Add linux-next specific files for 20110831
[linux-2.6/next.git] / drivers / media / video / ks0127.c
blobafa91182b44828bb4a25b1f75b5137e539f7af9d
1 /*
2 * Video Capture Driver (Video for Linux 1/2)
3 * for the Matrox Marvel G200,G400 and Rainbow Runner-G series
5 * This module is an interface to the KS0127 video decoder chip.
7 * Copyright (C) 1999 Ryan Drake <stiletto@mediaone.net>
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License
11 * as published by the Free Software Foundation; either version 2
12 * of the License, or (at your option) any later version.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23 *****************************************************************************
25 * Modified and extended by
26 * Mike Bernson <mike@mlb.org>
27 * Gerard v.d. Horst
28 * Leon van Stuivenberg <l.vanstuivenberg@chello.nl>
29 * Gernot Ziegler <gz@lysator.liu.se>
31 * Version History:
32 * V1.0 Ryan Drake Initial version by Ryan Drake
33 * V1.1 Gerard v.d. Horst Added some debugoutput, reset the video-standard
36 #include <linux/init.h>
37 #include <linux/module.h>
38 #include <linux/delay.h>
39 #include <linux/errno.h>
40 #include <linux/kernel.h>
41 #include <linux/i2c.h>
42 #include <linux/videodev2.h>
43 #include <linux/slab.h>
44 #include <media/v4l2-device.h>
45 #include <media/v4l2-chip-ident.h>
46 #include "ks0127.h"
48 MODULE_DESCRIPTION("KS0127 video decoder driver");
49 MODULE_AUTHOR("Ryan Drake");
50 MODULE_LICENSE("GPL");
52 /* Addresses */
53 #define I2C_KS0127_ADDON 0xD8
54 #define I2C_KS0127_ONBOARD 0xDA
57 /* ks0127 control registers */
58 #define KS_STAT 0x00
59 #define KS_CMDA 0x01
60 #define KS_CMDB 0x02
61 #define KS_CMDC 0x03
62 #define KS_CMDD 0x04
63 #define KS_HAVB 0x05
64 #define KS_HAVE 0x06
65 #define KS_HS1B 0x07
66 #define KS_HS1E 0x08
67 #define KS_HS2B 0x09
68 #define KS_HS2E 0x0a
69 #define KS_AGC 0x0b
70 #define KS_HXTRA 0x0c
71 #define KS_CDEM 0x0d
72 #define KS_PORTAB 0x0e
73 #define KS_LUMA 0x0f
74 #define KS_CON 0x10
75 #define KS_BRT 0x11
76 #define KS_CHROMA 0x12
77 #define KS_CHROMB 0x13
78 #define KS_DEMOD 0x14
79 #define KS_SAT 0x15
80 #define KS_HUE 0x16
81 #define KS_VERTIA 0x17
82 #define KS_VERTIB 0x18
83 #define KS_VERTIC 0x19
84 #define KS_HSCLL 0x1a
85 #define KS_HSCLH 0x1b
86 #define KS_VSCLL 0x1c
87 #define KS_VSCLH 0x1d
88 #define KS_OFMTA 0x1e
89 #define KS_OFMTB 0x1f
90 #define KS_VBICTL 0x20
91 #define KS_CCDAT2 0x21
92 #define KS_CCDAT1 0x22
93 #define KS_VBIL30 0x23
94 #define KS_VBIL74 0x24
95 #define KS_VBIL118 0x25
96 #define KS_VBIL1512 0x26
97 #define KS_TTFRAM 0x27
98 #define KS_TESTA 0x28
99 #define KS_UVOFFH 0x29
100 #define KS_UVOFFL 0x2a
101 #define KS_UGAIN 0x2b
102 #define KS_VGAIN 0x2c
103 #define KS_VAVB 0x2d
104 #define KS_VAVE 0x2e
105 #define KS_CTRACK 0x2f
106 #define KS_POLCTL 0x30
107 #define KS_REFCOD 0x31
108 #define KS_INVALY 0x32
109 #define KS_INVALU 0x33
110 #define KS_INVALV 0x34
111 #define KS_UNUSEY 0x35
112 #define KS_UNUSEU 0x36
113 #define KS_UNUSEV 0x37
114 #define KS_USRSAV 0x38
115 #define KS_USREAV 0x39
116 #define KS_SHS1A 0x3a
117 #define KS_SHS1B 0x3b
118 #define KS_SHS1C 0x3c
119 #define KS_CMDE 0x3d
120 #define KS_VSDEL 0x3e
121 #define KS_CMDF 0x3f
122 #define KS_GAMMA0 0x40
123 #define KS_GAMMA1 0x41
124 #define KS_GAMMA2 0x42
125 #define KS_GAMMA3 0x43
126 #define KS_GAMMA4 0x44
127 #define KS_GAMMA5 0x45
128 #define KS_GAMMA6 0x46
129 #define KS_GAMMA7 0x47
130 #define KS_GAMMA8 0x48
131 #define KS_GAMMA9 0x49
132 #define KS_GAMMA10 0x4a
133 #define KS_GAMMA11 0x4b
134 #define KS_GAMMA12 0x4c
135 #define KS_GAMMA13 0x4d
136 #define KS_GAMMA14 0x4e
137 #define KS_GAMMA15 0x4f
138 #define KS_GAMMA16 0x50
139 #define KS_GAMMA17 0x51
140 #define KS_GAMMA18 0x52
141 #define KS_GAMMA19 0x53
142 #define KS_GAMMA20 0x54
143 #define KS_GAMMA21 0x55
144 #define KS_GAMMA22 0x56
145 #define KS_GAMMA23 0x57
146 #define KS_GAMMA24 0x58
147 #define KS_GAMMA25 0x59
148 #define KS_GAMMA26 0x5a
149 #define KS_GAMMA27 0x5b
150 #define KS_GAMMA28 0x5c
151 #define KS_GAMMA29 0x5d
152 #define KS_GAMMA30 0x5e
153 #define KS_GAMMA31 0x5f
154 #define KS_GAMMAD0 0x60
155 #define KS_GAMMAD1 0x61
156 #define KS_GAMMAD2 0x62
157 #define KS_GAMMAD3 0x63
158 #define KS_GAMMAD4 0x64
159 #define KS_GAMMAD5 0x65
160 #define KS_GAMMAD6 0x66
161 #define KS_GAMMAD7 0x67
162 #define KS_GAMMAD8 0x68
163 #define KS_GAMMAD9 0x69
164 #define KS_GAMMAD10 0x6a
165 #define KS_GAMMAD11 0x6b
166 #define KS_GAMMAD12 0x6c
167 #define KS_GAMMAD13 0x6d
168 #define KS_GAMMAD14 0x6e
169 #define KS_GAMMAD15 0x6f
170 #define KS_GAMMAD16 0x70
171 #define KS_GAMMAD17 0x71
172 #define KS_GAMMAD18 0x72
173 #define KS_GAMMAD19 0x73
174 #define KS_GAMMAD20 0x74
175 #define KS_GAMMAD21 0x75
176 #define KS_GAMMAD22 0x76
177 #define KS_GAMMAD23 0x77
178 #define KS_GAMMAD24 0x78
179 #define KS_GAMMAD25 0x79
180 #define KS_GAMMAD26 0x7a
181 #define KS_GAMMAD27 0x7b
182 #define KS_GAMMAD28 0x7c
183 #define KS_GAMMAD29 0x7d
184 #define KS_GAMMAD30 0x7e
185 #define KS_GAMMAD31 0x7f
188 /****************************************************************************
189 * mga_dev : represents one ks0127 chip.
190 ****************************************************************************/
192 struct adjust {
193 int contrast;
194 int bright;
195 int hue;
196 int ugain;
197 int vgain;
200 struct ks0127 {
201 struct v4l2_subdev sd;
202 v4l2_std_id norm;
203 int ident;
204 u8 regs[256];
207 static inline struct ks0127 *to_ks0127(struct v4l2_subdev *sd)
209 return container_of(sd, struct ks0127, sd);
213 static int debug; /* insmod parameter */
215 module_param(debug, int, 0);
216 MODULE_PARM_DESC(debug, "Debug output");
218 static u8 reg_defaults[64];
220 static void init_reg_defaults(void)
222 static int initialized;
223 u8 *table = reg_defaults;
225 if (initialized)
226 return;
227 initialized = 1;
229 table[KS_CMDA] = 0x2c; /* VSE=0, CCIR 601, autodetect standard */
230 table[KS_CMDB] = 0x12; /* VALIGN=0, AGC control and input */
231 table[KS_CMDC] = 0x00; /* Test options */
232 /* clock & input select, write 1 to PORTA */
233 table[KS_CMDD] = 0x01;
234 table[KS_HAVB] = 0x00; /* HAV Start Control */
235 table[KS_HAVE] = 0x00; /* HAV End Control */
236 table[KS_HS1B] = 0x10; /* HS1 Start Control */
237 table[KS_HS1E] = 0x00; /* HS1 End Control */
238 table[KS_HS2B] = 0x00; /* HS2 Start Control */
239 table[KS_HS2E] = 0x00; /* HS2 End Control */
240 table[KS_AGC] = 0x53; /* Manual setting for AGC */
241 table[KS_HXTRA] = 0x00; /* Extra Bits for HAV and HS1/2 */
242 table[KS_CDEM] = 0x00; /* Chroma Demodulation Control */
243 table[KS_PORTAB] = 0x0f; /* port B is input, port A output GPPORT */
244 table[KS_LUMA] = 0x01; /* Luma control */
245 table[KS_CON] = 0x00; /* Contrast Control */
246 table[KS_BRT] = 0x00; /* Brightness Control */
247 table[KS_CHROMA] = 0x2a; /* Chroma control A */
248 table[KS_CHROMB] = 0x90; /* Chroma control B */
249 table[KS_DEMOD] = 0x00; /* Chroma Demodulation Control & Status */
250 table[KS_SAT] = 0x00; /* Color Saturation Control*/
251 table[KS_HUE] = 0x00; /* Hue Control */
252 table[KS_VERTIA] = 0x00; /* Vertical Processing Control A */
253 /* Vertical Processing Control B, luma 1 line delayed */
254 table[KS_VERTIB] = 0x12;
255 table[KS_VERTIC] = 0x0b; /* Vertical Processing Control C */
256 table[KS_HSCLL] = 0x00; /* Horizontal Scaling Ratio Low */
257 table[KS_HSCLH] = 0x00; /* Horizontal Scaling Ratio High */
258 table[KS_VSCLL] = 0x00; /* Vertical Scaling Ratio Low */
259 table[KS_VSCLH] = 0x00; /* Vertical Scaling Ratio High */
260 /* 16 bit YCbCr 4:2:2 output; I can't make the bt866 like 8 bit /Sam */
261 table[KS_OFMTA] = 0x30;
262 table[KS_OFMTB] = 0x00; /* Output Control B */
263 /* VBI Decoder Control; 4bit fmt: avoid Y overflow */
264 table[KS_VBICTL] = 0x5d;
265 table[KS_CCDAT2] = 0x00; /* Read Only register */
266 table[KS_CCDAT1] = 0x00; /* Read Only register */
267 table[KS_VBIL30] = 0xa8; /* VBI data decoding options */
268 table[KS_VBIL74] = 0xaa; /* VBI data decoding options */
269 table[KS_VBIL118] = 0x2a; /* VBI data decoding options */
270 table[KS_VBIL1512] = 0x00; /* VBI data decoding options */
271 table[KS_TTFRAM] = 0x00; /* Teletext frame alignment pattern */
272 table[KS_TESTA] = 0x00; /* test register, shouldn't be written */
273 table[KS_UVOFFH] = 0x00; /* UV Offset Adjustment High */
274 table[KS_UVOFFL] = 0x00; /* UV Offset Adjustment Low */
275 table[KS_UGAIN] = 0x00; /* U Component Gain Adjustment */
276 table[KS_VGAIN] = 0x00; /* V Component Gain Adjustment */
277 table[KS_VAVB] = 0x07; /* VAV Begin */
278 table[KS_VAVE] = 0x00; /* VAV End */
279 table[KS_CTRACK] = 0x00; /* Chroma Tracking Control */
280 table[KS_POLCTL] = 0x41; /* Timing Signal Polarity Control */
281 table[KS_REFCOD] = 0x80; /* Reference Code Insertion Control */
282 table[KS_INVALY] = 0x10; /* Invalid Y Code */
283 table[KS_INVALU] = 0x80; /* Invalid U Code */
284 table[KS_INVALV] = 0x80; /* Invalid V Code */
285 table[KS_UNUSEY] = 0x10; /* Unused Y Code */
286 table[KS_UNUSEU] = 0x80; /* Unused U Code */
287 table[KS_UNUSEV] = 0x80; /* Unused V Code */
288 table[KS_USRSAV] = 0x00; /* reserved */
289 table[KS_USREAV] = 0x00; /* reserved */
290 table[KS_SHS1A] = 0x00; /* User Defined SHS1 A */
291 /* User Defined SHS1 B, ALT656=1 on 0127B */
292 table[KS_SHS1B] = 0x80;
293 table[KS_SHS1C] = 0x00; /* User Defined SHS1 C */
294 table[KS_CMDE] = 0x00; /* Command Register E */
295 table[KS_VSDEL] = 0x00; /* VS Delay Control */
296 /* Command Register F, update -immediately- */
297 /* (there might come no vsync)*/
298 table[KS_CMDF] = 0x02;
302 /* We need to manually read because of a bug in the KS0127 chip.
304 * An explanation from kayork@mail.utexas.edu:
306 * During I2C reads, the KS0127 only samples for a stop condition
307 * during the place where the acknowledge bit should be. Any standard
308 * I2C implementation (correctly) throws in another clock transition
309 * at the 9th bit, and the KS0127 will not recognize the stop condition
310 * and will continue to clock out data.
312 * So we have to do the read ourself. Big deal.
313 * workaround in i2c-algo-bit
317 static u8 ks0127_read(struct v4l2_subdev *sd, u8 reg)
319 struct i2c_client *client = v4l2_get_subdevdata(sd);
320 char val = 0;
321 struct i2c_msg msgs[] = {
322 { client->addr, 0, sizeof(reg), &reg },
323 { client->addr, I2C_M_RD | I2C_M_NO_RD_ACK, sizeof(val), &val }
325 int ret;
327 ret = i2c_transfer(client->adapter, msgs, ARRAY_SIZE(msgs));
328 if (ret != ARRAY_SIZE(msgs))
329 v4l2_dbg(1, debug, sd, "read error\n");
331 return val;
335 static void ks0127_write(struct v4l2_subdev *sd, u8 reg, u8 val)
337 struct i2c_client *client = v4l2_get_subdevdata(sd);
338 struct ks0127 *ks = to_ks0127(sd);
339 char msg[] = { reg, val };
341 if (i2c_master_send(client, msg, sizeof(msg)) != sizeof(msg))
342 v4l2_dbg(1, debug, sd, "write error\n");
344 ks->regs[reg] = val;
348 /* generic bit-twiddling */
349 static void ks0127_and_or(struct v4l2_subdev *sd, u8 reg, u8 and_v, u8 or_v)
351 struct ks0127 *ks = to_ks0127(sd);
353 u8 val = ks->regs[reg];
354 val = (val & and_v) | or_v;
355 ks0127_write(sd, reg, val);
360 /****************************************************************************
361 * ks0127 private api
362 ****************************************************************************/
363 static void ks0127_init(struct v4l2_subdev *sd)
365 struct ks0127 *ks = to_ks0127(sd);
366 u8 *table = reg_defaults;
367 int i;
369 ks->ident = V4L2_IDENT_KS0127;
371 v4l2_dbg(1, debug, sd, "reset\n");
372 msleep(1);
374 /* initialize all registers to known values */
375 /* (except STAT, 0x21, 0x22, TEST and 0x38,0x39) */
377 for (i = 1; i < 33; i++)
378 ks0127_write(sd, i, table[i]);
380 for (i = 35; i < 40; i++)
381 ks0127_write(sd, i, table[i]);
383 for (i = 41; i < 56; i++)
384 ks0127_write(sd, i, table[i]);
386 for (i = 58; i < 64; i++)
387 ks0127_write(sd, i, table[i]);
390 if ((ks0127_read(sd, KS_STAT) & 0x80) == 0) {
391 ks->ident = V4L2_IDENT_KS0122S;
392 v4l2_dbg(1, debug, sd, "ks0122s found\n");
393 return;
396 switch (ks0127_read(sd, KS_CMDE) & 0x0f) {
397 case 0:
398 v4l2_dbg(1, debug, sd, "ks0127 found\n");
399 break;
401 case 9:
402 ks->ident = V4L2_IDENT_KS0127B;
403 v4l2_dbg(1, debug, sd, "ks0127B Revision A found\n");
404 break;
406 default:
407 v4l2_dbg(1, debug, sd, "unknown revision\n");
408 break;
412 static int ks0127_s_routing(struct v4l2_subdev *sd,
413 u32 input, u32 output, u32 config)
415 struct ks0127 *ks = to_ks0127(sd);
417 switch (input) {
418 case KS_INPUT_COMPOSITE_1:
419 case KS_INPUT_COMPOSITE_2:
420 case KS_INPUT_COMPOSITE_3:
421 case KS_INPUT_COMPOSITE_4:
422 case KS_INPUT_COMPOSITE_5:
423 case KS_INPUT_COMPOSITE_6:
424 v4l2_dbg(1, debug, sd,
425 "s_routing %d: Composite\n", input);
426 /* autodetect 50/60 Hz */
427 ks0127_and_or(sd, KS_CMDA, 0xfc, 0x00);
428 /* VSE=0 */
429 ks0127_and_or(sd, KS_CMDA, ~0x40, 0x00);
430 /* set input line */
431 ks0127_and_or(sd, KS_CMDB, 0xb0, input);
432 /* non-freerunning mode */
433 ks0127_and_or(sd, KS_CMDC, 0x70, 0x0a);
434 /* analog input */
435 ks0127_and_or(sd, KS_CMDD, 0x03, 0x00);
436 /* enable chroma demodulation */
437 ks0127_and_or(sd, KS_CTRACK, 0xcf, 0x00);
438 /* chroma trap, HYBWR=1 */
439 ks0127_and_or(sd, KS_LUMA, 0x00,
440 (reg_defaults[KS_LUMA])|0x0c);
441 /* scaler fullbw, luma comb off */
442 ks0127_and_or(sd, KS_VERTIA, 0x08, 0x81);
443 /* manual chroma comb .25 .5 .25 */
444 ks0127_and_or(sd, KS_VERTIC, 0x0f, 0x90);
446 /* chroma path delay */
447 ks0127_and_or(sd, KS_CHROMB, 0x0f, 0x90);
449 ks0127_write(sd, KS_UGAIN, reg_defaults[KS_UGAIN]);
450 ks0127_write(sd, KS_VGAIN, reg_defaults[KS_VGAIN]);
451 ks0127_write(sd, KS_UVOFFH, reg_defaults[KS_UVOFFH]);
452 ks0127_write(sd, KS_UVOFFL, reg_defaults[KS_UVOFFL]);
453 break;
455 case KS_INPUT_SVIDEO_1:
456 case KS_INPUT_SVIDEO_2:
457 case KS_INPUT_SVIDEO_3:
458 v4l2_dbg(1, debug, sd,
459 "s_routing %d: S-Video\n", input);
460 /* autodetect 50/60 Hz */
461 ks0127_and_or(sd, KS_CMDA, 0xfc, 0x00);
462 /* VSE=0 */
463 ks0127_and_or(sd, KS_CMDA, ~0x40, 0x00);
464 /* set input line */
465 ks0127_and_or(sd, KS_CMDB, 0xb0, input);
466 /* non-freerunning mode */
467 ks0127_and_or(sd, KS_CMDC, 0x70, 0x0a);
468 /* analog input */
469 ks0127_and_or(sd, KS_CMDD, 0x03, 0x00);
470 /* enable chroma demodulation */
471 ks0127_and_or(sd, KS_CTRACK, 0xcf, 0x00);
472 ks0127_and_or(sd, KS_LUMA, 0x00,
473 reg_defaults[KS_LUMA]);
474 /* disable luma comb */
475 ks0127_and_or(sd, KS_VERTIA, 0x08,
476 (reg_defaults[KS_VERTIA]&0xf0)|0x01);
477 ks0127_and_or(sd, KS_VERTIC, 0x0f,
478 reg_defaults[KS_VERTIC]&0xf0);
480 ks0127_and_or(sd, KS_CHROMB, 0x0f,
481 reg_defaults[KS_CHROMB]&0xf0);
483 ks0127_write(sd, KS_UGAIN, reg_defaults[KS_UGAIN]);
484 ks0127_write(sd, KS_VGAIN, reg_defaults[KS_VGAIN]);
485 ks0127_write(sd, KS_UVOFFH, reg_defaults[KS_UVOFFH]);
486 ks0127_write(sd, KS_UVOFFL, reg_defaults[KS_UVOFFL]);
487 break;
489 case KS_INPUT_YUV656:
490 v4l2_dbg(1, debug, sd, "s_routing 15: YUV656\n");
491 if (ks->norm & V4L2_STD_525_60)
492 /* force 60 Hz */
493 ks0127_and_or(sd, KS_CMDA, 0xfc, 0x03);
494 else
495 /* force 50 Hz */
496 ks0127_and_or(sd, KS_CMDA, 0xfc, 0x02);
498 ks0127_and_or(sd, KS_CMDA, 0xff, 0x40); /* VSE=1 */
499 /* set input line and VALIGN */
500 ks0127_and_or(sd, KS_CMDB, 0xb0, (input | 0x40));
501 /* freerunning mode, */
502 /* TSTGEN = 1 TSTGFR=11 TSTGPH=0 TSTGPK=0 VMEM=1*/
503 ks0127_and_or(sd, KS_CMDC, 0x70, 0x87);
504 /* digital input, SYNDIR = 0 INPSL=01 CLKDIR=0 EAV=0 */
505 ks0127_and_or(sd, KS_CMDD, 0x03, 0x08);
506 /* disable chroma demodulation */
507 ks0127_and_or(sd, KS_CTRACK, 0xcf, 0x30);
508 /* HYPK =01 CTRAP = 0 HYBWR=0 PED=1 RGBH=1 UNIT=1 */
509 ks0127_and_or(sd, KS_LUMA, 0x00, 0x71);
510 ks0127_and_or(sd, KS_VERTIC, 0x0f,
511 reg_defaults[KS_VERTIC]&0xf0);
513 /* scaler fullbw, luma comb off */
514 ks0127_and_or(sd, KS_VERTIA, 0x08, 0x81);
516 ks0127_and_or(sd, KS_CHROMB, 0x0f,
517 reg_defaults[KS_CHROMB]&0xf0);
519 ks0127_and_or(sd, KS_CON, 0x00, 0x00);
520 ks0127_and_or(sd, KS_BRT, 0x00, 32); /* spec: 34 */
521 /* spec: 229 (e5) */
522 ks0127_and_or(sd, KS_SAT, 0x00, 0xe8);
523 ks0127_and_or(sd, KS_HUE, 0x00, 0);
525 ks0127_and_or(sd, KS_UGAIN, 0x00, 238);
526 ks0127_and_or(sd, KS_VGAIN, 0x00, 0x00);
528 /*UOFF:0x30, VOFF:0x30, TSTCGN=1 */
529 ks0127_and_or(sd, KS_UVOFFH, 0x00, 0x4f);
530 ks0127_and_or(sd, KS_UVOFFL, 0x00, 0x00);
531 break;
533 default:
534 v4l2_dbg(1, debug, sd,
535 "s_routing: Unknown input %d\n", input);
536 break;
539 /* hack: CDMLPF sometimes spontaneously switches on; */
540 /* force back off */
541 ks0127_write(sd, KS_DEMOD, reg_defaults[KS_DEMOD]);
542 return 0;
545 static int ks0127_s_std(struct v4l2_subdev *sd, v4l2_std_id std)
547 struct ks0127 *ks = to_ks0127(sd);
549 /* Set to automatic SECAM/Fsc mode */
550 ks0127_and_or(sd, KS_DEMOD, 0xf0, 0x00);
552 ks->norm = std;
553 if (std & V4L2_STD_NTSC) {
554 v4l2_dbg(1, debug, sd,
555 "s_std: NTSC_M\n");
556 ks0127_and_or(sd, KS_CHROMA, 0x9f, 0x20);
557 } else if (std & V4L2_STD_PAL_N) {
558 v4l2_dbg(1, debug, sd,
559 "s_std: NTSC_N (fixme)\n");
560 ks0127_and_or(sd, KS_CHROMA, 0x9f, 0x40);
561 } else if (std & V4L2_STD_PAL) {
562 v4l2_dbg(1, debug, sd,
563 "s_std: PAL_N\n");
564 ks0127_and_or(sd, KS_CHROMA, 0x9f, 0x20);
565 } else if (std & V4L2_STD_PAL_M) {
566 v4l2_dbg(1, debug, sd,
567 "s_std: PAL_M (fixme)\n");
568 ks0127_and_or(sd, KS_CHROMA, 0x9f, 0x40);
569 } else if (std & V4L2_STD_SECAM) {
570 v4l2_dbg(1, debug, sd,
571 "s_std: SECAM\n");
573 /* set to secam autodetection */
574 ks0127_and_or(sd, KS_CHROMA, 0xdf, 0x20);
575 ks0127_and_or(sd, KS_DEMOD, 0xf0, 0x00);
576 schedule_timeout_interruptible(HZ/10+1);
578 /* did it autodetect? */
579 if (!(ks0127_read(sd, KS_DEMOD) & 0x40))
580 /* force to secam mode */
581 ks0127_and_or(sd, KS_DEMOD, 0xf0, 0x0f);
582 } else {
583 v4l2_dbg(1, debug, sd, "s_std: Unknown norm %llx\n",
584 (unsigned long long)std);
586 return 0;
589 static int ks0127_s_stream(struct v4l2_subdev *sd, int enable)
591 v4l2_dbg(1, debug, sd, "s_stream(%d)\n", enable);
592 if (enable) {
593 /* All output pins on */
594 ks0127_and_or(sd, KS_OFMTA, 0xcf, 0x30);
595 /* Obey the OEN pin */
596 ks0127_and_or(sd, KS_CDEM, 0x7f, 0x00);
597 } else {
598 /* Video output pins off */
599 ks0127_and_or(sd, KS_OFMTA, 0xcf, 0x00);
600 /* Ignore the OEN pin */
601 ks0127_and_or(sd, KS_CDEM, 0x7f, 0x80);
603 return 0;
606 static int ks0127_status(struct v4l2_subdev *sd, u32 *pstatus, v4l2_std_id *pstd)
608 int stat = V4L2_IN_ST_NO_SIGNAL;
609 u8 status;
610 v4l2_std_id std = V4L2_STD_ALL;
612 status = ks0127_read(sd, KS_STAT);
613 if (!(status & 0x20)) /* NOVID not set */
614 stat = 0;
615 if (!(status & 0x01)) /* CLOCK set */
616 stat |= V4L2_IN_ST_NO_COLOR;
617 if ((status & 0x08)) /* PALDET set */
618 std = V4L2_STD_PAL;
619 else
620 std = V4L2_STD_NTSC;
621 if (pstd)
622 *pstd = std;
623 if (pstatus)
624 *pstatus = stat;
625 return 0;
628 static int ks0127_querystd(struct v4l2_subdev *sd, v4l2_std_id *std)
630 v4l2_dbg(1, debug, sd, "querystd\n");
631 return ks0127_status(sd, NULL, std);
634 static int ks0127_g_input_status(struct v4l2_subdev *sd, u32 *status)
636 v4l2_dbg(1, debug, sd, "g_input_status\n");
637 return ks0127_status(sd, status, NULL);
640 static int ks0127_g_chip_ident(struct v4l2_subdev *sd, struct v4l2_dbg_chip_ident *chip)
642 struct i2c_client *client = v4l2_get_subdevdata(sd);
643 struct ks0127 *ks = to_ks0127(sd);
645 return v4l2_chip_ident_i2c_client(client, chip, ks->ident, 0);
648 /* ----------------------------------------------------------------------- */
650 static const struct v4l2_subdev_core_ops ks0127_core_ops = {
651 .g_chip_ident = ks0127_g_chip_ident,
652 .s_std = ks0127_s_std,
655 static const struct v4l2_subdev_video_ops ks0127_video_ops = {
656 .s_routing = ks0127_s_routing,
657 .s_stream = ks0127_s_stream,
658 .querystd = ks0127_querystd,
659 .g_input_status = ks0127_g_input_status,
662 static const struct v4l2_subdev_ops ks0127_ops = {
663 .core = &ks0127_core_ops,
664 .video = &ks0127_video_ops,
667 /* ----------------------------------------------------------------------- */
670 static int ks0127_probe(struct i2c_client *client, const struct i2c_device_id *id)
672 struct ks0127 *ks;
673 struct v4l2_subdev *sd;
675 v4l_info(client, "%s chip found @ 0x%x (%s)\n",
676 client->addr == (I2C_KS0127_ADDON >> 1) ? "addon" : "on-board",
677 client->addr << 1, client->adapter->name);
679 ks = kzalloc(sizeof(*ks), GFP_KERNEL);
680 if (ks == NULL)
681 return -ENOMEM;
682 sd = &ks->sd;
683 v4l2_i2c_subdev_init(sd, client, &ks0127_ops);
685 /* power up */
686 init_reg_defaults();
687 ks0127_write(sd, KS_CMDA, 0x2c);
688 mdelay(10);
690 /* reset the device */
691 ks0127_init(sd);
692 return 0;
695 static int ks0127_remove(struct i2c_client *client)
697 struct v4l2_subdev *sd = i2c_get_clientdata(client);
699 v4l2_device_unregister_subdev(sd);
700 ks0127_write(sd, KS_OFMTA, 0x20); /* tristate */
701 ks0127_write(sd, KS_CMDA, 0x2c | 0x80); /* power down */
702 kfree(to_ks0127(sd));
703 return 0;
706 static const struct i2c_device_id ks0127_id[] = {
707 { "ks0127", 0 },
708 { "ks0127b", 0 },
709 { "ks0122s", 0 },
712 MODULE_DEVICE_TABLE(i2c, ks0127_id);
714 static struct i2c_driver ks0127_driver = {
715 .driver = {
716 .owner = THIS_MODULE,
717 .name = "ks0127",
719 .probe = ks0127_probe,
720 .remove = ks0127_remove,
721 .id_table = ks0127_id,
724 static __init int init_ks0127(void)
726 return i2c_add_driver(&ks0127_driver);
729 static __exit void exit_ks0127(void)
731 i2c_del_driver(&ks0127_driver);
734 module_init(init_ks0127);
735 module_exit(exit_ks0127);