Add linux-next specific files for 20110831
[linux-2.6/next.git] / arch / x86 / kernel / hpet.c
blobb946a9eac7d9f29fb6d955e3541bf03295612367
1 #include <linux/clocksource.h>
2 #include <linux/clockchips.h>
3 #include <linux/interrupt.h>
4 #include <linux/export.h>
5 #include <linux/sysdev.h>
6 #include <linux/delay.h>
7 #include <linux/errno.h>
8 #include <linux/i8253.h>
9 #include <linux/slab.h>
10 #include <linux/hpet.h>
11 #include <linux/init.h>
12 #include <linux/cpu.h>
13 #include <linux/pm.h>
14 #include <linux/io.h>
16 #include <asm/fixmap.h>
17 #include <asm/hpet.h>
18 #include <asm/time.h>
20 #define HPET_MASK CLOCKSOURCE_MASK(32)
22 /* FSEC = 10^-15
23 NSEC = 10^-9 */
24 #define FSEC_PER_NSEC 1000000L
26 #define HPET_DEV_USED_BIT 2
27 #define HPET_DEV_USED (1 << HPET_DEV_USED_BIT)
28 #define HPET_DEV_VALID 0x8
29 #define HPET_DEV_FSB_CAP 0x1000
30 #define HPET_DEV_PERI_CAP 0x2000
32 #define HPET_MIN_CYCLES 128
33 #define HPET_MIN_PROG_DELTA (HPET_MIN_CYCLES + (HPET_MIN_CYCLES >> 1))
35 #define EVT_TO_HPET_DEV(evt) container_of(evt, struct hpet_dev, evt)
38 * HPET address is set in acpi/boot.c, when an ACPI entry exists
40 unsigned long hpet_address;
41 u8 hpet_blockid; /* OS timer block num */
42 u8 hpet_msi_disable;
44 #ifdef CONFIG_PCI_MSI
45 static unsigned long hpet_num_timers;
46 #endif
47 static void __iomem *hpet_virt_address;
49 struct hpet_dev {
50 struct clock_event_device evt;
51 unsigned int num;
52 int cpu;
53 unsigned int irq;
54 unsigned int flags;
55 char name[10];
58 inline unsigned int hpet_readl(unsigned int a)
60 return readl(hpet_virt_address + a);
63 static inline void hpet_writel(unsigned int d, unsigned int a)
65 writel(d, hpet_virt_address + a);
68 #ifdef CONFIG_X86_64
69 #include <asm/pgtable.h>
70 #endif
72 static inline void hpet_set_mapping(void)
74 hpet_virt_address = ioremap_nocache(hpet_address, HPET_MMAP_SIZE);
75 #ifdef CONFIG_X86_64
76 __set_fixmap(VSYSCALL_HPET, hpet_address, PAGE_KERNEL_VVAR_NOCACHE);
77 #endif
80 static inline void hpet_clear_mapping(void)
82 iounmap(hpet_virt_address);
83 hpet_virt_address = NULL;
87 * HPET command line enable / disable
89 static int boot_hpet_disable;
90 int hpet_force_user;
91 static int hpet_verbose;
93 static int __init hpet_setup(char *str)
95 if (str) {
96 if (!strncmp("disable", str, 7))
97 boot_hpet_disable = 1;
98 if (!strncmp("force", str, 5))
99 hpet_force_user = 1;
100 if (!strncmp("verbose", str, 7))
101 hpet_verbose = 1;
103 return 1;
105 __setup("hpet=", hpet_setup);
107 static int __init disable_hpet(char *str)
109 boot_hpet_disable = 1;
110 return 1;
112 __setup("nohpet", disable_hpet);
114 static inline int is_hpet_capable(void)
116 return !boot_hpet_disable && hpet_address;
120 * HPET timer interrupt enable / disable
122 static int hpet_legacy_int_enabled;
125 * is_hpet_enabled - check whether the hpet timer interrupt is enabled
127 int is_hpet_enabled(void)
129 return is_hpet_capable() && hpet_legacy_int_enabled;
131 EXPORT_SYMBOL_GPL(is_hpet_enabled);
133 static void _hpet_print_config(const char *function, int line)
135 u32 i, timers, l, h;
136 printk(KERN_INFO "hpet: %s(%d):\n", function, line);
137 l = hpet_readl(HPET_ID);
138 h = hpet_readl(HPET_PERIOD);
139 timers = ((l & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
140 printk(KERN_INFO "hpet: ID: 0x%x, PERIOD: 0x%x\n", l, h);
141 l = hpet_readl(HPET_CFG);
142 h = hpet_readl(HPET_STATUS);
143 printk(KERN_INFO "hpet: CFG: 0x%x, STATUS: 0x%x\n", l, h);
144 l = hpet_readl(HPET_COUNTER);
145 h = hpet_readl(HPET_COUNTER+4);
146 printk(KERN_INFO "hpet: COUNTER_l: 0x%x, COUNTER_h: 0x%x\n", l, h);
148 for (i = 0; i < timers; i++) {
149 l = hpet_readl(HPET_Tn_CFG(i));
150 h = hpet_readl(HPET_Tn_CFG(i)+4);
151 printk(KERN_INFO "hpet: T%d: CFG_l: 0x%x, CFG_h: 0x%x\n",
152 i, l, h);
153 l = hpet_readl(HPET_Tn_CMP(i));
154 h = hpet_readl(HPET_Tn_CMP(i)+4);
155 printk(KERN_INFO "hpet: T%d: CMP_l: 0x%x, CMP_h: 0x%x\n",
156 i, l, h);
157 l = hpet_readl(HPET_Tn_ROUTE(i));
158 h = hpet_readl(HPET_Tn_ROUTE(i)+4);
159 printk(KERN_INFO "hpet: T%d ROUTE_l: 0x%x, ROUTE_h: 0x%x\n",
160 i, l, h);
164 #define hpet_print_config() \
165 do { \
166 if (hpet_verbose) \
167 _hpet_print_config(__FUNCTION__, __LINE__); \
168 } while (0)
171 * When the hpet driver (/dev/hpet) is enabled, we need to reserve
172 * timer 0 and timer 1 in case of RTC emulation.
174 #ifdef CONFIG_HPET
176 static void hpet_reserve_msi_timers(struct hpet_data *hd);
178 static void hpet_reserve_platform_timers(unsigned int id)
180 struct hpet __iomem *hpet = hpet_virt_address;
181 struct hpet_timer __iomem *timer = &hpet->hpet_timers[2];
182 unsigned int nrtimers, i;
183 struct hpet_data hd;
185 nrtimers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
187 memset(&hd, 0, sizeof(hd));
188 hd.hd_phys_address = hpet_address;
189 hd.hd_address = hpet;
190 hd.hd_nirqs = nrtimers;
191 hpet_reserve_timer(&hd, 0);
193 #ifdef CONFIG_HPET_EMULATE_RTC
194 hpet_reserve_timer(&hd, 1);
195 #endif
198 * NOTE that hd_irq[] reflects IOAPIC input pins (LEGACY_8254
199 * is wrong for i8259!) not the output IRQ. Many BIOS writers
200 * don't bother configuring *any* comparator interrupts.
202 hd.hd_irq[0] = HPET_LEGACY_8254;
203 hd.hd_irq[1] = HPET_LEGACY_RTC;
205 for (i = 2; i < nrtimers; timer++, i++) {
206 hd.hd_irq[i] = (readl(&timer->hpet_config) &
207 Tn_INT_ROUTE_CNF_MASK) >> Tn_INT_ROUTE_CNF_SHIFT;
210 hpet_reserve_msi_timers(&hd);
212 hpet_alloc(&hd);
215 #else
216 static void hpet_reserve_platform_timers(unsigned int id) { }
217 #endif
220 * Common hpet info
222 static unsigned long hpet_freq;
224 static void hpet_legacy_set_mode(enum clock_event_mode mode,
225 struct clock_event_device *evt);
226 static int hpet_legacy_next_event(unsigned long delta,
227 struct clock_event_device *evt);
230 * The hpet clock event device
232 static struct clock_event_device hpet_clockevent = {
233 .name = "hpet",
234 .features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
235 .set_mode = hpet_legacy_set_mode,
236 .set_next_event = hpet_legacy_next_event,
237 .irq = 0,
238 .rating = 50,
241 static void hpet_stop_counter(void)
243 unsigned long cfg = hpet_readl(HPET_CFG);
244 cfg &= ~HPET_CFG_ENABLE;
245 hpet_writel(cfg, HPET_CFG);
248 static void hpet_reset_counter(void)
250 hpet_writel(0, HPET_COUNTER);
251 hpet_writel(0, HPET_COUNTER + 4);
254 static void hpet_start_counter(void)
256 unsigned int cfg = hpet_readl(HPET_CFG);
257 cfg |= HPET_CFG_ENABLE;
258 hpet_writel(cfg, HPET_CFG);
261 static void hpet_restart_counter(void)
263 hpet_stop_counter();
264 hpet_reset_counter();
265 hpet_start_counter();
268 static void hpet_resume_device(void)
270 force_hpet_resume();
273 static void hpet_resume_counter(struct clocksource *cs)
275 hpet_resume_device();
276 hpet_restart_counter();
279 static void hpet_enable_legacy_int(void)
281 unsigned int cfg = hpet_readl(HPET_CFG);
283 cfg |= HPET_CFG_LEGACY;
284 hpet_writel(cfg, HPET_CFG);
285 hpet_legacy_int_enabled = 1;
288 static void hpet_legacy_clockevent_register(void)
290 /* Start HPET legacy interrupts */
291 hpet_enable_legacy_int();
294 * Start hpet with the boot cpu mask and make it
295 * global after the IO_APIC has been initialized.
297 hpet_clockevent.cpumask = cpumask_of(smp_processor_id());
298 clockevents_config_and_register(&hpet_clockevent, hpet_freq,
299 HPET_MIN_PROG_DELTA, 0x7FFFFFFF);
300 global_clock_event = &hpet_clockevent;
301 printk(KERN_DEBUG "hpet clockevent registered\n");
304 static int hpet_setup_msi_irq(unsigned int irq);
306 static void hpet_set_mode(enum clock_event_mode mode,
307 struct clock_event_device *evt, int timer)
309 unsigned int cfg, cmp, now;
310 uint64_t delta;
312 switch (mode) {
313 case CLOCK_EVT_MODE_PERIODIC:
314 hpet_stop_counter();
315 delta = ((uint64_t)(NSEC_PER_SEC/HZ)) * evt->mult;
316 delta >>= evt->shift;
317 now = hpet_readl(HPET_COUNTER);
318 cmp = now + (unsigned int) delta;
319 cfg = hpet_readl(HPET_Tn_CFG(timer));
320 /* Make sure we use edge triggered interrupts */
321 cfg &= ~HPET_TN_LEVEL;
322 cfg |= HPET_TN_ENABLE | HPET_TN_PERIODIC |
323 HPET_TN_SETVAL | HPET_TN_32BIT;
324 hpet_writel(cfg, HPET_Tn_CFG(timer));
325 hpet_writel(cmp, HPET_Tn_CMP(timer));
326 udelay(1);
328 * HPET on AMD 81xx needs a second write (with HPET_TN_SETVAL
329 * cleared) to T0_CMP to set the period. The HPET_TN_SETVAL
330 * bit is automatically cleared after the first write.
331 * (See AMD-8111 HyperTransport I/O Hub Data Sheet,
332 * Publication # 24674)
334 hpet_writel((unsigned int) delta, HPET_Tn_CMP(timer));
335 hpet_start_counter();
336 hpet_print_config();
337 break;
339 case CLOCK_EVT_MODE_ONESHOT:
340 cfg = hpet_readl(HPET_Tn_CFG(timer));
341 cfg &= ~HPET_TN_PERIODIC;
342 cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
343 hpet_writel(cfg, HPET_Tn_CFG(timer));
344 break;
346 case CLOCK_EVT_MODE_UNUSED:
347 case CLOCK_EVT_MODE_SHUTDOWN:
348 cfg = hpet_readl(HPET_Tn_CFG(timer));
349 cfg &= ~HPET_TN_ENABLE;
350 hpet_writel(cfg, HPET_Tn_CFG(timer));
351 break;
353 case CLOCK_EVT_MODE_RESUME:
354 if (timer == 0) {
355 hpet_enable_legacy_int();
356 } else {
357 struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
358 hpet_setup_msi_irq(hdev->irq);
359 disable_irq(hdev->irq);
360 irq_set_affinity(hdev->irq, cpumask_of(hdev->cpu));
361 enable_irq(hdev->irq);
363 hpet_print_config();
364 break;
368 static int hpet_next_event(unsigned long delta,
369 struct clock_event_device *evt, int timer)
371 u32 cnt;
372 s32 res;
374 cnt = hpet_readl(HPET_COUNTER);
375 cnt += (u32) delta;
376 hpet_writel(cnt, HPET_Tn_CMP(timer));
379 * HPETs are a complete disaster. The compare register is
380 * based on a equal comparison and neither provides a less
381 * than or equal functionality (which would require to take
382 * the wraparound into account) nor a simple count down event
383 * mode. Further the write to the comparator register is
384 * delayed internally up to two HPET clock cycles in certain
385 * chipsets (ATI, ICH9,10). Some newer AMD chipsets have even
386 * longer delays. We worked around that by reading back the
387 * compare register, but that required another workaround for
388 * ICH9,10 chips where the first readout after write can
389 * return the old stale value. We already had a minimum
390 * programming delta of 5us enforced, but a NMI or SMI hitting
391 * between the counter readout and the comparator write can
392 * move us behind that point easily. Now instead of reading
393 * the compare register back several times, we make the ETIME
394 * decision based on the following: Return ETIME if the
395 * counter value after the write is less than HPET_MIN_CYCLES
396 * away from the event or if the counter is already ahead of
397 * the event. The minimum programming delta for the generic
398 * clockevents code is set to 1.5 * HPET_MIN_CYCLES.
400 res = (s32)(cnt - hpet_readl(HPET_COUNTER));
402 return res < HPET_MIN_CYCLES ? -ETIME : 0;
405 static void hpet_legacy_set_mode(enum clock_event_mode mode,
406 struct clock_event_device *evt)
408 hpet_set_mode(mode, evt, 0);
411 static int hpet_legacy_next_event(unsigned long delta,
412 struct clock_event_device *evt)
414 return hpet_next_event(delta, evt, 0);
418 * HPET MSI Support
420 #ifdef CONFIG_PCI_MSI
422 static DEFINE_PER_CPU(struct hpet_dev *, cpu_hpet_dev);
423 static struct hpet_dev *hpet_devs;
425 void hpet_msi_unmask(struct irq_data *data)
427 struct hpet_dev *hdev = data->handler_data;
428 unsigned int cfg;
430 /* unmask it */
431 cfg = hpet_readl(HPET_Tn_CFG(hdev->num));
432 cfg |= HPET_TN_FSB;
433 hpet_writel(cfg, HPET_Tn_CFG(hdev->num));
436 void hpet_msi_mask(struct irq_data *data)
438 struct hpet_dev *hdev = data->handler_data;
439 unsigned int cfg;
441 /* mask it */
442 cfg = hpet_readl(HPET_Tn_CFG(hdev->num));
443 cfg &= ~HPET_TN_FSB;
444 hpet_writel(cfg, HPET_Tn_CFG(hdev->num));
447 void hpet_msi_write(struct hpet_dev *hdev, struct msi_msg *msg)
449 hpet_writel(msg->data, HPET_Tn_ROUTE(hdev->num));
450 hpet_writel(msg->address_lo, HPET_Tn_ROUTE(hdev->num) + 4);
453 void hpet_msi_read(struct hpet_dev *hdev, struct msi_msg *msg)
455 msg->data = hpet_readl(HPET_Tn_ROUTE(hdev->num));
456 msg->address_lo = hpet_readl(HPET_Tn_ROUTE(hdev->num) + 4);
457 msg->address_hi = 0;
460 static void hpet_msi_set_mode(enum clock_event_mode mode,
461 struct clock_event_device *evt)
463 struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
464 hpet_set_mode(mode, evt, hdev->num);
467 static int hpet_msi_next_event(unsigned long delta,
468 struct clock_event_device *evt)
470 struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
471 return hpet_next_event(delta, evt, hdev->num);
474 static int hpet_setup_msi_irq(unsigned int irq)
476 if (arch_setup_hpet_msi(irq, hpet_blockid)) {
477 destroy_irq(irq);
478 return -EINVAL;
480 return 0;
483 static int hpet_assign_irq(struct hpet_dev *dev)
485 unsigned int irq;
487 irq = create_irq_nr(0, -1);
488 if (!irq)
489 return -EINVAL;
491 irq_set_handler_data(irq, dev);
493 if (hpet_setup_msi_irq(irq))
494 return -EINVAL;
496 dev->irq = irq;
497 return 0;
500 static irqreturn_t hpet_interrupt_handler(int irq, void *data)
502 struct hpet_dev *dev = (struct hpet_dev *)data;
503 struct clock_event_device *hevt = &dev->evt;
505 if (!hevt->event_handler) {
506 printk(KERN_INFO "Spurious HPET timer interrupt on HPET timer %d\n",
507 dev->num);
508 return IRQ_HANDLED;
511 hevt->event_handler(hevt);
512 return IRQ_HANDLED;
515 static int hpet_setup_irq(struct hpet_dev *dev)
518 if (request_irq(dev->irq, hpet_interrupt_handler,
519 IRQF_TIMER | IRQF_DISABLED | IRQF_NOBALANCING,
520 dev->name, dev))
521 return -1;
523 disable_irq(dev->irq);
524 irq_set_affinity(dev->irq, cpumask_of(dev->cpu));
525 enable_irq(dev->irq);
527 printk(KERN_DEBUG "hpet: %s irq %d for MSI\n",
528 dev->name, dev->irq);
530 return 0;
533 /* This should be called in specific @cpu */
534 static void init_one_hpet_msi_clockevent(struct hpet_dev *hdev, int cpu)
536 struct clock_event_device *evt = &hdev->evt;
538 WARN_ON(cpu != smp_processor_id());
539 if (!(hdev->flags & HPET_DEV_VALID))
540 return;
542 if (hpet_setup_msi_irq(hdev->irq))
543 return;
545 hdev->cpu = cpu;
546 per_cpu(cpu_hpet_dev, cpu) = hdev;
547 evt->name = hdev->name;
548 hpet_setup_irq(hdev);
549 evt->irq = hdev->irq;
551 evt->rating = 110;
552 evt->features = CLOCK_EVT_FEAT_ONESHOT;
553 if (hdev->flags & HPET_DEV_PERI_CAP)
554 evt->features |= CLOCK_EVT_FEAT_PERIODIC;
556 evt->set_mode = hpet_msi_set_mode;
557 evt->set_next_event = hpet_msi_next_event;
558 evt->cpumask = cpumask_of(hdev->cpu);
560 clockevents_config_and_register(evt, hpet_freq, HPET_MIN_PROG_DELTA,
561 0x7FFFFFFF);
564 #ifdef CONFIG_HPET
565 /* Reserve at least one timer for userspace (/dev/hpet) */
566 #define RESERVE_TIMERS 1
567 #else
568 #define RESERVE_TIMERS 0
569 #endif
571 static void hpet_msi_capability_lookup(unsigned int start_timer)
573 unsigned int id;
574 unsigned int num_timers;
575 unsigned int num_timers_used = 0;
576 int i;
578 if (hpet_msi_disable)
579 return;
581 if (boot_cpu_has(X86_FEATURE_ARAT))
582 return;
583 id = hpet_readl(HPET_ID);
585 num_timers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT);
586 num_timers++; /* Value read out starts from 0 */
587 hpet_print_config();
589 hpet_devs = kzalloc(sizeof(struct hpet_dev) * num_timers, GFP_KERNEL);
590 if (!hpet_devs)
591 return;
593 hpet_num_timers = num_timers;
595 for (i = start_timer; i < num_timers - RESERVE_TIMERS; i++) {
596 struct hpet_dev *hdev = &hpet_devs[num_timers_used];
597 unsigned int cfg = hpet_readl(HPET_Tn_CFG(i));
599 /* Only consider HPET timer with MSI support */
600 if (!(cfg & HPET_TN_FSB_CAP))
601 continue;
603 hdev->flags = 0;
604 if (cfg & HPET_TN_PERIODIC_CAP)
605 hdev->flags |= HPET_DEV_PERI_CAP;
606 hdev->num = i;
608 sprintf(hdev->name, "hpet%d", i);
609 if (hpet_assign_irq(hdev))
610 continue;
612 hdev->flags |= HPET_DEV_FSB_CAP;
613 hdev->flags |= HPET_DEV_VALID;
614 num_timers_used++;
615 if (num_timers_used == num_possible_cpus())
616 break;
619 printk(KERN_INFO "HPET: %d timers in total, %d timers will be used for per-cpu timer\n",
620 num_timers, num_timers_used);
623 #ifdef CONFIG_HPET
624 static void hpet_reserve_msi_timers(struct hpet_data *hd)
626 int i;
628 if (!hpet_devs)
629 return;
631 for (i = 0; i < hpet_num_timers; i++) {
632 struct hpet_dev *hdev = &hpet_devs[i];
634 if (!(hdev->flags & HPET_DEV_VALID))
635 continue;
637 hd->hd_irq[hdev->num] = hdev->irq;
638 hpet_reserve_timer(hd, hdev->num);
641 #endif
643 static struct hpet_dev *hpet_get_unused_timer(void)
645 int i;
647 if (!hpet_devs)
648 return NULL;
650 for (i = 0; i < hpet_num_timers; i++) {
651 struct hpet_dev *hdev = &hpet_devs[i];
653 if (!(hdev->flags & HPET_DEV_VALID))
654 continue;
655 if (test_and_set_bit(HPET_DEV_USED_BIT,
656 (unsigned long *)&hdev->flags))
657 continue;
658 return hdev;
660 return NULL;
663 struct hpet_work_struct {
664 struct delayed_work work;
665 struct completion complete;
668 static void hpet_work(struct work_struct *w)
670 struct hpet_dev *hdev;
671 int cpu = smp_processor_id();
672 struct hpet_work_struct *hpet_work;
674 hpet_work = container_of(w, struct hpet_work_struct, work.work);
676 hdev = hpet_get_unused_timer();
677 if (hdev)
678 init_one_hpet_msi_clockevent(hdev, cpu);
680 complete(&hpet_work->complete);
683 static int hpet_cpuhp_notify(struct notifier_block *n,
684 unsigned long action, void *hcpu)
686 unsigned long cpu = (unsigned long)hcpu;
687 struct hpet_work_struct work;
688 struct hpet_dev *hdev = per_cpu(cpu_hpet_dev, cpu);
690 switch (action & 0xf) {
691 case CPU_ONLINE:
692 INIT_DELAYED_WORK_ONSTACK(&work.work, hpet_work);
693 init_completion(&work.complete);
694 /* FIXME: add schedule_work_on() */
695 schedule_delayed_work_on(cpu, &work.work, 0);
696 wait_for_completion(&work.complete);
697 destroy_timer_on_stack(&work.work.timer);
698 break;
699 case CPU_DEAD:
700 if (hdev) {
701 free_irq(hdev->irq, hdev);
702 hdev->flags &= ~HPET_DEV_USED;
703 per_cpu(cpu_hpet_dev, cpu) = NULL;
705 break;
707 return NOTIFY_OK;
709 #else
711 static int hpet_setup_msi_irq(unsigned int irq)
713 return 0;
715 static void hpet_msi_capability_lookup(unsigned int start_timer)
717 return;
720 #ifdef CONFIG_HPET
721 static void hpet_reserve_msi_timers(struct hpet_data *hd)
723 return;
725 #endif
727 static int hpet_cpuhp_notify(struct notifier_block *n,
728 unsigned long action, void *hcpu)
730 return NOTIFY_OK;
733 #endif
736 * Clock source related code
738 static cycle_t read_hpet(struct clocksource *cs)
740 return (cycle_t)hpet_readl(HPET_COUNTER);
743 static struct clocksource clocksource_hpet = {
744 .name = "hpet",
745 .rating = 250,
746 .read = read_hpet,
747 .mask = HPET_MASK,
748 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
749 .resume = hpet_resume_counter,
750 #ifdef CONFIG_X86_64
751 .archdata = { .vclock_mode = VCLOCK_HPET },
752 #endif
755 static int hpet_clocksource_register(void)
757 u64 start, now;
758 cycle_t t1;
760 /* Start the counter */
761 hpet_restart_counter();
763 /* Verify whether hpet counter works */
764 t1 = hpet_readl(HPET_COUNTER);
765 rdtscll(start);
768 * We don't know the TSC frequency yet, but waiting for
769 * 200000 TSC cycles is safe:
770 * 4 GHz == 50us
771 * 1 GHz == 200us
773 do {
774 rep_nop();
775 rdtscll(now);
776 } while ((now - start) < 200000UL);
778 if (t1 == hpet_readl(HPET_COUNTER)) {
779 printk(KERN_WARNING
780 "HPET counter not counting. HPET disabled\n");
781 return -ENODEV;
784 clocksource_register_hz(&clocksource_hpet, (u32)hpet_freq);
785 return 0;
789 * hpet_enable - Try to setup the HPET timer. Returns 1 on success.
791 int __init hpet_enable(void)
793 unsigned long hpet_period;
794 unsigned int id;
795 u64 freq;
796 int i;
798 if (!is_hpet_capable())
799 return 0;
801 hpet_set_mapping();
804 * Read the period and check for a sane value:
806 hpet_period = hpet_readl(HPET_PERIOD);
809 * AMD SB700 based systems with spread spectrum enabled use a
810 * SMM based HPET emulation to provide proper frequency
811 * setting. The SMM code is initialized with the first HPET
812 * register access and takes some time to complete. During
813 * this time the config register reads 0xffffffff. We check
814 * for max. 1000 loops whether the config register reads a non
815 * 0xffffffff value to make sure that HPET is up and running
816 * before we go further. A counting loop is safe, as the HPET
817 * access takes thousands of CPU cycles. On non SB700 based
818 * machines this check is only done once and has no side
819 * effects.
821 for (i = 0; hpet_readl(HPET_CFG) == 0xFFFFFFFF; i++) {
822 if (i == 1000) {
823 printk(KERN_WARNING
824 "HPET config register value = 0xFFFFFFFF. "
825 "Disabling HPET\n");
826 goto out_nohpet;
830 if (hpet_period < HPET_MIN_PERIOD || hpet_period > HPET_MAX_PERIOD)
831 goto out_nohpet;
834 * The period is a femto seconds value. Convert it to a
835 * frequency.
837 freq = FSEC_PER_SEC;
838 do_div(freq, hpet_period);
839 hpet_freq = freq;
842 * Read the HPET ID register to retrieve the IRQ routing
843 * information and the number of channels
845 id = hpet_readl(HPET_ID);
846 hpet_print_config();
848 #ifdef CONFIG_HPET_EMULATE_RTC
850 * The legacy routing mode needs at least two channels, tick timer
851 * and the rtc emulation channel.
853 if (!(id & HPET_ID_NUMBER))
854 goto out_nohpet;
855 #endif
857 if (hpet_clocksource_register())
858 goto out_nohpet;
860 if (id & HPET_ID_LEGSUP) {
861 hpet_legacy_clockevent_register();
862 return 1;
864 return 0;
866 out_nohpet:
867 hpet_clear_mapping();
868 hpet_address = 0;
869 return 0;
873 * Needs to be late, as the reserve_timer code calls kalloc !
875 * Not a problem on i386 as hpet_enable is called from late_time_init,
876 * but on x86_64 it is necessary !
878 static __init int hpet_late_init(void)
880 int cpu;
882 if (boot_hpet_disable)
883 return -ENODEV;
885 if (!hpet_address) {
886 if (!force_hpet_address)
887 return -ENODEV;
889 hpet_address = force_hpet_address;
890 hpet_enable();
893 if (!hpet_virt_address)
894 return -ENODEV;
896 if (hpet_readl(HPET_ID) & HPET_ID_LEGSUP)
897 hpet_msi_capability_lookup(2);
898 else
899 hpet_msi_capability_lookup(0);
901 hpet_reserve_platform_timers(hpet_readl(HPET_ID));
902 hpet_print_config();
904 if (hpet_msi_disable)
905 return 0;
907 if (boot_cpu_has(X86_FEATURE_ARAT))
908 return 0;
910 for_each_online_cpu(cpu) {
911 hpet_cpuhp_notify(NULL, CPU_ONLINE, (void *)(long)cpu);
914 /* This notifier should be called after workqueue is ready */
915 hotcpu_notifier(hpet_cpuhp_notify, -20);
917 return 0;
919 fs_initcall(hpet_late_init);
921 void hpet_disable(void)
923 if (is_hpet_capable() && hpet_virt_address) {
924 unsigned int cfg = hpet_readl(HPET_CFG);
926 if (hpet_legacy_int_enabled) {
927 cfg &= ~HPET_CFG_LEGACY;
928 hpet_legacy_int_enabled = 0;
930 cfg &= ~HPET_CFG_ENABLE;
931 hpet_writel(cfg, HPET_CFG);
935 #ifdef CONFIG_HPET_EMULATE_RTC
937 /* HPET in LegacyReplacement Mode eats up RTC interrupt line. When, HPET
938 * is enabled, we support RTC interrupt functionality in software.
939 * RTC has 3 kinds of interrupts:
940 * 1) Update Interrupt - generate an interrupt, every sec, when RTC clock
941 * is updated
942 * 2) Alarm Interrupt - generate an interrupt at a specific time of day
943 * 3) Periodic Interrupt - generate periodic interrupt, with frequencies
944 * 2Hz-8192Hz (2Hz-64Hz for non-root user) (all freqs in powers of 2)
945 * (1) and (2) above are implemented using polling at a frequency of
946 * 64 Hz. The exact frequency is a tradeoff between accuracy and interrupt
947 * overhead. (DEFAULT_RTC_INT_FREQ)
948 * For (3), we use interrupts at 64Hz or user specified periodic
949 * frequency, whichever is higher.
951 #include <linux/mc146818rtc.h>
952 #include <linux/rtc.h>
953 #include <asm/rtc.h>
955 #define DEFAULT_RTC_INT_FREQ 64
956 #define DEFAULT_RTC_SHIFT 6
957 #define RTC_NUM_INTS 1
959 static unsigned long hpet_rtc_flags;
960 static int hpet_prev_update_sec;
961 static struct rtc_time hpet_alarm_time;
962 static unsigned long hpet_pie_count;
963 static u32 hpet_t1_cmp;
964 static u32 hpet_default_delta;
965 static u32 hpet_pie_delta;
966 static unsigned long hpet_pie_limit;
968 static rtc_irq_handler irq_handler;
971 * Check that the hpet counter c1 is ahead of the c2
973 static inline int hpet_cnt_ahead(u32 c1, u32 c2)
975 return (s32)(c2 - c1) < 0;
979 * Registers a IRQ handler.
981 int hpet_register_irq_handler(rtc_irq_handler handler)
983 if (!is_hpet_enabled())
984 return -ENODEV;
985 if (irq_handler)
986 return -EBUSY;
988 irq_handler = handler;
990 return 0;
992 EXPORT_SYMBOL_GPL(hpet_register_irq_handler);
995 * Deregisters the IRQ handler registered with hpet_register_irq_handler()
996 * and does cleanup.
998 void hpet_unregister_irq_handler(rtc_irq_handler handler)
1000 if (!is_hpet_enabled())
1001 return;
1003 irq_handler = NULL;
1004 hpet_rtc_flags = 0;
1006 EXPORT_SYMBOL_GPL(hpet_unregister_irq_handler);
1009 * Timer 1 for RTC emulation. We use one shot mode, as periodic mode
1010 * is not supported by all HPET implementations for timer 1.
1012 * hpet_rtc_timer_init() is called when the rtc is initialized.
1014 int hpet_rtc_timer_init(void)
1016 unsigned int cfg, cnt, delta;
1017 unsigned long flags;
1019 if (!is_hpet_enabled())
1020 return 0;
1022 if (!hpet_default_delta) {
1023 uint64_t clc;
1025 clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
1026 clc >>= hpet_clockevent.shift + DEFAULT_RTC_SHIFT;
1027 hpet_default_delta = clc;
1030 if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1031 delta = hpet_default_delta;
1032 else
1033 delta = hpet_pie_delta;
1035 local_irq_save(flags);
1037 cnt = delta + hpet_readl(HPET_COUNTER);
1038 hpet_writel(cnt, HPET_T1_CMP);
1039 hpet_t1_cmp = cnt;
1041 cfg = hpet_readl(HPET_T1_CFG);
1042 cfg &= ~HPET_TN_PERIODIC;
1043 cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
1044 hpet_writel(cfg, HPET_T1_CFG);
1046 local_irq_restore(flags);
1048 return 1;
1050 EXPORT_SYMBOL_GPL(hpet_rtc_timer_init);
1053 * The functions below are called from rtc driver.
1054 * Return 0 if HPET is not being used.
1055 * Otherwise do the necessary changes and return 1.
1057 int hpet_mask_rtc_irq_bit(unsigned long bit_mask)
1059 if (!is_hpet_enabled())
1060 return 0;
1062 hpet_rtc_flags &= ~bit_mask;
1063 return 1;
1065 EXPORT_SYMBOL_GPL(hpet_mask_rtc_irq_bit);
1067 int hpet_set_rtc_irq_bit(unsigned long bit_mask)
1069 unsigned long oldbits = hpet_rtc_flags;
1071 if (!is_hpet_enabled())
1072 return 0;
1074 hpet_rtc_flags |= bit_mask;
1076 if ((bit_mask & RTC_UIE) && !(oldbits & RTC_UIE))
1077 hpet_prev_update_sec = -1;
1079 if (!oldbits)
1080 hpet_rtc_timer_init();
1082 return 1;
1084 EXPORT_SYMBOL_GPL(hpet_set_rtc_irq_bit);
1086 int hpet_set_alarm_time(unsigned char hrs, unsigned char min,
1087 unsigned char sec)
1089 if (!is_hpet_enabled())
1090 return 0;
1092 hpet_alarm_time.tm_hour = hrs;
1093 hpet_alarm_time.tm_min = min;
1094 hpet_alarm_time.tm_sec = sec;
1096 return 1;
1098 EXPORT_SYMBOL_GPL(hpet_set_alarm_time);
1100 int hpet_set_periodic_freq(unsigned long freq)
1102 uint64_t clc;
1104 if (!is_hpet_enabled())
1105 return 0;
1107 if (freq <= DEFAULT_RTC_INT_FREQ)
1108 hpet_pie_limit = DEFAULT_RTC_INT_FREQ / freq;
1109 else {
1110 clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
1111 do_div(clc, freq);
1112 clc >>= hpet_clockevent.shift;
1113 hpet_pie_delta = clc;
1114 hpet_pie_limit = 0;
1116 return 1;
1118 EXPORT_SYMBOL_GPL(hpet_set_periodic_freq);
1120 int hpet_rtc_dropped_irq(void)
1122 return is_hpet_enabled();
1124 EXPORT_SYMBOL_GPL(hpet_rtc_dropped_irq);
1126 static void hpet_rtc_timer_reinit(void)
1128 unsigned int cfg, delta;
1129 int lost_ints = -1;
1131 if (unlikely(!hpet_rtc_flags)) {
1132 cfg = hpet_readl(HPET_T1_CFG);
1133 cfg &= ~HPET_TN_ENABLE;
1134 hpet_writel(cfg, HPET_T1_CFG);
1135 return;
1138 if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1139 delta = hpet_default_delta;
1140 else
1141 delta = hpet_pie_delta;
1144 * Increment the comparator value until we are ahead of the
1145 * current count.
1147 do {
1148 hpet_t1_cmp += delta;
1149 hpet_writel(hpet_t1_cmp, HPET_T1_CMP);
1150 lost_ints++;
1151 } while (!hpet_cnt_ahead(hpet_t1_cmp, hpet_readl(HPET_COUNTER)));
1153 if (lost_ints) {
1154 if (hpet_rtc_flags & RTC_PIE)
1155 hpet_pie_count += lost_ints;
1156 if (printk_ratelimit())
1157 printk(KERN_WARNING "hpet1: lost %d rtc interrupts\n",
1158 lost_ints);
1162 irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id)
1164 struct rtc_time curr_time;
1165 unsigned long rtc_int_flag = 0;
1167 hpet_rtc_timer_reinit();
1168 memset(&curr_time, 0, sizeof(struct rtc_time));
1170 if (hpet_rtc_flags & (RTC_UIE | RTC_AIE))
1171 get_rtc_time(&curr_time);
1173 if (hpet_rtc_flags & RTC_UIE &&
1174 curr_time.tm_sec != hpet_prev_update_sec) {
1175 if (hpet_prev_update_sec >= 0)
1176 rtc_int_flag = RTC_UF;
1177 hpet_prev_update_sec = curr_time.tm_sec;
1180 if (hpet_rtc_flags & RTC_PIE &&
1181 ++hpet_pie_count >= hpet_pie_limit) {
1182 rtc_int_flag |= RTC_PF;
1183 hpet_pie_count = 0;
1186 if (hpet_rtc_flags & RTC_AIE &&
1187 (curr_time.tm_sec == hpet_alarm_time.tm_sec) &&
1188 (curr_time.tm_min == hpet_alarm_time.tm_min) &&
1189 (curr_time.tm_hour == hpet_alarm_time.tm_hour))
1190 rtc_int_flag |= RTC_AF;
1192 if (rtc_int_flag) {
1193 rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8));
1194 if (irq_handler)
1195 irq_handler(rtc_int_flag, dev_id);
1197 return IRQ_HANDLED;
1199 EXPORT_SYMBOL_GPL(hpet_rtc_interrupt);
1200 #endif