Add linux-next specific files for 20110831
[linux-2.6/next.git] / drivers / net / ethernet / aeroflex / greth.c
blobbc3bd34c43f1377ec11bf64852d44244d9304025
1 /*
2 * Aeroflex Gaisler GRETH 10/100/1G Ethernet MAC.
4 * 2005-2010 (c) Aeroflex Gaisler AB
6 * This driver supports GRETH 10/100 and GRETH 10/100/1G Ethernet MACs
7 * available in the GRLIB VHDL IP core library.
9 * Full documentation of both cores can be found here:
10 * http://www.gaisler.com/products/grlib/grip.pdf
12 * The Gigabit version supports scatter/gather DMA, any alignment of
13 * buffers and checksum offloading.
15 * This program is free software; you can redistribute it and/or modify it
16 * under the terms of the GNU General Public License as published by the
17 * Free Software Foundation; either version 2 of the License, or (at your
18 * option) any later version.
20 * Contributors: Kristoffer Glembo
21 * Daniel Hellstrom
22 * Marko Isomaki
25 #include <linux/dma-mapping.h>
26 #include <linux/module.h>
27 #include <linux/uaccess.h>
28 #include <linux/init.h>
29 #include <linux/interrupt.h>
30 #include <linux/netdevice.h>
31 #include <linux/etherdevice.h>
32 #include <linux/ethtool.h>
33 #include <linux/skbuff.h>
34 #include <linux/io.h>
35 #include <linux/crc32.h>
36 #include <linux/mii.h>
37 #include <linux/of_device.h>
38 #include <linux/of_platform.h>
39 #include <linux/slab.h>
40 #include <asm/cacheflush.h>
41 #include <asm/byteorder.h>
43 #ifdef CONFIG_SPARC
44 #include <asm/idprom.h>
45 #endif
47 #include "greth.h"
49 #define GRETH_DEF_MSG_ENABLE \
50 (NETIF_MSG_DRV | \
51 NETIF_MSG_PROBE | \
52 NETIF_MSG_LINK | \
53 NETIF_MSG_IFDOWN | \
54 NETIF_MSG_IFUP | \
55 NETIF_MSG_RX_ERR | \
56 NETIF_MSG_TX_ERR)
58 static int greth_debug = -1; /* -1 == use GRETH_DEF_MSG_ENABLE as value */
59 module_param(greth_debug, int, 0);
60 MODULE_PARM_DESC(greth_debug, "GRETH bitmapped debugging message enable value");
62 /* Accept MAC address of the form macaddr=0x08,0x00,0x20,0x30,0x40,0x50 */
63 static int macaddr[6];
64 module_param_array(macaddr, int, NULL, 0);
65 MODULE_PARM_DESC(macaddr, "GRETH Ethernet MAC address");
67 static int greth_edcl = 1;
68 module_param(greth_edcl, int, 0);
69 MODULE_PARM_DESC(greth_edcl, "GRETH EDCL usage indicator. Set to 1 if EDCL is used.");
71 static int greth_open(struct net_device *dev);
72 static netdev_tx_t greth_start_xmit(struct sk_buff *skb,
73 struct net_device *dev);
74 static netdev_tx_t greth_start_xmit_gbit(struct sk_buff *skb,
75 struct net_device *dev);
76 static int greth_rx(struct net_device *dev, int limit);
77 static int greth_rx_gbit(struct net_device *dev, int limit);
78 static void greth_clean_tx(struct net_device *dev);
79 static void greth_clean_tx_gbit(struct net_device *dev);
80 static irqreturn_t greth_interrupt(int irq, void *dev_id);
81 static int greth_close(struct net_device *dev);
82 static int greth_set_mac_add(struct net_device *dev, void *p);
83 static void greth_set_multicast_list(struct net_device *dev);
85 #define GRETH_REGLOAD(a) (be32_to_cpu(__raw_readl(&(a))))
86 #define GRETH_REGSAVE(a, v) (__raw_writel(cpu_to_be32(v), &(a)))
87 #define GRETH_REGORIN(a, v) (GRETH_REGSAVE(a, (GRETH_REGLOAD(a) | (v))))
88 #define GRETH_REGANDIN(a, v) (GRETH_REGSAVE(a, (GRETH_REGLOAD(a) & (v))))
90 #define NEXT_TX(N) (((N) + 1) & GRETH_TXBD_NUM_MASK)
91 #define SKIP_TX(N, C) (((N) + C) & GRETH_TXBD_NUM_MASK)
92 #define NEXT_RX(N) (((N) + 1) & GRETH_RXBD_NUM_MASK)
94 static void greth_print_rx_packet(void *addr, int len)
96 print_hex_dump(KERN_DEBUG, "RX: ", DUMP_PREFIX_OFFSET, 16, 1,
97 addr, len, true);
100 static void greth_print_tx_packet(struct sk_buff *skb)
102 int i;
103 int length;
105 if (skb_shinfo(skb)->nr_frags == 0)
106 length = skb->len;
107 else
108 length = skb_headlen(skb);
110 print_hex_dump(KERN_DEBUG, "TX: ", DUMP_PREFIX_OFFSET, 16, 1,
111 skb->data, length, true);
113 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
115 print_hex_dump(KERN_DEBUG, "TX: ", DUMP_PREFIX_OFFSET, 16, 1,
116 skb_frag_address(&skb_shinfo(skb)->frags[i]),
117 skb_shinfo(skb)->frags[i].size, true);
121 static inline void greth_enable_tx(struct greth_private *greth)
123 wmb();
124 GRETH_REGORIN(greth->regs->control, GRETH_TXEN);
127 static inline void greth_disable_tx(struct greth_private *greth)
129 GRETH_REGANDIN(greth->regs->control, ~GRETH_TXEN);
132 static inline void greth_enable_rx(struct greth_private *greth)
134 wmb();
135 GRETH_REGORIN(greth->regs->control, GRETH_RXEN);
138 static inline void greth_disable_rx(struct greth_private *greth)
140 GRETH_REGANDIN(greth->regs->control, ~GRETH_RXEN);
143 static inline void greth_enable_irqs(struct greth_private *greth)
145 GRETH_REGORIN(greth->regs->control, GRETH_RXI | GRETH_TXI);
148 static inline void greth_disable_irqs(struct greth_private *greth)
150 GRETH_REGANDIN(greth->regs->control, ~(GRETH_RXI|GRETH_TXI));
153 static inline void greth_write_bd(u32 *bd, u32 val)
155 __raw_writel(cpu_to_be32(val), bd);
158 static inline u32 greth_read_bd(u32 *bd)
160 return be32_to_cpu(__raw_readl(bd));
163 static void greth_clean_rings(struct greth_private *greth)
165 int i;
166 struct greth_bd *rx_bdp = greth->rx_bd_base;
167 struct greth_bd *tx_bdp = greth->tx_bd_base;
169 if (greth->gbit_mac) {
171 /* Free and unmap RX buffers */
172 for (i = 0; i < GRETH_RXBD_NUM; i++, rx_bdp++) {
173 if (greth->rx_skbuff[i] != NULL) {
174 dev_kfree_skb(greth->rx_skbuff[i]);
175 dma_unmap_single(greth->dev,
176 greth_read_bd(&rx_bdp->addr),
177 MAX_FRAME_SIZE+NET_IP_ALIGN,
178 DMA_FROM_DEVICE);
182 /* TX buffers */
183 while (greth->tx_free < GRETH_TXBD_NUM) {
185 struct sk_buff *skb = greth->tx_skbuff[greth->tx_last];
186 int nr_frags = skb_shinfo(skb)->nr_frags;
187 tx_bdp = greth->tx_bd_base + greth->tx_last;
188 greth->tx_last = NEXT_TX(greth->tx_last);
190 dma_unmap_single(greth->dev,
191 greth_read_bd(&tx_bdp->addr),
192 skb_headlen(skb),
193 DMA_TO_DEVICE);
195 for (i = 0; i < nr_frags; i++) {
196 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
197 tx_bdp = greth->tx_bd_base + greth->tx_last;
199 dma_unmap_page(greth->dev,
200 greth_read_bd(&tx_bdp->addr),
201 frag->size,
202 DMA_TO_DEVICE);
204 greth->tx_last = NEXT_TX(greth->tx_last);
206 greth->tx_free += nr_frags+1;
207 dev_kfree_skb(skb);
211 } else { /* 10/100 Mbps MAC */
213 for (i = 0; i < GRETH_RXBD_NUM; i++, rx_bdp++) {
214 kfree(greth->rx_bufs[i]);
215 dma_unmap_single(greth->dev,
216 greth_read_bd(&rx_bdp->addr),
217 MAX_FRAME_SIZE,
218 DMA_FROM_DEVICE);
220 for (i = 0; i < GRETH_TXBD_NUM; i++, tx_bdp++) {
221 kfree(greth->tx_bufs[i]);
222 dma_unmap_single(greth->dev,
223 greth_read_bd(&tx_bdp->addr),
224 MAX_FRAME_SIZE,
225 DMA_TO_DEVICE);
230 static int greth_init_rings(struct greth_private *greth)
232 struct sk_buff *skb;
233 struct greth_bd *rx_bd, *tx_bd;
234 u32 dma_addr;
235 int i;
237 rx_bd = greth->rx_bd_base;
238 tx_bd = greth->tx_bd_base;
240 /* Initialize descriptor rings and buffers */
241 if (greth->gbit_mac) {
243 for (i = 0; i < GRETH_RXBD_NUM; i++) {
244 skb = netdev_alloc_skb(greth->netdev, MAX_FRAME_SIZE+NET_IP_ALIGN);
245 if (skb == NULL) {
246 if (netif_msg_ifup(greth))
247 dev_err(greth->dev, "Error allocating DMA ring.\n");
248 goto cleanup;
250 skb_reserve(skb, NET_IP_ALIGN);
251 dma_addr = dma_map_single(greth->dev,
252 skb->data,
253 MAX_FRAME_SIZE+NET_IP_ALIGN,
254 DMA_FROM_DEVICE);
256 if (dma_mapping_error(greth->dev, dma_addr)) {
257 if (netif_msg_ifup(greth))
258 dev_err(greth->dev, "Could not create initial DMA mapping\n");
259 goto cleanup;
261 greth->rx_skbuff[i] = skb;
262 greth_write_bd(&rx_bd[i].addr, dma_addr);
263 greth_write_bd(&rx_bd[i].stat, GRETH_BD_EN | GRETH_BD_IE);
266 } else {
268 /* 10/100 MAC uses a fixed set of buffers and copy to/from SKBs */
269 for (i = 0; i < GRETH_RXBD_NUM; i++) {
271 greth->rx_bufs[i] = kmalloc(MAX_FRAME_SIZE, GFP_KERNEL);
273 if (greth->rx_bufs[i] == NULL) {
274 if (netif_msg_ifup(greth))
275 dev_err(greth->dev, "Error allocating DMA ring.\n");
276 goto cleanup;
279 dma_addr = dma_map_single(greth->dev,
280 greth->rx_bufs[i],
281 MAX_FRAME_SIZE,
282 DMA_FROM_DEVICE);
284 if (dma_mapping_error(greth->dev, dma_addr)) {
285 if (netif_msg_ifup(greth))
286 dev_err(greth->dev, "Could not create initial DMA mapping\n");
287 goto cleanup;
289 greth_write_bd(&rx_bd[i].addr, dma_addr);
290 greth_write_bd(&rx_bd[i].stat, GRETH_BD_EN | GRETH_BD_IE);
292 for (i = 0; i < GRETH_TXBD_NUM; i++) {
294 greth->tx_bufs[i] = kmalloc(MAX_FRAME_SIZE, GFP_KERNEL);
296 if (greth->tx_bufs[i] == NULL) {
297 if (netif_msg_ifup(greth))
298 dev_err(greth->dev, "Error allocating DMA ring.\n");
299 goto cleanup;
302 dma_addr = dma_map_single(greth->dev,
303 greth->tx_bufs[i],
304 MAX_FRAME_SIZE,
305 DMA_TO_DEVICE);
307 if (dma_mapping_error(greth->dev, dma_addr)) {
308 if (netif_msg_ifup(greth))
309 dev_err(greth->dev, "Could not create initial DMA mapping\n");
310 goto cleanup;
312 greth_write_bd(&tx_bd[i].addr, dma_addr);
313 greth_write_bd(&tx_bd[i].stat, 0);
316 greth_write_bd(&rx_bd[GRETH_RXBD_NUM - 1].stat,
317 greth_read_bd(&rx_bd[GRETH_RXBD_NUM - 1].stat) | GRETH_BD_WR);
319 /* Initialize pointers. */
320 greth->rx_cur = 0;
321 greth->tx_next = 0;
322 greth->tx_last = 0;
323 greth->tx_free = GRETH_TXBD_NUM;
325 /* Initialize descriptor base address */
326 GRETH_REGSAVE(greth->regs->tx_desc_p, greth->tx_bd_base_phys);
327 GRETH_REGSAVE(greth->regs->rx_desc_p, greth->rx_bd_base_phys);
329 return 0;
331 cleanup:
332 greth_clean_rings(greth);
333 return -ENOMEM;
336 static int greth_open(struct net_device *dev)
338 struct greth_private *greth = netdev_priv(dev);
339 int err;
341 err = greth_init_rings(greth);
342 if (err) {
343 if (netif_msg_ifup(greth))
344 dev_err(&dev->dev, "Could not allocate memory for DMA rings\n");
345 return err;
348 err = request_irq(greth->irq, greth_interrupt, 0, "eth", (void *) dev);
349 if (err) {
350 if (netif_msg_ifup(greth))
351 dev_err(&dev->dev, "Could not allocate interrupt %d\n", dev->irq);
352 greth_clean_rings(greth);
353 return err;
356 if (netif_msg_ifup(greth))
357 dev_dbg(&dev->dev, " starting queue\n");
358 netif_start_queue(dev);
360 GRETH_REGSAVE(greth->regs->status, 0xFF);
362 napi_enable(&greth->napi);
364 greth_enable_irqs(greth);
365 greth_enable_tx(greth);
366 greth_enable_rx(greth);
367 return 0;
371 static int greth_close(struct net_device *dev)
373 struct greth_private *greth = netdev_priv(dev);
375 napi_disable(&greth->napi);
377 greth_disable_irqs(greth);
378 greth_disable_tx(greth);
379 greth_disable_rx(greth);
381 netif_stop_queue(dev);
383 free_irq(greth->irq, (void *) dev);
385 greth_clean_rings(greth);
387 return 0;
390 static netdev_tx_t
391 greth_start_xmit(struct sk_buff *skb, struct net_device *dev)
393 struct greth_private *greth = netdev_priv(dev);
394 struct greth_bd *bdp;
395 int err = NETDEV_TX_OK;
396 u32 status, dma_addr, ctrl;
397 unsigned long flags;
399 /* Clean TX Ring */
400 greth_clean_tx(greth->netdev);
402 if (unlikely(greth->tx_free <= 0)) {
403 spin_lock_irqsave(&greth->devlock, flags);/*save from poll/irq*/
404 ctrl = GRETH_REGLOAD(greth->regs->control);
405 /* Enable TX IRQ only if not already in poll() routine */
406 if (ctrl & GRETH_RXI)
407 GRETH_REGSAVE(greth->regs->control, ctrl | GRETH_TXI);
408 netif_stop_queue(dev);
409 spin_unlock_irqrestore(&greth->devlock, flags);
410 return NETDEV_TX_BUSY;
413 if (netif_msg_pktdata(greth))
414 greth_print_tx_packet(skb);
417 if (unlikely(skb->len > MAX_FRAME_SIZE)) {
418 dev->stats.tx_errors++;
419 goto out;
422 bdp = greth->tx_bd_base + greth->tx_next;
423 dma_addr = greth_read_bd(&bdp->addr);
425 memcpy((unsigned char *) phys_to_virt(dma_addr), skb->data, skb->len);
427 dma_sync_single_for_device(greth->dev, dma_addr, skb->len, DMA_TO_DEVICE);
429 status = GRETH_BD_EN | GRETH_BD_IE | (skb->len & GRETH_BD_LEN);
431 /* Wrap around descriptor ring */
432 if (greth->tx_next == GRETH_TXBD_NUM_MASK) {
433 status |= GRETH_BD_WR;
436 greth->tx_next = NEXT_TX(greth->tx_next);
437 greth->tx_free--;
439 /* Write descriptor control word and enable transmission */
440 greth_write_bd(&bdp->stat, status);
441 spin_lock_irqsave(&greth->devlock, flags); /*save from poll/irq*/
442 greth_enable_tx(greth);
443 spin_unlock_irqrestore(&greth->devlock, flags);
445 out:
446 dev_kfree_skb(skb);
447 return err;
451 static netdev_tx_t
452 greth_start_xmit_gbit(struct sk_buff *skb, struct net_device *dev)
454 struct greth_private *greth = netdev_priv(dev);
455 struct greth_bd *bdp;
456 u32 status = 0, dma_addr, ctrl;
457 int curr_tx, nr_frags, i, err = NETDEV_TX_OK;
458 unsigned long flags;
460 nr_frags = skb_shinfo(skb)->nr_frags;
462 /* Clean TX Ring */
463 greth_clean_tx_gbit(dev);
465 if (greth->tx_free < nr_frags + 1) {
466 spin_lock_irqsave(&greth->devlock, flags);/*save from poll/irq*/
467 ctrl = GRETH_REGLOAD(greth->regs->control);
468 /* Enable TX IRQ only if not already in poll() routine */
469 if (ctrl & GRETH_RXI)
470 GRETH_REGSAVE(greth->regs->control, ctrl | GRETH_TXI);
471 netif_stop_queue(dev);
472 spin_unlock_irqrestore(&greth->devlock, flags);
473 err = NETDEV_TX_BUSY;
474 goto out;
477 if (netif_msg_pktdata(greth))
478 greth_print_tx_packet(skb);
480 if (unlikely(skb->len > MAX_FRAME_SIZE)) {
481 dev->stats.tx_errors++;
482 goto out;
485 /* Save skb pointer. */
486 greth->tx_skbuff[greth->tx_next] = skb;
488 /* Linear buf */
489 if (nr_frags != 0)
490 status = GRETH_TXBD_MORE;
492 status |= GRETH_TXBD_CSALL;
493 status |= skb_headlen(skb) & GRETH_BD_LEN;
494 if (greth->tx_next == GRETH_TXBD_NUM_MASK)
495 status |= GRETH_BD_WR;
498 bdp = greth->tx_bd_base + greth->tx_next;
499 greth_write_bd(&bdp->stat, status);
500 dma_addr = dma_map_single(greth->dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE);
502 if (unlikely(dma_mapping_error(greth->dev, dma_addr)))
503 goto map_error;
505 greth_write_bd(&bdp->addr, dma_addr);
507 curr_tx = NEXT_TX(greth->tx_next);
509 /* Frags */
510 for (i = 0; i < nr_frags; i++) {
511 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
512 greth->tx_skbuff[curr_tx] = NULL;
513 bdp = greth->tx_bd_base + curr_tx;
515 status = GRETH_TXBD_CSALL | GRETH_BD_EN;
516 status |= frag->size & GRETH_BD_LEN;
518 /* Wrap around descriptor ring */
519 if (curr_tx == GRETH_TXBD_NUM_MASK)
520 status |= GRETH_BD_WR;
522 /* More fragments left */
523 if (i < nr_frags - 1)
524 status |= GRETH_TXBD_MORE;
525 else
526 status |= GRETH_BD_IE; /* enable IRQ on last fragment */
528 greth_write_bd(&bdp->stat, status);
530 dma_addr = skb_frag_dma_map(greth->dev, frag, 0, frag->size,
531 DMA_TO_DEVICE);
533 if (unlikely(dma_mapping_error(greth->dev, dma_addr)))
534 goto frag_map_error;
536 greth_write_bd(&bdp->addr, dma_addr);
538 curr_tx = NEXT_TX(curr_tx);
541 wmb();
543 /* Enable the descriptor chain by enabling the first descriptor */
544 bdp = greth->tx_bd_base + greth->tx_next;
545 greth_write_bd(&bdp->stat, greth_read_bd(&bdp->stat) | GRETH_BD_EN);
546 greth->tx_next = curr_tx;
547 greth->tx_free -= nr_frags + 1;
549 wmb();
551 spin_lock_irqsave(&greth->devlock, flags); /*save from poll/irq*/
552 greth_enable_tx(greth);
553 spin_unlock_irqrestore(&greth->devlock, flags);
555 return NETDEV_TX_OK;
557 frag_map_error:
558 /* Unmap SKB mappings that succeeded and disable descriptor */
559 for (i = 0; greth->tx_next + i != curr_tx; i++) {
560 bdp = greth->tx_bd_base + greth->tx_next + i;
561 dma_unmap_single(greth->dev,
562 greth_read_bd(&bdp->addr),
563 greth_read_bd(&bdp->stat) & GRETH_BD_LEN,
564 DMA_TO_DEVICE);
565 greth_write_bd(&bdp->stat, 0);
567 map_error:
568 if (net_ratelimit())
569 dev_warn(greth->dev, "Could not create TX DMA mapping\n");
570 dev_kfree_skb(skb);
571 out:
572 return err;
575 static irqreturn_t greth_interrupt(int irq, void *dev_id)
577 struct net_device *dev = dev_id;
578 struct greth_private *greth;
579 u32 status, ctrl;
580 irqreturn_t retval = IRQ_NONE;
582 greth = netdev_priv(dev);
584 spin_lock(&greth->devlock);
586 /* Get the interrupt events that caused us to be here. */
587 status = GRETH_REGLOAD(greth->regs->status);
589 /* Must see if interrupts are enabled also, INT_TX|INT_RX flags may be
590 * set regardless of whether IRQ is enabled or not. Especially
591 * important when shared IRQ.
593 ctrl = GRETH_REGLOAD(greth->regs->control);
595 /* Handle rx and tx interrupts through poll */
596 if (((status & (GRETH_INT_RE | GRETH_INT_RX)) && (ctrl & GRETH_RXI)) ||
597 ((status & (GRETH_INT_TE | GRETH_INT_TX)) && (ctrl & GRETH_TXI))) {
598 retval = IRQ_HANDLED;
600 /* Disable interrupts and schedule poll() */
601 greth_disable_irqs(greth);
602 napi_schedule(&greth->napi);
605 mmiowb();
606 spin_unlock(&greth->devlock);
608 return retval;
611 static void greth_clean_tx(struct net_device *dev)
613 struct greth_private *greth;
614 struct greth_bd *bdp;
615 u32 stat;
617 greth = netdev_priv(dev);
619 while (1) {
620 bdp = greth->tx_bd_base + greth->tx_last;
621 GRETH_REGSAVE(greth->regs->status, GRETH_INT_TE | GRETH_INT_TX);
622 mb();
623 stat = greth_read_bd(&bdp->stat);
625 if (unlikely(stat & GRETH_BD_EN))
626 break;
628 if (greth->tx_free == GRETH_TXBD_NUM)
629 break;
631 /* Check status for errors */
632 if (unlikely(stat & GRETH_TXBD_STATUS)) {
633 dev->stats.tx_errors++;
634 if (stat & GRETH_TXBD_ERR_AL)
635 dev->stats.tx_aborted_errors++;
636 if (stat & GRETH_TXBD_ERR_UE)
637 dev->stats.tx_fifo_errors++;
639 dev->stats.tx_packets++;
640 greth->tx_last = NEXT_TX(greth->tx_last);
641 greth->tx_free++;
644 if (greth->tx_free > 0) {
645 netif_wake_queue(dev);
650 static inline void greth_update_tx_stats(struct net_device *dev, u32 stat)
652 /* Check status for errors */
653 if (unlikely(stat & GRETH_TXBD_STATUS)) {
654 dev->stats.tx_errors++;
655 if (stat & GRETH_TXBD_ERR_AL)
656 dev->stats.tx_aborted_errors++;
657 if (stat & GRETH_TXBD_ERR_UE)
658 dev->stats.tx_fifo_errors++;
659 if (stat & GRETH_TXBD_ERR_LC)
660 dev->stats.tx_aborted_errors++;
662 dev->stats.tx_packets++;
665 static void greth_clean_tx_gbit(struct net_device *dev)
667 struct greth_private *greth;
668 struct greth_bd *bdp, *bdp_last_frag;
669 struct sk_buff *skb;
670 u32 stat;
671 int nr_frags, i;
673 greth = netdev_priv(dev);
675 while (greth->tx_free < GRETH_TXBD_NUM) {
677 skb = greth->tx_skbuff[greth->tx_last];
679 nr_frags = skb_shinfo(skb)->nr_frags;
681 /* We only clean fully completed SKBs */
682 bdp_last_frag = greth->tx_bd_base + SKIP_TX(greth->tx_last, nr_frags);
684 GRETH_REGSAVE(greth->regs->status, GRETH_INT_TE | GRETH_INT_TX);
685 mb();
686 stat = greth_read_bd(&bdp_last_frag->stat);
688 if (stat & GRETH_BD_EN)
689 break;
691 greth->tx_skbuff[greth->tx_last] = NULL;
693 greth_update_tx_stats(dev, stat);
695 bdp = greth->tx_bd_base + greth->tx_last;
697 greth->tx_last = NEXT_TX(greth->tx_last);
699 dma_unmap_single(greth->dev,
700 greth_read_bd(&bdp->addr),
701 skb_headlen(skb),
702 DMA_TO_DEVICE);
704 for (i = 0; i < nr_frags; i++) {
705 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
706 bdp = greth->tx_bd_base + greth->tx_last;
708 dma_unmap_page(greth->dev,
709 greth_read_bd(&bdp->addr),
710 frag->size,
711 DMA_TO_DEVICE);
713 greth->tx_last = NEXT_TX(greth->tx_last);
715 greth->tx_free += nr_frags+1;
716 dev_kfree_skb(skb);
719 if (netif_queue_stopped(dev) && (greth->tx_free > (MAX_SKB_FRAGS+1)))
720 netif_wake_queue(dev);
723 static int greth_rx(struct net_device *dev, int limit)
725 struct greth_private *greth;
726 struct greth_bd *bdp;
727 struct sk_buff *skb;
728 int pkt_len;
729 int bad, count;
730 u32 status, dma_addr;
731 unsigned long flags;
733 greth = netdev_priv(dev);
735 for (count = 0; count < limit; ++count) {
737 bdp = greth->rx_bd_base + greth->rx_cur;
738 GRETH_REGSAVE(greth->regs->status, GRETH_INT_RE | GRETH_INT_RX);
739 mb();
740 status = greth_read_bd(&bdp->stat);
742 if (unlikely(status & GRETH_BD_EN)) {
743 break;
746 dma_addr = greth_read_bd(&bdp->addr);
747 bad = 0;
749 /* Check status for errors. */
750 if (unlikely(status & GRETH_RXBD_STATUS)) {
751 if (status & GRETH_RXBD_ERR_FT) {
752 dev->stats.rx_length_errors++;
753 bad = 1;
755 if (status & (GRETH_RXBD_ERR_AE | GRETH_RXBD_ERR_OE)) {
756 dev->stats.rx_frame_errors++;
757 bad = 1;
759 if (status & GRETH_RXBD_ERR_CRC) {
760 dev->stats.rx_crc_errors++;
761 bad = 1;
764 if (unlikely(bad)) {
765 dev->stats.rx_errors++;
767 } else {
769 pkt_len = status & GRETH_BD_LEN;
771 skb = netdev_alloc_skb(dev, pkt_len + NET_IP_ALIGN);
773 if (unlikely(skb == NULL)) {
775 if (net_ratelimit())
776 dev_warn(&dev->dev, "low on memory - " "packet dropped\n");
778 dev->stats.rx_dropped++;
780 } else {
781 skb_reserve(skb, NET_IP_ALIGN);
782 skb->dev = dev;
784 dma_sync_single_for_cpu(greth->dev,
785 dma_addr,
786 pkt_len,
787 DMA_FROM_DEVICE);
789 if (netif_msg_pktdata(greth))
790 greth_print_rx_packet(phys_to_virt(dma_addr), pkt_len);
792 memcpy(skb_put(skb, pkt_len), phys_to_virt(dma_addr), pkt_len);
794 skb->protocol = eth_type_trans(skb, dev);
795 dev->stats.rx_packets++;
796 netif_receive_skb(skb);
800 status = GRETH_BD_EN | GRETH_BD_IE;
801 if (greth->rx_cur == GRETH_RXBD_NUM_MASK) {
802 status |= GRETH_BD_WR;
805 wmb();
806 greth_write_bd(&bdp->stat, status);
808 dma_sync_single_for_device(greth->dev, dma_addr, MAX_FRAME_SIZE, DMA_FROM_DEVICE);
810 spin_lock_irqsave(&greth->devlock, flags); /* save from XMIT */
811 greth_enable_rx(greth);
812 spin_unlock_irqrestore(&greth->devlock, flags);
814 greth->rx_cur = NEXT_RX(greth->rx_cur);
817 return count;
820 static inline int hw_checksummed(u32 status)
823 if (status & GRETH_RXBD_IP_FRAG)
824 return 0;
826 if (status & GRETH_RXBD_IP && status & GRETH_RXBD_IP_CSERR)
827 return 0;
829 if (status & GRETH_RXBD_UDP && status & GRETH_RXBD_UDP_CSERR)
830 return 0;
832 if (status & GRETH_RXBD_TCP && status & GRETH_RXBD_TCP_CSERR)
833 return 0;
835 return 1;
838 static int greth_rx_gbit(struct net_device *dev, int limit)
840 struct greth_private *greth;
841 struct greth_bd *bdp;
842 struct sk_buff *skb, *newskb;
843 int pkt_len;
844 int bad, count = 0;
845 u32 status, dma_addr;
846 unsigned long flags;
848 greth = netdev_priv(dev);
850 for (count = 0; count < limit; ++count) {
852 bdp = greth->rx_bd_base + greth->rx_cur;
853 skb = greth->rx_skbuff[greth->rx_cur];
854 GRETH_REGSAVE(greth->regs->status, GRETH_INT_RE | GRETH_INT_RX);
855 mb();
856 status = greth_read_bd(&bdp->stat);
857 bad = 0;
859 if (status & GRETH_BD_EN)
860 break;
862 /* Check status for errors. */
863 if (unlikely(status & GRETH_RXBD_STATUS)) {
865 if (status & GRETH_RXBD_ERR_FT) {
866 dev->stats.rx_length_errors++;
867 bad = 1;
868 } else if (status &
869 (GRETH_RXBD_ERR_AE | GRETH_RXBD_ERR_OE | GRETH_RXBD_ERR_LE)) {
870 dev->stats.rx_frame_errors++;
871 bad = 1;
872 } else if (status & GRETH_RXBD_ERR_CRC) {
873 dev->stats.rx_crc_errors++;
874 bad = 1;
878 /* Allocate new skb to replace current, not needed if the
879 * current skb can be reused */
880 if (!bad && (newskb=netdev_alloc_skb(dev, MAX_FRAME_SIZE + NET_IP_ALIGN))) {
881 skb_reserve(newskb, NET_IP_ALIGN);
883 dma_addr = dma_map_single(greth->dev,
884 newskb->data,
885 MAX_FRAME_SIZE + NET_IP_ALIGN,
886 DMA_FROM_DEVICE);
888 if (!dma_mapping_error(greth->dev, dma_addr)) {
889 /* Process the incoming frame. */
890 pkt_len = status & GRETH_BD_LEN;
892 dma_unmap_single(greth->dev,
893 greth_read_bd(&bdp->addr),
894 MAX_FRAME_SIZE + NET_IP_ALIGN,
895 DMA_FROM_DEVICE);
897 if (netif_msg_pktdata(greth))
898 greth_print_rx_packet(phys_to_virt(greth_read_bd(&bdp->addr)), pkt_len);
900 skb_put(skb, pkt_len);
902 if (dev->features & NETIF_F_RXCSUM && hw_checksummed(status))
903 skb->ip_summed = CHECKSUM_UNNECESSARY;
904 else
905 skb_checksum_none_assert(skb);
907 skb->protocol = eth_type_trans(skb, dev);
908 dev->stats.rx_packets++;
909 netif_receive_skb(skb);
911 greth->rx_skbuff[greth->rx_cur] = newskb;
912 greth_write_bd(&bdp->addr, dma_addr);
913 } else {
914 if (net_ratelimit())
915 dev_warn(greth->dev, "Could not create DMA mapping, dropping packet\n");
916 dev_kfree_skb(newskb);
917 /* reusing current skb, so it is a drop */
918 dev->stats.rx_dropped++;
920 } else if (bad) {
921 /* Bad Frame transfer, the skb is reused */
922 dev->stats.rx_dropped++;
923 } else {
924 /* Failed Allocating a new skb. This is rather stupid
925 * but the current "filled" skb is reused, as if
926 * transfer failure. One could argue that RX descriptor
927 * table handling should be divided into cleaning and
928 * filling as the TX part of the driver
930 if (net_ratelimit())
931 dev_warn(greth->dev, "Could not allocate SKB, dropping packet\n");
932 /* reusing current skb, so it is a drop */
933 dev->stats.rx_dropped++;
936 status = GRETH_BD_EN | GRETH_BD_IE;
937 if (greth->rx_cur == GRETH_RXBD_NUM_MASK) {
938 status |= GRETH_BD_WR;
941 wmb();
942 greth_write_bd(&bdp->stat, status);
943 spin_lock_irqsave(&greth->devlock, flags);
944 greth_enable_rx(greth);
945 spin_unlock_irqrestore(&greth->devlock, flags);
946 greth->rx_cur = NEXT_RX(greth->rx_cur);
949 return count;
953 static int greth_poll(struct napi_struct *napi, int budget)
955 struct greth_private *greth;
956 int work_done = 0;
957 unsigned long flags;
958 u32 mask, ctrl;
959 greth = container_of(napi, struct greth_private, napi);
961 restart_txrx_poll:
962 if (netif_queue_stopped(greth->netdev)) {
963 if (greth->gbit_mac)
964 greth_clean_tx_gbit(greth->netdev);
965 else
966 greth_clean_tx(greth->netdev);
969 if (greth->gbit_mac) {
970 work_done += greth_rx_gbit(greth->netdev, budget - work_done);
971 } else {
972 work_done += greth_rx(greth->netdev, budget - work_done);
975 if (work_done < budget) {
977 spin_lock_irqsave(&greth->devlock, flags);
979 ctrl = GRETH_REGLOAD(greth->regs->control);
980 if (netif_queue_stopped(greth->netdev)) {
981 GRETH_REGSAVE(greth->regs->control,
982 ctrl | GRETH_TXI | GRETH_RXI);
983 mask = GRETH_INT_RX | GRETH_INT_RE |
984 GRETH_INT_TX | GRETH_INT_TE;
985 } else {
986 GRETH_REGSAVE(greth->regs->control, ctrl | GRETH_RXI);
987 mask = GRETH_INT_RX | GRETH_INT_RE;
990 if (GRETH_REGLOAD(greth->regs->status) & mask) {
991 GRETH_REGSAVE(greth->regs->control, ctrl);
992 spin_unlock_irqrestore(&greth->devlock, flags);
993 goto restart_txrx_poll;
994 } else {
995 __napi_complete(napi);
996 spin_unlock_irqrestore(&greth->devlock, flags);
1000 return work_done;
1003 static int greth_set_mac_add(struct net_device *dev, void *p)
1005 struct sockaddr *addr = p;
1006 struct greth_private *greth;
1007 struct greth_regs *regs;
1009 greth = netdev_priv(dev);
1010 regs = (struct greth_regs *) greth->regs;
1012 if (!is_valid_ether_addr(addr->sa_data))
1013 return -EINVAL;
1015 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
1016 GRETH_REGSAVE(regs->esa_msb, dev->dev_addr[0] << 8 | dev->dev_addr[1]);
1017 GRETH_REGSAVE(regs->esa_lsb, dev->dev_addr[2] << 24 | dev->dev_addr[3] << 16 |
1018 dev->dev_addr[4] << 8 | dev->dev_addr[5]);
1020 return 0;
1023 static u32 greth_hash_get_index(__u8 *addr)
1025 return (ether_crc(6, addr)) & 0x3F;
1028 static void greth_set_hash_filter(struct net_device *dev)
1030 struct netdev_hw_addr *ha;
1031 struct greth_private *greth = netdev_priv(dev);
1032 struct greth_regs *regs = (struct greth_regs *) greth->regs;
1033 u32 mc_filter[2];
1034 unsigned int bitnr;
1036 mc_filter[0] = mc_filter[1] = 0;
1038 netdev_for_each_mc_addr(ha, dev) {
1039 bitnr = greth_hash_get_index(ha->addr);
1040 mc_filter[bitnr >> 5] |= 1 << (bitnr & 31);
1043 GRETH_REGSAVE(regs->hash_msb, mc_filter[1]);
1044 GRETH_REGSAVE(regs->hash_lsb, mc_filter[0]);
1047 static void greth_set_multicast_list(struct net_device *dev)
1049 int cfg;
1050 struct greth_private *greth = netdev_priv(dev);
1051 struct greth_regs *regs = (struct greth_regs *) greth->regs;
1053 cfg = GRETH_REGLOAD(regs->control);
1054 if (dev->flags & IFF_PROMISC)
1055 cfg |= GRETH_CTRL_PR;
1056 else
1057 cfg &= ~GRETH_CTRL_PR;
1059 if (greth->multicast) {
1060 if (dev->flags & IFF_ALLMULTI) {
1061 GRETH_REGSAVE(regs->hash_msb, -1);
1062 GRETH_REGSAVE(regs->hash_lsb, -1);
1063 cfg |= GRETH_CTRL_MCEN;
1064 GRETH_REGSAVE(regs->control, cfg);
1065 return;
1068 if (netdev_mc_empty(dev)) {
1069 cfg &= ~GRETH_CTRL_MCEN;
1070 GRETH_REGSAVE(regs->control, cfg);
1071 return;
1074 /* Setup multicast filter */
1075 greth_set_hash_filter(dev);
1076 cfg |= GRETH_CTRL_MCEN;
1078 GRETH_REGSAVE(regs->control, cfg);
1081 static u32 greth_get_msglevel(struct net_device *dev)
1083 struct greth_private *greth = netdev_priv(dev);
1084 return greth->msg_enable;
1087 static void greth_set_msglevel(struct net_device *dev, u32 value)
1089 struct greth_private *greth = netdev_priv(dev);
1090 greth->msg_enable = value;
1092 static int greth_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1094 struct greth_private *greth = netdev_priv(dev);
1095 struct phy_device *phy = greth->phy;
1097 if (!phy)
1098 return -ENODEV;
1100 return phy_ethtool_gset(phy, cmd);
1103 static int greth_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1105 struct greth_private *greth = netdev_priv(dev);
1106 struct phy_device *phy = greth->phy;
1108 if (!phy)
1109 return -ENODEV;
1111 return phy_ethtool_sset(phy, cmd);
1114 static int greth_get_regs_len(struct net_device *dev)
1116 return sizeof(struct greth_regs);
1119 static void greth_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1121 struct greth_private *greth = netdev_priv(dev);
1123 strncpy(info->driver, dev_driver_string(greth->dev), 32);
1124 strncpy(info->version, "revision: 1.0", 32);
1125 strncpy(info->bus_info, greth->dev->bus->name, 32);
1126 strncpy(info->fw_version, "N/A", 32);
1127 info->eedump_len = 0;
1128 info->regdump_len = sizeof(struct greth_regs);
1131 static void greth_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *p)
1133 int i;
1134 struct greth_private *greth = netdev_priv(dev);
1135 u32 __iomem *greth_regs = (u32 __iomem *) greth->regs;
1136 u32 *buff = p;
1138 for (i = 0; i < sizeof(struct greth_regs) / sizeof(u32); i++)
1139 buff[i] = greth_read_bd(&greth_regs[i]);
1142 static const struct ethtool_ops greth_ethtool_ops = {
1143 .get_msglevel = greth_get_msglevel,
1144 .set_msglevel = greth_set_msglevel,
1145 .get_settings = greth_get_settings,
1146 .set_settings = greth_set_settings,
1147 .get_drvinfo = greth_get_drvinfo,
1148 .get_regs_len = greth_get_regs_len,
1149 .get_regs = greth_get_regs,
1150 .get_link = ethtool_op_get_link,
1153 static struct net_device_ops greth_netdev_ops = {
1154 .ndo_open = greth_open,
1155 .ndo_stop = greth_close,
1156 .ndo_start_xmit = greth_start_xmit,
1157 .ndo_set_mac_address = greth_set_mac_add,
1158 .ndo_validate_addr = eth_validate_addr,
1161 static inline int wait_for_mdio(struct greth_private *greth)
1163 unsigned long timeout = jiffies + 4*HZ/100;
1164 while (GRETH_REGLOAD(greth->regs->mdio) & GRETH_MII_BUSY) {
1165 if (time_after(jiffies, timeout))
1166 return 0;
1168 return 1;
1171 static int greth_mdio_read(struct mii_bus *bus, int phy, int reg)
1173 struct greth_private *greth = bus->priv;
1174 int data;
1176 if (!wait_for_mdio(greth))
1177 return -EBUSY;
1179 GRETH_REGSAVE(greth->regs->mdio, ((phy & 0x1F) << 11) | ((reg & 0x1F) << 6) | 2);
1181 if (!wait_for_mdio(greth))
1182 return -EBUSY;
1184 if (!(GRETH_REGLOAD(greth->regs->mdio) & GRETH_MII_NVALID)) {
1185 data = (GRETH_REGLOAD(greth->regs->mdio) >> 16) & 0xFFFF;
1186 return data;
1188 } else {
1189 return -1;
1193 static int greth_mdio_write(struct mii_bus *bus, int phy, int reg, u16 val)
1195 struct greth_private *greth = bus->priv;
1197 if (!wait_for_mdio(greth))
1198 return -EBUSY;
1200 GRETH_REGSAVE(greth->regs->mdio,
1201 ((val & 0xFFFF) << 16) | ((phy & 0x1F) << 11) | ((reg & 0x1F) << 6) | 1);
1203 if (!wait_for_mdio(greth))
1204 return -EBUSY;
1206 return 0;
1209 static int greth_mdio_reset(struct mii_bus *bus)
1211 return 0;
1214 static void greth_link_change(struct net_device *dev)
1216 struct greth_private *greth = netdev_priv(dev);
1217 struct phy_device *phydev = greth->phy;
1218 unsigned long flags;
1219 int status_change = 0;
1220 u32 ctrl;
1222 spin_lock_irqsave(&greth->devlock, flags);
1224 if (phydev->link) {
1226 if ((greth->speed != phydev->speed) || (greth->duplex != phydev->duplex)) {
1227 ctrl = GRETH_REGLOAD(greth->regs->control) &
1228 ~(GRETH_CTRL_FD | GRETH_CTRL_SP | GRETH_CTRL_GB);
1230 if (phydev->duplex)
1231 ctrl |= GRETH_CTRL_FD;
1233 if (phydev->speed == SPEED_100)
1234 ctrl |= GRETH_CTRL_SP;
1235 else if (phydev->speed == SPEED_1000)
1236 ctrl |= GRETH_CTRL_GB;
1238 GRETH_REGSAVE(greth->regs->control, ctrl);
1239 greth->speed = phydev->speed;
1240 greth->duplex = phydev->duplex;
1241 status_change = 1;
1245 if (phydev->link != greth->link) {
1246 if (!phydev->link) {
1247 greth->speed = 0;
1248 greth->duplex = -1;
1250 greth->link = phydev->link;
1252 status_change = 1;
1255 spin_unlock_irqrestore(&greth->devlock, flags);
1257 if (status_change) {
1258 if (phydev->link)
1259 pr_debug("%s: link up (%d/%s)\n",
1260 dev->name, phydev->speed,
1261 DUPLEX_FULL == phydev->duplex ? "Full" : "Half");
1262 else
1263 pr_debug("%s: link down\n", dev->name);
1267 static int greth_mdio_probe(struct net_device *dev)
1269 struct greth_private *greth = netdev_priv(dev);
1270 struct phy_device *phy = NULL;
1271 int ret;
1273 /* Find the first PHY */
1274 phy = phy_find_first(greth->mdio);
1276 if (!phy) {
1277 if (netif_msg_probe(greth))
1278 dev_err(&dev->dev, "no PHY found\n");
1279 return -ENXIO;
1282 ret = phy_connect_direct(dev, phy, &greth_link_change,
1283 0, greth->gbit_mac ?
1284 PHY_INTERFACE_MODE_GMII :
1285 PHY_INTERFACE_MODE_MII);
1286 if (ret) {
1287 if (netif_msg_ifup(greth))
1288 dev_err(&dev->dev, "could not attach to PHY\n");
1289 return ret;
1292 if (greth->gbit_mac)
1293 phy->supported &= PHY_GBIT_FEATURES;
1294 else
1295 phy->supported &= PHY_BASIC_FEATURES;
1297 phy->advertising = phy->supported;
1299 greth->link = 0;
1300 greth->speed = 0;
1301 greth->duplex = -1;
1302 greth->phy = phy;
1304 return 0;
1307 static inline int phy_aneg_done(struct phy_device *phydev)
1309 int retval;
1311 retval = phy_read(phydev, MII_BMSR);
1313 return (retval < 0) ? retval : (retval & BMSR_ANEGCOMPLETE);
1316 static int greth_mdio_init(struct greth_private *greth)
1318 int ret, phy;
1319 unsigned long timeout;
1321 greth->mdio = mdiobus_alloc();
1322 if (!greth->mdio) {
1323 return -ENOMEM;
1326 greth->mdio->name = "greth-mdio";
1327 snprintf(greth->mdio->id, MII_BUS_ID_SIZE, "%s-%d", greth->mdio->name, greth->irq);
1328 greth->mdio->read = greth_mdio_read;
1329 greth->mdio->write = greth_mdio_write;
1330 greth->mdio->reset = greth_mdio_reset;
1331 greth->mdio->priv = greth;
1333 greth->mdio->irq = greth->mdio_irqs;
1335 for (phy = 0; phy < PHY_MAX_ADDR; phy++)
1336 greth->mdio->irq[phy] = PHY_POLL;
1338 ret = mdiobus_register(greth->mdio);
1339 if (ret) {
1340 goto error;
1343 ret = greth_mdio_probe(greth->netdev);
1344 if (ret) {
1345 if (netif_msg_probe(greth))
1346 dev_err(&greth->netdev->dev, "failed to probe MDIO bus\n");
1347 goto unreg_mdio;
1350 phy_start(greth->phy);
1352 /* If Ethernet debug link is used make autoneg happen right away */
1353 if (greth->edcl && greth_edcl == 1) {
1354 phy_start_aneg(greth->phy);
1355 timeout = jiffies + 6*HZ;
1356 while (!phy_aneg_done(greth->phy) && time_before(jiffies, timeout)) {
1358 genphy_read_status(greth->phy);
1359 greth_link_change(greth->netdev);
1362 return 0;
1364 unreg_mdio:
1365 mdiobus_unregister(greth->mdio);
1366 error:
1367 mdiobus_free(greth->mdio);
1368 return ret;
1371 /* Initialize the GRETH MAC */
1372 static int __devinit greth_of_probe(struct platform_device *ofdev)
1374 struct net_device *dev;
1375 struct greth_private *greth;
1376 struct greth_regs *regs;
1378 int i;
1379 int err;
1380 int tmp;
1381 unsigned long timeout;
1383 dev = alloc_etherdev(sizeof(struct greth_private));
1385 if (dev == NULL)
1386 return -ENOMEM;
1388 greth = netdev_priv(dev);
1389 greth->netdev = dev;
1390 greth->dev = &ofdev->dev;
1392 if (greth_debug > 0)
1393 greth->msg_enable = greth_debug;
1394 else
1395 greth->msg_enable = GRETH_DEF_MSG_ENABLE;
1397 spin_lock_init(&greth->devlock);
1399 greth->regs = of_ioremap(&ofdev->resource[0], 0,
1400 resource_size(&ofdev->resource[0]),
1401 "grlib-greth regs");
1403 if (greth->regs == NULL) {
1404 if (netif_msg_probe(greth))
1405 dev_err(greth->dev, "ioremap failure.\n");
1406 err = -EIO;
1407 goto error1;
1410 regs = (struct greth_regs *) greth->regs;
1411 greth->irq = ofdev->archdata.irqs[0];
1413 dev_set_drvdata(greth->dev, dev);
1414 SET_NETDEV_DEV(dev, greth->dev);
1416 if (netif_msg_probe(greth))
1417 dev_dbg(greth->dev, "reseting controller.\n");
1419 /* Reset the controller. */
1420 GRETH_REGSAVE(regs->control, GRETH_RESET);
1422 /* Wait for MAC to reset itself */
1423 timeout = jiffies + HZ/100;
1424 while (GRETH_REGLOAD(regs->control) & GRETH_RESET) {
1425 if (time_after(jiffies, timeout)) {
1426 err = -EIO;
1427 if (netif_msg_probe(greth))
1428 dev_err(greth->dev, "timeout when waiting for reset.\n");
1429 goto error2;
1433 /* Get default PHY address */
1434 greth->phyaddr = (GRETH_REGLOAD(regs->mdio) >> 11) & 0x1F;
1436 /* Check if we have GBIT capable MAC */
1437 tmp = GRETH_REGLOAD(regs->control);
1438 greth->gbit_mac = (tmp >> 27) & 1;
1440 /* Check for multicast capability */
1441 greth->multicast = (tmp >> 25) & 1;
1443 greth->edcl = (tmp >> 31) & 1;
1445 /* If we have EDCL we disable the EDCL speed-duplex FSM so
1446 * it doesn't interfere with the software */
1447 if (greth->edcl != 0)
1448 GRETH_REGORIN(regs->control, GRETH_CTRL_DISDUPLEX);
1450 /* Check if MAC can handle MDIO interrupts */
1451 greth->mdio_int_en = (tmp >> 26) & 1;
1453 err = greth_mdio_init(greth);
1454 if (err) {
1455 if (netif_msg_probe(greth))
1456 dev_err(greth->dev, "failed to register MDIO bus\n");
1457 goto error2;
1460 /* Allocate TX descriptor ring in coherent memory */
1461 greth->tx_bd_base = (struct greth_bd *) dma_alloc_coherent(greth->dev,
1462 1024,
1463 &greth->tx_bd_base_phys,
1464 GFP_KERNEL);
1466 if (!greth->tx_bd_base) {
1467 if (netif_msg_probe(greth))
1468 dev_err(&dev->dev, "could not allocate descriptor memory.\n");
1469 err = -ENOMEM;
1470 goto error3;
1473 memset(greth->tx_bd_base, 0, 1024);
1475 /* Allocate RX descriptor ring in coherent memory */
1476 greth->rx_bd_base = (struct greth_bd *) dma_alloc_coherent(greth->dev,
1477 1024,
1478 &greth->rx_bd_base_phys,
1479 GFP_KERNEL);
1481 if (!greth->rx_bd_base) {
1482 if (netif_msg_probe(greth))
1483 dev_err(greth->dev, "could not allocate descriptor memory.\n");
1484 err = -ENOMEM;
1485 goto error4;
1488 memset(greth->rx_bd_base, 0, 1024);
1490 /* Get MAC address from: module param, OF property or ID prom */
1491 for (i = 0; i < 6; i++) {
1492 if (macaddr[i] != 0)
1493 break;
1495 if (i == 6) {
1496 const unsigned char *addr;
1497 int len;
1498 addr = of_get_property(ofdev->dev.of_node, "local-mac-address",
1499 &len);
1500 if (addr != NULL && len == 6) {
1501 for (i = 0; i < 6; i++)
1502 macaddr[i] = (unsigned int) addr[i];
1503 } else {
1504 #ifdef CONFIG_SPARC
1505 for (i = 0; i < 6; i++)
1506 macaddr[i] = (unsigned int) idprom->id_ethaddr[i];
1507 #endif
1511 for (i = 0; i < 6; i++)
1512 dev->dev_addr[i] = macaddr[i];
1514 macaddr[5]++;
1516 if (!is_valid_ether_addr(&dev->dev_addr[0])) {
1517 if (netif_msg_probe(greth))
1518 dev_err(greth->dev, "no valid ethernet address, aborting.\n");
1519 err = -EINVAL;
1520 goto error5;
1523 GRETH_REGSAVE(regs->esa_msb, dev->dev_addr[0] << 8 | dev->dev_addr[1]);
1524 GRETH_REGSAVE(regs->esa_lsb, dev->dev_addr[2] << 24 | dev->dev_addr[3] << 16 |
1525 dev->dev_addr[4] << 8 | dev->dev_addr[5]);
1527 /* Clear all pending interrupts except PHY irq */
1528 GRETH_REGSAVE(regs->status, 0xFF);
1530 if (greth->gbit_mac) {
1531 dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM |
1532 NETIF_F_RXCSUM;
1533 dev->features = dev->hw_features | NETIF_F_HIGHDMA;
1534 greth_netdev_ops.ndo_start_xmit = greth_start_xmit_gbit;
1537 if (greth->multicast) {
1538 greth_netdev_ops.ndo_set_rx_mode = greth_set_multicast_list;
1539 dev->flags |= IFF_MULTICAST;
1540 } else {
1541 dev->flags &= ~IFF_MULTICAST;
1544 dev->netdev_ops = &greth_netdev_ops;
1545 dev->ethtool_ops = &greth_ethtool_ops;
1547 err = register_netdev(dev);
1548 if (err) {
1549 if (netif_msg_probe(greth))
1550 dev_err(greth->dev, "netdevice registration failed.\n");
1551 goto error5;
1554 /* setup NAPI */
1555 netif_napi_add(dev, &greth->napi, greth_poll, 64);
1557 return 0;
1559 error5:
1560 dma_free_coherent(greth->dev, 1024, greth->rx_bd_base, greth->rx_bd_base_phys);
1561 error4:
1562 dma_free_coherent(greth->dev, 1024, greth->tx_bd_base, greth->tx_bd_base_phys);
1563 error3:
1564 mdiobus_unregister(greth->mdio);
1565 error2:
1566 of_iounmap(&ofdev->resource[0], greth->regs, resource_size(&ofdev->resource[0]));
1567 error1:
1568 free_netdev(dev);
1569 return err;
1572 static int __devexit greth_of_remove(struct platform_device *of_dev)
1574 struct net_device *ndev = dev_get_drvdata(&of_dev->dev);
1575 struct greth_private *greth = netdev_priv(ndev);
1577 /* Free descriptor areas */
1578 dma_free_coherent(&of_dev->dev, 1024, greth->rx_bd_base, greth->rx_bd_base_phys);
1580 dma_free_coherent(&of_dev->dev, 1024, greth->tx_bd_base, greth->tx_bd_base_phys);
1582 dev_set_drvdata(&of_dev->dev, NULL);
1584 if (greth->phy)
1585 phy_stop(greth->phy);
1586 mdiobus_unregister(greth->mdio);
1588 unregister_netdev(ndev);
1589 free_netdev(ndev);
1591 of_iounmap(&of_dev->resource[0], greth->regs, resource_size(&of_dev->resource[0]));
1593 return 0;
1596 static struct of_device_id greth_of_match[] = {
1598 .name = "GAISLER_ETHMAC",
1601 .name = "01_01d",
1606 MODULE_DEVICE_TABLE(of, greth_of_match);
1608 static struct platform_driver greth_of_driver = {
1609 .driver = {
1610 .name = "grlib-greth",
1611 .owner = THIS_MODULE,
1612 .of_match_table = greth_of_match,
1614 .probe = greth_of_probe,
1615 .remove = __devexit_p(greth_of_remove),
1618 static int __init greth_init(void)
1620 return platform_driver_register(&greth_of_driver);
1623 static void __exit greth_cleanup(void)
1625 platform_driver_unregister(&greth_of_driver);
1628 module_init(greth_init);
1629 module_exit(greth_cleanup);
1631 MODULE_AUTHOR("Aeroflex Gaisler AB.");
1632 MODULE_DESCRIPTION("Aeroflex Gaisler Ethernet MAC driver");
1633 MODULE_LICENSE("GPL");