Add linux-next specific files for 20110831
[linux-2.6/next.git] / arch / x86 / mm / kmemcheck / kmemcheck.c
blobd87dd6d042d64309fedac698dd1a5b28a8448594
1 /**
2 * kmemcheck - a heavyweight memory checker for the linux kernel
3 * Copyright (C) 2007, 2008 Vegard Nossum <vegardno@ifi.uio.no>
4 * (With a lot of help from Ingo Molnar and Pekka Enberg.)
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License (version 2) as
8 * published by the Free Software Foundation.
9 */
11 #include <linux/init.h>
12 #include <linux/interrupt.h>
13 #include <linux/kallsyms.h>
14 #include <linux/kernel.h>
15 #include <linux/kmemcheck.h>
16 #include <linux/mm.h>
17 #include <linux/module.h>
18 #include <linux/page-flags.h>
19 #include <linux/percpu.h>
20 #include <linux/ptrace.h>
21 #include <linux/string.h>
22 #include <linux/types.h>
24 #include <asm/cacheflush.h>
25 #include <asm/kmemcheck.h>
26 #include <asm/pgtable.h>
27 #include <asm/tlbflush.h>
29 #include "error.h"
30 #include "opcode.h"
31 #include "pte.h"
32 #include "selftest.h"
33 #include "shadow.h"
36 #ifdef CONFIG_KMEMCHECK_DISABLED_BY_DEFAULT
37 # define KMEMCHECK_ENABLED 0
38 #endif
40 #ifdef CONFIG_KMEMCHECK_ENABLED_BY_DEFAULT
41 # define KMEMCHECK_ENABLED 1
42 #endif
44 #ifdef CONFIG_KMEMCHECK_ONESHOT_BY_DEFAULT
45 # define KMEMCHECK_ENABLED 2
46 #endif
48 int kmemcheck_enabled = KMEMCHECK_ENABLED;
50 int __init kmemcheck_init(void)
52 #ifdef CONFIG_SMP
54 * Limit SMP to use a single CPU. We rely on the fact that this code
55 * runs before SMP is set up.
57 if (setup_max_cpus > 1) {
58 printk(KERN_INFO
59 "kmemcheck: Limiting number of CPUs to 1.\n");
60 setup_max_cpus = 1;
62 #endif
64 if (!kmemcheck_selftest()) {
65 printk(KERN_INFO "kmemcheck: self-tests failed; disabling\n");
66 kmemcheck_enabled = 0;
67 return -EINVAL;
70 printk(KERN_INFO "kmemcheck: Initialized\n");
71 return 0;
74 early_initcall(kmemcheck_init);
77 * We need to parse the kmemcheck= option before any memory is allocated.
79 static int __init param_kmemcheck(char *str)
81 if (!str)
82 return -EINVAL;
84 sscanf(str, "%d", &kmemcheck_enabled);
85 return 0;
88 early_param("kmemcheck", param_kmemcheck);
90 int kmemcheck_show_addr(unsigned long address)
92 pte_t *pte;
94 pte = kmemcheck_pte_lookup(address);
95 if (!pte)
96 return 0;
98 set_pte(pte, __pte(pte_val(*pte) | _PAGE_PRESENT));
99 __flush_tlb_one(address);
100 return 1;
103 int kmemcheck_hide_addr(unsigned long address)
105 pte_t *pte;
107 pte = kmemcheck_pte_lookup(address);
108 if (!pte)
109 return 0;
111 set_pte(pte, __pte(pte_val(*pte) & ~_PAGE_PRESENT));
112 __flush_tlb_one(address);
113 return 1;
116 struct kmemcheck_context {
117 bool busy;
118 int balance;
121 * There can be at most two memory operands to an instruction, but
122 * each address can cross a page boundary -- so we may need up to
123 * four addresses that must be hidden/revealed for each fault.
125 unsigned long addr[4];
126 unsigned long n_addrs;
127 unsigned long flags;
129 /* Data size of the instruction that caused a fault. */
130 unsigned int size;
133 static DEFINE_PER_CPU(struct kmemcheck_context, kmemcheck_context);
135 bool kmemcheck_active(struct pt_regs *regs)
137 struct kmemcheck_context *data = &__get_cpu_var(kmemcheck_context);
139 return data->balance > 0;
142 /* Save an address that needs to be shown/hidden */
143 static void kmemcheck_save_addr(unsigned long addr)
145 struct kmemcheck_context *data = &__get_cpu_var(kmemcheck_context);
147 BUG_ON(data->n_addrs >= ARRAY_SIZE(data->addr));
148 data->addr[data->n_addrs++] = addr;
151 static unsigned int kmemcheck_show_all(void)
153 struct kmemcheck_context *data = &__get_cpu_var(kmemcheck_context);
154 unsigned int i;
155 unsigned int n;
157 n = 0;
158 for (i = 0; i < data->n_addrs; ++i)
159 n += kmemcheck_show_addr(data->addr[i]);
161 return n;
164 static unsigned int kmemcheck_hide_all(void)
166 struct kmemcheck_context *data = &__get_cpu_var(kmemcheck_context);
167 unsigned int i;
168 unsigned int n;
170 n = 0;
171 for (i = 0; i < data->n_addrs; ++i)
172 n += kmemcheck_hide_addr(data->addr[i]);
174 return n;
178 * Called from the #PF handler.
180 void kmemcheck_show(struct pt_regs *regs)
182 struct kmemcheck_context *data = &__get_cpu_var(kmemcheck_context);
184 BUG_ON(!irqs_disabled());
186 if (unlikely(data->balance != 0)) {
187 kmemcheck_show_all();
188 kmemcheck_error_save_bug(regs);
189 data->balance = 0;
190 return;
194 * None of the addresses actually belonged to kmemcheck. Note that
195 * this is not an error.
197 if (kmemcheck_show_all() == 0)
198 return;
200 ++data->balance;
203 * The IF needs to be cleared as well, so that the faulting
204 * instruction can run "uninterrupted". Otherwise, we might take
205 * an interrupt and start executing that before we've had a chance
206 * to hide the page again.
208 * NOTE: In the rare case of multiple faults, we must not override
209 * the original flags:
211 if (!(regs->flags & X86_EFLAGS_TF))
212 data->flags = regs->flags;
214 regs->flags |= X86_EFLAGS_TF;
215 regs->flags &= ~X86_EFLAGS_IF;
219 * Called from the #DB handler.
221 void kmemcheck_hide(struct pt_regs *regs)
223 struct kmemcheck_context *data = &__get_cpu_var(kmemcheck_context);
224 int n;
226 BUG_ON(!irqs_disabled());
228 if (unlikely(data->balance != 1)) {
229 kmemcheck_show_all();
230 kmemcheck_error_save_bug(regs);
231 data->n_addrs = 0;
232 data->balance = 0;
234 if (!(data->flags & X86_EFLAGS_TF))
235 regs->flags &= ~X86_EFLAGS_TF;
236 if (data->flags & X86_EFLAGS_IF)
237 regs->flags |= X86_EFLAGS_IF;
238 return;
241 if (kmemcheck_enabled)
242 n = kmemcheck_hide_all();
243 else
244 n = kmemcheck_show_all();
246 if (n == 0)
247 return;
249 --data->balance;
251 data->n_addrs = 0;
253 if (!(data->flags & X86_EFLAGS_TF))
254 regs->flags &= ~X86_EFLAGS_TF;
255 if (data->flags & X86_EFLAGS_IF)
256 regs->flags |= X86_EFLAGS_IF;
259 void kmemcheck_show_pages(struct page *p, unsigned int n)
261 unsigned int i;
263 for (i = 0; i < n; ++i) {
264 unsigned long address;
265 pte_t *pte;
266 unsigned int level;
268 address = (unsigned long) page_address(&p[i]);
269 pte = lookup_address(address, &level);
270 BUG_ON(!pte);
271 BUG_ON(level != PG_LEVEL_4K);
273 set_pte(pte, __pte(pte_val(*pte) | _PAGE_PRESENT));
274 set_pte(pte, __pte(pte_val(*pte) & ~_PAGE_HIDDEN));
275 __flush_tlb_one(address);
279 bool kmemcheck_page_is_tracked(struct page *p)
281 /* This will also check the "hidden" flag of the PTE. */
282 return kmemcheck_pte_lookup((unsigned long) page_address(p));
285 void kmemcheck_hide_pages(struct page *p, unsigned int n)
287 unsigned int i;
289 for (i = 0; i < n; ++i) {
290 unsigned long address;
291 pte_t *pte;
292 unsigned int level;
294 address = (unsigned long) page_address(&p[i]);
295 pte = lookup_address(address, &level);
296 BUG_ON(!pte);
297 BUG_ON(level != PG_LEVEL_4K);
299 set_pte(pte, __pte(pte_val(*pte) & ~_PAGE_PRESENT));
300 set_pte(pte, __pte(pte_val(*pte) | _PAGE_HIDDEN));
301 __flush_tlb_one(address);
305 /* Access may NOT cross page boundary */
306 static void kmemcheck_read_strict(struct pt_regs *regs,
307 unsigned long addr, unsigned int size)
309 void *shadow;
310 enum kmemcheck_shadow status;
312 shadow = kmemcheck_shadow_lookup(addr);
313 if (!shadow)
314 return;
316 kmemcheck_save_addr(addr);
317 status = kmemcheck_shadow_test(shadow, size);
318 if (status == KMEMCHECK_SHADOW_INITIALIZED)
319 return;
321 if (kmemcheck_enabled)
322 kmemcheck_error_save(status, addr, size, regs);
324 if (kmemcheck_enabled == 2)
325 kmemcheck_enabled = 0;
327 /* Don't warn about it again. */
328 kmemcheck_shadow_set(shadow, size);
331 bool kmemcheck_is_obj_initialized(unsigned long addr, size_t size)
333 enum kmemcheck_shadow status;
334 void *shadow;
336 shadow = kmemcheck_shadow_lookup(addr);
337 if (!shadow)
338 return true;
340 status = kmemcheck_shadow_test_all(shadow, size);
342 return status == KMEMCHECK_SHADOW_INITIALIZED;
345 /* Access may cross page boundary */
346 static void kmemcheck_read(struct pt_regs *regs,
347 unsigned long addr, unsigned int size)
349 unsigned long page = addr & PAGE_MASK;
350 unsigned long next_addr = addr + size - 1;
351 unsigned long next_page = next_addr & PAGE_MASK;
353 if (likely(page == next_page)) {
354 kmemcheck_read_strict(regs, addr, size);
355 return;
359 * What we do is basically to split the access across the
360 * two pages and handle each part separately. Yes, this means
361 * that we may now see reads that are 3 + 5 bytes, for
362 * example (and if both are uninitialized, there will be two
363 * reports), but it makes the code a lot simpler.
365 kmemcheck_read_strict(regs, addr, next_page - addr);
366 kmemcheck_read_strict(regs, next_page, next_addr - next_page);
369 static void kmemcheck_write_strict(struct pt_regs *regs,
370 unsigned long addr, unsigned int size)
372 void *shadow;
374 shadow = kmemcheck_shadow_lookup(addr);
375 if (!shadow)
376 return;
378 kmemcheck_save_addr(addr);
379 kmemcheck_shadow_set(shadow, size);
382 static void kmemcheck_write(struct pt_regs *regs,
383 unsigned long addr, unsigned int size)
385 unsigned long page = addr & PAGE_MASK;
386 unsigned long next_addr = addr + size - 1;
387 unsigned long next_page = next_addr & PAGE_MASK;
389 if (likely(page == next_page)) {
390 kmemcheck_write_strict(regs, addr, size);
391 return;
394 /* See comment in kmemcheck_read(). */
395 kmemcheck_write_strict(regs, addr, next_page - addr);
396 kmemcheck_write_strict(regs, next_page, next_addr - next_page);
400 * Copying is hard. We have two addresses, each of which may be split across
401 * a page (and each page will have different shadow addresses).
403 static void kmemcheck_copy(struct pt_regs *regs,
404 unsigned long src_addr, unsigned long dst_addr, unsigned int size)
406 uint8_t shadow[8];
407 enum kmemcheck_shadow status;
409 unsigned long page;
410 unsigned long next_addr;
411 unsigned long next_page;
413 uint8_t *x;
414 unsigned int i;
415 unsigned int n;
417 BUG_ON(size > sizeof(shadow));
419 page = src_addr & PAGE_MASK;
420 next_addr = src_addr + size - 1;
421 next_page = next_addr & PAGE_MASK;
423 if (likely(page == next_page)) {
424 /* Same page */
425 x = kmemcheck_shadow_lookup(src_addr);
426 if (x) {
427 kmemcheck_save_addr(src_addr);
428 for (i = 0; i < size; ++i)
429 shadow[i] = x[i];
430 } else {
431 for (i = 0; i < size; ++i)
432 shadow[i] = KMEMCHECK_SHADOW_INITIALIZED;
434 } else {
435 n = next_page - src_addr;
436 BUG_ON(n > sizeof(shadow));
438 /* First page */
439 x = kmemcheck_shadow_lookup(src_addr);
440 if (x) {
441 kmemcheck_save_addr(src_addr);
442 for (i = 0; i < n; ++i)
443 shadow[i] = x[i];
444 } else {
445 /* Not tracked */
446 for (i = 0; i < n; ++i)
447 shadow[i] = KMEMCHECK_SHADOW_INITIALIZED;
450 /* Second page */
451 x = kmemcheck_shadow_lookup(next_page);
452 if (x) {
453 kmemcheck_save_addr(next_page);
454 for (i = n; i < size; ++i)
455 shadow[i] = x[i - n];
456 } else {
457 /* Not tracked */
458 for (i = n; i < size; ++i)
459 shadow[i] = KMEMCHECK_SHADOW_INITIALIZED;
463 page = dst_addr & PAGE_MASK;
464 next_addr = dst_addr + size - 1;
465 next_page = next_addr & PAGE_MASK;
467 if (likely(page == next_page)) {
468 /* Same page */
469 x = kmemcheck_shadow_lookup(dst_addr);
470 if (x) {
471 kmemcheck_save_addr(dst_addr);
472 for (i = 0; i < size; ++i) {
473 x[i] = shadow[i];
474 shadow[i] = KMEMCHECK_SHADOW_INITIALIZED;
477 } else {
478 n = next_page - dst_addr;
479 BUG_ON(n > sizeof(shadow));
481 /* First page */
482 x = kmemcheck_shadow_lookup(dst_addr);
483 if (x) {
484 kmemcheck_save_addr(dst_addr);
485 for (i = 0; i < n; ++i) {
486 x[i] = shadow[i];
487 shadow[i] = KMEMCHECK_SHADOW_INITIALIZED;
491 /* Second page */
492 x = kmemcheck_shadow_lookup(next_page);
493 if (x) {
494 kmemcheck_save_addr(next_page);
495 for (i = n; i < size; ++i) {
496 x[i - n] = shadow[i];
497 shadow[i] = KMEMCHECK_SHADOW_INITIALIZED;
502 status = kmemcheck_shadow_test(shadow, size);
503 if (status == KMEMCHECK_SHADOW_INITIALIZED)
504 return;
506 if (kmemcheck_enabled)
507 kmemcheck_error_save(status, src_addr, size, regs);
509 if (kmemcheck_enabled == 2)
510 kmemcheck_enabled = 0;
513 enum kmemcheck_method {
514 KMEMCHECK_READ,
515 KMEMCHECK_WRITE,
518 static void kmemcheck_access(struct pt_regs *regs,
519 unsigned long fallback_address, enum kmemcheck_method fallback_method)
521 const uint8_t *insn;
522 const uint8_t *insn_primary;
523 unsigned int size;
525 struct kmemcheck_context *data = &__get_cpu_var(kmemcheck_context);
527 /* Recursive fault -- ouch. */
528 if (data->busy) {
529 kmemcheck_show_addr(fallback_address);
530 kmemcheck_error_save_bug(regs);
531 return;
534 data->busy = true;
536 insn = (const uint8_t *) regs->ip;
537 insn_primary = kmemcheck_opcode_get_primary(insn);
539 kmemcheck_opcode_decode(insn, &size);
541 switch (insn_primary[0]) {
542 #ifdef CONFIG_KMEMCHECK_BITOPS_OK
543 /* AND, OR, XOR */
545 * Unfortunately, these instructions have to be excluded from
546 * our regular checking since they access only some (and not
547 * all) bits. This clears out "bogus" bitfield-access warnings.
549 case 0x80:
550 case 0x81:
551 case 0x82:
552 case 0x83:
553 switch ((insn_primary[1] >> 3) & 7) {
554 /* OR */
555 case 1:
556 /* AND */
557 case 4:
558 /* XOR */
559 case 6:
560 kmemcheck_write(regs, fallback_address, size);
561 goto out;
563 /* ADD */
564 case 0:
565 /* ADC */
566 case 2:
567 /* SBB */
568 case 3:
569 /* SUB */
570 case 5:
571 /* CMP */
572 case 7:
573 break;
575 break;
576 #endif
578 /* MOVS, MOVSB, MOVSW, MOVSD */
579 case 0xa4:
580 case 0xa5:
582 * These instructions are special because they take two
583 * addresses, but we only get one page fault.
585 kmemcheck_copy(regs, regs->si, regs->di, size);
586 goto out;
588 /* CMPS, CMPSB, CMPSW, CMPSD */
589 case 0xa6:
590 case 0xa7:
591 kmemcheck_read(regs, regs->si, size);
592 kmemcheck_read(regs, regs->di, size);
593 goto out;
597 * If the opcode isn't special in any way, we use the data from the
598 * page fault handler to determine the address and type of memory
599 * access.
601 switch (fallback_method) {
602 case KMEMCHECK_READ:
603 kmemcheck_read(regs, fallback_address, size);
604 goto out;
605 case KMEMCHECK_WRITE:
606 kmemcheck_write(regs, fallback_address, size);
607 goto out;
610 out:
611 data->busy = false;
614 bool kmemcheck_fault(struct pt_regs *regs, unsigned long address,
615 unsigned long error_code)
617 pte_t *pte;
620 * XXX: Is it safe to assume that memory accesses from virtual 86
621 * mode or non-kernel code segments will _never_ access kernel
622 * memory (e.g. tracked pages)? For now, we need this to avoid
623 * invoking kmemcheck for PnP BIOS calls.
625 if (regs->flags & X86_VM_MASK)
626 return false;
627 if (regs->cs != __KERNEL_CS)
628 return false;
630 pte = kmemcheck_pte_lookup(address);
631 if (!pte)
632 return false;
634 WARN_ON_ONCE(in_nmi());
636 if (error_code & 2)
637 kmemcheck_access(regs, address, KMEMCHECK_WRITE);
638 else
639 kmemcheck_access(regs, address, KMEMCHECK_READ);
641 kmemcheck_show(regs);
642 return true;
645 bool kmemcheck_trap(struct pt_regs *regs)
647 if (!kmemcheck_active(regs))
648 return false;
650 /* We're done. */
651 kmemcheck_hide(regs);
652 return true;