Add linux-next specific files for 20110831
[linux-2.6/next.git] / drivers / media / video / ov7670.c
blob8aa05853128098732c6090421a1bba38e1c8315a
1 /*
2 * A V4L2 driver for OmniVision OV7670 cameras.
4 * Copyright 2006 One Laptop Per Child Association, Inc. Written
5 * by Jonathan Corbet with substantial inspiration from Mark
6 * McClelland's ovcamchip code.
8 * Copyright 2006-7 Jonathan Corbet <corbet@lwn.net>
10 * This file may be distributed under the terms of the GNU General
11 * Public License, version 2.
13 #include <linux/init.h>
14 #include <linux/module.h>
15 #include <linux/slab.h>
16 #include <linux/i2c.h>
17 #include <linux/delay.h>
18 #include <linux/videodev2.h>
19 #include <media/v4l2-device.h>
20 #include <media/v4l2-chip-ident.h>
21 #include <media/v4l2-mediabus.h>
22 #include <media/ov7670.h>
24 MODULE_AUTHOR("Jonathan Corbet <corbet@lwn.net>");
25 MODULE_DESCRIPTION("A low-level driver for OmniVision ov7670 sensors");
26 MODULE_LICENSE("GPL");
28 static int debug;
29 module_param(debug, bool, 0644);
30 MODULE_PARM_DESC(debug, "Debug level (0-1)");
33 * Basic window sizes. These probably belong somewhere more globally
34 * useful.
36 #define VGA_WIDTH 640
37 #define VGA_HEIGHT 480
38 #define QVGA_WIDTH 320
39 #define QVGA_HEIGHT 240
40 #define CIF_WIDTH 352
41 #define CIF_HEIGHT 288
42 #define QCIF_WIDTH 176
43 #define QCIF_HEIGHT 144
46 * The 7670 sits on i2c with ID 0x42
48 #define OV7670_I2C_ADDR 0x42
50 /* Registers */
51 #define REG_GAIN 0x00 /* Gain lower 8 bits (rest in vref) */
52 #define REG_BLUE 0x01 /* blue gain */
53 #define REG_RED 0x02 /* red gain */
54 #define REG_VREF 0x03 /* Pieces of GAIN, VSTART, VSTOP */
55 #define REG_COM1 0x04 /* Control 1 */
56 #define COM1_CCIR656 0x40 /* CCIR656 enable */
57 #define REG_BAVE 0x05 /* U/B Average level */
58 #define REG_GbAVE 0x06 /* Y/Gb Average level */
59 #define REG_AECHH 0x07 /* AEC MS 5 bits */
60 #define REG_RAVE 0x08 /* V/R Average level */
61 #define REG_COM2 0x09 /* Control 2 */
62 #define COM2_SSLEEP 0x10 /* Soft sleep mode */
63 #define REG_PID 0x0a /* Product ID MSB */
64 #define REG_VER 0x0b /* Product ID LSB */
65 #define REG_COM3 0x0c /* Control 3 */
66 #define COM3_SWAP 0x40 /* Byte swap */
67 #define COM3_SCALEEN 0x08 /* Enable scaling */
68 #define COM3_DCWEN 0x04 /* Enable downsamp/crop/window */
69 #define REG_COM4 0x0d /* Control 4 */
70 #define REG_COM5 0x0e /* All "reserved" */
71 #define REG_COM6 0x0f /* Control 6 */
72 #define REG_AECH 0x10 /* More bits of AEC value */
73 #define REG_CLKRC 0x11 /* Clocl control */
74 #define CLK_EXT 0x40 /* Use external clock directly */
75 #define CLK_SCALE 0x3f /* Mask for internal clock scale */
76 #define REG_COM7 0x12 /* Control 7 */
77 #define COM7_RESET 0x80 /* Register reset */
78 #define COM7_FMT_MASK 0x38
79 #define COM7_FMT_VGA 0x00
80 #define COM7_FMT_CIF 0x20 /* CIF format */
81 #define COM7_FMT_QVGA 0x10 /* QVGA format */
82 #define COM7_FMT_QCIF 0x08 /* QCIF format */
83 #define COM7_RGB 0x04 /* bits 0 and 2 - RGB format */
84 #define COM7_YUV 0x00 /* YUV */
85 #define COM7_BAYER 0x01 /* Bayer format */
86 #define COM7_PBAYER 0x05 /* "Processed bayer" */
87 #define REG_COM8 0x13 /* Control 8 */
88 #define COM8_FASTAEC 0x80 /* Enable fast AGC/AEC */
89 #define COM8_AECSTEP 0x40 /* Unlimited AEC step size */
90 #define COM8_BFILT 0x20 /* Band filter enable */
91 #define COM8_AGC 0x04 /* Auto gain enable */
92 #define COM8_AWB 0x02 /* White balance enable */
93 #define COM8_AEC 0x01 /* Auto exposure enable */
94 #define REG_COM9 0x14 /* Control 9 - gain ceiling */
95 #define REG_COM10 0x15 /* Control 10 */
96 #define COM10_HSYNC 0x40 /* HSYNC instead of HREF */
97 #define COM10_PCLK_HB 0x20 /* Suppress PCLK on horiz blank */
98 #define COM10_HREF_REV 0x08 /* Reverse HREF */
99 #define COM10_VS_LEAD 0x04 /* VSYNC on clock leading edge */
100 #define COM10_VS_NEG 0x02 /* VSYNC negative */
101 #define COM10_HS_NEG 0x01 /* HSYNC negative */
102 #define REG_HSTART 0x17 /* Horiz start high bits */
103 #define REG_HSTOP 0x18 /* Horiz stop high bits */
104 #define REG_VSTART 0x19 /* Vert start high bits */
105 #define REG_VSTOP 0x1a /* Vert stop high bits */
106 #define REG_PSHFT 0x1b /* Pixel delay after HREF */
107 #define REG_MIDH 0x1c /* Manuf. ID high */
108 #define REG_MIDL 0x1d /* Manuf. ID low */
109 #define REG_MVFP 0x1e /* Mirror / vflip */
110 #define MVFP_MIRROR 0x20 /* Mirror image */
111 #define MVFP_FLIP 0x10 /* Vertical flip */
113 #define REG_AEW 0x24 /* AGC upper limit */
114 #define REG_AEB 0x25 /* AGC lower limit */
115 #define REG_VPT 0x26 /* AGC/AEC fast mode op region */
116 #define REG_HSYST 0x30 /* HSYNC rising edge delay */
117 #define REG_HSYEN 0x31 /* HSYNC falling edge delay */
118 #define REG_HREF 0x32 /* HREF pieces */
119 #define REG_TSLB 0x3a /* lots of stuff */
120 #define TSLB_YLAST 0x04 /* UYVY or VYUY - see com13 */
121 #define REG_COM11 0x3b /* Control 11 */
122 #define COM11_NIGHT 0x80 /* NIght mode enable */
123 #define COM11_NMFR 0x60 /* Two bit NM frame rate */
124 #define COM11_HZAUTO 0x10 /* Auto detect 50/60 Hz */
125 #define COM11_50HZ 0x08 /* Manual 50Hz select */
126 #define COM11_EXP 0x02
127 #define REG_COM12 0x3c /* Control 12 */
128 #define COM12_HREF 0x80 /* HREF always */
129 #define REG_COM13 0x3d /* Control 13 */
130 #define COM13_GAMMA 0x80 /* Gamma enable */
131 #define COM13_UVSAT 0x40 /* UV saturation auto adjustment */
132 #define COM13_UVSWAP 0x01 /* V before U - w/TSLB */
133 #define REG_COM14 0x3e /* Control 14 */
134 #define COM14_DCWEN 0x10 /* DCW/PCLK-scale enable */
135 #define REG_EDGE 0x3f /* Edge enhancement factor */
136 #define REG_COM15 0x40 /* Control 15 */
137 #define COM15_R10F0 0x00 /* Data range 10 to F0 */
138 #define COM15_R01FE 0x80 /* 01 to FE */
139 #define COM15_R00FF 0xc0 /* 00 to FF */
140 #define COM15_RGB565 0x10 /* RGB565 output */
141 #define COM15_RGB555 0x30 /* RGB555 output */
142 #define REG_COM16 0x41 /* Control 16 */
143 #define COM16_AWBGAIN 0x08 /* AWB gain enable */
144 #define REG_COM17 0x42 /* Control 17 */
145 #define COM17_AECWIN 0xc0 /* AEC window - must match COM4 */
146 #define COM17_CBAR 0x08 /* DSP Color bar */
149 * This matrix defines how the colors are generated, must be
150 * tweaked to adjust hue and saturation.
152 * Order: v-red, v-green, v-blue, u-red, u-green, u-blue
154 * They are nine-bit signed quantities, with the sign bit
155 * stored in 0x58. Sign for v-red is bit 0, and up from there.
157 #define REG_CMATRIX_BASE 0x4f
158 #define CMATRIX_LEN 6
159 #define REG_CMATRIX_SIGN 0x58
162 #define REG_BRIGHT 0x55 /* Brightness */
163 #define REG_CONTRAS 0x56 /* Contrast control */
165 #define REG_GFIX 0x69 /* Fix gain control */
167 #define REG_REG76 0x76 /* OV's name */
168 #define R76_BLKPCOR 0x80 /* Black pixel correction enable */
169 #define R76_WHTPCOR 0x40 /* White pixel correction enable */
171 #define REG_RGB444 0x8c /* RGB 444 control */
172 #define R444_ENABLE 0x02 /* Turn on RGB444, overrides 5x5 */
173 #define R444_RGBX 0x01 /* Empty nibble at end */
175 #define REG_HAECC1 0x9f /* Hist AEC/AGC control 1 */
176 #define REG_HAECC2 0xa0 /* Hist AEC/AGC control 2 */
178 #define REG_BD50MAX 0xa5 /* 50hz banding step limit */
179 #define REG_HAECC3 0xa6 /* Hist AEC/AGC control 3 */
180 #define REG_HAECC4 0xa7 /* Hist AEC/AGC control 4 */
181 #define REG_HAECC5 0xa8 /* Hist AEC/AGC control 5 */
182 #define REG_HAECC6 0xa9 /* Hist AEC/AGC control 6 */
183 #define REG_HAECC7 0xaa /* Hist AEC/AGC control 7 */
184 #define REG_BD60MAX 0xab /* 60hz banding step limit */
188 * Information we maintain about a known sensor.
190 struct ov7670_format_struct; /* coming later */
191 struct ov7670_info {
192 struct v4l2_subdev sd;
193 struct ov7670_format_struct *fmt; /* Current format */
194 unsigned char sat; /* Saturation value */
195 int hue; /* Hue value */
196 int min_width; /* Filter out smaller sizes */
197 int min_height; /* Filter out smaller sizes */
198 int clock_speed; /* External clock speed (MHz) */
199 u8 clkrc; /* Clock divider value */
200 bool use_smbus; /* Use smbus I/O instead of I2C */
203 static inline struct ov7670_info *to_state(struct v4l2_subdev *sd)
205 return container_of(sd, struct ov7670_info, sd);
211 * The default register settings, as obtained from OmniVision. There
212 * is really no making sense of most of these - lots of "reserved" values
213 * and such.
215 * These settings give VGA YUYV.
218 struct regval_list {
219 unsigned char reg_num;
220 unsigned char value;
223 static struct regval_list ov7670_default_regs[] = {
224 { REG_COM7, COM7_RESET },
226 * Clock scale: 3 = 15fps
227 * 2 = 20fps
228 * 1 = 30fps
230 { REG_CLKRC, 0x1 }, /* OV: clock scale (30 fps) */
231 { REG_TSLB, 0x04 }, /* OV */
232 { REG_COM7, 0 }, /* VGA */
234 * Set the hardware window. These values from OV don't entirely
235 * make sense - hstop is less than hstart. But they work...
237 { REG_HSTART, 0x13 }, { REG_HSTOP, 0x01 },
238 { REG_HREF, 0xb6 }, { REG_VSTART, 0x02 },
239 { REG_VSTOP, 0x7a }, { REG_VREF, 0x0a },
241 { REG_COM3, 0 }, { REG_COM14, 0 },
242 /* Mystery scaling numbers */
243 { 0x70, 0x3a }, { 0x71, 0x35 },
244 { 0x72, 0x11 }, { 0x73, 0xf0 },
245 { 0xa2, 0x02 }, { REG_COM10, 0x0 },
247 /* Gamma curve values */
248 { 0x7a, 0x20 }, { 0x7b, 0x10 },
249 { 0x7c, 0x1e }, { 0x7d, 0x35 },
250 { 0x7e, 0x5a }, { 0x7f, 0x69 },
251 { 0x80, 0x76 }, { 0x81, 0x80 },
252 { 0x82, 0x88 }, { 0x83, 0x8f },
253 { 0x84, 0x96 }, { 0x85, 0xa3 },
254 { 0x86, 0xaf }, { 0x87, 0xc4 },
255 { 0x88, 0xd7 }, { 0x89, 0xe8 },
257 /* AGC and AEC parameters. Note we start by disabling those features,
258 then turn them only after tweaking the values. */
259 { REG_COM8, COM8_FASTAEC | COM8_AECSTEP | COM8_BFILT },
260 { REG_GAIN, 0 }, { REG_AECH, 0 },
261 { REG_COM4, 0x40 }, /* magic reserved bit */
262 { REG_COM9, 0x18 }, /* 4x gain + magic rsvd bit */
263 { REG_BD50MAX, 0x05 }, { REG_BD60MAX, 0x07 },
264 { REG_AEW, 0x95 }, { REG_AEB, 0x33 },
265 { REG_VPT, 0xe3 }, { REG_HAECC1, 0x78 },
266 { REG_HAECC2, 0x68 }, { 0xa1, 0x03 }, /* magic */
267 { REG_HAECC3, 0xd8 }, { REG_HAECC4, 0xd8 },
268 { REG_HAECC5, 0xf0 }, { REG_HAECC6, 0x90 },
269 { REG_HAECC7, 0x94 },
270 { REG_COM8, COM8_FASTAEC|COM8_AECSTEP|COM8_BFILT|COM8_AGC|COM8_AEC },
272 /* Almost all of these are magic "reserved" values. */
273 { REG_COM5, 0x61 }, { REG_COM6, 0x4b },
274 { 0x16, 0x02 }, { REG_MVFP, 0x07 },
275 { 0x21, 0x02 }, { 0x22, 0x91 },
276 { 0x29, 0x07 }, { 0x33, 0x0b },
277 { 0x35, 0x0b }, { 0x37, 0x1d },
278 { 0x38, 0x71 }, { 0x39, 0x2a },
279 { REG_COM12, 0x78 }, { 0x4d, 0x40 },
280 { 0x4e, 0x20 }, { REG_GFIX, 0 },
281 { 0x6b, 0x4a }, { 0x74, 0x10 },
282 { 0x8d, 0x4f }, { 0x8e, 0 },
283 { 0x8f, 0 }, { 0x90, 0 },
284 { 0x91, 0 }, { 0x96, 0 },
285 { 0x9a, 0 }, { 0xb0, 0x84 },
286 { 0xb1, 0x0c }, { 0xb2, 0x0e },
287 { 0xb3, 0x82 }, { 0xb8, 0x0a },
289 /* More reserved magic, some of which tweaks white balance */
290 { 0x43, 0x0a }, { 0x44, 0xf0 },
291 { 0x45, 0x34 }, { 0x46, 0x58 },
292 { 0x47, 0x28 }, { 0x48, 0x3a },
293 { 0x59, 0x88 }, { 0x5a, 0x88 },
294 { 0x5b, 0x44 }, { 0x5c, 0x67 },
295 { 0x5d, 0x49 }, { 0x5e, 0x0e },
296 { 0x6c, 0x0a }, { 0x6d, 0x55 },
297 { 0x6e, 0x11 }, { 0x6f, 0x9f }, /* "9e for advance AWB" */
298 { 0x6a, 0x40 }, { REG_BLUE, 0x40 },
299 { REG_RED, 0x60 },
300 { REG_COM8, COM8_FASTAEC|COM8_AECSTEP|COM8_BFILT|COM8_AGC|COM8_AEC|COM8_AWB },
302 /* Matrix coefficients */
303 { 0x4f, 0x80 }, { 0x50, 0x80 },
304 { 0x51, 0 }, { 0x52, 0x22 },
305 { 0x53, 0x5e }, { 0x54, 0x80 },
306 { 0x58, 0x9e },
308 { REG_COM16, COM16_AWBGAIN }, { REG_EDGE, 0 },
309 { 0x75, 0x05 }, { 0x76, 0xe1 },
310 { 0x4c, 0 }, { 0x77, 0x01 },
311 { REG_COM13, 0xc3 }, { 0x4b, 0x09 },
312 { 0xc9, 0x60 }, { REG_COM16, 0x38 },
313 { 0x56, 0x40 },
315 { 0x34, 0x11 }, { REG_COM11, COM11_EXP|COM11_HZAUTO },
316 { 0xa4, 0x88 }, { 0x96, 0 },
317 { 0x97, 0x30 }, { 0x98, 0x20 },
318 { 0x99, 0x30 }, { 0x9a, 0x84 },
319 { 0x9b, 0x29 }, { 0x9c, 0x03 },
320 { 0x9d, 0x4c }, { 0x9e, 0x3f },
321 { 0x78, 0x04 },
323 /* Extra-weird stuff. Some sort of multiplexor register */
324 { 0x79, 0x01 }, { 0xc8, 0xf0 },
325 { 0x79, 0x0f }, { 0xc8, 0x00 },
326 { 0x79, 0x10 }, { 0xc8, 0x7e },
327 { 0x79, 0x0a }, { 0xc8, 0x80 },
328 { 0x79, 0x0b }, { 0xc8, 0x01 },
329 { 0x79, 0x0c }, { 0xc8, 0x0f },
330 { 0x79, 0x0d }, { 0xc8, 0x20 },
331 { 0x79, 0x09 }, { 0xc8, 0x80 },
332 { 0x79, 0x02 }, { 0xc8, 0xc0 },
333 { 0x79, 0x03 }, { 0xc8, 0x40 },
334 { 0x79, 0x05 }, { 0xc8, 0x30 },
335 { 0x79, 0x26 },
337 { 0xff, 0xff }, /* END MARKER */
342 * Here we'll try to encapsulate the changes for just the output
343 * video format.
345 * RGB656 and YUV422 come from OV; RGB444 is homebrewed.
347 * IMPORTANT RULE: the first entry must be for COM7, see ov7670_s_fmt for why.
351 static struct regval_list ov7670_fmt_yuv422[] = {
352 { REG_COM7, 0x0 }, /* Selects YUV mode */
353 { REG_RGB444, 0 }, /* No RGB444 please */
354 { REG_COM1, 0 }, /* CCIR601 */
355 { REG_COM15, COM15_R00FF },
356 { REG_COM9, 0x18 }, /* 4x gain ceiling; 0x8 is reserved bit */
357 { 0x4f, 0x80 }, /* "matrix coefficient 1" */
358 { 0x50, 0x80 }, /* "matrix coefficient 2" */
359 { 0x51, 0 }, /* vb */
360 { 0x52, 0x22 }, /* "matrix coefficient 4" */
361 { 0x53, 0x5e }, /* "matrix coefficient 5" */
362 { 0x54, 0x80 }, /* "matrix coefficient 6" */
363 { REG_COM13, COM13_GAMMA|COM13_UVSAT },
364 { 0xff, 0xff },
367 static struct regval_list ov7670_fmt_rgb565[] = {
368 { REG_COM7, COM7_RGB }, /* Selects RGB mode */
369 { REG_RGB444, 0 }, /* No RGB444 please */
370 { REG_COM1, 0x0 }, /* CCIR601 */
371 { REG_COM15, COM15_RGB565 },
372 { REG_COM9, 0x38 }, /* 16x gain ceiling; 0x8 is reserved bit */
373 { 0x4f, 0xb3 }, /* "matrix coefficient 1" */
374 { 0x50, 0xb3 }, /* "matrix coefficient 2" */
375 { 0x51, 0 }, /* vb */
376 { 0x52, 0x3d }, /* "matrix coefficient 4" */
377 { 0x53, 0xa7 }, /* "matrix coefficient 5" */
378 { 0x54, 0xe4 }, /* "matrix coefficient 6" */
379 { REG_COM13, COM13_GAMMA|COM13_UVSAT },
380 { 0xff, 0xff },
383 static struct regval_list ov7670_fmt_rgb444[] = {
384 { REG_COM7, COM7_RGB }, /* Selects RGB mode */
385 { REG_RGB444, R444_ENABLE }, /* Enable xxxxrrrr ggggbbbb */
386 { REG_COM1, 0x0 }, /* CCIR601 */
387 { REG_COM15, COM15_R01FE|COM15_RGB565 }, /* Data range needed? */
388 { REG_COM9, 0x38 }, /* 16x gain ceiling; 0x8 is reserved bit */
389 { 0x4f, 0xb3 }, /* "matrix coefficient 1" */
390 { 0x50, 0xb3 }, /* "matrix coefficient 2" */
391 { 0x51, 0 }, /* vb */
392 { 0x52, 0x3d }, /* "matrix coefficient 4" */
393 { 0x53, 0xa7 }, /* "matrix coefficient 5" */
394 { 0x54, 0xe4 }, /* "matrix coefficient 6" */
395 { REG_COM13, COM13_GAMMA|COM13_UVSAT|0x2 }, /* Magic rsvd bit */
396 { 0xff, 0xff },
399 static struct regval_list ov7670_fmt_raw[] = {
400 { REG_COM7, COM7_BAYER },
401 { REG_COM13, 0x08 }, /* No gamma, magic rsvd bit */
402 { REG_COM16, 0x3d }, /* Edge enhancement, denoise */
403 { REG_REG76, 0xe1 }, /* Pix correction, magic rsvd */
404 { 0xff, 0xff },
410 * Low-level register I/O.
412 * Note that there are two versions of these. On the XO 1, the
413 * i2c controller only does SMBUS, so that's what we use. The
414 * ov7670 is not really an SMBUS device, though, so the communication
415 * is not always entirely reliable.
417 static int ov7670_read_smbus(struct v4l2_subdev *sd, unsigned char reg,
418 unsigned char *value)
420 struct i2c_client *client = v4l2_get_subdevdata(sd);
421 int ret;
423 ret = i2c_smbus_read_byte_data(client, reg);
424 if (ret >= 0) {
425 *value = (unsigned char)ret;
426 ret = 0;
428 return ret;
432 static int ov7670_write_smbus(struct v4l2_subdev *sd, unsigned char reg,
433 unsigned char value)
435 struct i2c_client *client = v4l2_get_subdevdata(sd);
436 int ret = i2c_smbus_write_byte_data(client, reg, value);
438 if (reg == REG_COM7 && (value & COM7_RESET))
439 msleep(5); /* Wait for reset to run */
440 return ret;
444 * On most platforms, we'd rather do straight i2c I/O.
446 static int ov7670_read_i2c(struct v4l2_subdev *sd, unsigned char reg,
447 unsigned char *value)
449 struct i2c_client *client = v4l2_get_subdevdata(sd);
450 u8 data = reg;
451 struct i2c_msg msg;
452 int ret;
455 * Send out the register address...
457 msg.addr = client->addr;
458 msg.flags = 0;
459 msg.len = 1;
460 msg.buf = &data;
461 ret = i2c_transfer(client->adapter, &msg, 1);
462 if (ret < 0) {
463 printk(KERN_ERR "Error %d on register write\n", ret);
464 return ret;
467 * ...then read back the result.
469 msg.flags = I2C_M_RD;
470 ret = i2c_transfer(client->adapter, &msg, 1);
471 if (ret >= 0) {
472 *value = data;
473 ret = 0;
475 return ret;
479 static int ov7670_write_i2c(struct v4l2_subdev *sd, unsigned char reg,
480 unsigned char value)
482 struct i2c_client *client = v4l2_get_subdevdata(sd);
483 struct i2c_msg msg;
484 unsigned char data[2] = { reg, value };
485 int ret;
487 msg.addr = client->addr;
488 msg.flags = 0;
489 msg.len = 2;
490 msg.buf = data;
491 ret = i2c_transfer(client->adapter, &msg, 1);
492 if (ret > 0)
493 ret = 0;
494 if (reg == REG_COM7 && (value & COM7_RESET))
495 msleep(5); /* Wait for reset to run */
496 return ret;
499 static int ov7670_read(struct v4l2_subdev *sd, unsigned char reg,
500 unsigned char *value)
502 struct ov7670_info *info = to_state(sd);
503 if (info->use_smbus)
504 return ov7670_read_smbus(sd, reg, value);
505 else
506 return ov7670_read_i2c(sd, reg, value);
509 static int ov7670_write(struct v4l2_subdev *sd, unsigned char reg,
510 unsigned char value)
512 struct ov7670_info *info = to_state(sd);
513 if (info->use_smbus)
514 return ov7670_write_smbus(sd, reg, value);
515 else
516 return ov7670_write_i2c(sd, reg, value);
520 * Write a list of register settings; ff/ff stops the process.
522 static int ov7670_write_array(struct v4l2_subdev *sd, struct regval_list *vals)
524 while (vals->reg_num != 0xff || vals->value != 0xff) {
525 int ret = ov7670_write(sd, vals->reg_num, vals->value);
526 if (ret < 0)
527 return ret;
528 vals++;
530 return 0;
535 * Stuff that knows about the sensor.
537 static int ov7670_reset(struct v4l2_subdev *sd, u32 val)
539 ov7670_write(sd, REG_COM7, COM7_RESET);
540 msleep(1);
541 return 0;
545 static int ov7670_init(struct v4l2_subdev *sd, u32 val)
547 return ov7670_write_array(sd, ov7670_default_regs);
552 static int ov7670_detect(struct v4l2_subdev *sd)
554 unsigned char v;
555 int ret;
557 ret = ov7670_init(sd, 0);
558 if (ret < 0)
559 return ret;
560 ret = ov7670_read(sd, REG_MIDH, &v);
561 if (ret < 0)
562 return ret;
563 if (v != 0x7f) /* OV manuf. id. */
564 return -ENODEV;
565 ret = ov7670_read(sd, REG_MIDL, &v);
566 if (ret < 0)
567 return ret;
568 if (v != 0xa2)
569 return -ENODEV;
571 * OK, we know we have an OmniVision chip...but which one?
573 ret = ov7670_read(sd, REG_PID, &v);
574 if (ret < 0)
575 return ret;
576 if (v != 0x76) /* PID + VER = 0x76 / 0x73 */
577 return -ENODEV;
578 ret = ov7670_read(sd, REG_VER, &v);
579 if (ret < 0)
580 return ret;
581 if (v != 0x73) /* PID + VER = 0x76 / 0x73 */
582 return -ENODEV;
583 return 0;
588 * Store information about the video data format. The color matrix
589 * is deeply tied into the format, so keep the relevant values here.
590 * The magic matrix numbers come from OmniVision.
592 static struct ov7670_format_struct {
593 enum v4l2_mbus_pixelcode mbus_code;
594 enum v4l2_colorspace colorspace;
595 struct regval_list *regs;
596 int cmatrix[CMATRIX_LEN];
597 } ov7670_formats[] = {
599 .mbus_code = V4L2_MBUS_FMT_YUYV8_2X8,
600 .colorspace = V4L2_COLORSPACE_JPEG,
601 .regs = ov7670_fmt_yuv422,
602 .cmatrix = { 128, -128, 0, -34, -94, 128 },
605 .mbus_code = V4L2_MBUS_FMT_RGB444_2X8_PADHI_LE,
606 .colorspace = V4L2_COLORSPACE_SRGB,
607 .regs = ov7670_fmt_rgb444,
608 .cmatrix = { 179, -179, 0, -61, -176, 228 },
611 .mbus_code = V4L2_MBUS_FMT_RGB565_2X8_LE,
612 .colorspace = V4L2_COLORSPACE_SRGB,
613 .regs = ov7670_fmt_rgb565,
614 .cmatrix = { 179, -179, 0, -61, -176, 228 },
617 .mbus_code = V4L2_MBUS_FMT_SBGGR8_1X8,
618 .colorspace = V4L2_COLORSPACE_SRGB,
619 .regs = ov7670_fmt_raw,
620 .cmatrix = { 0, 0, 0, 0, 0, 0 },
623 #define N_OV7670_FMTS ARRAY_SIZE(ov7670_formats)
627 * Then there is the issue of window sizes. Try to capture the info here.
631 * QCIF mode is done (by OV) in a very strange way - it actually looks like
632 * VGA with weird scaling options - they do *not* use the canned QCIF mode
633 * which is allegedly provided by the sensor. So here's the weird register
634 * settings.
636 static struct regval_list ov7670_qcif_regs[] = {
637 { REG_COM3, COM3_SCALEEN|COM3_DCWEN },
638 { REG_COM3, COM3_DCWEN },
639 { REG_COM14, COM14_DCWEN | 0x01},
640 { 0x73, 0xf1 },
641 { 0xa2, 0x52 },
642 { 0x7b, 0x1c },
643 { 0x7c, 0x28 },
644 { 0x7d, 0x3c },
645 { 0x7f, 0x69 },
646 { REG_COM9, 0x38 },
647 { 0xa1, 0x0b },
648 { 0x74, 0x19 },
649 { 0x9a, 0x80 },
650 { 0x43, 0x14 },
651 { REG_COM13, 0xc0 },
652 { 0xff, 0xff },
655 static struct ov7670_win_size {
656 int width;
657 int height;
658 unsigned char com7_bit;
659 int hstart; /* Start/stop values for the camera. Note */
660 int hstop; /* that they do not always make complete */
661 int vstart; /* sense to humans, but evidently the sensor */
662 int vstop; /* will do the right thing... */
663 struct regval_list *regs; /* Regs to tweak */
664 /* h/vref stuff */
665 } ov7670_win_sizes[] = {
666 /* VGA */
668 .width = VGA_WIDTH,
669 .height = VGA_HEIGHT,
670 .com7_bit = COM7_FMT_VGA,
671 .hstart = 158, /* These values from */
672 .hstop = 14, /* Omnivision */
673 .vstart = 10,
674 .vstop = 490,
675 .regs = NULL,
677 /* CIF */
679 .width = CIF_WIDTH,
680 .height = CIF_HEIGHT,
681 .com7_bit = COM7_FMT_CIF,
682 .hstart = 170, /* Empirically determined */
683 .hstop = 90,
684 .vstart = 14,
685 .vstop = 494,
686 .regs = NULL,
688 /* QVGA */
690 .width = QVGA_WIDTH,
691 .height = QVGA_HEIGHT,
692 .com7_bit = COM7_FMT_QVGA,
693 .hstart = 168, /* Empirically determined */
694 .hstop = 24,
695 .vstart = 12,
696 .vstop = 492,
697 .regs = NULL,
699 /* QCIF */
701 .width = QCIF_WIDTH,
702 .height = QCIF_HEIGHT,
703 .com7_bit = COM7_FMT_VGA, /* see comment above */
704 .hstart = 456, /* Empirically determined */
705 .hstop = 24,
706 .vstart = 14,
707 .vstop = 494,
708 .regs = ov7670_qcif_regs,
712 #define N_WIN_SIZES (ARRAY_SIZE(ov7670_win_sizes))
716 * Store a set of start/stop values into the camera.
718 static int ov7670_set_hw(struct v4l2_subdev *sd, int hstart, int hstop,
719 int vstart, int vstop)
721 int ret;
722 unsigned char v;
724 * Horizontal: 11 bits, top 8 live in hstart and hstop. Bottom 3 of
725 * hstart are in href[2:0], bottom 3 of hstop in href[5:3]. There is
726 * a mystery "edge offset" value in the top two bits of href.
728 ret = ov7670_write(sd, REG_HSTART, (hstart >> 3) & 0xff);
729 ret += ov7670_write(sd, REG_HSTOP, (hstop >> 3) & 0xff);
730 ret += ov7670_read(sd, REG_HREF, &v);
731 v = (v & 0xc0) | ((hstop & 0x7) << 3) | (hstart & 0x7);
732 msleep(10);
733 ret += ov7670_write(sd, REG_HREF, v);
735 * Vertical: similar arrangement, but only 10 bits.
737 ret += ov7670_write(sd, REG_VSTART, (vstart >> 2) & 0xff);
738 ret += ov7670_write(sd, REG_VSTOP, (vstop >> 2) & 0xff);
739 ret += ov7670_read(sd, REG_VREF, &v);
740 v = (v & 0xf0) | ((vstop & 0x3) << 2) | (vstart & 0x3);
741 msleep(10);
742 ret += ov7670_write(sd, REG_VREF, v);
743 return ret;
747 static int ov7670_enum_mbus_fmt(struct v4l2_subdev *sd, unsigned index,
748 enum v4l2_mbus_pixelcode *code)
750 if (index >= N_OV7670_FMTS)
751 return -EINVAL;
753 *code = ov7670_formats[index].mbus_code;
754 return 0;
757 static int ov7670_try_fmt_internal(struct v4l2_subdev *sd,
758 struct v4l2_mbus_framefmt *fmt,
759 struct ov7670_format_struct **ret_fmt,
760 struct ov7670_win_size **ret_wsize)
762 int index;
763 struct ov7670_win_size *wsize;
765 for (index = 0; index < N_OV7670_FMTS; index++)
766 if (ov7670_formats[index].mbus_code == fmt->code)
767 break;
768 if (index >= N_OV7670_FMTS) {
769 /* default to first format */
770 index = 0;
771 fmt->code = ov7670_formats[0].mbus_code;
773 if (ret_fmt != NULL)
774 *ret_fmt = ov7670_formats + index;
776 * Fields: the OV devices claim to be progressive.
778 fmt->field = V4L2_FIELD_NONE;
780 * Round requested image size down to the nearest
781 * we support, but not below the smallest.
783 for (wsize = ov7670_win_sizes; wsize < ov7670_win_sizes + N_WIN_SIZES;
784 wsize++)
785 if (fmt->width >= wsize->width && fmt->height >= wsize->height)
786 break;
787 if (wsize >= ov7670_win_sizes + N_WIN_SIZES)
788 wsize--; /* Take the smallest one */
789 if (ret_wsize != NULL)
790 *ret_wsize = wsize;
792 * Note the size we'll actually handle.
794 fmt->width = wsize->width;
795 fmt->height = wsize->height;
796 fmt->colorspace = ov7670_formats[index].colorspace;
797 return 0;
800 static int ov7670_try_mbus_fmt(struct v4l2_subdev *sd,
801 struct v4l2_mbus_framefmt *fmt)
803 return ov7670_try_fmt_internal(sd, fmt, NULL, NULL);
807 * Set a format.
809 static int ov7670_s_mbus_fmt(struct v4l2_subdev *sd,
810 struct v4l2_mbus_framefmt *fmt)
812 struct ov7670_format_struct *ovfmt;
813 struct ov7670_win_size *wsize;
814 struct ov7670_info *info = to_state(sd);
815 unsigned char com7;
816 int ret;
818 ret = ov7670_try_fmt_internal(sd, fmt, &ovfmt, &wsize);
820 if (ret)
821 return ret;
823 * COM7 is a pain in the ass, it doesn't like to be read then
824 * quickly written afterward. But we have everything we need
825 * to set it absolutely here, as long as the format-specific
826 * register sets list it first.
828 com7 = ovfmt->regs[0].value;
829 com7 |= wsize->com7_bit;
830 ov7670_write(sd, REG_COM7, com7);
832 * Now write the rest of the array. Also store start/stops
834 ov7670_write_array(sd, ovfmt->regs + 1);
835 ov7670_set_hw(sd, wsize->hstart, wsize->hstop, wsize->vstart,
836 wsize->vstop);
837 ret = 0;
838 if (wsize->regs)
839 ret = ov7670_write_array(sd, wsize->regs);
840 info->fmt = ovfmt;
843 * If we're running RGB565, we must rewrite clkrc after setting
844 * the other parameters or the image looks poor. If we're *not*
845 * doing RGB565, we must not rewrite clkrc or the image looks
846 * *really* poor.
848 * (Update) Now that we retain clkrc state, we should be able
849 * to write it unconditionally, and that will make the frame
850 * rate persistent too.
852 if (ret == 0)
853 ret = ov7670_write(sd, REG_CLKRC, info->clkrc);
854 return 0;
858 * Implement G/S_PARM. There is a "high quality" mode we could try
859 * to do someday; for now, we just do the frame rate tweak.
861 static int ov7670_g_parm(struct v4l2_subdev *sd, struct v4l2_streamparm *parms)
863 struct v4l2_captureparm *cp = &parms->parm.capture;
864 struct ov7670_info *info = to_state(sd);
866 if (parms->type != V4L2_BUF_TYPE_VIDEO_CAPTURE)
867 return -EINVAL;
869 memset(cp, 0, sizeof(struct v4l2_captureparm));
870 cp->capability = V4L2_CAP_TIMEPERFRAME;
871 cp->timeperframe.numerator = 1;
872 cp->timeperframe.denominator = info->clock_speed;
873 if ((info->clkrc & CLK_EXT) == 0 && (info->clkrc & CLK_SCALE) > 1)
874 cp->timeperframe.denominator /= (info->clkrc & CLK_SCALE);
875 return 0;
878 static int ov7670_s_parm(struct v4l2_subdev *sd, struct v4l2_streamparm *parms)
880 struct v4l2_captureparm *cp = &parms->parm.capture;
881 struct v4l2_fract *tpf = &cp->timeperframe;
882 struct ov7670_info *info = to_state(sd);
883 int div;
885 if (parms->type != V4L2_BUF_TYPE_VIDEO_CAPTURE)
886 return -EINVAL;
887 if (cp->extendedmode != 0)
888 return -EINVAL;
890 if (tpf->numerator == 0 || tpf->denominator == 0)
891 div = 1; /* Reset to full rate */
892 else
893 div = (tpf->numerator * info->clock_speed) / tpf->denominator;
894 if (div == 0)
895 div = 1;
896 else if (div > CLK_SCALE)
897 div = CLK_SCALE;
898 info->clkrc = (info->clkrc & 0x80) | div;
899 tpf->numerator = 1;
900 tpf->denominator = info->clock_speed / div;
901 return ov7670_write(sd, REG_CLKRC, info->clkrc);
906 * Frame intervals. Since frame rates are controlled with the clock
907 * divider, we can only do 30/n for integer n values. So no continuous
908 * or stepwise options. Here we just pick a handful of logical values.
911 static int ov7670_frame_rates[] = { 30, 15, 10, 5, 1 };
913 static int ov7670_enum_frameintervals(struct v4l2_subdev *sd,
914 struct v4l2_frmivalenum *interval)
916 if (interval->index >= ARRAY_SIZE(ov7670_frame_rates))
917 return -EINVAL;
918 interval->type = V4L2_FRMIVAL_TYPE_DISCRETE;
919 interval->discrete.numerator = 1;
920 interval->discrete.denominator = ov7670_frame_rates[interval->index];
921 return 0;
925 * Frame size enumeration
927 static int ov7670_enum_framesizes(struct v4l2_subdev *sd,
928 struct v4l2_frmsizeenum *fsize)
930 struct ov7670_info *info = to_state(sd);
931 int i;
932 int num_valid = -1;
933 __u32 index = fsize->index;
936 * If a minimum width/height was requested, filter out the capture
937 * windows that fall outside that.
939 for (i = 0; i < N_WIN_SIZES; i++) {
940 struct ov7670_win_size *win = &ov7670_win_sizes[index];
941 if (info->min_width && win->width < info->min_width)
942 continue;
943 if (info->min_height && win->height < info->min_height)
944 continue;
945 if (index == ++num_valid) {
946 fsize->type = V4L2_FRMSIZE_TYPE_DISCRETE;
947 fsize->discrete.width = win->width;
948 fsize->discrete.height = win->height;
949 return 0;
953 return -EINVAL;
957 * Code for dealing with controls.
960 static int ov7670_store_cmatrix(struct v4l2_subdev *sd,
961 int matrix[CMATRIX_LEN])
963 int i, ret;
964 unsigned char signbits = 0;
967 * Weird crap seems to exist in the upper part of
968 * the sign bits register, so let's preserve it.
970 ret = ov7670_read(sd, REG_CMATRIX_SIGN, &signbits);
971 signbits &= 0xc0;
973 for (i = 0; i < CMATRIX_LEN; i++) {
974 unsigned char raw;
976 if (matrix[i] < 0) {
977 signbits |= (1 << i);
978 if (matrix[i] < -255)
979 raw = 0xff;
980 else
981 raw = (-1 * matrix[i]) & 0xff;
983 else {
984 if (matrix[i] > 255)
985 raw = 0xff;
986 else
987 raw = matrix[i] & 0xff;
989 ret += ov7670_write(sd, REG_CMATRIX_BASE + i, raw);
991 ret += ov7670_write(sd, REG_CMATRIX_SIGN, signbits);
992 return ret;
997 * Hue also requires messing with the color matrix. It also requires
998 * trig functions, which tend not to be well supported in the kernel.
999 * So here is a simple table of sine values, 0-90 degrees, in steps
1000 * of five degrees. Values are multiplied by 1000.
1002 * The following naive approximate trig functions require an argument
1003 * carefully limited to -180 <= theta <= 180.
1005 #define SIN_STEP 5
1006 static const int ov7670_sin_table[] = {
1007 0, 87, 173, 258, 342, 422,
1008 499, 573, 642, 707, 766, 819,
1009 866, 906, 939, 965, 984, 996,
1010 1000
1013 static int ov7670_sine(int theta)
1015 int chs = 1;
1016 int sine;
1018 if (theta < 0) {
1019 theta = -theta;
1020 chs = -1;
1022 if (theta <= 90)
1023 sine = ov7670_sin_table[theta/SIN_STEP];
1024 else {
1025 theta -= 90;
1026 sine = 1000 - ov7670_sin_table[theta/SIN_STEP];
1028 return sine*chs;
1031 static int ov7670_cosine(int theta)
1033 theta = 90 - theta;
1034 if (theta > 180)
1035 theta -= 360;
1036 else if (theta < -180)
1037 theta += 360;
1038 return ov7670_sine(theta);
1044 static void ov7670_calc_cmatrix(struct ov7670_info *info,
1045 int matrix[CMATRIX_LEN])
1047 int i;
1049 * Apply the current saturation setting first.
1051 for (i = 0; i < CMATRIX_LEN; i++)
1052 matrix[i] = (info->fmt->cmatrix[i]*info->sat) >> 7;
1054 * Then, if need be, rotate the hue value.
1056 if (info->hue != 0) {
1057 int sinth, costh, tmpmatrix[CMATRIX_LEN];
1059 memcpy(tmpmatrix, matrix, CMATRIX_LEN*sizeof(int));
1060 sinth = ov7670_sine(info->hue);
1061 costh = ov7670_cosine(info->hue);
1063 matrix[0] = (matrix[3]*sinth + matrix[0]*costh)/1000;
1064 matrix[1] = (matrix[4]*sinth + matrix[1]*costh)/1000;
1065 matrix[2] = (matrix[5]*sinth + matrix[2]*costh)/1000;
1066 matrix[3] = (matrix[3]*costh - matrix[0]*sinth)/1000;
1067 matrix[4] = (matrix[4]*costh - matrix[1]*sinth)/1000;
1068 matrix[5] = (matrix[5]*costh - matrix[2]*sinth)/1000;
1074 static int ov7670_s_sat(struct v4l2_subdev *sd, int value)
1076 struct ov7670_info *info = to_state(sd);
1077 int matrix[CMATRIX_LEN];
1078 int ret;
1080 info->sat = value;
1081 ov7670_calc_cmatrix(info, matrix);
1082 ret = ov7670_store_cmatrix(sd, matrix);
1083 return ret;
1086 static int ov7670_g_sat(struct v4l2_subdev *sd, __s32 *value)
1088 struct ov7670_info *info = to_state(sd);
1090 *value = info->sat;
1091 return 0;
1094 static int ov7670_s_hue(struct v4l2_subdev *sd, int value)
1096 struct ov7670_info *info = to_state(sd);
1097 int matrix[CMATRIX_LEN];
1098 int ret;
1100 if (value < -180 || value > 180)
1101 return -EINVAL;
1102 info->hue = value;
1103 ov7670_calc_cmatrix(info, matrix);
1104 ret = ov7670_store_cmatrix(sd, matrix);
1105 return ret;
1109 static int ov7670_g_hue(struct v4l2_subdev *sd, __s32 *value)
1111 struct ov7670_info *info = to_state(sd);
1113 *value = info->hue;
1114 return 0;
1119 * Some weird registers seem to store values in a sign/magnitude format!
1121 static unsigned char ov7670_sm_to_abs(unsigned char v)
1123 if ((v & 0x80) == 0)
1124 return v + 128;
1125 return 128 - (v & 0x7f);
1129 static unsigned char ov7670_abs_to_sm(unsigned char v)
1131 if (v > 127)
1132 return v & 0x7f;
1133 return (128 - v) | 0x80;
1136 static int ov7670_s_brightness(struct v4l2_subdev *sd, int value)
1138 unsigned char com8 = 0, v;
1139 int ret;
1141 ov7670_read(sd, REG_COM8, &com8);
1142 com8 &= ~COM8_AEC;
1143 ov7670_write(sd, REG_COM8, com8);
1144 v = ov7670_abs_to_sm(value);
1145 ret = ov7670_write(sd, REG_BRIGHT, v);
1146 return ret;
1149 static int ov7670_g_brightness(struct v4l2_subdev *sd, __s32 *value)
1151 unsigned char v = 0;
1152 int ret = ov7670_read(sd, REG_BRIGHT, &v);
1154 *value = ov7670_sm_to_abs(v);
1155 return ret;
1158 static int ov7670_s_contrast(struct v4l2_subdev *sd, int value)
1160 return ov7670_write(sd, REG_CONTRAS, (unsigned char) value);
1163 static int ov7670_g_contrast(struct v4l2_subdev *sd, __s32 *value)
1165 unsigned char v = 0;
1166 int ret = ov7670_read(sd, REG_CONTRAS, &v);
1168 *value = v;
1169 return ret;
1172 static int ov7670_g_hflip(struct v4l2_subdev *sd, __s32 *value)
1174 int ret;
1175 unsigned char v = 0;
1177 ret = ov7670_read(sd, REG_MVFP, &v);
1178 *value = (v & MVFP_MIRROR) == MVFP_MIRROR;
1179 return ret;
1183 static int ov7670_s_hflip(struct v4l2_subdev *sd, int value)
1185 unsigned char v = 0;
1186 int ret;
1188 ret = ov7670_read(sd, REG_MVFP, &v);
1189 if (value)
1190 v |= MVFP_MIRROR;
1191 else
1192 v &= ~MVFP_MIRROR;
1193 msleep(10); /* FIXME */
1194 ret += ov7670_write(sd, REG_MVFP, v);
1195 return ret;
1200 static int ov7670_g_vflip(struct v4l2_subdev *sd, __s32 *value)
1202 int ret;
1203 unsigned char v = 0;
1205 ret = ov7670_read(sd, REG_MVFP, &v);
1206 *value = (v & MVFP_FLIP) == MVFP_FLIP;
1207 return ret;
1211 static int ov7670_s_vflip(struct v4l2_subdev *sd, int value)
1213 unsigned char v = 0;
1214 int ret;
1216 ret = ov7670_read(sd, REG_MVFP, &v);
1217 if (value)
1218 v |= MVFP_FLIP;
1219 else
1220 v &= ~MVFP_FLIP;
1221 msleep(10); /* FIXME */
1222 ret += ov7670_write(sd, REG_MVFP, v);
1223 return ret;
1227 * GAIN is split between REG_GAIN and REG_VREF[7:6]. If one believes
1228 * the data sheet, the VREF parts should be the most significant, but
1229 * experience shows otherwise. There seems to be little value in
1230 * messing with the VREF bits, so we leave them alone.
1232 static int ov7670_g_gain(struct v4l2_subdev *sd, __s32 *value)
1234 int ret;
1235 unsigned char gain;
1237 ret = ov7670_read(sd, REG_GAIN, &gain);
1238 *value = gain;
1239 return ret;
1242 static int ov7670_s_gain(struct v4l2_subdev *sd, int value)
1244 int ret;
1245 unsigned char com8;
1247 ret = ov7670_write(sd, REG_GAIN, value & 0xff);
1248 /* Have to turn off AGC as well */
1249 if (ret == 0) {
1250 ret = ov7670_read(sd, REG_COM8, &com8);
1251 ret = ov7670_write(sd, REG_COM8, com8 & ~COM8_AGC);
1253 return ret;
1257 * Tweak autogain.
1259 static int ov7670_g_autogain(struct v4l2_subdev *sd, __s32 *value)
1261 int ret;
1262 unsigned char com8;
1264 ret = ov7670_read(sd, REG_COM8, &com8);
1265 *value = (com8 & COM8_AGC) != 0;
1266 return ret;
1269 static int ov7670_s_autogain(struct v4l2_subdev *sd, int value)
1271 int ret;
1272 unsigned char com8;
1274 ret = ov7670_read(sd, REG_COM8, &com8);
1275 if (ret == 0) {
1276 if (value)
1277 com8 |= COM8_AGC;
1278 else
1279 com8 &= ~COM8_AGC;
1280 ret = ov7670_write(sd, REG_COM8, com8);
1282 return ret;
1286 * Exposure is spread all over the place: top 6 bits in AECHH, middle
1287 * 8 in AECH, and two stashed in COM1 just for the hell of it.
1289 static int ov7670_g_exp(struct v4l2_subdev *sd, __s32 *value)
1291 int ret;
1292 unsigned char com1, aech, aechh;
1294 ret = ov7670_read(sd, REG_COM1, &com1) +
1295 ov7670_read(sd, REG_AECH, &aech) +
1296 ov7670_read(sd, REG_AECHH, &aechh);
1297 *value = ((aechh & 0x3f) << 10) | (aech << 2) | (com1 & 0x03);
1298 return ret;
1301 static int ov7670_s_exp(struct v4l2_subdev *sd, int value)
1303 int ret;
1304 unsigned char com1, com8, aech, aechh;
1306 ret = ov7670_read(sd, REG_COM1, &com1) +
1307 ov7670_read(sd, REG_COM8, &com8);
1308 ov7670_read(sd, REG_AECHH, &aechh);
1309 if (ret)
1310 return ret;
1312 com1 = (com1 & 0xfc) | (value & 0x03);
1313 aech = (value >> 2) & 0xff;
1314 aechh = (aechh & 0xc0) | ((value >> 10) & 0x3f);
1315 ret = ov7670_write(sd, REG_COM1, com1) +
1316 ov7670_write(sd, REG_AECH, aech) +
1317 ov7670_write(sd, REG_AECHH, aechh);
1318 /* Have to turn off AEC as well */
1319 if (ret == 0)
1320 ret = ov7670_write(sd, REG_COM8, com8 & ~COM8_AEC);
1321 return ret;
1325 * Tweak autoexposure.
1327 static int ov7670_g_autoexp(struct v4l2_subdev *sd, __s32 *value)
1329 int ret;
1330 unsigned char com8;
1331 enum v4l2_exposure_auto_type *atype = (enum v4l2_exposure_auto_type *) value;
1333 ret = ov7670_read(sd, REG_COM8, &com8);
1334 if (com8 & COM8_AEC)
1335 *atype = V4L2_EXPOSURE_AUTO;
1336 else
1337 *atype = V4L2_EXPOSURE_MANUAL;
1338 return ret;
1341 static int ov7670_s_autoexp(struct v4l2_subdev *sd,
1342 enum v4l2_exposure_auto_type value)
1344 int ret;
1345 unsigned char com8;
1347 ret = ov7670_read(sd, REG_COM8, &com8);
1348 if (ret == 0) {
1349 if (value == V4L2_EXPOSURE_AUTO)
1350 com8 |= COM8_AEC;
1351 else
1352 com8 &= ~COM8_AEC;
1353 ret = ov7670_write(sd, REG_COM8, com8);
1355 return ret;
1360 static int ov7670_queryctrl(struct v4l2_subdev *sd,
1361 struct v4l2_queryctrl *qc)
1363 /* Fill in min, max, step and default value for these controls. */
1364 switch (qc->id) {
1365 case V4L2_CID_BRIGHTNESS:
1366 return v4l2_ctrl_query_fill(qc, 0, 255, 1, 128);
1367 case V4L2_CID_CONTRAST:
1368 return v4l2_ctrl_query_fill(qc, 0, 127, 1, 64);
1369 case V4L2_CID_VFLIP:
1370 case V4L2_CID_HFLIP:
1371 return v4l2_ctrl_query_fill(qc, 0, 1, 1, 0);
1372 case V4L2_CID_SATURATION:
1373 return v4l2_ctrl_query_fill(qc, 0, 256, 1, 128);
1374 case V4L2_CID_HUE:
1375 return v4l2_ctrl_query_fill(qc, -180, 180, 5, 0);
1376 case V4L2_CID_GAIN:
1377 return v4l2_ctrl_query_fill(qc, 0, 255, 1, 128);
1378 case V4L2_CID_AUTOGAIN:
1379 return v4l2_ctrl_query_fill(qc, 0, 1, 1, 1);
1380 case V4L2_CID_EXPOSURE:
1381 return v4l2_ctrl_query_fill(qc, 0, 65535, 1, 500);
1382 case V4L2_CID_EXPOSURE_AUTO:
1383 return v4l2_ctrl_query_fill(qc, 0, 1, 1, 0);
1385 return -EINVAL;
1388 static int ov7670_g_ctrl(struct v4l2_subdev *sd, struct v4l2_control *ctrl)
1390 switch (ctrl->id) {
1391 case V4L2_CID_BRIGHTNESS:
1392 return ov7670_g_brightness(sd, &ctrl->value);
1393 case V4L2_CID_CONTRAST:
1394 return ov7670_g_contrast(sd, &ctrl->value);
1395 case V4L2_CID_SATURATION:
1396 return ov7670_g_sat(sd, &ctrl->value);
1397 case V4L2_CID_HUE:
1398 return ov7670_g_hue(sd, &ctrl->value);
1399 case V4L2_CID_VFLIP:
1400 return ov7670_g_vflip(sd, &ctrl->value);
1401 case V4L2_CID_HFLIP:
1402 return ov7670_g_hflip(sd, &ctrl->value);
1403 case V4L2_CID_GAIN:
1404 return ov7670_g_gain(sd, &ctrl->value);
1405 case V4L2_CID_AUTOGAIN:
1406 return ov7670_g_autogain(sd, &ctrl->value);
1407 case V4L2_CID_EXPOSURE:
1408 return ov7670_g_exp(sd, &ctrl->value);
1409 case V4L2_CID_EXPOSURE_AUTO:
1410 return ov7670_g_autoexp(sd, &ctrl->value);
1412 return -EINVAL;
1415 static int ov7670_s_ctrl(struct v4l2_subdev *sd, struct v4l2_control *ctrl)
1417 switch (ctrl->id) {
1418 case V4L2_CID_BRIGHTNESS:
1419 return ov7670_s_brightness(sd, ctrl->value);
1420 case V4L2_CID_CONTRAST:
1421 return ov7670_s_contrast(sd, ctrl->value);
1422 case V4L2_CID_SATURATION:
1423 return ov7670_s_sat(sd, ctrl->value);
1424 case V4L2_CID_HUE:
1425 return ov7670_s_hue(sd, ctrl->value);
1426 case V4L2_CID_VFLIP:
1427 return ov7670_s_vflip(sd, ctrl->value);
1428 case V4L2_CID_HFLIP:
1429 return ov7670_s_hflip(sd, ctrl->value);
1430 case V4L2_CID_GAIN:
1431 return ov7670_s_gain(sd, ctrl->value);
1432 case V4L2_CID_AUTOGAIN:
1433 return ov7670_s_autogain(sd, ctrl->value);
1434 case V4L2_CID_EXPOSURE:
1435 return ov7670_s_exp(sd, ctrl->value);
1436 case V4L2_CID_EXPOSURE_AUTO:
1437 return ov7670_s_autoexp(sd,
1438 (enum v4l2_exposure_auto_type) ctrl->value);
1440 return -EINVAL;
1443 static int ov7670_g_chip_ident(struct v4l2_subdev *sd,
1444 struct v4l2_dbg_chip_ident *chip)
1446 struct i2c_client *client = v4l2_get_subdevdata(sd);
1448 return v4l2_chip_ident_i2c_client(client, chip, V4L2_IDENT_OV7670, 0);
1451 #ifdef CONFIG_VIDEO_ADV_DEBUG
1452 static int ov7670_g_register(struct v4l2_subdev *sd, struct v4l2_dbg_register *reg)
1454 struct i2c_client *client = v4l2_get_subdevdata(sd);
1455 unsigned char val = 0;
1456 int ret;
1458 if (!v4l2_chip_match_i2c_client(client, &reg->match))
1459 return -EINVAL;
1460 if (!capable(CAP_SYS_ADMIN))
1461 return -EPERM;
1462 ret = ov7670_read(sd, reg->reg & 0xff, &val);
1463 reg->val = val;
1464 reg->size = 1;
1465 return ret;
1468 static int ov7670_s_register(struct v4l2_subdev *sd, struct v4l2_dbg_register *reg)
1470 struct i2c_client *client = v4l2_get_subdevdata(sd);
1472 if (!v4l2_chip_match_i2c_client(client, &reg->match))
1473 return -EINVAL;
1474 if (!capable(CAP_SYS_ADMIN))
1475 return -EPERM;
1476 ov7670_write(sd, reg->reg & 0xff, reg->val & 0xff);
1477 return 0;
1479 #endif
1481 /* ----------------------------------------------------------------------- */
1483 static const struct v4l2_subdev_core_ops ov7670_core_ops = {
1484 .g_chip_ident = ov7670_g_chip_ident,
1485 .g_ctrl = ov7670_g_ctrl,
1486 .s_ctrl = ov7670_s_ctrl,
1487 .queryctrl = ov7670_queryctrl,
1488 .reset = ov7670_reset,
1489 .init = ov7670_init,
1490 #ifdef CONFIG_VIDEO_ADV_DEBUG
1491 .g_register = ov7670_g_register,
1492 .s_register = ov7670_s_register,
1493 #endif
1496 static const struct v4l2_subdev_video_ops ov7670_video_ops = {
1497 .enum_mbus_fmt = ov7670_enum_mbus_fmt,
1498 .try_mbus_fmt = ov7670_try_mbus_fmt,
1499 .s_mbus_fmt = ov7670_s_mbus_fmt,
1500 .s_parm = ov7670_s_parm,
1501 .g_parm = ov7670_g_parm,
1502 .enum_frameintervals = ov7670_enum_frameintervals,
1503 .enum_framesizes = ov7670_enum_framesizes,
1506 static const struct v4l2_subdev_ops ov7670_ops = {
1507 .core = &ov7670_core_ops,
1508 .video = &ov7670_video_ops,
1511 /* ----------------------------------------------------------------------- */
1513 static int ov7670_probe(struct i2c_client *client,
1514 const struct i2c_device_id *id)
1516 struct v4l2_subdev *sd;
1517 struct ov7670_info *info;
1518 int ret;
1520 info = kzalloc(sizeof(struct ov7670_info), GFP_KERNEL);
1521 if (info == NULL)
1522 return -ENOMEM;
1523 sd = &info->sd;
1524 v4l2_i2c_subdev_init(sd, client, &ov7670_ops);
1526 info->clock_speed = 30; /* default: a guess */
1527 if (client->dev.platform_data) {
1528 struct ov7670_config *config = client->dev.platform_data;
1531 * Must apply configuration before initializing device, because it
1532 * selects I/O method.
1534 info->min_width = config->min_width;
1535 info->min_height = config->min_height;
1536 info->use_smbus = config->use_smbus;
1538 if (config->clock_speed)
1539 info->clock_speed = config->clock_speed;
1542 /* Make sure it's an ov7670 */
1543 ret = ov7670_detect(sd);
1544 if (ret) {
1545 v4l_dbg(1, debug, client,
1546 "chip found @ 0x%x (%s) is not an ov7670 chip.\n",
1547 client->addr << 1, client->adapter->name);
1548 kfree(info);
1549 return ret;
1551 v4l_info(client, "chip found @ 0x%02x (%s)\n",
1552 client->addr << 1, client->adapter->name);
1554 info->fmt = &ov7670_formats[0];
1555 info->sat = 128; /* Review this */
1556 info->clkrc = info->clock_speed / 30;
1557 return 0;
1561 static int ov7670_remove(struct i2c_client *client)
1563 struct v4l2_subdev *sd = i2c_get_clientdata(client);
1565 v4l2_device_unregister_subdev(sd);
1566 kfree(to_state(sd));
1567 return 0;
1570 static const struct i2c_device_id ov7670_id[] = {
1571 { "ov7670", 0 },
1574 MODULE_DEVICE_TABLE(i2c, ov7670_id);
1576 static struct i2c_driver ov7670_driver = {
1577 .driver = {
1578 .owner = THIS_MODULE,
1579 .name = "ov7670",
1581 .probe = ov7670_probe,
1582 .remove = ov7670_remove,
1583 .id_table = ov7670_id,
1586 static __init int init_ov7670(void)
1588 return i2c_add_driver(&ov7670_driver);
1591 static __exit void exit_ov7670(void)
1593 i2c_del_driver(&ov7670_driver);
1596 module_init(init_ov7670);
1597 module_exit(exit_ov7670);