Add linux-next specific files for 20110831
[linux-2.6/next.git] / drivers / firewire / sbp2.c
blob17cef864506a7b6778b109dd0d0b570514eab6eb
1 /*
2 * SBP2 driver (SCSI over IEEE1394)
4 * Copyright (C) 2005-2007 Kristian Hoegsberg <krh@bitplanet.net>
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software Foundation,
18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
22 * The basic structure of this driver is based on the old storage driver,
23 * drivers/ieee1394/sbp2.c, originally written by
24 * James Goodwin <jamesg@filanet.com>
25 * with later contributions and ongoing maintenance from
26 * Ben Collins <bcollins@debian.org>,
27 * Stefan Richter <stefanr@s5r6.in-berlin.de>
28 * and many others.
31 #include <linux/blkdev.h>
32 #include <linux/bug.h>
33 #include <linux/completion.h>
34 #include <linux/delay.h>
35 #include <linux/device.h>
36 #include <linux/dma-mapping.h>
37 #include <linux/firewire.h>
38 #include <linux/firewire-constants.h>
39 #include <linux/init.h>
40 #include <linux/jiffies.h>
41 #include <linux/kernel.h>
42 #include <linux/kref.h>
43 #include <linux/list.h>
44 #include <linux/mod_devicetable.h>
45 #include <linux/module.h>
46 #include <linux/moduleparam.h>
47 #include <linux/scatterlist.h>
48 #include <linux/slab.h>
49 #include <linux/spinlock.h>
50 #include <linux/string.h>
51 #include <linux/stringify.h>
52 #include <linux/workqueue.h>
54 #include <asm/byteorder.h>
55 #include <asm/system.h>
57 #include <scsi/scsi.h>
58 #include <scsi/scsi_cmnd.h>
59 #include <scsi/scsi_device.h>
60 #include <scsi/scsi_host.h>
63 * So far only bridges from Oxford Semiconductor are known to support
64 * concurrent logins. Depending on firmware, four or two concurrent logins
65 * are possible on OXFW911 and newer Oxsemi bridges.
67 * Concurrent logins are useful together with cluster filesystems.
69 static int sbp2_param_exclusive_login = 1;
70 module_param_named(exclusive_login, sbp2_param_exclusive_login, bool, 0644);
71 MODULE_PARM_DESC(exclusive_login, "Exclusive login to sbp2 device "
72 "(default = Y, use N for concurrent initiators)");
75 * Flags for firmware oddities
77 * - 128kB max transfer
78 * Limit transfer size. Necessary for some old bridges.
80 * - 36 byte inquiry
81 * When scsi_mod probes the device, let the inquiry command look like that
82 * from MS Windows.
84 * - skip mode page 8
85 * Suppress sending of mode_sense for mode page 8 if the device pretends to
86 * support the SCSI Primary Block commands instead of Reduced Block Commands.
88 * - fix capacity
89 * Tell sd_mod to correct the last sector number reported by read_capacity.
90 * Avoids access beyond actual disk limits on devices with an off-by-one bug.
91 * Don't use this with devices which don't have this bug.
93 * - delay inquiry
94 * Wait extra SBP2_INQUIRY_DELAY seconds after login before SCSI inquiry.
96 * - power condition
97 * Set the power condition field in the START STOP UNIT commands sent by
98 * sd_mod on suspend, resume, and shutdown (if manage_start_stop is on).
99 * Some disks need this to spin down or to resume properly.
101 * - override internal blacklist
102 * Instead of adding to the built-in blacklist, use only the workarounds
103 * specified in the module load parameter.
104 * Useful if a blacklist entry interfered with a non-broken device.
106 #define SBP2_WORKAROUND_128K_MAX_TRANS 0x1
107 #define SBP2_WORKAROUND_INQUIRY_36 0x2
108 #define SBP2_WORKAROUND_MODE_SENSE_8 0x4
109 #define SBP2_WORKAROUND_FIX_CAPACITY 0x8
110 #define SBP2_WORKAROUND_DELAY_INQUIRY 0x10
111 #define SBP2_INQUIRY_DELAY 12
112 #define SBP2_WORKAROUND_POWER_CONDITION 0x20
113 #define SBP2_WORKAROUND_OVERRIDE 0x100
115 static int sbp2_param_workarounds;
116 module_param_named(workarounds, sbp2_param_workarounds, int, 0644);
117 MODULE_PARM_DESC(workarounds, "Work around device bugs (default = 0"
118 ", 128kB max transfer = " __stringify(SBP2_WORKAROUND_128K_MAX_TRANS)
119 ", 36 byte inquiry = " __stringify(SBP2_WORKAROUND_INQUIRY_36)
120 ", skip mode page 8 = " __stringify(SBP2_WORKAROUND_MODE_SENSE_8)
121 ", fix capacity = " __stringify(SBP2_WORKAROUND_FIX_CAPACITY)
122 ", delay inquiry = " __stringify(SBP2_WORKAROUND_DELAY_INQUIRY)
123 ", set power condition in start stop unit = "
124 __stringify(SBP2_WORKAROUND_POWER_CONDITION)
125 ", override internal blacklist = " __stringify(SBP2_WORKAROUND_OVERRIDE)
126 ", or a combination)");
128 static const char sbp2_driver_name[] = "sbp2";
131 * We create one struct sbp2_logical_unit per SBP-2 Logical Unit Number Entry
132 * and one struct scsi_device per sbp2_logical_unit.
134 struct sbp2_logical_unit {
135 struct sbp2_target *tgt;
136 struct list_head link;
137 struct fw_address_handler address_handler;
138 struct list_head orb_list;
140 u64 command_block_agent_address;
141 u16 lun;
142 int login_id;
145 * The generation is updated once we've logged in or reconnected
146 * to the logical unit. Thus, I/O to the device will automatically
147 * fail and get retried if it happens in a window where the device
148 * is not ready, e.g. after a bus reset but before we reconnect.
150 int generation;
151 int retries;
152 struct delayed_work work;
153 bool has_sdev;
154 bool blocked;
158 * We create one struct sbp2_target per IEEE 1212 Unit Directory
159 * and one struct Scsi_Host per sbp2_target.
161 struct sbp2_target {
162 struct kref kref;
163 struct fw_unit *unit;
164 const char *bus_id;
165 struct list_head lu_list;
167 u64 management_agent_address;
168 u64 guid;
169 int directory_id;
170 int node_id;
171 int address_high;
172 unsigned int workarounds;
173 unsigned int mgt_orb_timeout;
174 unsigned int max_payload;
176 int dont_block; /* counter for each logical unit */
177 int blocked; /* ditto */
180 static struct fw_device *target_device(struct sbp2_target *tgt)
182 return fw_parent_device(tgt->unit);
185 /* Impossible login_id, to detect logout attempt before successful login */
186 #define INVALID_LOGIN_ID 0x10000
188 #define SBP2_ORB_TIMEOUT 2000U /* Timeout in ms */
189 #define SBP2_ORB_NULL 0x80000000
190 #define SBP2_RETRY_LIMIT 0xf /* 15 retries */
191 #define SBP2_CYCLE_LIMIT (0xc8 << 12) /* 200 125us cycles */
194 * There is no transport protocol limit to the CDB length, but we implement
195 * a fixed length only. 16 bytes is enough for disks larger than 2 TB.
197 #define SBP2_MAX_CDB_SIZE 16
200 * The default maximum s/g segment size of a FireWire controller is
201 * usually 0x10000, but SBP-2 only allows 0xffff. Since buffers have to
202 * be quadlet-aligned, we set the length limit to 0xffff & ~3.
204 #define SBP2_MAX_SEG_SIZE 0xfffc
206 /* Unit directory keys */
207 #define SBP2_CSR_UNIT_CHARACTERISTICS 0x3a
208 #define SBP2_CSR_FIRMWARE_REVISION 0x3c
209 #define SBP2_CSR_LOGICAL_UNIT_NUMBER 0x14
210 #define SBP2_CSR_LOGICAL_UNIT_DIRECTORY 0xd4
212 /* Management orb opcodes */
213 #define SBP2_LOGIN_REQUEST 0x0
214 #define SBP2_QUERY_LOGINS_REQUEST 0x1
215 #define SBP2_RECONNECT_REQUEST 0x3
216 #define SBP2_SET_PASSWORD_REQUEST 0x4
217 #define SBP2_LOGOUT_REQUEST 0x7
218 #define SBP2_ABORT_TASK_REQUEST 0xb
219 #define SBP2_ABORT_TASK_SET 0xc
220 #define SBP2_LOGICAL_UNIT_RESET 0xe
221 #define SBP2_TARGET_RESET_REQUEST 0xf
223 /* Offsets for command block agent registers */
224 #define SBP2_AGENT_STATE 0x00
225 #define SBP2_AGENT_RESET 0x04
226 #define SBP2_ORB_POINTER 0x08
227 #define SBP2_DOORBELL 0x10
228 #define SBP2_UNSOLICITED_STATUS_ENABLE 0x14
230 /* Status write response codes */
231 #define SBP2_STATUS_REQUEST_COMPLETE 0x0
232 #define SBP2_STATUS_TRANSPORT_FAILURE 0x1
233 #define SBP2_STATUS_ILLEGAL_REQUEST 0x2
234 #define SBP2_STATUS_VENDOR_DEPENDENT 0x3
236 #define STATUS_GET_ORB_HIGH(v) ((v).status & 0xffff)
237 #define STATUS_GET_SBP_STATUS(v) (((v).status >> 16) & 0xff)
238 #define STATUS_GET_LEN(v) (((v).status >> 24) & 0x07)
239 #define STATUS_GET_DEAD(v) (((v).status >> 27) & 0x01)
240 #define STATUS_GET_RESPONSE(v) (((v).status >> 28) & 0x03)
241 #define STATUS_GET_SOURCE(v) (((v).status >> 30) & 0x03)
242 #define STATUS_GET_ORB_LOW(v) ((v).orb_low)
243 #define STATUS_GET_DATA(v) ((v).data)
245 struct sbp2_status {
246 u32 status;
247 u32 orb_low;
248 u8 data[24];
251 struct sbp2_pointer {
252 __be32 high;
253 __be32 low;
256 struct sbp2_orb {
257 struct fw_transaction t;
258 struct kref kref;
259 dma_addr_t request_bus;
260 int rcode;
261 void (*callback)(struct sbp2_orb * orb, struct sbp2_status * status);
262 struct list_head link;
265 #define MANAGEMENT_ORB_LUN(v) ((v))
266 #define MANAGEMENT_ORB_FUNCTION(v) ((v) << 16)
267 #define MANAGEMENT_ORB_RECONNECT(v) ((v) << 20)
268 #define MANAGEMENT_ORB_EXCLUSIVE(v) ((v) ? 1 << 28 : 0)
269 #define MANAGEMENT_ORB_REQUEST_FORMAT(v) ((v) << 29)
270 #define MANAGEMENT_ORB_NOTIFY ((1) << 31)
272 #define MANAGEMENT_ORB_RESPONSE_LENGTH(v) ((v))
273 #define MANAGEMENT_ORB_PASSWORD_LENGTH(v) ((v) << 16)
275 struct sbp2_management_orb {
276 struct sbp2_orb base;
277 struct {
278 struct sbp2_pointer password;
279 struct sbp2_pointer response;
280 __be32 misc;
281 __be32 length;
282 struct sbp2_pointer status_fifo;
283 } request;
284 __be32 response[4];
285 dma_addr_t response_bus;
286 struct completion done;
287 struct sbp2_status status;
290 struct sbp2_login_response {
291 __be32 misc;
292 struct sbp2_pointer command_block_agent;
293 __be32 reconnect_hold;
295 #define COMMAND_ORB_DATA_SIZE(v) ((v))
296 #define COMMAND_ORB_PAGE_SIZE(v) ((v) << 16)
297 #define COMMAND_ORB_PAGE_TABLE_PRESENT ((1) << 19)
298 #define COMMAND_ORB_MAX_PAYLOAD(v) ((v) << 20)
299 #define COMMAND_ORB_SPEED(v) ((v) << 24)
300 #define COMMAND_ORB_DIRECTION ((1) << 27)
301 #define COMMAND_ORB_REQUEST_FORMAT(v) ((v) << 29)
302 #define COMMAND_ORB_NOTIFY ((1) << 31)
304 struct sbp2_command_orb {
305 struct sbp2_orb base;
306 struct {
307 struct sbp2_pointer next;
308 struct sbp2_pointer data_descriptor;
309 __be32 misc;
310 u8 command_block[SBP2_MAX_CDB_SIZE];
311 } request;
312 struct scsi_cmnd *cmd;
313 struct sbp2_logical_unit *lu;
315 struct sbp2_pointer page_table[SG_ALL] __attribute__((aligned(8)));
316 dma_addr_t page_table_bus;
319 #define SBP2_ROM_VALUE_WILDCARD ~0 /* match all */
320 #define SBP2_ROM_VALUE_MISSING 0xff000000 /* not present in the unit dir. */
323 * List of devices with known bugs.
325 * The firmware_revision field, masked with 0xffff00, is the best
326 * indicator for the type of bridge chip of a device. It yields a few
327 * false positives but this did not break correctly behaving devices
328 * so far.
330 static const struct {
331 u32 firmware_revision;
332 u32 model;
333 unsigned int workarounds;
334 } sbp2_workarounds_table[] = {
335 /* DViCO Momobay CX-1 with TSB42AA9 bridge */ {
336 .firmware_revision = 0x002800,
337 .model = 0x001010,
338 .workarounds = SBP2_WORKAROUND_INQUIRY_36 |
339 SBP2_WORKAROUND_MODE_SENSE_8 |
340 SBP2_WORKAROUND_POWER_CONDITION,
342 /* DViCO Momobay FX-3A with TSB42AA9A bridge */ {
343 .firmware_revision = 0x002800,
344 .model = 0x000000,
345 .workarounds = SBP2_WORKAROUND_POWER_CONDITION,
347 /* Initio bridges, actually only needed for some older ones */ {
348 .firmware_revision = 0x000200,
349 .model = SBP2_ROM_VALUE_WILDCARD,
350 .workarounds = SBP2_WORKAROUND_INQUIRY_36,
352 /* PL-3507 bridge with Prolific firmware */ {
353 .firmware_revision = 0x012800,
354 .model = SBP2_ROM_VALUE_WILDCARD,
355 .workarounds = SBP2_WORKAROUND_POWER_CONDITION,
357 /* Symbios bridge */ {
358 .firmware_revision = 0xa0b800,
359 .model = SBP2_ROM_VALUE_WILDCARD,
360 .workarounds = SBP2_WORKAROUND_128K_MAX_TRANS,
362 /* Datafab MD2-FW2 with Symbios/LSILogic SYM13FW500 bridge */ {
363 .firmware_revision = 0x002600,
364 .model = SBP2_ROM_VALUE_WILDCARD,
365 .workarounds = SBP2_WORKAROUND_128K_MAX_TRANS,
368 * iPod 2nd generation: needs 128k max transfer size workaround
369 * iPod 3rd generation: needs fix capacity workaround
372 .firmware_revision = 0x0a2700,
373 .model = 0x000000,
374 .workarounds = SBP2_WORKAROUND_128K_MAX_TRANS |
375 SBP2_WORKAROUND_FIX_CAPACITY,
377 /* iPod 4th generation */ {
378 .firmware_revision = 0x0a2700,
379 .model = 0x000021,
380 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY,
382 /* iPod mini */ {
383 .firmware_revision = 0x0a2700,
384 .model = 0x000022,
385 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY,
387 /* iPod mini */ {
388 .firmware_revision = 0x0a2700,
389 .model = 0x000023,
390 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY,
392 /* iPod Photo */ {
393 .firmware_revision = 0x0a2700,
394 .model = 0x00007e,
395 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY,
399 static void free_orb(struct kref *kref)
401 struct sbp2_orb *orb = container_of(kref, struct sbp2_orb, kref);
403 kfree(orb);
406 static void sbp2_status_write(struct fw_card *card, struct fw_request *request,
407 int tcode, int destination, int source,
408 int generation, unsigned long long offset,
409 void *payload, size_t length, void *callback_data)
411 struct sbp2_logical_unit *lu = callback_data;
412 struct sbp2_orb *orb;
413 struct sbp2_status status;
414 unsigned long flags;
416 if (tcode != TCODE_WRITE_BLOCK_REQUEST ||
417 length < 8 || length > sizeof(status)) {
418 fw_send_response(card, request, RCODE_TYPE_ERROR);
419 return;
422 status.status = be32_to_cpup(payload);
423 status.orb_low = be32_to_cpup(payload + 4);
424 memset(status.data, 0, sizeof(status.data));
425 if (length > 8)
426 memcpy(status.data, payload + 8, length - 8);
428 if (STATUS_GET_SOURCE(status) == 2 || STATUS_GET_SOURCE(status) == 3) {
429 fw_notify("non-orb related status write, not handled\n");
430 fw_send_response(card, request, RCODE_COMPLETE);
431 return;
434 /* Lookup the orb corresponding to this status write. */
435 spin_lock_irqsave(&card->lock, flags);
436 list_for_each_entry(orb, &lu->orb_list, link) {
437 if (STATUS_GET_ORB_HIGH(status) == 0 &&
438 STATUS_GET_ORB_LOW(status) == orb->request_bus) {
439 orb->rcode = RCODE_COMPLETE;
440 list_del(&orb->link);
441 break;
444 spin_unlock_irqrestore(&card->lock, flags);
446 if (&orb->link != &lu->orb_list) {
447 orb->callback(orb, &status);
448 kref_put(&orb->kref, free_orb); /* orb callback reference */
449 } else {
450 fw_error("status write for unknown orb\n");
453 fw_send_response(card, request, RCODE_COMPLETE);
456 static void complete_transaction(struct fw_card *card, int rcode,
457 void *payload, size_t length, void *data)
459 struct sbp2_orb *orb = data;
460 unsigned long flags;
463 * This is a little tricky. We can get the status write for
464 * the orb before we get this callback. The status write
465 * handler above will assume the orb pointer transaction was
466 * successful and set the rcode to RCODE_COMPLETE for the orb.
467 * So this callback only sets the rcode if it hasn't already
468 * been set and only does the cleanup if the transaction
469 * failed and we didn't already get a status write.
471 spin_lock_irqsave(&card->lock, flags);
473 if (orb->rcode == -1)
474 orb->rcode = rcode;
475 if (orb->rcode != RCODE_COMPLETE) {
476 list_del(&orb->link);
477 spin_unlock_irqrestore(&card->lock, flags);
479 orb->callback(orb, NULL);
480 kref_put(&orb->kref, free_orb); /* orb callback reference */
481 } else {
482 spin_unlock_irqrestore(&card->lock, flags);
485 kref_put(&orb->kref, free_orb); /* transaction callback reference */
488 static void sbp2_send_orb(struct sbp2_orb *orb, struct sbp2_logical_unit *lu,
489 int node_id, int generation, u64 offset)
491 struct fw_device *device = target_device(lu->tgt);
492 struct sbp2_pointer orb_pointer;
493 unsigned long flags;
495 orb_pointer.high = 0;
496 orb_pointer.low = cpu_to_be32(orb->request_bus);
498 spin_lock_irqsave(&device->card->lock, flags);
499 list_add_tail(&orb->link, &lu->orb_list);
500 spin_unlock_irqrestore(&device->card->lock, flags);
502 kref_get(&orb->kref); /* transaction callback reference */
503 kref_get(&orb->kref); /* orb callback reference */
505 fw_send_request(device->card, &orb->t, TCODE_WRITE_BLOCK_REQUEST,
506 node_id, generation, device->max_speed, offset,
507 &orb_pointer, 8, complete_transaction, orb);
510 static int sbp2_cancel_orbs(struct sbp2_logical_unit *lu)
512 struct fw_device *device = target_device(lu->tgt);
513 struct sbp2_orb *orb, *next;
514 struct list_head list;
515 unsigned long flags;
516 int retval = -ENOENT;
518 INIT_LIST_HEAD(&list);
519 spin_lock_irqsave(&device->card->lock, flags);
520 list_splice_init(&lu->orb_list, &list);
521 spin_unlock_irqrestore(&device->card->lock, flags);
523 list_for_each_entry_safe(orb, next, &list, link) {
524 retval = 0;
525 if (fw_cancel_transaction(device->card, &orb->t) == 0)
526 continue;
528 orb->rcode = RCODE_CANCELLED;
529 orb->callback(orb, NULL);
530 kref_put(&orb->kref, free_orb); /* orb callback reference */
533 return retval;
536 static void complete_management_orb(struct sbp2_orb *base_orb,
537 struct sbp2_status *status)
539 struct sbp2_management_orb *orb =
540 container_of(base_orb, struct sbp2_management_orb, base);
542 if (status)
543 memcpy(&orb->status, status, sizeof(*status));
544 complete(&orb->done);
547 static int sbp2_send_management_orb(struct sbp2_logical_unit *lu, int node_id,
548 int generation, int function,
549 int lun_or_login_id, void *response)
551 struct fw_device *device = target_device(lu->tgt);
552 struct sbp2_management_orb *orb;
553 unsigned int timeout;
554 int retval = -ENOMEM;
556 if (function == SBP2_LOGOUT_REQUEST && fw_device_is_shutdown(device))
557 return 0;
559 orb = kzalloc(sizeof(*orb), GFP_ATOMIC);
560 if (orb == NULL)
561 return -ENOMEM;
563 kref_init(&orb->base.kref);
564 orb->response_bus =
565 dma_map_single(device->card->device, &orb->response,
566 sizeof(orb->response), DMA_FROM_DEVICE);
567 if (dma_mapping_error(device->card->device, orb->response_bus))
568 goto fail_mapping_response;
570 orb->request.response.high = 0;
571 orb->request.response.low = cpu_to_be32(orb->response_bus);
573 orb->request.misc = cpu_to_be32(
574 MANAGEMENT_ORB_NOTIFY |
575 MANAGEMENT_ORB_FUNCTION(function) |
576 MANAGEMENT_ORB_LUN(lun_or_login_id));
577 orb->request.length = cpu_to_be32(
578 MANAGEMENT_ORB_RESPONSE_LENGTH(sizeof(orb->response)));
580 orb->request.status_fifo.high =
581 cpu_to_be32(lu->address_handler.offset >> 32);
582 orb->request.status_fifo.low =
583 cpu_to_be32(lu->address_handler.offset);
585 if (function == SBP2_LOGIN_REQUEST) {
586 /* Ask for 2^2 == 4 seconds reconnect grace period */
587 orb->request.misc |= cpu_to_be32(
588 MANAGEMENT_ORB_RECONNECT(2) |
589 MANAGEMENT_ORB_EXCLUSIVE(sbp2_param_exclusive_login));
590 timeout = lu->tgt->mgt_orb_timeout;
591 } else {
592 timeout = SBP2_ORB_TIMEOUT;
595 init_completion(&orb->done);
596 orb->base.callback = complete_management_orb;
598 orb->base.request_bus =
599 dma_map_single(device->card->device, &orb->request,
600 sizeof(orb->request), DMA_TO_DEVICE);
601 if (dma_mapping_error(device->card->device, orb->base.request_bus))
602 goto fail_mapping_request;
604 sbp2_send_orb(&orb->base, lu, node_id, generation,
605 lu->tgt->management_agent_address);
607 wait_for_completion_timeout(&orb->done, msecs_to_jiffies(timeout));
609 retval = -EIO;
610 if (sbp2_cancel_orbs(lu) == 0) {
611 fw_error("%s: orb reply timed out, rcode=0x%02x\n",
612 lu->tgt->bus_id, orb->base.rcode);
613 goto out;
616 if (orb->base.rcode != RCODE_COMPLETE) {
617 fw_error("%s: management write failed, rcode 0x%02x\n",
618 lu->tgt->bus_id, orb->base.rcode);
619 goto out;
622 if (STATUS_GET_RESPONSE(orb->status) != 0 ||
623 STATUS_GET_SBP_STATUS(orb->status) != 0) {
624 fw_error("%s: error status: %d:%d\n", lu->tgt->bus_id,
625 STATUS_GET_RESPONSE(orb->status),
626 STATUS_GET_SBP_STATUS(orb->status));
627 goto out;
630 retval = 0;
631 out:
632 dma_unmap_single(device->card->device, orb->base.request_bus,
633 sizeof(orb->request), DMA_TO_DEVICE);
634 fail_mapping_request:
635 dma_unmap_single(device->card->device, orb->response_bus,
636 sizeof(orb->response), DMA_FROM_DEVICE);
637 fail_mapping_response:
638 if (response)
639 memcpy(response, orb->response, sizeof(orb->response));
640 kref_put(&orb->base.kref, free_orb);
642 return retval;
645 static void sbp2_agent_reset(struct sbp2_logical_unit *lu)
647 struct fw_device *device = target_device(lu->tgt);
648 __be32 d = 0;
650 fw_run_transaction(device->card, TCODE_WRITE_QUADLET_REQUEST,
651 lu->tgt->node_id, lu->generation, device->max_speed,
652 lu->command_block_agent_address + SBP2_AGENT_RESET,
653 &d, 4);
656 static void complete_agent_reset_write_no_wait(struct fw_card *card,
657 int rcode, void *payload, size_t length, void *data)
659 kfree(data);
662 static void sbp2_agent_reset_no_wait(struct sbp2_logical_unit *lu)
664 struct fw_device *device = target_device(lu->tgt);
665 struct fw_transaction *t;
666 static __be32 d;
668 t = kmalloc(sizeof(*t), GFP_ATOMIC);
669 if (t == NULL)
670 return;
672 fw_send_request(device->card, t, TCODE_WRITE_QUADLET_REQUEST,
673 lu->tgt->node_id, lu->generation, device->max_speed,
674 lu->command_block_agent_address + SBP2_AGENT_RESET,
675 &d, 4, complete_agent_reset_write_no_wait, t);
678 static inline void sbp2_allow_block(struct sbp2_logical_unit *lu)
681 * We may access dont_block without taking card->lock here:
682 * All callers of sbp2_allow_block() and all callers of sbp2_unblock()
683 * are currently serialized against each other.
684 * And a wrong result in sbp2_conditionally_block()'s access of
685 * dont_block is rather harmless, it simply misses its first chance.
687 --lu->tgt->dont_block;
691 * Blocks lu->tgt if all of the following conditions are met:
692 * - Login, INQUIRY, and high-level SCSI setup of all of the target's
693 * logical units have been finished (indicated by dont_block == 0).
694 * - lu->generation is stale.
696 * Note, scsi_block_requests() must be called while holding card->lock,
697 * otherwise it might foil sbp2_[conditionally_]unblock()'s attempt to
698 * unblock the target.
700 static void sbp2_conditionally_block(struct sbp2_logical_unit *lu)
702 struct sbp2_target *tgt = lu->tgt;
703 struct fw_card *card = target_device(tgt)->card;
704 struct Scsi_Host *shost =
705 container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
706 unsigned long flags;
708 spin_lock_irqsave(&card->lock, flags);
709 if (!tgt->dont_block && !lu->blocked &&
710 lu->generation != card->generation) {
711 lu->blocked = true;
712 if (++tgt->blocked == 1)
713 scsi_block_requests(shost);
715 spin_unlock_irqrestore(&card->lock, flags);
719 * Unblocks lu->tgt as soon as all its logical units can be unblocked.
720 * Note, it is harmless to run scsi_unblock_requests() outside the
721 * card->lock protected section. On the other hand, running it inside
722 * the section might clash with shost->host_lock.
724 static void sbp2_conditionally_unblock(struct sbp2_logical_unit *lu)
726 struct sbp2_target *tgt = lu->tgt;
727 struct fw_card *card = target_device(tgt)->card;
728 struct Scsi_Host *shost =
729 container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
730 unsigned long flags;
731 bool unblock = false;
733 spin_lock_irqsave(&card->lock, flags);
734 if (lu->blocked && lu->generation == card->generation) {
735 lu->blocked = false;
736 unblock = --tgt->blocked == 0;
738 spin_unlock_irqrestore(&card->lock, flags);
740 if (unblock)
741 scsi_unblock_requests(shost);
745 * Prevents future blocking of tgt and unblocks it.
746 * Note, it is harmless to run scsi_unblock_requests() outside the
747 * card->lock protected section. On the other hand, running it inside
748 * the section might clash with shost->host_lock.
750 static void sbp2_unblock(struct sbp2_target *tgt)
752 struct fw_card *card = target_device(tgt)->card;
753 struct Scsi_Host *shost =
754 container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
755 unsigned long flags;
757 spin_lock_irqsave(&card->lock, flags);
758 ++tgt->dont_block;
759 spin_unlock_irqrestore(&card->lock, flags);
761 scsi_unblock_requests(shost);
764 static int sbp2_lun2int(u16 lun)
766 struct scsi_lun eight_bytes_lun;
768 memset(&eight_bytes_lun, 0, sizeof(eight_bytes_lun));
769 eight_bytes_lun.scsi_lun[0] = (lun >> 8) & 0xff;
770 eight_bytes_lun.scsi_lun[1] = lun & 0xff;
772 return scsilun_to_int(&eight_bytes_lun);
775 static void sbp2_release_target(struct kref *kref)
777 struct sbp2_target *tgt = container_of(kref, struct sbp2_target, kref);
778 struct sbp2_logical_unit *lu, *next;
779 struct Scsi_Host *shost =
780 container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
781 struct scsi_device *sdev;
782 struct fw_device *device = target_device(tgt);
784 /* prevent deadlocks */
785 sbp2_unblock(tgt);
787 list_for_each_entry_safe(lu, next, &tgt->lu_list, link) {
788 sdev = scsi_device_lookup(shost, 0, 0, sbp2_lun2int(lu->lun));
789 if (sdev) {
790 scsi_remove_device(sdev);
791 scsi_device_put(sdev);
793 if (lu->login_id != INVALID_LOGIN_ID) {
794 int generation, node_id;
796 * tgt->node_id may be obsolete here if we failed
797 * during initial login or after a bus reset where
798 * the topology changed.
800 generation = device->generation;
801 smp_rmb(); /* node_id vs. generation */
802 node_id = device->node_id;
803 sbp2_send_management_orb(lu, node_id, generation,
804 SBP2_LOGOUT_REQUEST,
805 lu->login_id, NULL);
807 fw_core_remove_address_handler(&lu->address_handler);
808 list_del(&lu->link);
809 kfree(lu);
811 scsi_remove_host(shost);
812 fw_notify("released %s, target %d:0:0\n", tgt->bus_id, shost->host_no);
814 fw_unit_put(tgt->unit);
815 scsi_host_put(shost);
816 fw_device_put(device);
819 static void sbp2_target_get(struct sbp2_target *tgt)
821 kref_get(&tgt->kref);
824 static void sbp2_target_put(struct sbp2_target *tgt)
826 kref_put(&tgt->kref, sbp2_release_target);
830 * Always get the target's kref when scheduling work on one its units.
831 * Each workqueue job is responsible to call sbp2_target_put() upon return.
833 static void sbp2_queue_work(struct sbp2_logical_unit *lu, unsigned long delay)
835 sbp2_target_get(lu->tgt);
836 if (!queue_delayed_work(fw_workqueue, &lu->work, delay))
837 sbp2_target_put(lu->tgt);
841 * Write retransmit retry values into the BUSY_TIMEOUT register.
842 * - The single-phase retry protocol is supported by all SBP-2 devices, but the
843 * default retry_limit value is 0 (i.e. never retry transmission). We write a
844 * saner value after logging into the device.
845 * - The dual-phase retry protocol is optional to implement, and if not
846 * supported, writes to the dual-phase portion of the register will be
847 * ignored. We try to write the original 1394-1995 default here.
848 * - In the case of devices that are also SBP-3-compliant, all writes are
849 * ignored, as the register is read-only, but contains single-phase retry of
850 * 15, which is what we're trying to set for all SBP-2 device anyway, so this
851 * write attempt is safe and yields more consistent behavior for all devices.
853 * See section 8.3.2.3.5 of the 1394-1995 spec, section 6.2 of the SBP-2 spec,
854 * and section 6.4 of the SBP-3 spec for further details.
856 static void sbp2_set_busy_timeout(struct sbp2_logical_unit *lu)
858 struct fw_device *device = target_device(lu->tgt);
859 __be32 d = cpu_to_be32(SBP2_CYCLE_LIMIT | SBP2_RETRY_LIMIT);
861 fw_run_transaction(device->card, TCODE_WRITE_QUADLET_REQUEST,
862 lu->tgt->node_id, lu->generation, device->max_speed,
863 CSR_REGISTER_BASE + CSR_BUSY_TIMEOUT, &d, 4);
866 static void sbp2_reconnect(struct work_struct *work);
868 static void sbp2_login(struct work_struct *work)
870 struct sbp2_logical_unit *lu =
871 container_of(work, struct sbp2_logical_unit, work.work);
872 struct sbp2_target *tgt = lu->tgt;
873 struct fw_device *device = target_device(tgt);
874 struct Scsi_Host *shost;
875 struct scsi_device *sdev;
876 struct sbp2_login_response response;
877 int generation, node_id, local_node_id;
879 if (fw_device_is_shutdown(device))
880 goto out;
882 generation = device->generation;
883 smp_rmb(); /* node IDs must not be older than generation */
884 node_id = device->node_id;
885 local_node_id = device->card->node_id;
887 /* If this is a re-login attempt, log out, or we might be rejected. */
888 if (lu->has_sdev)
889 sbp2_send_management_orb(lu, device->node_id, generation,
890 SBP2_LOGOUT_REQUEST, lu->login_id, NULL);
892 if (sbp2_send_management_orb(lu, node_id, generation,
893 SBP2_LOGIN_REQUEST, lu->lun, &response) < 0) {
894 if (lu->retries++ < 5) {
895 sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
896 } else {
897 fw_error("%s: failed to login to LUN %04x\n",
898 tgt->bus_id, lu->lun);
899 /* Let any waiting I/O fail from now on. */
900 sbp2_unblock(lu->tgt);
902 goto out;
905 tgt->node_id = node_id;
906 tgt->address_high = local_node_id << 16;
907 smp_wmb(); /* node IDs must not be older than generation */
908 lu->generation = generation;
910 lu->command_block_agent_address =
911 ((u64)(be32_to_cpu(response.command_block_agent.high) & 0xffff)
912 << 32) | be32_to_cpu(response.command_block_agent.low);
913 lu->login_id = be32_to_cpu(response.misc) & 0xffff;
915 fw_notify("%s: logged in to LUN %04x (%d retries)\n",
916 tgt->bus_id, lu->lun, lu->retries);
918 /* set appropriate retry limit(s) in BUSY_TIMEOUT register */
919 sbp2_set_busy_timeout(lu);
921 PREPARE_DELAYED_WORK(&lu->work, sbp2_reconnect);
922 sbp2_agent_reset(lu);
924 /* This was a re-login. */
925 if (lu->has_sdev) {
926 sbp2_cancel_orbs(lu);
927 sbp2_conditionally_unblock(lu);
928 goto out;
931 if (lu->tgt->workarounds & SBP2_WORKAROUND_DELAY_INQUIRY)
932 ssleep(SBP2_INQUIRY_DELAY);
934 shost = container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
935 sdev = __scsi_add_device(shost, 0, 0, sbp2_lun2int(lu->lun), lu);
937 * FIXME: We are unable to perform reconnects while in sbp2_login().
938 * Therefore __scsi_add_device() will get into trouble if a bus reset
939 * happens in parallel. It will either fail or leave us with an
940 * unusable sdev. As a workaround we check for this and retry the
941 * whole login and SCSI probing.
944 /* Reported error during __scsi_add_device() */
945 if (IS_ERR(sdev))
946 goto out_logout_login;
948 /* Unreported error during __scsi_add_device() */
949 smp_rmb(); /* get current card generation */
950 if (generation != device->card->generation) {
951 scsi_remove_device(sdev);
952 scsi_device_put(sdev);
953 goto out_logout_login;
956 /* No error during __scsi_add_device() */
957 lu->has_sdev = true;
958 scsi_device_put(sdev);
959 sbp2_allow_block(lu);
960 goto out;
962 out_logout_login:
963 smp_rmb(); /* generation may have changed */
964 generation = device->generation;
965 smp_rmb(); /* node_id must not be older than generation */
967 sbp2_send_management_orb(lu, device->node_id, generation,
968 SBP2_LOGOUT_REQUEST, lu->login_id, NULL);
970 * If a bus reset happened, sbp2_update will have requeued
971 * lu->work already. Reset the work from reconnect to login.
973 PREPARE_DELAYED_WORK(&lu->work, sbp2_login);
974 out:
975 sbp2_target_put(tgt);
978 static int sbp2_add_logical_unit(struct sbp2_target *tgt, int lun_entry)
980 struct sbp2_logical_unit *lu;
982 lu = kmalloc(sizeof(*lu), GFP_KERNEL);
983 if (!lu)
984 return -ENOMEM;
986 lu->address_handler.length = 0x100;
987 lu->address_handler.address_callback = sbp2_status_write;
988 lu->address_handler.callback_data = lu;
990 if (fw_core_add_address_handler(&lu->address_handler,
991 &fw_high_memory_region) < 0) {
992 kfree(lu);
993 return -ENOMEM;
996 lu->tgt = tgt;
997 lu->lun = lun_entry & 0xffff;
998 lu->login_id = INVALID_LOGIN_ID;
999 lu->retries = 0;
1000 lu->has_sdev = false;
1001 lu->blocked = false;
1002 ++tgt->dont_block;
1003 INIT_LIST_HEAD(&lu->orb_list);
1004 INIT_DELAYED_WORK(&lu->work, sbp2_login);
1006 list_add_tail(&lu->link, &tgt->lu_list);
1007 return 0;
1010 static int sbp2_scan_logical_unit_dir(struct sbp2_target *tgt,
1011 const u32 *directory)
1013 struct fw_csr_iterator ci;
1014 int key, value;
1016 fw_csr_iterator_init(&ci, directory);
1017 while (fw_csr_iterator_next(&ci, &key, &value))
1018 if (key == SBP2_CSR_LOGICAL_UNIT_NUMBER &&
1019 sbp2_add_logical_unit(tgt, value) < 0)
1020 return -ENOMEM;
1021 return 0;
1024 static int sbp2_scan_unit_dir(struct sbp2_target *tgt, const u32 *directory,
1025 u32 *model, u32 *firmware_revision)
1027 struct fw_csr_iterator ci;
1028 int key, value;
1030 fw_csr_iterator_init(&ci, directory);
1031 while (fw_csr_iterator_next(&ci, &key, &value)) {
1032 switch (key) {
1034 case CSR_DEPENDENT_INFO | CSR_OFFSET:
1035 tgt->management_agent_address =
1036 CSR_REGISTER_BASE + 4 * value;
1037 break;
1039 case CSR_DIRECTORY_ID:
1040 tgt->directory_id = value;
1041 break;
1043 case CSR_MODEL:
1044 *model = value;
1045 break;
1047 case SBP2_CSR_FIRMWARE_REVISION:
1048 *firmware_revision = value;
1049 break;
1051 case SBP2_CSR_UNIT_CHARACTERISTICS:
1052 /* the timeout value is stored in 500ms units */
1053 tgt->mgt_orb_timeout = (value >> 8 & 0xff) * 500;
1054 break;
1056 case SBP2_CSR_LOGICAL_UNIT_NUMBER:
1057 if (sbp2_add_logical_unit(tgt, value) < 0)
1058 return -ENOMEM;
1059 break;
1061 case SBP2_CSR_LOGICAL_UNIT_DIRECTORY:
1062 /* Adjust for the increment in the iterator */
1063 if (sbp2_scan_logical_unit_dir(tgt, ci.p - 1 + value) < 0)
1064 return -ENOMEM;
1065 break;
1068 return 0;
1072 * Per section 7.4.8 of the SBP-2 spec, a mgt_ORB_timeout value can be
1073 * provided in the config rom. Most devices do provide a value, which
1074 * we'll use for login management orbs, but with some sane limits.
1076 static void sbp2_clamp_management_orb_timeout(struct sbp2_target *tgt)
1078 unsigned int timeout = tgt->mgt_orb_timeout;
1080 if (timeout > 40000)
1081 fw_notify("%s: %ds mgt_ORB_timeout limited to 40s\n",
1082 tgt->bus_id, timeout / 1000);
1084 tgt->mgt_orb_timeout = clamp_val(timeout, 5000, 40000);
1087 static void sbp2_init_workarounds(struct sbp2_target *tgt, u32 model,
1088 u32 firmware_revision)
1090 int i;
1091 unsigned int w = sbp2_param_workarounds;
1093 if (w)
1094 fw_notify("Please notify linux1394-devel@lists.sourceforge.net "
1095 "if you need the workarounds parameter for %s\n",
1096 tgt->bus_id);
1098 if (w & SBP2_WORKAROUND_OVERRIDE)
1099 goto out;
1101 for (i = 0; i < ARRAY_SIZE(sbp2_workarounds_table); i++) {
1103 if (sbp2_workarounds_table[i].firmware_revision !=
1104 (firmware_revision & 0xffffff00))
1105 continue;
1107 if (sbp2_workarounds_table[i].model != model &&
1108 sbp2_workarounds_table[i].model != SBP2_ROM_VALUE_WILDCARD)
1109 continue;
1111 w |= sbp2_workarounds_table[i].workarounds;
1112 break;
1114 out:
1115 if (w)
1116 fw_notify("Workarounds for %s: 0x%x "
1117 "(firmware_revision 0x%06x, model_id 0x%06x)\n",
1118 tgt->bus_id, w, firmware_revision, model);
1119 tgt->workarounds = w;
1122 static struct scsi_host_template scsi_driver_template;
1124 static int sbp2_probe(struct device *dev)
1126 struct fw_unit *unit = fw_unit(dev);
1127 struct fw_device *device = fw_parent_device(unit);
1128 struct sbp2_target *tgt;
1129 struct sbp2_logical_unit *lu;
1130 struct Scsi_Host *shost;
1131 u32 model, firmware_revision;
1133 if (dma_get_max_seg_size(device->card->device) > SBP2_MAX_SEG_SIZE)
1134 BUG_ON(dma_set_max_seg_size(device->card->device,
1135 SBP2_MAX_SEG_SIZE));
1137 shost = scsi_host_alloc(&scsi_driver_template, sizeof(*tgt));
1138 if (shost == NULL)
1139 return -ENOMEM;
1141 tgt = (struct sbp2_target *)shost->hostdata;
1142 dev_set_drvdata(&unit->device, tgt);
1143 tgt->unit = unit;
1144 kref_init(&tgt->kref);
1145 INIT_LIST_HEAD(&tgt->lu_list);
1146 tgt->bus_id = dev_name(&unit->device);
1147 tgt->guid = (u64)device->config_rom[3] << 32 | device->config_rom[4];
1149 if (fw_device_enable_phys_dma(device) < 0)
1150 goto fail_shost_put;
1152 shost->max_cmd_len = SBP2_MAX_CDB_SIZE;
1154 if (scsi_add_host(shost, &unit->device) < 0)
1155 goto fail_shost_put;
1157 fw_device_get(device);
1158 fw_unit_get(unit);
1160 /* implicit directory ID */
1161 tgt->directory_id = ((unit->directory - device->config_rom) * 4
1162 + CSR_CONFIG_ROM) & 0xffffff;
1164 firmware_revision = SBP2_ROM_VALUE_MISSING;
1165 model = SBP2_ROM_VALUE_MISSING;
1167 if (sbp2_scan_unit_dir(tgt, unit->directory, &model,
1168 &firmware_revision) < 0)
1169 goto fail_tgt_put;
1171 sbp2_clamp_management_orb_timeout(tgt);
1172 sbp2_init_workarounds(tgt, model, firmware_revision);
1175 * At S100 we can do 512 bytes per packet, at S200 1024 bytes,
1176 * and so on up to 4096 bytes. The SBP-2 max_payload field
1177 * specifies the max payload size as 2 ^ (max_payload + 2), so
1178 * if we set this to max_speed + 7, we get the right value.
1180 tgt->max_payload = min(device->max_speed + 7, 10U);
1181 tgt->max_payload = min(tgt->max_payload, device->card->max_receive - 1);
1183 /* Do the login in a workqueue so we can easily reschedule retries. */
1184 list_for_each_entry(lu, &tgt->lu_list, link)
1185 sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
1186 return 0;
1188 fail_tgt_put:
1189 sbp2_target_put(tgt);
1190 return -ENOMEM;
1192 fail_shost_put:
1193 scsi_host_put(shost);
1194 return -ENOMEM;
1197 static int sbp2_remove(struct device *dev)
1199 struct fw_unit *unit = fw_unit(dev);
1200 struct sbp2_target *tgt = dev_get_drvdata(&unit->device);
1201 struct sbp2_logical_unit *lu;
1203 list_for_each_entry(lu, &tgt->lu_list, link)
1204 cancel_delayed_work_sync(&lu->work);
1206 sbp2_target_put(tgt);
1207 return 0;
1210 static void sbp2_reconnect(struct work_struct *work)
1212 struct sbp2_logical_unit *lu =
1213 container_of(work, struct sbp2_logical_unit, work.work);
1214 struct sbp2_target *tgt = lu->tgt;
1215 struct fw_device *device = target_device(tgt);
1216 int generation, node_id, local_node_id;
1218 if (fw_device_is_shutdown(device))
1219 goto out;
1221 generation = device->generation;
1222 smp_rmb(); /* node IDs must not be older than generation */
1223 node_id = device->node_id;
1224 local_node_id = device->card->node_id;
1226 if (sbp2_send_management_orb(lu, node_id, generation,
1227 SBP2_RECONNECT_REQUEST,
1228 lu->login_id, NULL) < 0) {
1230 * If reconnect was impossible even though we are in the
1231 * current generation, fall back and try to log in again.
1233 * We could check for "Function rejected" status, but
1234 * looking at the bus generation as simpler and more general.
1236 smp_rmb(); /* get current card generation */
1237 if (generation == device->card->generation ||
1238 lu->retries++ >= 5) {
1239 fw_error("%s: failed to reconnect\n", tgt->bus_id);
1240 lu->retries = 0;
1241 PREPARE_DELAYED_WORK(&lu->work, sbp2_login);
1243 sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
1244 goto out;
1247 tgt->node_id = node_id;
1248 tgt->address_high = local_node_id << 16;
1249 smp_wmb(); /* node IDs must not be older than generation */
1250 lu->generation = generation;
1252 fw_notify("%s: reconnected to LUN %04x (%d retries)\n",
1253 tgt->bus_id, lu->lun, lu->retries);
1255 sbp2_agent_reset(lu);
1256 sbp2_cancel_orbs(lu);
1257 sbp2_conditionally_unblock(lu);
1258 out:
1259 sbp2_target_put(tgt);
1262 static void sbp2_update(struct fw_unit *unit)
1264 struct sbp2_target *tgt = dev_get_drvdata(&unit->device);
1265 struct sbp2_logical_unit *lu;
1267 fw_device_enable_phys_dma(fw_parent_device(unit));
1270 * Fw-core serializes sbp2_update() against sbp2_remove().
1271 * Iteration over tgt->lu_list is therefore safe here.
1273 list_for_each_entry(lu, &tgt->lu_list, link) {
1274 sbp2_conditionally_block(lu);
1275 lu->retries = 0;
1276 sbp2_queue_work(lu, 0);
1280 #define SBP2_UNIT_SPEC_ID_ENTRY 0x0000609e
1281 #define SBP2_SW_VERSION_ENTRY 0x00010483
1283 static const struct ieee1394_device_id sbp2_id_table[] = {
1285 .match_flags = IEEE1394_MATCH_SPECIFIER_ID |
1286 IEEE1394_MATCH_VERSION,
1287 .specifier_id = SBP2_UNIT_SPEC_ID_ENTRY,
1288 .version = SBP2_SW_VERSION_ENTRY,
1293 static struct fw_driver sbp2_driver = {
1294 .driver = {
1295 .owner = THIS_MODULE,
1296 .name = sbp2_driver_name,
1297 .bus = &fw_bus_type,
1298 .probe = sbp2_probe,
1299 .remove = sbp2_remove,
1301 .update = sbp2_update,
1302 .id_table = sbp2_id_table,
1305 static void sbp2_unmap_scatterlist(struct device *card_device,
1306 struct sbp2_command_orb *orb)
1308 if (scsi_sg_count(orb->cmd))
1309 dma_unmap_sg(card_device, scsi_sglist(orb->cmd),
1310 scsi_sg_count(orb->cmd),
1311 orb->cmd->sc_data_direction);
1313 if (orb->request.misc & cpu_to_be32(COMMAND_ORB_PAGE_TABLE_PRESENT))
1314 dma_unmap_single(card_device, orb->page_table_bus,
1315 sizeof(orb->page_table), DMA_TO_DEVICE);
1318 static unsigned int sbp2_status_to_sense_data(u8 *sbp2_status, u8 *sense_data)
1320 int sam_status;
1322 sense_data[0] = 0x70;
1323 sense_data[1] = 0x0;
1324 sense_data[2] = sbp2_status[1];
1325 sense_data[3] = sbp2_status[4];
1326 sense_data[4] = sbp2_status[5];
1327 sense_data[5] = sbp2_status[6];
1328 sense_data[6] = sbp2_status[7];
1329 sense_data[7] = 10;
1330 sense_data[8] = sbp2_status[8];
1331 sense_data[9] = sbp2_status[9];
1332 sense_data[10] = sbp2_status[10];
1333 sense_data[11] = sbp2_status[11];
1334 sense_data[12] = sbp2_status[2];
1335 sense_data[13] = sbp2_status[3];
1336 sense_data[14] = sbp2_status[12];
1337 sense_data[15] = sbp2_status[13];
1339 sam_status = sbp2_status[0] & 0x3f;
1341 switch (sam_status) {
1342 case SAM_STAT_GOOD:
1343 case SAM_STAT_CHECK_CONDITION:
1344 case SAM_STAT_CONDITION_MET:
1345 case SAM_STAT_BUSY:
1346 case SAM_STAT_RESERVATION_CONFLICT:
1347 case SAM_STAT_COMMAND_TERMINATED:
1348 return DID_OK << 16 | sam_status;
1350 default:
1351 return DID_ERROR << 16;
1355 static void complete_command_orb(struct sbp2_orb *base_orb,
1356 struct sbp2_status *status)
1358 struct sbp2_command_orb *orb =
1359 container_of(base_orb, struct sbp2_command_orb, base);
1360 struct fw_device *device = target_device(orb->lu->tgt);
1361 int result;
1363 if (status != NULL) {
1364 if (STATUS_GET_DEAD(*status))
1365 sbp2_agent_reset_no_wait(orb->lu);
1367 switch (STATUS_GET_RESPONSE(*status)) {
1368 case SBP2_STATUS_REQUEST_COMPLETE:
1369 result = DID_OK << 16;
1370 break;
1371 case SBP2_STATUS_TRANSPORT_FAILURE:
1372 result = DID_BUS_BUSY << 16;
1373 break;
1374 case SBP2_STATUS_ILLEGAL_REQUEST:
1375 case SBP2_STATUS_VENDOR_DEPENDENT:
1376 default:
1377 result = DID_ERROR << 16;
1378 break;
1381 if (result == DID_OK << 16 && STATUS_GET_LEN(*status) > 1)
1382 result = sbp2_status_to_sense_data(STATUS_GET_DATA(*status),
1383 orb->cmd->sense_buffer);
1384 } else {
1386 * If the orb completes with status == NULL, something
1387 * went wrong, typically a bus reset happened mid-orb
1388 * or when sending the write (less likely).
1390 result = DID_BUS_BUSY << 16;
1391 sbp2_conditionally_block(orb->lu);
1394 dma_unmap_single(device->card->device, orb->base.request_bus,
1395 sizeof(orb->request), DMA_TO_DEVICE);
1396 sbp2_unmap_scatterlist(device->card->device, orb);
1398 orb->cmd->result = result;
1399 orb->cmd->scsi_done(orb->cmd);
1402 static int sbp2_map_scatterlist(struct sbp2_command_orb *orb,
1403 struct fw_device *device, struct sbp2_logical_unit *lu)
1405 struct scatterlist *sg = scsi_sglist(orb->cmd);
1406 int i, n;
1408 n = dma_map_sg(device->card->device, sg, scsi_sg_count(orb->cmd),
1409 orb->cmd->sc_data_direction);
1410 if (n == 0)
1411 goto fail;
1414 * Handle the special case where there is only one element in
1415 * the scatter list by converting it to an immediate block
1416 * request. This is also a workaround for broken devices such
1417 * as the second generation iPod which doesn't support page
1418 * tables.
1420 if (n == 1) {
1421 orb->request.data_descriptor.high =
1422 cpu_to_be32(lu->tgt->address_high);
1423 orb->request.data_descriptor.low =
1424 cpu_to_be32(sg_dma_address(sg));
1425 orb->request.misc |=
1426 cpu_to_be32(COMMAND_ORB_DATA_SIZE(sg_dma_len(sg)));
1427 return 0;
1430 for_each_sg(sg, sg, n, i) {
1431 orb->page_table[i].high = cpu_to_be32(sg_dma_len(sg) << 16);
1432 orb->page_table[i].low = cpu_to_be32(sg_dma_address(sg));
1435 orb->page_table_bus =
1436 dma_map_single(device->card->device, orb->page_table,
1437 sizeof(orb->page_table), DMA_TO_DEVICE);
1438 if (dma_mapping_error(device->card->device, orb->page_table_bus))
1439 goto fail_page_table;
1442 * The data_descriptor pointer is the one case where we need
1443 * to fill in the node ID part of the address. All other
1444 * pointers assume that the data referenced reside on the
1445 * initiator (i.e. us), but data_descriptor can refer to data
1446 * on other nodes so we need to put our ID in descriptor.high.
1448 orb->request.data_descriptor.high = cpu_to_be32(lu->tgt->address_high);
1449 orb->request.data_descriptor.low = cpu_to_be32(orb->page_table_bus);
1450 orb->request.misc |= cpu_to_be32(COMMAND_ORB_PAGE_TABLE_PRESENT |
1451 COMMAND_ORB_DATA_SIZE(n));
1453 return 0;
1455 fail_page_table:
1456 dma_unmap_sg(device->card->device, scsi_sglist(orb->cmd),
1457 scsi_sg_count(orb->cmd), orb->cmd->sc_data_direction);
1458 fail:
1459 return -ENOMEM;
1462 /* SCSI stack integration */
1464 static int sbp2_scsi_queuecommand(struct Scsi_Host *shost,
1465 struct scsi_cmnd *cmd)
1467 struct sbp2_logical_unit *lu = cmd->device->hostdata;
1468 struct fw_device *device = target_device(lu->tgt);
1469 struct sbp2_command_orb *orb;
1470 int generation, retval = SCSI_MLQUEUE_HOST_BUSY;
1473 * Bidirectional commands are not yet implemented, and unknown
1474 * transfer direction not handled.
1476 if (cmd->sc_data_direction == DMA_BIDIRECTIONAL) {
1477 fw_error("Can't handle DMA_BIDIRECTIONAL, rejecting command\n");
1478 cmd->result = DID_ERROR << 16;
1479 cmd->scsi_done(cmd);
1480 return 0;
1483 orb = kzalloc(sizeof(*orb), GFP_ATOMIC);
1484 if (orb == NULL) {
1485 fw_notify("failed to alloc orb\n");
1486 return SCSI_MLQUEUE_HOST_BUSY;
1489 /* Initialize rcode to something not RCODE_COMPLETE. */
1490 orb->base.rcode = -1;
1491 kref_init(&orb->base.kref);
1492 orb->lu = lu;
1493 orb->cmd = cmd;
1494 orb->request.next.high = cpu_to_be32(SBP2_ORB_NULL);
1495 orb->request.misc = cpu_to_be32(
1496 COMMAND_ORB_MAX_PAYLOAD(lu->tgt->max_payload) |
1497 COMMAND_ORB_SPEED(device->max_speed) |
1498 COMMAND_ORB_NOTIFY);
1500 if (cmd->sc_data_direction == DMA_FROM_DEVICE)
1501 orb->request.misc |= cpu_to_be32(COMMAND_ORB_DIRECTION);
1503 generation = device->generation;
1504 smp_rmb(); /* sbp2_map_scatterlist looks at tgt->address_high */
1506 if (scsi_sg_count(cmd) && sbp2_map_scatterlist(orb, device, lu) < 0)
1507 goto out;
1509 memcpy(orb->request.command_block, cmd->cmnd, cmd->cmd_len);
1511 orb->base.callback = complete_command_orb;
1512 orb->base.request_bus =
1513 dma_map_single(device->card->device, &orb->request,
1514 sizeof(orb->request), DMA_TO_DEVICE);
1515 if (dma_mapping_error(device->card->device, orb->base.request_bus)) {
1516 sbp2_unmap_scatterlist(device->card->device, orb);
1517 goto out;
1520 sbp2_send_orb(&orb->base, lu, lu->tgt->node_id, generation,
1521 lu->command_block_agent_address + SBP2_ORB_POINTER);
1522 retval = 0;
1523 out:
1524 kref_put(&orb->base.kref, free_orb);
1525 return retval;
1528 static int sbp2_scsi_slave_alloc(struct scsi_device *sdev)
1530 struct sbp2_logical_unit *lu = sdev->hostdata;
1532 /* (Re-)Adding logical units via the SCSI stack is not supported. */
1533 if (!lu)
1534 return -ENOSYS;
1536 sdev->allow_restart = 1;
1538 /* SBP-2 requires quadlet alignment of the data buffers. */
1539 blk_queue_update_dma_alignment(sdev->request_queue, 4 - 1);
1541 if (lu->tgt->workarounds & SBP2_WORKAROUND_INQUIRY_36)
1542 sdev->inquiry_len = 36;
1544 return 0;
1547 static int sbp2_scsi_slave_configure(struct scsi_device *sdev)
1549 struct sbp2_logical_unit *lu = sdev->hostdata;
1551 sdev->use_10_for_rw = 1;
1553 if (sbp2_param_exclusive_login)
1554 sdev->manage_start_stop = 1;
1556 if (sdev->type == TYPE_ROM)
1557 sdev->use_10_for_ms = 1;
1559 if (sdev->type == TYPE_DISK &&
1560 lu->tgt->workarounds & SBP2_WORKAROUND_MODE_SENSE_8)
1561 sdev->skip_ms_page_8 = 1;
1563 if (lu->tgt->workarounds & SBP2_WORKAROUND_FIX_CAPACITY)
1564 sdev->fix_capacity = 1;
1566 if (lu->tgt->workarounds & SBP2_WORKAROUND_POWER_CONDITION)
1567 sdev->start_stop_pwr_cond = 1;
1569 if (lu->tgt->workarounds & SBP2_WORKAROUND_128K_MAX_TRANS)
1570 blk_queue_max_hw_sectors(sdev->request_queue, 128 * 1024 / 512);
1572 blk_queue_max_segment_size(sdev->request_queue, SBP2_MAX_SEG_SIZE);
1574 return 0;
1578 * Called by scsi stack when something has really gone wrong. Usually
1579 * called when a command has timed-out for some reason.
1581 static int sbp2_scsi_abort(struct scsi_cmnd *cmd)
1583 struct sbp2_logical_unit *lu = cmd->device->hostdata;
1585 fw_notify("%s: sbp2_scsi_abort\n", lu->tgt->bus_id);
1586 sbp2_agent_reset(lu);
1587 sbp2_cancel_orbs(lu);
1589 return SUCCESS;
1593 * Format of /sys/bus/scsi/devices/.../ieee1394_id:
1594 * u64 EUI-64 : u24 directory_ID : u16 LUN (all printed in hexadecimal)
1596 * This is the concatenation of target port identifier and logical unit
1597 * identifier as per SAM-2...SAM-4 annex A.
1599 static ssize_t sbp2_sysfs_ieee1394_id_show(struct device *dev,
1600 struct device_attribute *attr, char *buf)
1602 struct scsi_device *sdev = to_scsi_device(dev);
1603 struct sbp2_logical_unit *lu;
1605 if (!sdev)
1606 return 0;
1608 lu = sdev->hostdata;
1610 return sprintf(buf, "%016llx:%06x:%04x\n",
1611 (unsigned long long)lu->tgt->guid,
1612 lu->tgt->directory_id, lu->lun);
1615 static DEVICE_ATTR(ieee1394_id, S_IRUGO, sbp2_sysfs_ieee1394_id_show, NULL);
1617 static struct device_attribute *sbp2_scsi_sysfs_attrs[] = {
1618 &dev_attr_ieee1394_id,
1619 NULL
1622 static struct scsi_host_template scsi_driver_template = {
1623 .module = THIS_MODULE,
1624 .name = "SBP-2 IEEE-1394",
1625 .proc_name = sbp2_driver_name,
1626 .queuecommand = sbp2_scsi_queuecommand,
1627 .slave_alloc = sbp2_scsi_slave_alloc,
1628 .slave_configure = sbp2_scsi_slave_configure,
1629 .eh_abort_handler = sbp2_scsi_abort,
1630 .this_id = -1,
1631 .sg_tablesize = SG_ALL,
1632 .use_clustering = ENABLE_CLUSTERING,
1633 .cmd_per_lun = 1,
1634 .can_queue = 1,
1635 .sdev_attrs = sbp2_scsi_sysfs_attrs,
1638 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
1639 MODULE_DESCRIPTION("SCSI over IEEE1394");
1640 MODULE_LICENSE("GPL");
1641 MODULE_DEVICE_TABLE(ieee1394, sbp2_id_table);
1643 /* Provide a module alias so root-on-sbp2 initrds don't break. */
1644 #ifndef CONFIG_IEEE1394_SBP2_MODULE
1645 MODULE_ALIAS("sbp2");
1646 #endif
1648 static int __init sbp2_init(void)
1650 return driver_register(&sbp2_driver.driver);
1653 static void __exit sbp2_cleanup(void)
1655 driver_unregister(&sbp2_driver.driver);
1658 module_init(sbp2_init);
1659 module_exit(sbp2_cleanup);