Add linux-next specific files for 20110831
[linux-2.6/next.git] / arch / x86 / xen / mmu.c
blob6646bfef14a5efe58e4ac7309eda528814ef6f07
1 /*
2 * Xen mmu operations
4 * This file contains the various mmu fetch and update operations.
5 * The most important job they must perform is the mapping between the
6 * domain's pfn and the overall machine mfns.
8 * Xen allows guests to directly update the pagetable, in a controlled
9 * fashion. In other words, the guest modifies the same pagetable
10 * that the CPU actually uses, which eliminates the overhead of having
11 * a separate shadow pagetable.
13 * In order to allow this, it falls on the guest domain to map its
14 * notion of a "physical" pfn - which is just a domain-local linear
15 * address - into a real "machine address" which the CPU's MMU can
16 * use.
18 * A pgd_t/pmd_t/pte_t will typically contain an mfn, and so can be
19 * inserted directly into the pagetable. When creating a new
20 * pte/pmd/pgd, it converts the passed pfn into an mfn. Conversely,
21 * when reading the content back with __(pgd|pmd|pte)_val, it converts
22 * the mfn back into a pfn.
24 * The other constraint is that all pages which make up a pagetable
25 * must be mapped read-only in the guest. This prevents uncontrolled
26 * guest updates to the pagetable. Xen strictly enforces this, and
27 * will disallow any pagetable update which will end up mapping a
28 * pagetable page RW, and will disallow using any writable page as a
29 * pagetable.
31 * Naively, when loading %cr3 with the base of a new pagetable, Xen
32 * would need to validate the whole pagetable before going on.
33 * Naturally, this is quite slow. The solution is to "pin" a
34 * pagetable, which enforces all the constraints on the pagetable even
35 * when it is not actively in use. This menas that Xen can be assured
36 * that it is still valid when you do load it into %cr3, and doesn't
37 * need to revalidate it.
39 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
41 #include <linux/sched.h>
42 #include <linux/highmem.h>
43 #include <linux/debugfs.h>
44 #include <linux/bug.h>
45 #include <linux/vmalloc.h>
46 #include <linux/module.h>
47 #include <linux/gfp.h>
48 #include <linux/memblock.h>
49 #include <linux/seq_file.h>
51 #include <trace/events/xen.h>
53 #include <asm/pgtable.h>
54 #include <asm/tlbflush.h>
55 #include <asm/fixmap.h>
56 #include <asm/mmu_context.h>
57 #include <asm/setup.h>
58 #include <asm/paravirt.h>
59 #include <asm/e820.h>
60 #include <asm/linkage.h>
61 #include <asm/page.h>
62 #include <asm/init.h>
63 #include <asm/pat.h>
64 #include <asm/smp.h>
66 #include <asm/xen/hypercall.h>
67 #include <asm/xen/hypervisor.h>
69 #include <xen/xen.h>
70 #include <xen/page.h>
71 #include <xen/interface/xen.h>
72 #include <xen/interface/hvm/hvm_op.h>
73 #include <xen/interface/version.h>
74 #include <xen/interface/memory.h>
75 #include <xen/hvc-console.h>
77 #include "multicalls.h"
78 #include "mmu.h"
79 #include "debugfs.h"
82 * Protects atomic reservation decrease/increase against concurrent increases.
83 * Also protects non-atomic updates of current_pages and balloon lists.
85 DEFINE_SPINLOCK(xen_reservation_lock);
88 * Identity map, in addition to plain kernel map. This needs to be
89 * large enough to allocate page table pages to allocate the rest.
90 * Each page can map 2MB.
92 #define LEVEL1_IDENT_ENTRIES (PTRS_PER_PTE * 4)
93 static RESERVE_BRK_ARRAY(pte_t, level1_ident_pgt, LEVEL1_IDENT_ENTRIES);
95 #ifdef CONFIG_X86_64
96 /* l3 pud for userspace vsyscall mapping */
97 static pud_t level3_user_vsyscall[PTRS_PER_PUD] __page_aligned_bss;
98 #endif /* CONFIG_X86_64 */
101 * Note about cr3 (pagetable base) values:
103 * xen_cr3 contains the current logical cr3 value; it contains the
104 * last set cr3. This may not be the current effective cr3, because
105 * its update may be being lazily deferred. However, a vcpu looking
106 * at its own cr3 can use this value knowing that it everything will
107 * be self-consistent.
109 * xen_current_cr3 contains the actual vcpu cr3; it is set once the
110 * hypercall to set the vcpu cr3 is complete (so it may be a little
111 * out of date, but it will never be set early). If one vcpu is
112 * looking at another vcpu's cr3 value, it should use this variable.
114 DEFINE_PER_CPU(unsigned long, xen_cr3); /* cr3 stored as physaddr */
115 DEFINE_PER_CPU(unsigned long, xen_current_cr3); /* actual vcpu cr3 */
119 * Just beyond the highest usermode address. STACK_TOP_MAX has a
120 * redzone above it, so round it up to a PGD boundary.
122 #define USER_LIMIT ((STACK_TOP_MAX + PGDIR_SIZE - 1) & PGDIR_MASK)
124 unsigned long arbitrary_virt_to_mfn(void *vaddr)
126 xmaddr_t maddr = arbitrary_virt_to_machine(vaddr);
128 return PFN_DOWN(maddr.maddr);
131 xmaddr_t arbitrary_virt_to_machine(void *vaddr)
133 unsigned long address = (unsigned long)vaddr;
134 unsigned int level;
135 pte_t *pte;
136 unsigned offset;
139 * if the PFN is in the linear mapped vaddr range, we can just use
140 * the (quick) virt_to_machine() p2m lookup
142 if (virt_addr_valid(vaddr))
143 return virt_to_machine(vaddr);
145 /* otherwise we have to do a (slower) full page-table walk */
147 pte = lookup_address(address, &level);
148 BUG_ON(pte == NULL);
149 offset = address & ~PAGE_MASK;
150 return XMADDR(((phys_addr_t)pte_mfn(*pte) << PAGE_SHIFT) + offset);
152 EXPORT_SYMBOL_GPL(arbitrary_virt_to_machine);
154 void make_lowmem_page_readonly(void *vaddr)
156 pte_t *pte, ptev;
157 unsigned long address = (unsigned long)vaddr;
158 unsigned int level;
160 pte = lookup_address(address, &level);
161 if (pte == NULL)
162 return; /* vaddr missing */
164 ptev = pte_wrprotect(*pte);
166 if (HYPERVISOR_update_va_mapping(address, ptev, 0))
167 BUG();
170 void make_lowmem_page_readwrite(void *vaddr)
172 pte_t *pte, ptev;
173 unsigned long address = (unsigned long)vaddr;
174 unsigned int level;
176 pte = lookup_address(address, &level);
177 if (pte == NULL)
178 return; /* vaddr missing */
180 ptev = pte_mkwrite(*pte);
182 if (HYPERVISOR_update_va_mapping(address, ptev, 0))
183 BUG();
187 static bool xen_page_pinned(void *ptr)
189 struct page *page = virt_to_page(ptr);
191 return PagePinned(page);
194 void xen_set_domain_pte(pte_t *ptep, pte_t pteval, unsigned domid)
196 struct multicall_space mcs;
197 struct mmu_update *u;
199 trace_xen_mmu_set_domain_pte(ptep, pteval, domid);
201 mcs = xen_mc_entry(sizeof(*u));
202 u = mcs.args;
204 /* ptep might be kmapped when using 32-bit HIGHPTE */
205 u->ptr = virt_to_machine(ptep).maddr;
206 u->val = pte_val_ma(pteval);
208 MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, domid);
210 xen_mc_issue(PARAVIRT_LAZY_MMU);
212 EXPORT_SYMBOL_GPL(xen_set_domain_pte);
214 static void xen_extend_mmu_update(const struct mmu_update *update)
216 struct multicall_space mcs;
217 struct mmu_update *u;
219 mcs = xen_mc_extend_args(__HYPERVISOR_mmu_update, sizeof(*u));
221 if (mcs.mc != NULL) {
222 mcs.mc->args[1]++;
223 } else {
224 mcs = __xen_mc_entry(sizeof(*u));
225 MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
228 u = mcs.args;
229 *u = *update;
232 static void xen_extend_mmuext_op(const struct mmuext_op *op)
234 struct multicall_space mcs;
235 struct mmuext_op *u;
237 mcs = xen_mc_extend_args(__HYPERVISOR_mmuext_op, sizeof(*u));
239 if (mcs.mc != NULL) {
240 mcs.mc->args[1]++;
241 } else {
242 mcs = __xen_mc_entry(sizeof(*u));
243 MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
246 u = mcs.args;
247 *u = *op;
250 static void xen_set_pmd_hyper(pmd_t *ptr, pmd_t val)
252 struct mmu_update u;
254 preempt_disable();
256 xen_mc_batch();
258 /* ptr may be ioremapped for 64-bit pagetable setup */
259 u.ptr = arbitrary_virt_to_machine(ptr).maddr;
260 u.val = pmd_val_ma(val);
261 xen_extend_mmu_update(&u);
263 xen_mc_issue(PARAVIRT_LAZY_MMU);
265 preempt_enable();
268 static void xen_set_pmd(pmd_t *ptr, pmd_t val)
270 trace_xen_mmu_set_pmd(ptr, val);
272 /* If page is not pinned, we can just update the entry
273 directly */
274 if (!xen_page_pinned(ptr)) {
275 *ptr = val;
276 return;
279 xen_set_pmd_hyper(ptr, val);
283 * Associate a virtual page frame with a given physical page frame
284 * and protection flags for that frame.
286 void set_pte_mfn(unsigned long vaddr, unsigned long mfn, pgprot_t flags)
288 set_pte_vaddr(vaddr, mfn_pte(mfn, flags));
291 static bool xen_batched_set_pte(pte_t *ptep, pte_t pteval)
293 struct mmu_update u;
295 if (paravirt_get_lazy_mode() != PARAVIRT_LAZY_MMU)
296 return false;
298 xen_mc_batch();
300 u.ptr = virt_to_machine(ptep).maddr | MMU_NORMAL_PT_UPDATE;
301 u.val = pte_val_ma(pteval);
302 xen_extend_mmu_update(&u);
304 xen_mc_issue(PARAVIRT_LAZY_MMU);
306 return true;
309 static inline void __xen_set_pte(pte_t *ptep, pte_t pteval)
311 if (!xen_batched_set_pte(ptep, pteval))
312 native_set_pte(ptep, pteval);
315 static void xen_set_pte(pte_t *ptep, pte_t pteval)
317 trace_xen_mmu_set_pte(ptep, pteval);
318 __xen_set_pte(ptep, pteval);
321 static void xen_set_pte_at(struct mm_struct *mm, unsigned long addr,
322 pte_t *ptep, pte_t pteval)
324 trace_xen_mmu_set_pte_at(mm, addr, ptep, pteval);
325 __xen_set_pte(ptep, pteval);
328 pte_t xen_ptep_modify_prot_start(struct mm_struct *mm,
329 unsigned long addr, pte_t *ptep)
331 /* Just return the pte as-is. We preserve the bits on commit */
332 trace_xen_mmu_ptep_modify_prot_start(mm, addr, ptep, *ptep);
333 return *ptep;
336 void xen_ptep_modify_prot_commit(struct mm_struct *mm, unsigned long addr,
337 pte_t *ptep, pte_t pte)
339 struct mmu_update u;
341 trace_xen_mmu_ptep_modify_prot_commit(mm, addr, ptep, pte);
342 xen_mc_batch();
344 u.ptr = virt_to_machine(ptep).maddr | MMU_PT_UPDATE_PRESERVE_AD;
345 u.val = pte_val_ma(pte);
346 xen_extend_mmu_update(&u);
348 xen_mc_issue(PARAVIRT_LAZY_MMU);
351 /* Assume pteval_t is equivalent to all the other *val_t types. */
352 static pteval_t pte_mfn_to_pfn(pteval_t val)
354 if (val & _PAGE_PRESENT) {
355 unsigned long mfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
356 pteval_t flags = val & PTE_FLAGS_MASK;
357 val = ((pteval_t)mfn_to_pfn(mfn) << PAGE_SHIFT) | flags;
360 return val;
363 static pteval_t pte_pfn_to_mfn(pteval_t val)
365 if (val & _PAGE_PRESENT) {
366 unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
367 pteval_t flags = val & PTE_FLAGS_MASK;
368 unsigned long mfn;
370 if (!xen_feature(XENFEAT_auto_translated_physmap))
371 mfn = get_phys_to_machine(pfn);
372 else
373 mfn = pfn;
375 * If there's no mfn for the pfn, then just create an
376 * empty non-present pte. Unfortunately this loses
377 * information about the original pfn, so
378 * pte_mfn_to_pfn is asymmetric.
380 if (unlikely(mfn == INVALID_P2M_ENTRY)) {
381 mfn = 0;
382 flags = 0;
383 } else {
385 * Paramount to do this test _after_ the
386 * INVALID_P2M_ENTRY as INVALID_P2M_ENTRY &
387 * IDENTITY_FRAME_BIT resolves to true.
389 mfn &= ~FOREIGN_FRAME_BIT;
390 if (mfn & IDENTITY_FRAME_BIT) {
391 mfn &= ~IDENTITY_FRAME_BIT;
392 flags |= _PAGE_IOMAP;
395 val = ((pteval_t)mfn << PAGE_SHIFT) | flags;
398 return val;
401 static pteval_t iomap_pte(pteval_t val)
403 if (val & _PAGE_PRESENT) {
404 unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
405 pteval_t flags = val & PTE_FLAGS_MASK;
407 /* We assume the pte frame number is a MFN, so
408 just use it as-is. */
409 val = ((pteval_t)pfn << PAGE_SHIFT) | flags;
412 return val;
415 static pteval_t xen_pte_val(pte_t pte)
417 pteval_t pteval = pte.pte;
419 /* If this is a WC pte, convert back from Xen WC to Linux WC */
420 if ((pteval & (_PAGE_PAT | _PAGE_PCD | _PAGE_PWT)) == _PAGE_PAT) {
421 WARN_ON(!pat_enabled);
422 pteval = (pteval & ~_PAGE_PAT) | _PAGE_PWT;
425 if (xen_initial_domain() && (pteval & _PAGE_IOMAP))
426 return pteval;
428 return pte_mfn_to_pfn(pteval);
430 PV_CALLEE_SAVE_REGS_THUNK(xen_pte_val);
432 static pgdval_t xen_pgd_val(pgd_t pgd)
434 return pte_mfn_to_pfn(pgd.pgd);
436 PV_CALLEE_SAVE_REGS_THUNK(xen_pgd_val);
439 * Xen's PAT setup is part of its ABI, though I assume entries 6 & 7
440 * are reserved for now, to correspond to the Intel-reserved PAT
441 * types.
443 * We expect Linux's PAT set as follows:
445 * Idx PTE flags Linux Xen Default
446 * 0 WB WB WB
447 * 1 PWT WC WT WT
448 * 2 PCD UC- UC- UC-
449 * 3 PCD PWT UC UC UC
450 * 4 PAT WB WC WB
451 * 5 PAT PWT WC WP WT
452 * 6 PAT PCD UC- UC UC-
453 * 7 PAT PCD PWT UC UC UC
456 void xen_set_pat(u64 pat)
458 /* We expect Linux to use a PAT setting of
459 * UC UC- WC WB (ignoring the PAT flag) */
460 WARN_ON(pat != 0x0007010600070106ull);
463 static pte_t xen_make_pte(pteval_t pte)
465 phys_addr_t addr = (pte & PTE_PFN_MASK);
467 /* If Linux is trying to set a WC pte, then map to the Xen WC.
468 * If _PAGE_PAT is set, then it probably means it is really
469 * _PAGE_PSE, so avoid fiddling with the PAT mapping and hope
470 * things work out OK...
472 * (We should never see kernel mappings with _PAGE_PSE set,
473 * but we could see hugetlbfs mappings, I think.).
475 if (pat_enabled && !WARN_ON(pte & _PAGE_PAT)) {
476 if ((pte & (_PAGE_PCD | _PAGE_PWT)) == _PAGE_PWT)
477 pte = (pte & ~(_PAGE_PCD | _PAGE_PWT)) | _PAGE_PAT;
481 * Unprivileged domains are allowed to do IOMAPpings for
482 * PCI passthrough, but not map ISA space. The ISA
483 * mappings are just dummy local mappings to keep other
484 * parts of the kernel happy.
486 if (unlikely(pte & _PAGE_IOMAP) &&
487 (xen_initial_domain() || addr >= ISA_END_ADDRESS)) {
488 pte = iomap_pte(pte);
489 } else {
490 pte &= ~_PAGE_IOMAP;
491 pte = pte_pfn_to_mfn(pte);
494 return native_make_pte(pte);
496 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte);
498 static pgd_t xen_make_pgd(pgdval_t pgd)
500 pgd = pte_pfn_to_mfn(pgd);
501 return native_make_pgd(pgd);
503 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pgd);
505 static pmdval_t xen_pmd_val(pmd_t pmd)
507 return pte_mfn_to_pfn(pmd.pmd);
509 PV_CALLEE_SAVE_REGS_THUNK(xen_pmd_val);
511 static void xen_set_pud_hyper(pud_t *ptr, pud_t val)
513 struct mmu_update u;
515 preempt_disable();
517 xen_mc_batch();
519 /* ptr may be ioremapped for 64-bit pagetable setup */
520 u.ptr = arbitrary_virt_to_machine(ptr).maddr;
521 u.val = pud_val_ma(val);
522 xen_extend_mmu_update(&u);
524 xen_mc_issue(PARAVIRT_LAZY_MMU);
526 preempt_enable();
529 static void xen_set_pud(pud_t *ptr, pud_t val)
531 trace_xen_mmu_set_pud(ptr, val);
533 /* If page is not pinned, we can just update the entry
534 directly */
535 if (!xen_page_pinned(ptr)) {
536 *ptr = val;
537 return;
540 xen_set_pud_hyper(ptr, val);
543 #ifdef CONFIG_X86_PAE
544 static void xen_set_pte_atomic(pte_t *ptep, pte_t pte)
546 trace_xen_mmu_set_pte_atomic(ptep, pte);
547 set_64bit((u64 *)ptep, native_pte_val(pte));
550 static void xen_pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
552 trace_xen_mmu_pte_clear(mm, addr, ptep);
553 if (!xen_batched_set_pte(ptep, native_make_pte(0)))
554 native_pte_clear(mm, addr, ptep);
557 static void xen_pmd_clear(pmd_t *pmdp)
559 trace_xen_mmu_pmd_clear(pmdp);
560 set_pmd(pmdp, __pmd(0));
562 #endif /* CONFIG_X86_PAE */
564 static pmd_t xen_make_pmd(pmdval_t pmd)
566 pmd = pte_pfn_to_mfn(pmd);
567 return native_make_pmd(pmd);
569 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pmd);
571 #if PAGETABLE_LEVELS == 4
572 static pudval_t xen_pud_val(pud_t pud)
574 return pte_mfn_to_pfn(pud.pud);
576 PV_CALLEE_SAVE_REGS_THUNK(xen_pud_val);
578 static pud_t xen_make_pud(pudval_t pud)
580 pud = pte_pfn_to_mfn(pud);
582 return native_make_pud(pud);
584 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pud);
586 static pgd_t *xen_get_user_pgd(pgd_t *pgd)
588 pgd_t *pgd_page = (pgd_t *)(((unsigned long)pgd) & PAGE_MASK);
589 unsigned offset = pgd - pgd_page;
590 pgd_t *user_ptr = NULL;
592 if (offset < pgd_index(USER_LIMIT)) {
593 struct page *page = virt_to_page(pgd_page);
594 user_ptr = (pgd_t *)page->private;
595 if (user_ptr)
596 user_ptr += offset;
599 return user_ptr;
602 static void __xen_set_pgd_hyper(pgd_t *ptr, pgd_t val)
604 struct mmu_update u;
606 u.ptr = virt_to_machine(ptr).maddr;
607 u.val = pgd_val_ma(val);
608 xen_extend_mmu_update(&u);
612 * Raw hypercall-based set_pgd, intended for in early boot before
613 * there's a page structure. This implies:
614 * 1. The only existing pagetable is the kernel's
615 * 2. It is always pinned
616 * 3. It has no user pagetable attached to it
618 static void __init xen_set_pgd_hyper(pgd_t *ptr, pgd_t val)
620 preempt_disable();
622 xen_mc_batch();
624 __xen_set_pgd_hyper(ptr, val);
626 xen_mc_issue(PARAVIRT_LAZY_MMU);
628 preempt_enable();
631 static void xen_set_pgd(pgd_t *ptr, pgd_t val)
633 pgd_t *user_ptr = xen_get_user_pgd(ptr);
635 trace_xen_mmu_set_pgd(ptr, user_ptr, val);
637 /* If page is not pinned, we can just update the entry
638 directly */
639 if (!xen_page_pinned(ptr)) {
640 *ptr = val;
641 if (user_ptr) {
642 WARN_ON(xen_page_pinned(user_ptr));
643 *user_ptr = val;
645 return;
648 /* If it's pinned, then we can at least batch the kernel and
649 user updates together. */
650 xen_mc_batch();
652 __xen_set_pgd_hyper(ptr, val);
653 if (user_ptr)
654 __xen_set_pgd_hyper(user_ptr, val);
656 xen_mc_issue(PARAVIRT_LAZY_MMU);
658 #endif /* PAGETABLE_LEVELS == 4 */
661 * (Yet another) pagetable walker. This one is intended for pinning a
662 * pagetable. This means that it walks a pagetable and calls the
663 * callback function on each page it finds making up the page table,
664 * at every level. It walks the entire pagetable, but it only bothers
665 * pinning pte pages which are below limit. In the normal case this
666 * will be STACK_TOP_MAX, but at boot we need to pin up to
667 * FIXADDR_TOP.
669 * For 32-bit the important bit is that we don't pin beyond there,
670 * because then we start getting into Xen's ptes.
672 * For 64-bit, we must skip the Xen hole in the middle of the address
673 * space, just after the big x86-64 virtual hole.
675 static int __xen_pgd_walk(struct mm_struct *mm, pgd_t *pgd,
676 int (*func)(struct mm_struct *mm, struct page *,
677 enum pt_level),
678 unsigned long limit)
680 int flush = 0;
681 unsigned hole_low, hole_high;
682 unsigned pgdidx_limit, pudidx_limit, pmdidx_limit;
683 unsigned pgdidx, pudidx, pmdidx;
685 /* The limit is the last byte to be touched */
686 limit--;
687 BUG_ON(limit >= FIXADDR_TOP);
689 if (xen_feature(XENFEAT_auto_translated_physmap))
690 return 0;
693 * 64-bit has a great big hole in the middle of the address
694 * space, which contains the Xen mappings. On 32-bit these
695 * will end up making a zero-sized hole and so is a no-op.
697 hole_low = pgd_index(USER_LIMIT);
698 hole_high = pgd_index(PAGE_OFFSET);
700 pgdidx_limit = pgd_index(limit);
701 #if PTRS_PER_PUD > 1
702 pudidx_limit = pud_index(limit);
703 #else
704 pudidx_limit = 0;
705 #endif
706 #if PTRS_PER_PMD > 1
707 pmdidx_limit = pmd_index(limit);
708 #else
709 pmdidx_limit = 0;
710 #endif
712 for (pgdidx = 0; pgdidx <= pgdidx_limit; pgdidx++) {
713 pud_t *pud;
715 if (pgdidx >= hole_low && pgdidx < hole_high)
716 continue;
718 if (!pgd_val(pgd[pgdidx]))
719 continue;
721 pud = pud_offset(&pgd[pgdidx], 0);
723 if (PTRS_PER_PUD > 1) /* not folded */
724 flush |= (*func)(mm, virt_to_page(pud), PT_PUD);
726 for (pudidx = 0; pudidx < PTRS_PER_PUD; pudidx++) {
727 pmd_t *pmd;
729 if (pgdidx == pgdidx_limit &&
730 pudidx > pudidx_limit)
731 goto out;
733 if (pud_none(pud[pudidx]))
734 continue;
736 pmd = pmd_offset(&pud[pudidx], 0);
738 if (PTRS_PER_PMD > 1) /* not folded */
739 flush |= (*func)(mm, virt_to_page(pmd), PT_PMD);
741 for (pmdidx = 0; pmdidx < PTRS_PER_PMD; pmdidx++) {
742 struct page *pte;
744 if (pgdidx == pgdidx_limit &&
745 pudidx == pudidx_limit &&
746 pmdidx > pmdidx_limit)
747 goto out;
749 if (pmd_none(pmd[pmdidx]))
750 continue;
752 pte = pmd_page(pmd[pmdidx]);
753 flush |= (*func)(mm, pte, PT_PTE);
758 out:
759 /* Do the top level last, so that the callbacks can use it as
760 a cue to do final things like tlb flushes. */
761 flush |= (*func)(mm, virt_to_page(pgd), PT_PGD);
763 return flush;
766 static int xen_pgd_walk(struct mm_struct *mm,
767 int (*func)(struct mm_struct *mm, struct page *,
768 enum pt_level),
769 unsigned long limit)
771 return __xen_pgd_walk(mm, mm->pgd, func, limit);
774 /* If we're using split pte locks, then take the page's lock and
775 return a pointer to it. Otherwise return NULL. */
776 static spinlock_t *xen_pte_lock(struct page *page, struct mm_struct *mm)
778 spinlock_t *ptl = NULL;
780 #if USE_SPLIT_PTLOCKS
781 ptl = __pte_lockptr(page);
782 spin_lock_nest_lock(ptl, &mm->page_table_lock);
783 #endif
785 return ptl;
788 static void xen_pte_unlock(void *v)
790 spinlock_t *ptl = v;
791 spin_unlock(ptl);
794 static void xen_do_pin(unsigned level, unsigned long pfn)
796 struct mmuext_op op;
798 op.cmd = level;
799 op.arg1.mfn = pfn_to_mfn(pfn);
801 xen_extend_mmuext_op(&op);
804 static int xen_pin_page(struct mm_struct *mm, struct page *page,
805 enum pt_level level)
807 unsigned pgfl = TestSetPagePinned(page);
808 int flush;
810 if (pgfl)
811 flush = 0; /* already pinned */
812 else if (PageHighMem(page))
813 /* kmaps need flushing if we found an unpinned
814 highpage */
815 flush = 1;
816 else {
817 void *pt = lowmem_page_address(page);
818 unsigned long pfn = page_to_pfn(page);
819 struct multicall_space mcs = __xen_mc_entry(0);
820 spinlock_t *ptl;
822 flush = 0;
825 * We need to hold the pagetable lock between the time
826 * we make the pagetable RO and when we actually pin
827 * it. If we don't, then other users may come in and
828 * attempt to update the pagetable by writing it,
829 * which will fail because the memory is RO but not
830 * pinned, so Xen won't do the trap'n'emulate.
832 * If we're using split pte locks, we can't hold the
833 * entire pagetable's worth of locks during the
834 * traverse, because we may wrap the preempt count (8
835 * bits). The solution is to mark RO and pin each PTE
836 * page while holding the lock. This means the number
837 * of locks we end up holding is never more than a
838 * batch size (~32 entries, at present).
840 * If we're not using split pte locks, we needn't pin
841 * the PTE pages independently, because we're
842 * protected by the overall pagetable lock.
844 ptl = NULL;
845 if (level == PT_PTE)
846 ptl = xen_pte_lock(page, mm);
848 MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
849 pfn_pte(pfn, PAGE_KERNEL_RO),
850 level == PT_PGD ? UVMF_TLB_FLUSH : 0);
852 if (ptl) {
853 xen_do_pin(MMUEXT_PIN_L1_TABLE, pfn);
855 /* Queue a deferred unlock for when this batch
856 is completed. */
857 xen_mc_callback(xen_pte_unlock, ptl);
861 return flush;
864 /* This is called just after a mm has been created, but it has not
865 been used yet. We need to make sure that its pagetable is all
866 read-only, and can be pinned. */
867 static void __xen_pgd_pin(struct mm_struct *mm, pgd_t *pgd)
869 trace_xen_mmu_pgd_pin(mm, pgd);
871 xen_mc_batch();
873 if (__xen_pgd_walk(mm, pgd, xen_pin_page, USER_LIMIT)) {
874 /* re-enable interrupts for flushing */
875 xen_mc_issue(0);
877 kmap_flush_unused();
879 xen_mc_batch();
882 #ifdef CONFIG_X86_64
884 pgd_t *user_pgd = xen_get_user_pgd(pgd);
886 xen_do_pin(MMUEXT_PIN_L4_TABLE, PFN_DOWN(__pa(pgd)));
888 if (user_pgd) {
889 xen_pin_page(mm, virt_to_page(user_pgd), PT_PGD);
890 xen_do_pin(MMUEXT_PIN_L4_TABLE,
891 PFN_DOWN(__pa(user_pgd)));
894 #else /* CONFIG_X86_32 */
895 #ifdef CONFIG_X86_PAE
896 /* Need to make sure unshared kernel PMD is pinnable */
897 xen_pin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]),
898 PT_PMD);
899 #endif
900 xen_do_pin(MMUEXT_PIN_L3_TABLE, PFN_DOWN(__pa(pgd)));
901 #endif /* CONFIG_X86_64 */
902 xen_mc_issue(0);
905 static void xen_pgd_pin(struct mm_struct *mm)
907 __xen_pgd_pin(mm, mm->pgd);
911 * On save, we need to pin all pagetables to make sure they get their
912 * mfns turned into pfns. Search the list for any unpinned pgds and pin
913 * them (unpinned pgds are not currently in use, probably because the
914 * process is under construction or destruction).
916 * Expected to be called in stop_machine() ("equivalent to taking
917 * every spinlock in the system"), so the locking doesn't really
918 * matter all that much.
920 void xen_mm_pin_all(void)
922 struct page *page;
924 spin_lock(&pgd_lock);
926 list_for_each_entry(page, &pgd_list, lru) {
927 if (!PagePinned(page)) {
928 __xen_pgd_pin(&init_mm, (pgd_t *)page_address(page));
929 SetPageSavePinned(page);
933 spin_unlock(&pgd_lock);
937 * The init_mm pagetable is really pinned as soon as its created, but
938 * that's before we have page structures to store the bits. So do all
939 * the book-keeping now.
941 static int __init xen_mark_pinned(struct mm_struct *mm, struct page *page,
942 enum pt_level level)
944 SetPagePinned(page);
945 return 0;
948 static void __init xen_mark_init_mm_pinned(void)
950 xen_pgd_walk(&init_mm, xen_mark_pinned, FIXADDR_TOP);
953 static int xen_unpin_page(struct mm_struct *mm, struct page *page,
954 enum pt_level level)
956 unsigned pgfl = TestClearPagePinned(page);
958 if (pgfl && !PageHighMem(page)) {
959 void *pt = lowmem_page_address(page);
960 unsigned long pfn = page_to_pfn(page);
961 spinlock_t *ptl = NULL;
962 struct multicall_space mcs;
965 * Do the converse to pin_page. If we're using split
966 * pte locks, we must be holding the lock for while
967 * the pte page is unpinned but still RO to prevent
968 * concurrent updates from seeing it in this
969 * partially-pinned state.
971 if (level == PT_PTE) {
972 ptl = xen_pte_lock(page, mm);
974 if (ptl)
975 xen_do_pin(MMUEXT_UNPIN_TABLE, pfn);
978 mcs = __xen_mc_entry(0);
980 MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
981 pfn_pte(pfn, PAGE_KERNEL),
982 level == PT_PGD ? UVMF_TLB_FLUSH : 0);
984 if (ptl) {
985 /* unlock when batch completed */
986 xen_mc_callback(xen_pte_unlock, ptl);
990 return 0; /* never need to flush on unpin */
993 /* Release a pagetables pages back as normal RW */
994 static void __xen_pgd_unpin(struct mm_struct *mm, pgd_t *pgd)
996 trace_xen_mmu_pgd_unpin(mm, pgd);
998 xen_mc_batch();
1000 xen_do_pin(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1002 #ifdef CONFIG_X86_64
1004 pgd_t *user_pgd = xen_get_user_pgd(pgd);
1006 if (user_pgd) {
1007 xen_do_pin(MMUEXT_UNPIN_TABLE,
1008 PFN_DOWN(__pa(user_pgd)));
1009 xen_unpin_page(mm, virt_to_page(user_pgd), PT_PGD);
1012 #endif
1014 #ifdef CONFIG_X86_PAE
1015 /* Need to make sure unshared kernel PMD is unpinned */
1016 xen_unpin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]),
1017 PT_PMD);
1018 #endif
1020 __xen_pgd_walk(mm, pgd, xen_unpin_page, USER_LIMIT);
1022 xen_mc_issue(0);
1025 static void xen_pgd_unpin(struct mm_struct *mm)
1027 __xen_pgd_unpin(mm, mm->pgd);
1031 * On resume, undo any pinning done at save, so that the rest of the
1032 * kernel doesn't see any unexpected pinned pagetables.
1034 void xen_mm_unpin_all(void)
1036 struct page *page;
1038 spin_lock(&pgd_lock);
1040 list_for_each_entry(page, &pgd_list, lru) {
1041 if (PageSavePinned(page)) {
1042 BUG_ON(!PagePinned(page));
1043 __xen_pgd_unpin(&init_mm, (pgd_t *)page_address(page));
1044 ClearPageSavePinned(page);
1048 spin_unlock(&pgd_lock);
1051 static void xen_activate_mm(struct mm_struct *prev, struct mm_struct *next)
1053 spin_lock(&next->page_table_lock);
1054 xen_pgd_pin(next);
1055 spin_unlock(&next->page_table_lock);
1058 static void xen_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm)
1060 spin_lock(&mm->page_table_lock);
1061 xen_pgd_pin(mm);
1062 spin_unlock(&mm->page_table_lock);
1066 #ifdef CONFIG_SMP
1067 /* Another cpu may still have their %cr3 pointing at the pagetable, so
1068 we need to repoint it somewhere else before we can unpin it. */
1069 static void drop_other_mm_ref(void *info)
1071 struct mm_struct *mm = info;
1072 struct mm_struct *active_mm;
1074 active_mm = percpu_read(cpu_tlbstate.active_mm);
1076 if (active_mm == mm && percpu_read(cpu_tlbstate.state) != TLBSTATE_OK)
1077 leave_mm(smp_processor_id());
1079 /* If this cpu still has a stale cr3 reference, then make sure
1080 it has been flushed. */
1081 if (percpu_read(xen_current_cr3) == __pa(mm->pgd))
1082 load_cr3(swapper_pg_dir);
1085 static void xen_drop_mm_ref(struct mm_struct *mm)
1087 cpumask_var_t mask;
1088 unsigned cpu;
1090 if (current->active_mm == mm) {
1091 if (current->mm == mm)
1092 load_cr3(swapper_pg_dir);
1093 else
1094 leave_mm(smp_processor_id());
1097 /* Get the "official" set of cpus referring to our pagetable. */
1098 if (!alloc_cpumask_var(&mask, GFP_ATOMIC)) {
1099 for_each_online_cpu(cpu) {
1100 if (!cpumask_test_cpu(cpu, mm_cpumask(mm))
1101 && per_cpu(xen_current_cr3, cpu) != __pa(mm->pgd))
1102 continue;
1103 smp_call_function_single(cpu, drop_other_mm_ref, mm, 1);
1105 return;
1107 cpumask_copy(mask, mm_cpumask(mm));
1109 /* It's possible that a vcpu may have a stale reference to our
1110 cr3, because its in lazy mode, and it hasn't yet flushed
1111 its set of pending hypercalls yet. In this case, we can
1112 look at its actual current cr3 value, and force it to flush
1113 if needed. */
1114 for_each_online_cpu(cpu) {
1115 if (per_cpu(xen_current_cr3, cpu) == __pa(mm->pgd))
1116 cpumask_set_cpu(cpu, mask);
1119 if (!cpumask_empty(mask))
1120 smp_call_function_many(mask, drop_other_mm_ref, mm, 1);
1121 free_cpumask_var(mask);
1123 #else
1124 static void xen_drop_mm_ref(struct mm_struct *mm)
1126 if (current->active_mm == mm)
1127 load_cr3(swapper_pg_dir);
1129 #endif
1132 * While a process runs, Xen pins its pagetables, which means that the
1133 * hypervisor forces it to be read-only, and it controls all updates
1134 * to it. This means that all pagetable updates have to go via the
1135 * hypervisor, which is moderately expensive.
1137 * Since we're pulling the pagetable down, we switch to use init_mm,
1138 * unpin old process pagetable and mark it all read-write, which
1139 * allows further operations on it to be simple memory accesses.
1141 * The only subtle point is that another CPU may be still using the
1142 * pagetable because of lazy tlb flushing. This means we need need to
1143 * switch all CPUs off this pagetable before we can unpin it.
1145 static void xen_exit_mmap(struct mm_struct *mm)
1147 get_cpu(); /* make sure we don't move around */
1148 xen_drop_mm_ref(mm);
1149 put_cpu();
1151 spin_lock(&mm->page_table_lock);
1153 /* pgd may not be pinned in the error exit path of execve */
1154 if (xen_page_pinned(mm->pgd))
1155 xen_pgd_unpin(mm);
1157 spin_unlock(&mm->page_table_lock);
1160 static void __init xen_pagetable_setup_start(pgd_t *base)
1164 static void xen_post_allocator_init(void);
1166 static void __init xen_pagetable_setup_done(pgd_t *base)
1168 xen_setup_shared_info();
1169 xen_post_allocator_init();
1172 static void xen_write_cr2(unsigned long cr2)
1174 percpu_read(xen_vcpu)->arch.cr2 = cr2;
1177 static unsigned long xen_read_cr2(void)
1179 return percpu_read(xen_vcpu)->arch.cr2;
1182 unsigned long xen_read_cr2_direct(void)
1184 return percpu_read(xen_vcpu_info.arch.cr2);
1187 static void xen_flush_tlb(void)
1189 struct mmuext_op *op;
1190 struct multicall_space mcs;
1192 trace_xen_mmu_flush_tlb(0);
1194 preempt_disable();
1196 mcs = xen_mc_entry(sizeof(*op));
1198 op = mcs.args;
1199 op->cmd = MMUEXT_TLB_FLUSH_LOCAL;
1200 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1202 xen_mc_issue(PARAVIRT_LAZY_MMU);
1204 preempt_enable();
1207 static void xen_flush_tlb_single(unsigned long addr)
1209 struct mmuext_op *op;
1210 struct multicall_space mcs;
1212 trace_xen_mmu_flush_tlb_single(addr);
1214 preempt_disable();
1216 mcs = xen_mc_entry(sizeof(*op));
1217 op = mcs.args;
1218 op->cmd = MMUEXT_INVLPG_LOCAL;
1219 op->arg1.linear_addr = addr & PAGE_MASK;
1220 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1222 xen_mc_issue(PARAVIRT_LAZY_MMU);
1224 preempt_enable();
1227 static void xen_flush_tlb_others(const struct cpumask *cpus,
1228 struct mm_struct *mm, unsigned long va)
1230 struct {
1231 struct mmuext_op op;
1232 #ifdef CONFIG_SMP
1233 DECLARE_BITMAP(mask, num_processors);
1234 #else
1235 DECLARE_BITMAP(mask, NR_CPUS);
1236 #endif
1237 } *args;
1238 struct multicall_space mcs;
1240 trace_xen_mmu_flush_tlb_others(cpus, mm, va);
1242 if (cpumask_empty(cpus))
1243 return; /* nothing to do */
1245 mcs = xen_mc_entry(sizeof(*args));
1246 args = mcs.args;
1247 args->op.arg2.vcpumask = to_cpumask(args->mask);
1249 /* Remove us, and any offline CPUS. */
1250 cpumask_and(to_cpumask(args->mask), cpus, cpu_online_mask);
1251 cpumask_clear_cpu(smp_processor_id(), to_cpumask(args->mask));
1253 if (va == TLB_FLUSH_ALL) {
1254 args->op.cmd = MMUEXT_TLB_FLUSH_MULTI;
1255 } else {
1256 args->op.cmd = MMUEXT_INVLPG_MULTI;
1257 args->op.arg1.linear_addr = va;
1260 MULTI_mmuext_op(mcs.mc, &args->op, 1, NULL, DOMID_SELF);
1262 xen_mc_issue(PARAVIRT_LAZY_MMU);
1265 static unsigned long xen_read_cr3(void)
1267 return percpu_read(xen_cr3);
1270 static void set_current_cr3(void *v)
1272 percpu_write(xen_current_cr3, (unsigned long)v);
1275 static void __xen_write_cr3(bool kernel, unsigned long cr3)
1277 struct mmuext_op op;
1278 unsigned long mfn;
1280 trace_xen_mmu_write_cr3(kernel, cr3);
1282 if (cr3)
1283 mfn = pfn_to_mfn(PFN_DOWN(cr3));
1284 else
1285 mfn = 0;
1287 WARN_ON(mfn == 0 && kernel);
1289 op.cmd = kernel ? MMUEXT_NEW_BASEPTR : MMUEXT_NEW_USER_BASEPTR;
1290 op.arg1.mfn = mfn;
1292 xen_extend_mmuext_op(&op);
1294 if (kernel) {
1295 percpu_write(xen_cr3, cr3);
1297 /* Update xen_current_cr3 once the batch has actually
1298 been submitted. */
1299 xen_mc_callback(set_current_cr3, (void *)cr3);
1303 static void xen_write_cr3(unsigned long cr3)
1305 BUG_ON(preemptible());
1307 xen_mc_batch(); /* disables interrupts */
1309 /* Update while interrupts are disabled, so its atomic with
1310 respect to ipis */
1311 percpu_write(xen_cr3, cr3);
1313 __xen_write_cr3(true, cr3);
1315 #ifdef CONFIG_X86_64
1317 pgd_t *user_pgd = xen_get_user_pgd(__va(cr3));
1318 if (user_pgd)
1319 __xen_write_cr3(false, __pa(user_pgd));
1320 else
1321 __xen_write_cr3(false, 0);
1323 #endif
1325 xen_mc_issue(PARAVIRT_LAZY_CPU); /* interrupts restored */
1328 static int xen_pgd_alloc(struct mm_struct *mm)
1330 pgd_t *pgd = mm->pgd;
1331 int ret = 0;
1333 BUG_ON(PagePinned(virt_to_page(pgd)));
1335 #ifdef CONFIG_X86_64
1337 struct page *page = virt_to_page(pgd);
1338 pgd_t *user_pgd;
1340 BUG_ON(page->private != 0);
1342 ret = -ENOMEM;
1344 user_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
1345 page->private = (unsigned long)user_pgd;
1347 if (user_pgd != NULL) {
1348 user_pgd[pgd_index(VSYSCALL_START)] =
1349 __pgd(__pa(level3_user_vsyscall) | _PAGE_TABLE);
1350 ret = 0;
1353 BUG_ON(PagePinned(virt_to_page(xen_get_user_pgd(pgd))));
1355 #endif
1357 return ret;
1360 static void xen_pgd_free(struct mm_struct *mm, pgd_t *pgd)
1362 #ifdef CONFIG_X86_64
1363 pgd_t *user_pgd = xen_get_user_pgd(pgd);
1365 if (user_pgd)
1366 free_page((unsigned long)user_pgd);
1367 #endif
1370 #ifdef CONFIG_X86_32
1371 static pte_t __init mask_rw_pte(pte_t *ptep, pte_t pte)
1373 /* If there's an existing pte, then don't allow _PAGE_RW to be set */
1374 if (pte_val_ma(*ptep) & _PAGE_PRESENT)
1375 pte = __pte_ma(((pte_val_ma(*ptep) & _PAGE_RW) | ~_PAGE_RW) &
1376 pte_val_ma(pte));
1378 return pte;
1380 #else /* CONFIG_X86_64 */
1381 static pte_t __init mask_rw_pte(pte_t *ptep, pte_t pte)
1383 unsigned long pfn = pte_pfn(pte);
1386 * If the new pfn is within the range of the newly allocated
1387 * kernel pagetable, and it isn't being mapped into an
1388 * early_ioremap fixmap slot as a freshly allocated page, make sure
1389 * it is RO.
1391 if (((!is_early_ioremap_ptep(ptep) &&
1392 pfn >= pgt_buf_start && pfn < pgt_buf_top)) ||
1393 (is_early_ioremap_ptep(ptep) && pfn != (pgt_buf_end - 1)))
1394 pte = pte_wrprotect(pte);
1396 return pte;
1398 #endif /* CONFIG_X86_64 */
1400 /* Init-time set_pte while constructing initial pagetables, which
1401 doesn't allow RO pagetable pages to be remapped RW */
1402 static void __init xen_set_pte_init(pte_t *ptep, pte_t pte)
1404 pte = mask_rw_pte(ptep, pte);
1406 xen_set_pte(ptep, pte);
1409 static void pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
1411 struct mmuext_op op;
1412 op.cmd = cmd;
1413 op.arg1.mfn = pfn_to_mfn(pfn);
1414 if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF))
1415 BUG();
1418 /* Early in boot, while setting up the initial pagetable, assume
1419 everything is pinned. */
1420 static void __init xen_alloc_pte_init(struct mm_struct *mm, unsigned long pfn)
1422 #ifdef CONFIG_FLATMEM
1423 BUG_ON(mem_map); /* should only be used early */
1424 #endif
1425 make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
1426 pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
1429 /* Used for pmd and pud */
1430 static void __init xen_alloc_pmd_init(struct mm_struct *mm, unsigned long pfn)
1432 #ifdef CONFIG_FLATMEM
1433 BUG_ON(mem_map); /* should only be used early */
1434 #endif
1435 make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
1438 /* Early release_pte assumes that all pts are pinned, since there's
1439 only init_mm and anything attached to that is pinned. */
1440 static void __init xen_release_pte_init(unsigned long pfn)
1442 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
1443 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1446 static void __init xen_release_pmd_init(unsigned long pfn)
1448 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1451 static inline void __pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
1453 struct multicall_space mcs;
1454 struct mmuext_op *op;
1456 mcs = __xen_mc_entry(sizeof(*op));
1457 op = mcs.args;
1458 op->cmd = cmd;
1459 op->arg1.mfn = pfn_to_mfn(pfn);
1461 MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
1464 static inline void __set_pfn_prot(unsigned long pfn, pgprot_t prot)
1466 struct multicall_space mcs;
1467 unsigned long addr = (unsigned long)__va(pfn << PAGE_SHIFT);
1469 mcs = __xen_mc_entry(0);
1470 MULTI_update_va_mapping(mcs.mc, (unsigned long)addr,
1471 pfn_pte(pfn, prot), 0);
1474 /* This needs to make sure the new pte page is pinned iff its being
1475 attached to a pinned pagetable. */
1476 static inline void xen_alloc_ptpage(struct mm_struct *mm, unsigned long pfn,
1477 unsigned level)
1479 bool pinned = PagePinned(virt_to_page(mm->pgd));
1481 trace_xen_mmu_alloc_ptpage(mm, pfn, level, pinned);
1483 if (pinned) {
1484 struct page *page = pfn_to_page(pfn);
1486 SetPagePinned(page);
1488 if (!PageHighMem(page)) {
1489 xen_mc_batch();
1491 __set_pfn_prot(pfn, PAGE_KERNEL_RO);
1493 if (level == PT_PTE && USE_SPLIT_PTLOCKS)
1494 __pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
1496 xen_mc_issue(PARAVIRT_LAZY_MMU);
1497 } else {
1498 /* make sure there are no stray mappings of
1499 this page */
1500 kmap_flush_unused();
1505 static void xen_alloc_pte(struct mm_struct *mm, unsigned long pfn)
1507 xen_alloc_ptpage(mm, pfn, PT_PTE);
1510 static void xen_alloc_pmd(struct mm_struct *mm, unsigned long pfn)
1512 xen_alloc_ptpage(mm, pfn, PT_PMD);
1515 /* This should never happen until we're OK to use struct page */
1516 static inline void xen_release_ptpage(unsigned long pfn, unsigned level)
1518 struct page *page = pfn_to_page(pfn);
1519 bool pinned = PagePinned(page);
1521 trace_xen_mmu_release_ptpage(pfn, level, pinned);
1523 if (pinned) {
1524 if (!PageHighMem(page)) {
1525 xen_mc_batch();
1527 if (level == PT_PTE && USE_SPLIT_PTLOCKS)
1528 __pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
1530 __set_pfn_prot(pfn, PAGE_KERNEL);
1532 xen_mc_issue(PARAVIRT_LAZY_MMU);
1534 ClearPagePinned(page);
1538 static void xen_release_pte(unsigned long pfn)
1540 xen_release_ptpage(pfn, PT_PTE);
1543 static void xen_release_pmd(unsigned long pfn)
1545 xen_release_ptpage(pfn, PT_PMD);
1548 #if PAGETABLE_LEVELS == 4
1549 static void xen_alloc_pud(struct mm_struct *mm, unsigned long pfn)
1551 xen_alloc_ptpage(mm, pfn, PT_PUD);
1554 static void xen_release_pud(unsigned long pfn)
1556 xen_release_ptpage(pfn, PT_PUD);
1558 #endif
1560 void __init xen_reserve_top(void)
1562 #ifdef CONFIG_X86_32
1563 unsigned long top = HYPERVISOR_VIRT_START;
1564 struct xen_platform_parameters pp;
1566 if (HYPERVISOR_xen_version(XENVER_platform_parameters, &pp) == 0)
1567 top = pp.virt_start;
1569 reserve_top_address(-top);
1570 #endif /* CONFIG_X86_32 */
1574 * Like __va(), but returns address in the kernel mapping (which is
1575 * all we have until the physical memory mapping has been set up.
1577 static void *__ka(phys_addr_t paddr)
1579 #ifdef CONFIG_X86_64
1580 return (void *)(paddr + __START_KERNEL_map);
1581 #else
1582 return __va(paddr);
1583 #endif
1586 /* Convert a machine address to physical address */
1587 static unsigned long m2p(phys_addr_t maddr)
1589 phys_addr_t paddr;
1591 maddr &= PTE_PFN_MASK;
1592 paddr = mfn_to_pfn(maddr >> PAGE_SHIFT) << PAGE_SHIFT;
1594 return paddr;
1597 /* Convert a machine address to kernel virtual */
1598 static void *m2v(phys_addr_t maddr)
1600 return __ka(m2p(maddr));
1603 /* Set the page permissions on an identity-mapped pages */
1604 static void set_page_prot(void *addr, pgprot_t prot)
1606 unsigned long pfn = __pa(addr) >> PAGE_SHIFT;
1607 pte_t pte = pfn_pte(pfn, prot);
1609 if (HYPERVISOR_update_va_mapping((unsigned long)addr, pte, 0))
1610 BUG();
1613 static void __init xen_map_identity_early(pmd_t *pmd, unsigned long max_pfn)
1615 unsigned pmdidx, pteidx;
1616 unsigned ident_pte;
1617 unsigned long pfn;
1619 level1_ident_pgt = extend_brk(sizeof(pte_t) * LEVEL1_IDENT_ENTRIES,
1620 PAGE_SIZE);
1622 ident_pte = 0;
1623 pfn = 0;
1624 for (pmdidx = 0; pmdidx < PTRS_PER_PMD && pfn < max_pfn; pmdidx++) {
1625 pte_t *pte_page;
1627 /* Reuse or allocate a page of ptes */
1628 if (pmd_present(pmd[pmdidx]))
1629 pte_page = m2v(pmd[pmdidx].pmd);
1630 else {
1631 /* Check for free pte pages */
1632 if (ident_pte == LEVEL1_IDENT_ENTRIES)
1633 break;
1635 pte_page = &level1_ident_pgt[ident_pte];
1636 ident_pte += PTRS_PER_PTE;
1638 pmd[pmdidx] = __pmd(__pa(pte_page) | _PAGE_TABLE);
1641 /* Install mappings */
1642 for (pteidx = 0; pteidx < PTRS_PER_PTE; pteidx++, pfn++) {
1643 pte_t pte;
1645 #ifdef CONFIG_X86_32
1646 if (pfn > max_pfn_mapped)
1647 max_pfn_mapped = pfn;
1648 #endif
1650 if (!pte_none(pte_page[pteidx]))
1651 continue;
1653 pte = pfn_pte(pfn, PAGE_KERNEL_EXEC);
1654 pte_page[pteidx] = pte;
1658 for (pteidx = 0; pteidx < ident_pte; pteidx += PTRS_PER_PTE)
1659 set_page_prot(&level1_ident_pgt[pteidx], PAGE_KERNEL_RO);
1661 set_page_prot(pmd, PAGE_KERNEL_RO);
1664 void __init xen_setup_machphys_mapping(void)
1666 struct xen_machphys_mapping mapping;
1668 if (HYPERVISOR_memory_op(XENMEM_machphys_mapping, &mapping) == 0) {
1669 machine_to_phys_mapping = (unsigned long *)mapping.v_start;
1670 machine_to_phys_nr = mapping.max_mfn + 1;
1671 } else {
1672 machine_to_phys_nr = MACH2PHYS_NR_ENTRIES;
1674 #ifdef CONFIG_X86_32
1675 if ((machine_to_phys_mapping + machine_to_phys_nr)
1676 < machine_to_phys_mapping)
1677 machine_to_phys_nr = (unsigned long *)NULL
1678 - machine_to_phys_mapping;
1679 #endif
1682 #ifdef CONFIG_X86_64
1683 static void convert_pfn_mfn(void *v)
1685 pte_t *pte = v;
1686 int i;
1688 /* All levels are converted the same way, so just treat them
1689 as ptes. */
1690 for (i = 0; i < PTRS_PER_PTE; i++)
1691 pte[i] = xen_make_pte(pte[i].pte);
1695 * Set up the initial kernel pagetable.
1697 * We can construct this by grafting the Xen provided pagetable into
1698 * head_64.S's preconstructed pagetables. We copy the Xen L2's into
1699 * level2_ident_pgt, level2_kernel_pgt and level2_fixmap_pgt. This
1700 * means that only the kernel has a physical mapping to start with -
1701 * but that's enough to get __va working. We need to fill in the rest
1702 * of the physical mapping once some sort of allocator has been set
1703 * up.
1705 pgd_t * __init xen_setup_kernel_pagetable(pgd_t *pgd,
1706 unsigned long max_pfn)
1708 pud_t *l3;
1709 pmd_t *l2;
1711 /* max_pfn_mapped is the last pfn mapped in the initial memory
1712 * mappings. Considering that on Xen after the kernel mappings we
1713 * have the mappings of some pages that don't exist in pfn space, we
1714 * set max_pfn_mapped to the last real pfn mapped. */
1715 max_pfn_mapped = PFN_DOWN(__pa(xen_start_info->mfn_list));
1717 /* Zap identity mapping */
1718 init_level4_pgt[0] = __pgd(0);
1720 /* Pre-constructed entries are in pfn, so convert to mfn */
1721 convert_pfn_mfn(init_level4_pgt);
1722 convert_pfn_mfn(level3_ident_pgt);
1723 convert_pfn_mfn(level3_kernel_pgt);
1725 l3 = m2v(pgd[pgd_index(__START_KERNEL_map)].pgd);
1726 l2 = m2v(l3[pud_index(__START_KERNEL_map)].pud);
1728 memcpy(level2_ident_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);
1729 memcpy(level2_kernel_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);
1731 l3 = m2v(pgd[pgd_index(__START_KERNEL_map + PMD_SIZE)].pgd);
1732 l2 = m2v(l3[pud_index(__START_KERNEL_map + PMD_SIZE)].pud);
1733 memcpy(level2_fixmap_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);
1735 /* Set up identity map */
1736 xen_map_identity_early(level2_ident_pgt, max_pfn);
1738 /* Make pagetable pieces RO */
1739 set_page_prot(init_level4_pgt, PAGE_KERNEL_RO);
1740 set_page_prot(level3_ident_pgt, PAGE_KERNEL_RO);
1741 set_page_prot(level3_kernel_pgt, PAGE_KERNEL_RO);
1742 set_page_prot(level3_user_vsyscall, PAGE_KERNEL_RO);
1743 set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO);
1744 set_page_prot(level2_fixmap_pgt, PAGE_KERNEL_RO);
1746 /* Pin down new L4 */
1747 pin_pagetable_pfn(MMUEXT_PIN_L4_TABLE,
1748 PFN_DOWN(__pa_symbol(init_level4_pgt)));
1750 /* Unpin Xen-provided one */
1751 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1753 /* Switch over */
1754 pgd = init_level4_pgt;
1757 * At this stage there can be no user pgd, and no page
1758 * structure to attach it to, so make sure we just set kernel
1759 * pgd.
1761 xen_mc_batch();
1762 __xen_write_cr3(true, __pa(pgd));
1763 xen_mc_issue(PARAVIRT_LAZY_CPU);
1765 memblock_x86_reserve_range(__pa(xen_start_info->pt_base),
1766 __pa(xen_start_info->pt_base +
1767 xen_start_info->nr_pt_frames * PAGE_SIZE),
1768 "XEN PAGETABLES");
1770 return pgd;
1772 #else /* !CONFIG_X86_64 */
1773 static RESERVE_BRK_ARRAY(pmd_t, initial_kernel_pmd, PTRS_PER_PMD);
1774 static RESERVE_BRK_ARRAY(pmd_t, swapper_kernel_pmd, PTRS_PER_PMD);
1776 static void __init xen_write_cr3_init(unsigned long cr3)
1778 unsigned long pfn = PFN_DOWN(__pa(swapper_pg_dir));
1780 BUG_ON(read_cr3() != __pa(initial_page_table));
1781 BUG_ON(cr3 != __pa(swapper_pg_dir));
1784 * We are switching to swapper_pg_dir for the first time (from
1785 * initial_page_table) and therefore need to mark that page
1786 * read-only and then pin it.
1788 * Xen disallows sharing of kernel PMDs for PAE
1789 * guests. Therefore we must copy the kernel PMD from
1790 * initial_page_table into a new kernel PMD to be used in
1791 * swapper_pg_dir.
1793 swapper_kernel_pmd =
1794 extend_brk(sizeof(pmd_t) * PTRS_PER_PMD, PAGE_SIZE);
1795 memcpy(swapper_kernel_pmd, initial_kernel_pmd,
1796 sizeof(pmd_t) * PTRS_PER_PMD);
1797 swapper_pg_dir[KERNEL_PGD_BOUNDARY] =
1798 __pgd(__pa(swapper_kernel_pmd) | _PAGE_PRESENT);
1799 set_page_prot(swapper_kernel_pmd, PAGE_KERNEL_RO);
1801 set_page_prot(swapper_pg_dir, PAGE_KERNEL_RO);
1802 xen_write_cr3(cr3);
1803 pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, pfn);
1805 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE,
1806 PFN_DOWN(__pa(initial_page_table)));
1807 set_page_prot(initial_page_table, PAGE_KERNEL);
1808 set_page_prot(initial_kernel_pmd, PAGE_KERNEL);
1810 pv_mmu_ops.write_cr3 = &xen_write_cr3;
1813 pgd_t * __init xen_setup_kernel_pagetable(pgd_t *pgd,
1814 unsigned long max_pfn)
1816 pmd_t *kernel_pmd;
1818 initial_kernel_pmd =
1819 extend_brk(sizeof(pmd_t) * PTRS_PER_PMD, PAGE_SIZE);
1821 max_pfn_mapped = PFN_DOWN(__pa(xen_start_info->pt_base) +
1822 xen_start_info->nr_pt_frames * PAGE_SIZE +
1823 512*1024);
1825 kernel_pmd = m2v(pgd[KERNEL_PGD_BOUNDARY].pgd);
1826 memcpy(initial_kernel_pmd, kernel_pmd, sizeof(pmd_t) * PTRS_PER_PMD);
1828 xen_map_identity_early(initial_kernel_pmd, max_pfn);
1830 memcpy(initial_page_table, pgd, sizeof(pgd_t) * PTRS_PER_PGD);
1831 initial_page_table[KERNEL_PGD_BOUNDARY] =
1832 __pgd(__pa(initial_kernel_pmd) | _PAGE_PRESENT);
1834 set_page_prot(initial_kernel_pmd, PAGE_KERNEL_RO);
1835 set_page_prot(initial_page_table, PAGE_KERNEL_RO);
1836 set_page_prot(empty_zero_page, PAGE_KERNEL_RO);
1838 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1840 pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE,
1841 PFN_DOWN(__pa(initial_page_table)));
1842 xen_write_cr3(__pa(initial_page_table));
1844 memblock_x86_reserve_range(__pa(xen_start_info->pt_base),
1845 __pa(xen_start_info->pt_base +
1846 xen_start_info->nr_pt_frames * PAGE_SIZE),
1847 "XEN PAGETABLES");
1849 return initial_page_table;
1851 #endif /* CONFIG_X86_64 */
1853 static unsigned char dummy_mapping[PAGE_SIZE] __page_aligned_bss;
1855 static void xen_set_fixmap(unsigned idx, phys_addr_t phys, pgprot_t prot)
1857 pte_t pte;
1859 phys >>= PAGE_SHIFT;
1861 switch (idx) {
1862 case FIX_BTMAP_END ... FIX_BTMAP_BEGIN:
1863 #ifdef CONFIG_X86_F00F_BUG
1864 case FIX_F00F_IDT:
1865 #endif
1866 #ifdef CONFIG_X86_32
1867 case FIX_WP_TEST:
1868 case FIX_VDSO:
1869 # ifdef CONFIG_HIGHMEM
1870 case FIX_KMAP_BEGIN ... FIX_KMAP_END:
1871 # endif
1872 #else
1873 case VSYSCALL_LAST_PAGE ... VSYSCALL_FIRST_PAGE:
1874 case VVAR_PAGE:
1875 #endif
1876 case FIX_TEXT_POKE0:
1877 case FIX_TEXT_POKE1:
1878 /* All local page mappings */
1879 pte = pfn_pte(phys, prot);
1880 break;
1882 #ifdef CONFIG_X86_LOCAL_APIC
1883 case FIX_APIC_BASE: /* maps dummy local APIC */
1884 pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL);
1885 break;
1886 #endif
1888 #ifdef CONFIG_X86_IO_APIC
1889 case FIX_IO_APIC_BASE_0 ... FIX_IO_APIC_BASE_END:
1891 * We just don't map the IO APIC - all access is via
1892 * hypercalls. Keep the address in the pte for reference.
1894 pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL);
1895 break;
1896 #endif
1898 case FIX_PARAVIRT_BOOTMAP:
1899 /* This is an MFN, but it isn't an IO mapping from the
1900 IO domain */
1901 pte = mfn_pte(phys, prot);
1902 break;
1904 default:
1905 /* By default, set_fixmap is used for hardware mappings */
1906 pte = mfn_pte(phys, __pgprot(pgprot_val(prot) | _PAGE_IOMAP));
1907 break;
1910 __native_set_fixmap(idx, pte);
1912 #ifdef CONFIG_X86_64
1913 /* Replicate changes to map the vsyscall page into the user
1914 pagetable vsyscall mapping. */
1915 if ((idx >= VSYSCALL_LAST_PAGE && idx <= VSYSCALL_FIRST_PAGE) ||
1916 idx == VVAR_PAGE) {
1917 unsigned long vaddr = __fix_to_virt(idx);
1918 set_pte_vaddr_pud(level3_user_vsyscall, vaddr, pte);
1920 #endif
1923 void __init xen_ident_map_ISA(void)
1925 unsigned long pa;
1928 * If we're dom0, then linear map the ISA machine addresses into
1929 * the kernel's address space.
1931 if (!xen_initial_domain())
1932 return;
1934 xen_raw_printk("Xen: setup ISA identity maps\n");
1936 for (pa = ISA_START_ADDRESS; pa < ISA_END_ADDRESS; pa += PAGE_SIZE) {
1937 pte_t pte = mfn_pte(PFN_DOWN(pa), PAGE_KERNEL_IO);
1939 if (HYPERVISOR_update_va_mapping(PAGE_OFFSET + pa, pte, 0))
1940 BUG();
1943 xen_flush_tlb();
1946 static void __init xen_post_allocator_init(void)
1948 pv_mmu_ops.set_pte = xen_set_pte;
1949 pv_mmu_ops.set_pmd = xen_set_pmd;
1950 pv_mmu_ops.set_pud = xen_set_pud;
1951 #if PAGETABLE_LEVELS == 4
1952 pv_mmu_ops.set_pgd = xen_set_pgd;
1953 #endif
1955 /* This will work as long as patching hasn't happened yet
1956 (which it hasn't) */
1957 pv_mmu_ops.alloc_pte = xen_alloc_pte;
1958 pv_mmu_ops.alloc_pmd = xen_alloc_pmd;
1959 pv_mmu_ops.release_pte = xen_release_pte;
1960 pv_mmu_ops.release_pmd = xen_release_pmd;
1961 #if PAGETABLE_LEVELS == 4
1962 pv_mmu_ops.alloc_pud = xen_alloc_pud;
1963 pv_mmu_ops.release_pud = xen_release_pud;
1964 #endif
1966 #ifdef CONFIG_X86_64
1967 SetPagePinned(virt_to_page(level3_user_vsyscall));
1968 #endif
1969 xen_mark_init_mm_pinned();
1972 static void xen_leave_lazy_mmu(void)
1974 preempt_disable();
1975 xen_mc_flush();
1976 paravirt_leave_lazy_mmu();
1977 preempt_enable();
1980 static const struct pv_mmu_ops xen_mmu_ops __initconst = {
1981 .read_cr2 = xen_read_cr2,
1982 .write_cr2 = xen_write_cr2,
1984 .read_cr3 = xen_read_cr3,
1985 #ifdef CONFIG_X86_32
1986 .write_cr3 = xen_write_cr3_init,
1987 #else
1988 .write_cr3 = xen_write_cr3,
1989 #endif
1991 .flush_tlb_user = xen_flush_tlb,
1992 .flush_tlb_kernel = xen_flush_tlb,
1993 .flush_tlb_single = xen_flush_tlb_single,
1994 .flush_tlb_others = xen_flush_tlb_others,
1996 .pte_update = paravirt_nop,
1997 .pte_update_defer = paravirt_nop,
1999 .pgd_alloc = xen_pgd_alloc,
2000 .pgd_free = xen_pgd_free,
2002 .alloc_pte = xen_alloc_pte_init,
2003 .release_pte = xen_release_pte_init,
2004 .alloc_pmd = xen_alloc_pmd_init,
2005 .release_pmd = xen_release_pmd_init,
2007 .set_pte = xen_set_pte_init,
2008 .set_pte_at = xen_set_pte_at,
2009 .set_pmd = xen_set_pmd_hyper,
2011 .ptep_modify_prot_start = __ptep_modify_prot_start,
2012 .ptep_modify_prot_commit = __ptep_modify_prot_commit,
2014 .pte_val = PV_CALLEE_SAVE(xen_pte_val),
2015 .pgd_val = PV_CALLEE_SAVE(xen_pgd_val),
2017 .make_pte = PV_CALLEE_SAVE(xen_make_pte),
2018 .make_pgd = PV_CALLEE_SAVE(xen_make_pgd),
2020 #ifdef CONFIG_X86_PAE
2021 .set_pte_atomic = xen_set_pte_atomic,
2022 .pte_clear = xen_pte_clear,
2023 .pmd_clear = xen_pmd_clear,
2024 #endif /* CONFIG_X86_PAE */
2025 .set_pud = xen_set_pud_hyper,
2027 .make_pmd = PV_CALLEE_SAVE(xen_make_pmd),
2028 .pmd_val = PV_CALLEE_SAVE(xen_pmd_val),
2030 #if PAGETABLE_LEVELS == 4
2031 .pud_val = PV_CALLEE_SAVE(xen_pud_val),
2032 .make_pud = PV_CALLEE_SAVE(xen_make_pud),
2033 .set_pgd = xen_set_pgd_hyper,
2035 .alloc_pud = xen_alloc_pmd_init,
2036 .release_pud = xen_release_pmd_init,
2037 #endif /* PAGETABLE_LEVELS == 4 */
2039 .activate_mm = xen_activate_mm,
2040 .dup_mmap = xen_dup_mmap,
2041 .exit_mmap = xen_exit_mmap,
2043 .lazy_mode = {
2044 .enter = paravirt_enter_lazy_mmu,
2045 .leave = xen_leave_lazy_mmu,
2048 .set_fixmap = xen_set_fixmap,
2051 void __init xen_init_mmu_ops(void)
2053 x86_init.paging.pagetable_setup_start = xen_pagetable_setup_start;
2054 x86_init.paging.pagetable_setup_done = xen_pagetable_setup_done;
2055 pv_mmu_ops = xen_mmu_ops;
2057 memset(dummy_mapping, 0xff, PAGE_SIZE);
2060 /* Protected by xen_reservation_lock. */
2061 #define MAX_CONTIG_ORDER 9 /* 2MB */
2062 static unsigned long discontig_frames[1<<MAX_CONTIG_ORDER];
2064 #define VOID_PTE (mfn_pte(0, __pgprot(0)))
2065 static void xen_zap_pfn_range(unsigned long vaddr, unsigned int order,
2066 unsigned long *in_frames,
2067 unsigned long *out_frames)
2069 int i;
2070 struct multicall_space mcs;
2072 xen_mc_batch();
2073 for (i = 0; i < (1UL<<order); i++, vaddr += PAGE_SIZE) {
2074 mcs = __xen_mc_entry(0);
2076 if (in_frames)
2077 in_frames[i] = virt_to_mfn(vaddr);
2079 MULTI_update_va_mapping(mcs.mc, vaddr, VOID_PTE, 0);
2080 __set_phys_to_machine(virt_to_pfn(vaddr), INVALID_P2M_ENTRY);
2082 if (out_frames)
2083 out_frames[i] = virt_to_pfn(vaddr);
2085 xen_mc_issue(0);
2089 * Update the pfn-to-mfn mappings for a virtual address range, either to
2090 * point to an array of mfns, or contiguously from a single starting
2091 * mfn.
2093 static void xen_remap_exchanged_ptes(unsigned long vaddr, int order,
2094 unsigned long *mfns,
2095 unsigned long first_mfn)
2097 unsigned i, limit;
2098 unsigned long mfn;
2100 xen_mc_batch();
2102 limit = 1u << order;
2103 for (i = 0; i < limit; i++, vaddr += PAGE_SIZE) {
2104 struct multicall_space mcs;
2105 unsigned flags;
2107 mcs = __xen_mc_entry(0);
2108 if (mfns)
2109 mfn = mfns[i];
2110 else
2111 mfn = first_mfn + i;
2113 if (i < (limit - 1))
2114 flags = 0;
2115 else {
2116 if (order == 0)
2117 flags = UVMF_INVLPG | UVMF_ALL;
2118 else
2119 flags = UVMF_TLB_FLUSH | UVMF_ALL;
2122 MULTI_update_va_mapping(mcs.mc, vaddr,
2123 mfn_pte(mfn, PAGE_KERNEL), flags);
2125 set_phys_to_machine(virt_to_pfn(vaddr), mfn);
2128 xen_mc_issue(0);
2132 * Perform the hypercall to exchange a region of our pfns to point to
2133 * memory with the required contiguous alignment. Takes the pfns as
2134 * input, and populates mfns as output.
2136 * Returns a success code indicating whether the hypervisor was able to
2137 * satisfy the request or not.
2139 static int xen_exchange_memory(unsigned long extents_in, unsigned int order_in,
2140 unsigned long *pfns_in,
2141 unsigned long extents_out,
2142 unsigned int order_out,
2143 unsigned long *mfns_out,
2144 unsigned int address_bits)
2146 long rc;
2147 int success;
2149 struct xen_memory_exchange exchange = {
2150 .in = {
2151 .nr_extents = extents_in,
2152 .extent_order = order_in,
2153 .extent_start = pfns_in,
2154 .domid = DOMID_SELF
2156 .out = {
2157 .nr_extents = extents_out,
2158 .extent_order = order_out,
2159 .extent_start = mfns_out,
2160 .address_bits = address_bits,
2161 .domid = DOMID_SELF
2165 BUG_ON(extents_in << order_in != extents_out << order_out);
2167 rc = HYPERVISOR_memory_op(XENMEM_exchange, &exchange);
2168 success = (exchange.nr_exchanged == extents_in);
2170 BUG_ON(!success && ((exchange.nr_exchanged != 0) || (rc == 0)));
2171 BUG_ON(success && (rc != 0));
2173 return success;
2176 int xen_create_contiguous_region(unsigned long vstart, unsigned int order,
2177 unsigned int address_bits)
2179 unsigned long *in_frames = discontig_frames, out_frame;
2180 unsigned long flags;
2181 int success;
2184 * Currently an auto-translated guest will not perform I/O, nor will
2185 * it require PAE page directories below 4GB. Therefore any calls to
2186 * this function are redundant and can be ignored.
2189 if (xen_feature(XENFEAT_auto_translated_physmap))
2190 return 0;
2192 if (unlikely(order > MAX_CONTIG_ORDER))
2193 return -ENOMEM;
2195 memset((void *) vstart, 0, PAGE_SIZE << order);
2197 spin_lock_irqsave(&xen_reservation_lock, flags);
2199 /* 1. Zap current PTEs, remembering MFNs. */
2200 xen_zap_pfn_range(vstart, order, in_frames, NULL);
2202 /* 2. Get a new contiguous memory extent. */
2203 out_frame = virt_to_pfn(vstart);
2204 success = xen_exchange_memory(1UL << order, 0, in_frames,
2205 1, order, &out_frame,
2206 address_bits);
2208 /* 3. Map the new extent in place of old pages. */
2209 if (success)
2210 xen_remap_exchanged_ptes(vstart, order, NULL, out_frame);
2211 else
2212 xen_remap_exchanged_ptes(vstart, order, in_frames, 0);
2214 spin_unlock_irqrestore(&xen_reservation_lock, flags);
2216 return success ? 0 : -ENOMEM;
2218 EXPORT_SYMBOL_GPL(xen_create_contiguous_region);
2220 void xen_destroy_contiguous_region(unsigned long vstart, unsigned int order)
2222 unsigned long *out_frames = discontig_frames, in_frame;
2223 unsigned long flags;
2224 int success;
2226 if (xen_feature(XENFEAT_auto_translated_physmap))
2227 return;
2229 if (unlikely(order > MAX_CONTIG_ORDER))
2230 return;
2232 memset((void *) vstart, 0, PAGE_SIZE << order);
2234 spin_lock_irqsave(&xen_reservation_lock, flags);
2236 /* 1. Find start MFN of contiguous extent. */
2237 in_frame = virt_to_mfn(vstart);
2239 /* 2. Zap current PTEs. */
2240 xen_zap_pfn_range(vstart, order, NULL, out_frames);
2242 /* 3. Do the exchange for non-contiguous MFNs. */
2243 success = xen_exchange_memory(1, order, &in_frame, 1UL << order,
2244 0, out_frames, 0);
2246 /* 4. Map new pages in place of old pages. */
2247 if (success)
2248 xen_remap_exchanged_ptes(vstart, order, out_frames, 0);
2249 else
2250 xen_remap_exchanged_ptes(vstart, order, NULL, in_frame);
2252 spin_unlock_irqrestore(&xen_reservation_lock, flags);
2254 EXPORT_SYMBOL_GPL(xen_destroy_contiguous_region);
2256 #ifdef CONFIG_XEN_PVHVM
2257 static void xen_hvm_exit_mmap(struct mm_struct *mm)
2259 struct xen_hvm_pagetable_dying a;
2260 int rc;
2262 a.domid = DOMID_SELF;
2263 a.gpa = __pa(mm->pgd);
2264 rc = HYPERVISOR_hvm_op(HVMOP_pagetable_dying, &a);
2265 WARN_ON_ONCE(rc < 0);
2268 static int is_pagetable_dying_supported(void)
2270 struct xen_hvm_pagetable_dying a;
2271 int rc = 0;
2273 a.domid = DOMID_SELF;
2274 a.gpa = 0x00;
2275 rc = HYPERVISOR_hvm_op(HVMOP_pagetable_dying, &a);
2276 if (rc < 0) {
2277 printk(KERN_DEBUG "HVMOP_pagetable_dying not supported\n");
2278 return 0;
2280 return 1;
2283 void __init xen_hvm_init_mmu_ops(void)
2285 if (is_pagetable_dying_supported())
2286 pv_mmu_ops.exit_mmap = xen_hvm_exit_mmap;
2288 #endif
2290 #define REMAP_BATCH_SIZE 16
2292 struct remap_data {
2293 unsigned long mfn;
2294 pgprot_t prot;
2295 struct mmu_update *mmu_update;
2298 static int remap_area_mfn_pte_fn(pte_t *ptep, pgtable_t token,
2299 unsigned long addr, void *data)
2301 struct remap_data *rmd = data;
2302 pte_t pte = pte_mkspecial(pfn_pte(rmd->mfn++, rmd->prot));
2304 rmd->mmu_update->ptr = virt_to_machine(ptep).maddr;
2305 rmd->mmu_update->val = pte_val_ma(pte);
2306 rmd->mmu_update++;
2308 return 0;
2311 int xen_remap_domain_mfn_range(struct vm_area_struct *vma,
2312 unsigned long addr,
2313 unsigned long mfn, int nr,
2314 pgprot_t prot, unsigned domid)
2316 struct remap_data rmd;
2317 struct mmu_update mmu_update[REMAP_BATCH_SIZE];
2318 int batch;
2319 unsigned long range;
2320 int err = 0;
2322 prot = __pgprot(pgprot_val(prot) | _PAGE_IOMAP);
2324 BUG_ON(!((vma->vm_flags & (VM_PFNMAP | VM_RESERVED | VM_IO)) ==
2325 (VM_PFNMAP | VM_RESERVED | VM_IO)));
2327 rmd.mfn = mfn;
2328 rmd.prot = prot;
2330 while (nr) {
2331 batch = min(REMAP_BATCH_SIZE, nr);
2332 range = (unsigned long)batch << PAGE_SHIFT;
2334 rmd.mmu_update = mmu_update;
2335 err = apply_to_page_range(vma->vm_mm, addr, range,
2336 remap_area_mfn_pte_fn, &rmd);
2337 if (err)
2338 goto out;
2340 err = -EFAULT;
2341 if (HYPERVISOR_mmu_update(mmu_update, batch, NULL, domid) < 0)
2342 goto out;
2344 nr -= batch;
2345 addr += range;
2348 err = 0;
2349 out:
2351 flush_tlb_all();
2353 return err;
2355 EXPORT_SYMBOL_GPL(xen_remap_domain_mfn_range);
2357 #ifdef CONFIG_XEN_DEBUG_FS
2358 static int p2m_dump_open(struct inode *inode, struct file *filp)
2360 return single_open(filp, p2m_dump_show, NULL);
2363 static const struct file_operations p2m_dump_fops = {
2364 .open = p2m_dump_open,
2365 .read = seq_read,
2366 .llseek = seq_lseek,
2367 .release = single_release,
2369 #endif /* CONFIG_XEN_DEBUG_FS */