3 * device driver for Conexant 2388x based TV cards
6 * (c) 2003 Gerd Knorr <kraxel@bytesex.org> [SuSE Labs]
8 * (c) 2005-2006 Mauro Carvalho Chehab <mchehab@infradead.org>
10 * - video_ioctl2 conversion
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
23 * You should have received a copy of the GNU General Public License
24 * along with this program; if not, write to the Free Software
25 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
28 #include <linux/init.h>
29 #include <linux/list.h>
30 #include <linux/module.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/kmod.h>
34 #include <linux/sound.h>
35 #include <linux/interrupt.h>
36 #include <linux/pci.h>
37 #include <linux/delay.h>
38 #include <linux/videodev2.h>
39 #include <linux/mutex.h>
42 #include <media/v4l2-common.h>
43 #include <media/v4l2-ioctl.h>
45 MODULE_DESCRIPTION("v4l2 driver module for cx2388x based TV cards");
46 MODULE_AUTHOR("Gerd Knorr <kraxel@bytesex.org> [SuSE Labs]");
47 MODULE_LICENSE("GPL");
49 /* ------------------------------------------------------------------ */
51 static unsigned int core_debug
;
52 module_param(core_debug
,int,0644);
53 MODULE_PARM_DESC(core_debug
,"enable debug messages [core]");
55 static unsigned int nicam
;
56 module_param(nicam
,int,0644);
57 MODULE_PARM_DESC(nicam
,"tv audio is nicam");
59 static unsigned int nocomb
;
60 module_param(nocomb
,int,0644);
61 MODULE_PARM_DESC(nocomb
,"disable comb filter");
63 #define dprintk(level,fmt, arg...) if (core_debug >= level) \
64 printk(KERN_DEBUG "%s: " fmt, core->name , ## arg)
66 static unsigned int cx88_devcount
;
67 static LIST_HEAD(cx88_devlist
);
68 static DEFINE_MUTEX(devlist
);
70 #define NO_SYNC_LINE (-1U)
72 /* @lpi: lines per IRQ, or 0 to not generate irqs. Note: IRQ to be
73 generated _after_ lpi lines are transferred. */
74 static __le32
* cx88_risc_field(__le32
*rp
, struct scatterlist
*sglist
,
75 unsigned int offset
, u32 sync_line
,
76 unsigned int bpl
, unsigned int padding
,
77 unsigned int lines
, unsigned int lpi
)
79 struct scatterlist
*sg
;
80 unsigned int line
,todo
,sol
;
82 /* sync instruction */
83 if (sync_line
!= NO_SYNC_LINE
)
84 *(rp
++) = cpu_to_le32(RISC_RESYNC
| sync_line
);
88 for (line
= 0; line
< lines
; line
++) {
89 while (offset
&& offset
>= sg_dma_len(sg
)) {
90 offset
-= sg_dma_len(sg
);
93 if (lpi
&& line
>0 && !(line
% lpi
))
94 sol
= RISC_SOL
| RISC_IRQ1
| RISC_CNT_INC
;
97 if (bpl
<= sg_dma_len(sg
)-offset
) {
98 /* fits into current chunk */
99 *(rp
++)=cpu_to_le32(RISC_WRITE
|sol
|RISC_EOL
|bpl
);
100 *(rp
++)=cpu_to_le32(sg_dma_address(sg
)+offset
);
103 /* scanline needs to be split */
105 *(rp
++)=cpu_to_le32(RISC_WRITE
|sol
|
106 (sg_dma_len(sg
)-offset
));
107 *(rp
++)=cpu_to_le32(sg_dma_address(sg
)+offset
);
108 todo
-= (sg_dma_len(sg
)-offset
);
111 while (todo
> sg_dma_len(sg
)) {
112 *(rp
++)=cpu_to_le32(RISC_WRITE
|
114 *(rp
++)=cpu_to_le32(sg_dma_address(sg
));
115 todo
-= sg_dma_len(sg
);
118 *(rp
++)=cpu_to_le32(RISC_WRITE
|RISC_EOL
|todo
);
119 *(rp
++)=cpu_to_le32(sg_dma_address(sg
));
128 int cx88_risc_buffer(struct pci_dev
*pci
, struct btcx_riscmem
*risc
,
129 struct scatterlist
*sglist
,
130 unsigned int top_offset
, unsigned int bottom_offset
,
131 unsigned int bpl
, unsigned int padding
, unsigned int lines
)
133 u32 instructions
,fields
;
138 if (UNSET
!= top_offset
)
140 if (UNSET
!= bottom_offset
)
143 /* estimate risc mem: worst case is one write per page border +
144 one write per scan line + syncs + jump (all 2 dwords). Padding
145 can cause next bpl to start close to a page border. First DMA
146 region may be smaller than PAGE_SIZE */
147 instructions
= fields
* (1 + ((bpl
+ padding
) * lines
) / PAGE_SIZE
+ lines
);
149 if ((rc
= btcx_riscmem_alloc(pci
,risc
,instructions
*8)) < 0)
152 /* write risc instructions */
154 if (UNSET
!= top_offset
)
155 rp
= cx88_risc_field(rp
, sglist
, top_offset
, 0,
156 bpl
, padding
, lines
, 0);
157 if (UNSET
!= bottom_offset
)
158 rp
= cx88_risc_field(rp
, sglist
, bottom_offset
, 0x200,
159 bpl
, padding
, lines
, 0);
161 /* save pointer to jmp instruction address */
163 BUG_ON((risc
->jmp
- risc
->cpu
+ 2) * sizeof (*risc
->cpu
) > risc
->size
);
167 int cx88_risc_databuffer(struct pci_dev
*pci
, struct btcx_riscmem
*risc
,
168 struct scatterlist
*sglist
, unsigned int bpl
,
169 unsigned int lines
, unsigned int lpi
)
175 /* estimate risc mem: worst case is one write per page border +
176 one write per scan line + syncs + jump (all 2 dwords). Here
177 there is no padding and no sync. First DMA region may be smaller
179 instructions
= 1 + (bpl
* lines
) / PAGE_SIZE
+ lines
;
181 if ((rc
= btcx_riscmem_alloc(pci
,risc
,instructions
*8)) < 0)
184 /* write risc instructions */
186 rp
= cx88_risc_field(rp
, sglist
, 0, NO_SYNC_LINE
, bpl
, 0, lines
, lpi
);
188 /* save pointer to jmp instruction address */
190 BUG_ON((risc
->jmp
- risc
->cpu
+ 2) * sizeof (*risc
->cpu
) > risc
->size
);
194 int cx88_risc_stopper(struct pci_dev
*pci
, struct btcx_riscmem
*risc
,
195 u32 reg
, u32 mask
, u32 value
)
200 if ((rc
= btcx_riscmem_alloc(pci
, risc
, 4*16)) < 0)
203 /* write risc instructions */
205 *(rp
++) = cpu_to_le32(RISC_WRITECR
| RISC_IRQ2
| RISC_IMM
);
206 *(rp
++) = cpu_to_le32(reg
);
207 *(rp
++) = cpu_to_le32(value
);
208 *(rp
++) = cpu_to_le32(mask
);
209 *(rp
++) = cpu_to_le32(RISC_JUMP
);
210 *(rp
++) = cpu_to_le32(risc
->dma
);
215 cx88_free_buffer(struct videobuf_queue
*q
, struct cx88_buffer
*buf
)
217 struct videobuf_dmabuf
*dma
=videobuf_to_dma(&buf
->vb
);
219 BUG_ON(in_interrupt());
220 videobuf_waiton(q
, &buf
->vb
, 0, 0);
221 videobuf_dma_unmap(q
->dev
, dma
);
222 videobuf_dma_free(dma
);
223 btcx_riscmem_free(to_pci_dev(q
->dev
), &buf
->risc
);
224 buf
->vb
.state
= VIDEOBUF_NEEDS_INIT
;
227 /* ------------------------------------------------------------------ */
228 /* our SRAM memory layout */
230 /* we are going to put all thr risc programs into host memory, so we
231 * can use the whole SDRAM for the DMA fifos. To simplify things, we
232 * use a static memory layout. That surely will waste memory in case
233 * we don't use all DMA channels at the same time (which will be the
234 * case most of the time). But that still gives us enough FIFO space
235 * to be able to deal with insane long pci latencies ...
237 * FIFO space allocations:
238 * channel 21 (y video) - 10.0k
239 * channel 22 (u video) - 2.0k
240 * channel 23 (v video) - 2.0k
241 * channel 24 (vbi) - 4.0k
242 * channels 25+26 (audio) - 4.0k
243 * channel 28 (mpeg) - 4.0k
244 * channel 27 (audio rds)- 3.0k
247 * Every channel has 160 bytes control data (64 bytes instruction
248 * queue and 6 CDT entries), which is close to 2k total.
251 * 0x0000 - 0x03ff CMDs / reserved
252 * 0x0400 - 0x0bff instruction queues + CDs
256 const struct sram_channel
const cx88_sram_channels
[] = {
258 .name
= "video y / packed",
259 .cmds_start
= 0x180040,
260 .ctrl_start
= 0x180400,
261 .cdt
= 0x180400 + 64,
262 .fifo_start
= 0x180c00,
263 .fifo_size
= 0x002800,
264 .ptr1_reg
= MO_DMA21_PTR1
,
265 .ptr2_reg
= MO_DMA21_PTR2
,
266 .cnt1_reg
= MO_DMA21_CNT1
,
267 .cnt2_reg
= MO_DMA21_CNT2
,
271 .cmds_start
= 0x180080,
272 .ctrl_start
= 0x1804a0,
273 .cdt
= 0x1804a0 + 64,
274 .fifo_start
= 0x183400,
275 .fifo_size
= 0x000800,
276 .ptr1_reg
= MO_DMA22_PTR1
,
277 .ptr2_reg
= MO_DMA22_PTR2
,
278 .cnt1_reg
= MO_DMA22_CNT1
,
279 .cnt2_reg
= MO_DMA22_CNT2
,
283 .cmds_start
= 0x1800c0,
284 .ctrl_start
= 0x180540,
285 .cdt
= 0x180540 + 64,
286 .fifo_start
= 0x183c00,
287 .fifo_size
= 0x000800,
288 .ptr1_reg
= MO_DMA23_PTR1
,
289 .ptr2_reg
= MO_DMA23_PTR2
,
290 .cnt1_reg
= MO_DMA23_CNT1
,
291 .cnt2_reg
= MO_DMA23_CNT2
,
295 .cmds_start
= 0x180100,
296 .ctrl_start
= 0x1805e0,
297 .cdt
= 0x1805e0 + 64,
298 .fifo_start
= 0x184400,
299 .fifo_size
= 0x001000,
300 .ptr1_reg
= MO_DMA24_PTR1
,
301 .ptr2_reg
= MO_DMA24_PTR2
,
302 .cnt1_reg
= MO_DMA24_CNT1
,
303 .cnt2_reg
= MO_DMA24_CNT2
,
306 .name
= "audio from",
307 .cmds_start
= 0x180140,
308 .ctrl_start
= 0x180680,
309 .cdt
= 0x180680 + 64,
310 .fifo_start
= 0x185400,
311 .fifo_size
= 0x001000,
312 .ptr1_reg
= MO_DMA25_PTR1
,
313 .ptr2_reg
= MO_DMA25_PTR2
,
314 .cnt1_reg
= MO_DMA25_CNT1
,
315 .cnt2_reg
= MO_DMA25_CNT2
,
319 .cmds_start
= 0x180180,
320 .ctrl_start
= 0x180720,
321 .cdt
= 0x180680 + 64, /* same as audio IN */
322 .fifo_start
= 0x185400, /* same as audio IN */
323 .fifo_size
= 0x001000, /* same as audio IN */
324 .ptr1_reg
= MO_DMA26_PTR1
,
325 .ptr2_reg
= MO_DMA26_PTR2
,
326 .cnt1_reg
= MO_DMA26_CNT1
,
327 .cnt2_reg
= MO_DMA26_CNT2
,
331 .cmds_start
= 0x180200,
332 .ctrl_start
= 0x1807C0,
333 .cdt
= 0x1807C0 + 64,
334 .fifo_start
= 0x186400,
335 .fifo_size
= 0x001000,
336 .ptr1_reg
= MO_DMA28_PTR1
,
337 .ptr2_reg
= MO_DMA28_PTR2
,
338 .cnt1_reg
= MO_DMA28_CNT1
,
339 .cnt2_reg
= MO_DMA28_CNT2
,
343 .cmds_start
= 0x1801C0,
344 .ctrl_start
= 0x180860,
345 .cdt
= 0x180860 + 64,
346 .fifo_start
= 0x187400,
347 .fifo_size
= 0x000C00,
348 .ptr1_reg
= MO_DMA27_PTR1
,
349 .ptr2_reg
= MO_DMA27_PTR2
,
350 .cnt1_reg
= MO_DMA27_CNT1
,
351 .cnt2_reg
= MO_DMA27_CNT2
,
355 int cx88_sram_channel_setup(struct cx88_core
*core
,
356 const struct sram_channel
*ch
,
357 unsigned int bpl
, u32 risc
)
359 unsigned int i
,lines
;
362 bpl
= (bpl
+ 7) & ~7; /* alignment */
364 lines
= ch
->fifo_size
/ bpl
;
370 for (i
= 0; i
< lines
; i
++)
371 cx_write(cdt
+ 16*i
, ch
->fifo_start
+ bpl
*i
);
374 cx_write(ch
->cmds_start
+ 0, risc
);
375 cx_write(ch
->cmds_start
+ 4, cdt
);
376 cx_write(ch
->cmds_start
+ 8, (lines
*16) >> 3);
377 cx_write(ch
->cmds_start
+ 12, ch
->ctrl_start
);
378 cx_write(ch
->cmds_start
+ 16, 64 >> 2);
379 for (i
= 20; i
< 64; i
+= 4)
380 cx_write(ch
->cmds_start
+ i
, 0);
383 cx_write(ch
->ptr1_reg
, ch
->fifo_start
);
384 cx_write(ch
->ptr2_reg
, cdt
);
385 cx_write(ch
->cnt1_reg
, (bpl
>> 3) -1);
386 cx_write(ch
->cnt2_reg
, (lines
*16) >> 3);
388 dprintk(2,"sram setup %s: bpl=%d lines=%d\n", ch
->name
, bpl
, lines
);
392 /* ------------------------------------------------------------------ */
393 /* debug helper code */
395 static int cx88_risc_decode(u32 risc
)
397 static const char * const instr
[16] = {
398 [ RISC_SYNC
>> 28 ] = "sync",
399 [ RISC_WRITE
>> 28 ] = "write",
400 [ RISC_WRITEC
>> 28 ] = "writec",
401 [ RISC_READ
>> 28 ] = "read",
402 [ RISC_READC
>> 28 ] = "readc",
403 [ RISC_JUMP
>> 28 ] = "jump",
404 [ RISC_SKIP
>> 28 ] = "skip",
405 [ RISC_WRITERM
>> 28 ] = "writerm",
406 [ RISC_WRITECM
>> 28 ] = "writecm",
407 [ RISC_WRITECR
>> 28 ] = "writecr",
409 static int const incr
[16] = {
410 [ RISC_WRITE
>> 28 ] = 2,
411 [ RISC_JUMP
>> 28 ] = 2,
412 [ RISC_WRITERM
>> 28 ] = 3,
413 [ RISC_WRITECM
>> 28 ] = 3,
414 [ RISC_WRITECR
>> 28 ] = 4,
416 static const char * const bits
[] = {
417 "12", "13", "14", "resync",
418 "cnt0", "cnt1", "18", "19",
419 "20", "21", "22", "23",
420 "irq1", "irq2", "eol", "sol",
424 printk("0x%08x [ %s", risc
,
425 instr
[risc
>> 28] ? instr
[risc
>> 28] : "INVALID");
426 for (i
= ARRAY_SIZE(bits
)-1; i
>= 0; i
--)
427 if (risc
& (1 << (i
+ 12)))
428 printk(" %s",bits
[i
]);
429 printk(" count=%d ]\n", risc
& 0xfff);
430 return incr
[risc
>> 28] ? incr
[risc
>> 28] : 1;
434 void cx88_sram_channel_dump(struct cx88_core
*core
,
435 const struct sram_channel
*ch
)
437 static const char * const name
[] = {
453 printk("%s: %s - dma channel status dump\n",
454 core
->name
,ch
->name
);
455 for (i
= 0; i
< ARRAY_SIZE(name
); i
++)
456 printk("%s: cmds: %-12s: 0x%08x\n",
458 cx_read(ch
->cmds_start
+ 4*i
));
459 for (n
= 1, i
= 0; i
< 4; i
++) {
460 risc
= cx_read(ch
->cmds_start
+ 4 * (i
+11));
461 printk("%s: risc%d: ", core
->name
, i
);
463 printk("0x%08x [ arg #%d ]\n", risc
, n
);
465 n
= cx88_risc_decode(risc
);
467 for (i
= 0; i
< 16; i
+= n
) {
468 risc
= cx_read(ch
->ctrl_start
+ 4 * i
);
469 printk("%s: iq %x: ", core
->name
, i
);
470 n
= cx88_risc_decode(risc
);
471 for (j
= 1; j
< n
; j
++) {
472 risc
= cx_read(ch
->ctrl_start
+ 4 * (i
+j
));
473 printk("%s: iq %x: 0x%08x [ arg #%d ]\n",
474 core
->name
, i
+j
, risc
, j
);
478 printk("%s: fifo: 0x%08x -> 0x%x\n",
479 core
->name
, ch
->fifo_start
, ch
->fifo_start
+ch
->fifo_size
);
480 printk("%s: ctrl: 0x%08x -> 0x%x\n",
481 core
->name
, ch
->ctrl_start
, ch
->ctrl_start
+6*16);
482 printk("%s: ptr1_reg: 0x%08x\n",
483 core
->name
,cx_read(ch
->ptr1_reg
));
484 printk("%s: ptr2_reg: 0x%08x\n",
485 core
->name
,cx_read(ch
->ptr2_reg
));
486 printk("%s: cnt1_reg: 0x%08x\n",
487 core
->name
,cx_read(ch
->cnt1_reg
));
488 printk("%s: cnt2_reg: 0x%08x\n",
489 core
->name
,cx_read(ch
->cnt2_reg
));
492 static const char *cx88_pci_irqs
[32] = {
493 "vid", "aud", "ts", "vip", "hst", "5", "6", "tm1",
494 "src_dma", "dst_dma", "risc_rd_err", "risc_wr_err",
495 "brdg_err", "src_dma_err", "dst_dma_err", "ipb_dma_err",
496 "i2c", "i2c_rack", "ir_smp", "gpio0", "gpio1"
499 void cx88_print_irqbits(const char *name
, const char *tag
, const char *strings
[],
500 int len
, u32 bits
, u32 mask
)
504 printk(KERN_DEBUG
"%s: %s [0x%x]", name
, tag
, bits
);
505 for (i
= 0; i
< len
; i
++) {
506 if (!(bits
& (1 << i
)))
509 printk(" %s", strings
[i
]);
512 if (!(mask
& (1 << i
)))
519 /* ------------------------------------------------------------------ */
521 int cx88_core_irq(struct cx88_core
*core
, u32 status
)
525 if (status
& PCI_INT_IR_SMPINT
) {
530 cx88_print_irqbits(core
->name
, "irq pci",
531 cx88_pci_irqs
, ARRAY_SIZE(cx88_pci_irqs
),
532 status
, core
->pci_irqmask
);
536 void cx88_wakeup(struct cx88_core
*core
,
537 struct cx88_dmaqueue
*q
, u32 count
)
539 struct cx88_buffer
*buf
;
542 for (bc
= 0;; bc
++) {
543 if (list_empty(&q
->active
))
545 buf
= list_entry(q
->active
.next
,
546 struct cx88_buffer
, vb
.queue
);
547 /* count comes from the hw and is is 16bit wide --
548 * this trick handles wrap-arounds correctly for
549 * up to 32767 buffers in flight... */
550 if ((s16
) (count
- buf
->count
) < 0)
552 do_gettimeofday(&buf
->vb
.ts
);
553 dprintk(2,"[%p/%d] wakeup reg=%d buf=%d\n",buf
,buf
->vb
.i
,
555 buf
->vb
.state
= VIDEOBUF_DONE
;
556 list_del(&buf
->vb
.queue
);
557 wake_up(&buf
->vb
.done
);
559 if (list_empty(&q
->active
)) {
560 del_timer(&q
->timeout
);
562 mod_timer(&q
->timeout
, jiffies
+BUFFER_TIMEOUT
);
565 dprintk(2, "%s: %d buffers handled (should be 1)\n",
569 void cx88_shutdown(struct cx88_core
*core
)
571 /* disable RISC controller + IRQs */
572 cx_write(MO_DEV_CNTRL2
, 0);
574 /* stop dma transfers */
575 cx_write(MO_VID_DMACNTRL
, 0x0);
576 cx_write(MO_AUD_DMACNTRL
, 0x0);
577 cx_write(MO_TS_DMACNTRL
, 0x0);
578 cx_write(MO_VIP_DMACNTRL
, 0x0);
579 cx_write(MO_GPHST_DMACNTRL
, 0x0);
581 /* stop interrupts */
582 cx_write(MO_PCI_INTMSK
, 0x0);
583 cx_write(MO_VID_INTMSK
, 0x0);
584 cx_write(MO_AUD_INTMSK
, 0x0);
585 cx_write(MO_TS_INTMSK
, 0x0);
586 cx_write(MO_VIP_INTMSK
, 0x0);
587 cx_write(MO_GPHST_INTMSK
, 0x0);
590 cx_write(VID_CAPTURE_CONTROL
, 0);
593 int cx88_reset(struct cx88_core
*core
)
595 dprintk(1,"%s\n",__func__
);
598 /* clear irq status */
599 cx_write(MO_VID_INTSTAT
, 0xFFFFFFFF); // Clear PIV int
600 cx_write(MO_PCI_INTSTAT
, 0xFFFFFFFF); // Clear PCI int
601 cx_write(MO_INT1_STAT
, 0xFFFFFFFF); // Clear RISC int
607 cx88_sram_channel_setup(core
, &cx88_sram_channels
[SRAM_CH21
], 720*4, 0);
608 cx88_sram_channel_setup(core
, &cx88_sram_channels
[SRAM_CH22
], 128, 0);
609 cx88_sram_channel_setup(core
, &cx88_sram_channels
[SRAM_CH23
], 128, 0);
610 cx88_sram_channel_setup(core
, &cx88_sram_channels
[SRAM_CH24
], 128, 0);
611 cx88_sram_channel_setup(core
, &cx88_sram_channels
[SRAM_CH25
], 128, 0);
612 cx88_sram_channel_setup(core
, &cx88_sram_channels
[SRAM_CH26
], 128, 0);
613 cx88_sram_channel_setup(core
, &cx88_sram_channels
[SRAM_CH28
], 188*4, 0);
614 cx88_sram_channel_setup(core
, &cx88_sram_channels
[SRAM_CH27
], 128, 0);
617 cx_write(MO_INPUT_FORMAT
, ((1 << 13) | // agc enable
618 (1 << 12) | // agc gain
619 (1 << 11) | // adaptibe agc
620 (0 << 10) | // chroma agc
621 (0 << 9) | // ckillen
624 /* setup image format */
625 cx_andor(MO_COLOR_CTRL
, 0x4000, 0x4000);
627 /* setup FIFO Thresholds */
628 cx_write(MO_PDMA_STHRSH
, 0x0807);
629 cx_write(MO_PDMA_DTHRSH
, 0x0807);
631 /* fixes flashing of image */
632 cx_write(MO_AGC_SYNC_TIP1
, 0x0380000F);
633 cx_write(MO_AGC_BACK_VBI
, 0x00E00555);
635 cx_write(MO_VID_INTSTAT
, 0xFFFFFFFF); // Clear PIV int
636 cx_write(MO_PCI_INTSTAT
, 0xFFFFFFFF); // Clear PCI int
637 cx_write(MO_INT1_STAT
, 0xFFFFFFFF); // Clear RISC int
639 /* set default notch filter */
640 cx_andor(MO_HTOTAL
, 0x1800, (HLNotchFilter4xFsc
<< 11));
642 /* Reset on-board parts */
643 cx_write(MO_SRST_IO
, 0);
645 cx_write(MO_SRST_IO
, 1);
650 /* ------------------------------------------------------------------ */
652 static unsigned int inline norm_swidth(v4l2_std_id norm
)
654 return (norm
& (V4L2_STD_MN
& ~V4L2_STD_PAL_Nc
)) ? 754 : 922;
657 static unsigned int inline norm_hdelay(v4l2_std_id norm
)
659 return (norm
& (V4L2_STD_MN
& ~V4L2_STD_PAL_Nc
)) ? 135 : 186;
662 static unsigned int inline norm_vdelay(v4l2_std_id norm
)
664 return (norm
& V4L2_STD_625_50
) ? 0x24 : 0x18;
667 static unsigned int inline norm_fsc8(v4l2_std_id norm
)
669 if (norm
& V4L2_STD_PAL_M
)
670 return 28604892; // 3.575611 MHz
672 if (norm
& (V4L2_STD_PAL_Nc
))
673 return 28656448; // 3.582056 MHz
675 if (norm
& V4L2_STD_NTSC
) // All NTSC/M and variants
676 return 28636360; // 3.57954545 MHz +/- 10 Hz
678 /* SECAM have also different sub carrier for chroma,
679 but step_db and step_dr, at cx88_set_tvnorm already handles that.
681 The same FSC applies to PAL/BGDKIH, PAL/60, NTSC/4.43 and PAL/N
684 return 35468950; // 4.43361875 MHz +/- 5 Hz
687 static unsigned int inline norm_htotal(v4l2_std_id norm
)
690 unsigned int fsc4
=norm_fsc8(norm
)/2;
692 /* returns 4*FSC / vtotal / frames per seconds */
693 return (norm
& V4L2_STD_625_50
) ?
694 ((fsc4
+312)/625+12)/25 :
695 ((fsc4
+262)/525*1001+15000)/30000;
698 static unsigned int inline norm_vbipack(v4l2_std_id norm
)
700 return (norm
& V4L2_STD_625_50
) ? 511 : 400;
703 int cx88_set_scale(struct cx88_core
*core
, unsigned int width
, unsigned int height
,
704 enum v4l2_field field
)
706 unsigned int swidth
= norm_swidth(core
->tvnorm
);
707 unsigned int sheight
= norm_maxh(core
->tvnorm
);
710 dprintk(1,"set_scale: %dx%d [%s%s,%s]\n", width
, height
,
711 V4L2_FIELD_HAS_TOP(field
) ? "T" : "",
712 V4L2_FIELD_HAS_BOTTOM(field
) ? "B" : "",
713 v4l2_norm_to_name(core
->tvnorm
));
714 if (!V4L2_FIELD_HAS_BOTH(field
))
717 // recalc H delay and scale registers
718 value
= (width
* norm_hdelay(core
->tvnorm
)) / swidth
;
720 cx_write(MO_HDELAY_EVEN
, value
);
721 cx_write(MO_HDELAY_ODD
, value
);
722 dprintk(1,"set_scale: hdelay 0x%04x (width %d)\n", value
,swidth
);
724 value
= (swidth
* 4096 / width
) - 4096;
725 cx_write(MO_HSCALE_EVEN
, value
);
726 cx_write(MO_HSCALE_ODD
, value
);
727 dprintk(1,"set_scale: hscale 0x%04x\n", value
);
729 cx_write(MO_HACTIVE_EVEN
, width
);
730 cx_write(MO_HACTIVE_ODD
, width
);
731 dprintk(1,"set_scale: hactive 0x%04x\n", width
);
733 // recalc V scale Register (delay is constant)
734 cx_write(MO_VDELAY_EVEN
, norm_vdelay(core
->tvnorm
));
735 cx_write(MO_VDELAY_ODD
, norm_vdelay(core
->tvnorm
));
736 dprintk(1,"set_scale: vdelay 0x%04x\n", norm_vdelay(core
->tvnorm
));
738 value
= (0x10000 - (sheight
* 512 / height
- 512)) & 0x1fff;
739 cx_write(MO_VSCALE_EVEN
, value
);
740 cx_write(MO_VSCALE_ODD
, value
);
741 dprintk(1,"set_scale: vscale 0x%04x\n", value
);
743 cx_write(MO_VACTIVE_EVEN
, sheight
);
744 cx_write(MO_VACTIVE_ODD
, sheight
);
745 dprintk(1,"set_scale: vactive 0x%04x\n", sheight
);
749 value
|= (1 << 19); // CFILT (default)
750 if (core
->tvnorm
& V4L2_STD_SECAM
) {
754 if (INPUT(core
->input
).type
== CX88_VMUX_SVIDEO
)
755 value
|= (1 << 13) | (1 << 5);
756 if (V4L2_FIELD_INTERLACED
== field
)
757 value
|= (1 << 3); // VINT (interlaced vertical scaling)
759 value
|= (1 << 0); // 3-tap interpolation
761 value
|= (1 << 1); // 5-tap interpolation
763 value
|= (3 << 5); // disable comb filter
765 cx_andor(MO_FILTER_EVEN
, 0x7ffc7f, value
); /* preserve PEAKEN, PSEL */
766 cx_andor(MO_FILTER_ODD
, 0x7ffc7f, value
);
767 dprintk(1,"set_scale: filter 0x%04x\n", value
);
772 static const u32 xtal
= 28636363;
774 static int set_pll(struct cx88_core
*core
, int prescale
, u32 ofreq
)
776 static const u32 pre
[] = { 0, 0, 0, 3, 2, 1 };
786 pll
= ofreq
* 8 * prescale
* (u64
)(1 << 20);
788 reg
= (pll
& 0x3ffffff) | (pre
[prescale
] << 26);
789 if (((reg
>> 20) & 0x3f) < 14) {
790 printk("%s/0: pll out of range\n",core
->name
);
794 dprintk(1,"set_pll: MO_PLL_REG 0x%08x [old=0x%08x,freq=%d]\n",
795 reg
, cx_read(MO_PLL_REG
), ofreq
);
796 cx_write(MO_PLL_REG
, reg
);
797 for (i
= 0; i
< 100; i
++) {
798 reg
= cx_read(MO_DEVICE_STATUS
);
800 dprintk(1,"pll locked [pre=%d,ofreq=%d]\n",
804 dprintk(1,"pll not locked yet, waiting ...\n");
807 dprintk(1,"pll NOT locked [pre=%d,ofreq=%d]\n",prescale
,ofreq
);
811 int cx88_start_audio_dma(struct cx88_core
*core
)
813 /* constant 128 made buzz in analog Nicam-stereo for bigger fifo_size */
814 int bpl
= cx88_sram_channels
[SRAM_CH25
].fifo_size
/4;
816 int rds_bpl
= cx88_sram_channels
[SRAM_CH27
].fifo_size
/AUD_RDS_LINES
;
818 /* If downstream RISC is enabled, bail out; ALSA is managing DMA */
819 if (cx_read(MO_AUD_DMACNTRL
) & 0x10)
822 /* setup fifo + format */
823 cx88_sram_channel_setup(core
, &cx88_sram_channels
[SRAM_CH25
], bpl
, 0);
824 cx88_sram_channel_setup(core
, &cx88_sram_channels
[SRAM_CH26
], bpl
, 0);
825 cx88_sram_channel_setup(core
, &cx88_sram_channels
[SRAM_CH27
],
828 cx_write(MO_AUDD_LNGTH
, bpl
); /* fifo bpl size */
829 cx_write(MO_AUDR_LNGTH
, rds_bpl
); /* fifo bpl size */
831 /* enable Up, Down and Audio RDS fifo */
832 cx_write(MO_AUD_DMACNTRL
, 0x0007);
837 int cx88_stop_audio_dma(struct cx88_core
*core
)
839 /* If downstream RISC is enabled, bail out; ALSA is managing DMA */
840 if (cx_read(MO_AUD_DMACNTRL
) & 0x10)
844 cx_write(MO_AUD_DMACNTRL
, 0x0000);
849 static int set_tvaudio(struct cx88_core
*core
)
851 v4l2_std_id norm
= core
->tvnorm
;
853 if (CX88_VMUX_TELEVISION
!= INPUT(core
->input
).type
&&
854 CX88_VMUX_CABLE
!= INPUT(core
->input
).type
)
857 if (V4L2_STD_PAL_BG
& norm
) {
858 core
->tvaudio
= WW_BG
;
860 } else if (V4L2_STD_PAL_DK
& norm
) {
861 core
->tvaudio
= WW_DK
;
863 } else if (V4L2_STD_PAL_I
& norm
) {
864 core
->tvaudio
= WW_I
;
866 } else if (V4L2_STD_SECAM_L
& norm
) {
867 core
->tvaudio
= WW_L
;
869 } else if ((V4L2_STD_SECAM_B
| V4L2_STD_SECAM_G
| V4L2_STD_SECAM_H
) & norm
) {
870 core
->tvaudio
= WW_BG
;
872 } else if (V4L2_STD_SECAM_DK
& norm
) {
873 core
->tvaudio
= WW_DK
;
875 } else if ((V4L2_STD_NTSC_M
& norm
) ||
876 (V4L2_STD_PAL_M
& norm
)) {
877 core
->tvaudio
= WW_BTSC
;
879 } else if (V4L2_STD_NTSC_M_JP
& norm
) {
880 core
->tvaudio
= WW_EIAJ
;
883 printk("%s/0: tvaudio support needs work for this tv norm [%s], sorry\n",
884 core
->name
, v4l2_norm_to_name(core
->tvnorm
));
885 core
->tvaudio
= WW_NONE
;
889 cx_andor(MO_AFECFG_IO
, 0x1f, 0x0);
890 cx88_set_tvaudio(core
);
891 /* cx88_set_stereo(dev,V4L2_TUNER_MODE_STEREO); */
894 This should be needed only on cx88-alsa. It seems that some cx88 chips have
895 bugs and does require DMA enabled for it to work.
897 cx88_start_audio_dma(core
);
903 int cx88_set_tvnorm(struct cx88_core
*core
, v4l2_std_id norm
)
910 u32 bdelay
,agcdelay
,htotal
;
911 u32 cxiformat
, cxoformat
;
914 fsc8
= norm_fsc8(norm
);
920 if (norm
& V4L2_STD_NTSC_M_JP
) {
921 cxiformat
= VideoFormatNTSCJapan
;
922 cxoformat
= 0x181f0008;
923 } else if (norm
& V4L2_STD_NTSC_443
) {
924 cxiformat
= VideoFormatNTSC443
;
925 cxoformat
= 0x181f0008;
926 } else if (norm
& V4L2_STD_PAL_M
) {
927 cxiformat
= VideoFormatPALM
;
928 cxoformat
= 0x1c1f0008;
929 } else if (norm
& V4L2_STD_PAL_N
) {
930 cxiformat
= VideoFormatPALN
;
931 cxoformat
= 0x1c1f0008;
932 } else if (norm
& V4L2_STD_PAL_Nc
) {
933 cxiformat
= VideoFormatPALNC
;
934 cxoformat
= 0x1c1f0008;
935 } else if (norm
& V4L2_STD_PAL_60
) {
936 cxiformat
= VideoFormatPAL60
;
937 cxoformat
= 0x181f0008;
938 } else if (norm
& V4L2_STD_NTSC
) {
939 cxiformat
= VideoFormatNTSC
;
940 cxoformat
= 0x181f0008;
941 } else if (norm
& V4L2_STD_SECAM
) {
942 step_db
= 4250000 * 8;
943 step_dr
= 4406250 * 8;
945 cxiformat
= VideoFormatSECAM
;
946 cxoformat
= 0x181f0008;
948 cxiformat
= VideoFormatPAL
;
949 cxoformat
= 0x181f0008;
952 dprintk(1,"set_tvnorm: \"%s\" fsc8=%d adc=%d vdec=%d db/dr=%d/%d\n",
953 v4l2_norm_to_name(core
->tvnorm
), fsc8
, adc_clock
, vdec_clock
,
955 set_pll(core
,2,vdec_clock
);
957 dprintk(1,"set_tvnorm: MO_INPUT_FORMAT 0x%08x [old=0x%08x]\n",
958 cxiformat
, cx_read(MO_INPUT_FORMAT
) & 0x0f);
959 /* Chroma AGC must be disabled if SECAM is used, we enable it
960 by default on PAL and NTSC */
961 cx_andor(MO_INPUT_FORMAT
, 0x40f,
962 norm
& V4L2_STD_SECAM
? cxiformat
: cxiformat
| 0x400);
964 // FIXME: as-is from DScaler
965 dprintk(1,"set_tvnorm: MO_OUTPUT_FORMAT 0x%08x [old=0x%08x]\n",
966 cxoformat
, cx_read(MO_OUTPUT_FORMAT
));
967 cx_write(MO_OUTPUT_FORMAT
, cxoformat
);
969 // MO_SCONV_REG = adc clock / video dec clock * 2^17
970 tmp64
= adc_clock
* (u64
)(1 << 17);
971 do_div(tmp64
, vdec_clock
);
972 dprintk(1,"set_tvnorm: MO_SCONV_REG 0x%08x [old=0x%08x]\n",
973 (u32
)tmp64
, cx_read(MO_SCONV_REG
));
974 cx_write(MO_SCONV_REG
, (u32
)tmp64
);
976 // MO_SUB_STEP = 8 * fsc / video dec clock * 2^22
977 tmp64
= step_db
* (u64
)(1 << 22);
978 do_div(tmp64
, vdec_clock
);
979 dprintk(1,"set_tvnorm: MO_SUB_STEP 0x%08x [old=0x%08x]\n",
980 (u32
)tmp64
, cx_read(MO_SUB_STEP
));
981 cx_write(MO_SUB_STEP
, (u32
)tmp64
);
983 // MO_SUB_STEP_DR = 8 * 4406250 / video dec clock * 2^22
984 tmp64
= step_dr
* (u64
)(1 << 22);
985 do_div(tmp64
, vdec_clock
);
986 dprintk(1,"set_tvnorm: MO_SUB_STEP_DR 0x%08x [old=0x%08x]\n",
987 (u32
)tmp64
, cx_read(MO_SUB_STEP_DR
));
988 cx_write(MO_SUB_STEP_DR
, (u32
)tmp64
);
991 bdelay
= vdec_clock
* 65 / 20000000 + 21;
992 agcdelay
= vdec_clock
* 68 / 20000000 + 15;
993 dprintk(1,"set_tvnorm: MO_AGC_BURST 0x%08x [old=0x%08x,bdelay=%d,agcdelay=%d]\n",
994 (bdelay
<< 8) | agcdelay
, cx_read(MO_AGC_BURST
), bdelay
, agcdelay
);
995 cx_write(MO_AGC_BURST
, (bdelay
<< 8) | agcdelay
);
998 tmp64
= norm_htotal(norm
) * (u64
)vdec_clock
;
1000 htotal
= (u32
)tmp64
;
1001 dprintk(1,"set_tvnorm: MO_HTOTAL 0x%08x [old=0x%08x,htotal=%d]\n",
1002 htotal
, cx_read(MO_HTOTAL
), (u32
)tmp64
);
1003 cx_andor(MO_HTOTAL
, 0x07ff, htotal
);
1005 // vbi stuff, set vbi offset to 10 (for 20 Clk*2 pixels), this makes
1006 // the effective vbi offset ~244 samples, the same as the Bt8x8
1007 cx_write(MO_VBI_PACKET
, (10<<11) | norm_vbipack(norm
));
1009 // this is needed as well to set all tvnorm parameter
1010 cx88_set_scale(core
, 320, 240, V4L2_FIELD_INTERLACED
);
1016 call_all(core
, core
, s_std
, norm
);
1022 /* ------------------------------------------------------------------ */
1024 struct video_device
*cx88_vdev_init(struct cx88_core
*core
,
1025 struct pci_dev
*pci
,
1026 const struct video_device
*template_
,
1029 struct video_device
*vfd
;
1031 vfd
= video_device_alloc();
1035 vfd
->v4l2_dev
= &core
->v4l2_dev
;
1036 vfd
->parent
= &pci
->dev
;
1037 vfd
->release
= video_device_release
;
1038 snprintf(vfd
->name
, sizeof(vfd
->name
), "%s %s (%s)",
1039 core
->name
, type
, core
->board
.name
);
1043 struct cx88_core
* cx88_core_get(struct pci_dev
*pci
)
1045 struct cx88_core
*core
;
1047 mutex_lock(&devlist
);
1048 list_for_each_entry(core
, &cx88_devlist
, devlist
) {
1049 if (pci
->bus
->number
!= core
->pci_bus
)
1051 if (PCI_SLOT(pci
->devfn
) != core
->pci_slot
)
1054 if (0 != cx88_get_resources(core
, pci
)) {
1055 mutex_unlock(&devlist
);
1058 atomic_inc(&core
->refcount
);
1059 mutex_unlock(&devlist
);
1063 core
= cx88_core_create(pci
, cx88_devcount
);
1066 list_add_tail(&core
->devlist
, &cx88_devlist
);
1069 mutex_unlock(&devlist
);
1073 void cx88_core_put(struct cx88_core
*core
, struct pci_dev
*pci
)
1075 release_mem_region(pci_resource_start(pci
,0),
1076 pci_resource_len(pci
,0));
1078 if (!atomic_dec_and_test(&core
->refcount
))
1081 mutex_lock(&devlist
);
1083 if (0 == core
->i2c_rc
) {
1085 i2c_unregister_device(core
->i2c_rtc
);
1086 i2c_del_adapter(&core
->i2c_adap
);
1088 list_del(&core
->devlist
);
1089 iounmap(core
->lmmio
);
1091 mutex_unlock(&devlist
);
1092 v4l2_device_unregister(&core
->v4l2_dev
);
1096 /* ------------------------------------------------------------------ */
1098 EXPORT_SYMBOL(cx88_print_irqbits
);
1100 EXPORT_SYMBOL(cx88_core_irq
);
1101 EXPORT_SYMBOL(cx88_wakeup
);
1102 EXPORT_SYMBOL(cx88_reset
);
1103 EXPORT_SYMBOL(cx88_shutdown
);
1105 EXPORT_SYMBOL(cx88_risc_buffer
);
1106 EXPORT_SYMBOL(cx88_risc_databuffer
);
1107 EXPORT_SYMBOL(cx88_risc_stopper
);
1108 EXPORT_SYMBOL(cx88_free_buffer
);
1110 EXPORT_SYMBOL(cx88_sram_channels
);
1111 EXPORT_SYMBOL(cx88_sram_channel_setup
);
1112 EXPORT_SYMBOL(cx88_sram_channel_dump
);
1114 EXPORT_SYMBOL(cx88_set_tvnorm
);
1115 EXPORT_SYMBOL(cx88_set_scale
);
1117 EXPORT_SYMBOL(cx88_vdev_init
);
1118 EXPORT_SYMBOL(cx88_core_get
);
1119 EXPORT_SYMBOL(cx88_core_put
);
1121 EXPORT_SYMBOL(cx88_ir_start
);
1122 EXPORT_SYMBOL(cx88_ir_stop
);
1128 * kate: eol "unix"; indent-width 3; remove-trailing-space on; replace-trailing-space-save on; tab-width 8; replace-tabs off; space-indent off; mixed-indent off