HW invalid bit */
242 /* Software bits in the page table entry */
243 #define _PAGE_SWT 0x001 /* SW pte type bit t */
244 #define _PAGE_SWX 0x002 /* SW pte type bit x */
245 #define _PAGE_SWC 0x004 /* SW pte changed bit (for KVM) */
246 #define _PAGE_SWR 0x008 /* SW pte referenced bit (for KVM) */
247 #define _PAGE_SPECIAL 0x010 /* SW associated with special page */
248 #define __HAVE_ARCH_PTE_SPECIAL
250 /* Set of bits not changed in pte_modify */
251 #define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_SPECIAL | _PAGE_SWC | _PAGE_SWR)
253 /* Six different types of pages. */
254 #define _PAGE_TYPE_EMPTY 0x400
255 #define _PAGE_TYPE_NONE 0x401
256 #define _PAGE_TYPE_SWAP 0x403
257 #define _PAGE_TYPE_FILE 0x601 /* bit 0x002 is used for offset !! */
258 #define _PAGE_TYPE_RO 0x200
259 #define _PAGE_TYPE_RW 0x000
262 * Only four types for huge pages, using the invalid bit and protection bit
263 * of a segment table entry.
265 #define _HPAGE_TYPE_EMPTY 0x020 /* _SEGMENT_ENTRY_INV */
266 #define _HPAGE_TYPE_NONE 0x220
267 #define _HPAGE_TYPE_RO 0x200 /* _SEGMENT_ENTRY_RO */
268 #define _HPAGE_TYPE_RW 0x000
271 * PTE type bits are rather complicated. handle_pte_fault uses pte_present,
272 * pte_none and pte_file to find out the pte type WITHOUT holding the page
273 * table lock. ptep_clear_flush on the other hand uses ptep_clear_flush to
274 * invalidate a given pte. ipte sets the hw invalid bit and clears all tlbs
275 * for the page. The page table entry is set to _PAGE_TYPE_EMPTY afterwards.
276 * This change is done while holding the lock, but the intermediate step
277 * of a previously valid pte with the hw invalid bit set can be observed by
278 * handle_pte_fault. That makes it necessary that all valid pte types with
279 * the hw invalid bit set must be distinguishable from the four pte types
280 * empty, none, swap and file.
283 * _PAGE_TYPE_EMPTY 1000 -> 1000
284 * _PAGE_TYPE_NONE 1001 -> 1001
285 * _PAGE_TYPE_SWAP 1011 -> 1011
286 * _PAGE_TYPE_FILE 11?1 -> 11?1
287 * _PAGE_TYPE_RO 0100 -> 1100
288 * _PAGE_TYPE_RW 0000 -> 1000
290 * pte_none is true for bits combinations 1000, 1010, 1100, 1110
291 * pte_present is true for bits combinations 0000, 0010, 0100, 0110, 1001
292 * pte_file is true for bits combinations 1101, 1111
293 * swap pte is 1011 and 0001, 0011, 0101, 0111 are invalid.
298 /* Bits in the segment table address-space-control-element */
299 #define _ASCE_SPACE_SWITCH 0x80000000UL /* space switch event */
300 #define _ASCE_ORIGIN_MASK 0x7ffff000UL /* segment table origin */
301 #define _ASCE_PRIVATE_SPACE 0x100 /* private space control */
302 #define _ASCE_ALT_EVENT 0x80 /* storage alteration event control */
303 #define _ASCE_TABLE_LENGTH 0x7f /* 128 x 64 entries = 8k */
305 /* Bits in the segment table entry */
306 #define _SEGMENT_ENTRY_ORIGIN 0x7fffffc0UL /* page table origin */
307 #define _SEGMENT_ENTRY_RO 0x200 /* page protection bit */
308 #define _SEGMENT_ENTRY_INV 0x20 /* invalid segment table entry */
309 #define _SEGMENT_ENTRY_COMMON 0x10 /* common segment bit */
310 #define _SEGMENT_ENTRY_PTL 0x0f /* page table length */
312 #define _SEGMENT_ENTRY (_SEGMENT_ENTRY_PTL)
313 #define _SEGMENT_ENTRY_EMPTY (_SEGMENT_ENTRY_INV)
315 /* Page status table bits for virtualization */
316 #define RCP_ACC_BITS 0xf0000000UL
317 #define RCP_FP_BIT 0x08000000UL
318 #define RCP_PCL_BIT 0x00800000UL
319 #define RCP_HR_BIT 0x00400000UL
320 #define RCP_HC_BIT 0x00200000UL
321 #define RCP_GR_BIT 0x00040000UL
322 #define RCP_GC_BIT 0x00020000UL
324 /* User dirty / referenced bit for KVM's migration feature */
325 #define KVM_UR_BIT 0x00008000UL
326 #define KVM_UC_BIT 0x00004000UL
328 #else /* __s390x__ */
330 /* Bits in the segment/region table address-space-control-element */
331 #define _ASCE_ORIGIN ~0xfffUL/* segment table origin */
332 #define _ASCE_PRIVATE_SPACE 0x100 /* private space control */
333 #define _ASCE_ALT_EVENT 0x80 /* storage alteration event control */
334 #define _ASCE_SPACE_SWITCH 0x40 /* space switch event */
335 #define _ASCE_REAL_SPACE 0x20 /* real space control */
336 #define _ASCE_TYPE_MASK 0x0c /* asce table type mask */
337 #define _ASCE_TYPE_REGION1 0x0c /* region first table type */
338 #define _ASCE_TYPE_REGION2 0x08 /* region second table type */
339 #define _ASCE_TYPE_REGION3 0x04 /* region third table type */
340 #define _ASCE_TYPE_SEGMENT 0x00 /* segment table type */
341 #define _ASCE_TABLE_LENGTH 0x03 /* region table length */
343 /* Bits in the region table entry */
344 #define _REGION_ENTRY_ORIGIN ~0xfffUL/* region/segment table origin */
345 #define _REGION_ENTRY_INV 0x20 /* invalid region table entry */
346 #define _REGION_ENTRY_TYPE_MASK 0x0c /* region/segment table type mask */
347 #define _REGION_ENTRY_TYPE_R1 0x0c /* region first table type */
348 #define _REGION_ENTRY_TYPE_R2 0x08 /* region second table type */
349 #define _REGION_ENTRY_TYPE_R3 0x04 /* region third table type */
350 #define _REGION_ENTRY_LENGTH 0x03 /* region third length */
352 #define _REGION1_ENTRY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_LENGTH)
353 #define _REGION1_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INV)
354 #define _REGION2_ENTRY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_LENGTH)
355 #define _REGION2_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INV)
356 #define _REGION3_ENTRY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_LENGTH)
357 #define _REGION3_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INV)
359 /* Bits in the segment table entry */
360 #define _SEGMENT_ENTRY_ORIGIN ~0x7ffUL/* segment table origin */
361 #define _SEGMENT_ENTRY_RO 0x200 /* page protection bit */
362 #define _SEGMENT_ENTRY_INV 0x20 /* invalid segment table entry */
364 #define _SEGMENT_ENTRY (0)
365 #define _SEGMENT_ENTRY_EMPTY (_SEGMENT_ENTRY_INV)
367 #define _SEGMENT_ENTRY_LARGE 0x400 /* STE-format control, large page */
368 #define _SEGMENT_ENTRY_CO 0x100 /* change-recording override */
370 /* Page status table bits for virtualization */
371 #define RCP_ACC_BITS 0xf000000000000000UL
372 #define RCP_FP_BIT 0x0800000000000000UL
373 #define RCP_PCL_BIT 0x0080000000000000UL
374 #define RCP_HR_BIT 0x0040000000000000UL
375 #define RCP_HC_BIT 0x0020000000000000UL
376 #define RCP_GR_BIT 0x0004000000000000UL
377 #define RCP_GC_BIT 0x0002000000000000UL
379 /* User dirty / referenced bit for KVM's migration feature */
380 #define KVM_UR_BIT 0x0000800000000000UL
381 #define KVM_UC_BIT 0x0000400000000000UL
383 #endif /* __s390x__ */
386 * A user page table pointer has the space-switch-event bit, the
387 * private-space-control bit and the storage-alteration-event-control
388 * bit set. A kernel page table pointer doesn't need them.
390 #define _ASCE_USER_BITS (_ASCE_SPACE_SWITCH | _ASCE_PRIVATE_SPACE | \
394 * Page protection definitions.
396 #define PAGE_NONE __pgprot(_PAGE_TYPE_NONE)
397 #define PAGE_RO __pgprot(_PAGE_TYPE_RO)
398 #define PAGE_RW __pgprot(_PAGE_TYPE_RW)
400 #define PAGE_KERNEL PAGE_RW
401 #define PAGE_COPY PAGE_RO
404 * On s390 the page table entry has an invalid bit and a read-only bit.
405 * Read permission implies execute permission and write permission
406 * implies read permission.
409 #define __P000 PAGE_NONE
410 #define __P001 PAGE_RO
411 #define __P010 PAGE_RO
412 #define __P011 PAGE_RO
413 #define __P100 PAGE_RO
414 #define __P101 PAGE_RO
415 #define __P110 PAGE_RO
416 #define __P111 PAGE_RO
418 #define __S000 PAGE_NONE
419 #define __S001 PAGE_RO
420 #define __S010 PAGE_RW
421 #define __S011 PAGE_RW
422 #define __S100 PAGE_RO
423 #define __S101 PAGE_RO
424 #define __S110 PAGE_RW
425 #define __S111 PAGE_RW
427 static inline int mm_exclusive(struct mm_struct
*mm
)
429 return likely(mm
== current
->active_mm
&&
430 atomic_read(&mm
->context
.attach_count
) <= 1);
433 static inline int mm_has_pgste(struct mm_struct
*mm
)
436 if (unlikely(mm
->context
.has_pgste
))
442 * pgd/pmd/pte query functions
446 static inline int pgd_present(pgd_t pgd
) { return 1; }
447 static inline int pgd_none(pgd_t pgd
) { return 0; }
448 static inline int pgd_bad(pgd_t pgd
) { return 0; }
450 static inline int pud_present(pud_t pud
) { return 1; }
451 static inline int pud_none(pud_t pud
) { return 0; }
452 static inline int pud_bad(pud_t pud
) { return 0; }
454 #else /* __s390x__ */
456 static inline int pgd_present(pgd_t pgd
)
458 if ((pgd_val(pgd
) & _REGION_ENTRY_TYPE_MASK
) < _REGION_ENTRY_TYPE_R2
)
460 return (pgd_val(pgd
) & _REGION_ENTRY_ORIGIN
) != 0UL;
463 static inline int pgd_none(pgd_t pgd
)
465 if ((pgd_val(pgd
) & _REGION_ENTRY_TYPE_MASK
) < _REGION_ENTRY_TYPE_R2
)
467 return (pgd_val(pgd
) & _REGION_ENTRY_INV
) != 0UL;
470 static inline int pgd_bad(pgd_t pgd
)
473 * With dynamic page table levels the pgd can be a region table
474 * entry or a segment table entry. Check for the bit that are
475 * invalid for either table entry.
478 ~_SEGMENT_ENTRY_ORIGIN
& ~_REGION_ENTRY_INV
&
479 ~_REGION_ENTRY_TYPE_MASK
& ~_REGION_ENTRY_LENGTH
;
480 return (pgd_val(pgd
) & mask
) != 0;
483 static inline int pud_present(pud_t pud
)
485 if ((pud_val(pud
) & _REGION_ENTRY_TYPE_MASK
) < _REGION_ENTRY_TYPE_R3
)
487 return (pud_val(pud
) & _REGION_ENTRY_ORIGIN
) != 0UL;
490 static inline int pud_none(pud_t pud
)
492 if ((pud_val(pud
) & _REGION_ENTRY_TYPE_MASK
) < _REGION_ENTRY_TYPE_R3
)
494 return (pud_val(pud
) & _REGION_ENTRY_INV
) != 0UL;
497 static inline int pud_bad(pud_t pud
)
500 * With dynamic page table levels the pud can be a region table
501 * entry or a segment table entry. Check for the bit that are
502 * invalid for either table entry.
505 ~_SEGMENT_ENTRY_ORIGIN
& ~_REGION_ENTRY_INV
&
506 ~_REGION_ENTRY_TYPE_MASK
& ~_REGION_ENTRY_LENGTH
;
507 return (pud_val(pud
) & mask
) != 0;
510 #endif /* __s390x__ */
512 static inline int pmd_present(pmd_t pmd
)
514 return (pmd_val(pmd
) & _SEGMENT_ENTRY_ORIGIN
) != 0UL;
517 static inline int pmd_none(pmd_t pmd
)
519 return (pmd_val(pmd
) & _SEGMENT_ENTRY_INV
) != 0UL;
522 static inline int pmd_bad(pmd_t pmd
)
524 unsigned long mask
= ~_SEGMENT_ENTRY_ORIGIN
& ~_SEGMENT_ENTRY_INV
;
525 return (pmd_val(pmd
) & mask
) != _SEGMENT_ENTRY
;
528 static inline int pte_none(pte_t pte
)
530 return (pte_val(pte
) & _PAGE_INVALID
) && !(pte_val(pte
) & _PAGE_SWT
);
533 static inline int pte_present(pte_t pte
)
535 unsigned long mask
= _PAGE_RO
| _PAGE_INVALID
| _PAGE_SWT
| _PAGE_SWX
;
536 return (pte_val(pte
) & mask
) == _PAGE_TYPE_NONE
||
537 (!(pte_val(pte
) & _PAGE_INVALID
) &&
538 !(pte_val(pte
) & _PAGE_SWT
));
541 static inline int pte_file(pte_t pte
)
543 unsigned long mask
= _PAGE_RO
| _PAGE_INVALID
| _PAGE_SWT
;
544 return (pte_val(pte
) & mask
) == _PAGE_TYPE_FILE
;
547 static inline int pte_special(pte_t pte
)
549 return (pte_val(pte
) & _PAGE_SPECIAL
);
552 #define __HAVE_ARCH_PTE_SAME
553 static inline int pte_same(pte_t a
, pte_t b
)
555 return pte_val(a
) == pte_val(b
);
558 static inline pgste_t
pgste_get_lock(pte_t
*ptep
)
560 unsigned long new = 0;
568 " nihh %0,0xff7f\n" /* clear RCP_PCL_BIT in old */
569 " oihh %1,0x0080\n" /* set RCP_PCL_BIT in new */
572 : "=&d" (old
), "=&d" (new), "=Q" (ptep
[PTRS_PER_PTE
])
573 : "Q" (ptep
[PTRS_PER_PTE
]) : "cc");
578 static inline void pgste_set_unlock(pte_t
*ptep
, pgste_t pgste
)
582 " nihh %1,0xff7f\n" /* clear RCP_PCL_BIT */
584 : "=Q" (ptep
[PTRS_PER_PTE
])
585 : "d" (pgste_val(pgste
)), "Q" (ptep
[PTRS_PER_PTE
]) : "cc");
590 static inline pgste_t
pgste_update_all(pte_t
*ptep
, pgste_t pgste
)
593 unsigned long address
, bits
;
596 address
= pte_val(*ptep
) & PAGE_MASK
;
597 skey
= page_get_storage_key(address
);
598 bits
= skey
& (_PAGE_CHANGED
| _PAGE_REFERENCED
);
599 /* Clear page changed & referenced bit in the storage key */
602 page_set_storage_key(address
, skey
, 1);
604 /* Transfer page changed & referenced bit to guest bits in pgste */
605 pgste_val(pgste
) |= bits
<< 48; /* RCP_GR_BIT & RCP_GC_BIT */
606 /* Get host changed & referenced bits from pgste */
607 bits
|= (pgste_val(pgste
) & (RCP_HR_BIT
| RCP_HC_BIT
)) >> 52;
608 /* Clear host bits in pgste. */
609 pgste_val(pgste
) &= ~(RCP_HR_BIT
| RCP_HC_BIT
);
610 pgste_val(pgste
) &= ~(RCP_ACC_BITS
| RCP_FP_BIT
);
611 /* Copy page access key and fetch protection bit to pgste */
613 (unsigned long) (skey
& (_PAGE_ACC_BITS
| _PAGE_FP_BIT
)) << 56;
614 /* Transfer changed and referenced to kvm user bits */
615 pgste_val(pgste
) |= bits
<< 45; /* KVM_UR_BIT & KVM_UC_BIT */
616 /* Transfer changed & referenced to pte sofware bits */
617 pte_val(*ptep
) |= bits
<< 1; /* _PAGE_SWR & _PAGE_SWC */
623 static inline pgste_t
pgste_update_young(pte_t
*ptep
, pgste_t pgste
)
628 young
= page_reset_referenced(pte_val(*ptep
) & PAGE_MASK
);
629 /* Transfer page referenced bit to pte software bit (host view) */
630 if (young
|| (pgste_val(pgste
) & RCP_HR_BIT
))
631 pte_val(*ptep
) |= _PAGE_SWR
;
632 /* Clear host referenced bit in pgste. */
633 pgste_val(pgste
) &= ~RCP_HR_BIT
;
634 /* Transfer page referenced bit to guest bit in pgste */
635 pgste_val(pgste
) |= (unsigned long) young
<< 50; /* set RCP_GR_BIT */
641 static inline void pgste_set_pte(pte_t
*ptep
, pgste_t pgste
)
644 unsigned long address
;
645 unsigned long okey
, nkey
;
647 address
= pte_val(*ptep
) & PAGE_MASK
;
648 okey
= nkey
= page_get_storage_key(address
);
649 nkey
&= ~(_PAGE_ACC_BITS
| _PAGE_FP_BIT
);
650 /* Set page access key and fetch protection bit from pgste */
651 nkey
|= (pgste_val(pgste
) & (RCP_ACC_BITS
| RCP_FP_BIT
)) >> 56;
653 page_set_storage_key(address
, nkey
, 1);
658 * struct gmap_struct - guest address space
659 * @mm: pointer to the parent mm_struct
660 * @table: pointer to the page directory
661 * @crst_list: list of all crst tables used in the guest address space
664 struct list_head list
;
665 struct mm_struct
*mm
;
666 unsigned long *table
;
667 struct list_head crst_list
;
671 * struct gmap_rmap - reverse mapping for segment table entries
672 * @next: pointer to the next gmap_rmap structure in the list
673 * @entry: pointer to a segment table entry
676 struct list_head list
;
677 unsigned long *entry
;
681 * struct gmap_pgtable - gmap information attached to a page table
682 * @vmaddr: address of the 1MB segment in the process virtual memory
683 * @mapper: list of segment table entries maping a page table
685 struct gmap_pgtable
{
686 unsigned long vmaddr
;
687 struct list_head mapper
;
690 struct gmap
*gmap_alloc(struct mm_struct
*mm
);
691 void gmap_free(struct gmap
*gmap
);
692 void gmap_enable(struct gmap
*gmap
);
693 void gmap_disable(struct gmap
*gmap
);
694 int gmap_map_segment(struct gmap
*gmap
, unsigned long from
,
695 unsigned long to
, unsigned long length
);
696 int gmap_unmap_segment(struct gmap
*gmap
, unsigned long to
, unsigned long len
);
697 unsigned long gmap_fault(unsigned long address
, struct gmap
*);
700 * Certain architectures need to do special things when PTEs
701 * within a page table are directly modified. Thus, the following
702 * hook is made available.
704 static inline void set_pte_at(struct mm_struct
*mm
, unsigned long addr
,
705 pte_t
*ptep
, pte_t entry
)
709 if (mm_has_pgste(mm
)) {
710 pgste
= pgste_get_lock(ptep
);
711 pgste_set_pte(ptep
, pgste
);
713 pgste_set_unlock(ptep
, pgste
);
719 * query functions pte_write/pte_dirty/pte_young only work if
720 * pte_present() is true. Undefined behaviour if not..
722 static inline int pte_write(pte_t pte
)
724 return (pte_val(pte
) & _PAGE_RO
) == 0;
727 static inline int pte_dirty(pte_t pte
)
730 if (pte_val(pte
) & _PAGE_SWC
)
736 static inline int pte_young(pte_t pte
)
739 if (pte_val(pte
) & _PAGE_SWR
)
746 * pgd/pmd/pte modification functions
749 static inline void pgd_clear(pgd_t
*pgd
)
752 if ((pgd_val(*pgd
) & _REGION_ENTRY_TYPE_MASK
) == _REGION_ENTRY_TYPE_R2
)
753 pgd_val(*pgd
) = _REGION2_ENTRY_EMPTY
;
757 static inline void pud_clear(pud_t
*pud
)
760 if ((pud_val(*pud
) & _REGION_ENTRY_TYPE_MASK
) == _REGION_ENTRY_TYPE_R3
)
761 pud_val(*pud
) = _REGION3_ENTRY_EMPTY
;
765 static inline void pmd_clear(pmd_t
*pmdp
)
767 pmd_val(*pmdp
) = _SEGMENT_ENTRY_EMPTY
;
770 static inline void pte_clear(struct mm_struct
*mm
, unsigned long addr
, pte_t
*ptep
)
772 pte_val(*ptep
) = _PAGE_TYPE_EMPTY
;
776 * The following pte modification functions only work if
777 * pte_present() is true. Undefined behaviour if not..
779 static inline pte_t
pte_modify(pte_t pte
, pgprot_t newprot
)
781 pte_val(pte
) &= _PAGE_CHG_MASK
;
782 pte_val(pte
) |= pgprot_val(newprot
);
786 static inline pte_t
pte_wrprotect(pte_t pte
)
788 /* Do not clobber _PAGE_TYPE_NONE pages! */
789 if (!(pte_val(pte
) & _PAGE_INVALID
))
790 pte_val(pte
) |= _PAGE_RO
;
794 static inline pte_t
pte_mkwrite(pte_t pte
)
796 pte_val(pte
) &= ~_PAGE_RO
;
800 static inline pte_t
pte_mkclean(pte_t pte
)
803 pte_val(pte
) &= ~_PAGE_SWC
;
808 static inline pte_t
pte_mkdirty(pte_t pte
)
813 static inline pte_t
pte_mkold(pte_t pte
)
816 pte_val(pte
) &= ~_PAGE_SWR
;
821 static inline pte_t
pte_mkyoung(pte_t pte
)
826 static inline pte_t
pte_mkspecial(pte_t pte
)
828 pte_val(pte
) |= _PAGE_SPECIAL
;
832 #ifdef CONFIG_HUGETLB_PAGE
833 static inline pte_t
pte_mkhuge(pte_t pte
)
836 * PROT_NONE needs to be remapped from the pte type to the ste type.
837 * The HW invalid bit is also different for pte and ste. The pte
838 * invalid bit happens to be the same as the ste _SEGMENT_ENTRY_LARGE
839 * bit, so we don't have to clear it.
841 if (pte_val(pte
) & _PAGE_INVALID
) {
842 if (pte_val(pte
) & _PAGE_SWT
)
843 pte_val(pte
) |= _HPAGE_TYPE_NONE
;
844 pte_val(pte
) |= _SEGMENT_ENTRY_INV
;
847 * Clear SW pte bits SWT and SWX, there are no SW bits in a segment
850 pte_val(pte
) &= ~(_PAGE_SWT
| _PAGE_SWX
);
852 * Also set the change-override bit because we don't need dirty bit
853 * tracking for hugetlbfs pages.
855 pte_val(pte
) |= (_SEGMENT_ENTRY_LARGE
| _SEGMENT_ENTRY_CO
);
861 * Get (and clear) the user dirty bit for a pte.
863 static inline int ptep_test_and_clear_user_dirty(struct mm_struct
*mm
,
869 if (mm_has_pgste(mm
)) {
870 pgste
= pgste_get_lock(ptep
);
871 pgste
= pgste_update_all(ptep
, pgste
);
872 dirty
= !!(pgste_val(pgste
) & KVM_UC_BIT
);
873 pgste_val(pgste
) &= ~KVM_UC_BIT
;
874 pgste_set_unlock(ptep
, pgste
);
881 * Get (and clear) the user referenced bit for a pte.
883 static inline int ptep_test_and_clear_user_young(struct mm_struct
*mm
,
889 if (mm_has_pgste(mm
)) {
890 pgste
= pgste_get_lock(ptep
);
891 pgste
= pgste_update_young(ptep
, pgste
);
892 young
= !!(pgste_val(pgste
) & KVM_UR_BIT
);
893 pgste_val(pgste
) &= ~KVM_UR_BIT
;
894 pgste_set_unlock(ptep
, pgste
);
899 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
900 static inline int ptep_test_and_clear_young(struct vm_area_struct
*vma
,
901 unsigned long addr
, pte_t
*ptep
)
906 if (mm_has_pgste(vma
->vm_mm
)) {
907 pgste
= pgste_get_lock(ptep
);
908 pgste
= pgste_update_young(ptep
, pgste
);
910 *ptep
= pte_mkold(pte
);
911 pgste_set_unlock(ptep
, pgste
);
912 return pte_young(pte
);
917 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
918 static inline int ptep_clear_flush_young(struct vm_area_struct
*vma
,
919 unsigned long address
, pte_t
*ptep
)
921 /* No need to flush TLB
922 * On s390 reference bits are in storage key and never in TLB
923 * With virtualization we handle the reference bit, without we
924 * we can simply return */
925 return ptep_test_and_clear_young(vma
, address
, ptep
);
928 static inline void __ptep_ipte(unsigned long address
, pte_t
*ptep
)
930 if (!(pte_val(*ptep
) & _PAGE_INVALID
)) {
932 /* pto must point to the start of the segment table */
933 pte_t
*pto
= (pte_t
*) (((unsigned long) ptep
) & 0x7ffffc00);
935 /* ipte in zarch mode can do the math */
940 : "=m" (*ptep
) : "m" (*ptep
),
941 "a" (pto
), "a" (address
));
946 * This is hard to understand. ptep_get_and_clear and ptep_clear_flush
947 * both clear the TLB for the unmapped pte. The reason is that
948 * ptep_get_and_clear is used in common code (e.g. change_pte_range)
949 * to modify an active pte. The sequence is
950 * 1) ptep_get_and_clear
953 * On s390 the tlb needs to get flushed with the modification of the pte
954 * if the pte is active. The only way how this can be implemented is to
955 * have ptep_get_and_clear do the tlb flush. In exchange flush_tlb_range
958 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
959 static inline pte_t
ptep_get_and_clear(struct mm_struct
*mm
,
960 unsigned long address
, pte_t
*ptep
)
965 mm
->context
.flush_mm
= 1;
966 if (mm_has_pgste(mm
))
967 pgste
= pgste_get_lock(ptep
);
970 if (!mm_exclusive(mm
))
971 __ptep_ipte(address
, ptep
);
972 pte_val(*ptep
) = _PAGE_TYPE_EMPTY
;
974 if (mm_has_pgste(mm
)) {
975 pgste
= pgste_update_all(&pte
, pgste
);
976 pgste_set_unlock(ptep
, pgste
);
981 #define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
982 static inline pte_t
ptep_modify_prot_start(struct mm_struct
*mm
,
983 unsigned long address
,
988 mm
->context
.flush_mm
= 1;
989 if (mm_has_pgste(mm
))
990 pgste_get_lock(ptep
);
993 if (!mm_exclusive(mm
))
994 __ptep_ipte(address
, ptep
);
998 static inline void ptep_modify_prot_commit(struct mm_struct
*mm
,
999 unsigned long address
,
1000 pte_t
*ptep
, pte_t pte
)
1003 if (mm_has_pgste(mm
))
1004 pgste_set_unlock(ptep
, *(pgste_t
*)(ptep
+ PTRS_PER_PTE
));
1007 #define __HAVE_ARCH_PTEP_CLEAR_FLUSH
1008 static inline pte_t
ptep_clear_flush(struct vm_area_struct
*vma
,
1009 unsigned long address
, pte_t
*ptep
)
1014 if (mm_has_pgste(vma
->vm_mm
))
1015 pgste
= pgste_get_lock(ptep
);
1018 __ptep_ipte(address
, ptep
);
1019 pte_val(*ptep
) = _PAGE_TYPE_EMPTY
;
1021 if (mm_has_pgste(vma
->vm_mm
)) {
1022 pgste
= pgste_update_all(&pte
, pgste
);
1023 pgste_set_unlock(ptep
, pgste
);
1029 * The batched pte unmap code uses ptep_get_and_clear_full to clear the
1030 * ptes. Here an optimization is possible. tlb_gather_mmu flushes all
1031 * tlbs of an mm if it can guarantee that the ptes of the mm_struct
1032 * cannot be accessed while the batched unmap is running. In this case
1033 * full==1 and a simple pte_clear is enough. See tlb.h.
1035 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
1036 static inline pte_t
ptep_get_and_clear_full(struct mm_struct
*mm
,
1037 unsigned long address
,
1038 pte_t
*ptep
, int full
)
1043 if (mm_has_pgste(mm
))
1044 pgste
= pgste_get_lock(ptep
);
1048 __ptep_ipte(address
, ptep
);
1049 pte_val(*ptep
) = _PAGE_TYPE_EMPTY
;
1051 if (mm_has_pgste(mm
)) {
1052 pgste
= pgste_update_all(&pte
, pgste
);
1053 pgste_set_unlock(ptep
, pgste
);
1058 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
1059 static inline pte_t
ptep_set_wrprotect(struct mm_struct
*mm
,
1060 unsigned long address
, pte_t
*ptep
)
1065 if (pte_write(pte
)) {
1066 mm
->context
.flush_mm
= 1;
1067 if (mm_has_pgste(mm
))
1068 pgste
= pgste_get_lock(ptep
);
1070 if (!mm_exclusive(mm
))
1071 __ptep_ipte(address
, ptep
);
1072 *ptep
= pte_wrprotect(pte
);
1074 if (mm_has_pgste(mm
))
1075 pgste_set_unlock(ptep
, pgste
);
1080 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
1081 static inline int ptep_set_access_flags(struct vm_area_struct
*vma
,
1082 unsigned long address
, pte_t
*ptep
,
1083 pte_t entry
, int dirty
)
1087 if (pte_same(*ptep
, entry
))
1089 if (mm_has_pgste(vma
->vm_mm
))
1090 pgste
= pgste_get_lock(ptep
);
1092 __ptep_ipte(address
, ptep
);
1095 if (mm_has_pgste(vma
->vm_mm
))
1096 pgste_set_unlock(ptep
, pgste
);
1101 * Conversion functions: convert a page and protection to a page entry,
1102 * and a page entry and page directory to the page they refer to.
1104 static inline pte_t
mk_pte_phys(unsigned long physpage
, pgprot_t pgprot
)
1107 pte_val(__pte
) = physpage
+ pgprot_val(pgprot
);
1111 static inline pte_t
mk_pte(struct page
*page
, pgprot_t pgprot
)
1113 unsigned long physpage
= page_to_phys(page
);
1115 return mk_pte_phys(physpage
, pgprot
);
1118 #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
1119 #define pud_index(address) (((address) >> PUD_SHIFT) & (PTRS_PER_PUD-1))
1120 #define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
1121 #define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE-1))
1123 #define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
1124 #define pgd_offset_k(address) pgd_offset(&init_mm, address)
1128 #define pmd_deref(pmd) (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN)
1129 #define pud_deref(pmd) ({ BUG(); 0UL; })
1130 #define pgd_deref(pmd) ({ BUG(); 0UL; })
1132 #define pud_offset(pgd, address) ((pud_t *) pgd)
1133 #define pmd_offset(pud, address) ((pmd_t *) pud + pmd_index(address))
1135 #else /* __s390x__ */
1137 #define pmd_deref(pmd) (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN)
1138 #define pud_deref(pud) (pud_val(pud) & _REGION_ENTRY_ORIGIN)
1139 #define pgd_deref(pgd) (pgd_val(pgd) & _REGION_ENTRY_ORIGIN)
1141 static inline pud_t
*pud_offset(pgd_t
*pgd
, unsigned long address
)
1143 pud_t
*pud
= (pud_t
*) pgd
;
1144 if ((pgd_val(*pgd
) & _REGION_ENTRY_TYPE_MASK
) == _REGION_ENTRY_TYPE_R2
)
1145 pud
= (pud_t
*) pgd_deref(*pgd
);
1146 return pud
+ pud_index(address
);
1149 static inline pmd_t
*pmd_offset(pud_t
*pud
, unsigned long address
)
1151 pmd_t
*pmd
= (pmd_t
*) pud
;
1152 if ((pud_val(*pud
) & _REGION_ENTRY_TYPE_MASK
) == _REGION_ENTRY_TYPE_R3
)
1153 pmd
= (pmd_t
*) pud_deref(*pud
);
1154 return pmd
+ pmd_index(address
);
1157 #endif /* __s390x__ */
1159 #define pfn_pte(pfn,pgprot) mk_pte_phys(__pa((pfn) << PAGE_SHIFT),(pgprot))
1160 #define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT)
1161 #define pte_page(x) pfn_to_page(pte_pfn(x))
1163 #define pmd_page(pmd) pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT)
1165 /* Find an entry in the lowest level page table.. */
1166 #define pte_offset(pmd, addr) ((pte_t *) pmd_deref(*(pmd)) + pte_index(addr))
1167 #define pte_offset_kernel(pmd, address) pte_offset(pmd,address)
1168 #define pte_offset_map(pmd, address) pte_offset_kernel(pmd, address)
1169 #define pte_unmap(pte) do { } while (0)
1172 * 31 bit swap entry format:
1173 * A page-table entry has some bits we have to treat in a special way.
1174 * Bits 0, 20 and bit 23 have to be zero, otherwise an specification
1175 * exception will occur instead of a page translation exception. The
1176 * specifiation exception has the bad habit not to store necessary
1177 * information in the lowcore.
1178 * Bit 21 and bit 22 are the page invalid bit and the page protection
1179 * bit. We set both to indicate a swapped page.
1180 * Bit 30 and 31 are used to distinguish the different page types. For
1181 * a swapped page these bits need to be zero.
1182 * This leaves the bits 1-19 and bits 24-29 to store type and offset.
1183 * We use the 5 bits from 25-29 for the type and the 20 bits from 1-19
1184 * plus 24 for the offset.
1185 * 0| offset |0110|o|type |00|
1186 * 0 0000000001111111111 2222 2 22222 33
1187 * 0 1234567890123456789 0123 4 56789 01
1189 * 64 bit swap entry format:
1190 * A page-table entry has some bits we have to treat in a special way.
1191 * Bits 52 and bit 55 have to be zero, otherwise an specification
1192 * exception will occur instead of a page translation exception. The
1193 * specifiation exception has the bad habit not to store necessary
1194 * information in the lowcore.
1195 * Bit 53 and bit 54 are the page invalid bit and the page protection
1196 * bit. We set both to indicate a swapped page.
1197 * Bit 62 and 63 are used to distinguish the different page types. For
1198 * a swapped page these bits need to be zero.
1199 * This leaves the bits 0-51 and bits 56-61 to store type and offset.
1200 * We use the 5 bits from 57-61 for the type and the 53 bits from 0-51
1201 * plus 56 for the offset.
1202 * | offset |0110|o|type |00|
1203 * 0000000000111111111122222222223333333333444444444455 5555 5 55566 66
1204 * 0123456789012345678901234567890123456789012345678901 2345 6 78901 23
1207 #define __SWP_OFFSET_MASK (~0UL >> 12)
1209 #define __SWP_OFFSET_MASK (~0UL >> 11)
1211 static inline pte_t
mk_swap_pte(unsigned long type
, unsigned long offset
)
1214 offset
&= __SWP_OFFSET_MASK
;
1215 pte_val(pte
) = _PAGE_TYPE_SWAP
| ((type
& 0x1f) << 2) |
1216 ((offset
& 1UL) << 7) | ((offset
& ~1UL) << 11);
1220 #define __swp_type(entry) (((entry).val >> 2) & 0x1f)
1221 #define __swp_offset(entry) (((entry).val >> 11) | (((entry).val >> 7) & 1))
1222 #define __swp_entry(type,offset) ((swp_entry_t) { pte_val(mk_swap_pte((type),(offset))) })
1224 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
1225 #define __swp_entry_to_pte(x) ((pte_t) { (x).val })
1228 # define PTE_FILE_MAX_BITS 26
1229 #else /* __s390x__ */
1230 # define PTE_FILE_MAX_BITS 59
1231 #endif /* __s390x__ */
1233 #define pte_to_pgoff(__pte) \
1234 ((((__pte).pte >> 12) << 7) + (((__pte).pte >> 1) & 0x7f))
1236 #define pgoff_to_pte(__off) \
1237 ((pte_t) { ((((__off) & 0x7f) << 1) + (((__off) >> 7) << 12)) \
1238 | _PAGE_TYPE_FILE })
1240 #endif /* !__ASSEMBLY__ */
1242 #define kern_addr_valid(addr) (1)
1244 extern int vmem_add_mapping(unsigned long start
, unsigned long size
);
1245 extern int vmem_remove_mapping(unsigned long start
, unsigned long size
);
1246 extern int s390_enable_sie(void);
1249 * No page table caches to initialise
1251 #define pgtable_cache_init() do { } while (0)
1253 #include <asm-generic/pgtable.h>
1255 #endif /* _S390_PAGE_H */