Add linux-next specific files for 20110831
[linux-2.6/next.git] / drivers / net / ethernet / broadcom / bnx2x / bnx2x_main.c
blob85dd294aeabaa97488fca0a63430c1bf6ad05eeb
1 /* bnx2x_main.c: Broadcom Everest network driver.
3 * Copyright (c) 2007-2011 Broadcom Corporation
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation.
9 * Maintained by: Eilon Greenstein <eilong@broadcom.com>
10 * Written by: Eliezer Tamir
11 * Based on code from Michael Chan's bnx2 driver
12 * UDP CSUM errata workaround by Arik Gendelman
13 * Slowpath and fastpath rework by Vladislav Zolotarov
14 * Statistics and Link management by Yitchak Gertner
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
20 #include <linux/module.h>
21 #include <linux/moduleparam.h>
22 #include <linux/kernel.h>
23 #include <linux/device.h> /* for dev_info() */
24 #include <linux/timer.h>
25 #include <linux/errno.h>
26 #include <linux/ioport.h>
27 #include <linux/slab.h>
28 #include <linux/interrupt.h>
29 #include <linux/pci.h>
30 #include <linux/init.h>
31 #include <linux/netdevice.h>
32 #include <linux/etherdevice.h>
33 #include <linux/skbuff.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/bitops.h>
36 #include <linux/irq.h>
37 #include <linux/delay.h>
38 #include <asm/byteorder.h>
39 #include <linux/time.h>
40 #include <linux/ethtool.h>
41 #include <linux/mii.h>
42 #include <linux/if.h>
43 #include <linux/if_vlan.h>
44 #include <net/ip.h>
45 #include <net/ipv6.h>
46 #include <net/tcp.h>
47 #include <net/checksum.h>
48 #include <net/ip6_checksum.h>
49 #include <linux/workqueue.h>
50 #include <linux/crc32.h>
51 #include <linux/crc32c.h>
52 #include <linux/prefetch.h>
53 #include <linux/zlib.h>
54 #include <linux/io.h>
55 #include <linux/stringify.h>
56 #include <linux/vmalloc.h>
58 #include "bnx2x.h"
59 #include "bnx2x_init.h"
60 #include "bnx2x_init_ops.h"
61 #include "bnx2x_cmn.h"
62 #include "bnx2x_dcb.h"
63 #include "bnx2x_sp.h"
65 #include <linux/firmware.h>
66 #include "bnx2x_fw_file_hdr.h"
67 /* FW files */
68 #define FW_FILE_VERSION \
69 __stringify(BCM_5710_FW_MAJOR_VERSION) "." \
70 __stringify(BCM_5710_FW_MINOR_VERSION) "." \
71 __stringify(BCM_5710_FW_REVISION_VERSION) "." \
72 __stringify(BCM_5710_FW_ENGINEERING_VERSION)
73 #define FW_FILE_NAME_E1 "bnx2x/bnx2x-e1-" FW_FILE_VERSION ".fw"
74 #define FW_FILE_NAME_E1H "bnx2x/bnx2x-e1h-" FW_FILE_VERSION ".fw"
75 #define FW_FILE_NAME_E2 "bnx2x/bnx2x-e2-" FW_FILE_VERSION ".fw"
77 /* Time in jiffies before concluding the transmitter is hung */
78 #define TX_TIMEOUT (5*HZ)
80 static char version[] __devinitdata =
81 "Broadcom NetXtreme II 5771x/578xx 10/20-Gigabit Ethernet Driver "
82 DRV_MODULE_NAME " " DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
84 MODULE_AUTHOR("Eliezer Tamir");
85 MODULE_DESCRIPTION("Broadcom NetXtreme II "
86 "BCM57710/57711/57711E/"
87 "57712/57712_MF/57800/57800_MF/57810/57810_MF/"
88 "57840/57840_MF Driver");
89 MODULE_LICENSE("GPL");
90 MODULE_VERSION(DRV_MODULE_VERSION);
91 MODULE_FIRMWARE(FW_FILE_NAME_E1);
92 MODULE_FIRMWARE(FW_FILE_NAME_E1H);
93 MODULE_FIRMWARE(FW_FILE_NAME_E2);
95 static int multi_mode = 1;
96 module_param(multi_mode, int, 0);
97 MODULE_PARM_DESC(multi_mode, " Multi queue mode "
98 "(0 Disable; 1 Enable (default))");
100 int num_queues;
101 module_param(num_queues, int, 0);
102 MODULE_PARM_DESC(num_queues, " Number of queues for multi_mode=1"
103 " (default is as a number of CPUs)");
105 static int disable_tpa;
106 module_param(disable_tpa, int, 0);
107 MODULE_PARM_DESC(disable_tpa, " Disable the TPA (LRO) feature");
109 #define INT_MODE_INTx 1
110 #define INT_MODE_MSI 2
111 static int int_mode;
112 module_param(int_mode, int, 0);
113 MODULE_PARM_DESC(int_mode, " Force interrupt mode other than MSI-X "
114 "(1 INT#x; 2 MSI)");
116 static int dropless_fc;
117 module_param(dropless_fc, int, 0);
118 MODULE_PARM_DESC(dropless_fc, " Pause on exhausted host ring");
120 static int poll;
121 module_param(poll, int, 0);
122 MODULE_PARM_DESC(poll, " Use polling (for debug)");
124 static int mrrs = -1;
125 module_param(mrrs, int, 0);
126 MODULE_PARM_DESC(mrrs, " Force Max Read Req Size (0..3) (for debug)");
128 static int debug;
129 module_param(debug, int, 0);
130 MODULE_PARM_DESC(debug, " Default debug msglevel");
134 struct workqueue_struct *bnx2x_wq;
136 enum bnx2x_board_type {
137 BCM57710 = 0,
138 BCM57711,
139 BCM57711E,
140 BCM57712,
141 BCM57712_MF,
142 BCM57800,
143 BCM57800_MF,
144 BCM57810,
145 BCM57810_MF,
146 BCM57840,
147 BCM57840_MF
150 /* indexed by board_type, above */
151 static struct {
152 char *name;
153 } board_info[] __devinitdata = {
154 { "Broadcom NetXtreme II BCM57710 10 Gigabit PCIe [Everest]" },
155 { "Broadcom NetXtreme II BCM57711 10 Gigabit PCIe" },
156 { "Broadcom NetXtreme II BCM57711E 10 Gigabit PCIe" },
157 { "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet" },
158 { "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet Multi Function" },
159 { "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet" },
160 { "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet Multi Function" },
161 { "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet" },
162 { "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet Multi Function" },
163 { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet" },
164 { "Broadcom NetXtreme II BCM57840 10/20 Gigabit "
165 "Ethernet Multi Function"}
168 #ifndef PCI_DEVICE_ID_NX2_57710
169 #define PCI_DEVICE_ID_NX2_57710 CHIP_NUM_57710
170 #endif
171 #ifndef PCI_DEVICE_ID_NX2_57711
172 #define PCI_DEVICE_ID_NX2_57711 CHIP_NUM_57711
173 #endif
174 #ifndef PCI_DEVICE_ID_NX2_57711E
175 #define PCI_DEVICE_ID_NX2_57711E CHIP_NUM_57711E
176 #endif
177 #ifndef PCI_DEVICE_ID_NX2_57712
178 #define PCI_DEVICE_ID_NX2_57712 CHIP_NUM_57712
179 #endif
180 #ifndef PCI_DEVICE_ID_NX2_57712_MF
181 #define PCI_DEVICE_ID_NX2_57712_MF CHIP_NUM_57712_MF
182 #endif
183 #ifndef PCI_DEVICE_ID_NX2_57800
184 #define PCI_DEVICE_ID_NX2_57800 CHIP_NUM_57800
185 #endif
186 #ifndef PCI_DEVICE_ID_NX2_57800_MF
187 #define PCI_DEVICE_ID_NX2_57800_MF CHIP_NUM_57800_MF
188 #endif
189 #ifndef PCI_DEVICE_ID_NX2_57810
190 #define PCI_DEVICE_ID_NX2_57810 CHIP_NUM_57810
191 #endif
192 #ifndef PCI_DEVICE_ID_NX2_57810_MF
193 #define PCI_DEVICE_ID_NX2_57810_MF CHIP_NUM_57810_MF
194 #endif
195 #ifndef PCI_DEVICE_ID_NX2_57840
196 #define PCI_DEVICE_ID_NX2_57840 CHIP_NUM_57840
197 #endif
198 #ifndef PCI_DEVICE_ID_NX2_57840_MF
199 #define PCI_DEVICE_ID_NX2_57840_MF CHIP_NUM_57840_MF
200 #endif
201 static DEFINE_PCI_DEVICE_TABLE(bnx2x_pci_tbl) = {
202 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57710), BCM57710 },
203 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711), BCM57711 },
204 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711E), BCM57711E },
205 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712), BCM57712 },
206 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_MF), BCM57712_MF },
207 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800), BCM57800 },
208 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_MF), BCM57800_MF },
209 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810), BCM57810 },
210 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_MF), BCM57810_MF },
211 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840), BCM57840 },
212 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MF), BCM57840_MF },
213 { 0 }
216 MODULE_DEVICE_TABLE(pci, bnx2x_pci_tbl);
218 /****************************************************************************
219 * General service functions
220 ****************************************************************************/
222 static inline void __storm_memset_dma_mapping(struct bnx2x *bp,
223 u32 addr, dma_addr_t mapping)
225 REG_WR(bp, addr, U64_LO(mapping));
226 REG_WR(bp, addr + 4, U64_HI(mapping));
229 static inline void storm_memset_spq_addr(struct bnx2x *bp,
230 dma_addr_t mapping, u16 abs_fid)
232 u32 addr = XSEM_REG_FAST_MEMORY +
233 XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid);
235 __storm_memset_dma_mapping(bp, addr, mapping);
238 static inline void storm_memset_vf_to_pf(struct bnx2x *bp, u16 abs_fid,
239 u16 pf_id)
241 REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid),
242 pf_id);
243 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid),
244 pf_id);
245 REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid),
246 pf_id);
247 REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid),
248 pf_id);
251 static inline void storm_memset_func_en(struct bnx2x *bp, u16 abs_fid,
252 u8 enable)
254 REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid),
255 enable);
256 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid),
257 enable);
258 REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid),
259 enable);
260 REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid),
261 enable);
264 static inline void storm_memset_eq_data(struct bnx2x *bp,
265 struct event_ring_data *eq_data,
266 u16 pfid)
268 size_t size = sizeof(struct event_ring_data);
270 u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid);
272 __storm_memset_struct(bp, addr, size, (u32 *)eq_data);
275 static inline void storm_memset_eq_prod(struct bnx2x *bp, u16 eq_prod,
276 u16 pfid)
278 u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_PROD_OFFSET(pfid);
279 REG_WR16(bp, addr, eq_prod);
282 /* used only at init
283 * locking is done by mcp
285 static void bnx2x_reg_wr_ind(struct bnx2x *bp, u32 addr, u32 val)
287 pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
288 pci_write_config_dword(bp->pdev, PCICFG_GRC_DATA, val);
289 pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
290 PCICFG_VENDOR_ID_OFFSET);
293 static u32 bnx2x_reg_rd_ind(struct bnx2x *bp, u32 addr)
295 u32 val;
297 pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
298 pci_read_config_dword(bp->pdev, PCICFG_GRC_DATA, &val);
299 pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
300 PCICFG_VENDOR_ID_OFFSET);
302 return val;
305 #define DMAE_DP_SRC_GRC "grc src_addr [%08x]"
306 #define DMAE_DP_SRC_PCI "pci src_addr [%x:%08x]"
307 #define DMAE_DP_DST_GRC "grc dst_addr [%08x]"
308 #define DMAE_DP_DST_PCI "pci dst_addr [%x:%08x]"
309 #define DMAE_DP_DST_NONE "dst_addr [none]"
311 static void bnx2x_dp_dmae(struct bnx2x *bp, struct dmae_command *dmae,
312 int msglvl)
314 u32 src_type = dmae->opcode & DMAE_COMMAND_SRC;
316 switch (dmae->opcode & DMAE_COMMAND_DST) {
317 case DMAE_CMD_DST_PCI:
318 if (src_type == DMAE_CMD_SRC_PCI)
319 DP(msglvl, "DMAE: opcode 0x%08x\n"
320 "src [%x:%08x], len [%d*4], dst [%x:%08x]\n"
321 "comp_addr [%x:%08x], comp_val 0x%08x\n",
322 dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
323 dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
324 dmae->comp_addr_hi, dmae->comp_addr_lo,
325 dmae->comp_val);
326 else
327 DP(msglvl, "DMAE: opcode 0x%08x\n"
328 "src [%08x], len [%d*4], dst [%x:%08x]\n"
329 "comp_addr [%x:%08x], comp_val 0x%08x\n",
330 dmae->opcode, dmae->src_addr_lo >> 2,
331 dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
332 dmae->comp_addr_hi, dmae->comp_addr_lo,
333 dmae->comp_val);
334 break;
335 case DMAE_CMD_DST_GRC:
336 if (src_type == DMAE_CMD_SRC_PCI)
337 DP(msglvl, "DMAE: opcode 0x%08x\n"
338 "src [%x:%08x], len [%d*4], dst_addr [%08x]\n"
339 "comp_addr [%x:%08x], comp_val 0x%08x\n",
340 dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
341 dmae->len, dmae->dst_addr_lo >> 2,
342 dmae->comp_addr_hi, dmae->comp_addr_lo,
343 dmae->comp_val);
344 else
345 DP(msglvl, "DMAE: opcode 0x%08x\n"
346 "src [%08x], len [%d*4], dst [%08x]\n"
347 "comp_addr [%x:%08x], comp_val 0x%08x\n",
348 dmae->opcode, dmae->src_addr_lo >> 2,
349 dmae->len, dmae->dst_addr_lo >> 2,
350 dmae->comp_addr_hi, dmae->comp_addr_lo,
351 dmae->comp_val);
352 break;
353 default:
354 if (src_type == DMAE_CMD_SRC_PCI)
355 DP(msglvl, "DMAE: opcode 0x%08x\n"
356 "src_addr [%x:%08x] len [%d * 4] dst_addr [none]\n"
357 "comp_addr [%x:%08x] comp_val 0x%08x\n",
358 dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
359 dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
360 dmae->comp_val);
361 else
362 DP(msglvl, "DMAE: opcode 0x%08x\n"
363 "src_addr [%08x] len [%d * 4] dst_addr [none]\n"
364 "comp_addr [%x:%08x] comp_val 0x%08x\n",
365 dmae->opcode, dmae->src_addr_lo >> 2,
366 dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
367 dmae->comp_val);
368 break;
373 /* copy command into DMAE command memory and set DMAE command go */
374 void bnx2x_post_dmae(struct bnx2x *bp, struct dmae_command *dmae, int idx)
376 u32 cmd_offset;
377 int i;
379 cmd_offset = (DMAE_REG_CMD_MEM + sizeof(struct dmae_command) * idx);
380 for (i = 0; i < (sizeof(struct dmae_command)/4); i++) {
381 REG_WR(bp, cmd_offset + i*4, *(((u32 *)dmae) + i));
383 DP(BNX2X_MSG_OFF, "DMAE cmd[%d].%d (0x%08x) : 0x%08x\n",
384 idx, i, cmd_offset + i*4, *(((u32 *)dmae) + i));
386 REG_WR(bp, dmae_reg_go_c[idx], 1);
389 u32 bnx2x_dmae_opcode_add_comp(u32 opcode, u8 comp_type)
391 return opcode | ((comp_type << DMAE_COMMAND_C_DST_SHIFT) |
392 DMAE_CMD_C_ENABLE);
395 u32 bnx2x_dmae_opcode_clr_src_reset(u32 opcode)
397 return opcode & ~DMAE_CMD_SRC_RESET;
400 u32 bnx2x_dmae_opcode(struct bnx2x *bp, u8 src_type, u8 dst_type,
401 bool with_comp, u8 comp_type)
403 u32 opcode = 0;
405 opcode |= ((src_type << DMAE_COMMAND_SRC_SHIFT) |
406 (dst_type << DMAE_COMMAND_DST_SHIFT));
408 opcode |= (DMAE_CMD_SRC_RESET | DMAE_CMD_DST_RESET);
410 opcode |= (BP_PORT(bp) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0);
411 opcode |= ((BP_E1HVN(bp) << DMAE_CMD_E1HVN_SHIFT) |
412 (BP_E1HVN(bp) << DMAE_COMMAND_DST_VN_SHIFT));
413 opcode |= (DMAE_COM_SET_ERR << DMAE_COMMAND_ERR_POLICY_SHIFT);
415 #ifdef __BIG_ENDIAN
416 opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP;
417 #else
418 opcode |= DMAE_CMD_ENDIANITY_DW_SWAP;
419 #endif
420 if (with_comp)
421 opcode = bnx2x_dmae_opcode_add_comp(opcode, comp_type);
422 return opcode;
425 static void bnx2x_prep_dmae_with_comp(struct bnx2x *bp,
426 struct dmae_command *dmae,
427 u8 src_type, u8 dst_type)
429 memset(dmae, 0, sizeof(struct dmae_command));
431 /* set the opcode */
432 dmae->opcode = bnx2x_dmae_opcode(bp, src_type, dst_type,
433 true, DMAE_COMP_PCI);
435 /* fill in the completion parameters */
436 dmae->comp_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_comp));
437 dmae->comp_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_comp));
438 dmae->comp_val = DMAE_COMP_VAL;
441 /* issue a dmae command over the init-channel and wailt for completion */
442 static int bnx2x_issue_dmae_with_comp(struct bnx2x *bp,
443 struct dmae_command *dmae)
445 u32 *wb_comp = bnx2x_sp(bp, wb_comp);
446 int cnt = CHIP_REV_IS_SLOW(bp) ? (400000) : 4000;
447 int rc = 0;
449 DP(BNX2X_MSG_OFF, "data before [0x%08x 0x%08x 0x%08x 0x%08x]\n",
450 bp->slowpath->wb_data[0], bp->slowpath->wb_data[1],
451 bp->slowpath->wb_data[2], bp->slowpath->wb_data[3]);
454 * Lock the dmae channel. Disable BHs to prevent a dead-lock
455 * as long as this code is called both from syscall context and
456 * from ndo_set_rx_mode() flow that may be called from BH.
458 spin_lock_bh(&bp->dmae_lock);
460 /* reset completion */
461 *wb_comp = 0;
463 /* post the command on the channel used for initializations */
464 bnx2x_post_dmae(bp, dmae, INIT_DMAE_C(bp));
466 /* wait for completion */
467 udelay(5);
468 while ((*wb_comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) {
469 DP(BNX2X_MSG_OFF, "wb_comp 0x%08x\n", *wb_comp);
471 if (!cnt) {
472 BNX2X_ERR("DMAE timeout!\n");
473 rc = DMAE_TIMEOUT;
474 goto unlock;
476 cnt--;
477 udelay(50);
479 if (*wb_comp & DMAE_PCI_ERR_FLAG) {
480 BNX2X_ERR("DMAE PCI error!\n");
481 rc = DMAE_PCI_ERROR;
484 DP(BNX2X_MSG_OFF, "data after [0x%08x 0x%08x 0x%08x 0x%08x]\n",
485 bp->slowpath->wb_data[0], bp->slowpath->wb_data[1],
486 bp->slowpath->wb_data[2], bp->slowpath->wb_data[3]);
488 unlock:
489 spin_unlock_bh(&bp->dmae_lock);
490 return rc;
493 void bnx2x_write_dmae(struct bnx2x *bp, dma_addr_t dma_addr, u32 dst_addr,
494 u32 len32)
496 struct dmae_command dmae;
498 if (!bp->dmae_ready) {
499 u32 *data = bnx2x_sp(bp, wb_data[0]);
501 DP(BNX2X_MSG_OFF, "DMAE is not ready (dst_addr %08x len32 %d)"
502 " using indirect\n", dst_addr, len32);
503 bnx2x_init_ind_wr(bp, dst_addr, data, len32);
504 return;
507 /* set opcode and fixed command fields */
508 bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC);
510 /* fill in addresses and len */
511 dmae.src_addr_lo = U64_LO(dma_addr);
512 dmae.src_addr_hi = U64_HI(dma_addr);
513 dmae.dst_addr_lo = dst_addr >> 2;
514 dmae.dst_addr_hi = 0;
515 dmae.len = len32;
517 bnx2x_dp_dmae(bp, &dmae, BNX2X_MSG_OFF);
519 /* issue the command and wait for completion */
520 bnx2x_issue_dmae_with_comp(bp, &dmae);
523 void bnx2x_read_dmae(struct bnx2x *bp, u32 src_addr, u32 len32)
525 struct dmae_command dmae;
527 if (!bp->dmae_ready) {
528 u32 *data = bnx2x_sp(bp, wb_data[0]);
529 int i;
531 DP(BNX2X_MSG_OFF, "DMAE is not ready (src_addr %08x len32 %d)"
532 " using indirect\n", src_addr, len32);
533 for (i = 0; i < len32; i++)
534 data[i] = bnx2x_reg_rd_ind(bp, src_addr + i*4);
535 return;
538 /* set opcode and fixed command fields */
539 bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI);
541 /* fill in addresses and len */
542 dmae.src_addr_lo = src_addr >> 2;
543 dmae.src_addr_hi = 0;
544 dmae.dst_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_data));
545 dmae.dst_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_data));
546 dmae.len = len32;
548 bnx2x_dp_dmae(bp, &dmae, BNX2X_MSG_OFF);
550 /* issue the command and wait for completion */
551 bnx2x_issue_dmae_with_comp(bp, &dmae);
554 static void bnx2x_write_dmae_phys_len(struct bnx2x *bp, dma_addr_t phys_addr,
555 u32 addr, u32 len)
557 int dmae_wr_max = DMAE_LEN32_WR_MAX(bp);
558 int offset = 0;
560 while (len > dmae_wr_max) {
561 bnx2x_write_dmae(bp, phys_addr + offset,
562 addr + offset, dmae_wr_max);
563 offset += dmae_wr_max * 4;
564 len -= dmae_wr_max;
567 bnx2x_write_dmae(bp, phys_addr + offset, addr + offset, len);
570 /* used only for slowpath so not inlined */
571 static void bnx2x_wb_wr(struct bnx2x *bp, int reg, u32 val_hi, u32 val_lo)
573 u32 wb_write[2];
575 wb_write[0] = val_hi;
576 wb_write[1] = val_lo;
577 REG_WR_DMAE(bp, reg, wb_write, 2);
580 #ifdef USE_WB_RD
581 static u64 bnx2x_wb_rd(struct bnx2x *bp, int reg)
583 u32 wb_data[2];
585 REG_RD_DMAE(bp, reg, wb_data, 2);
587 return HILO_U64(wb_data[0], wb_data[1]);
589 #endif
591 static int bnx2x_mc_assert(struct bnx2x *bp)
593 char last_idx;
594 int i, rc = 0;
595 u32 row0, row1, row2, row3;
597 /* XSTORM */
598 last_idx = REG_RD8(bp, BAR_XSTRORM_INTMEM +
599 XSTORM_ASSERT_LIST_INDEX_OFFSET);
600 if (last_idx)
601 BNX2X_ERR("XSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
603 /* print the asserts */
604 for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
606 row0 = REG_RD(bp, BAR_XSTRORM_INTMEM +
607 XSTORM_ASSERT_LIST_OFFSET(i));
608 row1 = REG_RD(bp, BAR_XSTRORM_INTMEM +
609 XSTORM_ASSERT_LIST_OFFSET(i) + 4);
610 row2 = REG_RD(bp, BAR_XSTRORM_INTMEM +
611 XSTORM_ASSERT_LIST_OFFSET(i) + 8);
612 row3 = REG_RD(bp, BAR_XSTRORM_INTMEM +
613 XSTORM_ASSERT_LIST_OFFSET(i) + 12);
615 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
616 BNX2X_ERR("XSTORM_ASSERT_INDEX 0x%x = 0x%08x"
617 " 0x%08x 0x%08x 0x%08x\n",
618 i, row3, row2, row1, row0);
619 rc++;
620 } else {
621 break;
625 /* TSTORM */
626 last_idx = REG_RD8(bp, BAR_TSTRORM_INTMEM +
627 TSTORM_ASSERT_LIST_INDEX_OFFSET);
628 if (last_idx)
629 BNX2X_ERR("TSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
631 /* print the asserts */
632 for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
634 row0 = REG_RD(bp, BAR_TSTRORM_INTMEM +
635 TSTORM_ASSERT_LIST_OFFSET(i));
636 row1 = REG_RD(bp, BAR_TSTRORM_INTMEM +
637 TSTORM_ASSERT_LIST_OFFSET(i) + 4);
638 row2 = REG_RD(bp, BAR_TSTRORM_INTMEM +
639 TSTORM_ASSERT_LIST_OFFSET(i) + 8);
640 row3 = REG_RD(bp, BAR_TSTRORM_INTMEM +
641 TSTORM_ASSERT_LIST_OFFSET(i) + 12);
643 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
644 BNX2X_ERR("TSTORM_ASSERT_INDEX 0x%x = 0x%08x"
645 " 0x%08x 0x%08x 0x%08x\n",
646 i, row3, row2, row1, row0);
647 rc++;
648 } else {
649 break;
653 /* CSTORM */
654 last_idx = REG_RD8(bp, BAR_CSTRORM_INTMEM +
655 CSTORM_ASSERT_LIST_INDEX_OFFSET);
656 if (last_idx)
657 BNX2X_ERR("CSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
659 /* print the asserts */
660 for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
662 row0 = REG_RD(bp, BAR_CSTRORM_INTMEM +
663 CSTORM_ASSERT_LIST_OFFSET(i));
664 row1 = REG_RD(bp, BAR_CSTRORM_INTMEM +
665 CSTORM_ASSERT_LIST_OFFSET(i) + 4);
666 row2 = REG_RD(bp, BAR_CSTRORM_INTMEM +
667 CSTORM_ASSERT_LIST_OFFSET(i) + 8);
668 row3 = REG_RD(bp, BAR_CSTRORM_INTMEM +
669 CSTORM_ASSERT_LIST_OFFSET(i) + 12);
671 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
672 BNX2X_ERR("CSTORM_ASSERT_INDEX 0x%x = 0x%08x"
673 " 0x%08x 0x%08x 0x%08x\n",
674 i, row3, row2, row1, row0);
675 rc++;
676 } else {
677 break;
681 /* USTORM */
682 last_idx = REG_RD8(bp, BAR_USTRORM_INTMEM +
683 USTORM_ASSERT_LIST_INDEX_OFFSET);
684 if (last_idx)
685 BNX2X_ERR("USTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
687 /* print the asserts */
688 for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
690 row0 = REG_RD(bp, BAR_USTRORM_INTMEM +
691 USTORM_ASSERT_LIST_OFFSET(i));
692 row1 = REG_RD(bp, BAR_USTRORM_INTMEM +
693 USTORM_ASSERT_LIST_OFFSET(i) + 4);
694 row2 = REG_RD(bp, BAR_USTRORM_INTMEM +
695 USTORM_ASSERT_LIST_OFFSET(i) + 8);
696 row3 = REG_RD(bp, BAR_USTRORM_INTMEM +
697 USTORM_ASSERT_LIST_OFFSET(i) + 12);
699 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
700 BNX2X_ERR("USTORM_ASSERT_INDEX 0x%x = 0x%08x"
701 " 0x%08x 0x%08x 0x%08x\n",
702 i, row3, row2, row1, row0);
703 rc++;
704 } else {
705 break;
709 return rc;
712 void bnx2x_fw_dump_lvl(struct bnx2x *bp, const char *lvl)
714 u32 addr, val;
715 u32 mark, offset;
716 __be32 data[9];
717 int word;
718 u32 trace_shmem_base;
719 if (BP_NOMCP(bp)) {
720 BNX2X_ERR("NO MCP - can not dump\n");
721 return;
723 netdev_printk(lvl, bp->dev, "bc %d.%d.%d\n",
724 (bp->common.bc_ver & 0xff0000) >> 16,
725 (bp->common.bc_ver & 0xff00) >> 8,
726 (bp->common.bc_ver & 0xff));
728 val = REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER);
729 if (val == REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER))
730 printk("%s" "MCP PC at 0x%x\n", lvl, val);
732 if (BP_PATH(bp) == 0)
733 trace_shmem_base = bp->common.shmem_base;
734 else
735 trace_shmem_base = SHMEM2_RD(bp, other_shmem_base_addr);
736 addr = trace_shmem_base - 0x0800 + 4;
737 mark = REG_RD(bp, addr);
738 mark = (CHIP_IS_E1x(bp) ? MCP_REG_MCPR_SCRATCH : MCP_A_REG_MCPR_SCRATCH)
739 + ((mark + 0x3) & ~0x3) - 0x08000000;
740 printk("%s" "begin fw dump (mark 0x%x)\n", lvl, mark);
742 printk("%s", lvl);
743 for (offset = mark; offset <= trace_shmem_base; offset += 0x8*4) {
744 for (word = 0; word < 8; word++)
745 data[word] = htonl(REG_RD(bp, offset + 4*word));
746 data[8] = 0x0;
747 pr_cont("%s", (char *)data);
749 for (offset = addr + 4; offset <= mark; offset += 0x8*4) {
750 for (word = 0; word < 8; word++)
751 data[word] = htonl(REG_RD(bp, offset + 4*word));
752 data[8] = 0x0;
753 pr_cont("%s", (char *)data);
755 printk("%s" "end of fw dump\n", lvl);
758 static inline void bnx2x_fw_dump(struct bnx2x *bp)
760 bnx2x_fw_dump_lvl(bp, KERN_ERR);
763 void bnx2x_panic_dump(struct bnx2x *bp)
765 int i;
766 u16 j;
767 struct hc_sp_status_block_data sp_sb_data;
768 int func = BP_FUNC(bp);
769 #ifdef BNX2X_STOP_ON_ERROR
770 u16 start = 0, end = 0;
771 u8 cos;
772 #endif
774 bp->stats_state = STATS_STATE_DISABLED;
775 DP(BNX2X_MSG_STATS, "stats_state - DISABLED\n");
777 BNX2X_ERR("begin crash dump -----------------\n");
779 /* Indices */
780 /* Common */
781 BNX2X_ERR("def_idx(0x%x) def_att_idx(0x%x) attn_state(0x%x)"
782 " spq_prod_idx(0x%x) next_stats_cnt(0x%x)\n",
783 bp->def_idx, bp->def_att_idx, bp->attn_state,
784 bp->spq_prod_idx, bp->stats_counter);
785 BNX2X_ERR("DSB: attn bits(0x%x) ack(0x%x) id(0x%x) idx(0x%x)\n",
786 bp->def_status_blk->atten_status_block.attn_bits,
787 bp->def_status_blk->atten_status_block.attn_bits_ack,
788 bp->def_status_blk->atten_status_block.status_block_id,
789 bp->def_status_blk->atten_status_block.attn_bits_index);
790 BNX2X_ERR(" def (");
791 for (i = 0; i < HC_SP_SB_MAX_INDICES; i++)
792 pr_cont("0x%x%s",
793 bp->def_status_blk->sp_sb.index_values[i],
794 (i == HC_SP_SB_MAX_INDICES - 1) ? ") " : " ");
796 for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++)
797 *((u32 *)&sp_sb_data + i) = REG_RD(bp, BAR_CSTRORM_INTMEM +
798 CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) +
799 i*sizeof(u32));
801 pr_cont("igu_sb_id(0x%x) igu_seg_id(0x%x) pf_id(0x%x) vnic_id(0x%x) vf_id(0x%x) vf_valid (0x%x) state(0x%x)\n",
802 sp_sb_data.igu_sb_id,
803 sp_sb_data.igu_seg_id,
804 sp_sb_data.p_func.pf_id,
805 sp_sb_data.p_func.vnic_id,
806 sp_sb_data.p_func.vf_id,
807 sp_sb_data.p_func.vf_valid,
808 sp_sb_data.state);
811 for_each_eth_queue(bp, i) {
812 struct bnx2x_fastpath *fp = &bp->fp[i];
813 int loop;
814 struct hc_status_block_data_e2 sb_data_e2;
815 struct hc_status_block_data_e1x sb_data_e1x;
816 struct hc_status_block_sm *hc_sm_p =
817 CHIP_IS_E1x(bp) ?
818 sb_data_e1x.common.state_machine :
819 sb_data_e2.common.state_machine;
820 struct hc_index_data *hc_index_p =
821 CHIP_IS_E1x(bp) ?
822 sb_data_e1x.index_data :
823 sb_data_e2.index_data;
824 u8 data_size, cos;
825 u32 *sb_data_p;
826 struct bnx2x_fp_txdata txdata;
828 /* Rx */
829 BNX2X_ERR("fp%d: rx_bd_prod(0x%x) rx_bd_cons(0x%x)"
830 " rx_comp_prod(0x%x)"
831 " rx_comp_cons(0x%x) *rx_cons_sb(0x%x)\n",
832 i, fp->rx_bd_prod, fp->rx_bd_cons,
833 fp->rx_comp_prod,
834 fp->rx_comp_cons, le16_to_cpu(*fp->rx_cons_sb));
835 BNX2X_ERR(" rx_sge_prod(0x%x) last_max_sge(0x%x)"
836 " fp_hc_idx(0x%x)\n",
837 fp->rx_sge_prod, fp->last_max_sge,
838 le16_to_cpu(fp->fp_hc_idx));
840 /* Tx */
841 for_each_cos_in_tx_queue(fp, cos)
843 txdata = fp->txdata[cos];
844 BNX2X_ERR("fp%d: tx_pkt_prod(0x%x) tx_pkt_cons(0x%x)"
845 " tx_bd_prod(0x%x) tx_bd_cons(0x%x)"
846 " *tx_cons_sb(0x%x)\n",
847 i, txdata.tx_pkt_prod,
848 txdata.tx_pkt_cons, txdata.tx_bd_prod,
849 txdata.tx_bd_cons,
850 le16_to_cpu(*txdata.tx_cons_sb));
853 loop = CHIP_IS_E1x(bp) ?
854 HC_SB_MAX_INDICES_E1X : HC_SB_MAX_INDICES_E2;
856 /* host sb data */
858 #ifdef BCM_CNIC
859 if (IS_FCOE_FP(fp))
860 continue;
861 #endif
862 BNX2X_ERR(" run indexes (");
863 for (j = 0; j < HC_SB_MAX_SM; j++)
864 pr_cont("0x%x%s",
865 fp->sb_running_index[j],
866 (j == HC_SB_MAX_SM - 1) ? ")" : " ");
868 BNX2X_ERR(" indexes (");
869 for (j = 0; j < loop; j++)
870 pr_cont("0x%x%s",
871 fp->sb_index_values[j],
872 (j == loop - 1) ? ")" : " ");
873 /* fw sb data */
874 data_size = CHIP_IS_E1x(bp) ?
875 sizeof(struct hc_status_block_data_e1x) :
876 sizeof(struct hc_status_block_data_e2);
877 data_size /= sizeof(u32);
878 sb_data_p = CHIP_IS_E1x(bp) ?
879 (u32 *)&sb_data_e1x :
880 (u32 *)&sb_data_e2;
881 /* copy sb data in here */
882 for (j = 0; j < data_size; j++)
883 *(sb_data_p + j) = REG_RD(bp, BAR_CSTRORM_INTMEM +
884 CSTORM_STATUS_BLOCK_DATA_OFFSET(fp->fw_sb_id) +
885 j * sizeof(u32));
887 if (!CHIP_IS_E1x(bp)) {
888 pr_cont("pf_id(0x%x) vf_id(0x%x) vf_valid(0x%x) "
889 "vnic_id(0x%x) same_igu_sb_1b(0x%x) "
890 "state(0x%x)\n",
891 sb_data_e2.common.p_func.pf_id,
892 sb_data_e2.common.p_func.vf_id,
893 sb_data_e2.common.p_func.vf_valid,
894 sb_data_e2.common.p_func.vnic_id,
895 sb_data_e2.common.same_igu_sb_1b,
896 sb_data_e2.common.state);
897 } else {
898 pr_cont("pf_id(0x%x) vf_id(0x%x) vf_valid(0x%x) "
899 "vnic_id(0x%x) same_igu_sb_1b(0x%x) "
900 "state(0x%x)\n",
901 sb_data_e1x.common.p_func.pf_id,
902 sb_data_e1x.common.p_func.vf_id,
903 sb_data_e1x.common.p_func.vf_valid,
904 sb_data_e1x.common.p_func.vnic_id,
905 sb_data_e1x.common.same_igu_sb_1b,
906 sb_data_e1x.common.state);
909 /* SB_SMs data */
910 for (j = 0; j < HC_SB_MAX_SM; j++) {
911 pr_cont("SM[%d] __flags (0x%x) "
912 "igu_sb_id (0x%x) igu_seg_id(0x%x) "
913 "time_to_expire (0x%x) "
914 "timer_value(0x%x)\n", j,
915 hc_sm_p[j].__flags,
916 hc_sm_p[j].igu_sb_id,
917 hc_sm_p[j].igu_seg_id,
918 hc_sm_p[j].time_to_expire,
919 hc_sm_p[j].timer_value);
922 /* Indecies data */
923 for (j = 0; j < loop; j++) {
924 pr_cont("INDEX[%d] flags (0x%x) "
925 "timeout (0x%x)\n", j,
926 hc_index_p[j].flags,
927 hc_index_p[j].timeout);
931 #ifdef BNX2X_STOP_ON_ERROR
932 /* Rings */
933 /* Rx */
934 for_each_rx_queue(bp, i) {
935 struct bnx2x_fastpath *fp = &bp->fp[i];
937 start = RX_BD(le16_to_cpu(*fp->rx_cons_sb) - 10);
938 end = RX_BD(le16_to_cpu(*fp->rx_cons_sb) + 503);
939 for (j = start; j != end; j = RX_BD(j + 1)) {
940 u32 *rx_bd = (u32 *)&fp->rx_desc_ring[j];
941 struct sw_rx_bd *sw_bd = &fp->rx_buf_ring[j];
943 BNX2X_ERR("fp%d: rx_bd[%x]=[%x:%x] sw_bd=[%p]\n",
944 i, j, rx_bd[1], rx_bd[0], sw_bd->skb);
947 start = RX_SGE(fp->rx_sge_prod);
948 end = RX_SGE(fp->last_max_sge);
949 for (j = start; j != end; j = RX_SGE(j + 1)) {
950 u32 *rx_sge = (u32 *)&fp->rx_sge_ring[j];
951 struct sw_rx_page *sw_page = &fp->rx_page_ring[j];
953 BNX2X_ERR("fp%d: rx_sge[%x]=[%x:%x] sw_page=[%p]\n",
954 i, j, rx_sge[1], rx_sge[0], sw_page->page);
957 start = RCQ_BD(fp->rx_comp_cons - 10);
958 end = RCQ_BD(fp->rx_comp_cons + 503);
959 for (j = start; j != end; j = RCQ_BD(j + 1)) {
960 u32 *cqe = (u32 *)&fp->rx_comp_ring[j];
962 BNX2X_ERR("fp%d: cqe[%x]=[%x:%x:%x:%x]\n",
963 i, j, cqe[0], cqe[1], cqe[2], cqe[3]);
967 /* Tx */
968 for_each_tx_queue(bp, i) {
969 struct bnx2x_fastpath *fp = &bp->fp[i];
970 for_each_cos_in_tx_queue(fp, cos) {
971 struct bnx2x_fp_txdata *txdata = &fp->txdata[cos];
973 start = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) - 10);
974 end = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) + 245);
975 for (j = start; j != end; j = TX_BD(j + 1)) {
976 struct sw_tx_bd *sw_bd =
977 &txdata->tx_buf_ring[j];
979 BNX2X_ERR("fp%d: txdata %d, "
980 "packet[%x]=[%p,%x]\n",
981 i, cos, j, sw_bd->skb,
982 sw_bd->first_bd);
985 start = TX_BD(txdata->tx_bd_cons - 10);
986 end = TX_BD(txdata->tx_bd_cons + 254);
987 for (j = start; j != end; j = TX_BD(j + 1)) {
988 u32 *tx_bd = (u32 *)&txdata->tx_desc_ring[j];
990 BNX2X_ERR("fp%d: txdata %d, tx_bd[%x]="
991 "[%x:%x:%x:%x]\n",
992 i, cos, j, tx_bd[0], tx_bd[1],
993 tx_bd[2], tx_bd[3]);
997 #endif
998 bnx2x_fw_dump(bp);
999 bnx2x_mc_assert(bp);
1000 BNX2X_ERR("end crash dump -----------------\n");
1004 * FLR Support for E2
1006 * bnx2x_pf_flr_clnup() is called during nic_load in the per function HW
1007 * initialization.
1009 #define FLR_WAIT_USEC 10000 /* 10 miliseconds */
1010 #define FLR_WAIT_INTERAVAL 50 /* usec */
1011 #define FLR_POLL_CNT (FLR_WAIT_USEC/FLR_WAIT_INTERAVAL) /* 200 */
1013 struct pbf_pN_buf_regs {
1014 int pN;
1015 u32 init_crd;
1016 u32 crd;
1017 u32 crd_freed;
1020 struct pbf_pN_cmd_regs {
1021 int pN;
1022 u32 lines_occup;
1023 u32 lines_freed;
1026 static void bnx2x_pbf_pN_buf_flushed(struct bnx2x *bp,
1027 struct pbf_pN_buf_regs *regs,
1028 u32 poll_count)
1030 u32 init_crd, crd, crd_start, crd_freed, crd_freed_start;
1031 u32 cur_cnt = poll_count;
1033 crd_freed = crd_freed_start = REG_RD(bp, regs->crd_freed);
1034 crd = crd_start = REG_RD(bp, regs->crd);
1035 init_crd = REG_RD(bp, regs->init_crd);
1037 DP(BNX2X_MSG_SP, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd);
1038 DP(BNX2X_MSG_SP, "CREDIT[%d] : s:%x\n", regs->pN, crd);
1039 DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed);
1041 while ((crd != init_crd) && ((u32)SUB_S32(crd_freed, crd_freed_start) <
1042 (init_crd - crd_start))) {
1043 if (cur_cnt--) {
1044 udelay(FLR_WAIT_INTERAVAL);
1045 crd = REG_RD(bp, regs->crd);
1046 crd_freed = REG_RD(bp, regs->crd_freed);
1047 } else {
1048 DP(BNX2X_MSG_SP, "PBF tx buffer[%d] timed out\n",
1049 regs->pN);
1050 DP(BNX2X_MSG_SP, "CREDIT[%d] : c:%x\n",
1051 regs->pN, crd);
1052 DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: c:%x\n",
1053 regs->pN, crd_freed);
1054 break;
1057 DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF tx buffer[%d]\n",
1058 poll_count-cur_cnt, FLR_WAIT_INTERAVAL, regs->pN);
1061 static void bnx2x_pbf_pN_cmd_flushed(struct bnx2x *bp,
1062 struct pbf_pN_cmd_regs *regs,
1063 u32 poll_count)
1065 u32 occup, to_free, freed, freed_start;
1066 u32 cur_cnt = poll_count;
1068 occup = to_free = REG_RD(bp, regs->lines_occup);
1069 freed = freed_start = REG_RD(bp, regs->lines_freed);
1071 DP(BNX2X_MSG_SP, "OCCUPANCY[%d] : s:%x\n", regs->pN, occup);
1072 DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
1074 while (occup && ((u32)SUB_S32(freed, freed_start) < to_free)) {
1075 if (cur_cnt--) {
1076 udelay(FLR_WAIT_INTERAVAL);
1077 occup = REG_RD(bp, regs->lines_occup);
1078 freed = REG_RD(bp, regs->lines_freed);
1079 } else {
1080 DP(BNX2X_MSG_SP, "PBF cmd queue[%d] timed out\n",
1081 regs->pN);
1082 DP(BNX2X_MSG_SP, "OCCUPANCY[%d] : s:%x\n",
1083 regs->pN, occup);
1084 DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n",
1085 regs->pN, freed);
1086 break;
1089 DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF cmd queue[%d]\n",
1090 poll_count-cur_cnt, FLR_WAIT_INTERAVAL, regs->pN);
1093 static inline u32 bnx2x_flr_clnup_reg_poll(struct bnx2x *bp, u32 reg,
1094 u32 expected, u32 poll_count)
1096 u32 cur_cnt = poll_count;
1097 u32 val;
1099 while ((val = REG_RD(bp, reg)) != expected && cur_cnt--)
1100 udelay(FLR_WAIT_INTERAVAL);
1102 return val;
1105 static inline int bnx2x_flr_clnup_poll_hw_counter(struct bnx2x *bp, u32 reg,
1106 char *msg, u32 poll_cnt)
1108 u32 val = bnx2x_flr_clnup_reg_poll(bp, reg, 0, poll_cnt);
1109 if (val != 0) {
1110 BNX2X_ERR("%s usage count=%d\n", msg, val);
1111 return 1;
1113 return 0;
1116 static u32 bnx2x_flr_clnup_poll_count(struct bnx2x *bp)
1118 /* adjust polling timeout */
1119 if (CHIP_REV_IS_EMUL(bp))
1120 return FLR_POLL_CNT * 2000;
1122 if (CHIP_REV_IS_FPGA(bp))
1123 return FLR_POLL_CNT * 120;
1125 return FLR_POLL_CNT;
1128 static void bnx2x_tx_hw_flushed(struct bnx2x *bp, u32 poll_count)
1130 struct pbf_pN_cmd_regs cmd_regs[] = {
1131 {0, (CHIP_IS_E3B0(bp)) ?
1132 PBF_REG_TQ_OCCUPANCY_Q0 :
1133 PBF_REG_P0_TQ_OCCUPANCY,
1134 (CHIP_IS_E3B0(bp)) ?
1135 PBF_REG_TQ_LINES_FREED_CNT_Q0 :
1136 PBF_REG_P0_TQ_LINES_FREED_CNT},
1137 {1, (CHIP_IS_E3B0(bp)) ?
1138 PBF_REG_TQ_OCCUPANCY_Q1 :
1139 PBF_REG_P1_TQ_OCCUPANCY,
1140 (CHIP_IS_E3B0(bp)) ?
1141 PBF_REG_TQ_LINES_FREED_CNT_Q1 :
1142 PBF_REG_P1_TQ_LINES_FREED_CNT},
1143 {4, (CHIP_IS_E3B0(bp)) ?
1144 PBF_REG_TQ_OCCUPANCY_LB_Q :
1145 PBF_REG_P4_TQ_OCCUPANCY,
1146 (CHIP_IS_E3B0(bp)) ?
1147 PBF_REG_TQ_LINES_FREED_CNT_LB_Q :
1148 PBF_REG_P4_TQ_LINES_FREED_CNT}
1151 struct pbf_pN_buf_regs buf_regs[] = {
1152 {0, (CHIP_IS_E3B0(bp)) ?
1153 PBF_REG_INIT_CRD_Q0 :
1154 PBF_REG_P0_INIT_CRD ,
1155 (CHIP_IS_E3B0(bp)) ?
1156 PBF_REG_CREDIT_Q0 :
1157 PBF_REG_P0_CREDIT,
1158 (CHIP_IS_E3B0(bp)) ?
1159 PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 :
1160 PBF_REG_P0_INTERNAL_CRD_FREED_CNT},
1161 {1, (CHIP_IS_E3B0(bp)) ?
1162 PBF_REG_INIT_CRD_Q1 :
1163 PBF_REG_P1_INIT_CRD,
1164 (CHIP_IS_E3B0(bp)) ?
1165 PBF_REG_CREDIT_Q1 :
1166 PBF_REG_P1_CREDIT,
1167 (CHIP_IS_E3B0(bp)) ?
1168 PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 :
1169 PBF_REG_P1_INTERNAL_CRD_FREED_CNT},
1170 {4, (CHIP_IS_E3B0(bp)) ?
1171 PBF_REG_INIT_CRD_LB_Q :
1172 PBF_REG_P4_INIT_CRD,
1173 (CHIP_IS_E3B0(bp)) ?
1174 PBF_REG_CREDIT_LB_Q :
1175 PBF_REG_P4_CREDIT,
1176 (CHIP_IS_E3B0(bp)) ?
1177 PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q :
1178 PBF_REG_P4_INTERNAL_CRD_FREED_CNT},
1181 int i;
1183 /* Verify the command queues are flushed P0, P1, P4 */
1184 for (i = 0; i < ARRAY_SIZE(cmd_regs); i++)
1185 bnx2x_pbf_pN_cmd_flushed(bp, &cmd_regs[i], poll_count);
1188 /* Verify the transmission buffers are flushed P0, P1, P4 */
1189 for (i = 0; i < ARRAY_SIZE(buf_regs); i++)
1190 bnx2x_pbf_pN_buf_flushed(bp, &buf_regs[i], poll_count);
1193 #define OP_GEN_PARAM(param) \
1194 (((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM)
1196 #define OP_GEN_TYPE(type) \
1197 (((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE)
1199 #define OP_GEN_AGG_VECT(index) \
1200 (((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX)
1203 static inline int bnx2x_send_final_clnup(struct bnx2x *bp, u8 clnup_func,
1204 u32 poll_cnt)
1206 struct sdm_op_gen op_gen = {0};
1208 u32 comp_addr = BAR_CSTRORM_INTMEM +
1209 CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func);
1210 int ret = 0;
1212 if (REG_RD(bp, comp_addr)) {
1213 BNX2X_ERR("Cleanup complete is not 0\n");
1214 return 1;
1217 op_gen.command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX);
1218 op_gen.command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE);
1219 op_gen.command |= OP_GEN_AGG_VECT(clnup_func);
1220 op_gen.command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT;
1222 DP(BNX2X_MSG_SP, "FW Final cleanup\n");
1223 REG_WR(bp, XSDM_REG_OPERATION_GEN, op_gen.command);
1225 if (bnx2x_flr_clnup_reg_poll(bp, comp_addr, 1, poll_cnt) != 1) {
1226 BNX2X_ERR("FW final cleanup did not succeed\n");
1227 ret = 1;
1229 /* Zero completion for nxt FLR */
1230 REG_WR(bp, comp_addr, 0);
1232 return ret;
1235 static inline u8 bnx2x_is_pcie_pending(struct pci_dev *dev)
1237 int pos;
1238 u16 status;
1240 pos = pci_pcie_cap(dev);
1241 if (!pos)
1242 return false;
1244 pci_read_config_word(dev, pos + PCI_EXP_DEVSTA, &status);
1245 return status & PCI_EXP_DEVSTA_TRPND;
1248 /* PF FLR specific routines
1250 static int bnx2x_poll_hw_usage_counters(struct bnx2x *bp, u32 poll_cnt)
1253 /* wait for CFC PF usage-counter to zero (includes all the VFs) */
1254 if (bnx2x_flr_clnup_poll_hw_counter(bp,
1255 CFC_REG_NUM_LCIDS_INSIDE_PF,
1256 "CFC PF usage counter timed out",
1257 poll_cnt))
1258 return 1;
1261 /* Wait for DQ PF usage-counter to zero (until DQ cleanup) */
1262 if (bnx2x_flr_clnup_poll_hw_counter(bp,
1263 DORQ_REG_PF_USAGE_CNT,
1264 "DQ PF usage counter timed out",
1265 poll_cnt))
1266 return 1;
1268 /* Wait for QM PF usage-counter to zero (until DQ cleanup) */
1269 if (bnx2x_flr_clnup_poll_hw_counter(bp,
1270 QM_REG_PF_USG_CNT_0 + 4*BP_FUNC(bp),
1271 "QM PF usage counter timed out",
1272 poll_cnt))
1273 return 1;
1275 /* Wait for Timer PF usage-counters to zero (until DQ cleanup) */
1276 if (bnx2x_flr_clnup_poll_hw_counter(bp,
1277 TM_REG_LIN0_VNIC_UC + 4*BP_PORT(bp),
1278 "Timers VNIC usage counter timed out",
1279 poll_cnt))
1280 return 1;
1281 if (bnx2x_flr_clnup_poll_hw_counter(bp,
1282 TM_REG_LIN0_NUM_SCANS + 4*BP_PORT(bp),
1283 "Timers NUM_SCANS usage counter timed out",
1284 poll_cnt))
1285 return 1;
1287 /* Wait DMAE PF usage counter to zero */
1288 if (bnx2x_flr_clnup_poll_hw_counter(bp,
1289 dmae_reg_go_c[INIT_DMAE_C(bp)],
1290 "DMAE dommand register timed out",
1291 poll_cnt))
1292 return 1;
1294 return 0;
1297 static void bnx2x_hw_enable_status(struct bnx2x *bp)
1299 u32 val;
1301 val = REG_RD(bp, CFC_REG_WEAK_ENABLE_PF);
1302 DP(BNX2X_MSG_SP, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val);
1304 val = REG_RD(bp, PBF_REG_DISABLE_PF);
1305 DP(BNX2X_MSG_SP, "PBF_REG_DISABLE_PF is 0x%x\n", val);
1307 val = REG_RD(bp, IGU_REG_PCI_PF_MSI_EN);
1308 DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val);
1310 val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_EN);
1311 DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val);
1313 val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_FUNC_MASK);
1314 DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val);
1316 val = REG_RD(bp, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR);
1317 DP(BNX2X_MSG_SP, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val);
1319 val = REG_RD(bp, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR);
1320 DP(BNX2X_MSG_SP, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val);
1322 val = REG_RD(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
1323 DP(BNX2X_MSG_SP, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n",
1324 val);
1327 static int bnx2x_pf_flr_clnup(struct bnx2x *bp)
1329 u32 poll_cnt = bnx2x_flr_clnup_poll_count(bp);
1331 DP(BNX2X_MSG_SP, "Cleanup after FLR PF[%d]\n", BP_ABS_FUNC(bp));
1333 /* Re-enable PF target read access */
1334 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
1336 /* Poll HW usage counters */
1337 if (bnx2x_poll_hw_usage_counters(bp, poll_cnt))
1338 return -EBUSY;
1340 /* Zero the igu 'trailing edge' and 'leading edge' */
1342 /* Send the FW cleanup command */
1343 if (bnx2x_send_final_clnup(bp, (u8)BP_FUNC(bp), poll_cnt))
1344 return -EBUSY;
1346 /* ATC cleanup */
1348 /* Verify TX hw is flushed */
1349 bnx2x_tx_hw_flushed(bp, poll_cnt);
1351 /* Wait 100ms (not adjusted according to platform) */
1352 msleep(100);
1354 /* Verify no pending pci transactions */
1355 if (bnx2x_is_pcie_pending(bp->pdev))
1356 BNX2X_ERR("PCIE Transactions still pending\n");
1358 /* Debug */
1359 bnx2x_hw_enable_status(bp);
1362 * Master enable - Due to WB DMAE writes performed before this
1363 * register is re-initialized as part of the regular function init
1365 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
1367 return 0;
1370 static void bnx2x_hc_int_enable(struct bnx2x *bp)
1372 int port = BP_PORT(bp);
1373 u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
1374 u32 val = REG_RD(bp, addr);
1375 int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
1376 int msi = (bp->flags & USING_MSI_FLAG) ? 1 : 0;
1378 if (msix) {
1379 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1380 HC_CONFIG_0_REG_INT_LINE_EN_0);
1381 val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1382 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1383 } else if (msi) {
1384 val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0;
1385 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1386 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1387 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1388 } else {
1389 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1390 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1391 HC_CONFIG_0_REG_INT_LINE_EN_0 |
1392 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1394 if (!CHIP_IS_E1(bp)) {
1395 DP(NETIF_MSG_INTR, "write %x to HC %d (addr 0x%x)\n",
1396 val, port, addr);
1398 REG_WR(bp, addr, val);
1400 val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0;
1404 if (CHIP_IS_E1(bp))
1405 REG_WR(bp, HC_REG_INT_MASK + port*4, 0x1FFFF);
1407 DP(NETIF_MSG_INTR, "write %x to HC %d (addr 0x%x) mode %s\n",
1408 val, port, addr, (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1410 REG_WR(bp, addr, val);
1412 * Ensure that HC_CONFIG is written before leading/trailing edge config
1414 mmiowb();
1415 barrier();
1417 if (!CHIP_IS_E1(bp)) {
1418 /* init leading/trailing edge */
1419 if (IS_MF(bp)) {
1420 val = (0xee0f | (1 << (BP_E1HVN(bp) + 4)));
1421 if (bp->port.pmf)
1422 /* enable nig and gpio3 attention */
1423 val |= 0x1100;
1424 } else
1425 val = 0xffff;
1427 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
1428 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
1431 /* Make sure that interrupts are indeed enabled from here on */
1432 mmiowb();
1435 static void bnx2x_igu_int_enable(struct bnx2x *bp)
1437 u32 val;
1438 int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
1439 int msi = (bp->flags & USING_MSI_FLAG) ? 1 : 0;
1441 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
1443 if (msix) {
1444 val &= ~(IGU_PF_CONF_INT_LINE_EN |
1445 IGU_PF_CONF_SINGLE_ISR_EN);
1446 val |= (IGU_PF_CONF_FUNC_EN |
1447 IGU_PF_CONF_MSI_MSIX_EN |
1448 IGU_PF_CONF_ATTN_BIT_EN);
1449 } else if (msi) {
1450 val &= ~IGU_PF_CONF_INT_LINE_EN;
1451 val |= (IGU_PF_CONF_FUNC_EN |
1452 IGU_PF_CONF_MSI_MSIX_EN |
1453 IGU_PF_CONF_ATTN_BIT_EN |
1454 IGU_PF_CONF_SINGLE_ISR_EN);
1455 } else {
1456 val &= ~IGU_PF_CONF_MSI_MSIX_EN;
1457 val |= (IGU_PF_CONF_FUNC_EN |
1458 IGU_PF_CONF_INT_LINE_EN |
1459 IGU_PF_CONF_ATTN_BIT_EN |
1460 IGU_PF_CONF_SINGLE_ISR_EN);
1463 DP(NETIF_MSG_INTR, "write 0x%x to IGU mode %s\n",
1464 val, (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1466 REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1468 barrier();
1470 /* init leading/trailing edge */
1471 if (IS_MF(bp)) {
1472 val = (0xee0f | (1 << (BP_E1HVN(bp) + 4)));
1473 if (bp->port.pmf)
1474 /* enable nig and gpio3 attention */
1475 val |= 0x1100;
1476 } else
1477 val = 0xffff;
1479 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
1480 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
1482 /* Make sure that interrupts are indeed enabled from here on */
1483 mmiowb();
1486 void bnx2x_int_enable(struct bnx2x *bp)
1488 if (bp->common.int_block == INT_BLOCK_HC)
1489 bnx2x_hc_int_enable(bp);
1490 else
1491 bnx2x_igu_int_enable(bp);
1494 static void bnx2x_hc_int_disable(struct bnx2x *bp)
1496 int port = BP_PORT(bp);
1497 u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
1498 u32 val = REG_RD(bp, addr);
1501 * in E1 we must use only PCI configuration space to disable
1502 * MSI/MSIX capablility
1503 * It's forbitten to disable IGU_PF_CONF_MSI_MSIX_EN in HC block
1505 if (CHIP_IS_E1(bp)) {
1506 /* Since IGU_PF_CONF_MSI_MSIX_EN still always on
1507 * Use mask register to prevent from HC sending interrupts
1508 * after we exit the function
1510 REG_WR(bp, HC_REG_INT_MASK + port*4, 0);
1512 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1513 HC_CONFIG_0_REG_INT_LINE_EN_0 |
1514 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1515 } else
1516 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1517 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1518 HC_CONFIG_0_REG_INT_LINE_EN_0 |
1519 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1521 DP(NETIF_MSG_INTR, "write %x to HC %d (addr 0x%x)\n",
1522 val, port, addr);
1524 /* flush all outstanding writes */
1525 mmiowb();
1527 REG_WR(bp, addr, val);
1528 if (REG_RD(bp, addr) != val)
1529 BNX2X_ERR("BUG! proper val not read from IGU!\n");
1532 static void bnx2x_igu_int_disable(struct bnx2x *bp)
1534 u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
1536 val &= ~(IGU_PF_CONF_MSI_MSIX_EN |
1537 IGU_PF_CONF_INT_LINE_EN |
1538 IGU_PF_CONF_ATTN_BIT_EN);
1540 DP(NETIF_MSG_INTR, "write %x to IGU\n", val);
1542 /* flush all outstanding writes */
1543 mmiowb();
1545 REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1546 if (REG_RD(bp, IGU_REG_PF_CONFIGURATION) != val)
1547 BNX2X_ERR("BUG! proper val not read from IGU!\n");
1550 void bnx2x_int_disable(struct bnx2x *bp)
1552 if (bp->common.int_block == INT_BLOCK_HC)
1553 bnx2x_hc_int_disable(bp);
1554 else
1555 bnx2x_igu_int_disable(bp);
1558 void bnx2x_int_disable_sync(struct bnx2x *bp, int disable_hw)
1560 int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
1561 int i, offset;
1563 if (disable_hw)
1564 /* prevent the HW from sending interrupts */
1565 bnx2x_int_disable(bp);
1567 /* make sure all ISRs are done */
1568 if (msix) {
1569 synchronize_irq(bp->msix_table[0].vector);
1570 offset = 1;
1571 #ifdef BCM_CNIC
1572 offset++;
1573 #endif
1574 for_each_eth_queue(bp, i)
1575 synchronize_irq(bp->msix_table[offset++].vector);
1576 } else
1577 synchronize_irq(bp->pdev->irq);
1579 /* make sure sp_task is not running */
1580 cancel_delayed_work(&bp->sp_task);
1581 cancel_delayed_work(&bp->period_task);
1582 flush_workqueue(bnx2x_wq);
1585 /* fast path */
1588 * General service functions
1591 /* Return true if succeeded to acquire the lock */
1592 static bool bnx2x_trylock_hw_lock(struct bnx2x *bp, u32 resource)
1594 u32 lock_status;
1595 u32 resource_bit = (1 << resource);
1596 int func = BP_FUNC(bp);
1597 u32 hw_lock_control_reg;
1599 DP(NETIF_MSG_HW, "Trying to take a lock on resource %d\n", resource);
1601 /* Validating that the resource is within range */
1602 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1603 DP(NETIF_MSG_HW,
1604 "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1605 resource, HW_LOCK_MAX_RESOURCE_VALUE);
1606 return false;
1609 if (func <= 5)
1610 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1611 else
1612 hw_lock_control_reg =
1613 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1615 /* Try to acquire the lock */
1616 REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
1617 lock_status = REG_RD(bp, hw_lock_control_reg);
1618 if (lock_status & resource_bit)
1619 return true;
1621 DP(NETIF_MSG_HW, "Failed to get a lock on resource %d\n", resource);
1622 return false;
1626 * bnx2x_get_leader_lock_resource - get the recovery leader resource id
1628 * @bp: driver handle
1630 * Returns the recovery leader resource id according to the engine this function
1631 * belongs to. Currently only only 2 engines is supported.
1633 static inline int bnx2x_get_leader_lock_resource(struct bnx2x *bp)
1635 if (BP_PATH(bp))
1636 return HW_LOCK_RESOURCE_RECOVERY_LEADER_1;
1637 else
1638 return HW_LOCK_RESOURCE_RECOVERY_LEADER_0;
1642 * bnx2x_trylock_leader_lock- try to aquire a leader lock.
1644 * @bp: driver handle
1646 * Tries to aquire a leader lock for cuurent engine.
1648 static inline bool bnx2x_trylock_leader_lock(struct bnx2x *bp)
1650 return bnx2x_trylock_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
1653 #ifdef BCM_CNIC
1654 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err);
1655 #endif
1657 void bnx2x_sp_event(struct bnx2x_fastpath *fp, union eth_rx_cqe *rr_cqe)
1659 struct bnx2x *bp = fp->bp;
1660 int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1661 int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1662 enum bnx2x_queue_cmd drv_cmd = BNX2X_Q_CMD_MAX;
1663 struct bnx2x_queue_sp_obj *q_obj = &fp->q_obj;
1665 DP(BNX2X_MSG_SP,
1666 "fp %d cid %d got ramrod #%d state is %x type is %d\n",
1667 fp->index, cid, command, bp->state,
1668 rr_cqe->ramrod_cqe.ramrod_type);
1670 switch (command) {
1671 case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE):
1672 DP(BNX2X_MSG_SP, "got UPDATE ramrod. CID %d\n", cid);
1673 drv_cmd = BNX2X_Q_CMD_UPDATE;
1674 break;
1676 case (RAMROD_CMD_ID_ETH_CLIENT_SETUP):
1677 DP(BNX2X_MSG_SP, "got MULTI[%d] setup ramrod\n", cid);
1678 drv_cmd = BNX2X_Q_CMD_SETUP;
1679 break;
1681 case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP):
1682 DP(NETIF_MSG_IFUP, "got MULTI[%d] tx-only setup ramrod\n", cid);
1683 drv_cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
1684 break;
1686 case (RAMROD_CMD_ID_ETH_HALT):
1687 DP(BNX2X_MSG_SP, "got MULTI[%d] halt ramrod\n", cid);
1688 drv_cmd = BNX2X_Q_CMD_HALT;
1689 break;
1691 case (RAMROD_CMD_ID_ETH_TERMINATE):
1692 DP(BNX2X_MSG_SP, "got MULTI[%d] teminate ramrod\n", cid);
1693 drv_cmd = BNX2X_Q_CMD_TERMINATE;
1694 break;
1696 case (RAMROD_CMD_ID_ETH_EMPTY):
1697 DP(BNX2X_MSG_SP, "got MULTI[%d] empty ramrod\n", cid);
1698 drv_cmd = BNX2X_Q_CMD_EMPTY;
1699 break;
1701 default:
1702 BNX2X_ERR("unexpected MC reply (%d) on fp[%d]\n",
1703 command, fp->index);
1704 return;
1707 if ((drv_cmd != BNX2X_Q_CMD_MAX) &&
1708 q_obj->complete_cmd(bp, q_obj, drv_cmd))
1709 /* q_obj->complete_cmd() failure means that this was
1710 * an unexpected completion.
1712 * In this case we don't want to increase the bp->spq_left
1713 * because apparently we haven't sent this command the first
1714 * place.
1716 #ifdef BNX2X_STOP_ON_ERROR
1717 bnx2x_panic();
1718 #else
1719 return;
1720 #endif
1722 smp_mb__before_atomic_inc();
1723 atomic_inc(&bp->cq_spq_left);
1724 /* push the change in bp->spq_left and towards the memory */
1725 smp_mb__after_atomic_inc();
1727 DP(BNX2X_MSG_SP, "bp->cq_spq_left %x\n", atomic_read(&bp->cq_spq_left));
1729 return;
1732 void bnx2x_update_rx_prod(struct bnx2x *bp, struct bnx2x_fastpath *fp,
1733 u16 bd_prod, u16 rx_comp_prod, u16 rx_sge_prod)
1735 u32 start = BAR_USTRORM_INTMEM + fp->ustorm_rx_prods_offset;
1737 bnx2x_update_rx_prod_gen(bp, fp, bd_prod, rx_comp_prod, rx_sge_prod,
1738 start);
1741 irqreturn_t bnx2x_interrupt(int irq, void *dev_instance)
1743 struct bnx2x *bp = netdev_priv(dev_instance);
1744 u16 status = bnx2x_ack_int(bp);
1745 u16 mask;
1746 int i;
1747 u8 cos;
1749 /* Return here if interrupt is shared and it's not for us */
1750 if (unlikely(status == 0)) {
1751 DP(NETIF_MSG_INTR, "not our interrupt!\n");
1752 return IRQ_NONE;
1754 DP(NETIF_MSG_INTR, "got an interrupt status 0x%x\n", status);
1756 #ifdef BNX2X_STOP_ON_ERROR
1757 if (unlikely(bp->panic))
1758 return IRQ_HANDLED;
1759 #endif
1761 for_each_eth_queue(bp, i) {
1762 struct bnx2x_fastpath *fp = &bp->fp[i];
1764 mask = 0x2 << (fp->index + CNIC_PRESENT);
1765 if (status & mask) {
1766 /* Handle Rx or Tx according to SB id */
1767 prefetch(fp->rx_cons_sb);
1768 for_each_cos_in_tx_queue(fp, cos)
1769 prefetch(fp->txdata[cos].tx_cons_sb);
1770 prefetch(&fp->sb_running_index[SM_RX_ID]);
1771 napi_schedule(&bnx2x_fp(bp, fp->index, napi));
1772 status &= ~mask;
1776 #ifdef BCM_CNIC
1777 mask = 0x2;
1778 if (status & (mask | 0x1)) {
1779 struct cnic_ops *c_ops = NULL;
1781 if (likely(bp->state == BNX2X_STATE_OPEN)) {
1782 rcu_read_lock();
1783 c_ops = rcu_dereference(bp->cnic_ops);
1784 if (c_ops)
1785 c_ops->cnic_handler(bp->cnic_data, NULL);
1786 rcu_read_unlock();
1789 status &= ~mask;
1791 #endif
1793 if (unlikely(status & 0x1)) {
1794 queue_delayed_work(bnx2x_wq, &bp->sp_task, 0);
1796 status &= ~0x1;
1797 if (!status)
1798 return IRQ_HANDLED;
1801 if (unlikely(status))
1802 DP(NETIF_MSG_INTR, "got an unknown interrupt! (status 0x%x)\n",
1803 status);
1805 return IRQ_HANDLED;
1808 /* Link */
1811 * General service functions
1814 int bnx2x_acquire_hw_lock(struct bnx2x *bp, u32 resource)
1816 u32 lock_status;
1817 u32 resource_bit = (1 << resource);
1818 int func = BP_FUNC(bp);
1819 u32 hw_lock_control_reg;
1820 int cnt;
1822 /* Validating that the resource is within range */
1823 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1824 DP(NETIF_MSG_HW,
1825 "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1826 resource, HW_LOCK_MAX_RESOURCE_VALUE);
1827 return -EINVAL;
1830 if (func <= 5) {
1831 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1832 } else {
1833 hw_lock_control_reg =
1834 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1837 /* Validating that the resource is not already taken */
1838 lock_status = REG_RD(bp, hw_lock_control_reg);
1839 if (lock_status & resource_bit) {
1840 DP(NETIF_MSG_HW, "lock_status 0x%x resource_bit 0x%x\n",
1841 lock_status, resource_bit);
1842 return -EEXIST;
1845 /* Try for 5 second every 5ms */
1846 for (cnt = 0; cnt < 1000; cnt++) {
1847 /* Try to acquire the lock */
1848 REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
1849 lock_status = REG_RD(bp, hw_lock_control_reg);
1850 if (lock_status & resource_bit)
1851 return 0;
1853 msleep(5);
1855 DP(NETIF_MSG_HW, "Timeout\n");
1856 return -EAGAIN;
1859 int bnx2x_release_leader_lock(struct bnx2x *bp)
1861 return bnx2x_release_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
1864 int bnx2x_release_hw_lock(struct bnx2x *bp, u32 resource)
1866 u32 lock_status;
1867 u32 resource_bit = (1 << resource);
1868 int func = BP_FUNC(bp);
1869 u32 hw_lock_control_reg;
1871 DP(NETIF_MSG_HW, "Releasing a lock on resource %d\n", resource);
1873 /* Validating that the resource is within range */
1874 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1875 DP(NETIF_MSG_HW,
1876 "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1877 resource, HW_LOCK_MAX_RESOURCE_VALUE);
1878 return -EINVAL;
1881 if (func <= 5) {
1882 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1883 } else {
1884 hw_lock_control_reg =
1885 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1888 /* Validating that the resource is currently taken */
1889 lock_status = REG_RD(bp, hw_lock_control_reg);
1890 if (!(lock_status & resource_bit)) {
1891 DP(NETIF_MSG_HW, "lock_status 0x%x resource_bit 0x%x\n",
1892 lock_status, resource_bit);
1893 return -EFAULT;
1896 REG_WR(bp, hw_lock_control_reg, resource_bit);
1897 return 0;
1901 int bnx2x_get_gpio(struct bnx2x *bp, int gpio_num, u8 port)
1903 /* The GPIO should be swapped if swap register is set and active */
1904 int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
1905 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
1906 int gpio_shift = gpio_num +
1907 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
1908 u32 gpio_mask = (1 << gpio_shift);
1909 u32 gpio_reg;
1910 int value;
1912 if (gpio_num > MISC_REGISTERS_GPIO_3) {
1913 BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
1914 return -EINVAL;
1917 /* read GPIO value */
1918 gpio_reg = REG_RD(bp, MISC_REG_GPIO);
1920 /* get the requested pin value */
1921 if ((gpio_reg & gpio_mask) == gpio_mask)
1922 value = 1;
1923 else
1924 value = 0;
1926 DP(NETIF_MSG_LINK, "pin %d value 0x%x\n", gpio_num, value);
1928 return value;
1931 int bnx2x_set_gpio(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
1933 /* The GPIO should be swapped if swap register is set and active */
1934 int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
1935 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
1936 int gpio_shift = gpio_num +
1937 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
1938 u32 gpio_mask = (1 << gpio_shift);
1939 u32 gpio_reg;
1941 if (gpio_num > MISC_REGISTERS_GPIO_3) {
1942 BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
1943 return -EINVAL;
1946 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
1947 /* read GPIO and mask except the float bits */
1948 gpio_reg = (REG_RD(bp, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT);
1950 switch (mode) {
1951 case MISC_REGISTERS_GPIO_OUTPUT_LOW:
1952 DP(NETIF_MSG_LINK, "Set GPIO %d (shift %d) -> output low\n",
1953 gpio_num, gpio_shift);
1954 /* clear FLOAT and set CLR */
1955 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
1956 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS);
1957 break;
1959 case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
1960 DP(NETIF_MSG_LINK, "Set GPIO %d (shift %d) -> output high\n",
1961 gpio_num, gpio_shift);
1962 /* clear FLOAT and set SET */
1963 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
1964 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_SET_POS);
1965 break;
1967 case MISC_REGISTERS_GPIO_INPUT_HI_Z:
1968 DP(NETIF_MSG_LINK, "Set GPIO %d (shift %d) -> input\n",
1969 gpio_num, gpio_shift);
1970 /* set FLOAT */
1971 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
1972 break;
1974 default:
1975 break;
1978 REG_WR(bp, MISC_REG_GPIO, gpio_reg);
1979 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
1981 return 0;
1984 int bnx2x_set_mult_gpio(struct bnx2x *bp, u8 pins, u32 mode)
1986 u32 gpio_reg = 0;
1987 int rc = 0;
1989 /* Any port swapping should be handled by caller. */
1991 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
1992 /* read GPIO and mask except the float bits */
1993 gpio_reg = REG_RD(bp, MISC_REG_GPIO);
1994 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS);
1995 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS);
1996 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS);
1998 switch (mode) {
1999 case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2000 DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output low\n", pins);
2001 /* set CLR */
2002 gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS);
2003 break;
2005 case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2006 DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output high\n", pins);
2007 /* set SET */
2008 gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS);
2009 break;
2011 case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2012 DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> input\n", pins);
2013 /* set FLOAT */
2014 gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2015 break;
2017 default:
2018 BNX2X_ERR("Invalid GPIO mode assignment %d\n", mode);
2019 rc = -EINVAL;
2020 break;
2023 if (rc == 0)
2024 REG_WR(bp, MISC_REG_GPIO, gpio_reg);
2026 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2028 return rc;
2031 int bnx2x_set_gpio_int(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
2033 /* The GPIO should be swapped if swap register is set and active */
2034 int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2035 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2036 int gpio_shift = gpio_num +
2037 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2038 u32 gpio_mask = (1 << gpio_shift);
2039 u32 gpio_reg;
2041 if (gpio_num > MISC_REGISTERS_GPIO_3) {
2042 BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2043 return -EINVAL;
2046 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2047 /* read GPIO int */
2048 gpio_reg = REG_RD(bp, MISC_REG_GPIO_INT);
2050 switch (mode) {
2051 case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR:
2052 DP(NETIF_MSG_LINK, "Clear GPIO INT %d (shift %d) -> "
2053 "output low\n", gpio_num, gpio_shift);
2054 /* clear SET and set CLR */
2055 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2056 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2057 break;
2059 case MISC_REGISTERS_GPIO_INT_OUTPUT_SET:
2060 DP(NETIF_MSG_LINK, "Set GPIO INT %d (shift %d) -> "
2061 "output high\n", gpio_num, gpio_shift);
2062 /* clear CLR and set SET */
2063 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2064 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2065 break;
2067 default:
2068 break;
2071 REG_WR(bp, MISC_REG_GPIO_INT, gpio_reg);
2072 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2074 return 0;
2077 static int bnx2x_set_spio(struct bnx2x *bp, int spio_num, u32 mode)
2079 u32 spio_mask = (1 << spio_num);
2080 u32 spio_reg;
2082 if ((spio_num < MISC_REGISTERS_SPIO_4) ||
2083 (spio_num > MISC_REGISTERS_SPIO_7)) {
2084 BNX2X_ERR("Invalid SPIO %d\n", spio_num);
2085 return -EINVAL;
2088 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2089 /* read SPIO and mask except the float bits */
2090 spio_reg = (REG_RD(bp, MISC_REG_SPIO) & MISC_REGISTERS_SPIO_FLOAT);
2092 switch (mode) {
2093 case MISC_REGISTERS_SPIO_OUTPUT_LOW:
2094 DP(NETIF_MSG_LINK, "Set SPIO %d -> output low\n", spio_num);
2095 /* clear FLOAT and set CLR */
2096 spio_reg &= ~(spio_mask << MISC_REGISTERS_SPIO_FLOAT_POS);
2097 spio_reg |= (spio_mask << MISC_REGISTERS_SPIO_CLR_POS);
2098 break;
2100 case MISC_REGISTERS_SPIO_OUTPUT_HIGH:
2101 DP(NETIF_MSG_LINK, "Set SPIO %d -> output high\n", spio_num);
2102 /* clear FLOAT and set SET */
2103 spio_reg &= ~(spio_mask << MISC_REGISTERS_SPIO_FLOAT_POS);
2104 spio_reg |= (spio_mask << MISC_REGISTERS_SPIO_SET_POS);
2105 break;
2107 case MISC_REGISTERS_SPIO_INPUT_HI_Z:
2108 DP(NETIF_MSG_LINK, "Set SPIO %d -> input\n", spio_num);
2109 /* set FLOAT */
2110 spio_reg |= (spio_mask << MISC_REGISTERS_SPIO_FLOAT_POS);
2111 break;
2113 default:
2114 break;
2117 REG_WR(bp, MISC_REG_SPIO, spio_reg);
2118 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2120 return 0;
2123 void bnx2x_calc_fc_adv(struct bnx2x *bp)
2125 u8 cfg_idx = bnx2x_get_link_cfg_idx(bp);
2126 switch (bp->link_vars.ieee_fc &
2127 MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) {
2128 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_NONE:
2129 bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
2130 ADVERTISED_Pause);
2131 break;
2133 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH:
2134 bp->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause |
2135 ADVERTISED_Pause);
2136 break;
2138 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC:
2139 bp->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause;
2140 break;
2142 default:
2143 bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
2144 ADVERTISED_Pause);
2145 break;
2149 u8 bnx2x_initial_phy_init(struct bnx2x *bp, int load_mode)
2151 if (!BP_NOMCP(bp)) {
2152 u8 rc;
2153 int cfx_idx = bnx2x_get_link_cfg_idx(bp);
2154 u16 req_line_speed = bp->link_params.req_line_speed[cfx_idx];
2156 * Initialize link parameters structure variables
2157 * It is recommended to turn off RX FC for jumbo frames
2158 * for better performance
2160 if (CHIP_IS_E1x(bp) && (bp->dev->mtu > 5000))
2161 bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_TX;
2162 else
2163 bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_BOTH;
2165 bnx2x_acquire_phy_lock(bp);
2167 if (load_mode == LOAD_DIAG) {
2168 struct link_params *lp = &bp->link_params;
2169 lp->loopback_mode = LOOPBACK_XGXS;
2170 /* do PHY loopback at 10G speed, if possible */
2171 if (lp->req_line_speed[cfx_idx] < SPEED_10000) {
2172 if (lp->speed_cap_mask[cfx_idx] &
2173 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)
2174 lp->req_line_speed[cfx_idx] =
2175 SPEED_10000;
2176 else
2177 lp->req_line_speed[cfx_idx] =
2178 SPEED_1000;
2182 rc = bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2184 bnx2x_release_phy_lock(bp);
2186 bnx2x_calc_fc_adv(bp);
2188 if (CHIP_REV_IS_SLOW(bp) && bp->link_vars.link_up) {
2189 bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2190 bnx2x_link_report(bp);
2191 } else
2192 queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2193 bp->link_params.req_line_speed[cfx_idx] = req_line_speed;
2194 return rc;
2196 BNX2X_ERR("Bootcode is missing - can not initialize link\n");
2197 return -EINVAL;
2200 void bnx2x_link_set(struct bnx2x *bp)
2202 if (!BP_NOMCP(bp)) {
2203 bnx2x_acquire_phy_lock(bp);
2204 bnx2x_link_reset(&bp->link_params, &bp->link_vars, 1);
2205 bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2206 bnx2x_release_phy_lock(bp);
2208 bnx2x_calc_fc_adv(bp);
2209 } else
2210 BNX2X_ERR("Bootcode is missing - can not set link\n");
2213 static void bnx2x__link_reset(struct bnx2x *bp)
2215 if (!BP_NOMCP(bp)) {
2216 bnx2x_acquire_phy_lock(bp);
2217 bnx2x_link_reset(&bp->link_params, &bp->link_vars, 1);
2218 bnx2x_release_phy_lock(bp);
2219 } else
2220 BNX2X_ERR("Bootcode is missing - can not reset link\n");
2223 u8 bnx2x_link_test(struct bnx2x *bp, u8 is_serdes)
2225 u8 rc = 0;
2227 if (!BP_NOMCP(bp)) {
2228 bnx2x_acquire_phy_lock(bp);
2229 rc = bnx2x_test_link(&bp->link_params, &bp->link_vars,
2230 is_serdes);
2231 bnx2x_release_phy_lock(bp);
2232 } else
2233 BNX2X_ERR("Bootcode is missing - can not test link\n");
2235 return rc;
2238 static void bnx2x_init_port_minmax(struct bnx2x *bp)
2240 u32 r_param = bp->link_vars.line_speed / 8;
2241 u32 fair_periodic_timeout_usec;
2242 u32 t_fair;
2244 memset(&(bp->cmng.rs_vars), 0,
2245 sizeof(struct rate_shaping_vars_per_port));
2246 memset(&(bp->cmng.fair_vars), 0, sizeof(struct fairness_vars_per_port));
2248 /* 100 usec in SDM ticks = 25 since each tick is 4 usec */
2249 bp->cmng.rs_vars.rs_periodic_timeout = RS_PERIODIC_TIMEOUT_USEC / 4;
2251 /* this is the threshold below which no timer arming will occur
2252 1.25 coefficient is for the threshold to be a little bigger
2253 than the real time, to compensate for timer in-accuracy */
2254 bp->cmng.rs_vars.rs_threshold =
2255 (RS_PERIODIC_TIMEOUT_USEC * r_param * 5) / 4;
2257 /* resolution of fairness timer */
2258 fair_periodic_timeout_usec = QM_ARB_BYTES / r_param;
2259 /* for 10G it is 1000usec. for 1G it is 10000usec. */
2260 t_fair = T_FAIR_COEF / bp->link_vars.line_speed;
2262 /* this is the threshold below which we won't arm the timer anymore */
2263 bp->cmng.fair_vars.fair_threshold = QM_ARB_BYTES;
2265 /* we multiply by 1e3/8 to get bytes/msec.
2266 We don't want the credits to pass a credit
2267 of the t_fair*FAIR_MEM (algorithm resolution) */
2268 bp->cmng.fair_vars.upper_bound = r_param * t_fair * FAIR_MEM;
2269 /* since each tick is 4 usec */
2270 bp->cmng.fair_vars.fairness_timeout = fair_periodic_timeout_usec / 4;
2273 /* Calculates the sum of vn_min_rates.
2274 It's needed for further normalizing of the min_rates.
2275 Returns:
2276 sum of vn_min_rates.
2278 0 - if all the min_rates are 0.
2279 In the later case fainess algorithm should be deactivated.
2280 If not all min_rates are zero then those that are zeroes will be set to 1.
2282 static void bnx2x_calc_vn_weight_sum(struct bnx2x *bp)
2284 int all_zero = 1;
2285 int vn;
2287 bp->vn_weight_sum = 0;
2288 for (vn = VN_0; vn < E1HVN_MAX; vn++) {
2289 u32 vn_cfg = bp->mf_config[vn];
2290 u32 vn_min_rate = ((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
2291 FUNC_MF_CFG_MIN_BW_SHIFT) * 100;
2293 /* Skip hidden vns */
2294 if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2295 continue;
2297 /* If min rate is zero - set it to 1 */
2298 if (!vn_min_rate)
2299 vn_min_rate = DEF_MIN_RATE;
2300 else
2301 all_zero = 0;
2303 bp->vn_weight_sum += vn_min_rate;
2306 /* if ETS or all min rates are zeros - disable fairness */
2307 if (BNX2X_IS_ETS_ENABLED(bp)) {
2308 bp->cmng.flags.cmng_enables &=
2309 ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2310 DP(NETIF_MSG_IFUP, "Fairness will be disabled due to ETS\n");
2311 } else if (all_zero) {
2312 bp->cmng.flags.cmng_enables &=
2313 ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2314 DP(NETIF_MSG_IFUP, "All MIN values are zeroes"
2315 " fairness will be disabled\n");
2316 } else
2317 bp->cmng.flags.cmng_enables |=
2318 CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2321 static void bnx2x_init_vn_minmax(struct bnx2x *bp, int vn)
2323 struct rate_shaping_vars_per_vn m_rs_vn;
2324 struct fairness_vars_per_vn m_fair_vn;
2325 u32 vn_cfg = bp->mf_config[vn];
2326 int func = 2*vn + BP_PORT(bp);
2327 u16 vn_min_rate, vn_max_rate;
2328 int i;
2330 /* If function is hidden - set min and max to zeroes */
2331 if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) {
2332 vn_min_rate = 0;
2333 vn_max_rate = 0;
2335 } else {
2336 u32 maxCfg = bnx2x_extract_max_cfg(bp, vn_cfg);
2338 vn_min_rate = ((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
2339 FUNC_MF_CFG_MIN_BW_SHIFT) * 100;
2340 /* If fairness is enabled (not all min rates are zeroes) and
2341 if current min rate is zero - set it to 1.
2342 This is a requirement of the algorithm. */
2343 if (bp->vn_weight_sum && (vn_min_rate == 0))
2344 vn_min_rate = DEF_MIN_RATE;
2346 if (IS_MF_SI(bp))
2347 /* maxCfg in percents of linkspeed */
2348 vn_max_rate = (bp->link_vars.line_speed * maxCfg) / 100;
2349 else
2350 /* maxCfg is absolute in 100Mb units */
2351 vn_max_rate = maxCfg * 100;
2354 DP(NETIF_MSG_IFUP,
2355 "func %d: vn_min_rate %d vn_max_rate %d vn_weight_sum %d\n",
2356 func, vn_min_rate, vn_max_rate, bp->vn_weight_sum);
2358 memset(&m_rs_vn, 0, sizeof(struct rate_shaping_vars_per_vn));
2359 memset(&m_fair_vn, 0, sizeof(struct fairness_vars_per_vn));
2361 /* global vn counter - maximal Mbps for this vn */
2362 m_rs_vn.vn_counter.rate = vn_max_rate;
2364 /* quota - number of bytes transmitted in this period */
2365 m_rs_vn.vn_counter.quota =
2366 (vn_max_rate * RS_PERIODIC_TIMEOUT_USEC) / 8;
2368 if (bp->vn_weight_sum) {
2369 /* credit for each period of the fairness algorithm:
2370 number of bytes in T_FAIR (the vn share the port rate).
2371 vn_weight_sum should not be larger than 10000, thus
2372 T_FAIR_COEF / (8 * vn_weight_sum) will always be greater
2373 than zero */
2374 m_fair_vn.vn_credit_delta =
2375 max_t(u32, (vn_min_rate * (T_FAIR_COEF /
2376 (8 * bp->vn_weight_sum))),
2377 (bp->cmng.fair_vars.fair_threshold +
2378 MIN_ABOVE_THRESH));
2379 DP(NETIF_MSG_IFUP, "m_fair_vn.vn_credit_delta %d\n",
2380 m_fair_vn.vn_credit_delta);
2383 /* Store it to internal memory */
2384 for (i = 0; i < sizeof(struct rate_shaping_vars_per_vn)/4; i++)
2385 REG_WR(bp, BAR_XSTRORM_INTMEM +
2386 XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func) + i * 4,
2387 ((u32 *)(&m_rs_vn))[i]);
2389 for (i = 0; i < sizeof(struct fairness_vars_per_vn)/4; i++)
2390 REG_WR(bp, BAR_XSTRORM_INTMEM +
2391 XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func) + i * 4,
2392 ((u32 *)(&m_fair_vn))[i]);
2395 static int bnx2x_get_cmng_fns_mode(struct bnx2x *bp)
2397 if (CHIP_REV_IS_SLOW(bp))
2398 return CMNG_FNS_NONE;
2399 if (IS_MF(bp))
2400 return CMNG_FNS_MINMAX;
2402 return CMNG_FNS_NONE;
2405 void bnx2x_read_mf_cfg(struct bnx2x *bp)
2407 int vn, n = (CHIP_MODE_IS_4_PORT(bp) ? 2 : 1);
2409 if (BP_NOMCP(bp))
2410 return; /* what should be the default bvalue in this case */
2412 /* For 2 port configuration the absolute function number formula
2413 * is:
2414 * abs_func = 2 * vn + BP_PORT + BP_PATH
2416 * and there are 4 functions per port
2418 * For 4 port configuration it is
2419 * abs_func = 4 * vn + 2 * BP_PORT + BP_PATH
2421 * and there are 2 functions per port
2423 for (vn = VN_0; vn < E1HVN_MAX; vn++) {
2424 int /*abs*/func = n * (2 * vn + BP_PORT(bp)) + BP_PATH(bp);
2426 if (func >= E1H_FUNC_MAX)
2427 break;
2429 bp->mf_config[vn] =
2430 MF_CFG_RD(bp, func_mf_config[func].config);
2434 static void bnx2x_cmng_fns_init(struct bnx2x *bp, u8 read_cfg, u8 cmng_type)
2437 if (cmng_type == CMNG_FNS_MINMAX) {
2438 int vn;
2440 /* clear cmng_enables */
2441 bp->cmng.flags.cmng_enables = 0;
2443 /* read mf conf from shmem */
2444 if (read_cfg)
2445 bnx2x_read_mf_cfg(bp);
2447 /* Init rate shaping and fairness contexts */
2448 bnx2x_init_port_minmax(bp);
2450 /* vn_weight_sum and enable fairness if not 0 */
2451 bnx2x_calc_vn_weight_sum(bp);
2453 /* calculate and set min-max rate for each vn */
2454 if (bp->port.pmf)
2455 for (vn = VN_0; vn < E1HVN_MAX; vn++)
2456 bnx2x_init_vn_minmax(bp, vn);
2458 /* always enable rate shaping and fairness */
2459 bp->cmng.flags.cmng_enables |=
2460 CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN;
2461 if (!bp->vn_weight_sum)
2462 DP(NETIF_MSG_IFUP, "All MIN values are zeroes"
2463 " fairness will be disabled\n");
2464 return;
2467 /* rate shaping and fairness are disabled */
2468 DP(NETIF_MSG_IFUP,
2469 "rate shaping and fairness are disabled\n");
2472 static inline void bnx2x_link_sync_notify(struct bnx2x *bp)
2474 int port = BP_PORT(bp);
2475 int func;
2476 int vn;
2478 /* Set the attention towards other drivers on the same port */
2479 for (vn = VN_0; vn < E1HVN_MAX; vn++) {
2480 if (vn == BP_E1HVN(bp))
2481 continue;
2483 func = ((vn << 1) | port);
2484 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_0 +
2485 (LINK_SYNC_ATTENTION_BIT_FUNC_0 + func)*4, 1);
2489 /* This function is called upon link interrupt */
2490 static void bnx2x_link_attn(struct bnx2x *bp)
2492 /* Make sure that we are synced with the current statistics */
2493 bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2495 bnx2x_link_update(&bp->link_params, &bp->link_vars);
2497 if (bp->link_vars.link_up) {
2499 /* dropless flow control */
2500 if (!CHIP_IS_E1(bp) && bp->dropless_fc) {
2501 int port = BP_PORT(bp);
2502 u32 pause_enabled = 0;
2504 if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX)
2505 pause_enabled = 1;
2507 REG_WR(bp, BAR_USTRORM_INTMEM +
2508 USTORM_ETH_PAUSE_ENABLED_OFFSET(port),
2509 pause_enabled);
2512 if (bp->link_vars.mac_type != MAC_TYPE_EMAC) {
2513 struct host_port_stats *pstats;
2515 pstats = bnx2x_sp(bp, port_stats);
2516 /* reset old mac stats */
2517 memset(&(pstats->mac_stx[0]), 0,
2518 sizeof(struct mac_stx));
2520 if (bp->state == BNX2X_STATE_OPEN)
2521 bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2524 if (bp->link_vars.link_up && bp->link_vars.line_speed) {
2525 int cmng_fns = bnx2x_get_cmng_fns_mode(bp);
2527 if (cmng_fns != CMNG_FNS_NONE) {
2528 bnx2x_cmng_fns_init(bp, false, cmng_fns);
2529 storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
2530 } else
2531 /* rate shaping and fairness are disabled */
2532 DP(NETIF_MSG_IFUP,
2533 "single function mode without fairness\n");
2536 __bnx2x_link_report(bp);
2538 if (IS_MF(bp))
2539 bnx2x_link_sync_notify(bp);
2542 void bnx2x__link_status_update(struct bnx2x *bp)
2544 if (bp->state != BNX2X_STATE_OPEN)
2545 return;
2547 bnx2x_link_status_update(&bp->link_params, &bp->link_vars);
2549 if (bp->link_vars.link_up)
2550 bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2551 else
2552 bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2554 /* indicate link status */
2555 bnx2x_link_report(bp);
2558 static void bnx2x_pmf_update(struct bnx2x *bp)
2560 int port = BP_PORT(bp);
2561 u32 val;
2563 bp->port.pmf = 1;
2564 DP(NETIF_MSG_LINK, "pmf %d\n", bp->port.pmf);
2567 * We need the mb() to ensure the ordering between the writing to
2568 * bp->port.pmf here and reading it from the bnx2x_periodic_task().
2570 smp_mb();
2572 /* queue a periodic task */
2573 queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2575 bnx2x_dcbx_pmf_update(bp);
2577 /* enable nig attention */
2578 val = (0xff0f | (1 << (BP_E1HVN(bp) + 4)));
2579 if (bp->common.int_block == INT_BLOCK_HC) {
2580 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
2581 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
2582 } else if (!CHIP_IS_E1x(bp)) {
2583 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
2584 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
2587 bnx2x_stats_handle(bp, STATS_EVENT_PMF);
2590 /* end of Link */
2592 /* slow path */
2595 * General service functions
2598 /* send the MCP a request, block until there is a reply */
2599 u32 bnx2x_fw_command(struct bnx2x *bp, u32 command, u32 param)
2601 int mb_idx = BP_FW_MB_IDX(bp);
2602 u32 seq;
2603 u32 rc = 0;
2604 u32 cnt = 1;
2605 u8 delay = CHIP_REV_IS_SLOW(bp) ? 100 : 10;
2607 mutex_lock(&bp->fw_mb_mutex);
2608 seq = ++bp->fw_seq;
2609 SHMEM_WR(bp, func_mb[mb_idx].drv_mb_param, param);
2610 SHMEM_WR(bp, func_mb[mb_idx].drv_mb_header, (command | seq));
2612 DP(BNX2X_MSG_MCP, "wrote command (%x) to FW MB param 0x%08x\n",
2613 (command | seq), param);
2615 do {
2616 /* let the FW do it's magic ... */
2617 msleep(delay);
2619 rc = SHMEM_RD(bp, func_mb[mb_idx].fw_mb_header);
2621 /* Give the FW up to 5 second (500*10ms) */
2622 } while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500));
2624 DP(BNX2X_MSG_MCP, "[after %d ms] read (%x) seq is (%x) from FW MB\n",
2625 cnt*delay, rc, seq);
2627 /* is this a reply to our command? */
2628 if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK))
2629 rc &= FW_MSG_CODE_MASK;
2630 else {
2631 /* FW BUG! */
2632 BNX2X_ERR("FW failed to respond!\n");
2633 bnx2x_fw_dump(bp);
2634 rc = 0;
2636 mutex_unlock(&bp->fw_mb_mutex);
2638 return rc;
2641 static u8 stat_counter_valid(struct bnx2x *bp, struct bnx2x_fastpath *fp)
2643 #ifdef BCM_CNIC
2644 /* Statistics are not supported for CNIC Clients at the moment */
2645 if (IS_FCOE_FP(fp))
2646 return false;
2647 #endif
2648 return true;
2651 void bnx2x_func_init(struct bnx2x *bp, struct bnx2x_func_init_params *p)
2653 if (CHIP_IS_E1x(bp)) {
2654 struct tstorm_eth_function_common_config tcfg = {0};
2656 storm_memset_func_cfg(bp, &tcfg, p->func_id);
2659 /* Enable the function in the FW */
2660 storm_memset_vf_to_pf(bp, p->func_id, p->pf_id);
2661 storm_memset_func_en(bp, p->func_id, 1);
2663 /* spq */
2664 if (p->func_flgs & FUNC_FLG_SPQ) {
2665 storm_memset_spq_addr(bp, p->spq_map, p->func_id);
2666 REG_WR(bp, XSEM_REG_FAST_MEMORY +
2667 XSTORM_SPQ_PROD_OFFSET(p->func_id), p->spq_prod);
2672 * bnx2x_get_tx_only_flags - Return common flags
2674 * @bp device handle
2675 * @fp queue handle
2676 * @zero_stats TRUE if statistics zeroing is needed
2678 * Return the flags that are common for the Tx-only and not normal connections.
2680 static inline unsigned long bnx2x_get_common_flags(struct bnx2x *bp,
2681 struct bnx2x_fastpath *fp,
2682 bool zero_stats)
2684 unsigned long flags = 0;
2686 /* PF driver will always initialize the Queue to an ACTIVE state */
2687 __set_bit(BNX2X_Q_FLG_ACTIVE, &flags);
2689 /* tx only connections collect statistics (on the same index as the
2690 * parent connection). The statistics are zeroed when the parent
2691 * connection is initialized.
2693 if (stat_counter_valid(bp, fp)) {
2694 __set_bit(BNX2X_Q_FLG_STATS, &flags);
2695 if (zero_stats)
2696 __set_bit(BNX2X_Q_FLG_ZERO_STATS, &flags);
2699 return flags;
2702 static inline unsigned long bnx2x_get_q_flags(struct bnx2x *bp,
2703 struct bnx2x_fastpath *fp,
2704 bool leading)
2706 unsigned long flags = 0;
2708 /* calculate other queue flags */
2709 if (IS_MF_SD(bp))
2710 __set_bit(BNX2X_Q_FLG_OV, &flags);
2712 if (IS_FCOE_FP(fp))
2713 __set_bit(BNX2X_Q_FLG_FCOE, &flags);
2715 if (!fp->disable_tpa) {
2716 __set_bit(BNX2X_Q_FLG_TPA, &flags);
2717 __set_bit(BNX2X_Q_FLG_TPA_IPV6, &flags);
2720 if (leading) {
2721 __set_bit(BNX2X_Q_FLG_LEADING_RSS, &flags);
2722 __set_bit(BNX2X_Q_FLG_MCAST, &flags);
2725 /* Always set HW VLAN stripping */
2726 __set_bit(BNX2X_Q_FLG_VLAN, &flags);
2729 return flags | bnx2x_get_common_flags(bp, fp, true);
2732 static void bnx2x_pf_q_prep_general(struct bnx2x *bp,
2733 struct bnx2x_fastpath *fp, struct bnx2x_general_setup_params *gen_init,
2734 u8 cos)
2736 gen_init->stat_id = bnx2x_stats_id(fp);
2737 gen_init->spcl_id = fp->cl_id;
2739 /* Always use mini-jumbo MTU for FCoE L2 ring */
2740 if (IS_FCOE_FP(fp))
2741 gen_init->mtu = BNX2X_FCOE_MINI_JUMBO_MTU;
2742 else
2743 gen_init->mtu = bp->dev->mtu;
2745 gen_init->cos = cos;
2748 static void bnx2x_pf_rx_q_prep(struct bnx2x *bp,
2749 struct bnx2x_fastpath *fp, struct rxq_pause_params *pause,
2750 struct bnx2x_rxq_setup_params *rxq_init)
2752 u8 max_sge = 0;
2753 u16 sge_sz = 0;
2754 u16 tpa_agg_size = 0;
2756 if (!fp->disable_tpa) {
2757 pause->sge_th_hi = 250;
2758 pause->sge_th_lo = 150;
2759 tpa_agg_size = min_t(u32,
2760 (min_t(u32, 8, MAX_SKB_FRAGS) *
2761 SGE_PAGE_SIZE * PAGES_PER_SGE), 0xffff);
2762 max_sge = SGE_PAGE_ALIGN(bp->dev->mtu) >>
2763 SGE_PAGE_SHIFT;
2764 max_sge = ((max_sge + PAGES_PER_SGE - 1) &
2765 (~(PAGES_PER_SGE-1))) >> PAGES_PER_SGE_SHIFT;
2766 sge_sz = (u16)min_t(u32, SGE_PAGE_SIZE * PAGES_PER_SGE,
2767 0xffff);
2770 /* pause - not for e1 */
2771 if (!CHIP_IS_E1(bp)) {
2772 pause->bd_th_hi = 350;
2773 pause->bd_th_lo = 250;
2774 pause->rcq_th_hi = 350;
2775 pause->rcq_th_lo = 250;
2777 pause->pri_map = 1;
2780 /* rxq setup */
2781 rxq_init->dscr_map = fp->rx_desc_mapping;
2782 rxq_init->sge_map = fp->rx_sge_mapping;
2783 rxq_init->rcq_map = fp->rx_comp_mapping;
2784 rxq_init->rcq_np_map = fp->rx_comp_mapping + BCM_PAGE_SIZE;
2786 /* This should be a maximum number of data bytes that may be
2787 * placed on the BD (not including paddings).
2789 rxq_init->buf_sz = fp->rx_buf_size - BNX2X_FW_RX_ALIGN -
2790 IP_HEADER_ALIGNMENT_PADDING;
2792 rxq_init->cl_qzone_id = fp->cl_qzone_id;
2793 rxq_init->tpa_agg_sz = tpa_agg_size;
2794 rxq_init->sge_buf_sz = sge_sz;
2795 rxq_init->max_sges_pkt = max_sge;
2796 rxq_init->rss_engine_id = BP_FUNC(bp);
2798 /* Maximum number or simultaneous TPA aggregation for this Queue.
2800 * For PF Clients it should be the maximum avaliable number.
2801 * VF driver(s) may want to define it to a smaller value.
2803 rxq_init->max_tpa_queues =
2804 (CHIP_IS_E1(bp) ? ETH_MAX_AGGREGATION_QUEUES_E1 :
2805 ETH_MAX_AGGREGATION_QUEUES_E1H_E2);
2807 rxq_init->cache_line_log = BNX2X_RX_ALIGN_SHIFT;
2808 rxq_init->fw_sb_id = fp->fw_sb_id;
2810 if (IS_FCOE_FP(fp))
2811 rxq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS;
2812 else
2813 rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
2816 static void bnx2x_pf_tx_q_prep(struct bnx2x *bp,
2817 struct bnx2x_fastpath *fp, struct bnx2x_txq_setup_params *txq_init,
2818 u8 cos)
2820 txq_init->dscr_map = fp->txdata[cos].tx_desc_mapping;
2821 txq_init->sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos;
2822 txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW;
2823 txq_init->fw_sb_id = fp->fw_sb_id;
2826 * set the tss leading client id for TX classfication ==
2827 * leading RSS client id
2829 txq_init->tss_leading_cl_id = bnx2x_fp(bp, 0, cl_id);
2831 if (IS_FCOE_FP(fp)) {
2832 txq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS;
2833 txq_init->traffic_type = LLFC_TRAFFIC_TYPE_FCOE;
2837 static void bnx2x_pf_init(struct bnx2x *bp)
2839 struct bnx2x_func_init_params func_init = {0};
2840 struct event_ring_data eq_data = { {0} };
2841 u16 flags;
2843 if (!CHIP_IS_E1x(bp)) {
2844 /* reset IGU PF statistics: MSIX + ATTN */
2845 /* PF */
2846 REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
2847 BNX2X_IGU_STAS_MSG_VF_CNT*4 +
2848 (CHIP_MODE_IS_4_PORT(bp) ?
2849 BP_FUNC(bp) : BP_VN(bp))*4, 0);
2850 /* ATTN */
2851 REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
2852 BNX2X_IGU_STAS_MSG_VF_CNT*4 +
2853 BNX2X_IGU_STAS_MSG_PF_CNT*4 +
2854 (CHIP_MODE_IS_4_PORT(bp) ?
2855 BP_FUNC(bp) : BP_VN(bp))*4, 0);
2858 /* function setup flags */
2859 flags = (FUNC_FLG_STATS | FUNC_FLG_LEADING | FUNC_FLG_SPQ);
2861 /* This flag is relevant for E1x only.
2862 * E2 doesn't have a TPA configuration in a function level.
2864 flags |= (bp->flags & TPA_ENABLE_FLAG) ? FUNC_FLG_TPA : 0;
2866 func_init.func_flgs = flags;
2867 func_init.pf_id = BP_FUNC(bp);
2868 func_init.func_id = BP_FUNC(bp);
2869 func_init.spq_map = bp->spq_mapping;
2870 func_init.spq_prod = bp->spq_prod_idx;
2872 bnx2x_func_init(bp, &func_init);
2874 memset(&(bp->cmng), 0, sizeof(struct cmng_struct_per_port));
2877 * Congestion management values depend on the link rate
2878 * There is no active link so initial link rate is set to 10 Gbps.
2879 * When the link comes up The congestion management values are
2880 * re-calculated according to the actual link rate.
2882 bp->link_vars.line_speed = SPEED_10000;
2883 bnx2x_cmng_fns_init(bp, true, bnx2x_get_cmng_fns_mode(bp));
2885 /* Only the PMF sets the HW */
2886 if (bp->port.pmf)
2887 storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
2889 /* init Event Queue */
2890 eq_data.base_addr.hi = U64_HI(bp->eq_mapping);
2891 eq_data.base_addr.lo = U64_LO(bp->eq_mapping);
2892 eq_data.producer = bp->eq_prod;
2893 eq_data.index_id = HC_SP_INDEX_EQ_CONS;
2894 eq_data.sb_id = DEF_SB_ID;
2895 storm_memset_eq_data(bp, &eq_data, BP_FUNC(bp));
2899 static void bnx2x_e1h_disable(struct bnx2x *bp)
2901 int port = BP_PORT(bp);
2903 bnx2x_tx_disable(bp);
2905 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
2908 static void bnx2x_e1h_enable(struct bnx2x *bp)
2910 int port = BP_PORT(bp);
2912 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 1);
2914 /* Tx queue should be only reenabled */
2915 netif_tx_wake_all_queues(bp->dev);
2918 * Should not call netif_carrier_on since it will be called if the link
2919 * is up when checking for link state
2923 /* called due to MCP event (on pmf):
2924 * reread new bandwidth configuration
2925 * configure FW
2926 * notify others function about the change
2928 static inline void bnx2x_config_mf_bw(struct bnx2x *bp)
2930 if (bp->link_vars.link_up) {
2931 bnx2x_cmng_fns_init(bp, true, CMNG_FNS_MINMAX);
2932 bnx2x_link_sync_notify(bp);
2934 storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
2937 static inline void bnx2x_set_mf_bw(struct bnx2x *bp)
2939 bnx2x_config_mf_bw(bp);
2940 bnx2x_fw_command(bp, DRV_MSG_CODE_SET_MF_BW_ACK, 0);
2943 static void bnx2x_dcc_event(struct bnx2x *bp, u32 dcc_event)
2945 DP(BNX2X_MSG_MCP, "dcc_event 0x%x\n", dcc_event);
2947 if (dcc_event & DRV_STATUS_DCC_DISABLE_ENABLE_PF) {
2950 * This is the only place besides the function initialization
2951 * where the bp->flags can change so it is done without any
2952 * locks
2954 if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
2955 DP(NETIF_MSG_IFDOWN, "mf_cfg function disabled\n");
2956 bp->flags |= MF_FUNC_DIS;
2958 bnx2x_e1h_disable(bp);
2959 } else {
2960 DP(NETIF_MSG_IFUP, "mf_cfg function enabled\n");
2961 bp->flags &= ~MF_FUNC_DIS;
2963 bnx2x_e1h_enable(bp);
2965 dcc_event &= ~DRV_STATUS_DCC_DISABLE_ENABLE_PF;
2967 if (dcc_event & DRV_STATUS_DCC_BANDWIDTH_ALLOCATION) {
2968 bnx2x_config_mf_bw(bp);
2969 dcc_event &= ~DRV_STATUS_DCC_BANDWIDTH_ALLOCATION;
2972 /* Report results to MCP */
2973 if (dcc_event)
2974 bnx2x_fw_command(bp, DRV_MSG_CODE_DCC_FAILURE, 0);
2975 else
2976 bnx2x_fw_command(bp, DRV_MSG_CODE_DCC_OK, 0);
2979 /* must be called under the spq lock */
2980 static inline struct eth_spe *bnx2x_sp_get_next(struct bnx2x *bp)
2982 struct eth_spe *next_spe = bp->spq_prod_bd;
2984 if (bp->spq_prod_bd == bp->spq_last_bd) {
2985 bp->spq_prod_bd = bp->spq;
2986 bp->spq_prod_idx = 0;
2987 DP(NETIF_MSG_TIMER, "end of spq\n");
2988 } else {
2989 bp->spq_prod_bd++;
2990 bp->spq_prod_idx++;
2992 return next_spe;
2995 /* must be called under the spq lock */
2996 static inline void bnx2x_sp_prod_update(struct bnx2x *bp)
2998 int func = BP_FUNC(bp);
3001 * Make sure that BD data is updated before writing the producer:
3002 * BD data is written to the memory, the producer is read from the
3003 * memory, thus we need a full memory barrier to ensure the ordering.
3005 mb();
3007 REG_WR16(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func),
3008 bp->spq_prod_idx);
3009 mmiowb();
3013 * bnx2x_is_contextless_ramrod - check if the current command ends on EQ
3015 * @cmd: command to check
3016 * @cmd_type: command type
3018 static inline bool bnx2x_is_contextless_ramrod(int cmd, int cmd_type)
3020 if ((cmd_type == NONE_CONNECTION_TYPE) ||
3021 (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) ||
3022 (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) ||
3023 (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) ||
3024 (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) ||
3025 (cmd == RAMROD_CMD_ID_ETH_SET_MAC) ||
3026 (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE))
3027 return true;
3028 else
3029 return false;
3035 * bnx2x_sp_post - place a single command on an SP ring
3037 * @bp: driver handle
3038 * @command: command to place (e.g. SETUP, FILTER_RULES, etc.)
3039 * @cid: SW CID the command is related to
3040 * @data_hi: command private data address (high 32 bits)
3041 * @data_lo: command private data address (low 32 bits)
3042 * @cmd_type: command type (e.g. NONE, ETH)
3044 * SP data is handled as if it's always an address pair, thus data fields are
3045 * not swapped to little endian in upper functions. Instead this function swaps
3046 * data as if it's two u32 fields.
3048 int bnx2x_sp_post(struct bnx2x *bp, int command, int cid,
3049 u32 data_hi, u32 data_lo, int cmd_type)
3051 struct eth_spe *spe;
3052 u16 type;
3053 bool common = bnx2x_is_contextless_ramrod(command, cmd_type);
3055 #ifdef BNX2X_STOP_ON_ERROR
3056 if (unlikely(bp->panic))
3057 return -EIO;
3058 #endif
3060 spin_lock_bh(&bp->spq_lock);
3062 if (common) {
3063 if (!atomic_read(&bp->eq_spq_left)) {
3064 BNX2X_ERR("BUG! EQ ring full!\n");
3065 spin_unlock_bh(&bp->spq_lock);
3066 bnx2x_panic();
3067 return -EBUSY;
3069 } else if (!atomic_read(&bp->cq_spq_left)) {
3070 BNX2X_ERR("BUG! SPQ ring full!\n");
3071 spin_unlock_bh(&bp->spq_lock);
3072 bnx2x_panic();
3073 return -EBUSY;
3076 spe = bnx2x_sp_get_next(bp);
3078 /* CID needs port number to be encoded int it */
3079 spe->hdr.conn_and_cmd_data =
3080 cpu_to_le32((command << SPE_HDR_CMD_ID_SHIFT) |
3081 HW_CID(bp, cid));
3083 type = (cmd_type << SPE_HDR_CONN_TYPE_SHIFT) & SPE_HDR_CONN_TYPE;
3085 type |= ((BP_FUNC(bp) << SPE_HDR_FUNCTION_ID_SHIFT) &
3086 SPE_HDR_FUNCTION_ID);
3088 spe->hdr.type = cpu_to_le16(type);
3090 spe->data.update_data_addr.hi = cpu_to_le32(data_hi);
3091 spe->data.update_data_addr.lo = cpu_to_le32(data_lo);
3094 * It's ok if the actual decrement is issued towards the memory
3095 * somewhere between the spin_lock and spin_unlock. Thus no
3096 * more explict memory barrier is needed.
3098 if (common)
3099 atomic_dec(&bp->eq_spq_left);
3100 else
3101 atomic_dec(&bp->cq_spq_left);
3104 DP(BNX2X_MSG_SP/*NETIF_MSG_TIMER*/,
3105 "SPQE[%x] (%x:%x) (cmd, common?) (%d,%d) hw_cid %x data (%x:%x) "
3106 "type(0x%x) left (CQ, EQ) (%x,%x)\n",
3107 bp->spq_prod_idx, (u32)U64_HI(bp->spq_mapping),
3108 (u32)(U64_LO(bp->spq_mapping) +
3109 (void *)bp->spq_prod_bd - (void *)bp->spq), command, common,
3110 HW_CID(bp, cid), data_hi, data_lo, type,
3111 atomic_read(&bp->cq_spq_left), atomic_read(&bp->eq_spq_left));
3113 bnx2x_sp_prod_update(bp);
3114 spin_unlock_bh(&bp->spq_lock);
3115 return 0;
3118 /* acquire split MCP access lock register */
3119 static int bnx2x_acquire_alr(struct bnx2x *bp)
3121 u32 j, val;
3122 int rc = 0;
3124 might_sleep();
3125 for (j = 0; j < 1000; j++) {
3126 val = (1UL << 31);
3127 REG_WR(bp, GRCBASE_MCP + 0x9c, val);
3128 val = REG_RD(bp, GRCBASE_MCP + 0x9c);
3129 if (val & (1L << 31))
3130 break;
3132 msleep(5);
3134 if (!(val & (1L << 31))) {
3135 BNX2X_ERR("Cannot acquire MCP access lock register\n");
3136 rc = -EBUSY;
3139 return rc;
3142 /* release split MCP access lock register */
3143 static void bnx2x_release_alr(struct bnx2x *bp)
3145 REG_WR(bp, GRCBASE_MCP + 0x9c, 0);
3148 #define BNX2X_DEF_SB_ATT_IDX 0x0001
3149 #define BNX2X_DEF_SB_IDX 0x0002
3151 static inline u16 bnx2x_update_dsb_idx(struct bnx2x *bp)
3153 struct host_sp_status_block *def_sb = bp->def_status_blk;
3154 u16 rc = 0;
3156 barrier(); /* status block is written to by the chip */
3157 if (bp->def_att_idx != def_sb->atten_status_block.attn_bits_index) {
3158 bp->def_att_idx = def_sb->atten_status_block.attn_bits_index;
3159 rc |= BNX2X_DEF_SB_ATT_IDX;
3162 if (bp->def_idx != def_sb->sp_sb.running_index) {
3163 bp->def_idx = def_sb->sp_sb.running_index;
3164 rc |= BNX2X_DEF_SB_IDX;
3167 /* Do not reorder: indecies reading should complete before handling */
3168 barrier();
3169 return rc;
3173 * slow path service functions
3176 static void bnx2x_attn_int_asserted(struct bnx2x *bp, u32 asserted)
3178 int port = BP_PORT(bp);
3179 u32 aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
3180 MISC_REG_AEU_MASK_ATTN_FUNC_0;
3181 u32 nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 :
3182 NIG_REG_MASK_INTERRUPT_PORT0;
3183 u32 aeu_mask;
3184 u32 nig_mask = 0;
3185 u32 reg_addr;
3187 if (bp->attn_state & asserted)
3188 BNX2X_ERR("IGU ERROR\n");
3190 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
3191 aeu_mask = REG_RD(bp, aeu_addr);
3193 DP(NETIF_MSG_HW, "aeu_mask %x newly asserted %x\n",
3194 aeu_mask, asserted);
3195 aeu_mask &= ~(asserted & 0x3ff);
3196 DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
3198 REG_WR(bp, aeu_addr, aeu_mask);
3199 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
3201 DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
3202 bp->attn_state |= asserted;
3203 DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
3205 if (asserted & ATTN_HARD_WIRED_MASK) {
3206 if (asserted & ATTN_NIG_FOR_FUNC) {
3208 bnx2x_acquire_phy_lock(bp);
3210 /* save nig interrupt mask */
3211 nig_mask = REG_RD(bp, nig_int_mask_addr);
3213 /* If nig_mask is not set, no need to call the update
3214 * function.
3216 if (nig_mask) {
3217 REG_WR(bp, nig_int_mask_addr, 0);
3219 bnx2x_link_attn(bp);
3222 /* handle unicore attn? */
3224 if (asserted & ATTN_SW_TIMER_4_FUNC)
3225 DP(NETIF_MSG_HW, "ATTN_SW_TIMER_4_FUNC!\n");
3227 if (asserted & GPIO_2_FUNC)
3228 DP(NETIF_MSG_HW, "GPIO_2_FUNC!\n");
3230 if (asserted & GPIO_3_FUNC)
3231 DP(NETIF_MSG_HW, "GPIO_3_FUNC!\n");
3233 if (asserted & GPIO_4_FUNC)
3234 DP(NETIF_MSG_HW, "GPIO_4_FUNC!\n");
3236 if (port == 0) {
3237 if (asserted & ATTN_GENERAL_ATTN_1) {
3238 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_1!\n");
3239 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_1, 0x0);
3241 if (asserted & ATTN_GENERAL_ATTN_2) {
3242 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_2!\n");
3243 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_2, 0x0);
3245 if (asserted & ATTN_GENERAL_ATTN_3) {
3246 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_3!\n");
3247 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_3, 0x0);
3249 } else {
3250 if (asserted & ATTN_GENERAL_ATTN_4) {
3251 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_4!\n");
3252 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_4, 0x0);
3254 if (asserted & ATTN_GENERAL_ATTN_5) {
3255 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_5!\n");
3256 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_5, 0x0);
3258 if (asserted & ATTN_GENERAL_ATTN_6) {
3259 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_6!\n");
3260 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_6, 0x0);
3264 } /* if hardwired */
3266 if (bp->common.int_block == INT_BLOCK_HC)
3267 reg_addr = (HC_REG_COMMAND_REG + port*32 +
3268 COMMAND_REG_ATTN_BITS_SET);
3269 else
3270 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8);
3272 DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", asserted,
3273 (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
3274 REG_WR(bp, reg_addr, asserted);
3276 /* now set back the mask */
3277 if (asserted & ATTN_NIG_FOR_FUNC) {
3278 REG_WR(bp, nig_int_mask_addr, nig_mask);
3279 bnx2x_release_phy_lock(bp);
3283 static inline void bnx2x_fan_failure(struct bnx2x *bp)
3285 int port = BP_PORT(bp);
3286 u32 ext_phy_config;
3287 /* mark the failure */
3288 ext_phy_config =
3289 SHMEM_RD(bp,
3290 dev_info.port_hw_config[port].external_phy_config);
3292 ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK;
3293 ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE;
3294 SHMEM_WR(bp, dev_info.port_hw_config[port].external_phy_config,
3295 ext_phy_config);
3297 /* log the failure */
3298 netdev_err(bp->dev, "Fan Failure on Network Controller has caused"
3299 " the driver to shutdown the card to prevent permanent"
3300 " damage. Please contact OEM Support for assistance\n");
3303 static inline void bnx2x_attn_int_deasserted0(struct bnx2x *bp, u32 attn)
3305 int port = BP_PORT(bp);
3306 int reg_offset;
3307 u32 val;
3309 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
3310 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
3312 if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) {
3314 val = REG_RD(bp, reg_offset);
3315 val &= ~AEU_INPUTS_ATTN_BITS_SPIO5;
3316 REG_WR(bp, reg_offset, val);
3318 BNX2X_ERR("SPIO5 hw attention\n");
3320 /* Fan failure attention */
3321 bnx2x_hw_reset_phy(&bp->link_params);
3322 bnx2x_fan_failure(bp);
3325 if ((attn & bp->link_vars.aeu_int_mask) && bp->port.pmf) {
3326 bnx2x_acquire_phy_lock(bp);
3327 bnx2x_handle_module_detect_int(&bp->link_params);
3328 bnx2x_release_phy_lock(bp);
3331 if (attn & HW_INTERRUT_ASSERT_SET_0) {
3333 val = REG_RD(bp, reg_offset);
3334 val &= ~(attn & HW_INTERRUT_ASSERT_SET_0);
3335 REG_WR(bp, reg_offset, val);
3337 BNX2X_ERR("FATAL HW block attention set0 0x%x\n",
3338 (u32)(attn & HW_INTERRUT_ASSERT_SET_0));
3339 bnx2x_panic();
3343 static inline void bnx2x_attn_int_deasserted1(struct bnx2x *bp, u32 attn)
3345 u32 val;
3347 if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) {
3349 val = REG_RD(bp, DORQ_REG_DORQ_INT_STS_CLR);
3350 BNX2X_ERR("DB hw attention 0x%x\n", val);
3351 /* DORQ discard attention */
3352 if (val & 0x2)
3353 BNX2X_ERR("FATAL error from DORQ\n");
3356 if (attn & HW_INTERRUT_ASSERT_SET_1) {
3358 int port = BP_PORT(bp);
3359 int reg_offset;
3361 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 :
3362 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1);
3364 val = REG_RD(bp, reg_offset);
3365 val &= ~(attn & HW_INTERRUT_ASSERT_SET_1);
3366 REG_WR(bp, reg_offset, val);
3368 BNX2X_ERR("FATAL HW block attention set1 0x%x\n",
3369 (u32)(attn & HW_INTERRUT_ASSERT_SET_1));
3370 bnx2x_panic();
3374 static inline void bnx2x_attn_int_deasserted2(struct bnx2x *bp, u32 attn)
3376 u32 val;
3378 if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) {
3380 val = REG_RD(bp, CFC_REG_CFC_INT_STS_CLR);
3381 BNX2X_ERR("CFC hw attention 0x%x\n", val);
3382 /* CFC error attention */
3383 if (val & 0x2)
3384 BNX2X_ERR("FATAL error from CFC\n");
3387 if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) {
3388 val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_0);
3389 BNX2X_ERR("PXP hw attention-0 0x%x\n", val);
3390 /* RQ_USDMDP_FIFO_OVERFLOW */
3391 if (val & 0x18000)
3392 BNX2X_ERR("FATAL error from PXP\n");
3394 if (!CHIP_IS_E1x(bp)) {
3395 val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_1);
3396 BNX2X_ERR("PXP hw attention-1 0x%x\n", val);
3400 if (attn & HW_INTERRUT_ASSERT_SET_2) {
3402 int port = BP_PORT(bp);
3403 int reg_offset;
3405 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 :
3406 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2);
3408 val = REG_RD(bp, reg_offset);
3409 val &= ~(attn & HW_INTERRUT_ASSERT_SET_2);
3410 REG_WR(bp, reg_offset, val);
3412 BNX2X_ERR("FATAL HW block attention set2 0x%x\n",
3413 (u32)(attn & HW_INTERRUT_ASSERT_SET_2));
3414 bnx2x_panic();
3418 static inline void bnx2x_attn_int_deasserted3(struct bnx2x *bp, u32 attn)
3420 u32 val;
3422 if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) {
3424 if (attn & BNX2X_PMF_LINK_ASSERT) {
3425 int func = BP_FUNC(bp);
3427 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
3428 bp->mf_config[BP_VN(bp)] = MF_CFG_RD(bp,
3429 func_mf_config[BP_ABS_FUNC(bp)].config);
3430 val = SHMEM_RD(bp,
3431 func_mb[BP_FW_MB_IDX(bp)].drv_status);
3432 if (val & DRV_STATUS_DCC_EVENT_MASK)
3433 bnx2x_dcc_event(bp,
3434 (val & DRV_STATUS_DCC_EVENT_MASK));
3436 if (val & DRV_STATUS_SET_MF_BW)
3437 bnx2x_set_mf_bw(bp);
3439 if ((bp->port.pmf == 0) && (val & DRV_STATUS_PMF))
3440 bnx2x_pmf_update(bp);
3442 if (bp->port.pmf &&
3443 (val & DRV_STATUS_DCBX_NEGOTIATION_RESULTS) &&
3444 bp->dcbx_enabled > 0)
3445 /* start dcbx state machine */
3446 bnx2x_dcbx_set_params(bp,
3447 BNX2X_DCBX_STATE_NEG_RECEIVED);
3448 if (bp->link_vars.periodic_flags &
3449 PERIODIC_FLAGS_LINK_EVENT) {
3450 /* sync with link */
3451 bnx2x_acquire_phy_lock(bp);
3452 bp->link_vars.periodic_flags &=
3453 ~PERIODIC_FLAGS_LINK_EVENT;
3454 bnx2x_release_phy_lock(bp);
3455 if (IS_MF(bp))
3456 bnx2x_link_sync_notify(bp);
3457 bnx2x_link_report(bp);
3459 /* Always call it here: bnx2x_link_report() will
3460 * prevent the link indication duplication.
3462 bnx2x__link_status_update(bp);
3463 } else if (attn & BNX2X_MC_ASSERT_BITS) {
3465 BNX2X_ERR("MC assert!\n");
3466 bnx2x_mc_assert(bp);
3467 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_10, 0);
3468 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_9, 0);
3469 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_8, 0);
3470 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_7, 0);
3471 bnx2x_panic();
3473 } else if (attn & BNX2X_MCP_ASSERT) {
3475 BNX2X_ERR("MCP assert!\n");
3476 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_11, 0);
3477 bnx2x_fw_dump(bp);
3479 } else
3480 BNX2X_ERR("Unknown HW assert! (attn 0x%x)\n", attn);
3483 if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) {
3484 BNX2X_ERR("LATCHED attention 0x%08x (masked)\n", attn);
3485 if (attn & BNX2X_GRC_TIMEOUT) {
3486 val = CHIP_IS_E1(bp) ? 0 :
3487 REG_RD(bp, MISC_REG_GRC_TIMEOUT_ATTN);
3488 BNX2X_ERR("GRC time-out 0x%08x\n", val);
3490 if (attn & BNX2X_GRC_RSV) {
3491 val = CHIP_IS_E1(bp) ? 0 :
3492 REG_RD(bp, MISC_REG_GRC_RSV_ATTN);
3493 BNX2X_ERR("GRC reserved 0x%08x\n", val);
3495 REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff);
3500 * Bits map:
3501 * 0-7 - Engine0 load counter.
3502 * 8-15 - Engine1 load counter.
3503 * 16 - Engine0 RESET_IN_PROGRESS bit.
3504 * 17 - Engine1 RESET_IN_PROGRESS bit.
3505 * 18 - Engine0 ONE_IS_LOADED. Set when there is at least one active function
3506 * on the engine
3507 * 19 - Engine1 ONE_IS_LOADED.
3508 * 20 - Chip reset flow bit. When set none-leader must wait for both engines
3509 * leader to complete (check for both RESET_IN_PROGRESS bits and not for
3510 * just the one belonging to its engine).
3513 #define BNX2X_RECOVERY_GLOB_REG MISC_REG_GENERIC_POR_1
3515 #define BNX2X_PATH0_LOAD_CNT_MASK 0x000000ff
3516 #define BNX2X_PATH0_LOAD_CNT_SHIFT 0
3517 #define BNX2X_PATH1_LOAD_CNT_MASK 0x0000ff00
3518 #define BNX2X_PATH1_LOAD_CNT_SHIFT 8
3519 #define BNX2X_PATH0_RST_IN_PROG_BIT 0x00010000
3520 #define BNX2X_PATH1_RST_IN_PROG_BIT 0x00020000
3521 #define BNX2X_GLOBAL_RESET_BIT 0x00040000
3524 * Set the GLOBAL_RESET bit.
3526 * Should be run under rtnl lock
3528 void bnx2x_set_reset_global(struct bnx2x *bp)
3530 u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3532 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val | BNX2X_GLOBAL_RESET_BIT);
3533 barrier();
3534 mmiowb();
3538 * Clear the GLOBAL_RESET bit.
3540 * Should be run under rtnl lock
3542 static inline void bnx2x_clear_reset_global(struct bnx2x *bp)
3544 u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3546 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val & (~BNX2X_GLOBAL_RESET_BIT));
3547 barrier();
3548 mmiowb();
3552 * Checks the GLOBAL_RESET bit.
3554 * should be run under rtnl lock
3556 static inline bool bnx2x_reset_is_global(struct bnx2x *bp)
3558 u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3560 DP(NETIF_MSG_HW, "GEN_REG_VAL=0x%08x\n", val);
3561 return (val & BNX2X_GLOBAL_RESET_BIT) ? true : false;
3565 * Clear RESET_IN_PROGRESS bit for the current engine.
3567 * Should be run under rtnl lock
3569 static inline void bnx2x_set_reset_done(struct bnx2x *bp)
3571 u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3572 u32 bit = BP_PATH(bp) ?
3573 BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
3575 /* Clear the bit */
3576 val &= ~bit;
3577 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
3578 barrier();
3579 mmiowb();
3583 * Set RESET_IN_PROGRESS for the current engine.
3585 * should be run under rtnl lock
3587 void bnx2x_set_reset_in_progress(struct bnx2x *bp)
3589 u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3590 u32 bit = BP_PATH(bp) ?
3591 BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
3593 /* Set the bit */
3594 val |= bit;
3595 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
3596 barrier();
3597 mmiowb();
3601 * Checks the RESET_IN_PROGRESS bit for the given engine.
3602 * should be run under rtnl lock
3604 bool bnx2x_reset_is_done(struct bnx2x *bp, int engine)
3606 u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3607 u32 bit = engine ?
3608 BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
3610 /* return false if bit is set */
3611 return (val & bit) ? false : true;
3615 * Increment the load counter for the current engine.
3617 * should be run under rtnl lock
3619 void bnx2x_inc_load_cnt(struct bnx2x *bp)
3621 u32 val1, val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3622 u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
3623 BNX2X_PATH0_LOAD_CNT_MASK;
3624 u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
3625 BNX2X_PATH0_LOAD_CNT_SHIFT;
3627 DP(NETIF_MSG_HW, "Old GEN_REG_VAL=0x%08x\n", val);
3629 /* get the current counter value */
3630 val1 = (val & mask) >> shift;
3632 /* increment... */
3633 val1++;
3635 /* clear the old value */
3636 val &= ~mask;
3638 /* set the new one */
3639 val |= ((val1 << shift) & mask);
3641 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
3642 barrier();
3643 mmiowb();
3647 * bnx2x_dec_load_cnt - decrement the load counter
3649 * @bp: driver handle
3651 * Should be run under rtnl lock.
3652 * Decrements the load counter for the current engine. Returns
3653 * the new counter value.
3655 u32 bnx2x_dec_load_cnt(struct bnx2x *bp)
3657 u32 val1, val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3658 u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
3659 BNX2X_PATH0_LOAD_CNT_MASK;
3660 u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
3661 BNX2X_PATH0_LOAD_CNT_SHIFT;
3663 DP(NETIF_MSG_HW, "Old GEN_REG_VAL=0x%08x\n", val);
3665 /* get the current counter value */
3666 val1 = (val & mask) >> shift;
3668 /* decrement... */
3669 val1--;
3671 /* clear the old value */
3672 val &= ~mask;
3674 /* set the new one */
3675 val |= ((val1 << shift) & mask);
3677 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
3678 barrier();
3679 mmiowb();
3681 return val1;
3685 * Read the load counter for the current engine.
3687 * should be run under rtnl lock
3689 static inline u32 bnx2x_get_load_cnt(struct bnx2x *bp, int engine)
3691 u32 mask = (engine ? BNX2X_PATH1_LOAD_CNT_MASK :
3692 BNX2X_PATH0_LOAD_CNT_MASK);
3693 u32 shift = (engine ? BNX2X_PATH1_LOAD_CNT_SHIFT :
3694 BNX2X_PATH0_LOAD_CNT_SHIFT);
3695 u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3697 DP(NETIF_MSG_HW, "GLOB_REG=0x%08x\n", val);
3699 val = (val & mask) >> shift;
3701 DP(NETIF_MSG_HW, "load_cnt for engine %d = %d\n", engine, val);
3703 return val;
3707 * Reset the load counter for the current engine.
3709 * should be run under rtnl lock
3711 static inline void bnx2x_clear_load_cnt(struct bnx2x *bp)
3713 u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3714 u32 mask = (BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
3715 BNX2X_PATH0_LOAD_CNT_MASK);
3717 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val & (~mask));
3720 static inline void _print_next_block(int idx, const char *blk)
3722 pr_cont("%s%s", idx ? ", " : "", blk);
3725 static inline int bnx2x_check_blocks_with_parity0(u32 sig, int par_num,
3726 bool print)
3728 int i = 0;
3729 u32 cur_bit = 0;
3730 for (i = 0; sig; i++) {
3731 cur_bit = ((u32)0x1 << i);
3732 if (sig & cur_bit) {
3733 switch (cur_bit) {
3734 case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR:
3735 if (print)
3736 _print_next_block(par_num++, "BRB");
3737 break;
3738 case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR:
3739 if (print)
3740 _print_next_block(par_num++, "PARSER");
3741 break;
3742 case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR:
3743 if (print)
3744 _print_next_block(par_num++, "TSDM");
3745 break;
3746 case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR:
3747 if (print)
3748 _print_next_block(par_num++,
3749 "SEARCHER");
3750 break;
3751 case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR:
3752 if (print)
3753 _print_next_block(par_num++, "TCM");
3754 break;
3755 case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR:
3756 if (print)
3757 _print_next_block(par_num++, "TSEMI");
3758 break;
3759 case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR:
3760 if (print)
3761 _print_next_block(par_num++, "XPB");
3762 break;
3765 /* Clear the bit */
3766 sig &= ~cur_bit;
3770 return par_num;
3773 static inline int bnx2x_check_blocks_with_parity1(u32 sig, int par_num,
3774 bool *global, bool print)
3776 int i = 0;
3777 u32 cur_bit = 0;
3778 for (i = 0; sig; i++) {
3779 cur_bit = ((u32)0x1 << i);
3780 if (sig & cur_bit) {
3781 switch (cur_bit) {
3782 case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR:
3783 if (print)
3784 _print_next_block(par_num++, "PBF");
3785 break;
3786 case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR:
3787 if (print)
3788 _print_next_block(par_num++, "QM");
3789 break;
3790 case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR:
3791 if (print)
3792 _print_next_block(par_num++, "TM");
3793 break;
3794 case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR:
3795 if (print)
3796 _print_next_block(par_num++, "XSDM");
3797 break;
3798 case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR:
3799 if (print)
3800 _print_next_block(par_num++, "XCM");
3801 break;
3802 case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR:
3803 if (print)
3804 _print_next_block(par_num++, "XSEMI");
3805 break;
3806 case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR:
3807 if (print)
3808 _print_next_block(par_num++,
3809 "DOORBELLQ");
3810 break;
3811 case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR:
3812 if (print)
3813 _print_next_block(par_num++, "NIG");
3814 break;
3815 case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR:
3816 if (print)
3817 _print_next_block(par_num++,
3818 "VAUX PCI CORE");
3819 *global = true;
3820 break;
3821 case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR:
3822 if (print)
3823 _print_next_block(par_num++, "DEBUG");
3824 break;
3825 case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR:
3826 if (print)
3827 _print_next_block(par_num++, "USDM");
3828 break;
3829 case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR:
3830 if (print)
3831 _print_next_block(par_num++, "UCM");
3832 break;
3833 case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR:
3834 if (print)
3835 _print_next_block(par_num++, "USEMI");
3836 break;
3837 case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR:
3838 if (print)
3839 _print_next_block(par_num++, "UPB");
3840 break;
3841 case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR:
3842 if (print)
3843 _print_next_block(par_num++, "CSDM");
3844 break;
3845 case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR:
3846 if (print)
3847 _print_next_block(par_num++, "CCM");
3848 break;
3851 /* Clear the bit */
3852 sig &= ~cur_bit;
3856 return par_num;
3859 static inline int bnx2x_check_blocks_with_parity2(u32 sig, int par_num,
3860 bool print)
3862 int i = 0;
3863 u32 cur_bit = 0;
3864 for (i = 0; sig; i++) {
3865 cur_bit = ((u32)0x1 << i);
3866 if (sig & cur_bit) {
3867 switch (cur_bit) {
3868 case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR:
3869 if (print)
3870 _print_next_block(par_num++, "CSEMI");
3871 break;
3872 case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR:
3873 if (print)
3874 _print_next_block(par_num++, "PXP");
3875 break;
3876 case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR:
3877 if (print)
3878 _print_next_block(par_num++,
3879 "PXPPCICLOCKCLIENT");
3880 break;
3881 case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR:
3882 if (print)
3883 _print_next_block(par_num++, "CFC");
3884 break;
3885 case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR:
3886 if (print)
3887 _print_next_block(par_num++, "CDU");
3888 break;
3889 case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR:
3890 if (print)
3891 _print_next_block(par_num++, "DMAE");
3892 break;
3893 case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR:
3894 if (print)
3895 _print_next_block(par_num++, "IGU");
3896 break;
3897 case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR:
3898 if (print)
3899 _print_next_block(par_num++, "MISC");
3900 break;
3903 /* Clear the bit */
3904 sig &= ~cur_bit;
3908 return par_num;
3911 static inline int bnx2x_check_blocks_with_parity3(u32 sig, int par_num,
3912 bool *global, bool print)
3914 int i = 0;
3915 u32 cur_bit = 0;
3916 for (i = 0; sig; i++) {
3917 cur_bit = ((u32)0x1 << i);
3918 if (sig & cur_bit) {
3919 switch (cur_bit) {
3920 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY:
3921 if (print)
3922 _print_next_block(par_num++, "MCP ROM");
3923 *global = true;
3924 break;
3925 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY:
3926 if (print)
3927 _print_next_block(par_num++,
3928 "MCP UMP RX");
3929 *global = true;
3930 break;
3931 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY:
3932 if (print)
3933 _print_next_block(par_num++,
3934 "MCP UMP TX");
3935 *global = true;
3936 break;
3937 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY:
3938 if (print)
3939 _print_next_block(par_num++,
3940 "MCP SCPAD");
3941 *global = true;
3942 break;
3945 /* Clear the bit */
3946 sig &= ~cur_bit;
3950 return par_num;
3953 static inline int bnx2x_check_blocks_with_parity4(u32 sig, int par_num,
3954 bool print)
3956 int i = 0;
3957 u32 cur_bit = 0;
3958 for (i = 0; sig; i++) {
3959 cur_bit = ((u32)0x1 << i);
3960 if (sig & cur_bit) {
3961 switch (cur_bit) {
3962 case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR:
3963 if (print)
3964 _print_next_block(par_num++, "PGLUE_B");
3965 break;
3966 case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR:
3967 if (print)
3968 _print_next_block(par_num++, "ATC");
3969 break;
3972 /* Clear the bit */
3973 sig &= ~cur_bit;
3977 return par_num;
3980 static inline bool bnx2x_parity_attn(struct bnx2x *bp, bool *global, bool print,
3981 u32 *sig)
3983 if ((sig[0] & HW_PRTY_ASSERT_SET_0) ||
3984 (sig[1] & HW_PRTY_ASSERT_SET_1) ||
3985 (sig[2] & HW_PRTY_ASSERT_SET_2) ||
3986 (sig[3] & HW_PRTY_ASSERT_SET_3) ||
3987 (sig[4] & HW_PRTY_ASSERT_SET_4)) {
3988 int par_num = 0;
3989 DP(NETIF_MSG_HW, "Was parity error: HW block parity attention: "
3990 "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x "
3991 "[4]:0x%08x\n",
3992 sig[0] & HW_PRTY_ASSERT_SET_0,
3993 sig[1] & HW_PRTY_ASSERT_SET_1,
3994 sig[2] & HW_PRTY_ASSERT_SET_2,
3995 sig[3] & HW_PRTY_ASSERT_SET_3,
3996 sig[4] & HW_PRTY_ASSERT_SET_4);
3997 if (print)
3998 netdev_err(bp->dev,
3999 "Parity errors detected in blocks: ");
4000 par_num = bnx2x_check_blocks_with_parity0(
4001 sig[0] & HW_PRTY_ASSERT_SET_0, par_num, print);
4002 par_num = bnx2x_check_blocks_with_parity1(
4003 sig[1] & HW_PRTY_ASSERT_SET_1, par_num, global, print);
4004 par_num = bnx2x_check_blocks_with_parity2(
4005 sig[2] & HW_PRTY_ASSERT_SET_2, par_num, print);
4006 par_num = bnx2x_check_blocks_with_parity3(
4007 sig[3] & HW_PRTY_ASSERT_SET_3, par_num, global, print);
4008 par_num = bnx2x_check_blocks_with_parity4(
4009 sig[4] & HW_PRTY_ASSERT_SET_4, par_num, print);
4011 if (print)
4012 pr_cont("\n");
4014 return true;
4015 } else
4016 return false;
4020 * bnx2x_chk_parity_attn - checks for parity attentions.
4022 * @bp: driver handle
4023 * @global: true if there was a global attention
4024 * @print: show parity attention in syslog
4026 bool bnx2x_chk_parity_attn(struct bnx2x *bp, bool *global, bool print)
4028 struct attn_route attn = { {0} };
4029 int port = BP_PORT(bp);
4031 attn.sig[0] = REG_RD(bp,
4032 MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 +
4033 port*4);
4034 attn.sig[1] = REG_RD(bp,
4035 MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 +
4036 port*4);
4037 attn.sig[2] = REG_RD(bp,
4038 MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 +
4039 port*4);
4040 attn.sig[3] = REG_RD(bp,
4041 MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 +
4042 port*4);
4044 if (!CHIP_IS_E1x(bp))
4045 attn.sig[4] = REG_RD(bp,
4046 MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 +
4047 port*4);
4049 return bnx2x_parity_attn(bp, global, print, attn.sig);
4053 static inline void bnx2x_attn_int_deasserted4(struct bnx2x *bp, u32 attn)
4055 u32 val;
4056 if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) {
4058 val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS_CLR);
4059 BNX2X_ERR("PGLUE hw attention 0x%x\n", val);
4060 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR)
4061 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
4062 "ADDRESS_ERROR\n");
4063 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR)
4064 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
4065 "INCORRECT_RCV_BEHAVIOR\n");
4066 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN)
4067 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
4068 "WAS_ERROR_ATTN\n");
4069 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN)
4070 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
4071 "VF_LENGTH_VIOLATION_ATTN\n");
4072 if (val &
4073 PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN)
4074 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
4075 "VF_GRC_SPACE_VIOLATION_ATTN\n");
4076 if (val &
4077 PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN)
4078 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
4079 "VF_MSIX_BAR_VIOLATION_ATTN\n");
4080 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN)
4081 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
4082 "TCPL_ERROR_ATTN\n");
4083 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN)
4084 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
4085 "TCPL_IN_TWO_RCBS_ATTN\n");
4086 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW)
4087 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
4088 "CSSNOOP_FIFO_OVERFLOW\n");
4090 if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) {
4091 val = REG_RD(bp, ATC_REG_ATC_INT_STS_CLR);
4092 BNX2X_ERR("ATC hw attention 0x%x\n", val);
4093 if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR)
4094 BNX2X_ERR("ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n");
4095 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND)
4096 BNX2X_ERR("ATC_ATC_INT_STS_REG"
4097 "_ATC_TCPL_TO_NOT_PEND\n");
4098 if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS)
4099 BNX2X_ERR("ATC_ATC_INT_STS_REG_"
4100 "ATC_GPA_MULTIPLE_HITS\n");
4101 if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT)
4102 BNX2X_ERR("ATC_ATC_INT_STS_REG_"
4103 "ATC_RCPL_TO_EMPTY_CNT\n");
4104 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR)
4105 BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n");
4106 if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU)
4107 BNX2X_ERR("ATC_ATC_INT_STS_REG_"
4108 "ATC_IREQ_LESS_THAN_STU\n");
4111 if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
4112 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) {
4113 BNX2X_ERR("FATAL parity attention set4 0x%x\n",
4114 (u32)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
4115 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)));
4120 static void bnx2x_attn_int_deasserted(struct bnx2x *bp, u32 deasserted)
4122 struct attn_route attn, *group_mask;
4123 int port = BP_PORT(bp);
4124 int index;
4125 u32 reg_addr;
4126 u32 val;
4127 u32 aeu_mask;
4128 bool global = false;
4130 /* need to take HW lock because MCP or other port might also
4131 try to handle this event */
4132 bnx2x_acquire_alr(bp);
4134 if (bnx2x_chk_parity_attn(bp, &global, true)) {
4135 #ifndef BNX2X_STOP_ON_ERROR
4136 bp->recovery_state = BNX2X_RECOVERY_INIT;
4137 schedule_delayed_work(&bp->sp_rtnl_task, 0);
4138 /* Disable HW interrupts */
4139 bnx2x_int_disable(bp);
4140 /* In case of parity errors don't handle attentions so that
4141 * other function would "see" parity errors.
4143 #else
4144 bnx2x_panic();
4145 #endif
4146 bnx2x_release_alr(bp);
4147 return;
4150 attn.sig[0] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
4151 attn.sig[1] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
4152 attn.sig[2] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
4153 attn.sig[3] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
4154 if (!CHIP_IS_E1x(bp))
4155 attn.sig[4] =
4156 REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
4157 else
4158 attn.sig[4] = 0;
4160 DP(NETIF_MSG_HW, "attn: %08x %08x %08x %08x %08x\n",
4161 attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]);
4163 for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
4164 if (deasserted & (1 << index)) {
4165 group_mask = &bp->attn_group[index];
4167 DP(NETIF_MSG_HW, "group[%d]: %08x %08x "
4168 "%08x %08x %08x\n",
4169 index,
4170 group_mask->sig[0], group_mask->sig[1],
4171 group_mask->sig[2], group_mask->sig[3],
4172 group_mask->sig[4]);
4174 bnx2x_attn_int_deasserted4(bp,
4175 attn.sig[4] & group_mask->sig[4]);
4176 bnx2x_attn_int_deasserted3(bp,
4177 attn.sig[3] & group_mask->sig[3]);
4178 bnx2x_attn_int_deasserted1(bp,
4179 attn.sig[1] & group_mask->sig[1]);
4180 bnx2x_attn_int_deasserted2(bp,
4181 attn.sig[2] & group_mask->sig[2]);
4182 bnx2x_attn_int_deasserted0(bp,
4183 attn.sig[0] & group_mask->sig[0]);
4187 bnx2x_release_alr(bp);
4189 if (bp->common.int_block == INT_BLOCK_HC)
4190 reg_addr = (HC_REG_COMMAND_REG + port*32 +
4191 COMMAND_REG_ATTN_BITS_CLR);
4192 else
4193 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8);
4195 val = ~deasserted;
4196 DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", val,
4197 (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
4198 REG_WR(bp, reg_addr, val);
4200 if (~bp->attn_state & deasserted)
4201 BNX2X_ERR("IGU ERROR\n");
4203 reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
4204 MISC_REG_AEU_MASK_ATTN_FUNC_0;
4206 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4207 aeu_mask = REG_RD(bp, reg_addr);
4209 DP(NETIF_MSG_HW, "aeu_mask %x newly deasserted %x\n",
4210 aeu_mask, deasserted);
4211 aeu_mask |= (deasserted & 0x3ff);
4212 DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
4214 REG_WR(bp, reg_addr, aeu_mask);
4215 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4217 DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
4218 bp->attn_state &= ~deasserted;
4219 DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
4222 static void bnx2x_attn_int(struct bnx2x *bp)
4224 /* read local copy of bits */
4225 u32 attn_bits = le32_to_cpu(bp->def_status_blk->atten_status_block.
4226 attn_bits);
4227 u32 attn_ack = le32_to_cpu(bp->def_status_blk->atten_status_block.
4228 attn_bits_ack);
4229 u32 attn_state = bp->attn_state;
4231 /* look for changed bits */
4232 u32 asserted = attn_bits & ~attn_ack & ~attn_state;
4233 u32 deasserted = ~attn_bits & attn_ack & attn_state;
4235 DP(NETIF_MSG_HW,
4236 "attn_bits %x attn_ack %x asserted %x deasserted %x\n",
4237 attn_bits, attn_ack, asserted, deasserted);
4239 if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state))
4240 BNX2X_ERR("BAD attention state\n");
4242 /* handle bits that were raised */
4243 if (asserted)
4244 bnx2x_attn_int_asserted(bp, asserted);
4246 if (deasserted)
4247 bnx2x_attn_int_deasserted(bp, deasserted);
4250 void bnx2x_igu_ack_sb(struct bnx2x *bp, u8 igu_sb_id, u8 segment,
4251 u16 index, u8 op, u8 update)
4253 u32 igu_addr = BAR_IGU_INTMEM + (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8;
4255 bnx2x_igu_ack_sb_gen(bp, igu_sb_id, segment, index, op, update,
4256 igu_addr);
4259 static inline void bnx2x_update_eq_prod(struct bnx2x *bp, u16 prod)
4261 /* No memory barriers */
4262 storm_memset_eq_prod(bp, prod, BP_FUNC(bp));
4263 mmiowb(); /* keep prod updates ordered */
4266 #ifdef BCM_CNIC
4267 static int bnx2x_cnic_handle_cfc_del(struct bnx2x *bp, u32 cid,
4268 union event_ring_elem *elem)
4270 u8 err = elem->message.error;
4272 if (!bp->cnic_eth_dev.starting_cid ||
4273 (cid < bp->cnic_eth_dev.starting_cid &&
4274 cid != bp->cnic_eth_dev.iscsi_l2_cid))
4275 return 1;
4277 DP(BNX2X_MSG_SP, "got delete ramrod for CNIC CID %d\n", cid);
4279 if (unlikely(err)) {
4281 BNX2X_ERR("got delete ramrod for CNIC CID %d with error!\n",
4282 cid);
4283 bnx2x_panic_dump(bp);
4285 bnx2x_cnic_cfc_comp(bp, cid, err);
4286 return 0;
4288 #endif
4290 static inline void bnx2x_handle_mcast_eqe(struct bnx2x *bp)
4292 struct bnx2x_mcast_ramrod_params rparam;
4293 int rc;
4295 memset(&rparam, 0, sizeof(rparam));
4297 rparam.mcast_obj = &bp->mcast_obj;
4299 netif_addr_lock_bh(bp->dev);
4301 /* Clear pending state for the last command */
4302 bp->mcast_obj.raw.clear_pending(&bp->mcast_obj.raw);
4304 /* If there are pending mcast commands - send them */
4305 if (bp->mcast_obj.check_pending(&bp->mcast_obj)) {
4306 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
4307 if (rc < 0)
4308 BNX2X_ERR("Failed to send pending mcast commands: %d\n",
4309 rc);
4312 netif_addr_unlock_bh(bp->dev);
4315 static inline void bnx2x_handle_classification_eqe(struct bnx2x *bp,
4316 union event_ring_elem *elem)
4318 unsigned long ramrod_flags = 0;
4319 int rc = 0;
4320 u32 cid = elem->message.data.eth_event.echo & BNX2X_SWCID_MASK;
4321 struct bnx2x_vlan_mac_obj *vlan_mac_obj;
4323 /* Always push next commands out, don't wait here */
4324 __set_bit(RAMROD_CONT, &ramrod_flags);
4326 switch (elem->message.data.eth_event.echo >> BNX2X_SWCID_SHIFT) {
4327 case BNX2X_FILTER_MAC_PENDING:
4328 #ifdef BCM_CNIC
4329 if (cid == BNX2X_ISCSI_ETH_CID)
4330 vlan_mac_obj = &bp->iscsi_l2_mac_obj;
4331 else
4332 #endif
4333 vlan_mac_obj = &bp->fp[cid].mac_obj;
4335 break;
4336 vlan_mac_obj = &bp->fp[cid].mac_obj;
4338 case BNX2X_FILTER_MCAST_PENDING:
4339 /* This is only relevant for 57710 where multicast MACs are
4340 * configured as unicast MACs using the same ramrod.
4342 bnx2x_handle_mcast_eqe(bp);
4343 return;
4344 default:
4345 BNX2X_ERR("Unsupported classification command: %d\n",
4346 elem->message.data.eth_event.echo);
4347 return;
4350 rc = vlan_mac_obj->complete(bp, vlan_mac_obj, elem, &ramrod_flags);
4352 if (rc < 0)
4353 BNX2X_ERR("Failed to schedule new commands: %d\n", rc);
4354 else if (rc > 0)
4355 DP(BNX2X_MSG_SP, "Scheduled next pending commands...\n");
4359 #ifdef BCM_CNIC
4360 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start);
4361 #endif
4363 static inline void bnx2x_handle_rx_mode_eqe(struct bnx2x *bp)
4365 netif_addr_lock_bh(bp->dev);
4367 clear_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
4369 /* Send rx_mode command again if was requested */
4370 if (test_and_clear_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state))
4371 bnx2x_set_storm_rx_mode(bp);
4372 #ifdef BCM_CNIC
4373 else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED,
4374 &bp->sp_state))
4375 bnx2x_set_iscsi_eth_rx_mode(bp, true);
4376 else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED,
4377 &bp->sp_state))
4378 bnx2x_set_iscsi_eth_rx_mode(bp, false);
4379 #endif
4381 netif_addr_unlock_bh(bp->dev);
4384 static inline struct bnx2x_queue_sp_obj *bnx2x_cid_to_q_obj(
4385 struct bnx2x *bp, u32 cid)
4387 DP(BNX2X_MSG_SP, "retrieving fp from cid %d\n", cid);
4388 #ifdef BCM_CNIC
4389 if (cid == BNX2X_FCOE_ETH_CID)
4390 return &bnx2x_fcoe(bp, q_obj);
4391 else
4392 #endif
4393 return &bnx2x_fp(bp, CID_TO_FP(cid), q_obj);
4396 static void bnx2x_eq_int(struct bnx2x *bp)
4398 u16 hw_cons, sw_cons, sw_prod;
4399 union event_ring_elem *elem;
4400 u32 cid;
4401 u8 opcode;
4402 int spqe_cnt = 0;
4403 struct bnx2x_queue_sp_obj *q_obj;
4404 struct bnx2x_func_sp_obj *f_obj = &bp->func_obj;
4405 struct bnx2x_raw_obj *rss_raw = &bp->rss_conf_obj.raw;
4407 hw_cons = le16_to_cpu(*bp->eq_cons_sb);
4409 /* The hw_cos range is 1-255, 257 - the sw_cons range is 0-254, 256.
4410 * when we get the the next-page we nned to adjust so the loop
4411 * condition below will be met. The next element is the size of a
4412 * regular element and hence incrementing by 1
4414 if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE)
4415 hw_cons++;
4417 /* This function may never run in parallel with itself for a
4418 * specific bp, thus there is no need in "paired" read memory
4419 * barrier here.
4421 sw_cons = bp->eq_cons;
4422 sw_prod = bp->eq_prod;
4424 DP(BNX2X_MSG_SP, "EQ: hw_cons %u sw_cons %u bp->eq_spq_left %x\n",
4425 hw_cons, sw_cons, atomic_read(&bp->eq_spq_left));
4427 for (; sw_cons != hw_cons;
4428 sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) {
4431 elem = &bp->eq_ring[EQ_DESC(sw_cons)];
4433 cid = SW_CID(elem->message.data.cfc_del_event.cid);
4434 opcode = elem->message.opcode;
4437 /* handle eq element */
4438 switch (opcode) {
4439 case EVENT_RING_OPCODE_STAT_QUERY:
4440 DP(NETIF_MSG_TIMER, "got statistics comp event %d\n",
4441 bp->stats_comp++);
4442 /* nothing to do with stats comp */
4443 goto next_spqe;
4445 case EVENT_RING_OPCODE_CFC_DEL:
4446 /* handle according to cid range */
4448 * we may want to verify here that the bp state is
4449 * HALTING
4451 DP(BNX2X_MSG_SP,
4452 "got delete ramrod for MULTI[%d]\n", cid);
4453 #ifdef BCM_CNIC
4454 if (!bnx2x_cnic_handle_cfc_del(bp, cid, elem))
4455 goto next_spqe;
4456 #endif
4457 q_obj = bnx2x_cid_to_q_obj(bp, cid);
4459 if (q_obj->complete_cmd(bp, q_obj, BNX2X_Q_CMD_CFC_DEL))
4460 break;
4464 goto next_spqe;
4466 case EVENT_RING_OPCODE_STOP_TRAFFIC:
4467 DP(BNX2X_MSG_SP, "got STOP TRAFFIC\n");
4468 if (f_obj->complete_cmd(bp, f_obj,
4469 BNX2X_F_CMD_TX_STOP))
4470 break;
4471 bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_PAUSED);
4472 goto next_spqe;
4474 case EVENT_RING_OPCODE_START_TRAFFIC:
4475 DP(BNX2X_MSG_SP, "got START TRAFFIC\n");
4476 if (f_obj->complete_cmd(bp, f_obj,
4477 BNX2X_F_CMD_TX_START))
4478 break;
4479 bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_RELEASED);
4480 goto next_spqe;
4481 case EVENT_RING_OPCODE_FUNCTION_START:
4482 DP(BNX2X_MSG_SP, "got FUNC_START ramrod\n");
4483 if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_START))
4484 break;
4486 goto next_spqe;
4488 case EVENT_RING_OPCODE_FUNCTION_STOP:
4489 DP(BNX2X_MSG_SP, "got FUNC_STOP ramrod\n");
4490 if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_STOP))
4491 break;
4493 goto next_spqe;
4496 switch (opcode | bp->state) {
4497 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
4498 BNX2X_STATE_OPEN):
4499 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
4500 BNX2X_STATE_OPENING_WAIT4_PORT):
4501 cid = elem->message.data.eth_event.echo &
4502 BNX2X_SWCID_MASK;
4503 DP(BNX2X_MSG_SP, "got RSS_UPDATE ramrod. CID %d\n",
4504 cid);
4505 rss_raw->clear_pending(rss_raw);
4506 break;
4508 case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_OPEN):
4509 case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_DIAG):
4510 case (EVENT_RING_OPCODE_SET_MAC |
4511 BNX2X_STATE_CLOSING_WAIT4_HALT):
4512 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
4513 BNX2X_STATE_OPEN):
4514 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
4515 BNX2X_STATE_DIAG):
4516 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
4517 BNX2X_STATE_CLOSING_WAIT4_HALT):
4518 DP(BNX2X_MSG_SP, "got (un)set mac ramrod\n");
4519 bnx2x_handle_classification_eqe(bp, elem);
4520 break;
4522 case (EVENT_RING_OPCODE_MULTICAST_RULES |
4523 BNX2X_STATE_OPEN):
4524 case (EVENT_RING_OPCODE_MULTICAST_RULES |
4525 BNX2X_STATE_DIAG):
4526 case (EVENT_RING_OPCODE_MULTICAST_RULES |
4527 BNX2X_STATE_CLOSING_WAIT4_HALT):
4528 DP(BNX2X_MSG_SP, "got mcast ramrod\n");
4529 bnx2x_handle_mcast_eqe(bp);
4530 break;
4532 case (EVENT_RING_OPCODE_FILTERS_RULES |
4533 BNX2X_STATE_OPEN):
4534 case (EVENT_RING_OPCODE_FILTERS_RULES |
4535 BNX2X_STATE_DIAG):
4536 case (EVENT_RING_OPCODE_FILTERS_RULES |
4537 BNX2X_STATE_CLOSING_WAIT4_HALT):
4538 DP(BNX2X_MSG_SP, "got rx_mode ramrod\n");
4539 bnx2x_handle_rx_mode_eqe(bp);
4540 break;
4541 default:
4542 /* unknown event log error and continue */
4543 BNX2X_ERR("Unknown EQ event %d, bp->state 0x%x\n",
4544 elem->message.opcode, bp->state);
4546 next_spqe:
4547 spqe_cnt++;
4548 } /* for */
4550 smp_mb__before_atomic_inc();
4551 atomic_add(spqe_cnt, &bp->eq_spq_left);
4553 bp->eq_cons = sw_cons;
4554 bp->eq_prod = sw_prod;
4555 /* Make sure that above mem writes were issued towards the memory */
4556 smp_wmb();
4558 /* update producer */
4559 bnx2x_update_eq_prod(bp, bp->eq_prod);
4562 static void bnx2x_sp_task(struct work_struct *work)
4564 struct bnx2x *bp = container_of(work, struct bnx2x, sp_task.work);
4565 u16 status;
4567 status = bnx2x_update_dsb_idx(bp);
4568 /* if (status == 0) */
4569 /* BNX2X_ERR("spurious slowpath interrupt!\n"); */
4571 DP(NETIF_MSG_INTR, "got a slowpath interrupt (status 0x%x)\n", status);
4573 /* HW attentions */
4574 if (status & BNX2X_DEF_SB_ATT_IDX) {
4575 bnx2x_attn_int(bp);
4576 status &= ~BNX2X_DEF_SB_ATT_IDX;
4579 /* SP events: STAT_QUERY and others */
4580 if (status & BNX2X_DEF_SB_IDX) {
4581 #ifdef BCM_CNIC
4582 struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp);
4584 if ((!NO_FCOE(bp)) &&
4585 (bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) {
4587 * Prevent local bottom-halves from running as
4588 * we are going to change the local NAPI list.
4590 local_bh_disable();
4591 napi_schedule(&bnx2x_fcoe(bp, napi));
4592 local_bh_enable();
4594 #endif
4595 /* Handle EQ completions */
4596 bnx2x_eq_int(bp);
4598 bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID,
4599 le16_to_cpu(bp->def_idx), IGU_INT_NOP, 1);
4601 status &= ~BNX2X_DEF_SB_IDX;
4604 if (unlikely(status))
4605 DP(NETIF_MSG_INTR, "got an unknown interrupt! (status 0x%x)\n",
4606 status);
4608 bnx2x_ack_sb(bp, bp->igu_dsb_id, ATTENTION_ID,
4609 le16_to_cpu(bp->def_att_idx), IGU_INT_ENABLE, 1);
4612 irqreturn_t bnx2x_msix_sp_int(int irq, void *dev_instance)
4614 struct net_device *dev = dev_instance;
4615 struct bnx2x *bp = netdev_priv(dev);
4617 bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0,
4618 IGU_INT_DISABLE, 0);
4620 #ifdef BNX2X_STOP_ON_ERROR
4621 if (unlikely(bp->panic))
4622 return IRQ_HANDLED;
4623 #endif
4625 #ifdef BCM_CNIC
4627 struct cnic_ops *c_ops;
4629 rcu_read_lock();
4630 c_ops = rcu_dereference(bp->cnic_ops);
4631 if (c_ops)
4632 c_ops->cnic_handler(bp->cnic_data, NULL);
4633 rcu_read_unlock();
4635 #endif
4636 queue_delayed_work(bnx2x_wq, &bp->sp_task, 0);
4638 return IRQ_HANDLED;
4641 /* end of slow path */
4644 void bnx2x_drv_pulse(struct bnx2x *bp)
4646 SHMEM_WR(bp, func_mb[BP_FW_MB_IDX(bp)].drv_pulse_mb,
4647 bp->fw_drv_pulse_wr_seq);
4651 static void bnx2x_timer(unsigned long data)
4653 u8 cos;
4654 struct bnx2x *bp = (struct bnx2x *) data;
4656 if (!netif_running(bp->dev))
4657 return;
4659 if (poll) {
4660 struct bnx2x_fastpath *fp = &bp->fp[0];
4662 for_each_cos_in_tx_queue(fp, cos)
4663 bnx2x_tx_int(bp, &fp->txdata[cos]);
4664 bnx2x_rx_int(fp, 1000);
4667 if (!BP_NOMCP(bp)) {
4668 int mb_idx = BP_FW_MB_IDX(bp);
4669 u32 drv_pulse;
4670 u32 mcp_pulse;
4672 ++bp->fw_drv_pulse_wr_seq;
4673 bp->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK;
4674 /* TBD - add SYSTEM_TIME */
4675 drv_pulse = bp->fw_drv_pulse_wr_seq;
4676 bnx2x_drv_pulse(bp);
4678 mcp_pulse = (SHMEM_RD(bp, func_mb[mb_idx].mcp_pulse_mb) &
4679 MCP_PULSE_SEQ_MASK);
4680 /* The delta between driver pulse and mcp response
4681 * should be 1 (before mcp response) or 0 (after mcp response)
4683 if ((drv_pulse != mcp_pulse) &&
4684 (drv_pulse != ((mcp_pulse + 1) & MCP_PULSE_SEQ_MASK))) {
4685 /* someone lost a heartbeat... */
4686 BNX2X_ERR("drv_pulse (0x%x) != mcp_pulse (0x%x)\n",
4687 drv_pulse, mcp_pulse);
4691 if (bp->state == BNX2X_STATE_OPEN)
4692 bnx2x_stats_handle(bp, STATS_EVENT_UPDATE);
4694 mod_timer(&bp->timer, jiffies + bp->current_interval);
4697 /* end of Statistics */
4699 /* nic init */
4702 * nic init service functions
4705 static inline void bnx2x_fill(struct bnx2x *bp, u32 addr, int fill, u32 len)
4707 u32 i;
4708 if (!(len%4) && !(addr%4))
4709 for (i = 0; i < len; i += 4)
4710 REG_WR(bp, addr + i, fill);
4711 else
4712 for (i = 0; i < len; i++)
4713 REG_WR8(bp, addr + i, fill);
4717 /* helper: writes FP SP data to FW - data_size in dwords */
4718 static inline void bnx2x_wr_fp_sb_data(struct bnx2x *bp,
4719 int fw_sb_id,
4720 u32 *sb_data_p,
4721 u32 data_size)
4723 int index;
4724 for (index = 0; index < data_size; index++)
4725 REG_WR(bp, BAR_CSTRORM_INTMEM +
4726 CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) +
4727 sizeof(u32)*index,
4728 *(sb_data_p + index));
4731 static inline void bnx2x_zero_fp_sb(struct bnx2x *bp, int fw_sb_id)
4733 u32 *sb_data_p;
4734 u32 data_size = 0;
4735 struct hc_status_block_data_e2 sb_data_e2;
4736 struct hc_status_block_data_e1x sb_data_e1x;
4738 /* disable the function first */
4739 if (!CHIP_IS_E1x(bp)) {
4740 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
4741 sb_data_e2.common.state = SB_DISABLED;
4742 sb_data_e2.common.p_func.vf_valid = false;
4743 sb_data_p = (u32 *)&sb_data_e2;
4744 data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
4745 } else {
4746 memset(&sb_data_e1x, 0,
4747 sizeof(struct hc_status_block_data_e1x));
4748 sb_data_e1x.common.state = SB_DISABLED;
4749 sb_data_e1x.common.p_func.vf_valid = false;
4750 sb_data_p = (u32 *)&sb_data_e1x;
4751 data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
4753 bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
4755 bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
4756 CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id), 0,
4757 CSTORM_STATUS_BLOCK_SIZE);
4758 bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
4759 CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id), 0,
4760 CSTORM_SYNC_BLOCK_SIZE);
4763 /* helper: writes SP SB data to FW */
4764 static inline void bnx2x_wr_sp_sb_data(struct bnx2x *bp,
4765 struct hc_sp_status_block_data *sp_sb_data)
4767 int func = BP_FUNC(bp);
4768 int i;
4769 for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++)
4770 REG_WR(bp, BAR_CSTRORM_INTMEM +
4771 CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) +
4772 i*sizeof(u32),
4773 *((u32 *)sp_sb_data + i));
4776 static inline void bnx2x_zero_sp_sb(struct bnx2x *bp)
4778 int func = BP_FUNC(bp);
4779 struct hc_sp_status_block_data sp_sb_data;
4780 memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
4782 sp_sb_data.state = SB_DISABLED;
4783 sp_sb_data.p_func.vf_valid = false;
4785 bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
4787 bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
4788 CSTORM_SP_STATUS_BLOCK_OFFSET(func), 0,
4789 CSTORM_SP_STATUS_BLOCK_SIZE);
4790 bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
4791 CSTORM_SP_SYNC_BLOCK_OFFSET(func), 0,
4792 CSTORM_SP_SYNC_BLOCK_SIZE);
4797 static inline
4798 void bnx2x_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm,
4799 int igu_sb_id, int igu_seg_id)
4801 hc_sm->igu_sb_id = igu_sb_id;
4802 hc_sm->igu_seg_id = igu_seg_id;
4803 hc_sm->timer_value = 0xFF;
4804 hc_sm->time_to_expire = 0xFFFFFFFF;
4807 static void bnx2x_init_sb(struct bnx2x *bp, dma_addr_t mapping, int vfid,
4808 u8 vf_valid, int fw_sb_id, int igu_sb_id)
4810 int igu_seg_id;
4812 struct hc_status_block_data_e2 sb_data_e2;
4813 struct hc_status_block_data_e1x sb_data_e1x;
4814 struct hc_status_block_sm *hc_sm_p;
4815 int data_size;
4816 u32 *sb_data_p;
4818 if (CHIP_INT_MODE_IS_BC(bp))
4819 igu_seg_id = HC_SEG_ACCESS_NORM;
4820 else
4821 igu_seg_id = IGU_SEG_ACCESS_NORM;
4823 bnx2x_zero_fp_sb(bp, fw_sb_id);
4825 if (!CHIP_IS_E1x(bp)) {
4826 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
4827 sb_data_e2.common.state = SB_ENABLED;
4828 sb_data_e2.common.p_func.pf_id = BP_FUNC(bp);
4829 sb_data_e2.common.p_func.vf_id = vfid;
4830 sb_data_e2.common.p_func.vf_valid = vf_valid;
4831 sb_data_e2.common.p_func.vnic_id = BP_VN(bp);
4832 sb_data_e2.common.same_igu_sb_1b = true;
4833 sb_data_e2.common.host_sb_addr.hi = U64_HI(mapping);
4834 sb_data_e2.common.host_sb_addr.lo = U64_LO(mapping);
4835 hc_sm_p = sb_data_e2.common.state_machine;
4836 sb_data_p = (u32 *)&sb_data_e2;
4837 data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
4838 } else {
4839 memset(&sb_data_e1x, 0,
4840 sizeof(struct hc_status_block_data_e1x));
4841 sb_data_e1x.common.state = SB_ENABLED;
4842 sb_data_e1x.common.p_func.pf_id = BP_FUNC(bp);
4843 sb_data_e1x.common.p_func.vf_id = 0xff;
4844 sb_data_e1x.common.p_func.vf_valid = false;
4845 sb_data_e1x.common.p_func.vnic_id = BP_VN(bp);
4846 sb_data_e1x.common.same_igu_sb_1b = true;
4847 sb_data_e1x.common.host_sb_addr.hi = U64_HI(mapping);
4848 sb_data_e1x.common.host_sb_addr.lo = U64_LO(mapping);
4849 hc_sm_p = sb_data_e1x.common.state_machine;
4850 sb_data_p = (u32 *)&sb_data_e1x;
4851 data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
4854 bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID],
4855 igu_sb_id, igu_seg_id);
4856 bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID],
4857 igu_sb_id, igu_seg_id);
4859 DP(NETIF_MSG_HW, "Init FW SB %d\n", fw_sb_id);
4861 /* write indecies to HW */
4862 bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
4865 static void bnx2x_update_coalesce_sb(struct bnx2x *bp, u8 fw_sb_id,
4866 u16 tx_usec, u16 rx_usec)
4868 bnx2x_update_coalesce_sb_index(bp, fw_sb_id, HC_INDEX_ETH_RX_CQ_CONS,
4869 false, rx_usec);
4870 bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
4871 HC_INDEX_ETH_TX_CQ_CONS_COS0, false,
4872 tx_usec);
4873 bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
4874 HC_INDEX_ETH_TX_CQ_CONS_COS1, false,
4875 tx_usec);
4876 bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
4877 HC_INDEX_ETH_TX_CQ_CONS_COS2, false,
4878 tx_usec);
4881 static void bnx2x_init_def_sb(struct bnx2x *bp)
4883 struct host_sp_status_block *def_sb = bp->def_status_blk;
4884 dma_addr_t mapping = bp->def_status_blk_mapping;
4885 int igu_sp_sb_index;
4886 int igu_seg_id;
4887 int port = BP_PORT(bp);
4888 int func = BP_FUNC(bp);
4889 int reg_offset;
4890 u64 section;
4891 int index;
4892 struct hc_sp_status_block_data sp_sb_data;
4893 memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
4895 if (CHIP_INT_MODE_IS_BC(bp)) {
4896 igu_sp_sb_index = DEF_SB_IGU_ID;
4897 igu_seg_id = HC_SEG_ACCESS_DEF;
4898 } else {
4899 igu_sp_sb_index = bp->igu_dsb_id;
4900 igu_seg_id = IGU_SEG_ACCESS_DEF;
4903 /* ATTN */
4904 section = ((u64)mapping) + offsetof(struct host_sp_status_block,
4905 atten_status_block);
4906 def_sb->atten_status_block.status_block_id = igu_sp_sb_index;
4908 bp->attn_state = 0;
4910 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
4911 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
4912 for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
4913 int sindex;
4914 /* take care of sig[0]..sig[4] */
4915 for (sindex = 0; sindex < 4; sindex++)
4916 bp->attn_group[index].sig[sindex] =
4917 REG_RD(bp, reg_offset + sindex*0x4 + 0x10*index);
4919 if (!CHIP_IS_E1x(bp))
4921 * enable5 is separate from the rest of the registers,
4922 * and therefore the address skip is 4
4923 * and not 16 between the different groups
4925 bp->attn_group[index].sig[4] = REG_RD(bp,
4926 reg_offset + 0x10 + 0x4*index);
4927 else
4928 bp->attn_group[index].sig[4] = 0;
4931 if (bp->common.int_block == INT_BLOCK_HC) {
4932 reg_offset = (port ? HC_REG_ATTN_MSG1_ADDR_L :
4933 HC_REG_ATTN_MSG0_ADDR_L);
4935 REG_WR(bp, reg_offset, U64_LO(section));
4936 REG_WR(bp, reg_offset + 4, U64_HI(section));
4937 } else if (!CHIP_IS_E1x(bp)) {
4938 REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section));
4939 REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section));
4942 section = ((u64)mapping) + offsetof(struct host_sp_status_block,
4943 sp_sb);
4945 bnx2x_zero_sp_sb(bp);
4947 sp_sb_data.state = SB_ENABLED;
4948 sp_sb_data.host_sb_addr.lo = U64_LO(section);
4949 sp_sb_data.host_sb_addr.hi = U64_HI(section);
4950 sp_sb_data.igu_sb_id = igu_sp_sb_index;
4951 sp_sb_data.igu_seg_id = igu_seg_id;
4952 sp_sb_data.p_func.pf_id = func;
4953 sp_sb_data.p_func.vnic_id = BP_VN(bp);
4954 sp_sb_data.p_func.vf_id = 0xff;
4956 bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
4958 bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
4961 void bnx2x_update_coalesce(struct bnx2x *bp)
4963 int i;
4965 for_each_eth_queue(bp, i)
4966 bnx2x_update_coalesce_sb(bp, bp->fp[i].fw_sb_id,
4967 bp->tx_ticks, bp->rx_ticks);
4970 static void bnx2x_init_sp_ring(struct bnx2x *bp)
4972 spin_lock_init(&bp->spq_lock);
4973 atomic_set(&bp->cq_spq_left, MAX_SPQ_PENDING);
4975 bp->spq_prod_idx = 0;
4976 bp->dsb_sp_prod = BNX2X_SP_DSB_INDEX;
4977 bp->spq_prod_bd = bp->spq;
4978 bp->spq_last_bd = bp->spq_prod_bd + MAX_SP_DESC_CNT;
4981 static void bnx2x_init_eq_ring(struct bnx2x *bp)
4983 int i;
4984 for (i = 1; i <= NUM_EQ_PAGES; i++) {
4985 union event_ring_elem *elem =
4986 &bp->eq_ring[EQ_DESC_CNT_PAGE * i - 1];
4988 elem->next_page.addr.hi =
4989 cpu_to_le32(U64_HI(bp->eq_mapping +
4990 BCM_PAGE_SIZE * (i % NUM_EQ_PAGES)));
4991 elem->next_page.addr.lo =
4992 cpu_to_le32(U64_LO(bp->eq_mapping +
4993 BCM_PAGE_SIZE*(i % NUM_EQ_PAGES)));
4995 bp->eq_cons = 0;
4996 bp->eq_prod = NUM_EQ_DESC;
4997 bp->eq_cons_sb = BNX2X_EQ_INDEX;
4998 /* we want a warning message before it gets rought... */
4999 atomic_set(&bp->eq_spq_left,
5000 min_t(int, MAX_SP_DESC_CNT - MAX_SPQ_PENDING, NUM_EQ_DESC) - 1);
5004 /* called with netif_addr_lock_bh() */
5005 void bnx2x_set_q_rx_mode(struct bnx2x *bp, u8 cl_id,
5006 unsigned long rx_mode_flags,
5007 unsigned long rx_accept_flags,
5008 unsigned long tx_accept_flags,
5009 unsigned long ramrod_flags)
5011 struct bnx2x_rx_mode_ramrod_params ramrod_param;
5012 int rc;
5014 memset(&ramrod_param, 0, sizeof(ramrod_param));
5016 /* Prepare ramrod parameters */
5017 ramrod_param.cid = 0;
5018 ramrod_param.cl_id = cl_id;
5019 ramrod_param.rx_mode_obj = &bp->rx_mode_obj;
5020 ramrod_param.func_id = BP_FUNC(bp);
5022 ramrod_param.pstate = &bp->sp_state;
5023 ramrod_param.state = BNX2X_FILTER_RX_MODE_PENDING;
5025 ramrod_param.rdata = bnx2x_sp(bp, rx_mode_rdata);
5026 ramrod_param.rdata_mapping = bnx2x_sp_mapping(bp, rx_mode_rdata);
5028 set_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
5030 ramrod_param.ramrod_flags = ramrod_flags;
5031 ramrod_param.rx_mode_flags = rx_mode_flags;
5033 ramrod_param.rx_accept_flags = rx_accept_flags;
5034 ramrod_param.tx_accept_flags = tx_accept_flags;
5036 rc = bnx2x_config_rx_mode(bp, &ramrod_param);
5037 if (rc < 0) {
5038 BNX2X_ERR("Set rx_mode %d failed\n", bp->rx_mode);
5039 return;
5043 /* called with netif_addr_lock_bh() */
5044 void bnx2x_set_storm_rx_mode(struct bnx2x *bp)
5046 unsigned long rx_mode_flags = 0, ramrod_flags = 0;
5047 unsigned long rx_accept_flags = 0, tx_accept_flags = 0;
5049 #ifdef BCM_CNIC
5050 if (!NO_FCOE(bp))
5052 /* Configure rx_mode of FCoE Queue */
5053 __set_bit(BNX2X_RX_MODE_FCOE_ETH, &rx_mode_flags);
5054 #endif
5056 switch (bp->rx_mode) {
5057 case BNX2X_RX_MODE_NONE:
5059 * 'drop all' supersedes any accept flags that may have been
5060 * passed to the function.
5062 break;
5063 case BNX2X_RX_MODE_NORMAL:
5064 __set_bit(BNX2X_ACCEPT_UNICAST, &rx_accept_flags);
5065 __set_bit(BNX2X_ACCEPT_MULTICAST, &rx_accept_flags);
5066 __set_bit(BNX2X_ACCEPT_BROADCAST, &rx_accept_flags);
5068 /* internal switching mode */
5069 __set_bit(BNX2X_ACCEPT_UNICAST, &tx_accept_flags);
5070 __set_bit(BNX2X_ACCEPT_MULTICAST, &tx_accept_flags);
5071 __set_bit(BNX2X_ACCEPT_BROADCAST, &tx_accept_flags);
5073 break;
5074 case BNX2X_RX_MODE_ALLMULTI:
5075 __set_bit(BNX2X_ACCEPT_UNICAST, &rx_accept_flags);
5076 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &rx_accept_flags);
5077 __set_bit(BNX2X_ACCEPT_BROADCAST, &rx_accept_flags);
5079 /* internal switching mode */
5080 __set_bit(BNX2X_ACCEPT_UNICAST, &tx_accept_flags);
5081 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &tx_accept_flags);
5082 __set_bit(BNX2X_ACCEPT_BROADCAST, &tx_accept_flags);
5084 break;
5085 case BNX2X_RX_MODE_PROMISC:
5086 /* According to deffinition of SI mode, iface in promisc mode
5087 * should receive matched and unmatched (in resolution of port)
5088 * unicast packets.
5090 __set_bit(BNX2X_ACCEPT_UNMATCHED, &rx_accept_flags);
5091 __set_bit(BNX2X_ACCEPT_UNICAST, &rx_accept_flags);
5092 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &rx_accept_flags);
5093 __set_bit(BNX2X_ACCEPT_BROADCAST, &rx_accept_flags);
5095 /* internal switching mode */
5096 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &tx_accept_flags);
5097 __set_bit(BNX2X_ACCEPT_BROADCAST, &tx_accept_flags);
5099 if (IS_MF_SI(bp))
5100 __set_bit(BNX2X_ACCEPT_ALL_UNICAST, &tx_accept_flags);
5101 else
5102 __set_bit(BNX2X_ACCEPT_UNICAST, &tx_accept_flags);
5104 break;
5105 default:
5106 BNX2X_ERR("Unknown rx_mode: %d\n", bp->rx_mode);
5107 return;
5110 if (bp->rx_mode != BNX2X_RX_MODE_NONE) {
5111 __set_bit(BNX2X_ACCEPT_ANY_VLAN, &rx_accept_flags);
5112 __set_bit(BNX2X_ACCEPT_ANY_VLAN, &tx_accept_flags);
5115 __set_bit(RAMROD_RX, &ramrod_flags);
5116 __set_bit(RAMROD_TX, &ramrod_flags);
5118 bnx2x_set_q_rx_mode(bp, bp->fp->cl_id, rx_mode_flags, rx_accept_flags,
5119 tx_accept_flags, ramrod_flags);
5122 static void bnx2x_init_internal_common(struct bnx2x *bp)
5124 int i;
5126 if (IS_MF_SI(bp))
5128 * In switch independent mode, the TSTORM needs to accept
5129 * packets that failed classification, since approximate match
5130 * mac addresses aren't written to NIG LLH
5132 REG_WR8(bp, BAR_TSTRORM_INTMEM +
5133 TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET, 2);
5134 else if (!CHIP_IS_E1(bp)) /* 57710 doesn't support MF */
5135 REG_WR8(bp, BAR_TSTRORM_INTMEM +
5136 TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET, 0);
5138 /* Zero this manually as its initialization is
5139 currently missing in the initTool */
5140 for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++)
5141 REG_WR(bp, BAR_USTRORM_INTMEM +
5142 USTORM_AGG_DATA_OFFSET + i * 4, 0);
5143 if (!CHIP_IS_E1x(bp)) {
5144 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET,
5145 CHIP_INT_MODE_IS_BC(bp) ?
5146 HC_IGU_BC_MODE : HC_IGU_NBC_MODE);
5150 static void bnx2x_init_internal(struct bnx2x *bp, u32 load_code)
5152 switch (load_code) {
5153 case FW_MSG_CODE_DRV_LOAD_COMMON:
5154 case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
5155 bnx2x_init_internal_common(bp);
5156 /* no break */
5158 case FW_MSG_CODE_DRV_LOAD_PORT:
5159 /* nothing to do */
5160 /* no break */
5162 case FW_MSG_CODE_DRV_LOAD_FUNCTION:
5163 /* internal memory per function is
5164 initialized inside bnx2x_pf_init */
5165 break;
5167 default:
5168 BNX2X_ERR("Unknown load_code (0x%x) from MCP\n", load_code);
5169 break;
5173 static inline u8 bnx2x_fp_igu_sb_id(struct bnx2x_fastpath *fp)
5175 return fp->bp->igu_base_sb + fp->index + CNIC_PRESENT;
5178 static inline u8 bnx2x_fp_fw_sb_id(struct bnx2x_fastpath *fp)
5180 return fp->bp->base_fw_ndsb + fp->index + CNIC_PRESENT;
5183 static inline u8 bnx2x_fp_cl_id(struct bnx2x_fastpath *fp)
5185 if (CHIP_IS_E1x(fp->bp))
5186 return BP_L_ID(fp->bp) + fp->index;
5187 else /* We want Client ID to be the same as IGU SB ID for 57712 */
5188 return bnx2x_fp_igu_sb_id(fp);
5191 static void bnx2x_init_eth_fp(struct bnx2x *bp, int fp_idx)
5193 struct bnx2x_fastpath *fp = &bp->fp[fp_idx];
5194 u8 cos;
5195 unsigned long q_type = 0;
5196 u32 cids[BNX2X_MULTI_TX_COS] = { 0 };
5198 fp->cid = fp_idx;
5199 fp->cl_id = bnx2x_fp_cl_id(fp);
5200 fp->fw_sb_id = bnx2x_fp_fw_sb_id(fp);
5201 fp->igu_sb_id = bnx2x_fp_igu_sb_id(fp);
5202 /* qZone id equals to FW (per path) client id */
5203 fp->cl_qzone_id = bnx2x_fp_qzone_id(fp);
5205 /* init shortcut */
5206 fp->ustorm_rx_prods_offset = bnx2x_rx_ustorm_prods_offset(fp);
5207 /* Setup SB indicies */
5208 fp->rx_cons_sb = BNX2X_RX_SB_INDEX;
5210 /* Configure Queue State object */
5211 __set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
5212 __set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
5214 BUG_ON(fp->max_cos > BNX2X_MULTI_TX_COS);
5216 /* init tx data */
5217 for_each_cos_in_tx_queue(fp, cos) {
5218 bnx2x_init_txdata(bp, &fp->txdata[cos],
5219 CID_COS_TO_TX_ONLY_CID(fp->cid, cos),
5220 FP_COS_TO_TXQ(fp, cos),
5221 BNX2X_TX_SB_INDEX_BASE + cos);
5222 cids[cos] = fp->txdata[cos].cid;
5225 bnx2x_init_queue_obj(bp, &fp->q_obj, fp->cl_id, cids, fp->max_cos,
5226 BP_FUNC(bp), bnx2x_sp(bp, q_rdata),
5227 bnx2x_sp_mapping(bp, q_rdata), q_type);
5230 * Configure classification DBs: Always enable Tx switching
5232 bnx2x_init_vlan_mac_fp_objs(fp, BNX2X_OBJ_TYPE_RX_TX);
5234 DP(NETIF_MSG_IFUP, "queue[%d]: bnx2x_init_sb(%p,%p) "
5235 "cl_id %d fw_sb %d igu_sb %d\n",
5236 fp_idx, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id,
5237 fp->igu_sb_id);
5238 bnx2x_init_sb(bp, fp->status_blk_mapping, BNX2X_VF_ID_INVALID, false,
5239 fp->fw_sb_id, fp->igu_sb_id);
5241 bnx2x_update_fpsb_idx(fp);
5244 void bnx2x_nic_init(struct bnx2x *bp, u32 load_code)
5246 int i;
5248 for_each_eth_queue(bp, i)
5249 bnx2x_init_eth_fp(bp, i);
5250 #ifdef BCM_CNIC
5251 if (!NO_FCOE(bp))
5252 bnx2x_init_fcoe_fp(bp);
5254 bnx2x_init_sb(bp, bp->cnic_sb_mapping,
5255 BNX2X_VF_ID_INVALID, false,
5256 bnx2x_cnic_fw_sb_id(bp), bnx2x_cnic_igu_sb_id(bp));
5258 #endif
5260 /* Initialize MOD_ABS interrupts */
5261 bnx2x_init_mod_abs_int(bp, &bp->link_vars, bp->common.chip_id,
5262 bp->common.shmem_base, bp->common.shmem2_base,
5263 BP_PORT(bp));
5264 /* ensure status block indices were read */
5265 rmb();
5267 bnx2x_init_def_sb(bp);
5268 bnx2x_update_dsb_idx(bp);
5269 bnx2x_init_rx_rings(bp);
5270 bnx2x_init_tx_rings(bp);
5271 bnx2x_init_sp_ring(bp);
5272 bnx2x_init_eq_ring(bp);
5273 bnx2x_init_internal(bp, load_code);
5274 bnx2x_pf_init(bp);
5275 bnx2x_stats_init(bp);
5277 /* flush all before enabling interrupts */
5278 mb();
5279 mmiowb();
5281 bnx2x_int_enable(bp);
5283 /* Check for SPIO5 */
5284 bnx2x_attn_int_deasserted0(bp,
5285 REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + BP_PORT(bp)*4) &
5286 AEU_INPUTS_ATTN_BITS_SPIO5);
5289 /* end of nic init */
5292 * gzip service functions
5295 static int bnx2x_gunzip_init(struct bnx2x *bp)
5297 bp->gunzip_buf = dma_alloc_coherent(&bp->pdev->dev, FW_BUF_SIZE,
5298 &bp->gunzip_mapping, GFP_KERNEL);
5299 if (bp->gunzip_buf == NULL)
5300 goto gunzip_nomem1;
5302 bp->strm = kmalloc(sizeof(*bp->strm), GFP_KERNEL);
5303 if (bp->strm == NULL)
5304 goto gunzip_nomem2;
5306 bp->strm->workspace = vmalloc(zlib_inflate_workspacesize());
5307 if (bp->strm->workspace == NULL)
5308 goto gunzip_nomem3;
5310 return 0;
5312 gunzip_nomem3:
5313 kfree(bp->strm);
5314 bp->strm = NULL;
5316 gunzip_nomem2:
5317 dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
5318 bp->gunzip_mapping);
5319 bp->gunzip_buf = NULL;
5321 gunzip_nomem1:
5322 netdev_err(bp->dev, "Cannot allocate firmware buffer for"
5323 " un-compression\n");
5324 return -ENOMEM;
5327 static void bnx2x_gunzip_end(struct bnx2x *bp)
5329 if (bp->strm) {
5330 vfree(bp->strm->workspace);
5331 kfree(bp->strm);
5332 bp->strm = NULL;
5335 if (bp->gunzip_buf) {
5336 dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
5337 bp->gunzip_mapping);
5338 bp->gunzip_buf = NULL;
5342 static int bnx2x_gunzip(struct bnx2x *bp, const u8 *zbuf, int len)
5344 int n, rc;
5346 /* check gzip header */
5347 if ((zbuf[0] != 0x1f) || (zbuf[1] != 0x8b) || (zbuf[2] != Z_DEFLATED)) {
5348 BNX2X_ERR("Bad gzip header\n");
5349 return -EINVAL;
5352 n = 10;
5354 #define FNAME 0x8
5356 if (zbuf[3] & FNAME)
5357 while ((zbuf[n++] != 0) && (n < len));
5359 bp->strm->next_in = (typeof(bp->strm->next_in))zbuf + n;
5360 bp->strm->avail_in = len - n;
5361 bp->strm->next_out = bp->gunzip_buf;
5362 bp->strm->avail_out = FW_BUF_SIZE;
5364 rc = zlib_inflateInit2(bp->strm, -MAX_WBITS);
5365 if (rc != Z_OK)
5366 return rc;
5368 rc = zlib_inflate(bp->strm, Z_FINISH);
5369 if ((rc != Z_OK) && (rc != Z_STREAM_END))
5370 netdev_err(bp->dev, "Firmware decompression error: %s\n",
5371 bp->strm->msg);
5373 bp->gunzip_outlen = (FW_BUF_SIZE - bp->strm->avail_out);
5374 if (bp->gunzip_outlen & 0x3)
5375 netdev_err(bp->dev, "Firmware decompression error:"
5376 " gunzip_outlen (%d) not aligned\n",
5377 bp->gunzip_outlen);
5378 bp->gunzip_outlen >>= 2;
5380 zlib_inflateEnd(bp->strm);
5382 if (rc == Z_STREAM_END)
5383 return 0;
5385 return rc;
5388 /* nic load/unload */
5391 * General service functions
5394 /* send a NIG loopback debug packet */
5395 static void bnx2x_lb_pckt(struct bnx2x *bp)
5397 u32 wb_write[3];
5399 /* Ethernet source and destination addresses */
5400 wb_write[0] = 0x55555555;
5401 wb_write[1] = 0x55555555;
5402 wb_write[2] = 0x20; /* SOP */
5403 REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
5405 /* NON-IP protocol */
5406 wb_write[0] = 0x09000000;
5407 wb_write[1] = 0x55555555;
5408 wb_write[2] = 0x10; /* EOP, eop_bvalid = 0 */
5409 REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
5412 /* some of the internal memories
5413 * are not directly readable from the driver
5414 * to test them we send debug packets
5416 static int bnx2x_int_mem_test(struct bnx2x *bp)
5418 int factor;
5419 int count, i;
5420 u32 val = 0;
5422 if (CHIP_REV_IS_FPGA(bp))
5423 factor = 120;
5424 else if (CHIP_REV_IS_EMUL(bp))
5425 factor = 200;
5426 else
5427 factor = 1;
5429 /* Disable inputs of parser neighbor blocks */
5430 REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
5431 REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
5432 REG_WR(bp, CFC_REG_DEBUG0, 0x1);
5433 REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
5435 /* Write 0 to parser credits for CFC search request */
5436 REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
5438 /* send Ethernet packet */
5439 bnx2x_lb_pckt(bp);
5441 /* TODO do i reset NIG statistic? */
5442 /* Wait until NIG register shows 1 packet of size 0x10 */
5443 count = 1000 * factor;
5444 while (count) {
5446 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
5447 val = *bnx2x_sp(bp, wb_data[0]);
5448 if (val == 0x10)
5449 break;
5451 msleep(10);
5452 count--;
5454 if (val != 0x10) {
5455 BNX2X_ERR("NIG timeout val = 0x%x\n", val);
5456 return -1;
5459 /* Wait until PRS register shows 1 packet */
5460 count = 1000 * factor;
5461 while (count) {
5462 val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
5463 if (val == 1)
5464 break;
5466 msleep(10);
5467 count--;
5469 if (val != 0x1) {
5470 BNX2X_ERR("PRS timeout val = 0x%x\n", val);
5471 return -2;
5474 /* Reset and init BRB, PRS */
5475 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
5476 msleep(50);
5477 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
5478 msleep(50);
5479 bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
5480 bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
5482 DP(NETIF_MSG_HW, "part2\n");
5484 /* Disable inputs of parser neighbor blocks */
5485 REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
5486 REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
5487 REG_WR(bp, CFC_REG_DEBUG0, 0x1);
5488 REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
5490 /* Write 0 to parser credits for CFC search request */
5491 REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
5493 /* send 10 Ethernet packets */
5494 for (i = 0; i < 10; i++)
5495 bnx2x_lb_pckt(bp);
5497 /* Wait until NIG register shows 10 + 1
5498 packets of size 11*0x10 = 0xb0 */
5499 count = 1000 * factor;
5500 while (count) {
5502 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
5503 val = *bnx2x_sp(bp, wb_data[0]);
5504 if (val == 0xb0)
5505 break;
5507 msleep(10);
5508 count--;
5510 if (val != 0xb0) {
5511 BNX2X_ERR("NIG timeout val = 0x%x\n", val);
5512 return -3;
5515 /* Wait until PRS register shows 2 packets */
5516 val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
5517 if (val != 2)
5518 BNX2X_ERR("PRS timeout val = 0x%x\n", val);
5520 /* Write 1 to parser credits for CFC search request */
5521 REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1);
5523 /* Wait until PRS register shows 3 packets */
5524 msleep(10 * factor);
5525 /* Wait until NIG register shows 1 packet of size 0x10 */
5526 val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
5527 if (val != 3)
5528 BNX2X_ERR("PRS timeout val = 0x%x\n", val);
5530 /* clear NIG EOP FIFO */
5531 for (i = 0; i < 11; i++)
5532 REG_RD(bp, NIG_REG_INGRESS_EOP_LB_FIFO);
5533 val = REG_RD(bp, NIG_REG_INGRESS_EOP_LB_EMPTY);
5534 if (val != 1) {
5535 BNX2X_ERR("clear of NIG failed\n");
5536 return -4;
5539 /* Reset and init BRB, PRS, NIG */
5540 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
5541 msleep(50);
5542 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
5543 msleep(50);
5544 bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
5545 bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
5546 #ifndef BCM_CNIC
5547 /* set NIC mode */
5548 REG_WR(bp, PRS_REG_NIC_MODE, 1);
5549 #endif
5551 /* Enable inputs of parser neighbor blocks */
5552 REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x7fffffff);
5553 REG_WR(bp, TCM_REG_PRS_IFEN, 0x1);
5554 REG_WR(bp, CFC_REG_DEBUG0, 0x0);
5555 REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x1);
5557 DP(NETIF_MSG_HW, "done\n");
5559 return 0; /* OK */
5562 static void bnx2x_enable_blocks_attention(struct bnx2x *bp)
5564 REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
5565 if (!CHIP_IS_E1x(bp))
5566 REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0x40);
5567 else
5568 REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0);
5569 REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
5570 REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
5572 * mask read length error interrupts in brb for parser
5573 * (parsing unit and 'checksum and crc' unit)
5574 * these errors are legal (PU reads fixed length and CAC can cause
5575 * read length error on truncated packets)
5577 REG_WR(bp, BRB1_REG_BRB1_INT_MASK, 0xFC00);
5578 REG_WR(bp, QM_REG_QM_INT_MASK, 0);
5579 REG_WR(bp, TM_REG_TM_INT_MASK, 0);
5580 REG_WR(bp, XSDM_REG_XSDM_INT_MASK_0, 0);
5581 REG_WR(bp, XSDM_REG_XSDM_INT_MASK_1, 0);
5582 REG_WR(bp, XCM_REG_XCM_INT_MASK, 0);
5583 /* REG_WR(bp, XSEM_REG_XSEM_INT_MASK_0, 0); */
5584 /* REG_WR(bp, XSEM_REG_XSEM_INT_MASK_1, 0); */
5585 REG_WR(bp, USDM_REG_USDM_INT_MASK_0, 0);
5586 REG_WR(bp, USDM_REG_USDM_INT_MASK_1, 0);
5587 REG_WR(bp, UCM_REG_UCM_INT_MASK, 0);
5588 /* REG_WR(bp, USEM_REG_USEM_INT_MASK_0, 0); */
5589 /* REG_WR(bp, USEM_REG_USEM_INT_MASK_1, 0); */
5590 REG_WR(bp, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0);
5591 REG_WR(bp, CSDM_REG_CSDM_INT_MASK_0, 0);
5592 REG_WR(bp, CSDM_REG_CSDM_INT_MASK_1, 0);
5593 REG_WR(bp, CCM_REG_CCM_INT_MASK, 0);
5594 /* REG_WR(bp, CSEM_REG_CSEM_INT_MASK_0, 0); */
5595 /* REG_WR(bp, CSEM_REG_CSEM_INT_MASK_1, 0); */
5597 if (CHIP_REV_IS_FPGA(bp))
5598 REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0, 0x580000);
5599 else if (!CHIP_IS_E1x(bp))
5600 REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0,
5601 (PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF
5602 | PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT
5603 | PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN
5604 | PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED
5605 | PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED));
5606 else
5607 REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0, 0x480000);
5608 REG_WR(bp, TSDM_REG_TSDM_INT_MASK_0, 0);
5609 REG_WR(bp, TSDM_REG_TSDM_INT_MASK_1, 0);
5610 REG_WR(bp, TCM_REG_TCM_INT_MASK, 0);
5611 /* REG_WR(bp, TSEM_REG_TSEM_INT_MASK_0, 0); */
5613 if (!CHIP_IS_E1x(bp))
5614 /* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */
5615 REG_WR(bp, TSEM_REG_TSEM_INT_MASK_1, 0x07ff);
5617 REG_WR(bp, CDU_REG_CDU_INT_MASK, 0);
5618 REG_WR(bp, DMAE_REG_DMAE_INT_MASK, 0);
5619 /* REG_WR(bp, MISC_REG_MISC_INT_MASK, 0); */
5620 REG_WR(bp, PBF_REG_PBF_INT_MASK, 0x18); /* bit 3,4 masked */
5623 static void bnx2x_reset_common(struct bnx2x *bp)
5625 u32 val = 0x1400;
5627 /* reset_common */
5628 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
5629 0xd3ffff7f);
5631 if (CHIP_IS_E3(bp)) {
5632 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
5633 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
5636 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, val);
5639 static void bnx2x_setup_dmae(struct bnx2x *bp)
5641 bp->dmae_ready = 0;
5642 spin_lock_init(&bp->dmae_lock);
5645 static void bnx2x_init_pxp(struct bnx2x *bp)
5647 u16 devctl;
5648 int r_order, w_order;
5650 pci_read_config_word(bp->pdev,
5651 pci_pcie_cap(bp->pdev) + PCI_EXP_DEVCTL, &devctl);
5652 DP(NETIF_MSG_HW, "read 0x%x from devctl\n", devctl);
5653 w_order = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
5654 if (bp->mrrs == -1)
5655 r_order = ((devctl & PCI_EXP_DEVCTL_READRQ) >> 12);
5656 else {
5657 DP(NETIF_MSG_HW, "force read order to %d\n", bp->mrrs);
5658 r_order = bp->mrrs;
5661 bnx2x_init_pxp_arb(bp, r_order, w_order);
5664 static void bnx2x_setup_fan_failure_detection(struct bnx2x *bp)
5666 int is_required;
5667 u32 val;
5668 int port;
5670 if (BP_NOMCP(bp))
5671 return;
5673 is_required = 0;
5674 val = SHMEM_RD(bp, dev_info.shared_hw_config.config2) &
5675 SHARED_HW_CFG_FAN_FAILURE_MASK;
5677 if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED)
5678 is_required = 1;
5681 * The fan failure mechanism is usually related to the PHY type since
5682 * the power consumption of the board is affected by the PHY. Currently,
5683 * fan is required for most designs with SFX7101, BCM8727 and BCM8481.
5685 else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE)
5686 for (port = PORT_0; port < PORT_MAX; port++) {
5687 is_required |=
5688 bnx2x_fan_failure_det_req(
5690 bp->common.shmem_base,
5691 bp->common.shmem2_base,
5692 port);
5695 DP(NETIF_MSG_HW, "fan detection setting: %d\n", is_required);
5697 if (is_required == 0)
5698 return;
5700 /* Fan failure is indicated by SPIO 5 */
5701 bnx2x_set_spio(bp, MISC_REGISTERS_SPIO_5,
5702 MISC_REGISTERS_SPIO_INPUT_HI_Z);
5704 /* set to active low mode */
5705 val = REG_RD(bp, MISC_REG_SPIO_INT);
5706 val |= ((1 << MISC_REGISTERS_SPIO_5) <<
5707 MISC_REGISTERS_SPIO_INT_OLD_SET_POS);
5708 REG_WR(bp, MISC_REG_SPIO_INT, val);
5710 /* enable interrupt to signal the IGU */
5711 val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
5712 val |= (1 << MISC_REGISTERS_SPIO_5);
5713 REG_WR(bp, MISC_REG_SPIO_EVENT_EN, val);
5716 static void bnx2x_pretend_func(struct bnx2x *bp, u8 pretend_func_num)
5718 u32 offset = 0;
5720 if (CHIP_IS_E1(bp))
5721 return;
5722 if (CHIP_IS_E1H(bp) && (pretend_func_num >= E1H_FUNC_MAX))
5723 return;
5725 switch (BP_ABS_FUNC(bp)) {
5726 case 0:
5727 offset = PXP2_REG_PGL_PRETEND_FUNC_F0;
5728 break;
5729 case 1:
5730 offset = PXP2_REG_PGL_PRETEND_FUNC_F1;
5731 break;
5732 case 2:
5733 offset = PXP2_REG_PGL_PRETEND_FUNC_F2;
5734 break;
5735 case 3:
5736 offset = PXP2_REG_PGL_PRETEND_FUNC_F3;
5737 break;
5738 case 4:
5739 offset = PXP2_REG_PGL_PRETEND_FUNC_F4;
5740 break;
5741 case 5:
5742 offset = PXP2_REG_PGL_PRETEND_FUNC_F5;
5743 break;
5744 case 6:
5745 offset = PXP2_REG_PGL_PRETEND_FUNC_F6;
5746 break;
5747 case 7:
5748 offset = PXP2_REG_PGL_PRETEND_FUNC_F7;
5749 break;
5750 default:
5751 return;
5754 REG_WR(bp, offset, pretend_func_num);
5755 REG_RD(bp, offset);
5756 DP(NETIF_MSG_HW, "Pretending to func %d\n", pretend_func_num);
5759 void bnx2x_pf_disable(struct bnx2x *bp)
5761 u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
5762 val &= ~IGU_PF_CONF_FUNC_EN;
5764 REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
5765 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
5766 REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 0);
5769 static inline void bnx2x__common_init_phy(struct bnx2x *bp)
5771 u32 shmem_base[2], shmem2_base[2];
5772 shmem_base[0] = bp->common.shmem_base;
5773 shmem2_base[0] = bp->common.shmem2_base;
5774 if (!CHIP_IS_E1x(bp)) {
5775 shmem_base[1] =
5776 SHMEM2_RD(bp, other_shmem_base_addr);
5777 shmem2_base[1] =
5778 SHMEM2_RD(bp, other_shmem2_base_addr);
5780 bnx2x_acquire_phy_lock(bp);
5781 bnx2x_common_init_phy(bp, shmem_base, shmem2_base,
5782 bp->common.chip_id);
5783 bnx2x_release_phy_lock(bp);
5787 * bnx2x_init_hw_common - initialize the HW at the COMMON phase.
5789 * @bp: driver handle
5791 static int bnx2x_init_hw_common(struct bnx2x *bp)
5793 u32 val;
5795 DP(BNX2X_MSG_MCP, "starting common init func %d\n", BP_ABS_FUNC(bp));
5798 * take the UNDI lock to protect undi_unload flow from accessing
5799 * registers while we're resetting the chip
5801 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_UNDI);
5803 bnx2x_reset_common(bp);
5804 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0xffffffff);
5806 val = 0xfffc;
5807 if (CHIP_IS_E3(bp)) {
5808 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
5809 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
5811 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, val);
5813 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_UNDI);
5815 bnx2x_init_block(bp, BLOCK_MISC, PHASE_COMMON);
5817 if (!CHIP_IS_E1x(bp)) {
5818 u8 abs_func_id;
5821 * 4-port mode or 2-port mode we need to turn of master-enable
5822 * for everyone, after that, turn it back on for self.
5823 * so, we disregard multi-function or not, and always disable
5824 * for all functions on the given path, this means 0,2,4,6 for
5825 * path 0 and 1,3,5,7 for path 1
5827 for (abs_func_id = BP_PATH(bp);
5828 abs_func_id < E2_FUNC_MAX*2; abs_func_id += 2) {
5829 if (abs_func_id == BP_ABS_FUNC(bp)) {
5830 REG_WR(bp,
5831 PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER,
5833 continue;
5836 bnx2x_pretend_func(bp, abs_func_id);
5837 /* clear pf enable */
5838 bnx2x_pf_disable(bp);
5839 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
5843 bnx2x_init_block(bp, BLOCK_PXP, PHASE_COMMON);
5844 if (CHIP_IS_E1(bp)) {
5845 /* enable HW interrupt from PXP on USDM overflow
5846 bit 16 on INT_MASK_0 */
5847 REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
5850 bnx2x_init_block(bp, BLOCK_PXP2, PHASE_COMMON);
5851 bnx2x_init_pxp(bp);
5853 #ifdef __BIG_ENDIAN
5854 REG_WR(bp, PXP2_REG_RQ_QM_ENDIAN_M, 1);
5855 REG_WR(bp, PXP2_REG_RQ_TM_ENDIAN_M, 1);
5856 REG_WR(bp, PXP2_REG_RQ_SRC_ENDIAN_M, 1);
5857 REG_WR(bp, PXP2_REG_RQ_CDU_ENDIAN_M, 1);
5858 REG_WR(bp, PXP2_REG_RQ_DBG_ENDIAN_M, 1);
5859 /* make sure this value is 0 */
5860 REG_WR(bp, PXP2_REG_RQ_HC_ENDIAN_M, 0);
5862 /* REG_WR(bp, PXP2_REG_RD_PBF_SWAP_MODE, 1); */
5863 REG_WR(bp, PXP2_REG_RD_QM_SWAP_MODE, 1);
5864 REG_WR(bp, PXP2_REG_RD_TM_SWAP_MODE, 1);
5865 REG_WR(bp, PXP2_REG_RD_SRC_SWAP_MODE, 1);
5866 REG_WR(bp, PXP2_REG_RD_CDURD_SWAP_MODE, 1);
5867 #endif
5869 bnx2x_ilt_init_page_size(bp, INITOP_SET);
5871 if (CHIP_REV_IS_FPGA(bp) && CHIP_IS_E1H(bp))
5872 REG_WR(bp, PXP2_REG_PGL_TAGS_LIMIT, 0x1);
5874 /* let the HW do it's magic ... */
5875 msleep(100);
5876 /* finish PXP init */
5877 val = REG_RD(bp, PXP2_REG_RQ_CFG_DONE);
5878 if (val != 1) {
5879 BNX2X_ERR("PXP2 CFG failed\n");
5880 return -EBUSY;
5882 val = REG_RD(bp, PXP2_REG_RD_INIT_DONE);
5883 if (val != 1) {
5884 BNX2X_ERR("PXP2 RD_INIT failed\n");
5885 return -EBUSY;
5888 /* Timers bug workaround E2 only. We need to set the entire ILT to
5889 * have entries with value "0" and valid bit on.
5890 * This needs to be done by the first PF that is loaded in a path
5891 * (i.e. common phase)
5893 if (!CHIP_IS_E1x(bp)) {
5894 /* In E2 there is a bug in the timers block that can cause function 6 / 7
5895 * (i.e. vnic3) to start even if it is marked as "scan-off".
5896 * This occurs when a different function (func2,3) is being marked
5897 * as "scan-off". Real-life scenario for example: if a driver is being
5898 * load-unloaded while func6,7 are down. This will cause the timer to access
5899 * the ilt, translate to a logical address and send a request to read/write.
5900 * Since the ilt for the function that is down is not valid, this will cause
5901 * a translation error which is unrecoverable.
5902 * The Workaround is intended to make sure that when this happens nothing fatal
5903 * will occur. The workaround:
5904 * 1. First PF driver which loads on a path will:
5905 * a. After taking the chip out of reset, by using pretend,
5906 * it will write "0" to the following registers of
5907 * the other vnics.
5908 * REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
5909 * REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0);
5910 * REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0);
5911 * And for itself it will write '1' to
5912 * PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable
5913 * dmae-operations (writing to pram for example.)
5914 * note: can be done for only function 6,7 but cleaner this
5915 * way.
5916 * b. Write zero+valid to the entire ILT.
5917 * c. Init the first_timers_ilt_entry, last_timers_ilt_entry of
5918 * VNIC3 (of that port). The range allocated will be the
5919 * entire ILT. This is needed to prevent ILT range error.
5920 * 2. Any PF driver load flow:
5921 * a. ILT update with the physical addresses of the allocated
5922 * logical pages.
5923 * b. Wait 20msec. - note that this timeout is needed to make
5924 * sure there are no requests in one of the PXP internal
5925 * queues with "old" ILT addresses.
5926 * c. PF enable in the PGLC.
5927 * d. Clear the was_error of the PF in the PGLC. (could have
5928 * occured while driver was down)
5929 * e. PF enable in the CFC (WEAK + STRONG)
5930 * f. Timers scan enable
5931 * 3. PF driver unload flow:
5932 * a. Clear the Timers scan_en.
5933 * b. Polling for scan_on=0 for that PF.
5934 * c. Clear the PF enable bit in the PXP.
5935 * d. Clear the PF enable in the CFC (WEAK + STRONG)
5936 * e. Write zero+valid to all ILT entries (The valid bit must
5937 * stay set)
5938 * f. If this is VNIC 3 of a port then also init
5939 * first_timers_ilt_entry to zero and last_timers_ilt_entry
5940 * to the last enrty in the ILT.
5942 * Notes:
5943 * Currently the PF error in the PGLC is non recoverable.
5944 * In the future the there will be a recovery routine for this error.
5945 * Currently attention is masked.
5946 * Having an MCP lock on the load/unload process does not guarantee that
5947 * there is no Timer disable during Func6/7 enable. This is because the
5948 * Timers scan is currently being cleared by the MCP on FLR.
5949 * Step 2.d can be done only for PF6/7 and the driver can also check if
5950 * there is error before clearing it. But the flow above is simpler and
5951 * more general.
5952 * All ILT entries are written by zero+valid and not just PF6/7
5953 * ILT entries since in the future the ILT entries allocation for
5954 * PF-s might be dynamic.
5956 struct ilt_client_info ilt_cli;
5957 struct bnx2x_ilt ilt;
5958 memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
5959 memset(&ilt, 0, sizeof(struct bnx2x_ilt));
5961 /* initialize dummy TM client */
5962 ilt_cli.start = 0;
5963 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
5964 ilt_cli.client_num = ILT_CLIENT_TM;
5966 /* Step 1: set zeroes to all ilt page entries with valid bit on
5967 * Step 2: set the timers first/last ilt entry to point
5968 * to the entire range to prevent ILT range error for 3rd/4th
5969 * vnic (this code assumes existance of the vnic)
5971 * both steps performed by call to bnx2x_ilt_client_init_op()
5972 * with dummy TM client
5974 * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT
5975 * and his brother are split registers
5977 bnx2x_pretend_func(bp, (BP_PATH(bp) + 6));
5978 bnx2x_ilt_client_init_op_ilt(bp, &ilt, &ilt_cli, INITOP_CLEAR);
5979 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
5981 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN, BNX2X_PXP_DRAM_ALIGN);
5982 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_RD, BNX2X_PXP_DRAM_ALIGN);
5983 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1);
5987 REG_WR(bp, PXP2_REG_RQ_DISABLE_INPUTS, 0);
5988 REG_WR(bp, PXP2_REG_RD_DISABLE_INPUTS, 0);
5990 if (!CHIP_IS_E1x(bp)) {
5991 int factor = CHIP_REV_IS_EMUL(bp) ? 1000 :
5992 (CHIP_REV_IS_FPGA(bp) ? 400 : 0);
5993 bnx2x_init_block(bp, BLOCK_PGLUE_B, PHASE_COMMON);
5995 bnx2x_init_block(bp, BLOCK_ATC, PHASE_COMMON);
5997 /* let the HW do it's magic ... */
5998 do {
5999 msleep(200);
6000 val = REG_RD(bp, ATC_REG_ATC_INIT_DONE);
6001 } while (factor-- && (val != 1));
6003 if (val != 1) {
6004 BNX2X_ERR("ATC_INIT failed\n");
6005 return -EBUSY;
6009 bnx2x_init_block(bp, BLOCK_DMAE, PHASE_COMMON);
6011 /* clean the DMAE memory */
6012 bp->dmae_ready = 1;
6013 bnx2x_init_fill(bp, TSEM_REG_PRAM, 0, 8, 1);
6015 bnx2x_init_block(bp, BLOCK_TCM, PHASE_COMMON);
6017 bnx2x_init_block(bp, BLOCK_UCM, PHASE_COMMON);
6019 bnx2x_init_block(bp, BLOCK_CCM, PHASE_COMMON);
6021 bnx2x_init_block(bp, BLOCK_XCM, PHASE_COMMON);
6023 bnx2x_read_dmae(bp, XSEM_REG_PASSIVE_BUFFER, 3);
6024 bnx2x_read_dmae(bp, CSEM_REG_PASSIVE_BUFFER, 3);
6025 bnx2x_read_dmae(bp, TSEM_REG_PASSIVE_BUFFER, 3);
6026 bnx2x_read_dmae(bp, USEM_REG_PASSIVE_BUFFER, 3);
6028 bnx2x_init_block(bp, BLOCK_QM, PHASE_COMMON);
6031 /* QM queues pointers table */
6032 bnx2x_qm_init_ptr_table(bp, bp->qm_cid_count, INITOP_SET);
6034 /* soft reset pulse */
6035 REG_WR(bp, QM_REG_SOFT_RESET, 1);
6036 REG_WR(bp, QM_REG_SOFT_RESET, 0);
6038 #ifdef BCM_CNIC
6039 bnx2x_init_block(bp, BLOCK_TM, PHASE_COMMON);
6040 #endif
6042 bnx2x_init_block(bp, BLOCK_DORQ, PHASE_COMMON);
6043 REG_WR(bp, DORQ_REG_DPM_CID_OFST, BNX2X_DB_SHIFT);
6044 if (!CHIP_REV_IS_SLOW(bp))
6045 /* enable hw interrupt from doorbell Q */
6046 REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
6048 bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6050 bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6051 REG_WR(bp, PRS_REG_A_PRSU_20, 0xf);
6053 if (!CHIP_IS_E1(bp))
6054 REG_WR(bp, PRS_REG_E1HOV_MODE, bp->path_has_ovlan);
6056 if (!CHIP_IS_E1x(bp) && !CHIP_IS_E3B0(bp))
6057 /* Bit-map indicating which L2 hdrs may appear
6058 * after the basic Ethernet header
6060 REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC,
6061 bp->path_has_ovlan ? 7 : 6);
6063 bnx2x_init_block(bp, BLOCK_TSDM, PHASE_COMMON);
6064 bnx2x_init_block(bp, BLOCK_CSDM, PHASE_COMMON);
6065 bnx2x_init_block(bp, BLOCK_USDM, PHASE_COMMON);
6066 bnx2x_init_block(bp, BLOCK_XSDM, PHASE_COMMON);
6068 if (!CHIP_IS_E1x(bp)) {
6069 /* reset VFC memories */
6070 REG_WR(bp, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
6071 VFC_MEMORIES_RST_REG_CAM_RST |
6072 VFC_MEMORIES_RST_REG_RAM_RST);
6073 REG_WR(bp, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
6074 VFC_MEMORIES_RST_REG_CAM_RST |
6075 VFC_MEMORIES_RST_REG_RAM_RST);
6077 msleep(20);
6080 bnx2x_init_block(bp, BLOCK_TSEM, PHASE_COMMON);
6081 bnx2x_init_block(bp, BLOCK_USEM, PHASE_COMMON);
6082 bnx2x_init_block(bp, BLOCK_CSEM, PHASE_COMMON);
6083 bnx2x_init_block(bp, BLOCK_XSEM, PHASE_COMMON);
6085 /* sync semi rtc */
6086 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
6087 0x80000000);
6088 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET,
6089 0x80000000);
6091 bnx2x_init_block(bp, BLOCK_UPB, PHASE_COMMON);
6092 bnx2x_init_block(bp, BLOCK_XPB, PHASE_COMMON);
6093 bnx2x_init_block(bp, BLOCK_PBF, PHASE_COMMON);
6095 if (!CHIP_IS_E1x(bp))
6096 REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC,
6097 bp->path_has_ovlan ? 7 : 6);
6099 REG_WR(bp, SRC_REG_SOFT_RST, 1);
6101 bnx2x_init_block(bp, BLOCK_SRC, PHASE_COMMON);
6103 #ifdef BCM_CNIC
6104 REG_WR(bp, SRC_REG_KEYSEARCH_0, 0x63285672);
6105 REG_WR(bp, SRC_REG_KEYSEARCH_1, 0x24b8f2cc);
6106 REG_WR(bp, SRC_REG_KEYSEARCH_2, 0x223aef9b);
6107 REG_WR(bp, SRC_REG_KEYSEARCH_3, 0x26001e3a);
6108 REG_WR(bp, SRC_REG_KEYSEARCH_4, 0x7ae91116);
6109 REG_WR(bp, SRC_REG_KEYSEARCH_5, 0x5ce5230b);
6110 REG_WR(bp, SRC_REG_KEYSEARCH_6, 0x298d8adf);
6111 REG_WR(bp, SRC_REG_KEYSEARCH_7, 0x6eb0ff09);
6112 REG_WR(bp, SRC_REG_KEYSEARCH_8, 0x1830f82f);
6113 REG_WR(bp, SRC_REG_KEYSEARCH_9, 0x01e46be7);
6114 #endif
6115 REG_WR(bp, SRC_REG_SOFT_RST, 0);
6117 if (sizeof(union cdu_context) != 1024)
6118 /* we currently assume that a context is 1024 bytes */
6119 dev_alert(&bp->pdev->dev, "please adjust the size "
6120 "of cdu_context(%ld)\n",
6121 (long)sizeof(union cdu_context));
6123 bnx2x_init_block(bp, BLOCK_CDU, PHASE_COMMON);
6124 val = (4 << 24) + (0 << 12) + 1024;
6125 REG_WR(bp, CDU_REG_CDU_GLOBAL_PARAMS, val);
6127 bnx2x_init_block(bp, BLOCK_CFC, PHASE_COMMON);
6128 REG_WR(bp, CFC_REG_INIT_REG, 0x7FF);
6129 /* enable context validation interrupt from CFC */
6130 REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
6132 /* set the thresholds to prevent CFC/CDU race */
6133 REG_WR(bp, CFC_REG_DEBUG0, 0x20020000);
6135 bnx2x_init_block(bp, BLOCK_HC, PHASE_COMMON);
6137 if (!CHIP_IS_E1x(bp) && BP_NOMCP(bp))
6138 REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x36);
6140 bnx2x_init_block(bp, BLOCK_IGU, PHASE_COMMON);
6141 bnx2x_init_block(bp, BLOCK_MISC_AEU, PHASE_COMMON);
6143 /* Reset PCIE errors for debug */
6144 REG_WR(bp, 0x2814, 0xffffffff);
6145 REG_WR(bp, 0x3820, 0xffffffff);
6147 if (!CHIP_IS_E1x(bp)) {
6148 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_CONTROL_5,
6149 (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 |
6150 PXPCS_TL_CONTROL_5_ERR_UNSPPORT));
6151 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT,
6152 (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 |
6153 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 |
6154 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2));
6155 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT,
6156 (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 |
6157 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 |
6158 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5));
6161 bnx2x_init_block(bp, BLOCK_NIG, PHASE_COMMON);
6162 if (!CHIP_IS_E1(bp)) {
6163 /* in E3 this done in per-port section */
6164 if (!CHIP_IS_E3(bp))
6165 REG_WR(bp, NIG_REG_LLH_MF_MODE, IS_MF(bp));
6167 if (CHIP_IS_E1H(bp))
6168 /* not applicable for E2 (and above ...) */
6169 REG_WR(bp, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(bp));
6171 if (CHIP_REV_IS_SLOW(bp))
6172 msleep(200);
6174 /* finish CFC init */
6175 val = reg_poll(bp, CFC_REG_LL_INIT_DONE, 1, 100, 10);
6176 if (val != 1) {
6177 BNX2X_ERR("CFC LL_INIT failed\n");
6178 return -EBUSY;
6180 val = reg_poll(bp, CFC_REG_AC_INIT_DONE, 1, 100, 10);
6181 if (val != 1) {
6182 BNX2X_ERR("CFC AC_INIT failed\n");
6183 return -EBUSY;
6185 val = reg_poll(bp, CFC_REG_CAM_INIT_DONE, 1, 100, 10);
6186 if (val != 1) {
6187 BNX2X_ERR("CFC CAM_INIT failed\n");
6188 return -EBUSY;
6190 REG_WR(bp, CFC_REG_DEBUG0, 0);
6192 if (CHIP_IS_E1(bp)) {
6193 /* read NIG statistic
6194 to see if this is our first up since powerup */
6195 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6196 val = *bnx2x_sp(bp, wb_data[0]);
6198 /* do internal memory self test */
6199 if ((val == 0) && bnx2x_int_mem_test(bp)) {
6200 BNX2X_ERR("internal mem self test failed\n");
6201 return -EBUSY;
6205 bnx2x_setup_fan_failure_detection(bp);
6207 /* clear PXP2 attentions */
6208 REG_RD(bp, PXP2_REG_PXP2_INT_STS_CLR_0);
6210 bnx2x_enable_blocks_attention(bp);
6211 bnx2x_enable_blocks_parity(bp);
6213 if (!BP_NOMCP(bp)) {
6214 if (CHIP_IS_E1x(bp))
6215 bnx2x__common_init_phy(bp);
6216 } else
6217 BNX2X_ERR("Bootcode is missing - can not initialize link\n");
6219 return 0;
6223 * bnx2x_init_hw_common_chip - init HW at the COMMON_CHIP phase.
6225 * @bp: driver handle
6227 static int bnx2x_init_hw_common_chip(struct bnx2x *bp)
6229 int rc = bnx2x_init_hw_common(bp);
6231 if (rc)
6232 return rc;
6234 /* In E2 2-PORT mode, same ext phy is used for the two paths */
6235 if (!BP_NOMCP(bp))
6236 bnx2x__common_init_phy(bp);
6238 return 0;
6241 static int bnx2x_init_hw_port(struct bnx2x *bp)
6243 int port = BP_PORT(bp);
6244 int init_phase = port ? PHASE_PORT1 : PHASE_PORT0;
6245 u32 low, high;
6246 u32 val;
6248 bnx2x__link_reset(bp);
6250 DP(BNX2X_MSG_MCP, "starting port init port %d\n", port);
6252 REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
6254 bnx2x_init_block(bp, BLOCK_MISC, init_phase);
6255 bnx2x_init_block(bp, BLOCK_PXP, init_phase);
6256 bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
6258 /* Timers bug workaround: disables the pf_master bit in pglue at
6259 * common phase, we need to enable it here before any dmae access are
6260 * attempted. Therefore we manually added the enable-master to the
6261 * port phase (it also happens in the function phase)
6263 if (!CHIP_IS_E1x(bp))
6264 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
6266 bnx2x_init_block(bp, BLOCK_ATC, init_phase);
6267 bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
6268 bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
6269 bnx2x_init_block(bp, BLOCK_QM, init_phase);
6271 bnx2x_init_block(bp, BLOCK_TCM, init_phase);
6272 bnx2x_init_block(bp, BLOCK_UCM, init_phase);
6273 bnx2x_init_block(bp, BLOCK_CCM, init_phase);
6274 bnx2x_init_block(bp, BLOCK_XCM, init_phase);
6276 /* QM cid (connection) count */
6277 bnx2x_qm_init_cid_count(bp, bp->qm_cid_count, INITOP_SET);
6279 #ifdef BCM_CNIC
6280 bnx2x_init_block(bp, BLOCK_TM, init_phase);
6281 REG_WR(bp, TM_REG_LIN0_SCAN_TIME + port*4, 20);
6282 REG_WR(bp, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31);
6283 #endif
6285 bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
6287 if (CHIP_IS_E1(bp) || CHIP_IS_E1H(bp)) {
6288 bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
6290 if (IS_MF(bp))
6291 low = ((bp->flags & ONE_PORT_FLAG) ? 160 : 246);
6292 else if (bp->dev->mtu > 4096) {
6293 if (bp->flags & ONE_PORT_FLAG)
6294 low = 160;
6295 else {
6296 val = bp->dev->mtu;
6297 /* (24*1024 + val*4)/256 */
6298 low = 96 + (val/64) +
6299 ((val % 64) ? 1 : 0);
6301 } else
6302 low = ((bp->flags & ONE_PORT_FLAG) ? 80 : 160);
6303 high = low + 56; /* 14*1024/256 */
6304 REG_WR(bp, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low);
6305 REG_WR(bp, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high);
6308 if (CHIP_MODE_IS_4_PORT(bp))
6309 REG_WR(bp, (BP_PORT(bp) ?
6310 BRB1_REG_MAC_GUARANTIED_1 :
6311 BRB1_REG_MAC_GUARANTIED_0), 40);
6314 bnx2x_init_block(bp, BLOCK_PRS, init_phase);
6315 if (CHIP_IS_E3B0(bp))
6316 /* Ovlan exists only if we are in multi-function +
6317 * switch-dependent mode, in switch-independent there
6318 * is no ovlan headers
6320 REG_WR(bp, BP_PORT(bp) ?
6321 PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
6322 PRS_REG_HDRS_AFTER_BASIC_PORT_0,
6323 (bp->path_has_ovlan ? 7 : 6));
6325 bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
6326 bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
6327 bnx2x_init_block(bp, BLOCK_USDM, init_phase);
6328 bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
6330 bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
6331 bnx2x_init_block(bp, BLOCK_USEM, init_phase);
6332 bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
6333 bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
6335 bnx2x_init_block(bp, BLOCK_UPB, init_phase);
6336 bnx2x_init_block(bp, BLOCK_XPB, init_phase);
6338 bnx2x_init_block(bp, BLOCK_PBF, init_phase);
6340 if (CHIP_IS_E1x(bp)) {
6341 /* configure PBF to work without PAUSE mtu 9000 */
6342 REG_WR(bp, PBF_REG_P0_PAUSE_ENABLE + port*4, 0);
6344 /* update threshold */
6345 REG_WR(bp, PBF_REG_P0_ARB_THRSH + port*4, (9040/16));
6346 /* update init credit */
6347 REG_WR(bp, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22);
6349 /* probe changes */
6350 REG_WR(bp, PBF_REG_INIT_P0 + port*4, 1);
6351 udelay(50);
6352 REG_WR(bp, PBF_REG_INIT_P0 + port*4, 0);
6355 #ifdef BCM_CNIC
6356 bnx2x_init_block(bp, BLOCK_SRC, init_phase);
6357 #endif
6358 bnx2x_init_block(bp, BLOCK_CDU, init_phase);
6359 bnx2x_init_block(bp, BLOCK_CFC, init_phase);
6361 if (CHIP_IS_E1(bp)) {
6362 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
6363 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
6365 bnx2x_init_block(bp, BLOCK_HC, init_phase);
6367 bnx2x_init_block(bp, BLOCK_IGU, init_phase);
6369 bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
6370 /* init aeu_mask_attn_func_0/1:
6371 * - SF mode: bits 3-7 are masked. only bits 0-2 are in use
6372 * - MF mode: bit 3 is masked. bits 0-2 are in use as in SF
6373 * bits 4-7 are used for "per vn group attention" */
6374 val = IS_MF(bp) ? 0xF7 : 0x7;
6375 /* Enable DCBX attention for all but E1 */
6376 val |= CHIP_IS_E1(bp) ? 0 : 0x10;
6377 REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val);
6379 bnx2x_init_block(bp, BLOCK_NIG, init_phase);
6381 if (!CHIP_IS_E1x(bp)) {
6382 /* Bit-map indicating which L2 hdrs may appear after the
6383 * basic Ethernet header
6385 REG_WR(bp, BP_PORT(bp) ?
6386 NIG_REG_P1_HDRS_AFTER_BASIC :
6387 NIG_REG_P0_HDRS_AFTER_BASIC,
6388 IS_MF_SD(bp) ? 7 : 6);
6390 if (CHIP_IS_E3(bp))
6391 REG_WR(bp, BP_PORT(bp) ?
6392 NIG_REG_LLH1_MF_MODE :
6393 NIG_REG_LLH_MF_MODE, IS_MF(bp));
6395 if (!CHIP_IS_E3(bp))
6396 REG_WR(bp, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1);
6398 if (!CHIP_IS_E1(bp)) {
6399 /* 0x2 disable mf_ov, 0x1 enable */
6400 REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4,
6401 (IS_MF_SD(bp) ? 0x1 : 0x2));
6403 if (!CHIP_IS_E1x(bp)) {
6404 val = 0;
6405 switch (bp->mf_mode) {
6406 case MULTI_FUNCTION_SD:
6407 val = 1;
6408 break;
6409 case MULTI_FUNCTION_SI:
6410 val = 2;
6411 break;
6414 REG_WR(bp, (BP_PORT(bp) ? NIG_REG_LLH1_CLS_TYPE :
6415 NIG_REG_LLH0_CLS_TYPE), val);
6418 REG_WR(bp, NIG_REG_LLFC_ENABLE_0 + port*4, 0);
6419 REG_WR(bp, NIG_REG_LLFC_OUT_EN_0 + port*4, 0);
6420 REG_WR(bp, NIG_REG_PAUSE_ENABLE_0 + port*4, 1);
6425 /* If SPIO5 is set to generate interrupts, enable it for this port */
6426 val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
6427 if (val & (1 << MISC_REGISTERS_SPIO_5)) {
6428 u32 reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
6429 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
6430 val = REG_RD(bp, reg_addr);
6431 val |= AEU_INPUTS_ATTN_BITS_SPIO5;
6432 REG_WR(bp, reg_addr, val);
6435 return 0;
6438 static void bnx2x_ilt_wr(struct bnx2x *bp, u32 index, dma_addr_t addr)
6440 int reg;
6442 if (CHIP_IS_E1(bp))
6443 reg = PXP2_REG_RQ_ONCHIP_AT + index*8;
6444 else
6445 reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8;
6447 bnx2x_wb_wr(bp, reg, ONCHIP_ADDR1(addr), ONCHIP_ADDR2(addr));
6450 static inline void bnx2x_igu_clear_sb(struct bnx2x *bp, u8 idu_sb_id)
6452 bnx2x_igu_clear_sb_gen(bp, BP_FUNC(bp), idu_sb_id, true /*PF*/);
6455 static inline void bnx2x_clear_func_ilt(struct bnx2x *bp, u32 func)
6457 u32 i, base = FUNC_ILT_BASE(func);
6458 for (i = base; i < base + ILT_PER_FUNC; i++)
6459 bnx2x_ilt_wr(bp, i, 0);
6462 static int bnx2x_init_hw_func(struct bnx2x *bp)
6464 int port = BP_PORT(bp);
6465 int func = BP_FUNC(bp);
6466 int init_phase = PHASE_PF0 + func;
6467 struct bnx2x_ilt *ilt = BP_ILT(bp);
6468 u16 cdu_ilt_start;
6469 u32 addr, val;
6470 u32 main_mem_base, main_mem_size, main_mem_prty_clr;
6471 int i, main_mem_width;
6473 DP(BNX2X_MSG_MCP, "starting func init func %d\n", func);
6475 /* FLR cleanup - hmmm */
6476 if (!CHIP_IS_E1x(bp))
6477 bnx2x_pf_flr_clnup(bp);
6479 /* set MSI reconfigure capability */
6480 if (bp->common.int_block == INT_BLOCK_HC) {
6481 addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0);
6482 val = REG_RD(bp, addr);
6483 val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0;
6484 REG_WR(bp, addr, val);
6487 bnx2x_init_block(bp, BLOCK_PXP, init_phase);
6488 bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
6490 ilt = BP_ILT(bp);
6491 cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
6493 for (i = 0; i < L2_ILT_LINES(bp); i++) {
6494 ilt->lines[cdu_ilt_start + i].page =
6495 bp->context.vcxt + (ILT_PAGE_CIDS * i);
6496 ilt->lines[cdu_ilt_start + i].page_mapping =
6497 bp->context.cxt_mapping + (CDU_ILT_PAGE_SZ * i);
6498 /* cdu ilt pages are allocated manually so there's no need to
6499 set the size */
6501 bnx2x_ilt_init_op(bp, INITOP_SET);
6503 #ifdef BCM_CNIC
6504 bnx2x_src_init_t2(bp, bp->t2, bp->t2_mapping, SRC_CONN_NUM);
6506 /* T1 hash bits value determines the T1 number of entries */
6507 REG_WR(bp, SRC_REG_NUMBER_HASH_BITS0 + port*4, SRC_HASH_BITS);
6508 #endif
6510 #ifndef BCM_CNIC
6511 /* set NIC mode */
6512 REG_WR(bp, PRS_REG_NIC_MODE, 1);
6513 #endif /* BCM_CNIC */
6515 if (!CHIP_IS_E1x(bp)) {
6516 u32 pf_conf = IGU_PF_CONF_FUNC_EN;
6518 /* Turn on a single ISR mode in IGU if driver is going to use
6519 * INT#x or MSI
6521 if (!(bp->flags & USING_MSIX_FLAG))
6522 pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
6524 * Timers workaround bug: function init part.
6525 * Need to wait 20msec after initializing ILT,
6526 * needed to make sure there are no requests in
6527 * one of the PXP internal queues with "old" ILT addresses
6529 msleep(20);
6531 * Master enable - Due to WB DMAE writes performed before this
6532 * register is re-initialized as part of the regular function
6533 * init
6535 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
6536 /* Enable the function in IGU */
6537 REG_WR(bp, IGU_REG_PF_CONFIGURATION, pf_conf);
6540 bp->dmae_ready = 1;
6542 bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
6544 if (!CHIP_IS_E1x(bp))
6545 REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, func);
6547 bnx2x_init_block(bp, BLOCK_ATC, init_phase);
6548 bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
6549 bnx2x_init_block(bp, BLOCK_NIG, init_phase);
6550 bnx2x_init_block(bp, BLOCK_SRC, init_phase);
6551 bnx2x_init_block(bp, BLOCK_MISC, init_phase);
6552 bnx2x_init_block(bp, BLOCK_TCM, init_phase);
6553 bnx2x_init_block(bp, BLOCK_UCM, init_phase);
6554 bnx2x_init_block(bp, BLOCK_CCM, init_phase);
6555 bnx2x_init_block(bp, BLOCK_XCM, init_phase);
6556 bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
6557 bnx2x_init_block(bp, BLOCK_USEM, init_phase);
6558 bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
6559 bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
6561 if (!CHIP_IS_E1x(bp))
6562 REG_WR(bp, QM_REG_PF_EN, 1);
6564 if (!CHIP_IS_E1x(bp)) {
6565 REG_WR(bp, TSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
6566 REG_WR(bp, USEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
6567 REG_WR(bp, CSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
6568 REG_WR(bp, XSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
6570 bnx2x_init_block(bp, BLOCK_QM, init_phase);
6572 bnx2x_init_block(bp, BLOCK_TM, init_phase);
6573 bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
6574 bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
6575 bnx2x_init_block(bp, BLOCK_PRS, init_phase);
6576 bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
6577 bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
6578 bnx2x_init_block(bp, BLOCK_USDM, init_phase);
6579 bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
6580 bnx2x_init_block(bp, BLOCK_UPB, init_phase);
6581 bnx2x_init_block(bp, BLOCK_XPB, init_phase);
6582 bnx2x_init_block(bp, BLOCK_PBF, init_phase);
6583 if (!CHIP_IS_E1x(bp))
6584 REG_WR(bp, PBF_REG_DISABLE_PF, 0);
6586 bnx2x_init_block(bp, BLOCK_CDU, init_phase);
6588 bnx2x_init_block(bp, BLOCK_CFC, init_phase);
6590 if (!CHIP_IS_E1x(bp))
6591 REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 1);
6593 if (IS_MF(bp)) {
6594 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 1);
6595 REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + port*8, bp->mf_ov);
6598 bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
6600 /* HC init per function */
6601 if (bp->common.int_block == INT_BLOCK_HC) {
6602 if (CHIP_IS_E1H(bp)) {
6603 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
6605 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
6606 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
6608 bnx2x_init_block(bp, BLOCK_HC, init_phase);
6610 } else {
6611 int num_segs, sb_idx, prod_offset;
6613 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
6615 if (!CHIP_IS_E1x(bp)) {
6616 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
6617 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
6620 bnx2x_init_block(bp, BLOCK_IGU, init_phase);
6622 if (!CHIP_IS_E1x(bp)) {
6623 int dsb_idx = 0;
6625 * Producer memory:
6626 * E2 mode: address 0-135 match to the mapping memory;
6627 * 136 - PF0 default prod; 137 - PF1 default prod;
6628 * 138 - PF2 default prod; 139 - PF3 default prod;
6629 * 140 - PF0 attn prod; 141 - PF1 attn prod;
6630 * 142 - PF2 attn prod; 143 - PF3 attn prod;
6631 * 144-147 reserved.
6633 * E1.5 mode - In backward compatible mode;
6634 * for non default SB; each even line in the memory
6635 * holds the U producer and each odd line hold
6636 * the C producer. The first 128 producers are for
6637 * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20
6638 * producers are for the DSB for each PF.
6639 * Each PF has five segments: (the order inside each
6640 * segment is PF0; PF1; PF2; PF3) - 128-131 U prods;
6641 * 132-135 C prods; 136-139 X prods; 140-143 T prods;
6642 * 144-147 attn prods;
6644 /* non-default-status-blocks */
6645 num_segs = CHIP_INT_MODE_IS_BC(bp) ?
6646 IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS;
6647 for (sb_idx = 0; sb_idx < bp->igu_sb_cnt; sb_idx++) {
6648 prod_offset = (bp->igu_base_sb + sb_idx) *
6649 num_segs;
6651 for (i = 0; i < num_segs; i++) {
6652 addr = IGU_REG_PROD_CONS_MEMORY +
6653 (prod_offset + i) * 4;
6654 REG_WR(bp, addr, 0);
6656 /* send consumer update with value 0 */
6657 bnx2x_ack_sb(bp, bp->igu_base_sb + sb_idx,
6658 USTORM_ID, 0, IGU_INT_NOP, 1);
6659 bnx2x_igu_clear_sb(bp,
6660 bp->igu_base_sb + sb_idx);
6663 /* default-status-blocks */
6664 num_segs = CHIP_INT_MODE_IS_BC(bp) ?
6665 IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS;
6667 if (CHIP_MODE_IS_4_PORT(bp))
6668 dsb_idx = BP_FUNC(bp);
6669 else
6670 dsb_idx = BP_E1HVN(bp);
6672 prod_offset = (CHIP_INT_MODE_IS_BC(bp) ?
6673 IGU_BC_BASE_DSB_PROD + dsb_idx :
6674 IGU_NORM_BASE_DSB_PROD + dsb_idx);
6676 for (i = 0; i < (num_segs * E1HVN_MAX);
6677 i += E1HVN_MAX) {
6678 addr = IGU_REG_PROD_CONS_MEMORY +
6679 (prod_offset + i)*4;
6680 REG_WR(bp, addr, 0);
6682 /* send consumer update with 0 */
6683 if (CHIP_INT_MODE_IS_BC(bp)) {
6684 bnx2x_ack_sb(bp, bp->igu_dsb_id,
6685 USTORM_ID, 0, IGU_INT_NOP, 1);
6686 bnx2x_ack_sb(bp, bp->igu_dsb_id,
6687 CSTORM_ID, 0, IGU_INT_NOP, 1);
6688 bnx2x_ack_sb(bp, bp->igu_dsb_id,
6689 XSTORM_ID, 0, IGU_INT_NOP, 1);
6690 bnx2x_ack_sb(bp, bp->igu_dsb_id,
6691 TSTORM_ID, 0, IGU_INT_NOP, 1);
6692 bnx2x_ack_sb(bp, bp->igu_dsb_id,
6693 ATTENTION_ID, 0, IGU_INT_NOP, 1);
6694 } else {
6695 bnx2x_ack_sb(bp, bp->igu_dsb_id,
6696 USTORM_ID, 0, IGU_INT_NOP, 1);
6697 bnx2x_ack_sb(bp, bp->igu_dsb_id,
6698 ATTENTION_ID, 0, IGU_INT_NOP, 1);
6700 bnx2x_igu_clear_sb(bp, bp->igu_dsb_id);
6702 /* !!! these should become driver const once
6703 rf-tool supports split-68 const */
6704 REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
6705 REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
6706 REG_WR(bp, IGU_REG_SB_MASK_LSB, 0);
6707 REG_WR(bp, IGU_REG_SB_MASK_MSB, 0);
6708 REG_WR(bp, IGU_REG_PBA_STATUS_LSB, 0);
6709 REG_WR(bp, IGU_REG_PBA_STATUS_MSB, 0);
6713 /* Reset PCIE errors for debug */
6714 REG_WR(bp, 0x2114, 0xffffffff);
6715 REG_WR(bp, 0x2120, 0xffffffff);
6717 if (CHIP_IS_E1x(bp)) {
6718 main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/
6719 main_mem_base = HC_REG_MAIN_MEMORY +
6720 BP_PORT(bp) * (main_mem_size * 4);
6721 main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR;
6722 main_mem_width = 8;
6724 val = REG_RD(bp, main_mem_prty_clr);
6725 if (val)
6726 DP(BNX2X_MSG_MCP, "Hmmm... Parity errors in HC "
6727 "block during "
6728 "function init (0x%x)!\n", val);
6730 /* Clear "false" parity errors in MSI-X table */
6731 for (i = main_mem_base;
6732 i < main_mem_base + main_mem_size * 4;
6733 i += main_mem_width) {
6734 bnx2x_read_dmae(bp, i, main_mem_width / 4);
6735 bnx2x_write_dmae(bp, bnx2x_sp_mapping(bp, wb_data),
6736 i, main_mem_width / 4);
6738 /* Clear HC parity attention */
6739 REG_RD(bp, main_mem_prty_clr);
6742 #ifdef BNX2X_STOP_ON_ERROR
6743 /* Enable STORMs SP logging */
6744 REG_WR8(bp, BAR_USTRORM_INTMEM +
6745 USTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
6746 REG_WR8(bp, BAR_TSTRORM_INTMEM +
6747 TSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
6748 REG_WR8(bp, BAR_CSTRORM_INTMEM +
6749 CSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
6750 REG_WR8(bp, BAR_XSTRORM_INTMEM +
6751 XSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
6752 #endif
6754 bnx2x_phy_probe(&bp->link_params);
6756 return 0;
6760 void bnx2x_free_mem(struct bnx2x *bp)
6762 /* fastpath */
6763 bnx2x_free_fp_mem(bp);
6764 /* end of fastpath */
6766 BNX2X_PCI_FREE(bp->def_status_blk, bp->def_status_blk_mapping,
6767 sizeof(struct host_sp_status_block));
6769 BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping,
6770 bp->fw_stats_data_sz + bp->fw_stats_req_sz);
6772 BNX2X_PCI_FREE(bp->slowpath, bp->slowpath_mapping,
6773 sizeof(struct bnx2x_slowpath));
6775 BNX2X_PCI_FREE(bp->context.vcxt, bp->context.cxt_mapping,
6776 bp->context.size);
6778 bnx2x_ilt_mem_op(bp, ILT_MEMOP_FREE);
6780 BNX2X_FREE(bp->ilt->lines);
6782 #ifdef BCM_CNIC
6783 if (!CHIP_IS_E1x(bp))
6784 BNX2X_PCI_FREE(bp->cnic_sb.e2_sb, bp->cnic_sb_mapping,
6785 sizeof(struct host_hc_status_block_e2));
6786 else
6787 BNX2X_PCI_FREE(bp->cnic_sb.e1x_sb, bp->cnic_sb_mapping,
6788 sizeof(struct host_hc_status_block_e1x));
6790 BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
6791 #endif
6793 BNX2X_PCI_FREE(bp->spq, bp->spq_mapping, BCM_PAGE_SIZE);
6795 BNX2X_PCI_FREE(bp->eq_ring, bp->eq_mapping,
6796 BCM_PAGE_SIZE * NUM_EQ_PAGES);
6799 static inline int bnx2x_alloc_fw_stats_mem(struct bnx2x *bp)
6801 int num_groups;
6803 /* number of eth_queues */
6804 u8 num_queue_stats = BNX2X_NUM_ETH_QUEUES(bp);
6806 /* Total number of FW statistics requests =
6807 * 1 for port stats + 1 for PF stats + num_eth_queues */
6808 bp->fw_stats_num = 2 + num_queue_stats;
6811 /* Request is built from stats_query_header and an array of
6812 * stats_query_cmd_group each of which contains
6813 * STATS_QUERY_CMD_COUNT rules. The real number or requests is
6814 * configured in the stats_query_header.
6816 num_groups = (2 + num_queue_stats) / STATS_QUERY_CMD_COUNT +
6817 (((2 + num_queue_stats) % STATS_QUERY_CMD_COUNT) ? 1 : 0);
6819 bp->fw_stats_req_sz = sizeof(struct stats_query_header) +
6820 num_groups * sizeof(struct stats_query_cmd_group);
6822 /* Data for statistics requests + stats_conter
6824 * stats_counter holds per-STORM counters that are incremented
6825 * when STORM has finished with the current request.
6827 bp->fw_stats_data_sz = sizeof(struct per_port_stats) +
6828 sizeof(struct per_pf_stats) +
6829 sizeof(struct per_queue_stats) * num_queue_stats +
6830 sizeof(struct stats_counter);
6832 BNX2X_PCI_ALLOC(bp->fw_stats, &bp->fw_stats_mapping,
6833 bp->fw_stats_data_sz + bp->fw_stats_req_sz);
6835 /* Set shortcuts */
6836 bp->fw_stats_req = (struct bnx2x_fw_stats_req *)bp->fw_stats;
6837 bp->fw_stats_req_mapping = bp->fw_stats_mapping;
6839 bp->fw_stats_data = (struct bnx2x_fw_stats_data *)
6840 ((u8 *)bp->fw_stats + bp->fw_stats_req_sz);
6842 bp->fw_stats_data_mapping = bp->fw_stats_mapping +
6843 bp->fw_stats_req_sz;
6844 return 0;
6846 alloc_mem_err:
6847 BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping,
6848 bp->fw_stats_data_sz + bp->fw_stats_req_sz);
6849 return -ENOMEM;
6853 int bnx2x_alloc_mem(struct bnx2x *bp)
6855 #ifdef BCM_CNIC
6856 if (!CHIP_IS_E1x(bp))
6857 /* size = the status block + ramrod buffers */
6858 BNX2X_PCI_ALLOC(bp->cnic_sb.e2_sb, &bp->cnic_sb_mapping,
6859 sizeof(struct host_hc_status_block_e2));
6860 else
6861 BNX2X_PCI_ALLOC(bp->cnic_sb.e1x_sb, &bp->cnic_sb_mapping,
6862 sizeof(struct host_hc_status_block_e1x));
6864 /* allocate searcher T2 table */
6865 BNX2X_PCI_ALLOC(bp->t2, &bp->t2_mapping, SRC_T2_SZ);
6866 #endif
6869 BNX2X_PCI_ALLOC(bp->def_status_blk, &bp->def_status_blk_mapping,
6870 sizeof(struct host_sp_status_block));
6872 BNX2X_PCI_ALLOC(bp->slowpath, &bp->slowpath_mapping,
6873 sizeof(struct bnx2x_slowpath));
6875 /* Allocated memory for FW statistics */
6876 if (bnx2x_alloc_fw_stats_mem(bp))
6877 goto alloc_mem_err;
6879 bp->context.size = sizeof(union cdu_context) * BNX2X_L2_CID_COUNT(bp);
6881 BNX2X_PCI_ALLOC(bp->context.vcxt, &bp->context.cxt_mapping,
6882 bp->context.size);
6884 BNX2X_ALLOC(bp->ilt->lines, sizeof(struct ilt_line) * ILT_MAX_LINES);
6886 if (bnx2x_ilt_mem_op(bp, ILT_MEMOP_ALLOC))
6887 goto alloc_mem_err;
6889 /* Slow path ring */
6890 BNX2X_PCI_ALLOC(bp->spq, &bp->spq_mapping, BCM_PAGE_SIZE);
6892 /* EQ */
6893 BNX2X_PCI_ALLOC(bp->eq_ring, &bp->eq_mapping,
6894 BCM_PAGE_SIZE * NUM_EQ_PAGES);
6897 /* fastpath */
6898 /* need to be done at the end, since it's self adjusting to amount
6899 * of memory available for RSS queues
6901 if (bnx2x_alloc_fp_mem(bp))
6902 goto alloc_mem_err;
6903 return 0;
6905 alloc_mem_err:
6906 bnx2x_free_mem(bp);
6907 return -ENOMEM;
6911 * Init service functions
6914 int bnx2x_set_mac_one(struct bnx2x *bp, u8 *mac,
6915 struct bnx2x_vlan_mac_obj *obj, bool set,
6916 int mac_type, unsigned long *ramrod_flags)
6918 int rc;
6919 struct bnx2x_vlan_mac_ramrod_params ramrod_param;
6921 memset(&ramrod_param, 0, sizeof(ramrod_param));
6923 /* Fill general parameters */
6924 ramrod_param.vlan_mac_obj = obj;
6925 ramrod_param.ramrod_flags = *ramrod_flags;
6927 /* Fill a user request section if needed */
6928 if (!test_bit(RAMROD_CONT, ramrod_flags)) {
6929 memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN);
6931 __set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags);
6933 /* Set the command: ADD or DEL */
6934 if (set)
6935 ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD;
6936 else
6937 ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_DEL;
6940 rc = bnx2x_config_vlan_mac(bp, &ramrod_param);
6941 if (rc < 0)
6942 BNX2X_ERR("%s MAC failed\n", (set ? "Set" : "Del"));
6943 return rc;
6946 int bnx2x_del_all_macs(struct bnx2x *bp,
6947 struct bnx2x_vlan_mac_obj *mac_obj,
6948 int mac_type, bool wait_for_comp)
6950 int rc;
6951 unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
6953 /* Wait for completion of requested */
6954 if (wait_for_comp)
6955 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
6957 /* Set the mac type of addresses we want to clear */
6958 __set_bit(mac_type, &vlan_mac_flags);
6960 rc = mac_obj->delete_all(bp, mac_obj, &vlan_mac_flags, &ramrod_flags);
6961 if (rc < 0)
6962 BNX2X_ERR("Failed to delete MACs: %d\n", rc);
6964 return rc;
6967 int bnx2x_set_eth_mac(struct bnx2x *bp, bool set)
6969 unsigned long ramrod_flags = 0;
6971 DP(NETIF_MSG_IFUP, "Adding Eth MAC\n");
6973 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
6974 /* Eth MAC is set on RSS leading client (fp[0]) */
6975 return bnx2x_set_mac_one(bp, bp->dev->dev_addr, &bp->fp->mac_obj, set,
6976 BNX2X_ETH_MAC, &ramrod_flags);
6979 int bnx2x_setup_leading(struct bnx2x *bp)
6981 return bnx2x_setup_queue(bp, &bp->fp[0], 1);
6985 * bnx2x_set_int_mode - configure interrupt mode
6987 * @bp: driver handle
6989 * In case of MSI-X it will also try to enable MSI-X.
6991 static void __devinit bnx2x_set_int_mode(struct bnx2x *bp)
6993 switch (int_mode) {
6994 case INT_MODE_MSI:
6995 bnx2x_enable_msi(bp);
6996 /* falling through... */
6997 case INT_MODE_INTx:
6998 bp->num_queues = 1 + NON_ETH_CONTEXT_USE;
6999 DP(NETIF_MSG_IFUP, "set number of queues to 1\n");
7000 break;
7001 default:
7002 /* Set number of queues according to bp->multi_mode value */
7003 bnx2x_set_num_queues(bp);
7005 DP(NETIF_MSG_IFUP, "set number of queues to %d\n",
7006 bp->num_queues);
7008 /* if we can't use MSI-X we only need one fp,
7009 * so try to enable MSI-X with the requested number of fp's
7010 * and fallback to MSI or legacy INTx with one fp
7012 if (bnx2x_enable_msix(bp)) {
7013 /* failed to enable MSI-X */
7014 if (bp->multi_mode)
7015 DP(NETIF_MSG_IFUP,
7016 "Multi requested but failed to "
7017 "enable MSI-X (%d), "
7018 "set number of queues to %d\n",
7019 bp->num_queues,
7020 1 + NON_ETH_CONTEXT_USE);
7021 bp->num_queues = 1 + NON_ETH_CONTEXT_USE;
7023 /* Try to enable MSI */
7024 if (!(bp->flags & DISABLE_MSI_FLAG))
7025 bnx2x_enable_msi(bp);
7027 break;
7031 /* must be called prioir to any HW initializations */
7032 static inline u16 bnx2x_cid_ilt_lines(struct bnx2x *bp)
7034 return L2_ILT_LINES(bp);
7037 void bnx2x_ilt_set_info(struct bnx2x *bp)
7039 struct ilt_client_info *ilt_client;
7040 struct bnx2x_ilt *ilt = BP_ILT(bp);
7041 u16 line = 0;
7043 ilt->start_line = FUNC_ILT_BASE(BP_FUNC(bp));
7044 DP(BNX2X_MSG_SP, "ilt starts at line %d\n", ilt->start_line);
7046 /* CDU */
7047 ilt_client = &ilt->clients[ILT_CLIENT_CDU];
7048 ilt_client->client_num = ILT_CLIENT_CDU;
7049 ilt_client->page_size = CDU_ILT_PAGE_SZ;
7050 ilt_client->flags = ILT_CLIENT_SKIP_MEM;
7051 ilt_client->start = line;
7052 line += bnx2x_cid_ilt_lines(bp);
7053 #ifdef BCM_CNIC
7054 line += CNIC_ILT_LINES;
7055 #endif
7056 ilt_client->end = line - 1;
7058 DP(BNX2X_MSG_SP, "ilt client[CDU]: start %d, end %d, psz 0x%x, "
7059 "flags 0x%x, hw psz %d\n",
7060 ilt_client->start,
7061 ilt_client->end,
7062 ilt_client->page_size,
7063 ilt_client->flags,
7064 ilog2(ilt_client->page_size >> 12));
7066 /* QM */
7067 if (QM_INIT(bp->qm_cid_count)) {
7068 ilt_client = &ilt->clients[ILT_CLIENT_QM];
7069 ilt_client->client_num = ILT_CLIENT_QM;
7070 ilt_client->page_size = QM_ILT_PAGE_SZ;
7071 ilt_client->flags = 0;
7072 ilt_client->start = line;
7074 /* 4 bytes for each cid */
7075 line += DIV_ROUND_UP(bp->qm_cid_count * QM_QUEUES_PER_FUNC * 4,
7076 QM_ILT_PAGE_SZ);
7078 ilt_client->end = line - 1;
7080 DP(BNX2X_MSG_SP, "ilt client[QM]: start %d, end %d, psz 0x%x, "
7081 "flags 0x%x, hw psz %d\n",
7082 ilt_client->start,
7083 ilt_client->end,
7084 ilt_client->page_size,
7085 ilt_client->flags,
7086 ilog2(ilt_client->page_size >> 12));
7089 /* SRC */
7090 ilt_client = &ilt->clients[ILT_CLIENT_SRC];
7091 #ifdef BCM_CNIC
7092 ilt_client->client_num = ILT_CLIENT_SRC;
7093 ilt_client->page_size = SRC_ILT_PAGE_SZ;
7094 ilt_client->flags = 0;
7095 ilt_client->start = line;
7096 line += SRC_ILT_LINES;
7097 ilt_client->end = line - 1;
7099 DP(BNX2X_MSG_SP, "ilt client[SRC]: start %d, end %d, psz 0x%x, "
7100 "flags 0x%x, hw psz %d\n",
7101 ilt_client->start,
7102 ilt_client->end,
7103 ilt_client->page_size,
7104 ilt_client->flags,
7105 ilog2(ilt_client->page_size >> 12));
7107 #else
7108 ilt_client->flags = (ILT_CLIENT_SKIP_INIT | ILT_CLIENT_SKIP_MEM);
7109 #endif
7111 /* TM */
7112 ilt_client = &ilt->clients[ILT_CLIENT_TM];
7113 #ifdef BCM_CNIC
7114 ilt_client->client_num = ILT_CLIENT_TM;
7115 ilt_client->page_size = TM_ILT_PAGE_SZ;
7116 ilt_client->flags = 0;
7117 ilt_client->start = line;
7118 line += TM_ILT_LINES;
7119 ilt_client->end = line - 1;
7121 DP(BNX2X_MSG_SP, "ilt client[TM]: start %d, end %d, psz 0x%x, "
7122 "flags 0x%x, hw psz %d\n",
7123 ilt_client->start,
7124 ilt_client->end,
7125 ilt_client->page_size,
7126 ilt_client->flags,
7127 ilog2(ilt_client->page_size >> 12));
7129 #else
7130 ilt_client->flags = (ILT_CLIENT_SKIP_INIT | ILT_CLIENT_SKIP_MEM);
7131 #endif
7132 BUG_ON(line > ILT_MAX_LINES);
7136 * bnx2x_pf_q_prep_init - prepare INIT transition parameters
7138 * @bp: driver handle
7139 * @fp: pointer to fastpath
7140 * @init_params: pointer to parameters structure
7142 * parameters configured:
7143 * - HC configuration
7144 * - Queue's CDU context
7146 static inline void bnx2x_pf_q_prep_init(struct bnx2x *bp,
7147 struct bnx2x_fastpath *fp, struct bnx2x_queue_init_params *init_params)
7150 u8 cos;
7151 /* FCoE Queue uses Default SB, thus has no HC capabilities */
7152 if (!IS_FCOE_FP(fp)) {
7153 __set_bit(BNX2X_Q_FLG_HC, &init_params->rx.flags);
7154 __set_bit(BNX2X_Q_FLG_HC, &init_params->tx.flags);
7156 /* If HC is supporterd, enable host coalescing in the transition
7157 * to INIT state.
7159 __set_bit(BNX2X_Q_FLG_HC_EN, &init_params->rx.flags);
7160 __set_bit(BNX2X_Q_FLG_HC_EN, &init_params->tx.flags);
7162 /* HC rate */
7163 init_params->rx.hc_rate = bp->rx_ticks ?
7164 (1000000 / bp->rx_ticks) : 0;
7165 init_params->tx.hc_rate = bp->tx_ticks ?
7166 (1000000 / bp->tx_ticks) : 0;
7168 /* FW SB ID */
7169 init_params->rx.fw_sb_id = init_params->tx.fw_sb_id =
7170 fp->fw_sb_id;
7173 * CQ index among the SB indices: FCoE clients uses the default
7174 * SB, therefore it's different.
7176 init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
7177 init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS;
7180 /* set maximum number of COSs supported by this queue */
7181 init_params->max_cos = fp->max_cos;
7183 DP(BNX2X_MSG_SP, "fp: %d setting queue params max cos to: %d\n",
7184 fp->index, init_params->max_cos);
7186 /* set the context pointers queue object */
7187 for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++)
7188 init_params->cxts[cos] =
7189 &bp->context.vcxt[fp->txdata[cos].cid].eth;
7192 int bnx2x_setup_tx_only(struct bnx2x *bp, struct bnx2x_fastpath *fp,
7193 struct bnx2x_queue_state_params *q_params,
7194 struct bnx2x_queue_setup_tx_only_params *tx_only_params,
7195 int tx_index, bool leading)
7197 memset(tx_only_params, 0, sizeof(*tx_only_params));
7199 /* Set the command */
7200 q_params->cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
7202 /* Set tx-only QUEUE flags: don't zero statistics */
7203 tx_only_params->flags = bnx2x_get_common_flags(bp, fp, false);
7205 /* choose the index of the cid to send the slow path on */
7206 tx_only_params->cid_index = tx_index;
7208 /* Set general TX_ONLY_SETUP parameters */
7209 bnx2x_pf_q_prep_general(bp, fp, &tx_only_params->gen_params, tx_index);
7211 /* Set Tx TX_ONLY_SETUP parameters */
7212 bnx2x_pf_tx_q_prep(bp, fp, &tx_only_params->txq_params, tx_index);
7214 DP(BNX2X_MSG_SP, "preparing to send tx-only ramrod for connection:"
7215 "cos %d, primary cid %d, cid %d, "
7216 "client id %d, sp-client id %d, flags %lx\n",
7217 tx_index, q_params->q_obj->cids[FIRST_TX_COS_INDEX],
7218 q_params->q_obj->cids[tx_index], q_params->q_obj->cl_id,
7219 tx_only_params->gen_params.spcl_id, tx_only_params->flags);
7221 /* send the ramrod */
7222 return bnx2x_queue_state_change(bp, q_params);
7227 * bnx2x_setup_queue - setup queue
7229 * @bp: driver handle
7230 * @fp: pointer to fastpath
7231 * @leading: is leading
7233 * This function performs 2 steps in a Queue state machine
7234 * actually: 1) RESET->INIT 2) INIT->SETUP
7237 int bnx2x_setup_queue(struct bnx2x *bp, struct bnx2x_fastpath *fp,
7238 bool leading)
7240 struct bnx2x_queue_state_params q_params = {0};
7241 struct bnx2x_queue_setup_params *setup_params =
7242 &q_params.params.setup;
7243 struct bnx2x_queue_setup_tx_only_params *tx_only_params =
7244 &q_params.params.tx_only;
7245 int rc;
7246 u8 tx_index;
7248 DP(BNX2X_MSG_SP, "setting up queue %d\n", fp->index);
7250 /* reset IGU state skip FCoE L2 queue */
7251 if (!IS_FCOE_FP(fp))
7252 bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 0,
7253 IGU_INT_ENABLE, 0);
7255 q_params.q_obj = &fp->q_obj;
7256 /* We want to wait for completion in this context */
7257 __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
7259 /* Prepare the INIT parameters */
7260 bnx2x_pf_q_prep_init(bp, fp, &q_params.params.init);
7262 /* Set the command */
7263 q_params.cmd = BNX2X_Q_CMD_INIT;
7265 /* Change the state to INIT */
7266 rc = bnx2x_queue_state_change(bp, &q_params);
7267 if (rc) {
7268 BNX2X_ERR("Queue(%d) INIT failed\n", fp->index);
7269 return rc;
7272 DP(BNX2X_MSG_SP, "init complete\n");
7275 /* Now move the Queue to the SETUP state... */
7276 memset(setup_params, 0, sizeof(*setup_params));
7278 /* Set QUEUE flags */
7279 setup_params->flags = bnx2x_get_q_flags(bp, fp, leading);
7281 /* Set general SETUP parameters */
7282 bnx2x_pf_q_prep_general(bp, fp, &setup_params->gen_params,
7283 FIRST_TX_COS_INDEX);
7285 bnx2x_pf_rx_q_prep(bp, fp, &setup_params->pause_params,
7286 &setup_params->rxq_params);
7288 bnx2x_pf_tx_q_prep(bp, fp, &setup_params->txq_params,
7289 FIRST_TX_COS_INDEX);
7291 /* Set the command */
7292 q_params.cmd = BNX2X_Q_CMD_SETUP;
7294 /* Change the state to SETUP */
7295 rc = bnx2x_queue_state_change(bp, &q_params);
7296 if (rc) {
7297 BNX2X_ERR("Queue(%d) SETUP failed\n", fp->index);
7298 return rc;
7301 /* loop through the relevant tx-only indices */
7302 for (tx_index = FIRST_TX_ONLY_COS_INDEX;
7303 tx_index < fp->max_cos;
7304 tx_index++) {
7306 /* prepare and send tx-only ramrod*/
7307 rc = bnx2x_setup_tx_only(bp, fp, &q_params,
7308 tx_only_params, tx_index, leading);
7309 if (rc) {
7310 BNX2X_ERR("Queue(%d.%d) TX_ONLY_SETUP failed\n",
7311 fp->index, tx_index);
7312 return rc;
7316 return rc;
7319 static int bnx2x_stop_queue(struct bnx2x *bp, int index)
7321 struct bnx2x_fastpath *fp = &bp->fp[index];
7322 struct bnx2x_fp_txdata *txdata;
7323 struct bnx2x_queue_state_params q_params = {0};
7324 int rc, tx_index;
7326 DP(BNX2X_MSG_SP, "stopping queue %d cid %d\n", index, fp->cid);
7328 q_params.q_obj = &fp->q_obj;
7329 /* We want to wait for completion in this context */
7330 __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
7333 /* close tx-only connections */
7334 for (tx_index = FIRST_TX_ONLY_COS_INDEX;
7335 tx_index < fp->max_cos;
7336 tx_index++){
7338 /* ascertain this is a normal queue*/
7339 txdata = &fp->txdata[tx_index];
7341 DP(BNX2X_MSG_SP, "stopping tx-only queue %d\n",
7342 txdata->txq_index);
7344 /* send halt terminate on tx-only connection */
7345 q_params.cmd = BNX2X_Q_CMD_TERMINATE;
7346 memset(&q_params.params.terminate, 0,
7347 sizeof(q_params.params.terminate));
7348 q_params.params.terminate.cid_index = tx_index;
7350 rc = bnx2x_queue_state_change(bp, &q_params);
7351 if (rc)
7352 return rc;
7354 /* send halt terminate on tx-only connection */
7355 q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
7356 memset(&q_params.params.cfc_del, 0,
7357 sizeof(q_params.params.cfc_del));
7358 q_params.params.cfc_del.cid_index = tx_index;
7359 rc = bnx2x_queue_state_change(bp, &q_params);
7360 if (rc)
7361 return rc;
7363 /* Stop the primary connection: */
7364 /* ...halt the connection */
7365 q_params.cmd = BNX2X_Q_CMD_HALT;
7366 rc = bnx2x_queue_state_change(bp, &q_params);
7367 if (rc)
7368 return rc;
7370 /* ...terminate the connection */
7371 q_params.cmd = BNX2X_Q_CMD_TERMINATE;
7372 memset(&q_params.params.terminate, 0,
7373 sizeof(q_params.params.terminate));
7374 q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX;
7375 rc = bnx2x_queue_state_change(bp, &q_params);
7376 if (rc)
7377 return rc;
7378 /* ...delete cfc entry */
7379 q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
7380 memset(&q_params.params.cfc_del, 0,
7381 sizeof(q_params.params.cfc_del));
7382 q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX;
7383 return bnx2x_queue_state_change(bp, &q_params);
7387 static void bnx2x_reset_func(struct bnx2x *bp)
7389 int port = BP_PORT(bp);
7390 int func = BP_FUNC(bp);
7391 int i;
7393 /* Disable the function in the FW */
7394 REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0);
7395 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0);
7396 REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0);
7397 REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0);
7399 /* FP SBs */
7400 for_each_eth_queue(bp, i) {
7401 struct bnx2x_fastpath *fp = &bp->fp[i];
7402 REG_WR8(bp, BAR_CSTRORM_INTMEM +
7403 CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id),
7404 SB_DISABLED);
7407 #ifdef BCM_CNIC
7408 /* CNIC SB */
7409 REG_WR8(bp, BAR_CSTRORM_INTMEM +
7410 CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(bnx2x_cnic_fw_sb_id(bp)),
7411 SB_DISABLED);
7412 #endif
7413 /* SP SB */
7414 REG_WR8(bp, BAR_CSTRORM_INTMEM +
7415 CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func),
7416 SB_DISABLED);
7418 for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++)
7419 REG_WR(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func),
7422 /* Configure IGU */
7423 if (bp->common.int_block == INT_BLOCK_HC) {
7424 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
7425 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
7426 } else {
7427 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
7428 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
7431 #ifdef BCM_CNIC
7432 /* Disable Timer scan */
7433 REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
7435 * Wait for at least 10ms and up to 2 second for the timers scan to
7436 * complete
7438 for (i = 0; i < 200; i++) {
7439 msleep(10);
7440 if (!REG_RD(bp, TM_REG_LIN0_SCAN_ON + port*4))
7441 break;
7443 #endif
7444 /* Clear ILT */
7445 bnx2x_clear_func_ilt(bp, func);
7447 /* Timers workaround bug for E2: if this is vnic-3,
7448 * we need to set the entire ilt range for this timers.
7450 if (!CHIP_IS_E1x(bp) && BP_VN(bp) == 3) {
7451 struct ilt_client_info ilt_cli;
7452 /* use dummy TM client */
7453 memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
7454 ilt_cli.start = 0;
7455 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
7456 ilt_cli.client_num = ILT_CLIENT_TM;
7458 bnx2x_ilt_boundry_init_op(bp, &ilt_cli, 0, INITOP_CLEAR);
7461 /* this assumes that reset_port() called before reset_func()*/
7462 if (!CHIP_IS_E1x(bp))
7463 bnx2x_pf_disable(bp);
7465 bp->dmae_ready = 0;
7468 static void bnx2x_reset_port(struct bnx2x *bp)
7470 int port = BP_PORT(bp);
7471 u32 val;
7473 /* Reset physical Link */
7474 bnx2x__link_reset(bp);
7476 REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
7478 /* Do not rcv packets to BRB */
7479 REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0);
7480 /* Do not direct rcv packets that are not for MCP to the BRB */
7481 REG_WR(bp, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
7482 NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
7484 /* Configure AEU */
7485 REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0);
7487 msleep(100);
7488 /* Check for BRB port occupancy */
7489 val = REG_RD(bp, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4);
7490 if (val)
7491 DP(NETIF_MSG_IFDOWN,
7492 "BRB1 is not empty %d blocks are occupied\n", val);
7494 /* TODO: Close Doorbell port? */
7497 static inline int bnx2x_reset_hw(struct bnx2x *bp, u32 load_code)
7499 struct bnx2x_func_state_params func_params = {0};
7501 /* Prepare parameters for function state transitions */
7502 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
7504 func_params.f_obj = &bp->func_obj;
7505 func_params.cmd = BNX2X_F_CMD_HW_RESET;
7507 func_params.params.hw_init.load_phase = load_code;
7509 return bnx2x_func_state_change(bp, &func_params);
7512 static inline int bnx2x_func_stop(struct bnx2x *bp)
7514 struct bnx2x_func_state_params func_params = {0};
7515 int rc;
7517 /* Prepare parameters for function state transitions */
7518 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
7519 func_params.f_obj = &bp->func_obj;
7520 func_params.cmd = BNX2X_F_CMD_STOP;
7523 * Try to stop the function the 'good way'. If fails (in case
7524 * of a parity error during bnx2x_chip_cleanup()) and we are
7525 * not in a debug mode, perform a state transaction in order to
7526 * enable further HW_RESET transaction.
7528 rc = bnx2x_func_state_change(bp, &func_params);
7529 if (rc) {
7530 #ifdef BNX2X_STOP_ON_ERROR
7531 return rc;
7532 #else
7533 BNX2X_ERR("FUNC_STOP ramrod failed. Running a dry "
7534 "transaction\n");
7535 __set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
7536 return bnx2x_func_state_change(bp, &func_params);
7537 #endif
7540 return 0;
7544 * bnx2x_send_unload_req - request unload mode from the MCP.
7546 * @bp: driver handle
7547 * @unload_mode: requested function's unload mode
7549 * Return unload mode returned by the MCP: COMMON, PORT or FUNC.
7551 u32 bnx2x_send_unload_req(struct bnx2x *bp, int unload_mode)
7553 u32 reset_code = 0;
7554 int port = BP_PORT(bp);
7556 /* Select the UNLOAD request mode */
7557 if (unload_mode == UNLOAD_NORMAL)
7558 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
7560 else if (bp->flags & NO_WOL_FLAG)
7561 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP;
7563 else if (bp->wol) {
7564 u32 emac_base = port ? GRCBASE_EMAC1 : GRCBASE_EMAC0;
7565 u8 *mac_addr = bp->dev->dev_addr;
7566 u32 val;
7567 /* The mac address is written to entries 1-4 to
7568 preserve entry 0 which is used by the PMF */
7569 u8 entry = (BP_E1HVN(bp) + 1)*8;
7571 val = (mac_addr[0] << 8) | mac_addr[1];
7572 EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry, val);
7574 val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
7575 (mac_addr[4] << 8) | mac_addr[5];
7576 EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry + 4, val);
7578 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_EN;
7580 } else
7581 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
7583 /* Send the request to the MCP */
7584 if (!BP_NOMCP(bp))
7585 reset_code = bnx2x_fw_command(bp, reset_code, 0);
7586 else {
7587 int path = BP_PATH(bp);
7589 DP(NETIF_MSG_IFDOWN, "NO MCP - load counts[%d] "
7590 "%d, %d, %d\n",
7591 path, load_count[path][0], load_count[path][1],
7592 load_count[path][2]);
7593 load_count[path][0]--;
7594 load_count[path][1 + port]--;
7595 DP(NETIF_MSG_IFDOWN, "NO MCP - new load counts[%d] "
7596 "%d, %d, %d\n",
7597 path, load_count[path][0], load_count[path][1],
7598 load_count[path][2]);
7599 if (load_count[path][0] == 0)
7600 reset_code = FW_MSG_CODE_DRV_UNLOAD_COMMON;
7601 else if (load_count[path][1 + port] == 0)
7602 reset_code = FW_MSG_CODE_DRV_UNLOAD_PORT;
7603 else
7604 reset_code = FW_MSG_CODE_DRV_UNLOAD_FUNCTION;
7607 return reset_code;
7611 * bnx2x_send_unload_done - send UNLOAD_DONE command to the MCP.
7613 * @bp: driver handle
7615 void bnx2x_send_unload_done(struct bnx2x *bp)
7617 /* Report UNLOAD_DONE to MCP */
7618 if (!BP_NOMCP(bp))
7619 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
7622 static inline int bnx2x_func_wait_started(struct bnx2x *bp)
7624 int tout = 50;
7625 int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
7627 if (!bp->port.pmf)
7628 return 0;
7631 * (assumption: No Attention from MCP at this stage)
7632 * PMF probably in the middle of TXdisable/enable transaction
7633 * 1. Sync IRS for default SB
7634 * 2. Sync SP queue - this guarantes us that attention handling started
7635 * 3. Wait, that TXdisable/enable transaction completes
7637 * 1+2 guranty that if DCBx attention was scheduled it already changed
7638 * pending bit of transaction from STARTED-->TX_STOPPED, if we alredy
7639 * received complettion for the transaction the state is TX_STOPPED.
7640 * State will return to STARTED after completion of TX_STOPPED-->STARTED
7641 * transaction.
7644 /* make sure default SB ISR is done */
7645 if (msix)
7646 synchronize_irq(bp->msix_table[0].vector);
7647 else
7648 synchronize_irq(bp->pdev->irq);
7650 flush_workqueue(bnx2x_wq);
7652 while (bnx2x_func_get_state(bp, &bp->func_obj) !=
7653 BNX2X_F_STATE_STARTED && tout--)
7654 msleep(20);
7656 if (bnx2x_func_get_state(bp, &bp->func_obj) !=
7657 BNX2X_F_STATE_STARTED) {
7658 #ifdef BNX2X_STOP_ON_ERROR
7659 return -EBUSY;
7660 #else
7662 * Failed to complete the transaction in a "good way"
7663 * Force both transactions with CLR bit
7665 struct bnx2x_func_state_params func_params = {0};
7667 DP(BNX2X_MSG_SP, "Hmmm... unexpected function state! "
7668 "Forcing STARTED-->TX_ST0PPED-->STARTED\n");
7670 func_params.f_obj = &bp->func_obj;
7671 __set_bit(RAMROD_DRV_CLR_ONLY,
7672 &func_params.ramrod_flags);
7674 /* STARTED-->TX_ST0PPED */
7675 func_params.cmd = BNX2X_F_CMD_TX_STOP;
7676 bnx2x_func_state_change(bp, &func_params);
7678 /* TX_ST0PPED-->STARTED */
7679 func_params.cmd = BNX2X_F_CMD_TX_START;
7680 return bnx2x_func_state_change(bp, &func_params);
7681 #endif
7684 return 0;
7687 void bnx2x_chip_cleanup(struct bnx2x *bp, int unload_mode)
7689 int port = BP_PORT(bp);
7690 int i, rc = 0;
7691 u8 cos;
7692 struct bnx2x_mcast_ramrod_params rparam = {0};
7693 u32 reset_code;
7695 /* Wait until tx fastpath tasks complete */
7696 for_each_tx_queue(bp, i) {
7697 struct bnx2x_fastpath *fp = &bp->fp[i];
7699 for_each_cos_in_tx_queue(fp, cos)
7700 rc = bnx2x_clean_tx_queue(bp, &fp->txdata[cos]);
7701 #ifdef BNX2X_STOP_ON_ERROR
7702 if (rc)
7703 return;
7704 #endif
7707 /* Give HW time to discard old tx messages */
7708 usleep_range(1000, 1000);
7710 /* Clean all ETH MACs */
7711 rc = bnx2x_del_all_macs(bp, &bp->fp[0].mac_obj, BNX2X_ETH_MAC, false);
7712 if (rc < 0)
7713 BNX2X_ERR("Failed to delete all ETH macs: %d\n", rc);
7715 /* Clean up UC list */
7716 rc = bnx2x_del_all_macs(bp, &bp->fp[0].mac_obj, BNX2X_UC_LIST_MAC,
7717 true);
7718 if (rc < 0)
7719 BNX2X_ERR("Failed to schedule DEL commands for UC MACs list: "
7720 "%d\n", rc);
7722 /* Disable LLH */
7723 if (!CHIP_IS_E1(bp))
7724 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
7726 /* Set "drop all" (stop Rx).
7727 * We need to take a netif_addr_lock() here in order to prevent
7728 * a race between the completion code and this code.
7730 netif_addr_lock_bh(bp->dev);
7731 /* Schedule the rx_mode command */
7732 if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
7733 set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
7734 else
7735 bnx2x_set_storm_rx_mode(bp);
7737 /* Cleanup multicast configuration */
7738 rparam.mcast_obj = &bp->mcast_obj;
7739 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
7740 if (rc < 0)
7741 BNX2X_ERR("Failed to send DEL multicast command: %d\n", rc);
7743 netif_addr_unlock_bh(bp->dev);
7748 * Send the UNLOAD_REQUEST to the MCP. This will return if
7749 * this function should perform FUNC, PORT or COMMON HW
7750 * reset.
7752 reset_code = bnx2x_send_unload_req(bp, unload_mode);
7755 * (assumption: No Attention from MCP at this stage)
7756 * PMF probably in the middle of TXdisable/enable transaction
7758 rc = bnx2x_func_wait_started(bp);
7759 if (rc) {
7760 BNX2X_ERR("bnx2x_func_wait_started failed\n");
7761 #ifdef BNX2X_STOP_ON_ERROR
7762 return;
7763 #endif
7766 /* Close multi and leading connections
7767 * Completions for ramrods are collected in a synchronous way
7769 for_each_queue(bp, i)
7770 if (bnx2x_stop_queue(bp, i))
7771 #ifdef BNX2X_STOP_ON_ERROR
7772 return;
7773 #else
7774 goto unload_error;
7775 #endif
7776 /* If SP settings didn't get completed so far - something
7777 * very wrong has happen.
7779 if (!bnx2x_wait_sp_comp(bp, ~0x0UL))
7780 BNX2X_ERR("Hmmm... Common slow path ramrods got stuck!\n");
7782 #ifndef BNX2X_STOP_ON_ERROR
7783 unload_error:
7784 #endif
7785 rc = bnx2x_func_stop(bp);
7786 if (rc) {
7787 BNX2X_ERR("Function stop failed!\n");
7788 #ifdef BNX2X_STOP_ON_ERROR
7789 return;
7790 #endif
7793 /* Disable HW interrupts, NAPI */
7794 bnx2x_netif_stop(bp, 1);
7796 /* Release IRQs */
7797 bnx2x_free_irq(bp);
7799 /* Reset the chip */
7800 rc = bnx2x_reset_hw(bp, reset_code);
7801 if (rc)
7802 BNX2X_ERR("HW_RESET failed\n");
7805 /* Report UNLOAD_DONE to MCP */
7806 bnx2x_send_unload_done(bp);
7809 void bnx2x_disable_close_the_gate(struct bnx2x *bp)
7811 u32 val;
7813 DP(NETIF_MSG_HW, "Disabling \"close the gates\"\n");
7815 if (CHIP_IS_E1(bp)) {
7816 int port = BP_PORT(bp);
7817 u32 addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
7818 MISC_REG_AEU_MASK_ATTN_FUNC_0;
7820 val = REG_RD(bp, addr);
7821 val &= ~(0x300);
7822 REG_WR(bp, addr, val);
7823 } else {
7824 val = REG_RD(bp, MISC_REG_AEU_GENERAL_MASK);
7825 val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK |
7826 MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK);
7827 REG_WR(bp, MISC_REG_AEU_GENERAL_MASK, val);
7831 /* Close gates #2, #3 and #4: */
7832 static void bnx2x_set_234_gates(struct bnx2x *bp, bool close)
7834 u32 val;
7836 /* Gates #2 and #4a are closed/opened for "not E1" only */
7837 if (!CHIP_IS_E1(bp)) {
7838 /* #4 */
7839 REG_WR(bp, PXP_REG_HST_DISCARD_DOORBELLS, !!close);
7840 /* #2 */
7841 REG_WR(bp, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close);
7844 /* #3 */
7845 if (CHIP_IS_E1x(bp)) {
7846 /* Prevent interrupts from HC on both ports */
7847 val = REG_RD(bp, HC_REG_CONFIG_1);
7848 REG_WR(bp, HC_REG_CONFIG_1,
7849 (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) :
7850 (val & ~(u32)HC_CONFIG_1_REG_BLOCK_DISABLE_1));
7852 val = REG_RD(bp, HC_REG_CONFIG_0);
7853 REG_WR(bp, HC_REG_CONFIG_0,
7854 (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) :
7855 (val & ~(u32)HC_CONFIG_0_REG_BLOCK_DISABLE_0));
7856 } else {
7857 /* Prevent incomming interrupts in IGU */
7858 val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
7860 REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION,
7861 (!close) ?
7862 (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) :
7863 (val & ~(u32)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE));
7866 DP(NETIF_MSG_HW, "%s gates #2, #3 and #4\n",
7867 close ? "closing" : "opening");
7868 mmiowb();
7871 #define SHARED_MF_CLP_MAGIC 0x80000000 /* `magic' bit */
7873 static void bnx2x_clp_reset_prep(struct bnx2x *bp, u32 *magic_val)
7875 /* Do some magic... */
7876 u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
7877 *magic_val = val & SHARED_MF_CLP_MAGIC;
7878 MF_CFG_WR(bp, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC);
7882 * bnx2x_clp_reset_done - restore the value of the `magic' bit.
7884 * @bp: driver handle
7885 * @magic_val: old value of the `magic' bit.
7887 static void bnx2x_clp_reset_done(struct bnx2x *bp, u32 magic_val)
7889 /* Restore the `magic' bit value... */
7890 u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
7891 MF_CFG_WR(bp, shared_mf_config.clp_mb,
7892 (val & (~SHARED_MF_CLP_MAGIC)) | magic_val);
7896 * bnx2x_reset_mcp_prep - prepare for MCP reset.
7898 * @bp: driver handle
7899 * @magic_val: old value of 'magic' bit.
7901 * Takes care of CLP configurations.
7903 static void bnx2x_reset_mcp_prep(struct bnx2x *bp, u32 *magic_val)
7905 u32 shmem;
7906 u32 validity_offset;
7908 DP(NETIF_MSG_HW, "Starting\n");
7910 /* Set `magic' bit in order to save MF config */
7911 if (!CHIP_IS_E1(bp))
7912 bnx2x_clp_reset_prep(bp, magic_val);
7914 /* Get shmem offset */
7915 shmem = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
7916 validity_offset = offsetof(struct shmem_region, validity_map[0]);
7918 /* Clear validity map flags */
7919 if (shmem > 0)
7920 REG_WR(bp, shmem + validity_offset, 0);
7923 #define MCP_TIMEOUT 5000 /* 5 seconds (in ms) */
7924 #define MCP_ONE_TIMEOUT 100 /* 100 ms */
7927 * bnx2x_mcp_wait_one - wait for MCP_ONE_TIMEOUT
7929 * @bp: driver handle
7931 static inline void bnx2x_mcp_wait_one(struct bnx2x *bp)
7933 /* special handling for emulation and FPGA,
7934 wait 10 times longer */
7935 if (CHIP_REV_IS_SLOW(bp))
7936 msleep(MCP_ONE_TIMEOUT*10);
7937 else
7938 msleep(MCP_ONE_TIMEOUT);
7942 * initializes bp->common.shmem_base and waits for validity signature to appear
7944 static int bnx2x_init_shmem(struct bnx2x *bp)
7946 int cnt = 0;
7947 u32 val = 0;
7949 do {
7950 bp->common.shmem_base = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
7951 if (bp->common.shmem_base) {
7952 val = SHMEM_RD(bp, validity_map[BP_PORT(bp)]);
7953 if (val & SHR_MEM_VALIDITY_MB)
7954 return 0;
7957 bnx2x_mcp_wait_one(bp);
7959 } while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT));
7961 BNX2X_ERR("BAD MCP validity signature\n");
7963 return -ENODEV;
7966 static int bnx2x_reset_mcp_comp(struct bnx2x *bp, u32 magic_val)
7968 int rc = bnx2x_init_shmem(bp);
7970 /* Restore the `magic' bit value */
7971 if (!CHIP_IS_E1(bp))
7972 bnx2x_clp_reset_done(bp, magic_val);
7974 return rc;
7977 static void bnx2x_pxp_prep(struct bnx2x *bp)
7979 if (!CHIP_IS_E1(bp)) {
7980 REG_WR(bp, PXP2_REG_RD_START_INIT, 0);
7981 REG_WR(bp, PXP2_REG_RQ_RBC_DONE, 0);
7982 mmiowb();
7987 * Reset the whole chip except for:
7988 * - PCIE core
7989 * - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by
7990 * one reset bit)
7991 * - IGU
7992 * - MISC (including AEU)
7993 * - GRC
7994 * - RBCN, RBCP
7996 static void bnx2x_process_kill_chip_reset(struct bnx2x *bp, bool global)
7998 u32 not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2;
7999 u32 global_bits2, stay_reset2;
8002 * Bits that have to be set in reset_mask2 if we want to reset 'global'
8003 * (per chip) blocks.
8005 global_bits2 =
8006 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU |
8007 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE;
8009 /* Don't reset the following blocks */
8010 not_reset_mask1 =
8011 MISC_REGISTERS_RESET_REG_1_RST_HC |
8012 MISC_REGISTERS_RESET_REG_1_RST_PXPV |
8013 MISC_REGISTERS_RESET_REG_1_RST_PXP;
8015 not_reset_mask2 =
8016 MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO |
8017 MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE |
8018 MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE |
8019 MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE |
8020 MISC_REGISTERS_RESET_REG_2_RST_RBCN |
8021 MISC_REGISTERS_RESET_REG_2_RST_GRC |
8022 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE |
8023 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B |
8024 MISC_REGISTERS_RESET_REG_2_RST_ATC |
8025 MISC_REGISTERS_RESET_REG_2_PGLC;
8028 * Keep the following blocks in reset:
8029 * - all xxMACs are handled by the bnx2x_link code.
8031 stay_reset2 =
8032 MISC_REGISTERS_RESET_REG_2_RST_BMAC0 |
8033 MISC_REGISTERS_RESET_REG_2_RST_BMAC1 |
8034 MISC_REGISTERS_RESET_REG_2_RST_EMAC0 |
8035 MISC_REGISTERS_RESET_REG_2_RST_EMAC1 |
8036 MISC_REGISTERS_RESET_REG_2_UMAC0 |
8037 MISC_REGISTERS_RESET_REG_2_UMAC1 |
8038 MISC_REGISTERS_RESET_REG_2_XMAC |
8039 MISC_REGISTERS_RESET_REG_2_XMAC_SOFT;
8041 /* Full reset masks according to the chip */
8042 reset_mask1 = 0xffffffff;
8044 if (CHIP_IS_E1(bp))
8045 reset_mask2 = 0xffff;
8046 else if (CHIP_IS_E1H(bp))
8047 reset_mask2 = 0x1ffff;
8048 else if (CHIP_IS_E2(bp))
8049 reset_mask2 = 0xfffff;
8050 else /* CHIP_IS_E3 */
8051 reset_mask2 = 0x3ffffff;
8053 /* Don't reset global blocks unless we need to */
8054 if (!global)
8055 reset_mask2 &= ~global_bits2;
8058 * In case of attention in the QM, we need to reset PXP
8059 * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM
8060 * because otherwise QM reset would release 'close the gates' shortly
8061 * before resetting the PXP, then the PSWRQ would send a write
8062 * request to PGLUE. Then when PXP is reset, PGLUE would try to
8063 * read the payload data from PSWWR, but PSWWR would not
8064 * respond. The write queue in PGLUE would stuck, dmae commands
8065 * would not return. Therefore it's important to reset the second
8066 * reset register (containing the
8067 * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the
8068 * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM
8069 * bit).
8071 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
8072 reset_mask2 & (~not_reset_mask2));
8074 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
8075 reset_mask1 & (~not_reset_mask1));
8077 barrier();
8078 mmiowb();
8080 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET,
8081 reset_mask2 & (~stay_reset2));
8083 barrier();
8084 mmiowb();
8086 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1);
8087 mmiowb();
8091 * bnx2x_er_poll_igu_vq - poll for pending writes bit.
8092 * It should get cleared in no more than 1s.
8094 * @bp: driver handle
8096 * It should get cleared in no more than 1s. Returns 0 if
8097 * pending writes bit gets cleared.
8099 static int bnx2x_er_poll_igu_vq(struct bnx2x *bp)
8101 u32 cnt = 1000;
8102 u32 pend_bits = 0;
8104 do {
8105 pend_bits = REG_RD(bp, IGU_REG_PENDING_BITS_STATUS);
8107 if (pend_bits == 0)
8108 break;
8110 usleep_range(1000, 1000);
8111 } while (cnt-- > 0);
8113 if (cnt <= 0) {
8114 BNX2X_ERR("Still pending IGU requests pend_bits=%x!\n",
8115 pend_bits);
8116 return -EBUSY;
8119 return 0;
8122 static int bnx2x_process_kill(struct bnx2x *bp, bool global)
8124 int cnt = 1000;
8125 u32 val = 0;
8126 u32 sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2;
8129 /* Empty the Tetris buffer, wait for 1s */
8130 do {
8131 sr_cnt = REG_RD(bp, PXP2_REG_RD_SR_CNT);
8132 blk_cnt = REG_RD(bp, PXP2_REG_RD_BLK_CNT);
8133 port_is_idle_0 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_0);
8134 port_is_idle_1 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_1);
8135 pgl_exp_rom2 = REG_RD(bp, PXP2_REG_PGL_EXP_ROM2);
8136 if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) &&
8137 ((port_is_idle_0 & 0x1) == 0x1) &&
8138 ((port_is_idle_1 & 0x1) == 0x1) &&
8139 (pgl_exp_rom2 == 0xffffffff))
8140 break;
8141 usleep_range(1000, 1000);
8142 } while (cnt-- > 0);
8144 if (cnt <= 0) {
8145 DP(NETIF_MSG_HW, "Tetris buffer didn't get empty or there"
8146 " are still"
8147 " outstanding read requests after 1s!\n");
8148 DP(NETIF_MSG_HW, "sr_cnt=0x%08x, blk_cnt=0x%08x,"
8149 " port_is_idle_0=0x%08x,"
8150 " port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n",
8151 sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1,
8152 pgl_exp_rom2);
8153 return -EAGAIN;
8156 barrier();
8158 /* Close gates #2, #3 and #4 */
8159 bnx2x_set_234_gates(bp, true);
8161 /* Poll for IGU VQs for 57712 and newer chips */
8162 if (!CHIP_IS_E1x(bp) && bnx2x_er_poll_igu_vq(bp))
8163 return -EAGAIN;
8166 /* TBD: Indicate that "process kill" is in progress to MCP */
8168 /* Clear "unprepared" bit */
8169 REG_WR(bp, MISC_REG_UNPREPARED, 0);
8170 barrier();
8172 /* Make sure all is written to the chip before the reset */
8173 mmiowb();
8175 /* Wait for 1ms to empty GLUE and PCI-E core queues,
8176 * PSWHST, GRC and PSWRD Tetris buffer.
8178 usleep_range(1000, 1000);
8180 /* Prepare to chip reset: */
8181 /* MCP */
8182 if (global)
8183 bnx2x_reset_mcp_prep(bp, &val);
8185 /* PXP */
8186 bnx2x_pxp_prep(bp);
8187 barrier();
8189 /* reset the chip */
8190 bnx2x_process_kill_chip_reset(bp, global);
8191 barrier();
8193 /* Recover after reset: */
8194 /* MCP */
8195 if (global && bnx2x_reset_mcp_comp(bp, val))
8196 return -EAGAIN;
8198 /* TBD: Add resetting the NO_MCP mode DB here */
8200 /* PXP */
8201 bnx2x_pxp_prep(bp);
8203 /* Open the gates #2, #3 and #4 */
8204 bnx2x_set_234_gates(bp, false);
8206 /* TBD: IGU/AEU preparation bring back the AEU/IGU to a
8207 * reset state, re-enable attentions. */
8209 return 0;
8212 int bnx2x_leader_reset(struct bnx2x *bp)
8214 int rc = 0;
8215 bool global = bnx2x_reset_is_global(bp);
8217 /* Try to recover after the failure */
8218 if (bnx2x_process_kill(bp, global)) {
8219 netdev_err(bp->dev, "Something bad had happen on engine %d! "
8220 "Aii!\n", BP_PATH(bp));
8221 rc = -EAGAIN;
8222 goto exit_leader_reset;
8226 * Clear RESET_IN_PROGRES and RESET_GLOBAL bits and update the driver
8227 * state.
8229 bnx2x_set_reset_done(bp);
8230 if (global)
8231 bnx2x_clear_reset_global(bp);
8233 exit_leader_reset:
8234 bp->is_leader = 0;
8235 bnx2x_release_leader_lock(bp);
8236 smp_mb();
8237 return rc;
8240 static inline void bnx2x_recovery_failed(struct bnx2x *bp)
8242 netdev_err(bp->dev, "Recovery has failed. Power cycle is needed.\n");
8244 /* Disconnect this device */
8245 netif_device_detach(bp->dev);
8248 * Block ifup for all function on this engine until "process kill"
8249 * or power cycle.
8251 bnx2x_set_reset_in_progress(bp);
8253 /* Shut down the power */
8254 bnx2x_set_power_state(bp, PCI_D3hot);
8256 bp->recovery_state = BNX2X_RECOVERY_FAILED;
8258 smp_mb();
8262 * Assumption: runs under rtnl lock. This together with the fact
8263 * that it's called only from bnx2x_sp_rtnl() ensure that it
8264 * will never be called when netif_running(bp->dev) is false.
8266 static void bnx2x_parity_recover(struct bnx2x *bp)
8268 bool global = false;
8270 DP(NETIF_MSG_HW, "Handling parity\n");
8271 while (1) {
8272 switch (bp->recovery_state) {
8273 case BNX2X_RECOVERY_INIT:
8274 DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_INIT\n");
8275 bnx2x_chk_parity_attn(bp, &global, false);
8277 /* Try to get a LEADER_LOCK HW lock */
8278 if (bnx2x_trylock_leader_lock(bp)) {
8279 bnx2x_set_reset_in_progress(bp);
8281 * Check if there is a global attention and if
8282 * there was a global attention, set the global
8283 * reset bit.
8286 if (global)
8287 bnx2x_set_reset_global(bp);
8289 bp->is_leader = 1;
8292 /* Stop the driver */
8293 /* If interface has been removed - break */
8294 if (bnx2x_nic_unload(bp, UNLOAD_RECOVERY))
8295 return;
8297 bp->recovery_state = BNX2X_RECOVERY_WAIT;
8300 * Reset MCP command sequence number and MCP mail box
8301 * sequence as we are going to reset the MCP.
8303 if (global) {
8304 bp->fw_seq = 0;
8305 bp->fw_drv_pulse_wr_seq = 0;
8308 /* Ensure "is_leader", MCP command sequence and
8309 * "recovery_state" update values are seen on other
8310 * CPUs.
8312 smp_mb();
8313 break;
8315 case BNX2X_RECOVERY_WAIT:
8316 DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_WAIT\n");
8317 if (bp->is_leader) {
8318 int other_engine = BP_PATH(bp) ? 0 : 1;
8319 u32 other_load_counter =
8320 bnx2x_get_load_cnt(bp, other_engine);
8321 u32 load_counter =
8322 bnx2x_get_load_cnt(bp, BP_PATH(bp));
8323 global = bnx2x_reset_is_global(bp);
8326 * In case of a parity in a global block, let
8327 * the first leader that performs a
8328 * leader_reset() reset the global blocks in
8329 * order to clear global attentions. Otherwise
8330 * the the gates will remain closed for that
8331 * engine.
8333 if (load_counter ||
8334 (global && other_load_counter)) {
8335 /* Wait until all other functions get
8336 * down.
8338 schedule_delayed_work(&bp->sp_rtnl_task,
8339 HZ/10);
8340 return;
8341 } else {
8342 /* If all other functions got down -
8343 * try to bring the chip back to
8344 * normal. In any case it's an exit
8345 * point for a leader.
8347 if (bnx2x_leader_reset(bp)) {
8348 bnx2x_recovery_failed(bp);
8349 return;
8352 /* If we are here, means that the
8353 * leader has succeeded and doesn't
8354 * want to be a leader any more. Try
8355 * to continue as a none-leader.
8357 break;
8359 } else { /* non-leader */
8360 if (!bnx2x_reset_is_done(bp, BP_PATH(bp))) {
8361 /* Try to get a LEADER_LOCK HW lock as
8362 * long as a former leader may have
8363 * been unloaded by the user or
8364 * released a leadership by another
8365 * reason.
8367 if (bnx2x_trylock_leader_lock(bp)) {
8368 /* I'm a leader now! Restart a
8369 * switch case.
8371 bp->is_leader = 1;
8372 break;
8375 schedule_delayed_work(&bp->sp_rtnl_task,
8376 HZ/10);
8377 return;
8379 } else {
8381 * If there was a global attention, wait
8382 * for it to be cleared.
8384 if (bnx2x_reset_is_global(bp)) {
8385 schedule_delayed_work(
8386 &bp->sp_rtnl_task,
8387 HZ/10);
8388 return;
8391 if (bnx2x_nic_load(bp, LOAD_NORMAL))
8392 bnx2x_recovery_failed(bp);
8393 else {
8394 bp->recovery_state =
8395 BNX2X_RECOVERY_DONE;
8396 smp_mb();
8399 return;
8402 default:
8403 return;
8408 /* bnx2x_nic_unload() flushes the bnx2x_wq, thus reset task is
8409 * scheduled on a general queue in order to prevent a dead lock.
8411 static void bnx2x_sp_rtnl_task(struct work_struct *work)
8413 struct bnx2x *bp = container_of(work, struct bnx2x, sp_rtnl_task.work);
8415 rtnl_lock();
8417 if (!netif_running(bp->dev))
8418 goto sp_rtnl_exit;
8420 /* if stop on error is defined no recovery flows should be executed */
8421 #ifdef BNX2X_STOP_ON_ERROR
8422 BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined "
8423 "so reset not done to allow debug dump,\n"
8424 "you will need to reboot when done\n");
8425 goto sp_rtnl_not_reset;
8426 #endif
8428 if (unlikely(bp->recovery_state != BNX2X_RECOVERY_DONE)) {
8430 * Clear all pending SP commands as we are going to reset the
8431 * function anyway.
8433 bp->sp_rtnl_state = 0;
8434 smp_mb();
8436 bnx2x_parity_recover(bp);
8438 goto sp_rtnl_exit;
8441 if (test_and_clear_bit(BNX2X_SP_RTNL_TX_TIMEOUT, &bp->sp_rtnl_state)) {
8443 * Clear all pending SP commands as we are going to reset the
8444 * function anyway.
8446 bp->sp_rtnl_state = 0;
8447 smp_mb();
8449 bnx2x_nic_unload(bp, UNLOAD_NORMAL);
8450 bnx2x_nic_load(bp, LOAD_NORMAL);
8452 goto sp_rtnl_exit;
8454 #ifdef BNX2X_STOP_ON_ERROR
8455 sp_rtnl_not_reset:
8456 #endif
8457 if (test_and_clear_bit(BNX2X_SP_RTNL_SETUP_TC, &bp->sp_rtnl_state))
8458 bnx2x_setup_tc(bp->dev, bp->dcbx_port_params.ets.num_of_cos);
8460 sp_rtnl_exit:
8461 rtnl_unlock();
8464 /* end of nic load/unload */
8466 static void bnx2x_period_task(struct work_struct *work)
8468 struct bnx2x *bp = container_of(work, struct bnx2x, period_task.work);
8470 if (!netif_running(bp->dev))
8471 goto period_task_exit;
8473 if (CHIP_REV_IS_SLOW(bp)) {
8474 BNX2X_ERR("period task called on emulation, ignoring\n");
8475 goto period_task_exit;
8478 bnx2x_acquire_phy_lock(bp);
8480 * The barrier is needed to ensure the ordering between the writing to
8481 * the bp->port.pmf in the bnx2x_nic_load() or bnx2x_pmf_update() and
8482 * the reading here.
8484 smp_mb();
8485 if (bp->port.pmf) {
8486 bnx2x_period_func(&bp->link_params, &bp->link_vars);
8488 /* Re-queue task in 1 sec */
8489 queue_delayed_work(bnx2x_wq, &bp->period_task, 1*HZ);
8492 bnx2x_release_phy_lock(bp);
8493 period_task_exit:
8494 return;
8498 * Init service functions
8501 static u32 bnx2x_get_pretend_reg(struct bnx2x *bp)
8503 u32 base = PXP2_REG_PGL_PRETEND_FUNC_F0;
8504 u32 stride = PXP2_REG_PGL_PRETEND_FUNC_F1 - base;
8505 return base + (BP_ABS_FUNC(bp)) * stride;
8508 static void bnx2x_undi_int_disable_e1h(struct bnx2x *bp)
8510 u32 reg = bnx2x_get_pretend_reg(bp);
8512 /* Flush all outstanding writes */
8513 mmiowb();
8515 /* Pretend to be function 0 */
8516 REG_WR(bp, reg, 0);
8517 REG_RD(bp, reg); /* Flush the GRC transaction (in the chip) */
8519 /* From now we are in the "like-E1" mode */
8520 bnx2x_int_disable(bp);
8522 /* Flush all outstanding writes */
8523 mmiowb();
8525 /* Restore the original function */
8526 REG_WR(bp, reg, BP_ABS_FUNC(bp));
8527 REG_RD(bp, reg);
8530 static inline void bnx2x_undi_int_disable(struct bnx2x *bp)
8532 if (CHIP_IS_E1(bp))
8533 bnx2x_int_disable(bp);
8534 else
8535 bnx2x_undi_int_disable_e1h(bp);
8538 static void __devinit bnx2x_undi_unload(struct bnx2x *bp)
8540 u32 val;
8542 /* Check if there is any driver already loaded */
8543 val = REG_RD(bp, MISC_REG_UNPREPARED);
8544 if (val == 0x1) {
8545 /* Check if it is the UNDI driver
8546 * UNDI driver initializes CID offset for normal bell to 0x7
8548 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_UNDI);
8549 val = REG_RD(bp, DORQ_REG_NORM_CID_OFST);
8550 if (val == 0x7) {
8551 u32 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
8552 /* save our pf_num */
8553 int orig_pf_num = bp->pf_num;
8554 int port;
8555 u32 swap_en, swap_val, value;
8557 /* clear the UNDI indication */
8558 REG_WR(bp, DORQ_REG_NORM_CID_OFST, 0);
8560 BNX2X_DEV_INFO("UNDI is active! reset device\n");
8562 /* try unload UNDI on port 0 */
8563 bp->pf_num = 0;
8564 bp->fw_seq =
8565 (SHMEM_RD(bp, func_mb[bp->pf_num].drv_mb_header) &
8566 DRV_MSG_SEQ_NUMBER_MASK);
8567 reset_code = bnx2x_fw_command(bp, reset_code, 0);
8569 /* if UNDI is loaded on the other port */
8570 if (reset_code != FW_MSG_CODE_DRV_UNLOAD_COMMON) {
8572 /* send "DONE" for previous unload */
8573 bnx2x_fw_command(bp,
8574 DRV_MSG_CODE_UNLOAD_DONE, 0);
8576 /* unload UNDI on port 1 */
8577 bp->pf_num = 1;
8578 bp->fw_seq =
8579 (SHMEM_RD(bp, func_mb[bp->pf_num].drv_mb_header) &
8580 DRV_MSG_SEQ_NUMBER_MASK);
8581 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
8583 bnx2x_fw_command(bp, reset_code, 0);
8586 /* now it's safe to release the lock */
8587 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_UNDI);
8589 bnx2x_undi_int_disable(bp);
8590 port = BP_PORT(bp);
8592 /* close input traffic and wait for it */
8593 /* Do not rcv packets to BRB */
8594 REG_WR(bp, (port ? NIG_REG_LLH1_BRB1_DRV_MASK :
8595 NIG_REG_LLH0_BRB1_DRV_MASK), 0x0);
8596 /* Do not direct rcv packets that are not for MCP to
8597 * the BRB */
8598 REG_WR(bp, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
8599 NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
8600 /* clear AEU */
8601 REG_WR(bp, (port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
8602 MISC_REG_AEU_MASK_ATTN_FUNC_0), 0);
8603 msleep(10);
8605 /* save NIG port swap info */
8606 swap_val = REG_RD(bp, NIG_REG_PORT_SWAP);
8607 swap_en = REG_RD(bp, NIG_REG_STRAP_OVERRIDE);
8608 /* reset device */
8609 REG_WR(bp,
8610 GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
8611 0xd3ffffff);
8613 value = 0x1400;
8614 if (CHIP_IS_E3(bp)) {
8615 value |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
8616 value |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
8619 REG_WR(bp,
8620 GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
8621 value);
8623 /* take the NIG out of reset and restore swap values */
8624 REG_WR(bp,
8625 GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET,
8626 MISC_REGISTERS_RESET_REG_1_RST_NIG);
8627 REG_WR(bp, NIG_REG_PORT_SWAP, swap_val);
8628 REG_WR(bp, NIG_REG_STRAP_OVERRIDE, swap_en);
8630 /* send unload done to the MCP */
8631 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
8633 /* restore our func and fw_seq */
8634 bp->pf_num = orig_pf_num;
8635 bp->fw_seq =
8636 (SHMEM_RD(bp, func_mb[bp->pf_num].drv_mb_header) &
8637 DRV_MSG_SEQ_NUMBER_MASK);
8638 } else
8639 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_UNDI);
8643 static void __devinit bnx2x_get_common_hwinfo(struct bnx2x *bp)
8645 u32 val, val2, val3, val4, id;
8646 u16 pmc;
8648 /* Get the chip revision id and number. */
8649 /* chip num:16-31, rev:12-15, metal:4-11, bond_id:0-3 */
8650 val = REG_RD(bp, MISC_REG_CHIP_NUM);
8651 id = ((val & 0xffff) << 16);
8652 val = REG_RD(bp, MISC_REG_CHIP_REV);
8653 id |= ((val & 0xf) << 12);
8654 val = REG_RD(bp, MISC_REG_CHIP_METAL);
8655 id |= ((val & 0xff) << 4);
8656 val = REG_RD(bp, MISC_REG_BOND_ID);
8657 id |= (val & 0xf);
8658 bp->common.chip_id = id;
8660 /* Set doorbell size */
8661 bp->db_size = (1 << BNX2X_DB_SHIFT);
8663 if (!CHIP_IS_E1x(bp)) {
8664 val = REG_RD(bp, MISC_REG_PORT4MODE_EN_OVWR);
8665 if ((val & 1) == 0)
8666 val = REG_RD(bp, MISC_REG_PORT4MODE_EN);
8667 else
8668 val = (val >> 1) & 1;
8669 BNX2X_DEV_INFO("chip is in %s\n", val ? "4_PORT_MODE" :
8670 "2_PORT_MODE");
8671 bp->common.chip_port_mode = val ? CHIP_4_PORT_MODE :
8672 CHIP_2_PORT_MODE;
8674 if (CHIP_MODE_IS_4_PORT(bp))
8675 bp->pfid = (bp->pf_num >> 1); /* 0..3 */
8676 else
8677 bp->pfid = (bp->pf_num & 0x6); /* 0, 2, 4, 6 */
8678 } else {
8679 bp->common.chip_port_mode = CHIP_PORT_MODE_NONE; /* N/A */
8680 bp->pfid = bp->pf_num; /* 0..7 */
8683 bp->link_params.chip_id = bp->common.chip_id;
8684 BNX2X_DEV_INFO("chip ID is 0x%x\n", id);
8686 val = (REG_RD(bp, 0x2874) & 0x55);
8687 if ((bp->common.chip_id & 0x1) ||
8688 (CHIP_IS_E1(bp) && val) || (CHIP_IS_E1H(bp) && (val == 0x55))) {
8689 bp->flags |= ONE_PORT_FLAG;
8690 BNX2X_DEV_INFO("single port device\n");
8693 val = REG_RD(bp, MCP_REG_MCPR_NVM_CFG4);
8694 bp->common.flash_size = (BNX2X_NVRAM_1MB_SIZE <<
8695 (val & MCPR_NVM_CFG4_FLASH_SIZE));
8696 BNX2X_DEV_INFO("flash_size 0x%x (%d)\n",
8697 bp->common.flash_size, bp->common.flash_size);
8699 bnx2x_init_shmem(bp);
8703 bp->common.shmem2_base = REG_RD(bp, (BP_PATH(bp) ?
8704 MISC_REG_GENERIC_CR_1 :
8705 MISC_REG_GENERIC_CR_0));
8707 bp->link_params.shmem_base = bp->common.shmem_base;
8708 bp->link_params.shmem2_base = bp->common.shmem2_base;
8709 BNX2X_DEV_INFO("shmem offset 0x%x shmem2 offset 0x%x\n",
8710 bp->common.shmem_base, bp->common.shmem2_base);
8712 if (!bp->common.shmem_base) {
8713 BNX2X_DEV_INFO("MCP not active\n");
8714 bp->flags |= NO_MCP_FLAG;
8715 return;
8718 bp->common.hw_config = SHMEM_RD(bp, dev_info.shared_hw_config.config);
8719 BNX2X_DEV_INFO("hw_config 0x%08x\n", bp->common.hw_config);
8721 bp->link_params.hw_led_mode = ((bp->common.hw_config &
8722 SHARED_HW_CFG_LED_MODE_MASK) >>
8723 SHARED_HW_CFG_LED_MODE_SHIFT);
8725 bp->link_params.feature_config_flags = 0;
8726 val = SHMEM_RD(bp, dev_info.shared_feature_config.config);
8727 if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED)
8728 bp->link_params.feature_config_flags |=
8729 FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
8730 else
8731 bp->link_params.feature_config_flags &=
8732 ~FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
8734 val = SHMEM_RD(bp, dev_info.bc_rev) >> 8;
8735 bp->common.bc_ver = val;
8736 BNX2X_DEV_INFO("bc_ver %X\n", val);
8737 if (val < BNX2X_BC_VER) {
8738 /* for now only warn
8739 * later we might need to enforce this */
8740 BNX2X_ERR("This driver needs bc_ver %X but found %X, "
8741 "please upgrade BC\n", BNX2X_BC_VER, val);
8743 bp->link_params.feature_config_flags |=
8744 (val >= REQ_BC_VER_4_VRFY_FIRST_PHY_OPT_MDL) ?
8745 FEATURE_CONFIG_BC_SUPPORTS_OPT_MDL_VRFY : 0;
8747 bp->link_params.feature_config_flags |=
8748 (val >= REQ_BC_VER_4_VRFY_SPECIFIC_PHY_OPT_MDL) ?
8749 FEATURE_CONFIG_BC_SUPPORTS_DUAL_PHY_OPT_MDL_VRFY : 0;
8751 bp->link_params.feature_config_flags |=
8752 (val >= REQ_BC_VER_4_SFP_TX_DISABLE_SUPPORTED) ?
8753 FEATURE_CONFIG_BC_SUPPORTS_SFP_TX_DISABLED : 0;
8755 pci_read_config_word(bp->pdev, bp->pm_cap + PCI_PM_PMC, &pmc);
8756 bp->flags |= (pmc & PCI_PM_CAP_PME_D3cold) ? 0 : NO_WOL_FLAG;
8758 BNX2X_DEV_INFO("%sWoL capable\n",
8759 (bp->flags & NO_WOL_FLAG) ? "not " : "");
8761 val = SHMEM_RD(bp, dev_info.shared_hw_config.part_num);
8762 val2 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[4]);
8763 val3 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[8]);
8764 val4 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[12]);
8766 dev_info(&bp->pdev->dev, "part number %X-%X-%X-%X\n",
8767 val, val2, val3, val4);
8770 #define IGU_FID(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID)
8771 #define IGU_VEC(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR)
8773 static void __devinit bnx2x_get_igu_cam_info(struct bnx2x *bp)
8775 int pfid = BP_FUNC(bp);
8776 int vn = BP_E1HVN(bp);
8777 int igu_sb_id;
8778 u32 val;
8779 u8 fid, igu_sb_cnt = 0;
8781 bp->igu_base_sb = 0xff;
8782 if (CHIP_INT_MODE_IS_BC(bp)) {
8783 igu_sb_cnt = bp->igu_sb_cnt;
8784 bp->igu_base_sb = (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn) *
8785 FP_SB_MAX_E1x;
8787 bp->igu_dsb_id = E1HVN_MAX * FP_SB_MAX_E1x +
8788 (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn);
8790 return;
8793 /* IGU in normal mode - read CAM */
8794 for (igu_sb_id = 0; igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE;
8795 igu_sb_id++) {
8796 val = REG_RD(bp, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4);
8797 if (!(val & IGU_REG_MAPPING_MEMORY_VALID))
8798 continue;
8799 fid = IGU_FID(val);
8800 if ((fid & IGU_FID_ENCODE_IS_PF)) {
8801 if ((fid & IGU_FID_PF_NUM_MASK) != pfid)
8802 continue;
8803 if (IGU_VEC(val) == 0)
8804 /* default status block */
8805 bp->igu_dsb_id = igu_sb_id;
8806 else {
8807 if (bp->igu_base_sb == 0xff)
8808 bp->igu_base_sb = igu_sb_id;
8809 igu_sb_cnt++;
8814 #ifdef CONFIG_PCI_MSI
8816 * It's expected that number of CAM entries for this functions is equal
8817 * to the number evaluated based on the MSI-X table size. We want a
8818 * harsh warning if these values are different!
8820 WARN_ON(bp->igu_sb_cnt != igu_sb_cnt);
8821 #endif
8823 if (igu_sb_cnt == 0)
8824 BNX2X_ERR("CAM configuration error\n");
8827 static void __devinit bnx2x_link_settings_supported(struct bnx2x *bp,
8828 u32 switch_cfg)
8830 int cfg_size = 0, idx, port = BP_PORT(bp);
8832 /* Aggregation of supported attributes of all external phys */
8833 bp->port.supported[0] = 0;
8834 bp->port.supported[1] = 0;
8835 switch (bp->link_params.num_phys) {
8836 case 1:
8837 bp->port.supported[0] = bp->link_params.phy[INT_PHY].supported;
8838 cfg_size = 1;
8839 break;
8840 case 2:
8841 bp->port.supported[0] = bp->link_params.phy[EXT_PHY1].supported;
8842 cfg_size = 1;
8843 break;
8844 case 3:
8845 if (bp->link_params.multi_phy_config &
8846 PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
8847 bp->port.supported[1] =
8848 bp->link_params.phy[EXT_PHY1].supported;
8849 bp->port.supported[0] =
8850 bp->link_params.phy[EXT_PHY2].supported;
8851 } else {
8852 bp->port.supported[0] =
8853 bp->link_params.phy[EXT_PHY1].supported;
8854 bp->port.supported[1] =
8855 bp->link_params.phy[EXT_PHY2].supported;
8857 cfg_size = 2;
8858 break;
8861 if (!(bp->port.supported[0] || bp->port.supported[1])) {
8862 BNX2X_ERR("NVRAM config error. BAD phy config."
8863 "PHY1 config 0x%x, PHY2 config 0x%x\n",
8864 SHMEM_RD(bp,
8865 dev_info.port_hw_config[port].external_phy_config),
8866 SHMEM_RD(bp,
8867 dev_info.port_hw_config[port].external_phy_config2));
8868 return;
8871 if (CHIP_IS_E3(bp))
8872 bp->port.phy_addr = REG_RD(bp, MISC_REG_WC0_CTRL_PHY_ADDR);
8873 else {
8874 switch (switch_cfg) {
8875 case SWITCH_CFG_1G:
8876 bp->port.phy_addr = REG_RD(
8877 bp, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10);
8878 break;
8879 case SWITCH_CFG_10G:
8880 bp->port.phy_addr = REG_RD(
8881 bp, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18);
8882 break;
8883 default:
8884 BNX2X_ERR("BAD switch_cfg link_config 0x%x\n",
8885 bp->port.link_config[0]);
8886 return;
8889 BNX2X_DEV_INFO("phy_addr 0x%x\n", bp->port.phy_addr);
8890 /* mask what we support according to speed_cap_mask per configuration */
8891 for (idx = 0; idx < cfg_size; idx++) {
8892 if (!(bp->link_params.speed_cap_mask[idx] &
8893 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF))
8894 bp->port.supported[idx] &= ~SUPPORTED_10baseT_Half;
8896 if (!(bp->link_params.speed_cap_mask[idx] &
8897 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL))
8898 bp->port.supported[idx] &= ~SUPPORTED_10baseT_Full;
8900 if (!(bp->link_params.speed_cap_mask[idx] &
8901 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF))
8902 bp->port.supported[idx] &= ~SUPPORTED_100baseT_Half;
8904 if (!(bp->link_params.speed_cap_mask[idx] &
8905 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL))
8906 bp->port.supported[idx] &= ~SUPPORTED_100baseT_Full;
8908 if (!(bp->link_params.speed_cap_mask[idx] &
8909 PORT_HW_CFG_SPEED_CAPABILITY_D0_1G))
8910 bp->port.supported[idx] &= ~(SUPPORTED_1000baseT_Half |
8911 SUPPORTED_1000baseT_Full);
8913 if (!(bp->link_params.speed_cap_mask[idx] &
8914 PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G))
8915 bp->port.supported[idx] &= ~SUPPORTED_2500baseX_Full;
8917 if (!(bp->link_params.speed_cap_mask[idx] &
8918 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G))
8919 bp->port.supported[idx] &= ~SUPPORTED_10000baseT_Full;
8923 BNX2X_DEV_INFO("supported 0x%x 0x%x\n", bp->port.supported[0],
8924 bp->port.supported[1]);
8927 static void __devinit bnx2x_link_settings_requested(struct bnx2x *bp)
8929 u32 link_config, idx, cfg_size = 0;
8930 bp->port.advertising[0] = 0;
8931 bp->port.advertising[1] = 0;
8932 switch (bp->link_params.num_phys) {
8933 case 1:
8934 case 2:
8935 cfg_size = 1;
8936 break;
8937 case 3:
8938 cfg_size = 2;
8939 break;
8941 for (idx = 0; idx < cfg_size; idx++) {
8942 bp->link_params.req_duplex[idx] = DUPLEX_FULL;
8943 link_config = bp->port.link_config[idx];
8944 switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) {
8945 case PORT_FEATURE_LINK_SPEED_AUTO:
8946 if (bp->port.supported[idx] & SUPPORTED_Autoneg) {
8947 bp->link_params.req_line_speed[idx] =
8948 SPEED_AUTO_NEG;
8949 bp->port.advertising[idx] |=
8950 bp->port.supported[idx];
8951 } else {
8952 /* force 10G, no AN */
8953 bp->link_params.req_line_speed[idx] =
8954 SPEED_10000;
8955 bp->port.advertising[idx] |=
8956 (ADVERTISED_10000baseT_Full |
8957 ADVERTISED_FIBRE);
8958 continue;
8960 break;
8962 case PORT_FEATURE_LINK_SPEED_10M_FULL:
8963 if (bp->port.supported[idx] & SUPPORTED_10baseT_Full) {
8964 bp->link_params.req_line_speed[idx] =
8965 SPEED_10;
8966 bp->port.advertising[idx] |=
8967 (ADVERTISED_10baseT_Full |
8968 ADVERTISED_TP);
8969 } else {
8970 BNX2X_ERR("NVRAM config error. "
8971 "Invalid link_config 0x%x"
8972 " speed_cap_mask 0x%x\n",
8973 link_config,
8974 bp->link_params.speed_cap_mask[idx]);
8975 return;
8977 break;
8979 case PORT_FEATURE_LINK_SPEED_10M_HALF:
8980 if (bp->port.supported[idx] & SUPPORTED_10baseT_Half) {
8981 bp->link_params.req_line_speed[idx] =
8982 SPEED_10;
8983 bp->link_params.req_duplex[idx] =
8984 DUPLEX_HALF;
8985 bp->port.advertising[idx] |=
8986 (ADVERTISED_10baseT_Half |
8987 ADVERTISED_TP);
8988 } else {
8989 BNX2X_ERR("NVRAM config error. "
8990 "Invalid link_config 0x%x"
8991 " speed_cap_mask 0x%x\n",
8992 link_config,
8993 bp->link_params.speed_cap_mask[idx]);
8994 return;
8996 break;
8998 case PORT_FEATURE_LINK_SPEED_100M_FULL:
8999 if (bp->port.supported[idx] &
9000 SUPPORTED_100baseT_Full) {
9001 bp->link_params.req_line_speed[idx] =
9002 SPEED_100;
9003 bp->port.advertising[idx] |=
9004 (ADVERTISED_100baseT_Full |
9005 ADVERTISED_TP);
9006 } else {
9007 BNX2X_ERR("NVRAM config error. "
9008 "Invalid link_config 0x%x"
9009 " speed_cap_mask 0x%x\n",
9010 link_config,
9011 bp->link_params.speed_cap_mask[idx]);
9012 return;
9014 break;
9016 case PORT_FEATURE_LINK_SPEED_100M_HALF:
9017 if (bp->port.supported[idx] &
9018 SUPPORTED_100baseT_Half) {
9019 bp->link_params.req_line_speed[idx] =
9020 SPEED_100;
9021 bp->link_params.req_duplex[idx] =
9022 DUPLEX_HALF;
9023 bp->port.advertising[idx] |=
9024 (ADVERTISED_100baseT_Half |
9025 ADVERTISED_TP);
9026 } else {
9027 BNX2X_ERR("NVRAM config error. "
9028 "Invalid link_config 0x%x"
9029 " speed_cap_mask 0x%x\n",
9030 link_config,
9031 bp->link_params.speed_cap_mask[idx]);
9032 return;
9034 break;
9036 case PORT_FEATURE_LINK_SPEED_1G:
9037 if (bp->port.supported[idx] &
9038 SUPPORTED_1000baseT_Full) {
9039 bp->link_params.req_line_speed[idx] =
9040 SPEED_1000;
9041 bp->port.advertising[idx] |=
9042 (ADVERTISED_1000baseT_Full |
9043 ADVERTISED_TP);
9044 } else {
9045 BNX2X_ERR("NVRAM config error. "
9046 "Invalid link_config 0x%x"
9047 " speed_cap_mask 0x%x\n",
9048 link_config,
9049 bp->link_params.speed_cap_mask[idx]);
9050 return;
9052 break;
9054 case PORT_FEATURE_LINK_SPEED_2_5G:
9055 if (bp->port.supported[idx] &
9056 SUPPORTED_2500baseX_Full) {
9057 bp->link_params.req_line_speed[idx] =
9058 SPEED_2500;
9059 bp->port.advertising[idx] |=
9060 (ADVERTISED_2500baseX_Full |
9061 ADVERTISED_TP);
9062 } else {
9063 BNX2X_ERR("NVRAM config error. "
9064 "Invalid link_config 0x%x"
9065 " speed_cap_mask 0x%x\n",
9066 link_config,
9067 bp->link_params.speed_cap_mask[idx]);
9068 return;
9070 break;
9072 case PORT_FEATURE_LINK_SPEED_10G_CX4:
9073 if (bp->port.supported[idx] &
9074 SUPPORTED_10000baseT_Full) {
9075 bp->link_params.req_line_speed[idx] =
9076 SPEED_10000;
9077 bp->port.advertising[idx] |=
9078 (ADVERTISED_10000baseT_Full |
9079 ADVERTISED_FIBRE);
9080 } else {
9081 BNX2X_ERR("NVRAM config error. "
9082 "Invalid link_config 0x%x"
9083 " speed_cap_mask 0x%x\n",
9084 link_config,
9085 bp->link_params.speed_cap_mask[idx]);
9086 return;
9088 break;
9089 case PORT_FEATURE_LINK_SPEED_20G:
9090 bp->link_params.req_line_speed[idx] = SPEED_20000;
9092 break;
9093 default:
9094 BNX2X_ERR("NVRAM config error. "
9095 "BAD link speed link_config 0x%x\n",
9096 link_config);
9097 bp->link_params.req_line_speed[idx] =
9098 SPEED_AUTO_NEG;
9099 bp->port.advertising[idx] =
9100 bp->port.supported[idx];
9101 break;
9104 bp->link_params.req_flow_ctrl[idx] = (link_config &
9105 PORT_FEATURE_FLOW_CONTROL_MASK);
9106 if ((bp->link_params.req_flow_ctrl[idx] ==
9107 BNX2X_FLOW_CTRL_AUTO) &&
9108 !(bp->port.supported[idx] & SUPPORTED_Autoneg)) {
9109 bp->link_params.req_flow_ctrl[idx] =
9110 BNX2X_FLOW_CTRL_NONE;
9113 BNX2X_DEV_INFO("req_line_speed %d req_duplex %d req_flow_ctrl"
9114 " 0x%x advertising 0x%x\n",
9115 bp->link_params.req_line_speed[idx],
9116 bp->link_params.req_duplex[idx],
9117 bp->link_params.req_flow_ctrl[idx],
9118 bp->port.advertising[idx]);
9122 static void __devinit bnx2x_set_mac_buf(u8 *mac_buf, u32 mac_lo, u16 mac_hi)
9124 mac_hi = cpu_to_be16(mac_hi);
9125 mac_lo = cpu_to_be32(mac_lo);
9126 memcpy(mac_buf, &mac_hi, sizeof(mac_hi));
9127 memcpy(mac_buf + sizeof(mac_hi), &mac_lo, sizeof(mac_lo));
9130 static void __devinit bnx2x_get_port_hwinfo(struct bnx2x *bp)
9132 int port = BP_PORT(bp);
9133 u32 config;
9134 u32 ext_phy_type, ext_phy_config;
9136 bp->link_params.bp = bp;
9137 bp->link_params.port = port;
9139 bp->link_params.lane_config =
9140 SHMEM_RD(bp, dev_info.port_hw_config[port].lane_config);
9142 bp->link_params.speed_cap_mask[0] =
9143 SHMEM_RD(bp,
9144 dev_info.port_hw_config[port].speed_capability_mask);
9145 bp->link_params.speed_cap_mask[1] =
9146 SHMEM_RD(bp,
9147 dev_info.port_hw_config[port].speed_capability_mask2);
9148 bp->port.link_config[0] =
9149 SHMEM_RD(bp, dev_info.port_feature_config[port].link_config);
9151 bp->port.link_config[1] =
9152 SHMEM_RD(bp, dev_info.port_feature_config[port].link_config2);
9154 bp->link_params.multi_phy_config =
9155 SHMEM_RD(bp, dev_info.port_hw_config[port].multi_phy_config);
9156 /* If the device is capable of WoL, set the default state according
9157 * to the HW
9159 config = SHMEM_RD(bp, dev_info.port_feature_config[port].config);
9160 bp->wol = (!(bp->flags & NO_WOL_FLAG) &&
9161 (config & PORT_FEATURE_WOL_ENABLED));
9163 BNX2X_DEV_INFO("lane_config 0x%08x "
9164 "speed_cap_mask0 0x%08x link_config0 0x%08x\n",
9165 bp->link_params.lane_config,
9166 bp->link_params.speed_cap_mask[0],
9167 bp->port.link_config[0]);
9169 bp->link_params.switch_cfg = (bp->port.link_config[0] &
9170 PORT_FEATURE_CONNECTED_SWITCH_MASK);
9171 bnx2x_phy_probe(&bp->link_params);
9172 bnx2x_link_settings_supported(bp, bp->link_params.switch_cfg);
9174 bnx2x_link_settings_requested(bp);
9177 * If connected directly, work with the internal PHY, otherwise, work
9178 * with the external PHY
9180 ext_phy_config =
9181 SHMEM_RD(bp,
9182 dev_info.port_hw_config[port].external_phy_config);
9183 ext_phy_type = XGXS_EXT_PHY_TYPE(ext_phy_config);
9184 if (ext_phy_type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT)
9185 bp->mdio.prtad = bp->port.phy_addr;
9187 else if ((ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE) &&
9188 (ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN))
9189 bp->mdio.prtad =
9190 XGXS_EXT_PHY_ADDR(ext_phy_config);
9193 * Check if hw lock is required to access MDC/MDIO bus to the PHY(s)
9194 * In MF mode, it is set to cover self test cases
9196 if (IS_MF(bp))
9197 bp->port.need_hw_lock = 1;
9198 else
9199 bp->port.need_hw_lock = bnx2x_hw_lock_required(bp,
9200 bp->common.shmem_base,
9201 bp->common.shmem2_base);
9204 #ifdef BCM_CNIC
9205 static void __devinit bnx2x_get_cnic_info(struct bnx2x *bp)
9207 int port = BP_PORT(bp);
9208 int func = BP_ABS_FUNC(bp);
9210 u32 max_iscsi_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
9211 drv_lic_key[port].max_iscsi_conn);
9212 u32 max_fcoe_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
9213 drv_lic_key[port].max_fcoe_conn);
9215 /* Get the number of maximum allowed iSCSI and FCoE connections */
9216 bp->cnic_eth_dev.max_iscsi_conn =
9217 (max_iscsi_conn & BNX2X_MAX_ISCSI_INIT_CONN_MASK) >>
9218 BNX2X_MAX_ISCSI_INIT_CONN_SHIFT;
9220 bp->cnic_eth_dev.max_fcoe_conn =
9221 (max_fcoe_conn & BNX2X_MAX_FCOE_INIT_CONN_MASK) >>
9222 BNX2X_MAX_FCOE_INIT_CONN_SHIFT;
9224 /* Read the WWN: */
9225 if (!IS_MF(bp)) {
9226 /* Port info */
9227 bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
9228 SHMEM_RD(bp,
9229 dev_info.port_hw_config[port].
9230 fcoe_wwn_port_name_upper);
9231 bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
9232 SHMEM_RD(bp,
9233 dev_info.port_hw_config[port].
9234 fcoe_wwn_port_name_lower);
9236 /* Node info */
9237 bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
9238 SHMEM_RD(bp,
9239 dev_info.port_hw_config[port].
9240 fcoe_wwn_node_name_upper);
9241 bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
9242 SHMEM_RD(bp,
9243 dev_info.port_hw_config[port].
9244 fcoe_wwn_node_name_lower);
9245 } else if (!IS_MF_SD(bp)) {
9246 u32 cfg = MF_CFG_RD(bp, func_ext_config[func].func_cfg);
9249 * Read the WWN info only if the FCoE feature is enabled for
9250 * this function.
9252 if (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
9253 /* Port info */
9254 bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
9255 MF_CFG_RD(bp, func_ext_config[func].
9256 fcoe_wwn_port_name_upper);
9257 bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
9258 MF_CFG_RD(bp, func_ext_config[func].
9259 fcoe_wwn_port_name_lower);
9261 /* Node info */
9262 bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
9263 MF_CFG_RD(bp, func_ext_config[func].
9264 fcoe_wwn_node_name_upper);
9265 bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
9266 MF_CFG_RD(bp, func_ext_config[func].
9267 fcoe_wwn_node_name_lower);
9271 BNX2X_DEV_INFO("max_iscsi_conn 0x%x max_fcoe_conn 0x%x\n",
9272 bp->cnic_eth_dev.max_iscsi_conn,
9273 bp->cnic_eth_dev.max_fcoe_conn);
9276 * If maximum allowed number of connections is zero -
9277 * disable the feature.
9279 if (!bp->cnic_eth_dev.max_iscsi_conn)
9280 bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
9282 if (!bp->cnic_eth_dev.max_fcoe_conn)
9283 bp->flags |= NO_FCOE_FLAG;
9285 #endif
9287 static void __devinit bnx2x_get_mac_hwinfo(struct bnx2x *bp)
9289 u32 val, val2;
9290 int func = BP_ABS_FUNC(bp);
9291 int port = BP_PORT(bp);
9292 #ifdef BCM_CNIC
9293 u8 *iscsi_mac = bp->cnic_eth_dev.iscsi_mac;
9294 u8 *fip_mac = bp->fip_mac;
9295 #endif
9297 /* Zero primary MAC configuration */
9298 memset(bp->dev->dev_addr, 0, ETH_ALEN);
9300 if (BP_NOMCP(bp)) {
9301 BNX2X_ERROR("warning: random MAC workaround active\n");
9302 random_ether_addr(bp->dev->dev_addr);
9303 } else if (IS_MF(bp)) {
9304 val2 = MF_CFG_RD(bp, func_mf_config[func].mac_upper);
9305 val = MF_CFG_RD(bp, func_mf_config[func].mac_lower);
9306 if ((val2 != FUNC_MF_CFG_UPPERMAC_DEFAULT) &&
9307 (val != FUNC_MF_CFG_LOWERMAC_DEFAULT))
9308 bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
9310 #ifdef BCM_CNIC
9311 /* iSCSI and FCoE NPAR MACs: if there is no either iSCSI or
9312 * FCoE MAC then the appropriate feature should be disabled.
9314 if (IS_MF_SI(bp)) {
9315 u32 cfg = MF_CFG_RD(bp, func_ext_config[func].func_cfg);
9316 if (cfg & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) {
9317 val2 = MF_CFG_RD(bp, func_ext_config[func].
9318 iscsi_mac_addr_upper);
9319 val = MF_CFG_RD(bp, func_ext_config[func].
9320 iscsi_mac_addr_lower);
9321 bnx2x_set_mac_buf(iscsi_mac, val, val2);
9322 BNX2X_DEV_INFO("Read iSCSI MAC: %pM\n",
9323 iscsi_mac);
9324 } else
9325 bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
9327 if (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
9328 val2 = MF_CFG_RD(bp, func_ext_config[func].
9329 fcoe_mac_addr_upper);
9330 val = MF_CFG_RD(bp, func_ext_config[func].
9331 fcoe_mac_addr_lower);
9332 bnx2x_set_mac_buf(fip_mac, val, val2);
9333 BNX2X_DEV_INFO("Read FCoE L2 MAC to %pM\n",
9334 fip_mac);
9336 } else
9337 bp->flags |= NO_FCOE_FLAG;
9339 #endif
9340 } else {
9341 /* in SF read MACs from port configuration */
9342 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper);
9343 val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower);
9344 bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
9346 #ifdef BCM_CNIC
9347 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
9348 iscsi_mac_upper);
9349 val = SHMEM_RD(bp, dev_info.port_hw_config[port].
9350 iscsi_mac_lower);
9351 bnx2x_set_mac_buf(iscsi_mac, val, val2);
9353 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
9354 fcoe_fip_mac_upper);
9355 val = SHMEM_RD(bp, dev_info.port_hw_config[port].
9356 fcoe_fip_mac_lower);
9357 bnx2x_set_mac_buf(fip_mac, val, val2);
9358 #endif
9361 memcpy(bp->link_params.mac_addr, bp->dev->dev_addr, ETH_ALEN);
9362 memcpy(bp->dev->perm_addr, bp->dev->dev_addr, ETH_ALEN);
9364 #ifdef BCM_CNIC
9365 /* Set the FCoE MAC in MF_SD mode */
9366 if (!CHIP_IS_E1x(bp) && IS_MF_SD(bp))
9367 memcpy(fip_mac, bp->dev->dev_addr, ETH_ALEN);
9369 /* Disable iSCSI if MAC configuration is
9370 * invalid.
9372 if (!is_valid_ether_addr(iscsi_mac)) {
9373 bp->flags |= NO_ISCSI_FLAG;
9374 memset(iscsi_mac, 0, ETH_ALEN);
9377 /* Disable FCoE if MAC configuration is
9378 * invalid.
9380 if (!is_valid_ether_addr(fip_mac)) {
9381 bp->flags |= NO_FCOE_FLAG;
9382 memset(bp->fip_mac, 0, ETH_ALEN);
9384 #endif
9386 if (!is_valid_ether_addr(bp->dev->dev_addr))
9387 dev_err(&bp->pdev->dev,
9388 "bad Ethernet MAC address configuration: "
9389 "%pM, change it manually before bringing up "
9390 "the appropriate network interface\n",
9391 bp->dev->dev_addr);
9394 static int __devinit bnx2x_get_hwinfo(struct bnx2x *bp)
9396 int /*abs*/func = BP_ABS_FUNC(bp);
9397 int vn;
9398 u32 val = 0;
9399 int rc = 0;
9401 bnx2x_get_common_hwinfo(bp);
9404 * initialize IGU parameters
9406 if (CHIP_IS_E1x(bp)) {
9407 bp->common.int_block = INT_BLOCK_HC;
9409 bp->igu_dsb_id = DEF_SB_IGU_ID;
9410 bp->igu_base_sb = 0;
9411 } else {
9412 bp->common.int_block = INT_BLOCK_IGU;
9413 val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
9415 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
9416 int tout = 5000;
9418 BNX2X_DEV_INFO("FORCING Normal Mode\n");
9420 val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN);
9421 REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION, val);
9422 REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x7f);
9424 while (tout && REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
9425 tout--;
9426 usleep_range(1000, 1000);
9429 if (REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
9430 dev_err(&bp->pdev->dev,
9431 "FORCING Normal Mode failed!!!\n");
9432 return -EPERM;
9436 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
9437 BNX2X_DEV_INFO("IGU Backward Compatible Mode\n");
9438 bp->common.int_block |= INT_BLOCK_MODE_BW_COMP;
9439 } else
9440 BNX2X_DEV_INFO("IGU Normal Mode\n");
9442 bnx2x_get_igu_cam_info(bp);
9447 * set base FW non-default (fast path) status block id, this value is
9448 * used to initialize the fw_sb_id saved on the fp/queue structure to
9449 * determine the id used by the FW.
9451 if (CHIP_IS_E1x(bp))
9452 bp->base_fw_ndsb = BP_PORT(bp) * FP_SB_MAX_E1x + BP_L_ID(bp);
9453 else /*
9454 * 57712 - we currently use one FW SB per IGU SB (Rx and Tx of
9455 * the same queue are indicated on the same IGU SB). So we prefer
9456 * FW and IGU SBs to be the same value.
9458 bp->base_fw_ndsb = bp->igu_base_sb;
9460 BNX2X_DEV_INFO("igu_dsb_id %d igu_base_sb %d igu_sb_cnt %d\n"
9461 "base_fw_ndsb %d\n", bp->igu_dsb_id, bp->igu_base_sb,
9462 bp->igu_sb_cnt, bp->base_fw_ndsb);
9465 * Initialize MF configuration
9468 bp->mf_ov = 0;
9469 bp->mf_mode = 0;
9470 vn = BP_E1HVN(bp);
9472 if (!CHIP_IS_E1(bp) && !BP_NOMCP(bp)) {
9473 BNX2X_DEV_INFO("shmem2base 0x%x, size %d, mfcfg offset %d\n",
9474 bp->common.shmem2_base, SHMEM2_RD(bp, size),
9475 (u32)offsetof(struct shmem2_region, mf_cfg_addr));
9477 if (SHMEM2_HAS(bp, mf_cfg_addr))
9478 bp->common.mf_cfg_base = SHMEM2_RD(bp, mf_cfg_addr);
9479 else
9480 bp->common.mf_cfg_base = bp->common.shmem_base +
9481 offsetof(struct shmem_region, func_mb) +
9482 E1H_FUNC_MAX * sizeof(struct drv_func_mb);
9484 * get mf configuration:
9485 * 1. existence of MF configuration
9486 * 2. MAC address must be legal (check only upper bytes)
9487 * for Switch-Independent mode;
9488 * OVLAN must be legal for Switch-Dependent mode
9489 * 3. SF_MODE configures specific MF mode
9491 if (bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
9492 /* get mf configuration */
9493 val = SHMEM_RD(bp,
9494 dev_info.shared_feature_config.config);
9495 val &= SHARED_FEAT_CFG_FORCE_SF_MODE_MASK;
9497 switch (val) {
9498 case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT:
9499 val = MF_CFG_RD(bp, func_mf_config[func].
9500 mac_upper);
9501 /* check for legal mac (upper bytes)*/
9502 if (val != 0xffff) {
9503 bp->mf_mode = MULTI_FUNCTION_SI;
9504 bp->mf_config[vn] = MF_CFG_RD(bp,
9505 func_mf_config[func].config);
9506 } else
9507 BNX2X_DEV_INFO("illegal MAC address "
9508 "for SI\n");
9509 break;
9510 case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED:
9511 /* get OV configuration */
9512 val = MF_CFG_RD(bp,
9513 func_mf_config[FUNC_0].e1hov_tag);
9514 val &= FUNC_MF_CFG_E1HOV_TAG_MASK;
9516 if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
9517 bp->mf_mode = MULTI_FUNCTION_SD;
9518 bp->mf_config[vn] = MF_CFG_RD(bp,
9519 func_mf_config[func].config);
9520 } else
9521 BNX2X_DEV_INFO("illegal OV for SD\n");
9522 break;
9523 default:
9524 /* Unknown configuration: reset mf_config */
9525 bp->mf_config[vn] = 0;
9526 BNX2X_DEV_INFO("unkown MF mode 0x%x\n", val);
9530 BNX2X_DEV_INFO("%s function mode\n",
9531 IS_MF(bp) ? "multi" : "single");
9533 switch (bp->mf_mode) {
9534 case MULTI_FUNCTION_SD:
9535 val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
9536 FUNC_MF_CFG_E1HOV_TAG_MASK;
9537 if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
9538 bp->mf_ov = val;
9539 bp->path_has_ovlan = true;
9541 BNX2X_DEV_INFO("MF OV for func %d is %d "
9542 "(0x%04x)\n", func, bp->mf_ov,
9543 bp->mf_ov);
9544 } else {
9545 dev_err(&bp->pdev->dev,
9546 "No valid MF OV for func %d, "
9547 "aborting\n", func);
9548 return -EPERM;
9550 break;
9551 case MULTI_FUNCTION_SI:
9552 BNX2X_DEV_INFO("func %d is in MF "
9553 "switch-independent mode\n", func);
9554 break;
9555 default:
9556 if (vn) {
9557 dev_err(&bp->pdev->dev,
9558 "VN %d is in a single function mode, "
9559 "aborting\n", vn);
9560 return -EPERM;
9562 break;
9565 /* check if other port on the path needs ovlan:
9566 * Since MF configuration is shared between ports
9567 * Possible mixed modes are only
9568 * {SF, SI} {SF, SD} {SD, SF} {SI, SF}
9570 if (CHIP_MODE_IS_4_PORT(bp) &&
9571 !bp->path_has_ovlan &&
9572 !IS_MF(bp) &&
9573 bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
9574 u8 other_port = !BP_PORT(bp);
9575 u8 other_func = BP_PATH(bp) + 2*other_port;
9576 val = MF_CFG_RD(bp,
9577 func_mf_config[other_func].e1hov_tag);
9578 if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT)
9579 bp->path_has_ovlan = true;
9583 /* adjust igu_sb_cnt to MF for E1x */
9584 if (CHIP_IS_E1x(bp) && IS_MF(bp))
9585 bp->igu_sb_cnt /= E1HVN_MAX;
9587 /* port info */
9588 bnx2x_get_port_hwinfo(bp);
9590 if (!BP_NOMCP(bp)) {
9591 bp->fw_seq =
9592 (SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
9593 DRV_MSG_SEQ_NUMBER_MASK);
9594 BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq);
9597 /* Get MAC addresses */
9598 bnx2x_get_mac_hwinfo(bp);
9600 #ifdef BCM_CNIC
9601 bnx2x_get_cnic_info(bp);
9602 #endif
9604 /* Get current FW pulse sequence */
9605 if (!BP_NOMCP(bp)) {
9606 int mb_idx = BP_FW_MB_IDX(bp);
9608 bp->fw_drv_pulse_wr_seq =
9609 (SHMEM_RD(bp, func_mb[mb_idx].drv_pulse_mb) &
9610 DRV_PULSE_SEQ_MASK);
9611 BNX2X_DEV_INFO("drv_pulse 0x%x\n", bp->fw_drv_pulse_wr_seq);
9614 return rc;
9617 static void __devinit bnx2x_read_fwinfo(struct bnx2x *bp)
9619 int cnt, i, block_end, rodi;
9620 char vpd_data[BNX2X_VPD_LEN+1];
9621 char str_id_reg[VENDOR_ID_LEN+1];
9622 char str_id_cap[VENDOR_ID_LEN+1];
9623 u8 len;
9625 cnt = pci_read_vpd(bp->pdev, 0, BNX2X_VPD_LEN, vpd_data);
9626 memset(bp->fw_ver, 0, sizeof(bp->fw_ver));
9628 if (cnt < BNX2X_VPD_LEN)
9629 goto out_not_found;
9631 i = pci_vpd_find_tag(vpd_data, 0, BNX2X_VPD_LEN,
9632 PCI_VPD_LRDT_RO_DATA);
9633 if (i < 0)
9634 goto out_not_found;
9637 block_end = i + PCI_VPD_LRDT_TAG_SIZE +
9638 pci_vpd_lrdt_size(&vpd_data[i]);
9640 i += PCI_VPD_LRDT_TAG_SIZE;
9642 if (block_end > BNX2X_VPD_LEN)
9643 goto out_not_found;
9645 rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
9646 PCI_VPD_RO_KEYWORD_MFR_ID);
9647 if (rodi < 0)
9648 goto out_not_found;
9650 len = pci_vpd_info_field_size(&vpd_data[rodi]);
9652 if (len != VENDOR_ID_LEN)
9653 goto out_not_found;
9655 rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
9657 /* vendor specific info */
9658 snprintf(str_id_reg, VENDOR_ID_LEN + 1, "%04x", PCI_VENDOR_ID_DELL);
9659 snprintf(str_id_cap, VENDOR_ID_LEN + 1, "%04X", PCI_VENDOR_ID_DELL);
9660 if (!strncmp(str_id_reg, &vpd_data[rodi], VENDOR_ID_LEN) ||
9661 !strncmp(str_id_cap, &vpd_data[rodi], VENDOR_ID_LEN)) {
9663 rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
9664 PCI_VPD_RO_KEYWORD_VENDOR0);
9665 if (rodi >= 0) {
9666 len = pci_vpd_info_field_size(&vpd_data[rodi]);
9668 rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
9670 if (len < 32 && (len + rodi) <= BNX2X_VPD_LEN) {
9671 memcpy(bp->fw_ver, &vpd_data[rodi], len);
9672 bp->fw_ver[len] = ' ';
9675 return;
9677 out_not_found:
9678 return;
9681 static void __devinit bnx2x_set_modes_bitmap(struct bnx2x *bp)
9683 u32 flags = 0;
9685 if (CHIP_REV_IS_FPGA(bp))
9686 SET_FLAGS(flags, MODE_FPGA);
9687 else if (CHIP_REV_IS_EMUL(bp))
9688 SET_FLAGS(flags, MODE_EMUL);
9689 else
9690 SET_FLAGS(flags, MODE_ASIC);
9692 if (CHIP_MODE_IS_4_PORT(bp))
9693 SET_FLAGS(flags, MODE_PORT4);
9694 else
9695 SET_FLAGS(flags, MODE_PORT2);
9697 if (CHIP_IS_E2(bp))
9698 SET_FLAGS(flags, MODE_E2);
9699 else if (CHIP_IS_E3(bp)) {
9700 SET_FLAGS(flags, MODE_E3);
9701 if (CHIP_REV(bp) == CHIP_REV_Ax)
9702 SET_FLAGS(flags, MODE_E3_A0);
9703 else /*if (CHIP_REV(bp) == CHIP_REV_Bx)*/
9704 SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3);
9707 if (IS_MF(bp)) {
9708 SET_FLAGS(flags, MODE_MF);
9709 switch (bp->mf_mode) {
9710 case MULTI_FUNCTION_SD:
9711 SET_FLAGS(flags, MODE_MF_SD);
9712 break;
9713 case MULTI_FUNCTION_SI:
9714 SET_FLAGS(flags, MODE_MF_SI);
9715 break;
9717 } else
9718 SET_FLAGS(flags, MODE_SF);
9720 #if defined(__LITTLE_ENDIAN)
9721 SET_FLAGS(flags, MODE_LITTLE_ENDIAN);
9722 #else /*(__BIG_ENDIAN)*/
9723 SET_FLAGS(flags, MODE_BIG_ENDIAN);
9724 #endif
9725 INIT_MODE_FLAGS(bp) = flags;
9728 static int __devinit bnx2x_init_bp(struct bnx2x *bp)
9730 int func;
9731 int timer_interval;
9732 int rc;
9734 mutex_init(&bp->port.phy_mutex);
9735 mutex_init(&bp->fw_mb_mutex);
9736 spin_lock_init(&bp->stats_lock);
9737 #ifdef BCM_CNIC
9738 mutex_init(&bp->cnic_mutex);
9739 #endif
9741 INIT_DELAYED_WORK(&bp->sp_task, bnx2x_sp_task);
9742 INIT_DELAYED_WORK(&bp->sp_rtnl_task, bnx2x_sp_rtnl_task);
9743 INIT_DELAYED_WORK(&bp->period_task, bnx2x_period_task);
9744 rc = bnx2x_get_hwinfo(bp);
9745 if (rc)
9746 return rc;
9748 bnx2x_set_modes_bitmap(bp);
9750 rc = bnx2x_alloc_mem_bp(bp);
9751 if (rc)
9752 return rc;
9754 bnx2x_read_fwinfo(bp);
9756 func = BP_FUNC(bp);
9758 /* need to reset chip if undi was active */
9759 if (!BP_NOMCP(bp))
9760 bnx2x_undi_unload(bp);
9762 if (CHIP_REV_IS_FPGA(bp))
9763 dev_err(&bp->pdev->dev, "FPGA detected\n");
9765 if (BP_NOMCP(bp) && (func == 0))
9766 dev_err(&bp->pdev->dev, "MCP disabled, "
9767 "must load devices in order!\n");
9769 bp->multi_mode = multi_mode;
9771 /* Set TPA flags */
9772 if (disable_tpa) {
9773 bp->flags &= ~TPA_ENABLE_FLAG;
9774 bp->dev->features &= ~NETIF_F_LRO;
9775 } else {
9776 bp->flags |= TPA_ENABLE_FLAG;
9777 bp->dev->features |= NETIF_F_LRO;
9779 bp->disable_tpa = disable_tpa;
9781 if (CHIP_IS_E1(bp))
9782 bp->dropless_fc = 0;
9783 else
9784 bp->dropless_fc = dropless_fc;
9786 bp->mrrs = mrrs;
9788 bp->tx_ring_size = MAX_TX_AVAIL;
9790 /* make sure that the numbers are in the right granularity */
9791 bp->tx_ticks = (50 / BNX2X_BTR) * BNX2X_BTR;
9792 bp->rx_ticks = (25 / BNX2X_BTR) * BNX2X_BTR;
9794 timer_interval = (CHIP_REV_IS_SLOW(bp) ? 5*HZ : HZ);
9795 bp->current_interval = (poll ? poll : timer_interval);
9797 init_timer(&bp->timer);
9798 bp->timer.expires = jiffies + bp->current_interval;
9799 bp->timer.data = (unsigned long) bp;
9800 bp->timer.function = bnx2x_timer;
9802 bnx2x_dcbx_set_state(bp, true, BNX2X_DCBX_ENABLED_ON_NEG_ON);
9803 bnx2x_dcbx_init_params(bp);
9805 #ifdef BCM_CNIC
9806 if (CHIP_IS_E1x(bp))
9807 bp->cnic_base_cl_id = FP_SB_MAX_E1x;
9808 else
9809 bp->cnic_base_cl_id = FP_SB_MAX_E2;
9810 #endif
9812 /* multiple tx priority */
9813 if (CHIP_IS_E1x(bp))
9814 bp->max_cos = BNX2X_MULTI_TX_COS_E1X;
9815 if (CHIP_IS_E2(bp) || CHIP_IS_E3A0(bp))
9816 bp->max_cos = BNX2X_MULTI_TX_COS_E2_E3A0;
9817 if (CHIP_IS_E3B0(bp))
9818 bp->max_cos = BNX2X_MULTI_TX_COS_E3B0;
9820 return rc;
9824 /****************************************************************************
9825 * General service functions
9826 ****************************************************************************/
9829 * net_device service functions
9832 /* called with rtnl_lock */
9833 static int bnx2x_open(struct net_device *dev)
9835 struct bnx2x *bp = netdev_priv(dev);
9836 bool global = false;
9837 int other_engine = BP_PATH(bp) ? 0 : 1;
9838 u32 other_load_counter, load_counter;
9840 netif_carrier_off(dev);
9842 bnx2x_set_power_state(bp, PCI_D0);
9844 other_load_counter = bnx2x_get_load_cnt(bp, other_engine);
9845 load_counter = bnx2x_get_load_cnt(bp, BP_PATH(bp));
9848 * If parity had happen during the unload, then attentions
9849 * and/or RECOVERY_IN_PROGRES may still be set. In this case we
9850 * want the first function loaded on the current engine to
9851 * complete the recovery.
9853 if (!bnx2x_reset_is_done(bp, BP_PATH(bp)) ||
9854 bnx2x_chk_parity_attn(bp, &global, true))
9855 do {
9857 * If there are attentions and they are in a global
9858 * blocks, set the GLOBAL_RESET bit regardless whether
9859 * it will be this function that will complete the
9860 * recovery or not.
9862 if (global)
9863 bnx2x_set_reset_global(bp);
9866 * Only the first function on the current engine should
9867 * try to recover in open. In case of attentions in
9868 * global blocks only the first in the chip should try
9869 * to recover.
9871 if ((!load_counter &&
9872 (!global || !other_load_counter)) &&
9873 bnx2x_trylock_leader_lock(bp) &&
9874 !bnx2x_leader_reset(bp)) {
9875 netdev_info(bp->dev, "Recovered in open\n");
9876 break;
9879 /* recovery has failed... */
9880 bnx2x_set_power_state(bp, PCI_D3hot);
9881 bp->recovery_state = BNX2X_RECOVERY_FAILED;
9883 netdev_err(bp->dev, "Recovery flow hasn't been properly"
9884 " completed yet. Try again later. If u still see this"
9885 " message after a few retries then power cycle is"
9886 " required.\n");
9888 return -EAGAIN;
9889 } while (0);
9891 bp->recovery_state = BNX2X_RECOVERY_DONE;
9892 return bnx2x_nic_load(bp, LOAD_OPEN);
9895 /* called with rtnl_lock */
9896 static int bnx2x_close(struct net_device *dev)
9898 struct bnx2x *bp = netdev_priv(dev);
9900 /* Unload the driver, release IRQs */
9901 bnx2x_nic_unload(bp, UNLOAD_CLOSE);
9903 /* Power off */
9904 bnx2x_set_power_state(bp, PCI_D3hot);
9906 return 0;
9909 static inline int bnx2x_init_mcast_macs_list(struct bnx2x *bp,
9910 struct bnx2x_mcast_ramrod_params *p)
9912 int mc_count = netdev_mc_count(bp->dev);
9913 struct bnx2x_mcast_list_elem *mc_mac =
9914 kzalloc(sizeof(*mc_mac) * mc_count, GFP_ATOMIC);
9915 struct netdev_hw_addr *ha;
9917 if (!mc_mac)
9918 return -ENOMEM;
9920 INIT_LIST_HEAD(&p->mcast_list);
9922 netdev_for_each_mc_addr(ha, bp->dev) {
9923 mc_mac->mac = bnx2x_mc_addr(ha);
9924 list_add_tail(&mc_mac->link, &p->mcast_list);
9925 mc_mac++;
9928 p->mcast_list_len = mc_count;
9930 return 0;
9933 static inline void bnx2x_free_mcast_macs_list(
9934 struct bnx2x_mcast_ramrod_params *p)
9936 struct bnx2x_mcast_list_elem *mc_mac =
9937 list_first_entry(&p->mcast_list, struct bnx2x_mcast_list_elem,
9938 link);
9940 WARN_ON(!mc_mac);
9941 kfree(mc_mac);
9945 * bnx2x_set_uc_list - configure a new unicast MACs list.
9947 * @bp: driver handle
9949 * We will use zero (0) as a MAC type for these MACs.
9951 static inline int bnx2x_set_uc_list(struct bnx2x *bp)
9953 int rc;
9954 struct net_device *dev = bp->dev;
9955 struct netdev_hw_addr *ha;
9956 struct bnx2x_vlan_mac_obj *mac_obj = &bp->fp->mac_obj;
9957 unsigned long ramrod_flags = 0;
9959 /* First schedule a cleanup up of old configuration */
9960 rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_UC_LIST_MAC, false);
9961 if (rc < 0) {
9962 BNX2X_ERR("Failed to schedule DELETE operations: %d\n", rc);
9963 return rc;
9966 netdev_for_each_uc_addr(ha, dev) {
9967 rc = bnx2x_set_mac_one(bp, bnx2x_uc_addr(ha), mac_obj, true,
9968 BNX2X_UC_LIST_MAC, &ramrod_flags);
9969 if (rc < 0) {
9970 BNX2X_ERR("Failed to schedule ADD operations: %d\n",
9971 rc);
9972 return rc;
9976 /* Execute the pending commands */
9977 __set_bit(RAMROD_CONT, &ramrod_flags);
9978 return bnx2x_set_mac_one(bp, NULL, mac_obj, false /* don't care */,
9979 BNX2X_UC_LIST_MAC, &ramrod_flags);
9982 static inline int bnx2x_set_mc_list(struct bnx2x *bp)
9984 struct net_device *dev = bp->dev;
9985 struct bnx2x_mcast_ramrod_params rparam = {0};
9986 int rc = 0;
9988 rparam.mcast_obj = &bp->mcast_obj;
9990 /* first, clear all configured multicast MACs */
9991 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
9992 if (rc < 0) {
9993 BNX2X_ERR("Failed to clear multicast "
9994 "configuration: %d\n", rc);
9995 return rc;
9998 /* then, configure a new MACs list */
9999 if (netdev_mc_count(dev)) {
10000 rc = bnx2x_init_mcast_macs_list(bp, &rparam);
10001 if (rc) {
10002 BNX2X_ERR("Failed to create multicast MACs "
10003 "list: %d\n", rc);
10004 return rc;
10007 /* Now add the new MACs */
10008 rc = bnx2x_config_mcast(bp, &rparam,
10009 BNX2X_MCAST_CMD_ADD);
10010 if (rc < 0)
10011 BNX2X_ERR("Failed to set a new multicast "
10012 "configuration: %d\n", rc);
10014 bnx2x_free_mcast_macs_list(&rparam);
10017 return rc;
10021 /* If bp->state is OPEN, should be called with netif_addr_lock_bh() */
10022 void bnx2x_set_rx_mode(struct net_device *dev)
10024 struct bnx2x *bp = netdev_priv(dev);
10025 u32 rx_mode = BNX2X_RX_MODE_NORMAL;
10027 if (bp->state != BNX2X_STATE_OPEN) {
10028 DP(NETIF_MSG_IFUP, "state is %x, returning\n", bp->state);
10029 return;
10032 DP(NETIF_MSG_IFUP, "dev->flags = %x\n", bp->dev->flags);
10034 if (dev->flags & IFF_PROMISC)
10035 rx_mode = BNX2X_RX_MODE_PROMISC;
10036 else if ((dev->flags & IFF_ALLMULTI) ||
10037 ((netdev_mc_count(dev) > BNX2X_MAX_MULTICAST) &&
10038 CHIP_IS_E1(bp)))
10039 rx_mode = BNX2X_RX_MODE_ALLMULTI;
10040 else {
10041 /* some multicasts */
10042 if (bnx2x_set_mc_list(bp) < 0)
10043 rx_mode = BNX2X_RX_MODE_ALLMULTI;
10045 if (bnx2x_set_uc_list(bp) < 0)
10046 rx_mode = BNX2X_RX_MODE_PROMISC;
10049 bp->rx_mode = rx_mode;
10051 /* Schedule the rx_mode command */
10052 if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state)) {
10053 set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
10054 return;
10057 bnx2x_set_storm_rx_mode(bp);
10060 /* called with rtnl_lock */
10061 static int bnx2x_mdio_read(struct net_device *netdev, int prtad,
10062 int devad, u16 addr)
10064 struct bnx2x *bp = netdev_priv(netdev);
10065 u16 value;
10066 int rc;
10068 DP(NETIF_MSG_LINK, "mdio_read: prtad 0x%x, devad 0x%x, addr 0x%x\n",
10069 prtad, devad, addr);
10071 /* The HW expects different devad if CL22 is used */
10072 devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
10074 bnx2x_acquire_phy_lock(bp);
10075 rc = bnx2x_phy_read(&bp->link_params, prtad, devad, addr, &value);
10076 bnx2x_release_phy_lock(bp);
10077 DP(NETIF_MSG_LINK, "mdio_read_val 0x%x rc = 0x%x\n", value, rc);
10079 if (!rc)
10080 rc = value;
10081 return rc;
10084 /* called with rtnl_lock */
10085 static int bnx2x_mdio_write(struct net_device *netdev, int prtad, int devad,
10086 u16 addr, u16 value)
10088 struct bnx2x *bp = netdev_priv(netdev);
10089 int rc;
10091 DP(NETIF_MSG_LINK, "mdio_write: prtad 0x%x, devad 0x%x, addr 0x%x,"
10092 " value 0x%x\n", prtad, devad, addr, value);
10094 /* The HW expects different devad if CL22 is used */
10095 devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
10097 bnx2x_acquire_phy_lock(bp);
10098 rc = bnx2x_phy_write(&bp->link_params, prtad, devad, addr, value);
10099 bnx2x_release_phy_lock(bp);
10100 return rc;
10103 /* called with rtnl_lock */
10104 static int bnx2x_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
10106 struct bnx2x *bp = netdev_priv(dev);
10107 struct mii_ioctl_data *mdio = if_mii(ifr);
10109 DP(NETIF_MSG_LINK, "ioctl: phy id 0x%x, reg 0x%x, val_in 0x%x\n",
10110 mdio->phy_id, mdio->reg_num, mdio->val_in);
10112 if (!netif_running(dev))
10113 return -EAGAIN;
10115 return mdio_mii_ioctl(&bp->mdio, mdio, cmd);
10118 #ifdef CONFIG_NET_POLL_CONTROLLER
10119 static void poll_bnx2x(struct net_device *dev)
10121 struct bnx2x *bp = netdev_priv(dev);
10123 disable_irq(bp->pdev->irq);
10124 bnx2x_interrupt(bp->pdev->irq, dev);
10125 enable_irq(bp->pdev->irq);
10127 #endif
10129 static const struct net_device_ops bnx2x_netdev_ops = {
10130 .ndo_open = bnx2x_open,
10131 .ndo_stop = bnx2x_close,
10132 .ndo_start_xmit = bnx2x_start_xmit,
10133 .ndo_select_queue = bnx2x_select_queue,
10134 .ndo_set_rx_mode = bnx2x_set_rx_mode,
10135 .ndo_set_mac_address = bnx2x_change_mac_addr,
10136 .ndo_validate_addr = eth_validate_addr,
10137 .ndo_do_ioctl = bnx2x_ioctl,
10138 .ndo_change_mtu = bnx2x_change_mtu,
10139 .ndo_fix_features = bnx2x_fix_features,
10140 .ndo_set_features = bnx2x_set_features,
10141 .ndo_tx_timeout = bnx2x_tx_timeout,
10142 #ifdef CONFIG_NET_POLL_CONTROLLER
10143 .ndo_poll_controller = poll_bnx2x,
10144 #endif
10145 .ndo_setup_tc = bnx2x_setup_tc,
10147 #if defined(NETDEV_FCOE_WWNN) && defined(BCM_CNIC)
10148 .ndo_fcoe_get_wwn = bnx2x_fcoe_get_wwn,
10149 #endif
10152 static inline int bnx2x_set_coherency_mask(struct bnx2x *bp)
10154 struct device *dev = &bp->pdev->dev;
10156 if (dma_set_mask(dev, DMA_BIT_MASK(64)) == 0) {
10157 bp->flags |= USING_DAC_FLAG;
10158 if (dma_set_coherent_mask(dev, DMA_BIT_MASK(64)) != 0) {
10159 dev_err(dev, "dma_set_coherent_mask failed, "
10160 "aborting\n");
10161 return -EIO;
10163 } else if (dma_set_mask(dev, DMA_BIT_MASK(32)) != 0) {
10164 dev_err(dev, "System does not support DMA, aborting\n");
10165 return -EIO;
10168 return 0;
10171 static int __devinit bnx2x_init_dev(struct pci_dev *pdev,
10172 struct net_device *dev,
10173 unsigned long board_type)
10175 struct bnx2x *bp;
10176 int rc;
10178 SET_NETDEV_DEV(dev, &pdev->dev);
10179 bp = netdev_priv(dev);
10181 bp->dev = dev;
10182 bp->pdev = pdev;
10183 bp->flags = 0;
10184 bp->pf_num = PCI_FUNC(pdev->devfn);
10186 rc = pci_enable_device(pdev);
10187 if (rc) {
10188 dev_err(&bp->pdev->dev,
10189 "Cannot enable PCI device, aborting\n");
10190 goto err_out;
10193 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
10194 dev_err(&bp->pdev->dev,
10195 "Cannot find PCI device base address, aborting\n");
10196 rc = -ENODEV;
10197 goto err_out_disable;
10200 if (!(pci_resource_flags(pdev, 2) & IORESOURCE_MEM)) {
10201 dev_err(&bp->pdev->dev, "Cannot find second PCI device"
10202 " base address, aborting\n");
10203 rc = -ENODEV;
10204 goto err_out_disable;
10207 if (atomic_read(&pdev->enable_cnt) == 1) {
10208 rc = pci_request_regions(pdev, DRV_MODULE_NAME);
10209 if (rc) {
10210 dev_err(&bp->pdev->dev,
10211 "Cannot obtain PCI resources, aborting\n");
10212 goto err_out_disable;
10215 pci_set_master(pdev);
10216 pci_save_state(pdev);
10219 bp->pm_cap = pci_find_capability(pdev, PCI_CAP_ID_PM);
10220 if (bp->pm_cap == 0) {
10221 dev_err(&bp->pdev->dev,
10222 "Cannot find power management capability, aborting\n");
10223 rc = -EIO;
10224 goto err_out_release;
10227 if (!pci_is_pcie(pdev)) {
10228 dev_err(&bp->pdev->dev, "Not PCI Express, aborting\n");
10229 rc = -EIO;
10230 goto err_out_release;
10233 rc = bnx2x_set_coherency_mask(bp);
10234 if (rc)
10235 goto err_out_release;
10237 dev->mem_start = pci_resource_start(pdev, 0);
10238 dev->base_addr = dev->mem_start;
10239 dev->mem_end = pci_resource_end(pdev, 0);
10241 dev->irq = pdev->irq;
10243 bp->regview = pci_ioremap_bar(pdev, 0);
10244 if (!bp->regview) {
10245 dev_err(&bp->pdev->dev,
10246 "Cannot map register space, aborting\n");
10247 rc = -ENOMEM;
10248 goto err_out_release;
10251 bnx2x_set_power_state(bp, PCI_D0);
10253 /* clean indirect addresses */
10254 pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
10255 PCICFG_VENDOR_ID_OFFSET);
10256 /* Clean the following indirect addresses for all functions since it
10257 * is not used by the driver.
10259 REG_WR(bp, PXP2_REG_PGL_ADDR_88_F0, 0);
10260 REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F0, 0);
10261 REG_WR(bp, PXP2_REG_PGL_ADDR_90_F0, 0);
10262 REG_WR(bp, PXP2_REG_PGL_ADDR_94_F0, 0);
10263 REG_WR(bp, PXP2_REG_PGL_ADDR_88_F1, 0);
10264 REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F1, 0);
10265 REG_WR(bp, PXP2_REG_PGL_ADDR_90_F1, 0);
10266 REG_WR(bp, PXP2_REG_PGL_ADDR_94_F1, 0);
10269 * Enable internal target-read (in case we are probed after PF FLR).
10270 * Must be done prior to any BAR read access. Only for 57712 and up
10272 if (board_type != BCM57710 &&
10273 board_type != BCM57711 &&
10274 board_type != BCM57711E)
10275 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
10277 /* Reset the load counter */
10278 bnx2x_clear_load_cnt(bp);
10280 dev->watchdog_timeo = TX_TIMEOUT;
10282 dev->netdev_ops = &bnx2x_netdev_ops;
10283 bnx2x_set_ethtool_ops(dev);
10285 dev->priv_flags |= IFF_UNICAST_FLT;
10287 dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
10288 NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 | NETIF_F_LRO |
10289 NETIF_F_RXCSUM | NETIF_F_RXHASH | NETIF_F_HW_VLAN_TX;
10291 dev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
10292 NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 | NETIF_F_HIGHDMA;
10294 dev->features |= dev->hw_features | NETIF_F_HW_VLAN_RX;
10295 if (bp->flags & USING_DAC_FLAG)
10296 dev->features |= NETIF_F_HIGHDMA;
10298 /* Add Loopback capability to the device */
10299 dev->hw_features |= NETIF_F_LOOPBACK;
10301 #ifdef BCM_DCBNL
10302 dev->dcbnl_ops = &bnx2x_dcbnl_ops;
10303 #endif
10305 /* get_port_hwinfo() will set prtad and mmds properly */
10306 bp->mdio.prtad = MDIO_PRTAD_NONE;
10307 bp->mdio.mmds = 0;
10308 bp->mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22;
10309 bp->mdio.dev = dev;
10310 bp->mdio.mdio_read = bnx2x_mdio_read;
10311 bp->mdio.mdio_write = bnx2x_mdio_write;
10313 return 0;
10315 err_out_release:
10316 if (atomic_read(&pdev->enable_cnt) == 1)
10317 pci_release_regions(pdev);
10319 err_out_disable:
10320 pci_disable_device(pdev);
10321 pci_set_drvdata(pdev, NULL);
10323 err_out:
10324 return rc;
10327 static void __devinit bnx2x_get_pcie_width_speed(struct bnx2x *bp,
10328 int *width, int *speed)
10330 u32 val = REG_RD(bp, PCICFG_OFFSET + PCICFG_LINK_CONTROL);
10332 *width = (val & PCICFG_LINK_WIDTH) >> PCICFG_LINK_WIDTH_SHIFT;
10334 /* return value of 1=2.5GHz 2=5GHz */
10335 *speed = (val & PCICFG_LINK_SPEED) >> PCICFG_LINK_SPEED_SHIFT;
10338 static int bnx2x_check_firmware(struct bnx2x *bp)
10340 const struct firmware *firmware = bp->firmware;
10341 struct bnx2x_fw_file_hdr *fw_hdr;
10342 struct bnx2x_fw_file_section *sections;
10343 u32 offset, len, num_ops;
10344 u16 *ops_offsets;
10345 int i;
10346 const u8 *fw_ver;
10348 if (firmware->size < sizeof(struct bnx2x_fw_file_hdr))
10349 return -EINVAL;
10351 fw_hdr = (struct bnx2x_fw_file_hdr *)firmware->data;
10352 sections = (struct bnx2x_fw_file_section *)fw_hdr;
10354 /* Make sure none of the offsets and sizes make us read beyond
10355 * the end of the firmware data */
10356 for (i = 0; i < sizeof(*fw_hdr) / sizeof(*sections); i++) {
10357 offset = be32_to_cpu(sections[i].offset);
10358 len = be32_to_cpu(sections[i].len);
10359 if (offset + len > firmware->size) {
10360 dev_err(&bp->pdev->dev,
10361 "Section %d length is out of bounds\n", i);
10362 return -EINVAL;
10366 /* Likewise for the init_ops offsets */
10367 offset = be32_to_cpu(fw_hdr->init_ops_offsets.offset);
10368 ops_offsets = (u16 *)(firmware->data + offset);
10369 num_ops = be32_to_cpu(fw_hdr->init_ops.len) / sizeof(struct raw_op);
10371 for (i = 0; i < be32_to_cpu(fw_hdr->init_ops_offsets.len) / 2; i++) {
10372 if (be16_to_cpu(ops_offsets[i]) > num_ops) {
10373 dev_err(&bp->pdev->dev,
10374 "Section offset %d is out of bounds\n", i);
10375 return -EINVAL;
10379 /* Check FW version */
10380 offset = be32_to_cpu(fw_hdr->fw_version.offset);
10381 fw_ver = firmware->data + offset;
10382 if ((fw_ver[0] != BCM_5710_FW_MAJOR_VERSION) ||
10383 (fw_ver[1] != BCM_5710_FW_MINOR_VERSION) ||
10384 (fw_ver[2] != BCM_5710_FW_REVISION_VERSION) ||
10385 (fw_ver[3] != BCM_5710_FW_ENGINEERING_VERSION)) {
10386 dev_err(&bp->pdev->dev,
10387 "Bad FW version:%d.%d.%d.%d. Should be %d.%d.%d.%d\n",
10388 fw_ver[0], fw_ver[1], fw_ver[2],
10389 fw_ver[3], BCM_5710_FW_MAJOR_VERSION,
10390 BCM_5710_FW_MINOR_VERSION,
10391 BCM_5710_FW_REVISION_VERSION,
10392 BCM_5710_FW_ENGINEERING_VERSION);
10393 return -EINVAL;
10396 return 0;
10399 static inline void be32_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
10401 const __be32 *source = (const __be32 *)_source;
10402 u32 *target = (u32 *)_target;
10403 u32 i;
10405 for (i = 0; i < n/4; i++)
10406 target[i] = be32_to_cpu(source[i]);
10410 Ops array is stored in the following format:
10411 {op(8bit), offset(24bit, big endian), data(32bit, big endian)}
10413 static inline void bnx2x_prep_ops(const u8 *_source, u8 *_target, u32 n)
10415 const __be32 *source = (const __be32 *)_source;
10416 struct raw_op *target = (struct raw_op *)_target;
10417 u32 i, j, tmp;
10419 for (i = 0, j = 0; i < n/8; i++, j += 2) {
10420 tmp = be32_to_cpu(source[j]);
10421 target[i].op = (tmp >> 24) & 0xff;
10422 target[i].offset = tmp & 0xffffff;
10423 target[i].raw_data = be32_to_cpu(source[j + 1]);
10428 * IRO array is stored in the following format:
10429 * {base(24bit), m1(16bit), m2(16bit), m3(16bit), size(16bit) }
10431 static inline void bnx2x_prep_iro(const u8 *_source, u8 *_target, u32 n)
10433 const __be32 *source = (const __be32 *)_source;
10434 struct iro *target = (struct iro *)_target;
10435 u32 i, j, tmp;
10437 for (i = 0, j = 0; i < n/sizeof(struct iro); i++) {
10438 target[i].base = be32_to_cpu(source[j]);
10439 j++;
10440 tmp = be32_to_cpu(source[j]);
10441 target[i].m1 = (tmp >> 16) & 0xffff;
10442 target[i].m2 = tmp & 0xffff;
10443 j++;
10444 tmp = be32_to_cpu(source[j]);
10445 target[i].m3 = (tmp >> 16) & 0xffff;
10446 target[i].size = tmp & 0xffff;
10447 j++;
10451 static inline void be16_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
10453 const __be16 *source = (const __be16 *)_source;
10454 u16 *target = (u16 *)_target;
10455 u32 i;
10457 for (i = 0; i < n/2; i++)
10458 target[i] = be16_to_cpu(source[i]);
10461 #define BNX2X_ALLOC_AND_SET(arr, lbl, func) \
10462 do { \
10463 u32 len = be32_to_cpu(fw_hdr->arr.len); \
10464 bp->arr = kmalloc(len, GFP_KERNEL); \
10465 if (!bp->arr) { \
10466 pr_err("Failed to allocate %d bytes for "#arr"\n", len); \
10467 goto lbl; \
10469 func(bp->firmware->data + be32_to_cpu(fw_hdr->arr.offset), \
10470 (u8 *)bp->arr, len); \
10471 } while (0)
10473 int bnx2x_init_firmware(struct bnx2x *bp)
10475 const char *fw_file_name;
10476 struct bnx2x_fw_file_hdr *fw_hdr;
10477 int rc;
10479 if (CHIP_IS_E1(bp))
10480 fw_file_name = FW_FILE_NAME_E1;
10481 else if (CHIP_IS_E1H(bp))
10482 fw_file_name = FW_FILE_NAME_E1H;
10483 else if (!CHIP_IS_E1x(bp))
10484 fw_file_name = FW_FILE_NAME_E2;
10485 else {
10486 BNX2X_ERR("Unsupported chip revision\n");
10487 return -EINVAL;
10490 BNX2X_DEV_INFO("Loading %s\n", fw_file_name);
10492 rc = request_firmware(&bp->firmware, fw_file_name, &bp->pdev->dev);
10493 if (rc) {
10494 BNX2X_ERR("Can't load firmware file %s\n", fw_file_name);
10495 goto request_firmware_exit;
10498 rc = bnx2x_check_firmware(bp);
10499 if (rc) {
10500 BNX2X_ERR("Corrupt firmware file %s\n", fw_file_name);
10501 goto request_firmware_exit;
10504 fw_hdr = (struct bnx2x_fw_file_hdr *)bp->firmware->data;
10506 /* Initialize the pointers to the init arrays */
10507 /* Blob */
10508 BNX2X_ALLOC_AND_SET(init_data, request_firmware_exit, be32_to_cpu_n);
10510 /* Opcodes */
10511 BNX2X_ALLOC_AND_SET(init_ops, init_ops_alloc_err, bnx2x_prep_ops);
10513 /* Offsets */
10514 BNX2X_ALLOC_AND_SET(init_ops_offsets, init_offsets_alloc_err,
10515 be16_to_cpu_n);
10517 /* STORMs firmware */
10518 INIT_TSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
10519 be32_to_cpu(fw_hdr->tsem_int_table_data.offset);
10520 INIT_TSEM_PRAM_DATA(bp) = bp->firmware->data +
10521 be32_to_cpu(fw_hdr->tsem_pram_data.offset);
10522 INIT_USEM_INT_TABLE_DATA(bp) = bp->firmware->data +
10523 be32_to_cpu(fw_hdr->usem_int_table_data.offset);
10524 INIT_USEM_PRAM_DATA(bp) = bp->firmware->data +
10525 be32_to_cpu(fw_hdr->usem_pram_data.offset);
10526 INIT_XSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
10527 be32_to_cpu(fw_hdr->xsem_int_table_data.offset);
10528 INIT_XSEM_PRAM_DATA(bp) = bp->firmware->data +
10529 be32_to_cpu(fw_hdr->xsem_pram_data.offset);
10530 INIT_CSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
10531 be32_to_cpu(fw_hdr->csem_int_table_data.offset);
10532 INIT_CSEM_PRAM_DATA(bp) = bp->firmware->data +
10533 be32_to_cpu(fw_hdr->csem_pram_data.offset);
10534 /* IRO */
10535 BNX2X_ALLOC_AND_SET(iro_arr, iro_alloc_err, bnx2x_prep_iro);
10537 return 0;
10539 iro_alloc_err:
10540 kfree(bp->init_ops_offsets);
10541 init_offsets_alloc_err:
10542 kfree(bp->init_ops);
10543 init_ops_alloc_err:
10544 kfree(bp->init_data);
10545 request_firmware_exit:
10546 release_firmware(bp->firmware);
10548 return rc;
10551 static void bnx2x_release_firmware(struct bnx2x *bp)
10553 kfree(bp->init_ops_offsets);
10554 kfree(bp->init_ops);
10555 kfree(bp->init_data);
10556 release_firmware(bp->firmware);
10560 static struct bnx2x_func_sp_drv_ops bnx2x_func_sp_drv = {
10561 .init_hw_cmn_chip = bnx2x_init_hw_common_chip,
10562 .init_hw_cmn = bnx2x_init_hw_common,
10563 .init_hw_port = bnx2x_init_hw_port,
10564 .init_hw_func = bnx2x_init_hw_func,
10566 .reset_hw_cmn = bnx2x_reset_common,
10567 .reset_hw_port = bnx2x_reset_port,
10568 .reset_hw_func = bnx2x_reset_func,
10570 .gunzip_init = bnx2x_gunzip_init,
10571 .gunzip_end = bnx2x_gunzip_end,
10573 .init_fw = bnx2x_init_firmware,
10574 .release_fw = bnx2x_release_firmware,
10577 void bnx2x__init_func_obj(struct bnx2x *bp)
10579 /* Prepare DMAE related driver resources */
10580 bnx2x_setup_dmae(bp);
10582 bnx2x_init_func_obj(bp, &bp->func_obj,
10583 bnx2x_sp(bp, func_rdata),
10584 bnx2x_sp_mapping(bp, func_rdata),
10585 &bnx2x_func_sp_drv);
10588 /* must be called after sriov-enable */
10589 static inline int bnx2x_set_qm_cid_count(struct bnx2x *bp)
10591 int cid_count = BNX2X_L2_CID_COUNT(bp);
10593 #ifdef BCM_CNIC
10594 cid_count += CNIC_CID_MAX;
10595 #endif
10596 return roundup(cid_count, QM_CID_ROUND);
10600 * bnx2x_get_num_none_def_sbs - return the number of none default SBs
10602 * @dev: pci device
10605 static inline int bnx2x_get_num_non_def_sbs(struct pci_dev *pdev)
10607 int pos;
10608 u16 control;
10610 pos = pci_find_capability(pdev, PCI_CAP_ID_MSIX);
10613 * If MSI-X is not supported - return number of SBs needed to support
10614 * one fast path queue: one FP queue + SB for CNIC
10616 if (!pos)
10617 return 1 + CNIC_PRESENT;
10620 * The value in the PCI configuration space is the index of the last
10621 * entry, namely one less than the actual size of the table, which is
10622 * exactly what we want to return from this function: number of all SBs
10623 * without the default SB.
10625 pci_read_config_word(pdev, pos + PCI_MSI_FLAGS, &control);
10626 return control & PCI_MSIX_FLAGS_QSIZE;
10629 static int __devinit bnx2x_init_one(struct pci_dev *pdev,
10630 const struct pci_device_id *ent)
10632 struct net_device *dev = NULL;
10633 struct bnx2x *bp;
10634 int pcie_width, pcie_speed;
10635 int rc, max_non_def_sbs;
10636 int rx_count, tx_count, rss_count;
10638 * An estimated maximum supported CoS number according to the chip
10639 * version.
10640 * We will try to roughly estimate the maximum number of CoSes this chip
10641 * may support in order to minimize the memory allocated for Tx
10642 * netdev_queue's. This number will be accurately calculated during the
10643 * initialization of bp->max_cos based on the chip versions AND chip
10644 * revision in the bnx2x_init_bp().
10646 u8 max_cos_est = 0;
10648 switch (ent->driver_data) {
10649 case BCM57710:
10650 case BCM57711:
10651 case BCM57711E:
10652 max_cos_est = BNX2X_MULTI_TX_COS_E1X;
10653 break;
10655 case BCM57712:
10656 case BCM57712_MF:
10657 max_cos_est = BNX2X_MULTI_TX_COS_E2_E3A0;
10658 break;
10660 case BCM57800:
10661 case BCM57800_MF:
10662 case BCM57810:
10663 case BCM57810_MF:
10664 case BCM57840:
10665 case BCM57840_MF:
10666 max_cos_est = BNX2X_MULTI_TX_COS_E3B0;
10667 break;
10669 default:
10670 pr_err("Unknown board_type (%ld), aborting\n",
10671 ent->driver_data);
10672 return -ENODEV;
10675 max_non_def_sbs = bnx2x_get_num_non_def_sbs(pdev);
10677 /* !!! FIXME !!!
10678 * Do not allow the maximum SB count to grow above 16
10679 * since Special CIDs starts from 16*BNX2X_MULTI_TX_COS=48.
10680 * We will use the FP_SB_MAX_E1x macro for this matter.
10682 max_non_def_sbs = min_t(int, FP_SB_MAX_E1x, max_non_def_sbs);
10684 WARN_ON(!max_non_def_sbs);
10686 /* Maximum number of RSS queues: one IGU SB goes to CNIC */
10687 rss_count = max_non_def_sbs - CNIC_PRESENT;
10689 /* Maximum number of netdev Rx queues: RSS + FCoE L2 */
10690 rx_count = rss_count + FCOE_PRESENT;
10693 * Maximum number of netdev Tx queues:
10694 * Maximum TSS queues * Maximum supported number of CoS + FCoE L2
10696 tx_count = MAX_TXQS_PER_COS * max_cos_est + FCOE_PRESENT;
10698 /* dev zeroed in init_etherdev */
10699 dev = alloc_etherdev_mqs(sizeof(*bp), tx_count, rx_count);
10700 if (!dev) {
10701 dev_err(&pdev->dev, "Cannot allocate net device\n");
10702 return -ENOMEM;
10705 bp = netdev_priv(dev);
10707 DP(NETIF_MSG_DRV, "Allocated netdev with %d tx and %d rx queues\n",
10708 tx_count, rx_count);
10710 bp->igu_sb_cnt = max_non_def_sbs;
10711 bp->msg_enable = debug;
10712 pci_set_drvdata(pdev, dev);
10714 rc = bnx2x_init_dev(pdev, dev, ent->driver_data);
10715 if (rc < 0) {
10716 free_netdev(dev);
10717 return rc;
10720 DP(NETIF_MSG_DRV, "max_non_def_sbs %d\n", max_non_def_sbs);
10722 rc = bnx2x_init_bp(bp);
10723 if (rc)
10724 goto init_one_exit;
10727 * Map doorbels here as we need the real value of bp->max_cos which
10728 * is initialized in bnx2x_init_bp().
10730 bp->doorbells = ioremap_nocache(pci_resource_start(pdev, 2),
10731 min_t(u64, BNX2X_DB_SIZE(bp),
10732 pci_resource_len(pdev, 2)));
10733 if (!bp->doorbells) {
10734 dev_err(&bp->pdev->dev,
10735 "Cannot map doorbell space, aborting\n");
10736 rc = -ENOMEM;
10737 goto init_one_exit;
10740 /* calc qm_cid_count */
10741 bp->qm_cid_count = bnx2x_set_qm_cid_count(bp);
10743 #ifdef BCM_CNIC
10744 /* disable FCOE L2 queue for E1x and E3*/
10745 if (CHIP_IS_E1x(bp) || CHIP_IS_E3(bp))
10746 bp->flags |= NO_FCOE_FLAG;
10748 #endif
10750 /* Configure interrupt mode: try to enable MSI-X/MSI if
10751 * needed, set bp->num_queues appropriately.
10753 bnx2x_set_int_mode(bp);
10755 /* Add all NAPI objects */
10756 bnx2x_add_all_napi(bp);
10758 rc = register_netdev(dev);
10759 if (rc) {
10760 dev_err(&pdev->dev, "Cannot register net device\n");
10761 goto init_one_exit;
10764 #ifdef BCM_CNIC
10765 if (!NO_FCOE(bp)) {
10766 /* Add storage MAC address */
10767 rtnl_lock();
10768 dev_addr_add(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
10769 rtnl_unlock();
10771 #endif
10773 bnx2x_get_pcie_width_speed(bp, &pcie_width, &pcie_speed);
10775 netdev_info(dev, "%s (%c%d) PCI-E x%d %s found at mem %lx, IRQ %d, node addr %pM\n",
10776 board_info[ent->driver_data].name,
10777 (CHIP_REV(bp) >> 12) + 'A', (CHIP_METAL(bp) >> 4),
10778 pcie_width,
10779 ((!CHIP_IS_E2(bp) && pcie_speed == 2) ||
10780 (CHIP_IS_E2(bp) && pcie_speed == 1)) ?
10781 "5GHz (Gen2)" : "2.5GHz",
10782 dev->base_addr, bp->pdev->irq, dev->dev_addr);
10784 return 0;
10786 init_one_exit:
10787 if (bp->regview)
10788 iounmap(bp->regview);
10790 if (bp->doorbells)
10791 iounmap(bp->doorbells);
10793 free_netdev(dev);
10795 if (atomic_read(&pdev->enable_cnt) == 1)
10796 pci_release_regions(pdev);
10798 pci_disable_device(pdev);
10799 pci_set_drvdata(pdev, NULL);
10801 return rc;
10804 static void __devexit bnx2x_remove_one(struct pci_dev *pdev)
10806 struct net_device *dev = pci_get_drvdata(pdev);
10807 struct bnx2x *bp;
10809 if (!dev) {
10810 dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n");
10811 return;
10813 bp = netdev_priv(dev);
10815 #ifdef BCM_CNIC
10816 /* Delete storage MAC address */
10817 if (!NO_FCOE(bp)) {
10818 rtnl_lock();
10819 dev_addr_del(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
10820 rtnl_unlock();
10822 #endif
10824 #ifdef BCM_DCBNL
10825 /* Delete app tlvs from dcbnl */
10826 bnx2x_dcbnl_update_applist(bp, true);
10827 #endif
10829 unregister_netdev(dev);
10831 /* Delete all NAPI objects */
10832 bnx2x_del_all_napi(bp);
10834 /* Power on: we can't let PCI layer write to us while we are in D3 */
10835 bnx2x_set_power_state(bp, PCI_D0);
10837 /* Disable MSI/MSI-X */
10838 bnx2x_disable_msi(bp);
10840 /* Power off */
10841 bnx2x_set_power_state(bp, PCI_D3hot);
10843 /* Make sure RESET task is not scheduled before continuing */
10844 cancel_delayed_work_sync(&bp->sp_rtnl_task);
10846 if (bp->regview)
10847 iounmap(bp->regview);
10849 if (bp->doorbells)
10850 iounmap(bp->doorbells);
10852 bnx2x_free_mem_bp(bp);
10854 free_netdev(dev);
10856 if (atomic_read(&pdev->enable_cnt) == 1)
10857 pci_release_regions(pdev);
10859 pci_disable_device(pdev);
10860 pci_set_drvdata(pdev, NULL);
10863 static int bnx2x_eeh_nic_unload(struct bnx2x *bp)
10865 int i;
10867 bp->state = BNX2X_STATE_ERROR;
10869 bp->rx_mode = BNX2X_RX_MODE_NONE;
10871 #ifdef BCM_CNIC
10872 bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD);
10873 #endif
10874 /* Stop Tx */
10875 bnx2x_tx_disable(bp);
10877 bnx2x_netif_stop(bp, 0);
10879 del_timer_sync(&bp->timer);
10881 bnx2x_stats_handle(bp, STATS_EVENT_STOP);
10883 /* Release IRQs */
10884 bnx2x_free_irq(bp);
10886 /* Free SKBs, SGEs, TPA pool and driver internals */
10887 bnx2x_free_skbs(bp);
10889 for_each_rx_queue(bp, i)
10890 bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE);
10892 bnx2x_free_mem(bp);
10894 bp->state = BNX2X_STATE_CLOSED;
10896 netif_carrier_off(bp->dev);
10898 return 0;
10901 static void bnx2x_eeh_recover(struct bnx2x *bp)
10903 u32 val;
10905 mutex_init(&bp->port.phy_mutex);
10907 bp->common.shmem_base = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
10908 bp->link_params.shmem_base = bp->common.shmem_base;
10909 BNX2X_DEV_INFO("shmem offset is 0x%x\n", bp->common.shmem_base);
10911 if (!bp->common.shmem_base ||
10912 (bp->common.shmem_base < 0xA0000) ||
10913 (bp->common.shmem_base >= 0xC0000)) {
10914 BNX2X_DEV_INFO("MCP not active\n");
10915 bp->flags |= NO_MCP_FLAG;
10916 return;
10919 val = SHMEM_RD(bp, validity_map[BP_PORT(bp)]);
10920 if ((val & (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB))
10921 != (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB))
10922 BNX2X_ERR("BAD MCP validity signature\n");
10924 if (!BP_NOMCP(bp)) {
10925 bp->fw_seq =
10926 (SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
10927 DRV_MSG_SEQ_NUMBER_MASK);
10928 BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq);
10933 * bnx2x_io_error_detected - called when PCI error is detected
10934 * @pdev: Pointer to PCI device
10935 * @state: The current pci connection state
10937 * This function is called after a PCI bus error affecting
10938 * this device has been detected.
10940 static pci_ers_result_t bnx2x_io_error_detected(struct pci_dev *pdev,
10941 pci_channel_state_t state)
10943 struct net_device *dev = pci_get_drvdata(pdev);
10944 struct bnx2x *bp = netdev_priv(dev);
10946 rtnl_lock();
10948 netif_device_detach(dev);
10950 if (state == pci_channel_io_perm_failure) {
10951 rtnl_unlock();
10952 return PCI_ERS_RESULT_DISCONNECT;
10955 if (netif_running(dev))
10956 bnx2x_eeh_nic_unload(bp);
10958 pci_disable_device(pdev);
10960 rtnl_unlock();
10962 /* Request a slot reset */
10963 return PCI_ERS_RESULT_NEED_RESET;
10967 * bnx2x_io_slot_reset - called after the PCI bus has been reset
10968 * @pdev: Pointer to PCI device
10970 * Restart the card from scratch, as if from a cold-boot.
10972 static pci_ers_result_t bnx2x_io_slot_reset(struct pci_dev *pdev)
10974 struct net_device *dev = pci_get_drvdata(pdev);
10975 struct bnx2x *bp = netdev_priv(dev);
10977 rtnl_lock();
10979 if (pci_enable_device(pdev)) {
10980 dev_err(&pdev->dev,
10981 "Cannot re-enable PCI device after reset\n");
10982 rtnl_unlock();
10983 return PCI_ERS_RESULT_DISCONNECT;
10986 pci_set_master(pdev);
10987 pci_restore_state(pdev);
10989 if (netif_running(dev))
10990 bnx2x_set_power_state(bp, PCI_D0);
10992 rtnl_unlock();
10994 return PCI_ERS_RESULT_RECOVERED;
10998 * bnx2x_io_resume - called when traffic can start flowing again
10999 * @pdev: Pointer to PCI device
11001 * This callback is called when the error recovery driver tells us that
11002 * its OK to resume normal operation.
11004 static void bnx2x_io_resume(struct pci_dev *pdev)
11006 struct net_device *dev = pci_get_drvdata(pdev);
11007 struct bnx2x *bp = netdev_priv(dev);
11009 if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
11010 netdev_err(bp->dev, "Handling parity error recovery. "
11011 "Try again later\n");
11012 return;
11015 rtnl_lock();
11017 bnx2x_eeh_recover(bp);
11019 if (netif_running(dev))
11020 bnx2x_nic_load(bp, LOAD_NORMAL);
11022 netif_device_attach(dev);
11024 rtnl_unlock();
11027 static struct pci_error_handlers bnx2x_err_handler = {
11028 .error_detected = bnx2x_io_error_detected,
11029 .slot_reset = bnx2x_io_slot_reset,
11030 .resume = bnx2x_io_resume,
11033 static struct pci_driver bnx2x_pci_driver = {
11034 .name = DRV_MODULE_NAME,
11035 .id_table = bnx2x_pci_tbl,
11036 .probe = bnx2x_init_one,
11037 .remove = __devexit_p(bnx2x_remove_one),
11038 .suspend = bnx2x_suspend,
11039 .resume = bnx2x_resume,
11040 .err_handler = &bnx2x_err_handler,
11043 static int __init bnx2x_init(void)
11045 int ret;
11047 pr_info("%s", version);
11049 bnx2x_wq = create_singlethread_workqueue("bnx2x");
11050 if (bnx2x_wq == NULL) {
11051 pr_err("Cannot create workqueue\n");
11052 return -ENOMEM;
11055 ret = pci_register_driver(&bnx2x_pci_driver);
11056 if (ret) {
11057 pr_err("Cannot register driver\n");
11058 destroy_workqueue(bnx2x_wq);
11060 return ret;
11063 static void __exit bnx2x_cleanup(void)
11065 pci_unregister_driver(&bnx2x_pci_driver);
11067 destroy_workqueue(bnx2x_wq);
11070 void bnx2x_notify_link_changed(struct bnx2x *bp)
11072 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + BP_FUNC(bp)*sizeof(u32), 1);
11075 module_init(bnx2x_init);
11076 module_exit(bnx2x_cleanup);
11078 #ifdef BCM_CNIC
11080 * bnx2x_set_iscsi_eth_mac_addr - set iSCSI MAC(s).
11082 * @bp: driver handle
11083 * @set: set or clear the CAM entry
11085 * This function will wait until the ramdord completion returns.
11086 * Return 0 if success, -ENODEV if ramrod doesn't return.
11088 static inline int bnx2x_set_iscsi_eth_mac_addr(struct bnx2x *bp)
11090 unsigned long ramrod_flags = 0;
11092 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
11093 return bnx2x_set_mac_one(bp, bp->cnic_eth_dev.iscsi_mac,
11094 &bp->iscsi_l2_mac_obj, true,
11095 BNX2X_ISCSI_ETH_MAC, &ramrod_flags);
11098 /* count denotes the number of new completions we have seen */
11099 static void bnx2x_cnic_sp_post(struct bnx2x *bp, int count)
11101 struct eth_spe *spe;
11103 #ifdef BNX2X_STOP_ON_ERROR
11104 if (unlikely(bp->panic))
11105 return;
11106 #endif
11108 spin_lock_bh(&bp->spq_lock);
11109 BUG_ON(bp->cnic_spq_pending < count);
11110 bp->cnic_spq_pending -= count;
11113 for (; bp->cnic_kwq_pending; bp->cnic_kwq_pending--) {
11114 u16 type = (le16_to_cpu(bp->cnic_kwq_cons->hdr.type)
11115 & SPE_HDR_CONN_TYPE) >>
11116 SPE_HDR_CONN_TYPE_SHIFT;
11117 u8 cmd = (le32_to_cpu(bp->cnic_kwq_cons->hdr.conn_and_cmd_data)
11118 >> SPE_HDR_CMD_ID_SHIFT) & 0xff;
11120 /* Set validation for iSCSI L2 client before sending SETUP
11121 * ramrod
11123 if (type == ETH_CONNECTION_TYPE) {
11124 if (cmd == RAMROD_CMD_ID_ETH_CLIENT_SETUP)
11125 bnx2x_set_ctx_validation(bp, &bp->context.
11126 vcxt[BNX2X_ISCSI_ETH_CID].eth,
11127 BNX2X_ISCSI_ETH_CID);
11131 * There may be not more than 8 L2, not more than 8 L5 SPEs
11132 * and in the air. We also check that number of outstanding
11133 * COMMON ramrods is not more than the EQ and SPQ can
11134 * accommodate.
11136 if (type == ETH_CONNECTION_TYPE) {
11137 if (!atomic_read(&bp->cq_spq_left))
11138 break;
11139 else
11140 atomic_dec(&bp->cq_spq_left);
11141 } else if (type == NONE_CONNECTION_TYPE) {
11142 if (!atomic_read(&bp->eq_spq_left))
11143 break;
11144 else
11145 atomic_dec(&bp->eq_spq_left);
11146 } else if ((type == ISCSI_CONNECTION_TYPE) ||
11147 (type == FCOE_CONNECTION_TYPE)) {
11148 if (bp->cnic_spq_pending >=
11149 bp->cnic_eth_dev.max_kwqe_pending)
11150 break;
11151 else
11152 bp->cnic_spq_pending++;
11153 } else {
11154 BNX2X_ERR("Unknown SPE type: %d\n", type);
11155 bnx2x_panic();
11156 break;
11159 spe = bnx2x_sp_get_next(bp);
11160 *spe = *bp->cnic_kwq_cons;
11162 DP(NETIF_MSG_TIMER, "pending on SPQ %d, on KWQ %d count %d\n",
11163 bp->cnic_spq_pending, bp->cnic_kwq_pending, count);
11165 if (bp->cnic_kwq_cons == bp->cnic_kwq_last)
11166 bp->cnic_kwq_cons = bp->cnic_kwq;
11167 else
11168 bp->cnic_kwq_cons++;
11170 bnx2x_sp_prod_update(bp);
11171 spin_unlock_bh(&bp->spq_lock);
11174 static int bnx2x_cnic_sp_queue(struct net_device *dev,
11175 struct kwqe_16 *kwqes[], u32 count)
11177 struct bnx2x *bp = netdev_priv(dev);
11178 int i;
11180 #ifdef BNX2X_STOP_ON_ERROR
11181 if (unlikely(bp->panic))
11182 return -EIO;
11183 #endif
11185 spin_lock_bh(&bp->spq_lock);
11187 for (i = 0; i < count; i++) {
11188 struct eth_spe *spe = (struct eth_spe *)kwqes[i];
11190 if (bp->cnic_kwq_pending == MAX_SP_DESC_CNT)
11191 break;
11193 *bp->cnic_kwq_prod = *spe;
11195 bp->cnic_kwq_pending++;
11197 DP(NETIF_MSG_TIMER, "L5 SPQE %x %x %x:%x pos %d\n",
11198 spe->hdr.conn_and_cmd_data, spe->hdr.type,
11199 spe->data.update_data_addr.hi,
11200 spe->data.update_data_addr.lo,
11201 bp->cnic_kwq_pending);
11203 if (bp->cnic_kwq_prod == bp->cnic_kwq_last)
11204 bp->cnic_kwq_prod = bp->cnic_kwq;
11205 else
11206 bp->cnic_kwq_prod++;
11209 spin_unlock_bh(&bp->spq_lock);
11211 if (bp->cnic_spq_pending < bp->cnic_eth_dev.max_kwqe_pending)
11212 bnx2x_cnic_sp_post(bp, 0);
11214 return i;
11217 static int bnx2x_cnic_ctl_send(struct bnx2x *bp, struct cnic_ctl_info *ctl)
11219 struct cnic_ops *c_ops;
11220 int rc = 0;
11222 mutex_lock(&bp->cnic_mutex);
11223 c_ops = rcu_dereference_protected(bp->cnic_ops,
11224 lockdep_is_held(&bp->cnic_mutex));
11225 if (c_ops)
11226 rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
11227 mutex_unlock(&bp->cnic_mutex);
11229 return rc;
11232 static int bnx2x_cnic_ctl_send_bh(struct bnx2x *bp, struct cnic_ctl_info *ctl)
11234 struct cnic_ops *c_ops;
11235 int rc = 0;
11237 rcu_read_lock();
11238 c_ops = rcu_dereference(bp->cnic_ops);
11239 if (c_ops)
11240 rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
11241 rcu_read_unlock();
11243 return rc;
11247 * for commands that have no data
11249 int bnx2x_cnic_notify(struct bnx2x *bp, int cmd)
11251 struct cnic_ctl_info ctl = {0};
11253 ctl.cmd = cmd;
11255 return bnx2x_cnic_ctl_send(bp, &ctl);
11258 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err)
11260 struct cnic_ctl_info ctl = {0};
11262 /* first we tell CNIC and only then we count this as a completion */
11263 ctl.cmd = CNIC_CTL_COMPLETION_CMD;
11264 ctl.data.comp.cid = cid;
11265 ctl.data.comp.error = err;
11267 bnx2x_cnic_ctl_send_bh(bp, &ctl);
11268 bnx2x_cnic_sp_post(bp, 0);
11272 /* Called with netif_addr_lock_bh() taken.
11273 * Sets an rx_mode config for an iSCSI ETH client.
11274 * Doesn't block.
11275 * Completion should be checked outside.
11277 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start)
11279 unsigned long accept_flags = 0, ramrod_flags = 0;
11280 u8 cl_id = bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
11281 int sched_state = BNX2X_FILTER_ISCSI_ETH_STOP_SCHED;
11283 if (start) {
11284 /* Start accepting on iSCSI L2 ring. Accept all multicasts
11285 * because it's the only way for UIO Queue to accept
11286 * multicasts (in non-promiscuous mode only one Queue per
11287 * function will receive multicast packets (leading in our
11288 * case).
11290 __set_bit(BNX2X_ACCEPT_UNICAST, &accept_flags);
11291 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &accept_flags);
11292 __set_bit(BNX2X_ACCEPT_BROADCAST, &accept_flags);
11293 __set_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags);
11295 /* Clear STOP_PENDING bit if START is requested */
11296 clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &bp->sp_state);
11298 sched_state = BNX2X_FILTER_ISCSI_ETH_START_SCHED;
11299 } else
11300 /* Clear START_PENDING bit if STOP is requested */
11301 clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &bp->sp_state);
11303 if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
11304 set_bit(sched_state, &bp->sp_state);
11305 else {
11306 __set_bit(RAMROD_RX, &ramrod_flags);
11307 bnx2x_set_q_rx_mode(bp, cl_id, 0, accept_flags, 0,
11308 ramrod_flags);
11313 static int bnx2x_drv_ctl(struct net_device *dev, struct drv_ctl_info *ctl)
11315 struct bnx2x *bp = netdev_priv(dev);
11316 int rc = 0;
11318 switch (ctl->cmd) {
11319 case DRV_CTL_CTXTBL_WR_CMD: {
11320 u32 index = ctl->data.io.offset;
11321 dma_addr_t addr = ctl->data.io.dma_addr;
11323 bnx2x_ilt_wr(bp, index, addr);
11324 break;
11327 case DRV_CTL_RET_L5_SPQ_CREDIT_CMD: {
11328 int count = ctl->data.credit.credit_count;
11330 bnx2x_cnic_sp_post(bp, count);
11331 break;
11334 /* rtnl_lock is held. */
11335 case DRV_CTL_START_L2_CMD: {
11336 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
11337 unsigned long sp_bits = 0;
11339 /* Configure the iSCSI classification object */
11340 bnx2x_init_mac_obj(bp, &bp->iscsi_l2_mac_obj,
11341 cp->iscsi_l2_client_id,
11342 cp->iscsi_l2_cid, BP_FUNC(bp),
11343 bnx2x_sp(bp, mac_rdata),
11344 bnx2x_sp_mapping(bp, mac_rdata),
11345 BNX2X_FILTER_MAC_PENDING,
11346 &bp->sp_state, BNX2X_OBJ_TYPE_RX,
11347 &bp->macs_pool);
11349 /* Set iSCSI MAC address */
11350 rc = bnx2x_set_iscsi_eth_mac_addr(bp);
11351 if (rc)
11352 break;
11354 mmiowb();
11355 barrier();
11357 /* Start accepting on iSCSI L2 ring */
11359 netif_addr_lock_bh(dev);
11360 bnx2x_set_iscsi_eth_rx_mode(bp, true);
11361 netif_addr_unlock_bh(dev);
11363 /* bits to wait on */
11364 __set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
11365 __set_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &sp_bits);
11367 if (!bnx2x_wait_sp_comp(bp, sp_bits))
11368 BNX2X_ERR("rx_mode completion timed out!\n");
11370 break;
11373 /* rtnl_lock is held. */
11374 case DRV_CTL_STOP_L2_CMD: {
11375 unsigned long sp_bits = 0;
11377 /* Stop accepting on iSCSI L2 ring */
11378 netif_addr_lock_bh(dev);
11379 bnx2x_set_iscsi_eth_rx_mode(bp, false);
11380 netif_addr_unlock_bh(dev);
11382 /* bits to wait on */
11383 __set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
11384 __set_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &sp_bits);
11386 if (!bnx2x_wait_sp_comp(bp, sp_bits))
11387 BNX2X_ERR("rx_mode completion timed out!\n");
11389 mmiowb();
11390 barrier();
11392 /* Unset iSCSI L2 MAC */
11393 rc = bnx2x_del_all_macs(bp, &bp->iscsi_l2_mac_obj,
11394 BNX2X_ISCSI_ETH_MAC, true);
11395 break;
11397 case DRV_CTL_RET_L2_SPQ_CREDIT_CMD: {
11398 int count = ctl->data.credit.credit_count;
11400 smp_mb__before_atomic_inc();
11401 atomic_add(count, &bp->cq_spq_left);
11402 smp_mb__after_atomic_inc();
11403 break;
11406 default:
11407 BNX2X_ERR("unknown command %x\n", ctl->cmd);
11408 rc = -EINVAL;
11411 return rc;
11414 void bnx2x_setup_cnic_irq_info(struct bnx2x *bp)
11416 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
11418 if (bp->flags & USING_MSIX_FLAG) {
11419 cp->drv_state |= CNIC_DRV_STATE_USING_MSIX;
11420 cp->irq_arr[0].irq_flags |= CNIC_IRQ_FL_MSIX;
11421 cp->irq_arr[0].vector = bp->msix_table[1].vector;
11422 } else {
11423 cp->drv_state &= ~CNIC_DRV_STATE_USING_MSIX;
11424 cp->irq_arr[0].irq_flags &= ~CNIC_IRQ_FL_MSIX;
11426 if (!CHIP_IS_E1x(bp))
11427 cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e2_sb;
11428 else
11429 cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e1x_sb;
11431 cp->irq_arr[0].status_blk_num = bnx2x_cnic_fw_sb_id(bp);
11432 cp->irq_arr[0].status_blk_num2 = bnx2x_cnic_igu_sb_id(bp);
11433 cp->irq_arr[1].status_blk = bp->def_status_blk;
11434 cp->irq_arr[1].status_blk_num = DEF_SB_ID;
11435 cp->irq_arr[1].status_blk_num2 = DEF_SB_IGU_ID;
11437 cp->num_irq = 2;
11440 static int bnx2x_register_cnic(struct net_device *dev, struct cnic_ops *ops,
11441 void *data)
11443 struct bnx2x *bp = netdev_priv(dev);
11444 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
11446 if (ops == NULL)
11447 return -EINVAL;
11449 bp->cnic_kwq = kzalloc(PAGE_SIZE, GFP_KERNEL);
11450 if (!bp->cnic_kwq)
11451 return -ENOMEM;
11453 bp->cnic_kwq_cons = bp->cnic_kwq;
11454 bp->cnic_kwq_prod = bp->cnic_kwq;
11455 bp->cnic_kwq_last = bp->cnic_kwq + MAX_SP_DESC_CNT;
11457 bp->cnic_spq_pending = 0;
11458 bp->cnic_kwq_pending = 0;
11460 bp->cnic_data = data;
11462 cp->num_irq = 0;
11463 cp->drv_state |= CNIC_DRV_STATE_REGD;
11464 cp->iro_arr = bp->iro_arr;
11466 bnx2x_setup_cnic_irq_info(bp);
11468 rcu_assign_pointer(bp->cnic_ops, ops);
11470 return 0;
11473 static int bnx2x_unregister_cnic(struct net_device *dev)
11475 struct bnx2x *bp = netdev_priv(dev);
11476 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
11478 mutex_lock(&bp->cnic_mutex);
11479 cp->drv_state = 0;
11480 rcu_assign_pointer(bp->cnic_ops, NULL);
11481 mutex_unlock(&bp->cnic_mutex);
11482 synchronize_rcu();
11483 kfree(bp->cnic_kwq);
11484 bp->cnic_kwq = NULL;
11486 return 0;
11489 struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev)
11491 struct bnx2x *bp = netdev_priv(dev);
11492 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
11494 /* If both iSCSI and FCoE are disabled - return NULL in
11495 * order to indicate CNIC that it should not try to work
11496 * with this device.
11498 if (NO_ISCSI(bp) && NO_FCOE(bp))
11499 return NULL;
11501 cp->drv_owner = THIS_MODULE;
11502 cp->chip_id = CHIP_ID(bp);
11503 cp->pdev = bp->pdev;
11504 cp->io_base = bp->regview;
11505 cp->io_base2 = bp->doorbells;
11506 cp->max_kwqe_pending = 8;
11507 cp->ctx_blk_size = CDU_ILT_PAGE_SZ;
11508 cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
11509 bnx2x_cid_ilt_lines(bp);
11510 cp->ctx_tbl_len = CNIC_ILT_LINES;
11511 cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
11512 cp->drv_submit_kwqes_16 = bnx2x_cnic_sp_queue;
11513 cp->drv_ctl = bnx2x_drv_ctl;
11514 cp->drv_register_cnic = bnx2x_register_cnic;
11515 cp->drv_unregister_cnic = bnx2x_unregister_cnic;
11516 cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID;
11517 cp->iscsi_l2_client_id =
11518 bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
11519 cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID;
11521 if (NO_ISCSI_OOO(bp))
11522 cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
11524 if (NO_ISCSI(bp))
11525 cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI;
11527 if (NO_FCOE(bp))
11528 cp->drv_state |= CNIC_DRV_STATE_NO_FCOE;
11530 DP(BNX2X_MSG_SP, "page_size %d, tbl_offset %d, tbl_lines %d, "
11531 "starting cid %d\n",
11532 cp->ctx_blk_size,
11533 cp->ctx_tbl_offset,
11534 cp->ctx_tbl_len,
11535 cp->starting_cid);
11536 return cp;
11538 EXPORT_SYMBOL(bnx2x_cnic_probe);
11540 #endif /* BCM_CNIC */