2 * CAN bus driver for Bosch C_CAN controller
4 * Copyright (C) 2010 ST Microelectronics
5 * Bhupesh Sharma <bhupesh.sharma@st.com>
7 * Borrowed heavily from the C_CAN driver originally written by:
9 * - Sascha Hauer, Marc Kleine-Budde, Pengutronix <s.hauer@pengutronix.de>
10 * - Simon Kallweit, intefo AG <simon.kallweit@intefo.ch>
12 * TX and RX NAPI implementation has been borrowed from at91 CAN driver
15 * (C) 2007 by Hans J. Koch <hjk@hansjkoch.de>
16 * (C) 2008, 2009 by Marc Kleine-Budde <kernel@pengutronix.de>
18 * Bosch C_CAN controller is compliant to CAN protocol version 2.0 part A and B.
19 * Bosch C_CAN user manual can be obtained from:
20 * http://www.semiconductors.bosch.de/media/en/pdf/ipmodules_1/c_can/
21 * users_manual_c_can.pdf
23 * This file is licensed under the terms of the GNU General Public
24 * License version 2. This program is licensed "as is" without any
25 * warranty of any kind, whether express or implied.
28 #include <linux/kernel.h>
29 #include <linux/module.h>
30 #include <linux/interrupt.h>
31 #include <linux/delay.h>
32 #include <linux/netdevice.h>
33 #include <linux/if_arp.h>
34 #include <linux/if_ether.h>
35 #include <linux/list.h>
38 #include <linux/can.h>
39 #include <linux/can/dev.h>
40 #include <linux/can/error.h>
44 /* control register */
45 #define CONTROL_TEST BIT(7)
46 #define CONTROL_CCE BIT(6)
47 #define CONTROL_DISABLE_AR BIT(5)
48 #define CONTROL_ENABLE_AR (0 << 5)
49 #define CONTROL_EIE BIT(3)
50 #define CONTROL_SIE BIT(2)
51 #define CONTROL_IE BIT(1)
52 #define CONTROL_INIT BIT(0)
55 #define TEST_RX BIT(7)
56 #define TEST_TX1 BIT(6)
57 #define TEST_TX2 BIT(5)
58 #define TEST_LBACK BIT(4)
59 #define TEST_SILENT BIT(3)
60 #define TEST_BASIC BIT(2)
63 #define STATUS_BOFF BIT(7)
64 #define STATUS_EWARN BIT(6)
65 #define STATUS_EPASS BIT(5)
66 #define STATUS_RXOK BIT(4)
67 #define STATUS_TXOK BIT(3)
69 /* error counter register */
70 #define ERR_CNT_TEC_MASK 0xff
71 #define ERR_CNT_TEC_SHIFT 0
72 #define ERR_CNT_REC_SHIFT 8
73 #define ERR_CNT_REC_MASK (0x7f << ERR_CNT_REC_SHIFT)
74 #define ERR_CNT_RP_SHIFT 15
75 #define ERR_CNT_RP_MASK (0x1 << ERR_CNT_RP_SHIFT)
77 /* bit-timing register */
78 #define BTR_BRP_MASK 0x3f
79 #define BTR_BRP_SHIFT 0
80 #define BTR_SJW_SHIFT 6
81 #define BTR_SJW_MASK (0x3 << BTR_SJW_SHIFT)
82 #define BTR_TSEG1_SHIFT 8
83 #define BTR_TSEG1_MASK (0xf << BTR_TSEG1_SHIFT)
84 #define BTR_TSEG2_SHIFT 12
85 #define BTR_TSEG2_MASK (0x7 << BTR_TSEG2_SHIFT)
87 /* brp extension register */
88 #define BRP_EXT_BRPE_MASK 0x0f
89 #define BRP_EXT_BRPE_SHIFT 0
91 /* IFx command request */
92 #define IF_COMR_BUSY BIT(15)
94 /* IFx command mask */
95 #define IF_COMM_WR BIT(7)
96 #define IF_COMM_MASK BIT(6)
97 #define IF_COMM_ARB BIT(5)
98 #define IF_COMM_CONTROL BIT(4)
99 #define IF_COMM_CLR_INT_PND BIT(3)
100 #define IF_COMM_TXRQST BIT(2)
101 #define IF_COMM_DATAA BIT(1)
102 #define IF_COMM_DATAB BIT(0)
103 #define IF_COMM_ALL (IF_COMM_MASK | IF_COMM_ARB | \
104 IF_COMM_CONTROL | IF_COMM_TXRQST | \
105 IF_COMM_DATAA | IF_COMM_DATAB)
107 /* IFx arbitration */
108 #define IF_ARB_MSGVAL BIT(15)
109 #define IF_ARB_MSGXTD BIT(14)
110 #define IF_ARB_TRANSMIT BIT(13)
112 /* IFx message control */
113 #define IF_MCONT_NEWDAT BIT(15)
114 #define IF_MCONT_MSGLST BIT(14)
115 #define IF_MCONT_CLR_MSGLST (0 << 14)
116 #define IF_MCONT_INTPND BIT(13)
117 #define IF_MCONT_UMASK BIT(12)
118 #define IF_MCONT_TXIE BIT(11)
119 #define IF_MCONT_RXIE BIT(10)
120 #define IF_MCONT_RMTEN BIT(9)
121 #define IF_MCONT_TXRQST BIT(8)
122 #define IF_MCONT_EOB BIT(7)
123 #define IF_MCONT_DLC_MASK 0xf
126 * IFx register masks:
127 * allow easy operation on 16-bit registers when the
128 * argument is 32-bit instead
130 #define IFX_WRITE_LOW_16BIT(x) ((x) & 0xFFFF)
131 #define IFX_WRITE_HIGH_16BIT(x) (((x) & 0xFFFF0000) >> 16)
133 /* message object split */
134 #define C_CAN_NO_OF_OBJECTS 32
135 #define C_CAN_MSG_OBJ_RX_NUM 16
136 #define C_CAN_MSG_OBJ_TX_NUM 16
138 #define C_CAN_MSG_OBJ_RX_FIRST 1
139 #define C_CAN_MSG_OBJ_RX_LAST (C_CAN_MSG_OBJ_RX_FIRST + \
140 C_CAN_MSG_OBJ_RX_NUM - 1)
142 #define C_CAN_MSG_OBJ_TX_FIRST (C_CAN_MSG_OBJ_RX_LAST + 1)
143 #define C_CAN_MSG_OBJ_TX_LAST (C_CAN_MSG_OBJ_TX_FIRST + \
144 C_CAN_MSG_OBJ_TX_NUM - 1)
146 #define C_CAN_MSG_OBJ_RX_SPLIT 9
147 #define C_CAN_MSG_RX_LOW_LAST (C_CAN_MSG_OBJ_RX_SPLIT - 1)
149 #define C_CAN_NEXT_MSG_OBJ_MASK (C_CAN_MSG_OBJ_TX_NUM - 1)
150 #define RECEIVE_OBJECT_BITS 0x0000ffff
152 /* status interrupt */
153 #define STATUS_INTERRUPT 0x8000
155 /* global interrupt masks */
156 #define ENABLE_ALL_INTERRUPTS 1
157 #define DISABLE_ALL_INTERRUPTS 0
159 /* minimum timeout for checking BUSY status */
160 #define MIN_TIMEOUT_VALUE 6
163 #define C_CAN_NAPI_WEIGHT C_CAN_MSG_OBJ_RX_NUM
165 /* c_can lec values */
166 enum c_can_lec_type
{
179 * Bus errors (BUS_OFF, ERROR_WARNING, ERROR_PASSIVE) are supported
181 enum c_can_bus_error_types
{
188 static struct can_bittiming_const c_can_bittiming_const
= {
189 .name
= KBUILD_MODNAME
,
190 .tseg1_min
= 2, /* Time segment 1 = prop_seg + phase_seg1 */
192 .tseg2_min
= 1, /* Time segment 2 = phase_seg2 */
196 .brp_max
= 1024, /* 6-bit BRP field + 4-bit BRPE field*/
200 static inline int get_tx_next_msg_obj(const struct c_can_priv
*priv
)
202 return (priv
->tx_next
& C_CAN_NEXT_MSG_OBJ_MASK
) +
203 C_CAN_MSG_OBJ_TX_FIRST
;
206 static inline int get_tx_echo_msg_obj(const struct c_can_priv
*priv
)
208 return (priv
->tx_echo
& C_CAN_NEXT_MSG_OBJ_MASK
) +
209 C_CAN_MSG_OBJ_TX_FIRST
;
212 static u32
c_can_read_reg32(struct c_can_priv
*priv
, void *reg
)
214 u32 val
= priv
->read_reg(priv
, reg
);
215 val
|= ((u32
) priv
->read_reg(priv
, reg
+ 2)) << 16;
219 static void c_can_enable_all_interrupts(struct c_can_priv
*priv
,
222 unsigned int cntrl_save
= priv
->read_reg(priv
,
223 &priv
->regs
->control
);
226 cntrl_save
|= (CONTROL_SIE
| CONTROL_EIE
| CONTROL_IE
);
228 cntrl_save
&= ~(CONTROL_EIE
| CONTROL_IE
| CONTROL_SIE
);
230 priv
->write_reg(priv
, &priv
->regs
->control
, cntrl_save
);
233 static inline int c_can_msg_obj_is_busy(struct c_can_priv
*priv
, int iface
)
235 int count
= MIN_TIMEOUT_VALUE
;
237 while (count
&& priv
->read_reg(priv
,
238 &priv
->regs
->ifregs
[iface
].com_req
) &
250 static inline void c_can_object_get(struct net_device
*dev
,
251 int iface
, int objno
, int mask
)
253 struct c_can_priv
*priv
= netdev_priv(dev
);
256 * As per specs, after writting the message object number in the
257 * IF command request register the transfer b/w interface
258 * register and message RAM must be complete in 6 CAN-CLK
261 priv
->write_reg(priv
, &priv
->regs
->ifregs
[iface
].com_mask
,
262 IFX_WRITE_LOW_16BIT(mask
));
263 priv
->write_reg(priv
, &priv
->regs
->ifregs
[iface
].com_req
,
264 IFX_WRITE_LOW_16BIT(objno
));
266 if (c_can_msg_obj_is_busy(priv
, iface
))
267 netdev_err(dev
, "timed out in object get\n");
270 static inline void c_can_object_put(struct net_device
*dev
,
271 int iface
, int objno
, int mask
)
273 struct c_can_priv
*priv
= netdev_priv(dev
);
276 * As per specs, after writting the message object number in the
277 * IF command request register the transfer b/w interface
278 * register and message RAM must be complete in 6 CAN-CLK
281 priv
->write_reg(priv
, &priv
->regs
->ifregs
[iface
].com_mask
,
282 (IF_COMM_WR
| IFX_WRITE_LOW_16BIT(mask
)));
283 priv
->write_reg(priv
, &priv
->regs
->ifregs
[iface
].com_req
,
284 IFX_WRITE_LOW_16BIT(objno
));
286 if (c_can_msg_obj_is_busy(priv
, iface
))
287 netdev_err(dev
, "timed out in object put\n");
290 static void c_can_write_msg_object(struct net_device
*dev
,
291 int iface
, struct can_frame
*frame
, int objno
)
296 struct c_can_priv
*priv
= netdev_priv(dev
);
298 if (!(frame
->can_id
& CAN_RTR_FLAG
))
299 flags
|= IF_ARB_TRANSMIT
;
301 if (frame
->can_id
& CAN_EFF_FLAG
) {
302 id
= frame
->can_id
& CAN_EFF_MASK
;
303 flags
|= IF_ARB_MSGXTD
;
305 id
= ((frame
->can_id
& CAN_SFF_MASK
) << 18);
307 flags
|= IF_ARB_MSGVAL
;
309 priv
->write_reg(priv
, &priv
->regs
->ifregs
[iface
].arb1
,
310 IFX_WRITE_LOW_16BIT(id
));
311 priv
->write_reg(priv
, &priv
->regs
->ifregs
[iface
].arb2
, flags
|
312 IFX_WRITE_HIGH_16BIT(id
));
314 for (i
= 0; i
< frame
->can_dlc
; i
+= 2) {
315 priv
->write_reg(priv
, &priv
->regs
->ifregs
[iface
].data
[i
/ 2],
316 frame
->data
[i
] | (frame
->data
[i
+ 1] << 8));
319 /* enable interrupt for this message object */
320 priv
->write_reg(priv
, &priv
->regs
->ifregs
[iface
].msg_cntrl
,
321 IF_MCONT_TXIE
| IF_MCONT_TXRQST
| IF_MCONT_EOB
|
323 c_can_object_put(dev
, iface
, objno
, IF_COMM_ALL
);
326 static inline void c_can_mark_rx_msg_obj(struct net_device
*dev
,
327 int iface
, int ctrl_mask
,
330 struct c_can_priv
*priv
= netdev_priv(dev
);
332 priv
->write_reg(priv
, &priv
->regs
->ifregs
[iface
].msg_cntrl
,
333 ctrl_mask
& ~(IF_MCONT_MSGLST
| IF_MCONT_INTPND
));
334 c_can_object_put(dev
, iface
, obj
, IF_COMM_CONTROL
);
338 static inline void c_can_activate_all_lower_rx_msg_obj(struct net_device
*dev
,
343 struct c_can_priv
*priv
= netdev_priv(dev
);
345 for (i
= C_CAN_MSG_OBJ_RX_FIRST
; i
<= C_CAN_MSG_RX_LOW_LAST
; i
++) {
346 priv
->write_reg(priv
, &priv
->regs
->ifregs
[iface
].msg_cntrl
,
347 ctrl_mask
& ~(IF_MCONT_MSGLST
|
348 IF_MCONT_INTPND
| IF_MCONT_NEWDAT
));
349 c_can_object_put(dev
, iface
, i
, IF_COMM_CONTROL
);
353 static inline void c_can_activate_rx_msg_obj(struct net_device
*dev
,
354 int iface
, int ctrl_mask
,
357 struct c_can_priv
*priv
= netdev_priv(dev
);
359 priv
->write_reg(priv
, &priv
->regs
->ifregs
[iface
].msg_cntrl
,
360 ctrl_mask
& ~(IF_MCONT_MSGLST
|
361 IF_MCONT_INTPND
| IF_MCONT_NEWDAT
));
362 c_can_object_put(dev
, iface
, obj
, IF_COMM_CONTROL
);
365 static void c_can_handle_lost_msg_obj(struct net_device
*dev
,
366 int iface
, int objno
)
368 struct c_can_priv
*priv
= netdev_priv(dev
);
369 struct net_device_stats
*stats
= &dev
->stats
;
371 struct can_frame
*frame
;
373 netdev_err(dev
, "msg lost in buffer %d\n", objno
);
375 c_can_object_get(dev
, iface
, objno
, IF_COMM_ALL
& ~IF_COMM_TXRQST
);
377 priv
->write_reg(priv
, &priv
->regs
->ifregs
[iface
].msg_cntrl
,
378 IF_MCONT_CLR_MSGLST
);
380 c_can_object_put(dev
, 0, objno
, IF_COMM_CONTROL
);
382 /* create an error msg */
383 skb
= alloc_can_err_skb(dev
, &frame
);
387 frame
->can_id
|= CAN_ERR_CRTL
;
388 frame
->data
[1] = CAN_ERR_CRTL_RX_OVERFLOW
;
390 stats
->rx_over_errors
++;
392 netif_receive_skb(skb
);
395 static int c_can_read_msg_object(struct net_device
*dev
, int iface
, int ctrl
)
400 struct c_can_priv
*priv
= netdev_priv(dev
);
401 struct net_device_stats
*stats
= &dev
->stats
;
403 struct can_frame
*frame
;
405 skb
= alloc_can_skb(dev
, &frame
);
411 frame
->can_dlc
= get_can_dlc(ctrl
& 0x0F);
413 flags
= priv
->read_reg(priv
, &priv
->regs
->ifregs
[iface
].arb2
);
414 val
= priv
->read_reg(priv
, &priv
->regs
->ifregs
[iface
].arb1
) |
417 if (flags
& IF_ARB_MSGXTD
)
418 frame
->can_id
= (val
& CAN_EFF_MASK
) | CAN_EFF_FLAG
;
420 frame
->can_id
= (val
>> 18) & CAN_SFF_MASK
;
422 if (flags
& IF_ARB_TRANSMIT
)
423 frame
->can_id
|= CAN_RTR_FLAG
;
425 for (i
= 0; i
< frame
->can_dlc
; i
+= 2) {
426 data
= priv
->read_reg(priv
,
427 &priv
->regs
->ifregs
[iface
].data
[i
/ 2]);
428 frame
->data
[i
] = data
;
429 frame
->data
[i
+ 1] = data
>> 8;
433 netif_receive_skb(skb
);
436 stats
->rx_bytes
+= frame
->can_dlc
;
441 static void c_can_setup_receive_object(struct net_device
*dev
, int iface
,
442 int objno
, unsigned int mask
,
443 unsigned int id
, unsigned int mcont
)
445 struct c_can_priv
*priv
= netdev_priv(dev
);
447 priv
->write_reg(priv
, &priv
->regs
->ifregs
[iface
].mask1
,
448 IFX_WRITE_LOW_16BIT(mask
));
449 priv
->write_reg(priv
, &priv
->regs
->ifregs
[iface
].mask2
,
450 IFX_WRITE_HIGH_16BIT(mask
));
452 priv
->write_reg(priv
, &priv
->regs
->ifregs
[iface
].arb1
,
453 IFX_WRITE_LOW_16BIT(id
));
454 priv
->write_reg(priv
, &priv
->regs
->ifregs
[iface
].arb2
,
455 (IF_ARB_MSGVAL
| IFX_WRITE_HIGH_16BIT(id
)));
457 priv
->write_reg(priv
, &priv
->regs
->ifregs
[iface
].msg_cntrl
, mcont
);
458 c_can_object_put(dev
, iface
, objno
, IF_COMM_ALL
& ~IF_COMM_TXRQST
);
460 netdev_dbg(dev
, "obj no:%d, msgval:0x%08x\n", objno
,
461 c_can_read_reg32(priv
, &priv
->regs
->msgval1
));
464 static void c_can_inval_msg_object(struct net_device
*dev
, int iface
, int objno
)
466 struct c_can_priv
*priv
= netdev_priv(dev
);
468 priv
->write_reg(priv
, &priv
->regs
->ifregs
[iface
].arb1
, 0);
469 priv
->write_reg(priv
, &priv
->regs
->ifregs
[iface
].arb2
, 0);
470 priv
->write_reg(priv
, &priv
->regs
->ifregs
[iface
].msg_cntrl
, 0);
472 c_can_object_put(dev
, iface
, objno
, IF_COMM_ARB
| IF_COMM_CONTROL
);
474 netdev_dbg(dev
, "obj no:%d, msgval:0x%08x\n", objno
,
475 c_can_read_reg32(priv
, &priv
->regs
->msgval1
));
478 static inline int c_can_is_next_tx_obj_busy(struct c_can_priv
*priv
, int objno
)
480 int val
= c_can_read_reg32(priv
, &priv
->regs
->txrqst1
);
483 * as transmission request register's bit n-1 corresponds to
484 * message object n, we need to handle the same properly.
486 if (val
& (1 << (objno
- 1)))
492 static netdev_tx_t
c_can_start_xmit(struct sk_buff
*skb
,
493 struct net_device
*dev
)
496 struct c_can_priv
*priv
= netdev_priv(dev
);
497 struct can_frame
*frame
= (struct can_frame
*)skb
->data
;
499 if (can_dropped_invalid_skb(dev
, skb
))
502 msg_obj_no
= get_tx_next_msg_obj(priv
);
504 /* prepare message object for transmission */
505 c_can_write_msg_object(dev
, 0, frame
, msg_obj_no
);
506 can_put_echo_skb(skb
, dev
, msg_obj_no
- C_CAN_MSG_OBJ_TX_FIRST
);
509 * we have to stop the queue in case of a wrap around or
510 * if the next TX message object is still in use
513 if (c_can_is_next_tx_obj_busy(priv
, get_tx_next_msg_obj(priv
)) ||
514 (priv
->tx_next
& C_CAN_NEXT_MSG_OBJ_MASK
) == 0)
515 netif_stop_queue(dev
);
520 static int c_can_set_bittiming(struct net_device
*dev
)
522 unsigned int reg_btr
, reg_brpe
, ctrl_save
;
523 u8 brp
, brpe
, sjw
, tseg1
, tseg2
;
525 struct c_can_priv
*priv
= netdev_priv(dev
);
526 const struct can_bittiming
*bt
= &priv
->can
.bittiming
;
528 /* c_can provides a 6-bit brp and 4-bit brpe fields */
529 ten_bit_brp
= bt
->brp
- 1;
530 brp
= ten_bit_brp
& BTR_BRP_MASK
;
531 brpe
= ten_bit_brp
>> 6;
534 tseg1
= bt
->prop_seg
+ bt
->phase_seg1
- 1;
535 tseg2
= bt
->phase_seg2
- 1;
536 reg_btr
= brp
| (sjw
<< BTR_SJW_SHIFT
) | (tseg1
<< BTR_TSEG1_SHIFT
) |
537 (tseg2
<< BTR_TSEG2_SHIFT
);
538 reg_brpe
= brpe
& BRP_EXT_BRPE_MASK
;
541 "setting BTR=%04x BRPE=%04x\n", reg_btr
, reg_brpe
);
543 ctrl_save
= priv
->read_reg(priv
, &priv
->regs
->control
);
544 priv
->write_reg(priv
, &priv
->regs
->control
,
545 ctrl_save
| CONTROL_CCE
| CONTROL_INIT
);
546 priv
->write_reg(priv
, &priv
->regs
->btr
, reg_btr
);
547 priv
->write_reg(priv
, &priv
->regs
->brp_ext
, reg_brpe
);
548 priv
->write_reg(priv
, &priv
->regs
->control
, ctrl_save
);
554 * Configure C_CAN message objects for Tx and Rx purposes:
555 * C_CAN provides a total of 32 message objects that can be configured
556 * either for Tx or Rx purposes. Here the first 16 message objects are used as
557 * a reception FIFO. The end of reception FIFO is signified by the EoB bit
558 * being SET. The remaining 16 message objects are kept aside for Tx purposes.
559 * See user guide document for further details on configuring message
562 static void c_can_configure_msg_objects(struct net_device
*dev
)
566 /* first invalidate all message objects */
567 for (i
= C_CAN_MSG_OBJ_RX_FIRST
; i
<= C_CAN_NO_OF_OBJECTS
; i
++)
568 c_can_inval_msg_object(dev
, 0, i
);
570 /* setup receive message objects */
571 for (i
= C_CAN_MSG_OBJ_RX_FIRST
; i
< C_CAN_MSG_OBJ_RX_LAST
; i
++)
572 c_can_setup_receive_object(dev
, 0, i
, 0, 0,
573 (IF_MCONT_RXIE
| IF_MCONT_UMASK
) & ~IF_MCONT_EOB
);
575 c_can_setup_receive_object(dev
, 0, C_CAN_MSG_OBJ_RX_LAST
, 0, 0,
576 IF_MCONT_EOB
| IF_MCONT_RXIE
| IF_MCONT_UMASK
);
580 * Configure C_CAN chip:
581 * - enable/disable auto-retransmission
582 * - set operating mode
583 * - configure message objects
585 static void c_can_chip_config(struct net_device
*dev
)
587 struct c_can_priv
*priv
= netdev_priv(dev
);
589 /* enable automatic retransmission */
590 priv
->write_reg(priv
, &priv
->regs
->control
,
593 if (priv
->can
.ctrlmode
& (CAN_CTRLMODE_LISTENONLY
&
594 CAN_CTRLMODE_LOOPBACK
)) {
595 /* loopback + silent mode : useful for hot self-test */
596 priv
->write_reg(priv
, &priv
->regs
->control
, CONTROL_EIE
|
597 CONTROL_SIE
| CONTROL_IE
| CONTROL_TEST
);
598 priv
->write_reg(priv
, &priv
->regs
->test
,
599 TEST_LBACK
| TEST_SILENT
);
600 } else if (priv
->can
.ctrlmode
& CAN_CTRLMODE_LOOPBACK
) {
601 /* loopback mode : useful for self-test function */
602 priv
->write_reg(priv
, &priv
->regs
->control
, CONTROL_EIE
|
603 CONTROL_SIE
| CONTROL_IE
| CONTROL_TEST
);
604 priv
->write_reg(priv
, &priv
->regs
->test
, TEST_LBACK
);
605 } else if (priv
->can
.ctrlmode
& CAN_CTRLMODE_LISTENONLY
) {
606 /* silent mode : bus-monitoring mode */
607 priv
->write_reg(priv
, &priv
->regs
->control
, CONTROL_EIE
|
608 CONTROL_SIE
| CONTROL_IE
| CONTROL_TEST
);
609 priv
->write_reg(priv
, &priv
->regs
->test
, TEST_SILENT
);
612 priv
->write_reg(priv
, &priv
->regs
->control
,
613 CONTROL_EIE
| CONTROL_SIE
| CONTROL_IE
);
615 /* configure message objects */
616 c_can_configure_msg_objects(dev
);
618 /* set a `lec` value so that we can check for updates later */
619 priv
->write_reg(priv
, &priv
->regs
->status
, LEC_UNUSED
);
621 /* set bittiming params */
622 c_can_set_bittiming(dev
);
625 static void c_can_start(struct net_device
*dev
)
627 struct c_can_priv
*priv
= netdev_priv(dev
);
629 /* basic c_can configuration */
630 c_can_chip_config(dev
);
632 priv
->can
.state
= CAN_STATE_ERROR_ACTIVE
;
634 /* reset tx helper pointers */
635 priv
->tx_next
= priv
->tx_echo
= 0;
637 /* enable status change, error and module interrupts */
638 c_can_enable_all_interrupts(priv
, ENABLE_ALL_INTERRUPTS
);
641 static void c_can_stop(struct net_device
*dev
)
643 struct c_can_priv
*priv
= netdev_priv(dev
);
645 /* disable all interrupts */
646 c_can_enable_all_interrupts(priv
, DISABLE_ALL_INTERRUPTS
);
648 /* set the state as STOPPED */
649 priv
->can
.state
= CAN_STATE_STOPPED
;
652 static int c_can_set_mode(struct net_device
*dev
, enum can_mode mode
)
657 netif_wake_queue(dev
);
666 static int c_can_get_berr_counter(const struct net_device
*dev
,
667 struct can_berr_counter
*bec
)
669 unsigned int reg_err_counter
;
670 struct c_can_priv
*priv
= netdev_priv(dev
);
672 reg_err_counter
= priv
->read_reg(priv
, &priv
->regs
->err_cnt
);
673 bec
->rxerr
= (reg_err_counter
& ERR_CNT_REC_MASK
) >>
675 bec
->txerr
= reg_err_counter
& ERR_CNT_TEC_MASK
;
681 * theory of operation:
683 * priv->tx_echo holds the number of the oldest can_frame put for
684 * transmission into the hardware, but not yet ACKed by the CAN tx
687 * We iterate from priv->tx_echo to priv->tx_next and check if the
688 * packet has been transmitted, echo it back to the CAN framework.
689 * If we discover a not yet transmitted package, stop looking for more.
691 static void c_can_do_tx(struct net_device
*dev
)
695 struct c_can_priv
*priv
= netdev_priv(dev
);
696 struct net_device_stats
*stats
= &dev
->stats
;
698 for (/* nix */; (priv
->tx_next
- priv
->tx_echo
) > 0; priv
->tx_echo
++) {
699 msg_obj_no
= get_tx_echo_msg_obj(priv
);
700 val
= c_can_read_reg32(priv
, &priv
->regs
->txrqst1
);
701 if (!(val
& (1 << msg_obj_no
))) {
702 can_get_echo_skb(dev
,
703 msg_obj_no
- C_CAN_MSG_OBJ_TX_FIRST
);
704 stats
->tx_bytes
+= priv
->read_reg(priv
,
705 &priv
->regs
->ifregs
[0].msg_cntrl
)
708 c_can_inval_msg_object(dev
, 0, msg_obj_no
);
712 /* restart queue if wrap-up or if queue stalled on last pkt */
713 if (((priv
->tx_next
& C_CAN_NEXT_MSG_OBJ_MASK
) != 0) ||
714 ((priv
->tx_echo
& C_CAN_NEXT_MSG_OBJ_MASK
) == 0))
715 netif_wake_queue(dev
);
719 * theory of operation:
721 * c_can core saves a received CAN message into the first free message
722 * object it finds free (starting with the lowest). Bits NEWDAT and
723 * INTPND are set for this message object indicating that a new message
724 * has arrived. To work-around this issue, we keep two groups of message
725 * objects whose partitioning is defined by C_CAN_MSG_OBJ_RX_SPLIT.
727 * To ensure in-order frame reception we use the following
728 * approach while re-activating a message object to receive further
730 * - if the current message object number is lower than
731 * C_CAN_MSG_RX_LOW_LAST, do not clear the NEWDAT bit while clearing
733 * - if the current message object number is equal to
734 * C_CAN_MSG_RX_LOW_LAST then clear the NEWDAT bit of all lower
735 * receive message objects.
736 * - if the current message object number is greater than
737 * C_CAN_MSG_RX_LOW_LAST then clear the NEWDAT bit of
738 * only this message object.
740 static int c_can_do_rx_poll(struct net_device
*dev
, int quota
)
743 unsigned int msg_obj
, msg_ctrl_save
;
744 struct c_can_priv
*priv
= netdev_priv(dev
);
745 u32 val
= c_can_read_reg32(priv
, &priv
->regs
->intpnd1
);
747 for (msg_obj
= C_CAN_MSG_OBJ_RX_FIRST
;
748 msg_obj
<= C_CAN_MSG_OBJ_RX_LAST
&& quota
> 0;
749 val
= c_can_read_reg32(priv
, &priv
->regs
->intpnd1
),
752 * as interrupt pending register's bit n-1 corresponds to
753 * message object n, we need to handle the same properly.
755 if (val
& (1 << (msg_obj
- 1))) {
756 c_can_object_get(dev
, 0, msg_obj
, IF_COMM_ALL
&
758 msg_ctrl_save
= priv
->read_reg(priv
,
759 &priv
->regs
->ifregs
[0].msg_cntrl
);
761 if (msg_ctrl_save
& IF_MCONT_EOB
)
764 if (msg_ctrl_save
& IF_MCONT_MSGLST
) {
765 c_can_handle_lost_msg_obj(dev
, 0, msg_obj
);
771 if (!(msg_ctrl_save
& IF_MCONT_NEWDAT
))
774 /* read the data from the message object */
775 c_can_read_msg_object(dev
, 0, msg_ctrl_save
);
777 if (msg_obj
< C_CAN_MSG_RX_LOW_LAST
)
778 c_can_mark_rx_msg_obj(dev
, 0,
779 msg_ctrl_save
, msg_obj
);
780 else if (msg_obj
> C_CAN_MSG_RX_LOW_LAST
)
781 /* activate this msg obj */
782 c_can_activate_rx_msg_obj(dev
, 0,
783 msg_ctrl_save
, msg_obj
);
784 else if (msg_obj
== C_CAN_MSG_RX_LOW_LAST
)
785 /* activate all lower message objects */
786 c_can_activate_all_lower_rx_msg_obj(dev
,
797 static inline int c_can_has_and_handle_berr(struct c_can_priv
*priv
)
799 return (priv
->can
.ctrlmode
& CAN_CTRLMODE_BERR_REPORTING
) &&
800 (priv
->current_status
& LEC_UNUSED
);
803 static int c_can_handle_state_change(struct net_device
*dev
,
804 enum c_can_bus_error_types error_type
)
806 unsigned int reg_err_counter
;
807 unsigned int rx_err_passive
;
808 struct c_can_priv
*priv
= netdev_priv(dev
);
809 struct net_device_stats
*stats
= &dev
->stats
;
810 struct can_frame
*cf
;
812 struct can_berr_counter bec
;
814 /* propagate the error condition to the CAN stack */
815 skb
= alloc_can_err_skb(dev
, &cf
);
819 c_can_get_berr_counter(dev
, &bec
);
820 reg_err_counter
= priv
->read_reg(priv
, &priv
->regs
->err_cnt
);
821 rx_err_passive
= (reg_err_counter
& ERR_CNT_RP_MASK
) >>
824 switch (error_type
) {
825 case C_CAN_ERROR_WARNING
:
826 /* error warning state */
827 priv
->can
.can_stats
.error_warning
++;
828 priv
->can
.state
= CAN_STATE_ERROR_WARNING
;
829 cf
->can_id
|= CAN_ERR_CRTL
;
830 cf
->data
[1] = (bec
.txerr
> bec
.rxerr
) ?
831 CAN_ERR_CRTL_TX_WARNING
:
832 CAN_ERR_CRTL_RX_WARNING
;
833 cf
->data
[6] = bec
.txerr
;
834 cf
->data
[7] = bec
.rxerr
;
837 case C_CAN_ERROR_PASSIVE
:
838 /* error passive state */
839 priv
->can
.can_stats
.error_passive
++;
840 priv
->can
.state
= CAN_STATE_ERROR_PASSIVE
;
841 cf
->can_id
|= CAN_ERR_CRTL
;
843 cf
->data
[1] |= CAN_ERR_CRTL_RX_PASSIVE
;
845 cf
->data
[1] |= CAN_ERR_CRTL_TX_PASSIVE
;
847 cf
->data
[6] = bec
.txerr
;
848 cf
->data
[7] = bec
.rxerr
;
852 priv
->can
.state
= CAN_STATE_BUS_OFF
;
853 cf
->can_id
|= CAN_ERR_BUSOFF
;
855 * disable all interrupts in bus-off mode to ensure that
856 * the CPU is not hogged down
858 c_can_enable_all_interrupts(priv
, DISABLE_ALL_INTERRUPTS
);
865 netif_receive_skb(skb
);
867 stats
->rx_bytes
+= cf
->can_dlc
;
872 static int c_can_handle_bus_err(struct net_device
*dev
,
873 enum c_can_lec_type lec_type
)
875 struct c_can_priv
*priv
= netdev_priv(dev
);
876 struct net_device_stats
*stats
= &dev
->stats
;
877 struct can_frame
*cf
;
881 * early exit if no lec update or no error.
882 * no lec update means that no CAN bus event has been detected
883 * since CPU wrote 0x7 value to status reg.
885 if (lec_type
== LEC_UNUSED
|| lec_type
== LEC_NO_ERROR
)
888 /* propagate the error condition to the CAN stack */
889 skb
= alloc_can_err_skb(dev
, &cf
);
894 * check for 'last error code' which tells us the
895 * type of the last error to occur on the CAN bus
898 /* common for all type of bus errors */
899 priv
->can
.can_stats
.bus_error
++;
901 cf
->can_id
|= CAN_ERR_PROT
| CAN_ERR_BUSERROR
;
902 cf
->data
[2] |= CAN_ERR_PROT_UNSPEC
;
905 case LEC_STUFF_ERROR
:
906 netdev_dbg(dev
, "stuff error\n");
907 cf
->data
[2] |= CAN_ERR_PROT_STUFF
;
910 netdev_dbg(dev
, "form error\n");
911 cf
->data
[2] |= CAN_ERR_PROT_FORM
;
914 netdev_dbg(dev
, "ack error\n");
915 cf
->data
[2] |= (CAN_ERR_PROT_LOC_ACK
|
916 CAN_ERR_PROT_LOC_ACK_DEL
);
919 netdev_dbg(dev
, "bit1 error\n");
920 cf
->data
[2] |= CAN_ERR_PROT_BIT1
;
923 netdev_dbg(dev
, "bit0 error\n");
924 cf
->data
[2] |= CAN_ERR_PROT_BIT0
;
927 netdev_dbg(dev
, "CRC error\n");
928 cf
->data
[2] |= (CAN_ERR_PROT_LOC_CRC_SEQ
|
929 CAN_ERR_PROT_LOC_CRC_DEL
);
935 /* set a `lec` value so that we can check for updates later */
936 priv
->write_reg(priv
, &priv
->regs
->status
, LEC_UNUSED
);
938 netif_receive_skb(skb
);
940 stats
->rx_bytes
+= cf
->can_dlc
;
945 static int c_can_poll(struct napi_struct
*napi
, int quota
)
950 struct net_device
*dev
= napi
->dev
;
951 struct c_can_priv
*priv
= netdev_priv(dev
);
953 irqstatus
= priv
->read_reg(priv
, &priv
->regs
->interrupt
);
957 /* status events have the highest priority */
958 if (irqstatus
== STATUS_INTERRUPT
) {
959 priv
->current_status
= priv
->read_reg(priv
,
960 &priv
->regs
->status
);
962 /* handle Tx/Rx events */
963 if (priv
->current_status
& STATUS_TXOK
)
964 priv
->write_reg(priv
, &priv
->regs
->status
,
965 priv
->current_status
& ~STATUS_TXOK
);
967 if (priv
->current_status
& STATUS_RXOK
)
968 priv
->write_reg(priv
, &priv
->regs
->status
,
969 priv
->current_status
& ~STATUS_RXOK
);
971 /* handle state changes */
972 if ((priv
->current_status
& STATUS_EWARN
) &&
973 (!(priv
->last_status
& STATUS_EWARN
))) {
974 netdev_dbg(dev
, "entered error warning state\n");
975 work_done
+= c_can_handle_state_change(dev
,
976 C_CAN_ERROR_WARNING
);
978 if ((priv
->current_status
& STATUS_EPASS
) &&
979 (!(priv
->last_status
& STATUS_EPASS
))) {
980 netdev_dbg(dev
, "entered error passive state\n");
981 work_done
+= c_can_handle_state_change(dev
,
982 C_CAN_ERROR_PASSIVE
);
984 if ((priv
->current_status
& STATUS_BOFF
) &&
985 (!(priv
->last_status
& STATUS_BOFF
))) {
986 netdev_dbg(dev
, "entered bus off state\n");
987 work_done
+= c_can_handle_state_change(dev
,
991 /* handle bus recovery events */
992 if ((!(priv
->current_status
& STATUS_BOFF
)) &&
993 (priv
->last_status
& STATUS_BOFF
)) {
994 netdev_dbg(dev
, "left bus off state\n");
995 priv
->can
.state
= CAN_STATE_ERROR_ACTIVE
;
997 if ((!(priv
->current_status
& STATUS_EPASS
)) &&
998 (priv
->last_status
& STATUS_EPASS
)) {
999 netdev_dbg(dev
, "left error passive state\n");
1000 priv
->can
.state
= CAN_STATE_ERROR_ACTIVE
;
1003 priv
->last_status
= priv
->current_status
;
1005 /* handle lec errors on the bus */
1006 lec_type
= c_can_has_and_handle_berr(priv
);
1008 work_done
+= c_can_handle_bus_err(dev
, lec_type
);
1009 } else if ((irqstatus
>= C_CAN_MSG_OBJ_RX_FIRST
) &&
1010 (irqstatus
<= C_CAN_MSG_OBJ_RX_LAST
)) {
1011 /* handle events corresponding to receive message objects */
1012 work_done
+= c_can_do_rx_poll(dev
, (quota
- work_done
));
1013 } else if ((irqstatus
>= C_CAN_MSG_OBJ_TX_FIRST
) &&
1014 (irqstatus
<= C_CAN_MSG_OBJ_TX_LAST
)) {
1015 /* handle events corresponding to transmit message objects */
1020 if (work_done
< quota
) {
1021 napi_complete(napi
);
1022 /* enable all IRQs */
1023 c_can_enable_all_interrupts(priv
, ENABLE_ALL_INTERRUPTS
);
1029 static irqreturn_t
c_can_isr(int irq
, void *dev_id
)
1032 struct net_device
*dev
= (struct net_device
*)dev_id
;
1033 struct c_can_priv
*priv
= netdev_priv(dev
);
1035 irqstatus
= priv
->read_reg(priv
, &priv
->regs
->interrupt
);
1039 /* disable all interrupts and schedule the NAPI */
1040 c_can_enable_all_interrupts(priv
, DISABLE_ALL_INTERRUPTS
);
1041 napi_schedule(&priv
->napi
);
1046 static int c_can_open(struct net_device
*dev
)
1049 struct c_can_priv
*priv
= netdev_priv(dev
);
1051 /* open the can device */
1052 err
= open_candev(dev
);
1054 netdev_err(dev
, "failed to open can device\n");
1058 /* register interrupt handler */
1059 err
= request_irq(dev
->irq
, &c_can_isr
, IRQF_SHARED
, dev
->name
,
1062 netdev_err(dev
, "failed to request interrupt\n");
1066 /* start the c_can controller */
1069 napi_enable(&priv
->napi
);
1070 netif_start_queue(dev
);
1079 static int c_can_close(struct net_device
*dev
)
1081 struct c_can_priv
*priv
= netdev_priv(dev
);
1083 netif_stop_queue(dev
);
1084 napi_disable(&priv
->napi
);
1086 free_irq(dev
->irq
, dev
);
1092 struct net_device
*alloc_c_can_dev(void)
1094 struct net_device
*dev
;
1095 struct c_can_priv
*priv
;
1097 dev
= alloc_candev(sizeof(struct c_can_priv
), C_CAN_MSG_OBJ_TX_NUM
);
1101 priv
= netdev_priv(dev
);
1102 netif_napi_add(dev
, &priv
->napi
, c_can_poll
, C_CAN_NAPI_WEIGHT
);
1105 priv
->can
.bittiming_const
= &c_can_bittiming_const
;
1106 priv
->can
.do_set_mode
= c_can_set_mode
;
1107 priv
->can
.do_get_berr_counter
= c_can_get_berr_counter
;
1108 priv
->can
.ctrlmode_supported
= CAN_CTRLMODE_LOOPBACK
|
1109 CAN_CTRLMODE_LISTENONLY
|
1110 CAN_CTRLMODE_BERR_REPORTING
;
1114 EXPORT_SYMBOL_GPL(alloc_c_can_dev
);
1116 void free_c_can_dev(struct net_device
*dev
)
1120 EXPORT_SYMBOL_GPL(free_c_can_dev
);
1122 static const struct net_device_ops c_can_netdev_ops
= {
1123 .ndo_open
= c_can_open
,
1124 .ndo_stop
= c_can_close
,
1125 .ndo_start_xmit
= c_can_start_xmit
,
1128 int register_c_can_dev(struct net_device
*dev
)
1130 dev
->flags
|= IFF_ECHO
; /* we support local echo */
1131 dev
->netdev_ops
= &c_can_netdev_ops
;
1133 return register_candev(dev
);
1135 EXPORT_SYMBOL_GPL(register_c_can_dev
);
1137 void unregister_c_can_dev(struct net_device
*dev
)
1139 struct c_can_priv
*priv
= netdev_priv(dev
);
1141 /* disable all interrupts */
1142 c_can_enable_all_interrupts(priv
, DISABLE_ALL_INTERRUPTS
);
1144 unregister_candev(dev
);
1146 EXPORT_SYMBOL_GPL(unregister_c_can_dev
);
1148 MODULE_AUTHOR("Bhupesh Sharma <bhupesh.sharma@st.com>");
1149 MODULE_LICENSE("GPL v2");
1150 MODULE_DESCRIPTION("CAN bus driver for Bosch C_CAN controller");