2 * Intel & MS High Precision Event Timer Implementation.
4 * Copyright (C) 2003 Intel Corporation
6 * (c) Copyright 2004 Hewlett-Packard Development Company, L.P.
7 * Bob Picco <robert.picco@hp.com>
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
14 #include <linux/interrupt.h>
15 #include <linux/module.h>
16 #include <linux/kernel.h>
17 #include <linux/types.h>
18 #include <linux/miscdevice.h>
19 #include <linux/major.h>
20 #include <linux/ioport.h>
21 #include <linux/fcntl.h>
22 #include <linux/init.h>
23 #include <linux/poll.h>
25 #include <linux/proc_fs.h>
26 #include <linux/spinlock.h>
27 #include <linux/sysctl.h>
28 #include <linux/wait.h>
29 #include <linux/bcd.h>
30 #include <linux/seq_file.h>
31 #include <linux/bitops.h>
32 #include <linux/compat.h>
33 #include <linux/clocksource.h>
34 #include <linux/uaccess.h>
35 #include <linux/slab.h>
38 #include <asm/current.h>
39 #include <asm/system.h>
41 #include <asm/div64.h>
43 #include <linux/acpi.h>
44 #include <acpi/acpi_bus.h>
45 #include <linux/hpet.h>
48 * The High Precision Event Timer driver.
49 * This driver is closely modelled after the rtc.c driver.
50 * http://www.intel.com/hardwaredesign/hpetspec_1.pdf
52 #define HPET_USER_FREQ (64)
53 #define HPET_DRIFT (500)
55 #define HPET_RANGE_SIZE 1024 /* from HPET spec */
58 /* WARNING -- don't get confused. These macros are never used
59 * to write the (single) counter, and rarely to read it.
60 * They're badly named; to fix, someday.
62 #if BITS_PER_LONG == 64
63 #define write_counter(V, MC) writeq(V, MC)
64 #define read_counter(MC) readq(MC)
66 #define write_counter(V, MC) writel(V, MC)
67 #define read_counter(MC) readl(MC)
70 static DEFINE_MUTEX(hpet_mutex
); /* replaces BKL */
71 static u32 hpet_nhpet
, hpet_max_freq
= HPET_USER_FREQ
;
73 /* This clocksource driver currently only works on ia64 */
75 static void __iomem
*hpet_mctr
;
77 static cycle_t
read_hpet(struct clocksource
*cs
)
79 return (cycle_t
)read_counter((void __iomem
*)hpet_mctr
);
82 static struct clocksource clocksource_hpet
= {
86 .mask
= CLOCKSOURCE_MASK(64),
87 .flags
= CLOCK_SOURCE_IS_CONTINUOUS
,
89 static struct clocksource
*hpet_clocksource
;
92 /* A lock for concurrent access by app and isr hpet activity. */
93 static DEFINE_SPINLOCK(hpet_lock
);
95 #define HPET_DEV_NAME (7)
98 struct hpets
*hd_hpets
;
99 struct hpet __iomem
*hd_hpet
;
100 struct hpet_timer __iomem
*hd_timer
;
101 unsigned long hd_ireqfreq
;
102 unsigned long hd_irqdata
;
103 wait_queue_head_t hd_waitqueue
;
104 struct fasync_struct
*hd_async_queue
;
105 unsigned int hd_flags
;
107 unsigned int hd_hdwirq
;
108 char hd_name
[HPET_DEV_NAME
];
112 struct hpets
*hp_next
;
113 struct hpet __iomem
*hp_hpet
;
114 unsigned long hp_hpet_phys
;
115 struct clocksource
*hp_clocksource
;
116 unsigned long long hp_tick_freq
;
117 unsigned long hp_delta
;
118 unsigned int hp_ntimer
;
119 unsigned int hp_which
;
120 struct hpet_dev hp_dev
[1];
123 static struct hpets
*hpets
;
125 #define HPET_OPEN 0x0001
126 #define HPET_IE 0x0002 /* interrupt enabled */
127 #define HPET_PERIODIC 0x0004
128 #define HPET_SHARED_IRQ 0x0008
132 static inline unsigned long long readq(void __iomem
*addr
)
134 return readl(addr
) | (((unsigned long long)readl(addr
+ 4)) << 32LL);
139 static inline void writeq(unsigned long long v
, void __iomem
*addr
)
141 writel(v
& 0xffffffff, addr
);
142 writel(v
>> 32, addr
+ 4);
146 static irqreturn_t
hpet_interrupt(int irq
, void *data
)
148 struct hpet_dev
*devp
;
152 isr
= 1 << (devp
- devp
->hd_hpets
->hp_dev
);
154 if ((devp
->hd_flags
& HPET_SHARED_IRQ
) &&
155 !(isr
& readl(&devp
->hd_hpet
->hpet_isr
)))
158 spin_lock(&hpet_lock
);
162 * For non-periodic timers, increment the accumulator.
163 * This has the effect of treating non-periodic like periodic.
165 if ((devp
->hd_flags
& (HPET_IE
| HPET_PERIODIC
)) == HPET_IE
) {
166 unsigned long m
, t
, mc
, base
, k
;
167 struct hpet __iomem
*hpet
= devp
->hd_hpet
;
168 struct hpets
*hpetp
= devp
->hd_hpets
;
170 t
= devp
->hd_ireqfreq
;
171 m
= read_counter(&devp
->hd_timer
->hpet_compare
);
172 mc
= read_counter(&hpet
->hpet_mc
);
173 /* The time for the next interrupt would logically be t + m,
174 * however, if we are very unlucky and the interrupt is delayed
175 * for longer than t then we will completely miss the next
176 * interrupt if we set t + m and an application will hang.
177 * Therefore we need to make a more complex computation assuming
178 * that there exists a k for which the following is true:
179 * k * t + base < mc + delta
180 * (k + 1) * t + base > mc + delta
181 * where t is the interval in hpet ticks for the given freq,
182 * base is the theoretical start value 0 < base < t,
183 * mc is the main counter value at the time of the interrupt,
184 * delta is the time it takes to write the a value to the
186 * k may then be computed as (mc - base + delta) / t .
189 k
= (mc
- base
+ hpetp
->hp_delta
) / t
;
190 write_counter(t
* (k
+ 1) + base
,
191 &devp
->hd_timer
->hpet_compare
);
194 if (devp
->hd_flags
& HPET_SHARED_IRQ
)
195 writel(isr
, &devp
->hd_hpet
->hpet_isr
);
196 spin_unlock(&hpet_lock
);
198 wake_up_interruptible(&devp
->hd_waitqueue
);
200 kill_fasync(&devp
->hd_async_queue
, SIGIO
, POLL_IN
);
205 static void hpet_timer_set_irq(struct hpet_dev
*devp
)
209 struct hpet_timer __iomem
*timer
;
211 spin_lock_irq(&hpet_lock
);
212 if (devp
->hd_hdwirq
) {
213 spin_unlock_irq(&hpet_lock
);
217 timer
= devp
->hd_timer
;
219 /* we prefer level triggered mode */
220 v
= readl(&timer
->hpet_config
);
221 if (!(v
& Tn_INT_TYPE_CNF_MASK
)) {
222 v
|= Tn_INT_TYPE_CNF_MASK
;
223 writel(v
, &timer
->hpet_config
);
225 spin_unlock_irq(&hpet_lock
);
227 v
= (readq(&timer
->hpet_config
) & Tn_INT_ROUTE_CAP_MASK
) >>
228 Tn_INT_ROUTE_CAP_SHIFT
;
231 * In PIC mode, skip IRQ0-4, IRQ6-9, IRQ12-15 which is always used by
232 * legacy device. In IO APIC mode, we skip all the legacy IRQS.
234 if (acpi_irq_model
== ACPI_IRQ_MODEL_PIC
)
239 for_each_set_bit(irq
, &v
, HPET_MAX_IRQ
) {
240 if (irq
>= nr_irqs
) {
245 gsi
= acpi_register_gsi(NULL
, irq
, ACPI_LEVEL_SENSITIVE
,
250 /* FIXME: Setup interrupt source table */
253 if (irq
< HPET_MAX_IRQ
) {
254 spin_lock_irq(&hpet_lock
);
255 v
= readl(&timer
->hpet_config
);
256 v
|= irq
<< Tn_INT_ROUTE_CNF_SHIFT
;
257 writel(v
, &timer
->hpet_config
);
258 devp
->hd_hdwirq
= gsi
;
259 spin_unlock_irq(&hpet_lock
);
264 static int hpet_open(struct inode
*inode
, struct file
*file
)
268 if (file
->f_mode
& FMODE_WRITE
)
272 /* starting with timer-neutral instance */
273 file
->private_data
= &hpetp
->hp_dev
[hpetp
->hp_ntimer
];
278 static int hpet_alloc_timer(struct file
*file
)
280 struct hpet_dev
*devp
;
284 /* once acquired, will remain */
285 devp
= file
->private_data
;
289 mutex_lock(&hpet_mutex
);
290 spin_lock_irq(&hpet_lock
);
292 /* check for race acquiring */
293 devp
= file
->private_data
;
294 if (devp
->hd_timer
) {
295 spin_unlock_irq(&hpet_lock
);
296 mutex_unlock(&hpet_mutex
);
300 for (devp
= NULL
, hpetp
= hpets
; hpetp
&& !devp
; hpetp
= hpetp
->hp_next
)
301 for (i
= 0; i
< hpetp
->hp_ntimer
; i
++)
302 if (hpetp
->hp_dev
[i
].hd_flags
& HPET_OPEN
)
305 devp
= &hpetp
->hp_dev
[i
];
310 spin_unlock_irq(&hpet_lock
);
311 mutex_unlock(&hpet_mutex
);
315 file
->private_data
= devp
;
316 devp
->hd_irqdata
= 0;
317 devp
->hd_flags
|= HPET_OPEN
;
318 spin_unlock_irq(&hpet_lock
);
319 mutex_unlock(&hpet_mutex
);
321 hpet_timer_set_irq(devp
);
327 hpet_read(struct file
*file
, char __user
*buf
, size_t count
, loff_t
* ppos
)
329 DECLARE_WAITQUEUE(wait
, current
);
332 struct hpet_dev
*devp
;
334 devp
= file
->private_data
;
335 if (!devp
->hd_ireqfreq
)
338 if (count
< sizeof(unsigned long))
341 add_wait_queue(&devp
->hd_waitqueue
, &wait
);
344 set_current_state(TASK_INTERRUPTIBLE
);
346 spin_lock_irq(&hpet_lock
);
347 data
= devp
->hd_irqdata
;
348 devp
->hd_irqdata
= 0;
349 spin_unlock_irq(&hpet_lock
);
353 else if (file
->f_flags
& O_NONBLOCK
) {
356 } else if (signal_pending(current
)) {
357 retval
= -ERESTARTSYS
;
363 retval
= put_user(data
, (unsigned long __user
*)buf
);
365 retval
= sizeof(unsigned long);
367 __set_current_state(TASK_RUNNING
);
368 remove_wait_queue(&devp
->hd_waitqueue
, &wait
);
373 static unsigned int hpet_poll(struct file
*file
, poll_table
* wait
)
376 struct hpet_dev
*devp
;
378 devp
= file
->private_data
;
380 if (!devp
->hd_ireqfreq
)
383 poll_wait(file
, &devp
->hd_waitqueue
, wait
);
385 spin_lock_irq(&hpet_lock
);
386 v
= devp
->hd_irqdata
;
387 spin_unlock_irq(&hpet_lock
);
390 return POLLIN
| POLLRDNORM
;
395 static int hpet_mmap(struct file
*file
, struct vm_area_struct
*vma
)
397 #ifdef CONFIG_HPET_MMAP
398 struct hpet_dev
*devp
;
401 if (((vma
->vm_end
- vma
->vm_start
) != PAGE_SIZE
) || vma
->vm_pgoff
)
404 devp
= file
->private_data
;
405 addr
= devp
->hd_hpets
->hp_hpet_phys
;
407 if (addr
& (PAGE_SIZE
- 1))
410 vma
->vm_flags
|= VM_IO
;
411 vma
->vm_page_prot
= pgprot_noncached(vma
->vm_page_prot
);
413 if (io_remap_pfn_range(vma
, vma
->vm_start
, addr
>> PAGE_SHIFT
,
414 PAGE_SIZE
, vma
->vm_page_prot
)) {
415 printk(KERN_ERR
"%s: io_remap_pfn_range failed\n",
426 static int hpet_fasync(int fd
, struct file
*file
, int on
)
428 struct hpet_dev
*devp
;
431 r
= hpet_alloc_timer(file
);
435 devp
= file
->private_data
;
437 if (fasync_helper(fd
, file
, on
, &devp
->hd_async_queue
) >= 0)
443 static int hpet_release(struct inode
*inode
, struct file
*file
)
445 struct hpet_dev
*devp
;
446 struct hpet_timer __iomem
*timer
;
449 devp
= file
->private_data
;
450 timer
= devp
->hd_timer
;
455 spin_lock_irq(&hpet_lock
);
457 writeq((readq(&timer
->hpet_config
) & ~Tn_INT_ENB_CNF_MASK
),
458 &timer
->hpet_config
);
463 devp
->hd_ireqfreq
= 0;
465 if (devp
->hd_flags
& HPET_PERIODIC
466 && readq(&timer
->hpet_config
) & Tn_TYPE_CNF_MASK
) {
469 v
= readq(&timer
->hpet_config
);
470 v
^= Tn_TYPE_CNF_MASK
;
471 writeq(v
, &timer
->hpet_config
);
474 devp
->hd_flags
&= ~(HPET_OPEN
| HPET_IE
| HPET_PERIODIC
);
475 spin_unlock_irq(&hpet_lock
);
480 file
->private_data
= NULL
;
484 static int hpet_ioctl_ieon(struct hpet_dev
*devp
)
486 struct hpet_timer __iomem
*timer
;
487 struct hpet __iomem
*hpet
;
490 unsigned long g
, v
, t
, m
;
491 unsigned long flags
, isr
;
493 timer
= devp
->hd_timer
;
494 hpet
= devp
->hd_hpet
;
495 hpetp
= devp
->hd_hpets
;
497 if (!devp
->hd_ireqfreq
)
500 spin_lock_irq(&hpet_lock
);
502 if (devp
->hd_flags
& HPET_IE
) {
503 spin_unlock_irq(&hpet_lock
);
507 devp
->hd_flags
|= HPET_IE
;
509 if (readl(&timer
->hpet_config
) & Tn_INT_TYPE_CNF_MASK
)
510 devp
->hd_flags
|= HPET_SHARED_IRQ
;
511 spin_unlock_irq(&hpet_lock
);
513 irq
= devp
->hd_hdwirq
;
516 unsigned long irq_flags
;
518 if (devp
->hd_flags
& HPET_SHARED_IRQ
) {
520 * To prevent the interrupt handler from seeing an
521 * unwanted interrupt status bit, program the timer
522 * so that it will not fire in the near future ...
524 writel(readl(&timer
->hpet_config
) & ~Tn_TYPE_CNF_MASK
,
525 &timer
->hpet_config
);
526 write_counter(read_counter(&hpet
->hpet_mc
),
527 &timer
->hpet_compare
);
528 /* ... and clear any left-over status. */
529 isr
= 1 << (devp
- devp
->hd_hpets
->hp_dev
);
530 writel(isr
, &hpet
->hpet_isr
);
533 sprintf(devp
->hd_name
, "hpet%d", (int)(devp
- hpetp
->hp_dev
));
534 irq_flags
= devp
->hd_flags
& HPET_SHARED_IRQ
535 ? IRQF_SHARED
: IRQF_DISABLED
;
536 if (request_irq(irq
, hpet_interrupt
, irq_flags
,
537 devp
->hd_name
, (void *)devp
)) {
538 printk(KERN_ERR
"hpet: IRQ %d is not free\n", irq
);
544 spin_lock_irq(&hpet_lock
);
545 devp
->hd_flags
^= HPET_IE
;
546 spin_unlock_irq(&hpet_lock
);
551 t
= devp
->hd_ireqfreq
;
552 v
= readq(&timer
->hpet_config
);
554 /* 64-bit comparators are not yet supported through the ioctls,
555 * so force this into 32-bit mode if it supports both modes
557 g
= v
| Tn_32MODE_CNF_MASK
| Tn_INT_ENB_CNF_MASK
;
559 if (devp
->hd_flags
& HPET_PERIODIC
) {
560 g
|= Tn_TYPE_CNF_MASK
;
561 v
|= Tn_TYPE_CNF_MASK
| Tn_VAL_SET_CNF_MASK
;
562 writeq(v
, &timer
->hpet_config
);
563 local_irq_save(flags
);
566 * NOTE: First we modify the hidden accumulator
567 * register supported by periodic-capable comparators.
568 * We never want to modify the (single) counter; that
569 * would affect all the comparators. The value written
570 * is the counter value when the first interrupt is due.
572 m
= read_counter(&hpet
->hpet_mc
);
573 write_counter(t
+ m
+ hpetp
->hp_delta
, &timer
->hpet_compare
);
575 * Then we modify the comparator, indicating the period
576 * for subsequent interrupt.
578 write_counter(t
, &timer
->hpet_compare
);
580 local_irq_save(flags
);
581 m
= read_counter(&hpet
->hpet_mc
);
582 write_counter(t
+ m
+ hpetp
->hp_delta
, &timer
->hpet_compare
);
585 if (devp
->hd_flags
& HPET_SHARED_IRQ
) {
586 isr
= 1 << (devp
- devp
->hd_hpets
->hp_dev
);
587 writel(isr
, &hpet
->hpet_isr
);
589 writeq(g
, &timer
->hpet_config
);
590 local_irq_restore(flags
);
595 /* converts Hz to number of timer ticks */
596 static inline unsigned long hpet_time_div(struct hpets
*hpets
,
599 unsigned long long m
;
601 m
= hpets
->hp_tick_freq
+ (dis
>> 1);
603 return (unsigned long)m
;
607 hpet_ioctl_common(struct hpet_dev
*devp
, int cmd
, unsigned long arg
,
608 struct hpet_info
*info
)
610 struct hpet_timer __iomem
*timer
;
611 struct hpet __iomem
*hpet
;
622 timer
= devp
->hd_timer
;
623 hpet
= devp
->hd_hpet
;
624 hpetp
= devp
->hd_hpets
;
627 return hpet_ioctl_ieon(devp
);
628 case HPET_ALLOC_TIMER
:
639 if ((devp
->hd_flags
& HPET_IE
) == 0)
641 v
= readq(&timer
->hpet_config
);
642 v
&= ~Tn_INT_ENB_CNF_MASK
;
643 writeq(v
, &timer
->hpet_config
);
645 free_irq(devp
->hd_irq
, devp
);
648 devp
->hd_flags
^= HPET_IE
;
652 memset(info
, 0, sizeof(*info
));
653 if (devp
->hd_ireqfreq
)
655 hpet_time_div(hpetp
, devp
->hd_ireqfreq
);
657 readq(&timer
->hpet_config
) & Tn_PER_INT_CAP_MASK
;
658 info
->hi_hpet
= hpetp
->hp_which
;
659 info
->hi_timer
= devp
- hpetp
->hp_dev
;
663 v
= readq(&timer
->hpet_config
);
664 if ((v
& Tn_PER_INT_CAP_MASK
) == 0) {
668 devp
->hd_flags
|= HPET_PERIODIC
;
671 v
= readq(&timer
->hpet_config
);
672 if ((v
& Tn_PER_INT_CAP_MASK
) == 0) {
676 if (devp
->hd_flags
& HPET_PERIODIC
&&
677 readq(&timer
->hpet_config
) & Tn_TYPE_CNF_MASK
) {
678 v
= readq(&timer
->hpet_config
);
679 v
^= Tn_TYPE_CNF_MASK
;
680 writeq(v
, &timer
->hpet_config
);
682 devp
->hd_flags
&= ~HPET_PERIODIC
;
685 if ((arg
> hpet_max_freq
) &&
686 !capable(CAP_SYS_RESOURCE
)) {
696 devp
->hd_ireqfreq
= hpet_time_div(hpetp
, arg
);
703 hpet_ioctl(struct file
*file
, unsigned int cmd
, unsigned long arg
)
705 struct hpet_info info
;
708 mutex_lock(&hpet_mutex
);
709 err
= hpet_ioctl_common(file
->private_data
, cmd
, arg
, &info
);
710 mutex_unlock(&hpet_mutex
);
712 if ((cmd
== HPET_INFO
) && !err
&&
713 (copy_to_user((void __user
*)arg
, &info
, sizeof(info
))))
720 struct compat_hpet_info
{
721 compat_ulong_t hi_ireqfreq
; /* Hz */
722 compat_ulong_t hi_flags
; /* information */
723 unsigned short hi_hpet
;
724 unsigned short hi_timer
;
728 hpet_compat_ioctl(struct file
*file
, unsigned int cmd
, unsigned long arg
)
730 struct hpet_info info
;
733 mutex_lock(&hpet_mutex
);
734 err
= hpet_ioctl_common(file
->private_data
, cmd
, arg
, &info
);
735 mutex_unlock(&hpet_mutex
);
737 if ((cmd
== HPET_INFO
) && !err
) {
738 struct compat_hpet_info __user
*u
= compat_ptr(arg
);
739 if (put_user(info
.hi_ireqfreq
, &u
->hi_ireqfreq
) ||
740 put_user(info
.hi_flags
, &u
->hi_flags
) ||
741 put_user(info
.hi_hpet
, &u
->hi_hpet
) ||
742 put_user(info
.hi_timer
, &u
->hi_timer
))
750 static const struct file_operations hpet_fops
= {
751 .owner
= THIS_MODULE
,
755 .unlocked_ioctl
= hpet_ioctl
,
757 .compat_ioctl
= hpet_compat_ioctl
,
760 .release
= hpet_release
,
761 .fasync
= hpet_fasync
,
765 static int hpet_is_known(struct hpet_data
*hdp
)
769 for (hpetp
= hpets
; hpetp
; hpetp
= hpetp
->hp_next
)
770 if (hpetp
->hp_hpet_phys
== hdp
->hd_phys_address
)
776 static ctl_table hpet_table
[] = {
778 .procname
= "max-user-freq",
779 .data
= &hpet_max_freq
,
780 .maxlen
= sizeof(int),
782 .proc_handler
= proc_dointvec
,
787 static ctl_table hpet_root
[] = {
797 static ctl_table dev_root
[] = {
807 static struct ctl_table_header
*sysctl_header
;
810 * Adjustment for when arming the timer with
811 * initial conditions. That is, main counter
812 * ticks expired before interrupts are enabled.
814 #define TICK_CALIBRATE (1000UL)
816 static unsigned long __hpet_calibrate(struct hpets
*hpetp
)
818 struct hpet_timer __iomem
*timer
= NULL
;
819 unsigned long t
, m
, count
, i
, flags
, start
;
820 struct hpet_dev
*devp
;
822 struct hpet __iomem
*hpet
;
824 for (j
= 0, devp
= hpetp
->hp_dev
; j
< hpetp
->hp_ntimer
; j
++, devp
++)
825 if ((devp
->hd_flags
& HPET_OPEN
) == 0) {
826 timer
= devp
->hd_timer
;
833 hpet
= hpetp
->hp_hpet
;
834 t
= read_counter(&timer
->hpet_compare
);
837 count
= hpet_time_div(hpetp
, TICK_CALIBRATE
);
839 local_irq_save(flags
);
841 start
= read_counter(&hpet
->hpet_mc
);
844 m
= read_counter(&hpet
->hpet_mc
);
845 write_counter(t
+ m
+ hpetp
->hp_delta
, &timer
->hpet_compare
);
846 } while (i
++, (m
- start
) < count
);
848 local_irq_restore(flags
);
850 return (m
- start
) / i
;
853 static unsigned long hpet_calibrate(struct hpets
*hpetp
)
855 unsigned long ret
= -1;
859 * Try to calibrate until return value becomes stable small value.
860 * If SMI interruption occurs in calibration loop, the return value
861 * will be big. This avoids its impact.
864 tmp
= __hpet_calibrate(hpetp
);
873 int hpet_alloc(struct hpet_data
*hdp
)
876 struct hpet_dev
*devp
;
880 struct hpet __iomem
*hpet
;
881 static struct hpets
*last
;
882 unsigned long period
;
883 unsigned long long temp
;
887 * hpet_alloc can be called by platform dependent code.
888 * If platform dependent code has allocated the hpet that
889 * ACPI has also reported, then we catch it here.
891 if (hpet_is_known(hdp
)) {
892 printk(KERN_DEBUG
"%s: duplicate HPET ignored\n",
898 * last hpet_dev will have null timer pointer, gives timer-neutral
899 * representation of block
901 siz
= sizeof(struct hpets
) + ((hdp
->hd_nirqs
) *
902 sizeof(struct hpet_dev
));
904 hpetp
= kzalloc(siz
, GFP_KERNEL
);
909 hpetp
->hp_which
= hpet_nhpet
++;
910 hpetp
->hp_hpet
= hdp
->hd_address
;
911 hpetp
->hp_hpet_phys
= hdp
->hd_phys_address
;
913 hpetp
->hp_ntimer
= hdp
->hd_nirqs
;
915 for (i
= 0; i
< hdp
->hd_nirqs
; i
++)
916 hpetp
->hp_dev
[i
].hd_hdwirq
= hdp
->hd_irq
[i
];
918 hpet
= hpetp
->hp_hpet
;
920 cap
= readq(&hpet
->hpet_cap
);
922 ntimer
= ((cap
& HPET_NUM_TIM_CAP_MASK
) >> HPET_NUM_TIM_CAP_SHIFT
) + 1;
924 if (hpetp
->hp_ntimer
!= ntimer
) {
925 printk(KERN_WARNING
"hpet: number irqs doesn't agree"
926 " with number of timers\n");
932 last
->hp_next
= hpetp
;
938 period
= (cap
& HPET_COUNTER_CLK_PERIOD_MASK
) >>
939 HPET_COUNTER_CLK_PERIOD_SHIFT
; /* fs, 10^-15 */
940 temp
= 1000000000000000uLL; /* 10^15 femtoseconds per second */
941 temp
+= period
>> 1; /* round */
942 do_div(temp
, period
);
943 hpetp
->hp_tick_freq
= temp
; /* ticks per second */
945 printk(KERN_INFO
"hpet%d: at MMIO 0x%lx, IRQ%s",
946 hpetp
->hp_which
, hdp
->hd_phys_address
,
947 hpetp
->hp_ntimer
> 1 ? "s" : "");
948 for (i
= 0; i
< hpetp
->hp_ntimer
; i
++)
949 printk("%s %d", i
> 0 ? "," : "", hdp
->hd_irq
[i
]);
952 temp
= hpetp
->hp_tick_freq
;
953 remainder
= do_div(temp
, 1000000);
955 "hpet%u: %u comparators, %d-bit %u.%06u MHz counter\n",
956 hpetp
->hp_which
, hpetp
->hp_ntimer
,
957 cap
& HPET_COUNTER_SIZE_MASK
? 64 : 32,
958 (unsigned) temp
, remainder
);
960 mcfg
= readq(&hpet
->hpet_config
);
961 if ((mcfg
& HPET_ENABLE_CNF_MASK
) == 0) {
962 write_counter(0L, &hpet
->hpet_mc
);
963 mcfg
|= HPET_ENABLE_CNF_MASK
;
964 writeq(mcfg
, &hpet
->hpet_config
);
967 for (i
= 0, devp
= hpetp
->hp_dev
; i
< hpetp
->hp_ntimer
+ 1;
969 struct hpet_timer __iomem
*timer
;
971 devp
->hd_hpets
= hpetp
;
972 devp
->hd_hpet
= hpet
;
973 if (i
== hpetp
->hp_ntimer
)
976 timer
= &hpet
->hpet_timers
[devp
- hpetp
->hp_dev
];
977 devp
->hd_timer
= timer
;
980 * If the timer was reserved by platform code,
981 * then make timer unavailable for opens.
983 if (hdp
->hd_state
& (1 << i
)) {
984 devp
->hd_flags
= HPET_OPEN
;
988 init_waitqueue_head(&devp
->hd_waitqueue
);
991 hpetp
->hp_delta
= hpet_calibrate(hpetp
);
993 /* This clocksource driver currently only works on ia64 */
995 if (!hpet_clocksource
) {
996 hpet_mctr
= (void __iomem
*)&hpetp
->hp_hpet
->hpet_mc
;
997 clocksource_hpet
.archdata
.fsys_mmio
= hpet_mctr
;
998 clocksource_register_hz(&clocksource_hpet
, hpetp
->hp_tick_freq
);
999 hpetp
->hp_clocksource
= &clocksource_hpet
;
1000 hpet_clocksource
= &clocksource_hpet
;
1007 static acpi_status
hpet_resources(struct acpi_resource
*res
, void *data
)
1009 struct hpet_data
*hdp
;
1011 struct acpi_resource_address64 addr
;
1015 status
= acpi_resource_to_address64(res
, &addr
);
1017 if (ACPI_SUCCESS(status
)) {
1018 hdp
->hd_phys_address
= addr
.minimum
;
1019 hdp
->hd_address
= ioremap(addr
.minimum
, addr
.address_length
);
1021 if (hpet_is_known(hdp
)) {
1022 iounmap(hdp
->hd_address
);
1023 return AE_ALREADY_EXISTS
;
1025 } else if (res
->type
== ACPI_RESOURCE_TYPE_FIXED_MEMORY32
) {
1026 struct acpi_resource_fixed_memory32
*fixmem32
;
1028 fixmem32
= &res
->data
.fixed_memory32
;
1030 return AE_NO_MEMORY
;
1032 hdp
->hd_phys_address
= fixmem32
->address
;
1033 hdp
->hd_address
= ioremap(fixmem32
->address
,
1036 if (hpet_is_known(hdp
)) {
1037 iounmap(hdp
->hd_address
);
1038 return AE_ALREADY_EXISTS
;
1040 } else if (res
->type
== ACPI_RESOURCE_TYPE_EXTENDED_IRQ
) {
1041 struct acpi_resource_extended_irq
*irqp
;
1044 irqp
= &res
->data
.extended_irq
;
1046 for (i
= 0; i
< irqp
->interrupt_count
; i
++) {
1047 irq
= acpi_register_gsi(NULL
, irqp
->interrupts
[i
],
1048 irqp
->triggering
, irqp
->polarity
);
1052 hdp
->hd_irq
[hdp
->hd_nirqs
] = irq
;
1060 static int hpet_acpi_add(struct acpi_device
*device
)
1063 struct hpet_data data
;
1065 memset(&data
, 0, sizeof(data
));
1068 acpi_walk_resources(device
->handle
, METHOD_NAME__CRS
,
1069 hpet_resources
, &data
);
1071 if (ACPI_FAILURE(result
))
1074 if (!data
.hd_address
|| !data
.hd_nirqs
) {
1075 if (data
.hd_address
)
1076 iounmap(data
.hd_address
);
1077 printk("%s: no address or irqs in _CRS\n", __func__
);
1081 return hpet_alloc(&data
);
1084 static int hpet_acpi_remove(struct acpi_device
*device
, int type
)
1086 /* XXX need to unregister clocksource, dealloc mem, etc */
1090 static const struct acpi_device_id hpet_device_ids
[] = {
1094 MODULE_DEVICE_TABLE(acpi
, hpet_device_ids
);
1096 static struct acpi_driver hpet_acpi_driver
= {
1098 .ids
= hpet_device_ids
,
1100 .add
= hpet_acpi_add
,
1101 .remove
= hpet_acpi_remove
,
1105 static struct miscdevice hpet_misc
= { HPET_MINOR
, "hpet", &hpet_fops
};
1107 static int __init
hpet_init(void)
1111 result
= misc_register(&hpet_misc
);
1115 sysctl_header
= register_sysctl_table(dev_root
);
1117 result
= acpi_bus_register_driver(&hpet_acpi_driver
);
1120 unregister_sysctl_table(sysctl_header
);
1121 misc_deregister(&hpet_misc
);
1128 static void __exit
hpet_exit(void)
1130 acpi_bus_unregister_driver(&hpet_acpi_driver
);
1133 unregister_sysctl_table(sysctl_header
);
1134 misc_deregister(&hpet_misc
);
1139 module_init(hpet_init
);
1140 module_exit(hpet_exit
);
1141 MODULE_AUTHOR("Bob Picco <Robert.Picco@hp.com>");
1142 MODULE_LICENSE("GPL");