Add linux-next specific files for 20110831
[linux-2.6/next.git] / arch / x86 / include / asm / spinlock.h
blobf5695eeb83ffc117e36a537d75947c3b801f1129
1 #ifndef _ASM_X86_SPINLOCK_H
2 #define _ASM_X86_SPINLOCK_H
4 #include <linux/atomic.h>
5 #include <asm/page.h>
6 #include <asm/processor.h>
7 #include <linux/compiler.h>
8 #include <asm/paravirt.h>
9 /*
10 * Your basic SMP spinlocks, allowing only a single CPU anywhere
12 * Simple spin lock operations. There are two variants, one clears IRQ's
13 * on the local processor, one does not.
15 * These are fair FIFO ticket locks, which are currently limited to 256
16 * CPUs.
18 * (the type definitions are in asm/spinlock_types.h)
21 #ifdef CONFIG_X86_32
22 # define LOCK_PTR_REG "a"
23 # define REG_PTR_MODE "k"
24 #else
25 # define LOCK_PTR_REG "D"
26 # define REG_PTR_MODE "q"
27 #endif
29 #if defined(CONFIG_X86_32) && \
30 (defined(CONFIG_X86_OOSTORE) || defined(CONFIG_X86_PPRO_FENCE))
32 * On PPro SMP or if we are using OOSTORE, we use a locked operation to unlock
33 * (PPro errata 66, 92)
35 # define UNLOCK_LOCK_PREFIX LOCK_PREFIX
36 #else
37 # define UNLOCK_LOCK_PREFIX
38 #endif
41 * Ticket locks are conceptually two parts, one indicating the current head of
42 * the queue, and the other indicating the current tail. The lock is acquired
43 * by atomically noting the tail and incrementing it by one (thus adding
44 * ourself to the queue and noting our position), then waiting until the head
45 * becomes equal to the the initial value of the tail.
47 * We use an xadd covering *both* parts of the lock, to increment the tail and
48 * also load the position of the head, which takes care of memory ordering
49 * issues and should be optimal for the uncontended case. Note the tail must be
50 * in the high part, because a wide xadd increment of the low part would carry
51 * up and contaminate the high part.
53 * With fewer than 2^8 possible CPUs, we can use x86's partial registers to
54 * save some instructions and make the code more elegant. There really isn't
55 * much between them in performance though, especially as locks are out of line.
57 static __always_inline void __ticket_spin_lock(arch_spinlock_t *lock)
59 register struct __raw_tickets inc = { .tail = 1 };
61 inc = xadd(&lock->tickets, inc);
63 for (;;) {
64 if (inc.head == inc.tail)
65 break;
66 cpu_relax();
67 inc.head = ACCESS_ONCE(lock->tickets.head);
69 barrier(); /* make sure nothing creeps before the lock is taken */
72 static __always_inline int __ticket_spin_trylock(arch_spinlock_t *lock)
74 arch_spinlock_t old, new;
76 old.tickets = ACCESS_ONCE(lock->tickets);
77 if (old.tickets.head != old.tickets.tail)
78 return 0;
80 new.head_tail = old.head_tail + (1 << TICKET_SHIFT);
82 /* cmpxchg is a full barrier, so nothing can move before it */
83 return cmpxchg(&lock->head_tail, old.head_tail, new.head_tail) == old.head_tail;
86 #if (NR_CPUS < 256)
87 static __always_inline void __ticket_spin_unlock(arch_spinlock_t *lock)
89 asm volatile(UNLOCK_LOCK_PREFIX "incb %0"
90 : "+m" (lock->head_tail)
92 : "memory", "cc");
94 #else
95 static __always_inline void __ticket_spin_unlock(arch_spinlock_t *lock)
97 asm volatile(UNLOCK_LOCK_PREFIX "incw %0"
98 : "+m" (lock->head_tail)
100 : "memory", "cc");
102 #endif
104 static inline int __ticket_spin_is_locked(arch_spinlock_t *lock)
106 struct __raw_tickets tmp = ACCESS_ONCE(lock->tickets);
108 return !!(tmp.tail ^ tmp.head);
111 static inline int __ticket_spin_is_contended(arch_spinlock_t *lock)
113 struct __raw_tickets tmp = ACCESS_ONCE(lock->tickets);
115 return ((tmp.tail - tmp.head) & TICKET_MASK) > 1;
118 #ifndef CONFIG_PARAVIRT_SPINLOCKS
120 static inline int arch_spin_is_locked(arch_spinlock_t *lock)
122 return __ticket_spin_is_locked(lock);
125 static inline int arch_spin_is_contended(arch_spinlock_t *lock)
127 return __ticket_spin_is_contended(lock);
129 #define arch_spin_is_contended arch_spin_is_contended
131 static __always_inline void arch_spin_lock(arch_spinlock_t *lock)
133 __ticket_spin_lock(lock);
136 static __always_inline int arch_spin_trylock(arch_spinlock_t *lock)
138 return __ticket_spin_trylock(lock);
141 static __always_inline void arch_spin_unlock(arch_spinlock_t *lock)
143 __ticket_spin_unlock(lock);
146 static __always_inline void arch_spin_lock_flags(arch_spinlock_t *lock,
147 unsigned long flags)
149 arch_spin_lock(lock);
152 #endif /* CONFIG_PARAVIRT_SPINLOCKS */
154 static inline void arch_spin_unlock_wait(arch_spinlock_t *lock)
156 while (arch_spin_is_locked(lock))
157 cpu_relax();
161 * Read-write spinlocks, allowing multiple readers
162 * but only one writer.
164 * NOTE! it is quite common to have readers in interrupts
165 * but no interrupt writers. For those circumstances we
166 * can "mix" irq-safe locks - any writer needs to get a
167 * irq-safe write-lock, but readers can get non-irqsafe
168 * read-locks.
170 * On x86, we implement read-write locks as a 32-bit counter
171 * with the high bit (sign) being the "contended" bit.
175 * read_can_lock - would read_trylock() succeed?
176 * @lock: the rwlock in question.
178 static inline int arch_read_can_lock(arch_rwlock_t *lock)
180 return lock->lock > 0;
184 * write_can_lock - would write_trylock() succeed?
185 * @lock: the rwlock in question.
187 static inline int arch_write_can_lock(arch_rwlock_t *lock)
189 return lock->write == WRITE_LOCK_CMP;
192 static inline void arch_read_lock(arch_rwlock_t *rw)
194 asm volatile(LOCK_PREFIX READ_LOCK_SIZE(dec) " (%0)\n\t"
195 "jns 1f\n"
196 "call __read_lock_failed\n\t"
197 "1:\n"
198 ::LOCK_PTR_REG (rw) : "memory");
201 static inline void arch_write_lock(arch_rwlock_t *rw)
203 asm volatile(LOCK_PREFIX WRITE_LOCK_SUB(%1) "(%0)\n\t"
204 "jz 1f\n"
205 "call __write_lock_failed\n\t"
206 "1:\n"
207 ::LOCK_PTR_REG (&rw->write), "i" (RW_LOCK_BIAS)
208 : "memory");
211 static inline int arch_read_trylock(arch_rwlock_t *lock)
213 READ_LOCK_ATOMIC(t) *count = (READ_LOCK_ATOMIC(t) *)lock;
215 if (READ_LOCK_ATOMIC(dec_return)(count) >= 0)
216 return 1;
217 READ_LOCK_ATOMIC(inc)(count);
218 return 0;
221 static inline int arch_write_trylock(arch_rwlock_t *lock)
223 atomic_t *count = (atomic_t *)&lock->write;
225 if (atomic_sub_and_test(WRITE_LOCK_CMP, count))
226 return 1;
227 atomic_add(WRITE_LOCK_CMP, count);
228 return 0;
231 static inline void arch_read_unlock(arch_rwlock_t *rw)
233 asm volatile(LOCK_PREFIX READ_LOCK_SIZE(inc) " %0"
234 :"+m" (rw->lock) : : "memory");
237 static inline void arch_write_unlock(arch_rwlock_t *rw)
239 asm volatile(LOCK_PREFIX WRITE_LOCK_ADD(%1) "%0"
240 : "+m" (rw->write) : "i" (RW_LOCK_BIAS) : "memory");
243 #define arch_read_lock_flags(lock, flags) arch_read_lock(lock)
244 #define arch_write_lock_flags(lock, flags) arch_write_lock(lock)
246 #undef READ_LOCK_SIZE
247 #undef READ_LOCK_ATOMIC
248 #undef WRITE_LOCK_ADD
249 #undef WRITE_LOCK_SUB
250 #undef WRITE_LOCK_CMP
252 #define arch_spin_relax(lock) cpu_relax()
253 #define arch_read_relax(lock) cpu_relax()
254 #define arch_write_relax(lock) cpu_relax()
256 /* The {read|write|spin}_lock() on x86 are full memory barriers. */
257 static inline void smp_mb__after_lock(void) { }
258 #define ARCH_HAS_SMP_MB_AFTER_LOCK
260 #endif /* _ASM_X86_SPINLOCK_H */