2 * Aeroflex Gaisler GRETH 10/100/1G Ethernet MAC.
4 * 2005-2010 (c) Aeroflex Gaisler AB
6 * This driver supports GRETH 10/100 and GRETH 10/100/1G Ethernet MACs
7 * available in the GRLIB VHDL IP core library.
9 * Full documentation of both cores can be found here:
10 * http://www.gaisler.com/products/grlib/grip.pdf
12 * The Gigabit version supports scatter/gather DMA, any alignment of
13 * buffers and checksum offloading.
15 * This program is free software; you can redistribute it and/or modify it
16 * under the terms of the GNU General Public License as published by the
17 * Free Software Foundation; either version 2 of the License, or (at your
18 * option) any later version.
20 * Contributors: Kristoffer Glembo
25 #include <linux/dma-mapping.h>
26 #include <linux/module.h>
27 #include <linux/uaccess.h>
28 #include <linux/init.h>
29 #include <linux/interrupt.h>
30 #include <linux/netdevice.h>
31 #include <linux/etherdevice.h>
32 #include <linux/ethtool.h>
33 #include <linux/skbuff.h>
35 #include <linux/crc32.h>
36 #include <linux/mii.h>
37 #include <linux/of_device.h>
38 #include <linux/of_platform.h>
39 #include <linux/slab.h>
40 #include <asm/cacheflush.h>
41 #include <asm/byteorder.h>
44 #include <asm/idprom.h>
49 #define GRETH_DEF_MSG_ENABLE \
58 static int greth_debug
= -1; /* -1 == use GRETH_DEF_MSG_ENABLE as value */
59 module_param(greth_debug
, int, 0);
60 MODULE_PARM_DESC(greth_debug
, "GRETH bitmapped debugging message enable value");
62 /* Accept MAC address of the form macaddr=0x08,0x00,0x20,0x30,0x40,0x50 */
63 static int macaddr
[6];
64 module_param_array(macaddr
, int, NULL
, 0);
65 MODULE_PARM_DESC(macaddr
, "GRETH Ethernet MAC address");
67 static int greth_edcl
= 1;
68 module_param(greth_edcl
, int, 0);
69 MODULE_PARM_DESC(greth_edcl
, "GRETH EDCL usage indicator. Set to 1 if EDCL is used.");
71 static int greth_open(struct net_device
*dev
);
72 static netdev_tx_t
greth_start_xmit(struct sk_buff
*skb
,
73 struct net_device
*dev
);
74 static netdev_tx_t
greth_start_xmit_gbit(struct sk_buff
*skb
,
75 struct net_device
*dev
);
76 static int greth_rx(struct net_device
*dev
, int limit
);
77 static int greth_rx_gbit(struct net_device
*dev
, int limit
);
78 static void greth_clean_tx(struct net_device
*dev
);
79 static void greth_clean_tx_gbit(struct net_device
*dev
);
80 static irqreturn_t
greth_interrupt(int irq
, void *dev_id
);
81 static int greth_close(struct net_device
*dev
);
82 static int greth_set_mac_add(struct net_device
*dev
, void *p
);
83 static void greth_set_multicast_list(struct net_device
*dev
);
85 #define GRETH_REGLOAD(a) (be32_to_cpu(__raw_readl(&(a))))
86 #define GRETH_REGSAVE(a, v) (__raw_writel(cpu_to_be32(v), &(a)))
87 #define GRETH_REGORIN(a, v) (GRETH_REGSAVE(a, (GRETH_REGLOAD(a) | (v))))
88 #define GRETH_REGANDIN(a, v) (GRETH_REGSAVE(a, (GRETH_REGLOAD(a) & (v))))
90 #define NEXT_TX(N) (((N) + 1) & GRETH_TXBD_NUM_MASK)
91 #define SKIP_TX(N, C) (((N) + C) & GRETH_TXBD_NUM_MASK)
92 #define NEXT_RX(N) (((N) + 1) & GRETH_RXBD_NUM_MASK)
94 static void greth_print_rx_packet(void *addr
, int len
)
96 print_hex_dump(KERN_DEBUG
, "RX: ", DUMP_PREFIX_OFFSET
, 16, 1,
100 static void greth_print_tx_packet(struct sk_buff
*skb
)
105 if (skb_shinfo(skb
)->nr_frags
== 0)
108 length
= skb_headlen(skb
);
110 print_hex_dump(KERN_DEBUG
, "TX: ", DUMP_PREFIX_OFFSET
, 16, 1,
111 skb
->data
, length
, true);
113 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
115 print_hex_dump(KERN_DEBUG
, "TX: ", DUMP_PREFIX_OFFSET
, 16, 1,
116 skb_frag_address(&skb_shinfo(skb
)->frags
[i
]),
117 skb_shinfo(skb
)->frags
[i
].size
, true);
121 static inline void greth_enable_tx(struct greth_private
*greth
)
124 GRETH_REGORIN(greth
->regs
->control
, GRETH_TXEN
);
127 static inline void greth_disable_tx(struct greth_private
*greth
)
129 GRETH_REGANDIN(greth
->regs
->control
, ~GRETH_TXEN
);
132 static inline void greth_enable_rx(struct greth_private
*greth
)
135 GRETH_REGORIN(greth
->regs
->control
, GRETH_RXEN
);
138 static inline void greth_disable_rx(struct greth_private
*greth
)
140 GRETH_REGANDIN(greth
->regs
->control
, ~GRETH_RXEN
);
143 static inline void greth_enable_irqs(struct greth_private
*greth
)
145 GRETH_REGORIN(greth
->regs
->control
, GRETH_RXI
| GRETH_TXI
);
148 static inline void greth_disable_irqs(struct greth_private
*greth
)
150 GRETH_REGANDIN(greth
->regs
->control
, ~(GRETH_RXI
|GRETH_TXI
));
153 static inline void greth_write_bd(u32
*bd
, u32 val
)
155 __raw_writel(cpu_to_be32(val
), bd
);
158 static inline u32
greth_read_bd(u32
*bd
)
160 return be32_to_cpu(__raw_readl(bd
));
163 static void greth_clean_rings(struct greth_private
*greth
)
166 struct greth_bd
*rx_bdp
= greth
->rx_bd_base
;
167 struct greth_bd
*tx_bdp
= greth
->tx_bd_base
;
169 if (greth
->gbit_mac
) {
171 /* Free and unmap RX buffers */
172 for (i
= 0; i
< GRETH_RXBD_NUM
; i
++, rx_bdp
++) {
173 if (greth
->rx_skbuff
[i
] != NULL
) {
174 dev_kfree_skb(greth
->rx_skbuff
[i
]);
175 dma_unmap_single(greth
->dev
,
176 greth_read_bd(&rx_bdp
->addr
),
177 MAX_FRAME_SIZE
+NET_IP_ALIGN
,
183 while (greth
->tx_free
< GRETH_TXBD_NUM
) {
185 struct sk_buff
*skb
= greth
->tx_skbuff
[greth
->tx_last
];
186 int nr_frags
= skb_shinfo(skb
)->nr_frags
;
187 tx_bdp
= greth
->tx_bd_base
+ greth
->tx_last
;
188 greth
->tx_last
= NEXT_TX(greth
->tx_last
);
190 dma_unmap_single(greth
->dev
,
191 greth_read_bd(&tx_bdp
->addr
),
195 for (i
= 0; i
< nr_frags
; i
++) {
196 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
197 tx_bdp
= greth
->tx_bd_base
+ greth
->tx_last
;
199 dma_unmap_page(greth
->dev
,
200 greth_read_bd(&tx_bdp
->addr
),
204 greth
->tx_last
= NEXT_TX(greth
->tx_last
);
206 greth
->tx_free
+= nr_frags
+1;
211 } else { /* 10/100 Mbps MAC */
213 for (i
= 0; i
< GRETH_RXBD_NUM
; i
++, rx_bdp
++) {
214 kfree(greth
->rx_bufs
[i
]);
215 dma_unmap_single(greth
->dev
,
216 greth_read_bd(&rx_bdp
->addr
),
220 for (i
= 0; i
< GRETH_TXBD_NUM
; i
++, tx_bdp
++) {
221 kfree(greth
->tx_bufs
[i
]);
222 dma_unmap_single(greth
->dev
,
223 greth_read_bd(&tx_bdp
->addr
),
230 static int greth_init_rings(struct greth_private
*greth
)
233 struct greth_bd
*rx_bd
, *tx_bd
;
237 rx_bd
= greth
->rx_bd_base
;
238 tx_bd
= greth
->tx_bd_base
;
240 /* Initialize descriptor rings and buffers */
241 if (greth
->gbit_mac
) {
243 for (i
= 0; i
< GRETH_RXBD_NUM
; i
++) {
244 skb
= netdev_alloc_skb(greth
->netdev
, MAX_FRAME_SIZE
+NET_IP_ALIGN
);
246 if (netif_msg_ifup(greth
))
247 dev_err(greth
->dev
, "Error allocating DMA ring.\n");
250 skb_reserve(skb
, NET_IP_ALIGN
);
251 dma_addr
= dma_map_single(greth
->dev
,
253 MAX_FRAME_SIZE
+NET_IP_ALIGN
,
256 if (dma_mapping_error(greth
->dev
, dma_addr
)) {
257 if (netif_msg_ifup(greth
))
258 dev_err(greth
->dev
, "Could not create initial DMA mapping\n");
261 greth
->rx_skbuff
[i
] = skb
;
262 greth_write_bd(&rx_bd
[i
].addr
, dma_addr
);
263 greth_write_bd(&rx_bd
[i
].stat
, GRETH_BD_EN
| GRETH_BD_IE
);
268 /* 10/100 MAC uses a fixed set of buffers and copy to/from SKBs */
269 for (i
= 0; i
< GRETH_RXBD_NUM
; i
++) {
271 greth
->rx_bufs
[i
] = kmalloc(MAX_FRAME_SIZE
, GFP_KERNEL
);
273 if (greth
->rx_bufs
[i
] == NULL
) {
274 if (netif_msg_ifup(greth
))
275 dev_err(greth
->dev
, "Error allocating DMA ring.\n");
279 dma_addr
= dma_map_single(greth
->dev
,
284 if (dma_mapping_error(greth
->dev
, dma_addr
)) {
285 if (netif_msg_ifup(greth
))
286 dev_err(greth
->dev
, "Could not create initial DMA mapping\n");
289 greth_write_bd(&rx_bd
[i
].addr
, dma_addr
);
290 greth_write_bd(&rx_bd
[i
].stat
, GRETH_BD_EN
| GRETH_BD_IE
);
292 for (i
= 0; i
< GRETH_TXBD_NUM
; i
++) {
294 greth
->tx_bufs
[i
] = kmalloc(MAX_FRAME_SIZE
, GFP_KERNEL
);
296 if (greth
->tx_bufs
[i
] == NULL
) {
297 if (netif_msg_ifup(greth
))
298 dev_err(greth
->dev
, "Error allocating DMA ring.\n");
302 dma_addr
= dma_map_single(greth
->dev
,
307 if (dma_mapping_error(greth
->dev
, dma_addr
)) {
308 if (netif_msg_ifup(greth
))
309 dev_err(greth
->dev
, "Could not create initial DMA mapping\n");
312 greth_write_bd(&tx_bd
[i
].addr
, dma_addr
);
313 greth_write_bd(&tx_bd
[i
].stat
, 0);
316 greth_write_bd(&rx_bd
[GRETH_RXBD_NUM
- 1].stat
,
317 greth_read_bd(&rx_bd
[GRETH_RXBD_NUM
- 1].stat
) | GRETH_BD_WR
);
319 /* Initialize pointers. */
323 greth
->tx_free
= GRETH_TXBD_NUM
;
325 /* Initialize descriptor base address */
326 GRETH_REGSAVE(greth
->regs
->tx_desc_p
, greth
->tx_bd_base_phys
);
327 GRETH_REGSAVE(greth
->regs
->rx_desc_p
, greth
->rx_bd_base_phys
);
332 greth_clean_rings(greth
);
336 static int greth_open(struct net_device
*dev
)
338 struct greth_private
*greth
= netdev_priv(dev
);
341 err
= greth_init_rings(greth
);
343 if (netif_msg_ifup(greth
))
344 dev_err(&dev
->dev
, "Could not allocate memory for DMA rings\n");
348 err
= request_irq(greth
->irq
, greth_interrupt
, 0, "eth", (void *) dev
);
350 if (netif_msg_ifup(greth
))
351 dev_err(&dev
->dev
, "Could not allocate interrupt %d\n", dev
->irq
);
352 greth_clean_rings(greth
);
356 if (netif_msg_ifup(greth
))
357 dev_dbg(&dev
->dev
, " starting queue\n");
358 netif_start_queue(dev
);
360 GRETH_REGSAVE(greth
->regs
->status
, 0xFF);
362 napi_enable(&greth
->napi
);
364 greth_enable_irqs(greth
);
365 greth_enable_tx(greth
);
366 greth_enable_rx(greth
);
371 static int greth_close(struct net_device
*dev
)
373 struct greth_private
*greth
= netdev_priv(dev
);
375 napi_disable(&greth
->napi
);
377 greth_disable_irqs(greth
);
378 greth_disable_tx(greth
);
379 greth_disable_rx(greth
);
381 netif_stop_queue(dev
);
383 free_irq(greth
->irq
, (void *) dev
);
385 greth_clean_rings(greth
);
391 greth_start_xmit(struct sk_buff
*skb
, struct net_device
*dev
)
393 struct greth_private
*greth
= netdev_priv(dev
);
394 struct greth_bd
*bdp
;
395 int err
= NETDEV_TX_OK
;
396 u32 status
, dma_addr
, ctrl
;
400 greth_clean_tx(greth
->netdev
);
402 if (unlikely(greth
->tx_free
<= 0)) {
403 spin_lock_irqsave(&greth
->devlock
, flags
);/*save from poll/irq*/
404 ctrl
= GRETH_REGLOAD(greth
->regs
->control
);
405 /* Enable TX IRQ only if not already in poll() routine */
406 if (ctrl
& GRETH_RXI
)
407 GRETH_REGSAVE(greth
->regs
->control
, ctrl
| GRETH_TXI
);
408 netif_stop_queue(dev
);
409 spin_unlock_irqrestore(&greth
->devlock
, flags
);
410 return NETDEV_TX_BUSY
;
413 if (netif_msg_pktdata(greth
))
414 greth_print_tx_packet(skb
);
417 if (unlikely(skb
->len
> MAX_FRAME_SIZE
)) {
418 dev
->stats
.tx_errors
++;
422 bdp
= greth
->tx_bd_base
+ greth
->tx_next
;
423 dma_addr
= greth_read_bd(&bdp
->addr
);
425 memcpy((unsigned char *) phys_to_virt(dma_addr
), skb
->data
, skb
->len
);
427 dma_sync_single_for_device(greth
->dev
, dma_addr
, skb
->len
, DMA_TO_DEVICE
);
429 status
= GRETH_BD_EN
| GRETH_BD_IE
| (skb
->len
& GRETH_BD_LEN
);
431 /* Wrap around descriptor ring */
432 if (greth
->tx_next
== GRETH_TXBD_NUM_MASK
) {
433 status
|= GRETH_BD_WR
;
436 greth
->tx_next
= NEXT_TX(greth
->tx_next
);
439 /* Write descriptor control word and enable transmission */
440 greth_write_bd(&bdp
->stat
, status
);
441 spin_lock_irqsave(&greth
->devlock
, flags
); /*save from poll/irq*/
442 greth_enable_tx(greth
);
443 spin_unlock_irqrestore(&greth
->devlock
, flags
);
452 greth_start_xmit_gbit(struct sk_buff
*skb
, struct net_device
*dev
)
454 struct greth_private
*greth
= netdev_priv(dev
);
455 struct greth_bd
*bdp
;
456 u32 status
= 0, dma_addr
, ctrl
;
457 int curr_tx
, nr_frags
, i
, err
= NETDEV_TX_OK
;
460 nr_frags
= skb_shinfo(skb
)->nr_frags
;
463 greth_clean_tx_gbit(dev
);
465 if (greth
->tx_free
< nr_frags
+ 1) {
466 spin_lock_irqsave(&greth
->devlock
, flags
);/*save from poll/irq*/
467 ctrl
= GRETH_REGLOAD(greth
->regs
->control
);
468 /* Enable TX IRQ only if not already in poll() routine */
469 if (ctrl
& GRETH_RXI
)
470 GRETH_REGSAVE(greth
->regs
->control
, ctrl
| GRETH_TXI
);
471 netif_stop_queue(dev
);
472 spin_unlock_irqrestore(&greth
->devlock
, flags
);
473 err
= NETDEV_TX_BUSY
;
477 if (netif_msg_pktdata(greth
))
478 greth_print_tx_packet(skb
);
480 if (unlikely(skb
->len
> MAX_FRAME_SIZE
)) {
481 dev
->stats
.tx_errors
++;
485 /* Save skb pointer. */
486 greth
->tx_skbuff
[greth
->tx_next
] = skb
;
490 status
= GRETH_TXBD_MORE
;
492 status
|= GRETH_TXBD_CSALL
;
493 status
|= skb_headlen(skb
) & GRETH_BD_LEN
;
494 if (greth
->tx_next
== GRETH_TXBD_NUM_MASK
)
495 status
|= GRETH_BD_WR
;
498 bdp
= greth
->tx_bd_base
+ greth
->tx_next
;
499 greth_write_bd(&bdp
->stat
, status
);
500 dma_addr
= dma_map_single(greth
->dev
, skb
->data
, skb_headlen(skb
), DMA_TO_DEVICE
);
502 if (unlikely(dma_mapping_error(greth
->dev
, dma_addr
)))
505 greth_write_bd(&bdp
->addr
, dma_addr
);
507 curr_tx
= NEXT_TX(greth
->tx_next
);
510 for (i
= 0; i
< nr_frags
; i
++) {
511 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
512 greth
->tx_skbuff
[curr_tx
] = NULL
;
513 bdp
= greth
->tx_bd_base
+ curr_tx
;
515 status
= GRETH_TXBD_CSALL
| GRETH_BD_EN
;
516 status
|= frag
->size
& GRETH_BD_LEN
;
518 /* Wrap around descriptor ring */
519 if (curr_tx
== GRETH_TXBD_NUM_MASK
)
520 status
|= GRETH_BD_WR
;
522 /* More fragments left */
523 if (i
< nr_frags
- 1)
524 status
|= GRETH_TXBD_MORE
;
526 status
|= GRETH_BD_IE
; /* enable IRQ on last fragment */
528 greth_write_bd(&bdp
->stat
, status
);
530 dma_addr
= skb_frag_dma_map(greth
->dev
, frag
, 0, frag
->size
,
533 if (unlikely(dma_mapping_error(greth
->dev
, dma_addr
)))
536 greth_write_bd(&bdp
->addr
, dma_addr
);
538 curr_tx
= NEXT_TX(curr_tx
);
543 /* Enable the descriptor chain by enabling the first descriptor */
544 bdp
= greth
->tx_bd_base
+ greth
->tx_next
;
545 greth_write_bd(&bdp
->stat
, greth_read_bd(&bdp
->stat
) | GRETH_BD_EN
);
546 greth
->tx_next
= curr_tx
;
547 greth
->tx_free
-= nr_frags
+ 1;
551 spin_lock_irqsave(&greth
->devlock
, flags
); /*save from poll/irq*/
552 greth_enable_tx(greth
);
553 spin_unlock_irqrestore(&greth
->devlock
, flags
);
558 /* Unmap SKB mappings that succeeded and disable descriptor */
559 for (i
= 0; greth
->tx_next
+ i
!= curr_tx
; i
++) {
560 bdp
= greth
->tx_bd_base
+ greth
->tx_next
+ i
;
561 dma_unmap_single(greth
->dev
,
562 greth_read_bd(&bdp
->addr
),
563 greth_read_bd(&bdp
->stat
) & GRETH_BD_LEN
,
565 greth_write_bd(&bdp
->stat
, 0);
569 dev_warn(greth
->dev
, "Could not create TX DMA mapping\n");
575 static irqreturn_t
greth_interrupt(int irq
, void *dev_id
)
577 struct net_device
*dev
= dev_id
;
578 struct greth_private
*greth
;
580 irqreturn_t retval
= IRQ_NONE
;
582 greth
= netdev_priv(dev
);
584 spin_lock(&greth
->devlock
);
586 /* Get the interrupt events that caused us to be here. */
587 status
= GRETH_REGLOAD(greth
->regs
->status
);
589 /* Must see if interrupts are enabled also, INT_TX|INT_RX flags may be
590 * set regardless of whether IRQ is enabled or not. Especially
591 * important when shared IRQ.
593 ctrl
= GRETH_REGLOAD(greth
->regs
->control
);
595 /* Handle rx and tx interrupts through poll */
596 if (((status
& (GRETH_INT_RE
| GRETH_INT_RX
)) && (ctrl
& GRETH_RXI
)) ||
597 ((status
& (GRETH_INT_TE
| GRETH_INT_TX
)) && (ctrl
& GRETH_TXI
))) {
598 retval
= IRQ_HANDLED
;
600 /* Disable interrupts and schedule poll() */
601 greth_disable_irqs(greth
);
602 napi_schedule(&greth
->napi
);
606 spin_unlock(&greth
->devlock
);
611 static void greth_clean_tx(struct net_device
*dev
)
613 struct greth_private
*greth
;
614 struct greth_bd
*bdp
;
617 greth
= netdev_priv(dev
);
620 bdp
= greth
->tx_bd_base
+ greth
->tx_last
;
621 GRETH_REGSAVE(greth
->regs
->status
, GRETH_INT_TE
| GRETH_INT_TX
);
623 stat
= greth_read_bd(&bdp
->stat
);
625 if (unlikely(stat
& GRETH_BD_EN
))
628 if (greth
->tx_free
== GRETH_TXBD_NUM
)
631 /* Check status for errors */
632 if (unlikely(stat
& GRETH_TXBD_STATUS
)) {
633 dev
->stats
.tx_errors
++;
634 if (stat
& GRETH_TXBD_ERR_AL
)
635 dev
->stats
.tx_aborted_errors
++;
636 if (stat
& GRETH_TXBD_ERR_UE
)
637 dev
->stats
.tx_fifo_errors
++;
639 dev
->stats
.tx_packets
++;
640 greth
->tx_last
= NEXT_TX(greth
->tx_last
);
644 if (greth
->tx_free
> 0) {
645 netif_wake_queue(dev
);
650 static inline void greth_update_tx_stats(struct net_device
*dev
, u32 stat
)
652 /* Check status for errors */
653 if (unlikely(stat
& GRETH_TXBD_STATUS
)) {
654 dev
->stats
.tx_errors
++;
655 if (stat
& GRETH_TXBD_ERR_AL
)
656 dev
->stats
.tx_aborted_errors
++;
657 if (stat
& GRETH_TXBD_ERR_UE
)
658 dev
->stats
.tx_fifo_errors
++;
659 if (stat
& GRETH_TXBD_ERR_LC
)
660 dev
->stats
.tx_aborted_errors
++;
662 dev
->stats
.tx_packets
++;
665 static void greth_clean_tx_gbit(struct net_device
*dev
)
667 struct greth_private
*greth
;
668 struct greth_bd
*bdp
, *bdp_last_frag
;
673 greth
= netdev_priv(dev
);
675 while (greth
->tx_free
< GRETH_TXBD_NUM
) {
677 skb
= greth
->tx_skbuff
[greth
->tx_last
];
679 nr_frags
= skb_shinfo(skb
)->nr_frags
;
681 /* We only clean fully completed SKBs */
682 bdp_last_frag
= greth
->tx_bd_base
+ SKIP_TX(greth
->tx_last
, nr_frags
);
684 GRETH_REGSAVE(greth
->regs
->status
, GRETH_INT_TE
| GRETH_INT_TX
);
686 stat
= greth_read_bd(&bdp_last_frag
->stat
);
688 if (stat
& GRETH_BD_EN
)
691 greth
->tx_skbuff
[greth
->tx_last
] = NULL
;
693 greth_update_tx_stats(dev
, stat
);
695 bdp
= greth
->tx_bd_base
+ greth
->tx_last
;
697 greth
->tx_last
= NEXT_TX(greth
->tx_last
);
699 dma_unmap_single(greth
->dev
,
700 greth_read_bd(&bdp
->addr
),
704 for (i
= 0; i
< nr_frags
; i
++) {
705 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
706 bdp
= greth
->tx_bd_base
+ greth
->tx_last
;
708 dma_unmap_page(greth
->dev
,
709 greth_read_bd(&bdp
->addr
),
713 greth
->tx_last
= NEXT_TX(greth
->tx_last
);
715 greth
->tx_free
+= nr_frags
+1;
719 if (netif_queue_stopped(dev
) && (greth
->tx_free
> (MAX_SKB_FRAGS
+1)))
720 netif_wake_queue(dev
);
723 static int greth_rx(struct net_device
*dev
, int limit
)
725 struct greth_private
*greth
;
726 struct greth_bd
*bdp
;
730 u32 status
, dma_addr
;
733 greth
= netdev_priv(dev
);
735 for (count
= 0; count
< limit
; ++count
) {
737 bdp
= greth
->rx_bd_base
+ greth
->rx_cur
;
738 GRETH_REGSAVE(greth
->regs
->status
, GRETH_INT_RE
| GRETH_INT_RX
);
740 status
= greth_read_bd(&bdp
->stat
);
742 if (unlikely(status
& GRETH_BD_EN
)) {
746 dma_addr
= greth_read_bd(&bdp
->addr
);
749 /* Check status for errors. */
750 if (unlikely(status
& GRETH_RXBD_STATUS
)) {
751 if (status
& GRETH_RXBD_ERR_FT
) {
752 dev
->stats
.rx_length_errors
++;
755 if (status
& (GRETH_RXBD_ERR_AE
| GRETH_RXBD_ERR_OE
)) {
756 dev
->stats
.rx_frame_errors
++;
759 if (status
& GRETH_RXBD_ERR_CRC
) {
760 dev
->stats
.rx_crc_errors
++;
765 dev
->stats
.rx_errors
++;
769 pkt_len
= status
& GRETH_BD_LEN
;
771 skb
= netdev_alloc_skb(dev
, pkt_len
+ NET_IP_ALIGN
);
773 if (unlikely(skb
== NULL
)) {
776 dev_warn(&dev
->dev
, "low on memory - " "packet dropped\n");
778 dev
->stats
.rx_dropped
++;
781 skb_reserve(skb
, NET_IP_ALIGN
);
784 dma_sync_single_for_cpu(greth
->dev
,
789 if (netif_msg_pktdata(greth
))
790 greth_print_rx_packet(phys_to_virt(dma_addr
), pkt_len
);
792 memcpy(skb_put(skb
, pkt_len
), phys_to_virt(dma_addr
), pkt_len
);
794 skb
->protocol
= eth_type_trans(skb
, dev
);
795 dev
->stats
.rx_packets
++;
796 netif_receive_skb(skb
);
800 status
= GRETH_BD_EN
| GRETH_BD_IE
;
801 if (greth
->rx_cur
== GRETH_RXBD_NUM_MASK
) {
802 status
|= GRETH_BD_WR
;
806 greth_write_bd(&bdp
->stat
, status
);
808 dma_sync_single_for_device(greth
->dev
, dma_addr
, MAX_FRAME_SIZE
, DMA_FROM_DEVICE
);
810 spin_lock_irqsave(&greth
->devlock
, flags
); /* save from XMIT */
811 greth_enable_rx(greth
);
812 spin_unlock_irqrestore(&greth
->devlock
, flags
);
814 greth
->rx_cur
= NEXT_RX(greth
->rx_cur
);
820 static inline int hw_checksummed(u32 status
)
823 if (status
& GRETH_RXBD_IP_FRAG
)
826 if (status
& GRETH_RXBD_IP
&& status
& GRETH_RXBD_IP_CSERR
)
829 if (status
& GRETH_RXBD_UDP
&& status
& GRETH_RXBD_UDP_CSERR
)
832 if (status
& GRETH_RXBD_TCP
&& status
& GRETH_RXBD_TCP_CSERR
)
838 static int greth_rx_gbit(struct net_device
*dev
, int limit
)
840 struct greth_private
*greth
;
841 struct greth_bd
*bdp
;
842 struct sk_buff
*skb
, *newskb
;
845 u32 status
, dma_addr
;
848 greth
= netdev_priv(dev
);
850 for (count
= 0; count
< limit
; ++count
) {
852 bdp
= greth
->rx_bd_base
+ greth
->rx_cur
;
853 skb
= greth
->rx_skbuff
[greth
->rx_cur
];
854 GRETH_REGSAVE(greth
->regs
->status
, GRETH_INT_RE
| GRETH_INT_RX
);
856 status
= greth_read_bd(&bdp
->stat
);
859 if (status
& GRETH_BD_EN
)
862 /* Check status for errors. */
863 if (unlikely(status
& GRETH_RXBD_STATUS
)) {
865 if (status
& GRETH_RXBD_ERR_FT
) {
866 dev
->stats
.rx_length_errors
++;
869 (GRETH_RXBD_ERR_AE
| GRETH_RXBD_ERR_OE
| GRETH_RXBD_ERR_LE
)) {
870 dev
->stats
.rx_frame_errors
++;
872 } else if (status
& GRETH_RXBD_ERR_CRC
) {
873 dev
->stats
.rx_crc_errors
++;
878 /* Allocate new skb to replace current, not needed if the
879 * current skb can be reused */
880 if (!bad
&& (newskb
=netdev_alloc_skb(dev
, MAX_FRAME_SIZE
+ NET_IP_ALIGN
))) {
881 skb_reserve(newskb
, NET_IP_ALIGN
);
883 dma_addr
= dma_map_single(greth
->dev
,
885 MAX_FRAME_SIZE
+ NET_IP_ALIGN
,
888 if (!dma_mapping_error(greth
->dev
, dma_addr
)) {
889 /* Process the incoming frame. */
890 pkt_len
= status
& GRETH_BD_LEN
;
892 dma_unmap_single(greth
->dev
,
893 greth_read_bd(&bdp
->addr
),
894 MAX_FRAME_SIZE
+ NET_IP_ALIGN
,
897 if (netif_msg_pktdata(greth
))
898 greth_print_rx_packet(phys_to_virt(greth_read_bd(&bdp
->addr
)), pkt_len
);
900 skb_put(skb
, pkt_len
);
902 if (dev
->features
& NETIF_F_RXCSUM
&& hw_checksummed(status
))
903 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
905 skb_checksum_none_assert(skb
);
907 skb
->protocol
= eth_type_trans(skb
, dev
);
908 dev
->stats
.rx_packets
++;
909 netif_receive_skb(skb
);
911 greth
->rx_skbuff
[greth
->rx_cur
] = newskb
;
912 greth_write_bd(&bdp
->addr
, dma_addr
);
915 dev_warn(greth
->dev
, "Could not create DMA mapping, dropping packet\n");
916 dev_kfree_skb(newskb
);
917 /* reusing current skb, so it is a drop */
918 dev
->stats
.rx_dropped
++;
921 /* Bad Frame transfer, the skb is reused */
922 dev
->stats
.rx_dropped
++;
924 /* Failed Allocating a new skb. This is rather stupid
925 * but the current "filled" skb is reused, as if
926 * transfer failure. One could argue that RX descriptor
927 * table handling should be divided into cleaning and
928 * filling as the TX part of the driver
931 dev_warn(greth
->dev
, "Could not allocate SKB, dropping packet\n");
932 /* reusing current skb, so it is a drop */
933 dev
->stats
.rx_dropped
++;
936 status
= GRETH_BD_EN
| GRETH_BD_IE
;
937 if (greth
->rx_cur
== GRETH_RXBD_NUM_MASK
) {
938 status
|= GRETH_BD_WR
;
942 greth_write_bd(&bdp
->stat
, status
);
943 spin_lock_irqsave(&greth
->devlock
, flags
);
944 greth_enable_rx(greth
);
945 spin_unlock_irqrestore(&greth
->devlock
, flags
);
946 greth
->rx_cur
= NEXT_RX(greth
->rx_cur
);
953 static int greth_poll(struct napi_struct
*napi
, int budget
)
955 struct greth_private
*greth
;
959 greth
= container_of(napi
, struct greth_private
, napi
);
962 if (netif_queue_stopped(greth
->netdev
)) {
964 greth_clean_tx_gbit(greth
->netdev
);
966 greth_clean_tx(greth
->netdev
);
969 if (greth
->gbit_mac
) {
970 work_done
+= greth_rx_gbit(greth
->netdev
, budget
- work_done
);
972 work_done
+= greth_rx(greth
->netdev
, budget
- work_done
);
975 if (work_done
< budget
) {
977 spin_lock_irqsave(&greth
->devlock
, flags
);
979 ctrl
= GRETH_REGLOAD(greth
->regs
->control
);
980 if (netif_queue_stopped(greth
->netdev
)) {
981 GRETH_REGSAVE(greth
->regs
->control
,
982 ctrl
| GRETH_TXI
| GRETH_RXI
);
983 mask
= GRETH_INT_RX
| GRETH_INT_RE
|
984 GRETH_INT_TX
| GRETH_INT_TE
;
986 GRETH_REGSAVE(greth
->regs
->control
, ctrl
| GRETH_RXI
);
987 mask
= GRETH_INT_RX
| GRETH_INT_RE
;
990 if (GRETH_REGLOAD(greth
->regs
->status
) & mask
) {
991 GRETH_REGSAVE(greth
->regs
->control
, ctrl
);
992 spin_unlock_irqrestore(&greth
->devlock
, flags
);
993 goto restart_txrx_poll
;
995 __napi_complete(napi
);
996 spin_unlock_irqrestore(&greth
->devlock
, flags
);
1003 static int greth_set_mac_add(struct net_device
*dev
, void *p
)
1005 struct sockaddr
*addr
= p
;
1006 struct greth_private
*greth
;
1007 struct greth_regs
*regs
;
1009 greth
= netdev_priv(dev
);
1010 regs
= (struct greth_regs
*) greth
->regs
;
1012 if (!is_valid_ether_addr(addr
->sa_data
))
1015 memcpy(dev
->dev_addr
, addr
->sa_data
, dev
->addr_len
);
1016 GRETH_REGSAVE(regs
->esa_msb
, dev
->dev_addr
[0] << 8 | dev
->dev_addr
[1]);
1017 GRETH_REGSAVE(regs
->esa_lsb
, dev
->dev_addr
[2] << 24 | dev
->dev_addr
[3] << 16 |
1018 dev
->dev_addr
[4] << 8 | dev
->dev_addr
[5]);
1023 static u32
greth_hash_get_index(__u8
*addr
)
1025 return (ether_crc(6, addr
)) & 0x3F;
1028 static void greth_set_hash_filter(struct net_device
*dev
)
1030 struct netdev_hw_addr
*ha
;
1031 struct greth_private
*greth
= netdev_priv(dev
);
1032 struct greth_regs
*regs
= (struct greth_regs
*) greth
->regs
;
1036 mc_filter
[0] = mc_filter
[1] = 0;
1038 netdev_for_each_mc_addr(ha
, dev
) {
1039 bitnr
= greth_hash_get_index(ha
->addr
);
1040 mc_filter
[bitnr
>> 5] |= 1 << (bitnr
& 31);
1043 GRETH_REGSAVE(regs
->hash_msb
, mc_filter
[1]);
1044 GRETH_REGSAVE(regs
->hash_lsb
, mc_filter
[0]);
1047 static void greth_set_multicast_list(struct net_device
*dev
)
1050 struct greth_private
*greth
= netdev_priv(dev
);
1051 struct greth_regs
*regs
= (struct greth_regs
*) greth
->regs
;
1053 cfg
= GRETH_REGLOAD(regs
->control
);
1054 if (dev
->flags
& IFF_PROMISC
)
1055 cfg
|= GRETH_CTRL_PR
;
1057 cfg
&= ~GRETH_CTRL_PR
;
1059 if (greth
->multicast
) {
1060 if (dev
->flags
& IFF_ALLMULTI
) {
1061 GRETH_REGSAVE(regs
->hash_msb
, -1);
1062 GRETH_REGSAVE(regs
->hash_lsb
, -1);
1063 cfg
|= GRETH_CTRL_MCEN
;
1064 GRETH_REGSAVE(regs
->control
, cfg
);
1068 if (netdev_mc_empty(dev
)) {
1069 cfg
&= ~GRETH_CTRL_MCEN
;
1070 GRETH_REGSAVE(regs
->control
, cfg
);
1074 /* Setup multicast filter */
1075 greth_set_hash_filter(dev
);
1076 cfg
|= GRETH_CTRL_MCEN
;
1078 GRETH_REGSAVE(regs
->control
, cfg
);
1081 static u32
greth_get_msglevel(struct net_device
*dev
)
1083 struct greth_private
*greth
= netdev_priv(dev
);
1084 return greth
->msg_enable
;
1087 static void greth_set_msglevel(struct net_device
*dev
, u32 value
)
1089 struct greth_private
*greth
= netdev_priv(dev
);
1090 greth
->msg_enable
= value
;
1092 static int greth_get_settings(struct net_device
*dev
, struct ethtool_cmd
*cmd
)
1094 struct greth_private
*greth
= netdev_priv(dev
);
1095 struct phy_device
*phy
= greth
->phy
;
1100 return phy_ethtool_gset(phy
, cmd
);
1103 static int greth_set_settings(struct net_device
*dev
, struct ethtool_cmd
*cmd
)
1105 struct greth_private
*greth
= netdev_priv(dev
);
1106 struct phy_device
*phy
= greth
->phy
;
1111 return phy_ethtool_sset(phy
, cmd
);
1114 static int greth_get_regs_len(struct net_device
*dev
)
1116 return sizeof(struct greth_regs
);
1119 static void greth_get_drvinfo(struct net_device
*dev
, struct ethtool_drvinfo
*info
)
1121 struct greth_private
*greth
= netdev_priv(dev
);
1123 strncpy(info
->driver
, dev_driver_string(greth
->dev
), 32);
1124 strncpy(info
->version
, "revision: 1.0", 32);
1125 strncpy(info
->bus_info
, greth
->dev
->bus
->name
, 32);
1126 strncpy(info
->fw_version
, "N/A", 32);
1127 info
->eedump_len
= 0;
1128 info
->regdump_len
= sizeof(struct greth_regs
);
1131 static void greth_get_regs(struct net_device
*dev
, struct ethtool_regs
*regs
, void *p
)
1134 struct greth_private
*greth
= netdev_priv(dev
);
1135 u32 __iomem
*greth_regs
= (u32 __iomem
*) greth
->regs
;
1138 for (i
= 0; i
< sizeof(struct greth_regs
) / sizeof(u32
); i
++)
1139 buff
[i
] = greth_read_bd(&greth_regs
[i
]);
1142 static const struct ethtool_ops greth_ethtool_ops
= {
1143 .get_msglevel
= greth_get_msglevel
,
1144 .set_msglevel
= greth_set_msglevel
,
1145 .get_settings
= greth_get_settings
,
1146 .set_settings
= greth_set_settings
,
1147 .get_drvinfo
= greth_get_drvinfo
,
1148 .get_regs_len
= greth_get_regs_len
,
1149 .get_regs
= greth_get_regs
,
1150 .get_link
= ethtool_op_get_link
,
1153 static struct net_device_ops greth_netdev_ops
= {
1154 .ndo_open
= greth_open
,
1155 .ndo_stop
= greth_close
,
1156 .ndo_start_xmit
= greth_start_xmit
,
1157 .ndo_set_mac_address
= greth_set_mac_add
,
1158 .ndo_validate_addr
= eth_validate_addr
,
1161 static inline int wait_for_mdio(struct greth_private
*greth
)
1163 unsigned long timeout
= jiffies
+ 4*HZ
/100;
1164 while (GRETH_REGLOAD(greth
->regs
->mdio
) & GRETH_MII_BUSY
) {
1165 if (time_after(jiffies
, timeout
))
1171 static int greth_mdio_read(struct mii_bus
*bus
, int phy
, int reg
)
1173 struct greth_private
*greth
= bus
->priv
;
1176 if (!wait_for_mdio(greth
))
1179 GRETH_REGSAVE(greth
->regs
->mdio
, ((phy
& 0x1F) << 11) | ((reg
& 0x1F) << 6) | 2);
1181 if (!wait_for_mdio(greth
))
1184 if (!(GRETH_REGLOAD(greth
->regs
->mdio
) & GRETH_MII_NVALID
)) {
1185 data
= (GRETH_REGLOAD(greth
->regs
->mdio
) >> 16) & 0xFFFF;
1193 static int greth_mdio_write(struct mii_bus
*bus
, int phy
, int reg
, u16 val
)
1195 struct greth_private
*greth
= bus
->priv
;
1197 if (!wait_for_mdio(greth
))
1200 GRETH_REGSAVE(greth
->regs
->mdio
,
1201 ((val
& 0xFFFF) << 16) | ((phy
& 0x1F) << 11) | ((reg
& 0x1F) << 6) | 1);
1203 if (!wait_for_mdio(greth
))
1209 static int greth_mdio_reset(struct mii_bus
*bus
)
1214 static void greth_link_change(struct net_device
*dev
)
1216 struct greth_private
*greth
= netdev_priv(dev
);
1217 struct phy_device
*phydev
= greth
->phy
;
1218 unsigned long flags
;
1219 int status_change
= 0;
1222 spin_lock_irqsave(&greth
->devlock
, flags
);
1226 if ((greth
->speed
!= phydev
->speed
) || (greth
->duplex
!= phydev
->duplex
)) {
1227 ctrl
= GRETH_REGLOAD(greth
->regs
->control
) &
1228 ~(GRETH_CTRL_FD
| GRETH_CTRL_SP
| GRETH_CTRL_GB
);
1231 ctrl
|= GRETH_CTRL_FD
;
1233 if (phydev
->speed
== SPEED_100
)
1234 ctrl
|= GRETH_CTRL_SP
;
1235 else if (phydev
->speed
== SPEED_1000
)
1236 ctrl
|= GRETH_CTRL_GB
;
1238 GRETH_REGSAVE(greth
->regs
->control
, ctrl
);
1239 greth
->speed
= phydev
->speed
;
1240 greth
->duplex
= phydev
->duplex
;
1245 if (phydev
->link
!= greth
->link
) {
1246 if (!phydev
->link
) {
1250 greth
->link
= phydev
->link
;
1255 spin_unlock_irqrestore(&greth
->devlock
, flags
);
1257 if (status_change
) {
1259 pr_debug("%s: link up (%d/%s)\n",
1260 dev
->name
, phydev
->speed
,
1261 DUPLEX_FULL
== phydev
->duplex
? "Full" : "Half");
1263 pr_debug("%s: link down\n", dev
->name
);
1267 static int greth_mdio_probe(struct net_device
*dev
)
1269 struct greth_private
*greth
= netdev_priv(dev
);
1270 struct phy_device
*phy
= NULL
;
1273 /* Find the first PHY */
1274 phy
= phy_find_first(greth
->mdio
);
1277 if (netif_msg_probe(greth
))
1278 dev_err(&dev
->dev
, "no PHY found\n");
1282 ret
= phy_connect_direct(dev
, phy
, &greth_link_change
,
1283 0, greth
->gbit_mac
?
1284 PHY_INTERFACE_MODE_GMII
:
1285 PHY_INTERFACE_MODE_MII
);
1287 if (netif_msg_ifup(greth
))
1288 dev_err(&dev
->dev
, "could not attach to PHY\n");
1292 if (greth
->gbit_mac
)
1293 phy
->supported
&= PHY_GBIT_FEATURES
;
1295 phy
->supported
&= PHY_BASIC_FEATURES
;
1297 phy
->advertising
= phy
->supported
;
1307 static inline int phy_aneg_done(struct phy_device
*phydev
)
1311 retval
= phy_read(phydev
, MII_BMSR
);
1313 return (retval
< 0) ? retval
: (retval
& BMSR_ANEGCOMPLETE
);
1316 static int greth_mdio_init(struct greth_private
*greth
)
1319 unsigned long timeout
;
1321 greth
->mdio
= mdiobus_alloc();
1326 greth
->mdio
->name
= "greth-mdio";
1327 snprintf(greth
->mdio
->id
, MII_BUS_ID_SIZE
, "%s-%d", greth
->mdio
->name
, greth
->irq
);
1328 greth
->mdio
->read
= greth_mdio_read
;
1329 greth
->mdio
->write
= greth_mdio_write
;
1330 greth
->mdio
->reset
= greth_mdio_reset
;
1331 greth
->mdio
->priv
= greth
;
1333 greth
->mdio
->irq
= greth
->mdio_irqs
;
1335 for (phy
= 0; phy
< PHY_MAX_ADDR
; phy
++)
1336 greth
->mdio
->irq
[phy
] = PHY_POLL
;
1338 ret
= mdiobus_register(greth
->mdio
);
1343 ret
= greth_mdio_probe(greth
->netdev
);
1345 if (netif_msg_probe(greth
))
1346 dev_err(&greth
->netdev
->dev
, "failed to probe MDIO bus\n");
1350 phy_start(greth
->phy
);
1352 /* If Ethernet debug link is used make autoneg happen right away */
1353 if (greth
->edcl
&& greth_edcl
== 1) {
1354 phy_start_aneg(greth
->phy
);
1355 timeout
= jiffies
+ 6*HZ
;
1356 while (!phy_aneg_done(greth
->phy
) && time_before(jiffies
, timeout
)) {
1358 genphy_read_status(greth
->phy
);
1359 greth_link_change(greth
->netdev
);
1365 mdiobus_unregister(greth
->mdio
);
1367 mdiobus_free(greth
->mdio
);
1371 /* Initialize the GRETH MAC */
1372 static int __devinit
greth_of_probe(struct platform_device
*ofdev
)
1374 struct net_device
*dev
;
1375 struct greth_private
*greth
;
1376 struct greth_regs
*regs
;
1381 unsigned long timeout
;
1383 dev
= alloc_etherdev(sizeof(struct greth_private
));
1388 greth
= netdev_priv(dev
);
1389 greth
->netdev
= dev
;
1390 greth
->dev
= &ofdev
->dev
;
1392 if (greth_debug
> 0)
1393 greth
->msg_enable
= greth_debug
;
1395 greth
->msg_enable
= GRETH_DEF_MSG_ENABLE
;
1397 spin_lock_init(&greth
->devlock
);
1399 greth
->regs
= of_ioremap(&ofdev
->resource
[0], 0,
1400 resource_size(&ofdev
->resource
[0]),
1401 "grlib-greth regs");
1403 if (greth
->regs
== NULL
) {
1404 if (netif_msg_probe(greth
))
1405 dev_err(greth
->dev
, "ioremap failure.\n");
1410 regs
= (struct greth_regs
*) greth
->regs
;
1411 greth
->irq
= ofdev
->archdata
.irqs
[0];
1413 dev_set_drvdata(greth
->dev
, dev
);
1414 SET_NETDEV_DEV(dev
, greth
->dev
);
1416 if (netif_msg_probe(greth
))
1417 dev_dbg(greth
->dev
, "reseting controller.\n");
1419 /* Reset the controller. */
1420 GRETH_REGSAVE(regs
->control
, GRETH_RESET
);
1422 /* Wait for MAC to reset itself */
1423 timeout
= jiffies
+ HZ
/100;
1424 while (GRETH_REGLOAD(regs
->control
) & GRETH_RESET
) {
1425 if (time_after(jiffies
, timeout
)) {
1427 if (netif_msg_probe(greth
))
1428 dev_err(greth
->dev
, "timeout when waiting for reset.\n");
1433 /* Get default PHY address */
1434 greth
->phyaddr
= (GRETH_REGLOAD(regs
->mdio
) >> 11) & 0x1F;
1436 /* Check if we have GBIT capable MAC */
1437 tmp
= GRETH_REGLOAD(regs
->control
);
1438 greth
->gbit_mac
= (tmp
>> 27) & 1;
1440 /* Check for multicast capability */
1441 greth
->multicast
= (tmp
>> 25) & 1;
1443 greth
->edcl
= (tmp
>> 31) & 1;
1445 /* If we have EDCL we disable the EDCL speed-duplex FSM so
1446 * it doesn't interfere with the software */
1447 if (greth
->edcl
!= 0)
1448 GRETH_REGORIN(regs
->control
, GRETH_CTRL_DISDUPLEX
);
1450 /* Check if MAC can handle MDIO interrupts */
1451 greth
->mdio_int_en
= (tmp
>> 26) & 1;
1453 err
= greth_mdio_init(greth
);
1455 if (netif_msg_probe(greth
))
1456 dev_err(greth
->dev
, "failed to register MDIO bus\n");
1460 /* Allocate TX descriptor ring in coherent memory */
1461 greth
->tx_bd_base
= (struct greth_bd
*) dma_alloc_coherent(greth
->dev
,
1463 &greth
->tx_bd_base_phys
,
1466 if (!greth
->tx_bd_base
) {
1467 if (netif_msg_probe(greth
))
1468 dev_err(&dev
->dev
, "could not allocate descriptor memory.\n");
1473 memset(greth
->tx_bd_base
, 0, 1024);
1475 /* Allocate RX descriptor ring in coherent memory */
1476 greth
->rx_bd_base
= (struct greth_bd
*) dma_alloc_coherent(greth
->dev
,
1478 &greth
->rx_bd_base_phys
,
1481 if (!greth
->rx_bd_base
) {
1482 if (netif_msg_probe(greth
))
1483 dev_err(greth
->dev
, "could not allocate descriptor memory.\n");
1488 memset(greth
->rx_bd_base
, 0, 1024);
1490 /* Get MAC address from: module param, OF property or ID prom */
1491 for (i
= 0; i
< 6; i
++) {
1492 if (macaddr
[i
] != 0)
1496 const unsigned char *addr
;
1498 addr
= of_get_property(ofdev
->dev
.of_node
, "local-mac-address",
1500 if (addr
!= NULL
&& len
== 6) {
1501 for (i
= 0; i
< 6; i
++)
1502 macaddr
[i
] = (unsigned int) addr
[i
];
1505 for (i
= 0; i
< 6; i
++)
1506 macaddr
[i
] = (unsigned int) idprom
->id_ethaddr
[i
];
1511 for (i
= 0; i
< 6; i
++)
1512 dev
->dev_addr
[i
] = macaddr
[i
];
1516 if (!is_valid_ether_addr(&dev
->dev_addr
[0])) {
1517 if (netif_msg_probe(greth
))
1518 dev_err(greth
->dev
, "no valid ethernet address, aborting.\n");
1523 GRETH_REGSAVE(regs
->esa_msb
, dev
->dev_addr
[0] << 8 | dev
->dev_addr
[1]);
1524 GRETH_REGSAVE(regs
->esa_lsb
, dev
->dev_addr
[2] << 24 | dev
->dev_addr
[3] << 16 |
1525 dev
->dev_addr
[4] << 8 | dev
->dev_addr
[5]);
1527 /* Clear all pending interrupts except PHY irq */
1528 GRETH_REGSAVE(regs
->status
, 0xFF);
1530 if (greth
->gbit_mac
) {
1531 dev
->hw_features
= NETIF_F_SG
| NETIF_F_IP_CSUM
|
1533 dev
->features
= dev
->hw_features
| NETIF_F_HIGHDMA
;
1534 greth_netdev_ops
.ndo_start_xmit
= greth_start_xmit_gbit
;
1537 if (greth
->multicast
) {
1538 greth_netdev_ops
.ndo_set_rx_mode
= greth_set_multicast_list
;
1539 dev
->flags
|= IFF_MULTICAST
;
1541 dev
->flags
&= ~IFF_MULTICAST
;
1544 dev
->netdev_ops
= &greth_netdev_ops
;
1545 dev
->ethtool_ops
= &greth_ethtool_ops
;
1547 err
= register_netdev(dev
);
1549 if (netif_msg_probe(greth
))
1550 dev_err(greth
->dev
, "netdevice registration failed.\n");
1555 netif_napi_add(dev
, &greth
->napi
, greth_poll
, 64);
1560 dma_free_coherent(greth
->dev
, 1024, greth
->rx_bd_base
, greth
->rx_bd_base_phys
);
1562 dma_free_coherent(greth
->dev
, 1024, greth
->tx_bd_base
, greth
->tx_bd_base_phys
);
1564 mdiobus_unregister(greth
->mdio
);
1566 of_iounmap(&ofdev
->resource
[0], greth
->regs
, resource_size(&ofdev
->resource
[0]));
1572 static int __devexit
greth_of_remove(struct platform_device
*of_dev
)
1574 struct net_device
*ndev
= dev_get_drvdata(&of_dev
->dev
);
1575 struct greth_private
*greth
= netdev_priv(ndev
);
1577 /* Free descriptor areas */
1578 dma_free_coherent(&of_dev
->dev
, 1024, greth
->rx_bd_base
, greth
->rx_bd_base_phys
);
1580 dma_free_coherent(&of_dev
->dev
, 1024, greth
->tx_bd_base
, greth
->tx_bd_base_phys
);
1582 dev_set_drvdata(&of_dev
->dev
, NULL
);
1585 phy_stop(greth
->phy
);
1586 mdiobus_unregister(greth
->mdio
);
1588 unregister_netdev(ndev
);
1591 of_iounmap(&of_dev
->resource
[0], greth
->regs
, resource_size(&of_dev
->resource
[0]));
1596 static struct of_device_id greth_of_match
[] = {
1598 .name
= "GAISLER_ETHMAC",
1606 MODULE_DEVICE_TABLE(of
, greth_of_match
);
1608 static struct platform_driver greth_of_driver
= {
1610 .name
= "grlib-greth",
1611 .owner
= THIS_MODULE
,
1612 .of_match_table
= greth_of_match
,
1614 .probe
= greth_of_probe
,
1615 .remove
= __devexit_p(greth_of_remove
),
1618 static int __init
greth_init(void)
1620 return platform_driver_register(&greth_of_driver
);
1623 static void __exit
greth_cleanup(void)
1625 platform_driver_unregister(&greth_of_driver
);
1628 module_init(greth_init
);
1629 module_exit(greth_cleanup
);
1631 MODULE_AUTHOR("Aeroflex Gaisler AB.");
1632 MODULE_DESCRIPTION("Aeroflex Gaisler Ethernet MAC driver");
1633 MODULE_LICENSE("GPL");