2 * drivers/cpufreq/cpufreq_conservative.c
4 * Copyright (C) 2001 Russell King
5 * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6 * Jun Nakajima <jun.nakajima@intel.com>
7 * (C) 2009 Alexander Clouter <alex@digriz.org.uk>
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/cpufreq.h>
18 #include <linux/cpu.h>
19 #include <linux/jiffies.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/mutex.h>
22 #include <linux/hrtimer.h>
23 #include <linux/tick.h>
24 #include <linux/ktime.h>
25 #include <linux/sched.h>
28 * dbs is used in this file as a shortform for demandbased switching
29 * It helps to keep variable names smaller, simpler
32 #define DEF_FREQUENCY_UP_THRESHOLD (80)
33 #define DEF_FREQUENCY_DOWN_THRESHOLD (20)
36 * The polling frequency of this governor depends on the capability of
37 * the processor. Default polling frequency is 1000 times the transition
38 * latency of the processor. The governor will work on any processor with
39 * transition latency <= 10mS, using appropriate sampling
41 * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
42 * this governor will not work.
43 * All times here are in uS.
45 #define MIN_SAMPLING_RATE_RATIO (2)
47 static unsigned int min_sampling_rate
;
49 #define LATENCY_MULTIPLIER (1000)
50 #define MIN_LATENCY_MULTIPLIER (100)
51 #define DEF_SAMPLING_DOWN_FACTOR (1)
52 #define MAX_SAMPLING_DOWN_FACTOR (10)
53 #define TRANSITION_LATENCY_LIMIT (10 * 1000 * 1000)
55 static void do_dbs_timer(struct work_struct
*work
);
57 struct cpu_dbs_info_s
{
58 cputime64_t prev_cpu_idle
;
59 cputime64_t prev_cpu_wall
;
60 cputime64_t prev_cpu_nice
;
61 struct cpufreq_policy
*cur_policy
;
62 struct delayed_work work
;
63 unsigned int down_skip
;
64 unsigned int requested_freq
;
66 unsigned int enable
:1;
68 * percpu mutex that serializes governor limit change with
69 * do_dbs_timer invocation. We do not want do_dbs_timer to run
70 * when user is changing the governor or limits.
72 struct mutex timer_mutex
;
74 static DEFINE_PER_CPU(struct cpu_dbs_info_s
, cs_cpu_dbs_info
);
76 static unsigned int dbs_enable
; /* number of CPUs using this policy */
79 * dbs_mutex protects dbs_enable in governor start/stop.
81 static DEFINE_MUTEX(dbs_mutex
);
83 static struct dbs_tuners
{
84 unsigned int sampling_rate
;
85 unsigned int sampling_down_factor
;
86 unsigned int up_threshold
;
87 unsigned int down_threshold
;
88 unsigned int ignore_nice
;
89 unsigned int freq_step
;
91 .up_threshold
= DEF_FREQUENCY_UP_THRESHOLD
,
92 .down_threshold
= DEF_FREQUENCY_DOWN_THRESHOLD
,
93 .sampling_down_factor
= DEF_SAMPLING_DOWN_FACTOR
,
98 static inline cputime64_t
get_cpu_idle_time_jiffy(unsigned int cpu
,
101 cputime64_t idle_time
;
102 cputime64_t cur_wall_time
;
103 cputime64_t busy_time
;
105 cur_wall_time
= jiffies64_to_cputime64(get_jiffies_64());
106 busy_time
= cputime64_add(kstat_cpu(cpu
).cpustat
.user
,
107 kstat_cpu(cpu
).cpustat
.system
);
109 busy_time
= cputime64_add(busy_time
, kstat_cpu(cpu
).cpustat
.irq
);
110 busy_time
= cputime64_add(busy_time
, kstat_cpu(cpu
).cpustat
.softirq
);
111 busy_time
= cputime64_add(busy_time
, kstat_cpu(cpu
).cpustat
.steal
);
112 busy_time
= cputime64_add(busy_time
, kstat_cpu(cpu
).cpustat
.nice
);
114 idle_time
= cputime64_sub(cur_wall_time
, busy_time
);
116 *wall
= (cputime64_t
)jiffies_to_usecs(cur_wall_time
);
118 return (cputime64_t
)jiffies_to_usecs(idle_time
);
121 static inline cputime64_t
get_cpu_idle_time(unsigned int cpu
, cputime64_t
*wall
)
123 u64 idle_time
= get_cpu_idle_time_us(cpu
, NULL
);
125 if (idle_time
== -1ULL)
126 return get_cpu_idle_time_jiffy(cpu
, wall
);
128 idle_time
+= get_cpu_iowait_time_us(cpu
, wall
);
133 /* keep track of frequency transitions */
135 dbs_cpufreq_notifier(struct notifier_block
*nb
, unsigned long val
,
138 struct cpufreq_freqs
*freq
= data
;
139 struct cpu_dbs_info_s
*this_dbs_info
= &per_cpu(cs_cpu_dbs_info
,
142 struct cpufreq_policy
*policy
;
144 if (!this_dbs_info
->enable
)
147 policy
= this_dbs_info
->cur_policy
;
150 * we only care if our internally tracked freq moves outside
151 * the 'valid' ranges of freqency available to us otherwise
152 * we do not change it
154 if (this_dbs_info
->requested_freq
> policy
->max
155 || this_dbs_info
->requested_freq
< policy
->min
)
156 this_dbs_info
->requested_freq
= freq
->new;
161 static struct notifier_block dbs_cpufreq_notifier_block
= {
162 .notifier_call
= dbs_cpufreq_notifier
165 /************************** sysfs interface ************************/
166 static ssize_t
show_sampling_rate_min(struct kobject
*kobj
,
167 struct attribute
*attr
, char *buf
)
169 return sprintf(buf
, "%u\n", min_sampling_rate
);
172 define_one_global_ro(sampling_rate_min
);
174 /* cpufreq_conservative Governor Tunables */
175 #define show_one(file_name, object) \
176 static ssize_t show_##file_name \
177 (struct kobject *kobj, struct attribute *attr, char *buf) \
179 return sprintf(buf, "%u\n", dbs_tuners_ins.object); \
181 show_one(sampling_rate
, sampling_rate
);
182 show_one(sampling_down_factor
, sampling_down_factor
);
183 show_one(up_threshold
, up_threshold
);
184 show_one(down_threshold
, down_threshold
);
185 show_one(ignore_nice_load
, ignore_nice
);
186 show_one(freq_step
, freq_step
);
188 static ssize_t
store_sampling_down_factor(struct kobject
*a
,
190 const char *buf
, size_t count
)
194 ret
= sscanf(buf
, "%u", &input
);
196 if (ret
!= 1 || input
> MAX_SAMPLING_DOWN_FACTOR
|| input
< 1)
199 dbs_tuners_ins
.sampling_down_factor
= input
;
203 static ssize_t
store_sampling_rate(struct kobject
*a
, struct attribute
*b
,
204 const char *buf
, size_t count
)
208 ret
= sscanf(buf
, "%u", &input
);
213 dbs_tuners_ins
.sampling_rate
= max(input
, min_sampling_rate
);
217 static ssize_t
store_up_threshold(struct kobject
*a
, struct attribute
*b
,
218 const char *buf
, size_t count
)
222 ret
= sscanf(buf
, "%u", &input
);
224 if (ret
!= 1 || input
> 100 ||
225 input
<= dbs_tuners_ins
.down_threshold
)
228 dbs_tuners_ins
.up_threshold
= input
;
232 static ssize_t
store_down_threshold(struct kobject
*a
, struct attribute
*b
,
233 const char *buf
, size_t count
)
237 ret
= sscanf(buf
, "%u", &input
);
239 /* cannot be lower than 11 otherwise freq will not fall */
240 if (ret
!= 1 || input
< 11 || input
> 100 ||
241 input
>= dbs_tuners_ins
.up_threshold
)
244 dbs_tuners_ins
.down_threshold
= input
;
248 static ssize_t
store_ignore_nice_load(struct kobject
*a
, struct attribute
*b
,
249 const char *buf
, size_t count
)
256 ret
= sscanf(buf
, "%u", &input
);
263 if (input
== dbs_tuners_ins
.ignore_nice
) /* nothing to do */
266 dbs_tuners_ins
.ignore_nice
= input
;
268 /* we need to re-evaluate prev_cpu_idle */
269 for_each_online_cpu(j
) {
270 struct cpu_dbs_info_s
*dbs_info
;
271 dbs_info
= &per_cpu(cs_cpu_dbs_info
, j
);
272 dbs_info
->prev_cpu_idle
= get_cpu_idle_time(j
,
273 &dbs_info
->prev_cpu_wall
);
274 if (dbs_tuners_ins
.ignore_nice
)
275 dbs_info
->prev_cpu_nice
= kstat_cpu(j
).cpustat
.nice
;
280 static ssize_t
store_freq_step(struct kobject
*a
, struct attribute
*b
,
281 const char *buf
, size_t count
)
285 ret
= sscanf(buf
, "%u", &input
);
293 /* no need to test here if freq_step is zero as the user might actually
294 * want this, they would be crazy though :) */
295 dbs_tuners_ins
.freq_step
= input
;
299 define_one_global_rw(sampling_rate
);
300 define_one_global_rw(sampling_down_factor
);
301 define_one_global_rw(up_threshold
);
302 define_one_global_rw(down_threshold
);
303 define_one_global_rw(ignore_nice_load
);
304 define_one_global_rw(freq_step
);
306 static struct attribute
*dbs_attributes
[] = {
307 &sampling_rate_min
.attr
,
309 &sampling_down_factor
.attr
,
311 &down_threshold
.attr
,
312 &ignore_nice_load
.attr
,
317 static struct attribute_group dbs_attr_group
= {
318 .attrs
= dbs_attributes
,
319 .name
= "conservative",
322 /************************** sysfs end ************************/
324 static void dbs_check_cpu(struct cpu_dbs_info_s
*this_dbs_info
)
326 unsigned int load
= 0;
327 unsigned int max_load
= 0;
328 unsigned int freq_target
;
330 struct cpufreq_policy
*policy
;
333 policy
= this_dbs_info
->cur_policy
;
336 * Every sampling_rate, we check, if current idle time is less
337 * than 20% (default), then we try to increase frequency
338 * Every sampling_rate*sampling_down_factor, we check, if current
339 * idle time is more than 80%, then we try to decrease frequency
341 * Any frequency increase takes it to the maximum frequency.
342 * Frequency reduction happens at minimum steps of
343 * 5% (default) of maximum frequency
346 /* Get Absolute Load */
347 for_each_cpu(j
, policy
->cpus
) {
348 struct cpu_dbs_info_s
*j_dbs_info
;
349 cputime64_t cur_wall_time
, cur_idle_time
;
350 unsigned int idle_time
, wall_time
;
352 j_dbs_info
= &per_cpu(cs_cpu_dbs_info
, j
);
354 cur_idle_time
= get_cpu_idle_time(j
, &cur_wall_time
);
356 wall_time
= (unsigned int) cputime64_sub(cur_wall_time
,
357 j_dbs_info
->prev_cpu_wall
);
358 j_dbs_info
->prev_cpu_wall
= cur_wall_time
;
360 idle_time
= (unsigned int) cputime64_sub(cur_idle_time
,
361 j_dbs_info
->prev_cpu_idle
);
362 j_dbs_info
->prev_cpu_idle
= cur_idle_time
;
364 if (dbs_tuners_ins
.ignore_nice
) {
365 cputime64_t cur_nice
;
366 unsigned long cur_nice_jiffies
;
368 cur_nice
= cputime64_sub(kstat_cpu(j
).cpustat
.nice
,
369 j_dbs_info
->prev_cpu_nice
);
371 * Assumption: nice time between sampling periods will
372 * be less than 2^32 jiffies for 32 bit sys
374 cur_nice_jiffies
= (unsigned long)
375 cputime64_to_jiffies64(cur_nice
);
377 j_dbs_info
->prev_cpu_nice
= kstat_cpu(j
).cpustat
.nice
;
378 idle_time
+= jiffies_to_usecs(cur_nice_jiffies
);
381 if (unlikely(!wall_time
|| wall_time
< idle_time
))
384 load
= 100 * (wall_time
- idle_time
) / wall_time
;
391 * break out if we 'cannot' reduce the speed as the user might
392 * want freq_step to be zero
394 if (dbs_tuners_ins
.freq_step
== 0)
397 /* Check for frequency increase */
398 if (max_load
> dbs_tuners_ins
.up_threshold
) {
399 this_dbs_info
->down_skip
= 0;
401 /* if we are already at full speed then break out early */
402 if (this_dbs_info
->requested_freq
== policy
->max
)
405 freq_target
= (dbs_tuners_ins
.freq_step
* policy
->max
) / 100;
407 /* max freq cannot be less than 100. But who knows.... */
408 if (unlikely(freq_target
== 0))
411 this_dbs_info
->requested_freq
+= freq_target
;
412 if (this_dbs_info
->requested_freq
> policy
->max
)
413 this_dbs_info
->requested_freq
= policy
->max
;
415 __cpufreq_driver_target(policy
, this_dbs_info
->requested_freq
,
421 * The optimal frequency is the frequency that is the lowest that
422 * can support the current CPU usage without triggering the up
423 * policy. To be safe, we focus 10 points under the threshold.
425 if (max_load
< (dbs_tuners_ins
.down_threshold
- 10)) {
426 freq_target
= (dbs_tuners_ins
.freq_step
* policy
->max
) / 100;
428 this_dbs_info
->requested_freq
-= freq_target
;
429 if (this_dbs_info
->requested_freq
< policy
->min
)
430 this_dbs_info
->requested_freq
= policy
->min
;
433 * if we cannot reduce the frequency anymore, break out early
435 if (policy
->cur
== policy
->min
)
438 __cpufreq_driver_target(policy
, this_dbs_info
->requested_freq
,
444 static void do_dbs_timer(struct work_struct
*work
)
446 struct cpu_dbs_info_s
*dbs_info
=
447 container_of(work
, struct cpu_dbs_info_s
, work
.work
);
448 unsigned int cpu
= dbs_info
->cpu
;
450 /* We want all CPUs to do sampling nearly on same jiffy */
451 int delay
= usecs_to_jiffies(dbs_tuners_ins
.sampling_rate
);
453 delay
-= jiffies
% delay
;
455 mutex_lock(&dbs_info
->timer_mutex
);
457 dbs_check_cpu(dbs_info
);
459 schedule_delayed_work_on(cpu
, &dbs_info
->work
, delay
);
460 mutex_unlock(&dbs_info
->timer_mutex
);
463 static inline void dbs_timer_init(struct cpu_dbs_info_s
*dbs_info
)
465 /* We want all CPUs to do sampling nearly on same jiffy */
466 int delay
= usecs_to_jiffies(dbs_tuners_ins
.sampling_rate
);
467 delay
-= jiffies
% delay
;
469 dbs_info
->enable
= 1;
470 INIT_DELAYED_WORK_DEFERRABLE(&dbs_info
->work
, do_dbs_timer
);
471 schedule_delayed_work_on(dbs_info
->cpu
, &dbs_info
->work
, delay
);
474 static inline void dbs_timer_exit(struct cpu_dbs_info_s
*dbs_info
)
476 dbs_info
->enable
= 0;
477 cancel_delayed_work_sync(&dbs_info
->work
);
480 static int cpufreq_governor_dbs(struct cpufreq_policy
*policy
,
483 unsigned int cpu
= policy
->cpu
;
484 struct cpu_dbs_info_s
*this_dbs_info
;
488 this_dbs_info
= &per_cpu(cs_cpu_dbs_info
, cpu
);
491 case CPUFREQ_GOV_START
:
492 if ((!cpu_online(cpu
)) || (!policy
->cur
))
495 mutex_lock(&dbs_mutex
);
497 for_each_cpu(j
, policy
->cpus
) {
498 struct cpu_dbs_info_s
*j_dbs_info
;
499 j_dbs_info
= &per_cpu(cs_cpu_dbs_info
, j
);
500 j_dbs_info
->cur_policy
= policy
;
502 j_dbs_info
->prev_cpu_idle
= get_cpu_idle_time(j
,
503 &j_dbs_info
->prev_cpu_wall
);
504 if (dbs_tuners_ins
.ignore_nice
) {
505 j_dbs_info
->prev_cpu_nice
=
506 kstat_cpu(j
).cpustat
.nice
;
509 this_dbs_info
->down_skip
= 0;
510 this_dbs_info
->requested_freq
= policy
->cur
;
512 mutex_init(&this_dbs_info
->timer_mutex
);
515 * Start the timerschedule work, when this governor
516 * is used for first time
518 if (dbs_enable
== 1) {
519 unsigned int latency
;
520 /* policy latency is in nS. Convert it to uS first */
521 latency
= policy
->cpuinfo
.transition_latency
/ 1000;
525 rc
= sysfs_create_group(cpufreq_global_kobject
,
528 mutex_unlock(&dbs_mutex
);
533 * conservative does not implement micro like ondemand
534 * governor, thus we are bound to jiffes/HZ
537 MIN_SAMPLING_RATE_RATIO
* jiffies_to_usecs(10);
538 /* Bring kernel and HW constraints together */
539 min_sampling_rate
= max(min_sampling_rate
,
540 MIN_LATENCY_MULTIPLIER
* latency
);
541 dbs_tuners_ins
.sampling_rate
=
542 max(min_sampling_rate
,
543 latency
* LATENCY_MULTIPLIER
);
545 cpufreq_register_notifier(
546 &dbs_cpufreq_notifier_block
,
547 CPUFREQ_TRANSITION_NOTIFIER
);
549 mutex_unlock(&dbs_mutex
);
551 dbs_timer_init(this_dbs_info
);
555 case CPUFREQ_GOV_STOP
:
556 dbs_timer_exit(this_dbs_info
);
558 mutex_lock(&dbs_mutex
);
560 mutex_destroy(&this_dbs_info
->timer_mutex
);
563 * Stop the timerschedule work, when this governor
564 * is used for first time
567 cpufreq_unregister_notifier(
568 &dbs_cpufreq_notifier_block
,
569 CPUFREQ_TRANSITION_NOTIFIER
);
571 mutex_unlock(&dbs_mutex
);
573 sysfs_remove_group(cpufreq_global_kobject
,
578 case CPUFREQ_GOV_LIMITS
:
579 mutex_lock(&this_dbs_info
->timer_mutex
);
580 if (policy
->max
< this_dbs_info
->cur_policy
->cur
)
581 __cpufreq_driver_target(
582 this_dbs_info
->cur_policy
,
583 policy
->max
, CPUFREQ_RELATION_H
);
584 else if (policy
->min
> this_dbs_info
->cur_policy
->cur
)
585 __cpufreq_driver_target(
586 this_dbs_info
->cur_policy
,
587 policy
->min
, CPUFREQ_RELATION_L
);
588 mutex_unlock(&this_dbs_info
->timer_mutex
);
595 #ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE
598 struct cpufreq_governor cpufreq_gov_conservative
= {
599 .name
= "conservative",
600 .governor
= cpufreq_governor_dbs
,
601 .max_transition_latency
= TRANSITION_LATENCY_LIMIT
,
602 .owner
= THIS_MODULE
,
605 static int __init
cpufreq_gov_dbs_init(void)
607 return cpufreq_register_governor(&cpufreq_gov_conservative
);
610 static void __exit
cpufreq_gov_dbs_exit(void)
612 cpufreq_unregister_governor(&cpufreq_gov_conservative
);
616 MODULE_AUTHOR("Alexander Clouter <alex@digriz.org.uk>");
617 MODULE_DESCRIPTION("'cpufreq_conservative' - A dynamic cpufreq governor for "
618 "Low Latency Frequency Transition capable processors "
619 "optimised for use in a battery environment");
620 MODULE_LICENSE("GPL");
622 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE
623 fs_initcall(cpufreq_gov_dbs_init
);
625 module_init(cpufreq_gov_dbs_init
);
627 module_exit(cpufreq_gov_dbs_exit
);