Add linux-next specific files for 20110831
[linux-2.6/next.git] / drivers / net / ethernet / intel / ixgbe / ixgbe_phy.c
blobf7ca3511b9fede0657bc69141b84b02d000c72c6
1 /*******************************************************************************
3 Intel 10 Gigabit PCI Express Linux driver
4 Copyright(c) 1999 - 2011 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 *******************************************************************************/
28 #include <linux/pci.h>
29 #include <linux/delay.h>
30 #include <linux/sched.h>
32 #include "ixgbe_common.h"
33 #include "ixgbe_phy.h"
35 static void ixgbe_i2c_start(struct ixgbe_hw *hw);
36 static void ixgbe_i2c_stop(struct ixgbe_hw *hw);
37 static s32 ixgbe_clock_in_i2c_byte(struct ixgbe_hw *hw, u8 *data);
38 static s32 ixgbe_clock_out_i2c_byte(struct ixgbe_hw *hw, u8 data);
39 static s32 ixgbe_get_i2c_ack(struct ixgbe_hw *hw);
40 static s32 ixgbe_clock_in_i2c_bit(struct ixgbe_hw *hw, bool *data);
41 static s32 ixgbe_clock_out_i2c_bit(struct ixgbe_hw *hw, bool data);
42 static s32 ixgbe_raise_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl);
43 static void ixgbe_lower_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl);
44 static s32 ixgbe_set_i2c_data(struct ixgbe_hw *hw, u32 *i2cctl, bool data);
45 static bool ixgbe_get_i2c_data(u32 *i2cctl);
46 static void ixgbe_i2c_bus_clear(struct ixgbe_hw *hw);
47 static enum ixgbe_phy_type ixgbe_get_phy_type_from_id(u32 phy_id);
48 static s32 ixgbe_get_phy_id(struct ixgbe_hw *hw);
50 /**
51 * ixgbe_identify_phy_generic - Get physical layer module
52 * @hw: pointer to hardware structure
54 * Determines the physical layer module found on the current adapter.
55 **/
56 s32 ixgbe_identify_phy_generic(struct ixgbe_hw *hw)
58 s32 status = IXGBE_ERR_PHY_ADDR_INVALID;
59 u32 phy_addr;
60 u16 ext_ability = 0;
62 if (hw->phy.type == ixgbe_phy_unknown) {
63 for (phy_addr = 0; phy_addr < IXGBE_MAX_PHY_ADDR; phy_addr++) {
64 hw->phy.mdio.prtad = phy_addr;
65 if (mdio45_probe(&hw->phy.mdio, phy_addr) == 0) {
66 ixgbe_get_phy_id(hw);
67 hw->phy.type =
68 ixgbe_get_phy_type_from_id(hw->phy.id);
70 if (hw->phy.type == ixgbe_phy_unknown) {
71 hw->phy.ops.read_reg(hw,
72 MDIO_PMA_EXTABLE,
73 MDIO_MMD_PMAPMD,
74 &ext_ability);
75 if (ext_ability &
76 (MDIO_PMA_EXTABLE_10GBT |
77 MDIO_PMA_EXTABLE_1000BT))
78 hw->phy.type =
79 ixgbe_phy_cu_unknown;
80 else
81 hw->phy.type =
82 ixgbe_phy_generic;
85 status = 0;
86 break;
89 /* clear value if nothing found */
90 if (status != 0)
91 hw->phy.mdio.prtad = 0;
92 } else {
93 status = 0;
96 return status;
99 /**
100 * ixgbe_get_phy_id - Get the phy type
101 * @hw: pointer to hardware structure
104 static s32 ixgbe_get_phy_id(struct ixgbe_hw *hw)
106 u32 status;
107 u16 phy_id_high = 0;
108 u16 phy_id_low = 0;
110 status = hw->phy.ops.read_reg(hw, MDIO_DEVID1, MDIO_MMD_PMAPMD,
111 &phy_id_high);
113 if (status == 0) {
114 hw->phy.id = (u32)(phy_id_high << 16);
115 status = hw->phy.ops.read_reg(hw, MDIO_DEVID2, MDIO_MMD_PMAPMD,
116 &phy_id_low);
117 hw->phy.id |= (u32)(phy_id_low & IXGBE_PHY_REVISION_MASK);
118 hw->phy.revision = (u32)(phy_id_low & ~IXGBE_PHY_REVISION_MASK);
120 return status;
124 * ixgbe_get_phy_type_from_id - Get the phy type
125 * @hw: pointer to hardware structure
128 static enum ixgbe_phy_type ixgbe_get_phy_type_from_id(u32 phy_id)
130 enum ixgbe_phy_type phy_type;
132 switch (phy_id) {
133 case TN1010_PHY_ID:
134 phy_type = ixgbe_phy_tn;
135 break;
136 case X540_PHY_ID:
137 phy_type = ixgbe_phy_aq;
138 break;
139 case QT2022_PHY_ID:
140 phy_type = ixgbe_phy_qt;
141 break;
142 case ATH_PHY_ID:
143 phy_type = ixgbe_phy_nl;
144 break;
145 default:
146 phy_type = ixgbe_phy_unknown;
147 break;
150 return phy_type;
154 * ixgbe_reset_phy_generic - Performs a PHY reset
155 * @hw: pointer to hardware structure
157 s32 ixgbe_reset_phy_generic(struct ixgbe_hw *hw)
159 u32 i;
160 u16 ctrl = 0;
161 s32 status = 0;
163 if (hw->phy.type == ixgbe_phy_unknown)
164 status = ixgbe_identify_phy_generic(hw);
166 if (status != 0 || hw->phy.type == ixgbe_phy_none)
167 goto out;
169 /* Don't reset PHY if it's shut down due to overtemp. */
170 if (!hw->phy.reset_if_overtemp &&
171 (IXGBE_ERR_OVERTEMP == hw->phy.ops.check_overtemp(hw)))
172 goto out;
175 * Perform soft PHY reset to the PHY_XS.
176 * This will cause a soft reset to the PHY
178 hw->phy.ops.write_reg(hw, MDIO_CTRL1,
179 MDIO_MMD_PHYXS,
180 MDIO_CTRL1_RESET);
183 * Poll for reset bit to self-clear indicating reset is complete.
184 * Some PHYs could take up to 3 seconds to complete and need about
185 * 1.7 usec delay after the reset is complete.
187 for (i = 0; i < 30; i++) {
188 msleep(100);
189 hw->phy.ops.read_reg(hw, MDIO_CTRL1,
190 MDIO_MMD_PHYXS, &ctrl);
191 if (!(ctrl & MDIO_CTRL1_RESET)) {
192 udelay(2);
193 break;
197 if (ctrl & MDIO_CTRL1_RESET) {
198 status = IXGBE_ERR_RESET_FAILED;
199 hw_dbg(hw, "PHY reset polling failed to complete.\n");
202 out:
203 return status;
207 * ixgbe_read_phy_reg_generic - Reads a value from a specified PHY register
208 * @hw: pointer to hardware structure
209 * @reg_addr: 32 bit address of PHY register to read
210 * @phy_data: Pointer to read data from PHY register
212 s32 ixgbe_read_phy_reg_generic(struct ixgbe_hw *hw, u32 reg_addr,
213 u32 device_type, u16 *phy_data)
215 u32 command;
216 u32 i;
217 u32 data;
218 s32 status = 0;
219 u16 gssr;
221 if (IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1)
222 gssr = IXGBE_GSSR_PHY1_SM;
223 else
224 gssr = IXGBE_GSSR_PHY0_SM;
226 if (hw->mac.ops.acquire_swfw_sync(hw, gssr) != 0)
227 status = IXGBE_ERR_SWFW_SYNC;
229 if (status == 0) {
230 /* Setup and write the address cycle command */
231 command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT) |
232 (device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) |
233 (hw->phy.mdio.prtad << IXGBE_MSCA_PHY_ADDR_SHIFT) |
234 (IXGBE_MSCA_ADDR_CYCLE | IXGBE_MSCA_MDI_COMMAND));
236 IXGBE_WRITE_REG(hw, IXGBE_MSCA, command);
239 * Check every 10 usec to see if the address cycle completed.
240 * The MDI Command bit will clear when the operation is
241 * complete
243 for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) {
244 udelay(10);
246 command = IXGBE_READ_REG(hw, IXGBE_MSCA);
248 if ((command & IXGBE_MSCA_MDI_COMMAND) == 0)
249 break;
252 if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) {
253 hw_dbg(hw, "PHY address command did not complete.\n");
254 status = IXGBE_ERR_PHY;
257 if (status == 0) {
259 * Address cycle complete, setup and write the read
260 * command
262 command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT) |
263 (device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) |
264 (hw->phy.mdio.prtad <<
265 IXGBE_MSCA_PHY_ADDR_SHIFT) |
266 (IXGBE_MSCA_READ | IXGBE_MSCA_MDI_COMMAND));
268 IXGBE_WRITE_REG(hw, IXGBE_MSCA, command);
271 * Check every 10 usec to see if the address cycle
272 * completed. The MDI Command bit will clear when the
273 * operation is complete
275 for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) {
276 udelay(10);
278 command = IXGBE_READ_REG(hw, IXGBE_MSCA);
280 if ((command & IXGBE_MSCA_MDI_COMMAND) == 0)
281 break;
284 if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) {
285 hw_dbg(hw, "PHY read command didn't complete\n");
286 status = IXGBE_ERR_PHY;
287 } else {
289 * Read operation is complete. Get the data
290 * from MSRWD
292 data = IXGBE_READ_REG(hw, IXGBE_MSRWD);
293 data >>= IXGBE_MSRWD_READ_DATA_SHIFT;
294 *phy_data = (u16)(data);
298 hw->mac.ops.release_swfw_sync(hw, gssr);
301 return status;
305 * ixgbe_write_phy_reg_generic - Writes a value to specified PHY register
306 * @hw: pointer to hardware structure
307 * @reg_addr: 32 bit PHY register to write
308 * @device_type: 5 bit device type
309 * @phy_data: Data to write to the PHY register
311 s32 ixgbe_write_phy_reg_generic(struct ixgbe_hw *hw, u32 reg_addr,
312 u32 device_type, u16 phy_data)
314 u32 command;
315 u32 i;
316 s32 status = 0;
317 u16 gssr;
319 if (IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1)
320 gssr = IXGBE_GSSR_PHY1_SM;
321 else
322 gssr = IXGBE_GSSR_PHY0_SM;
324 if (hw->mac.ops.acquire_swfw_sync(hw, gssr) != 0)
325 status = IXGBE_ERR_SWFW_SYNC;
327 if (status == 0) {
328 /* Put the data in the MDI single read and write data register*/
329 IXGBE_WRITE_REG(hw, IXGBE_MSRWD, (u32)phy_data);
331 /* Setup and write the address cycle command */
332 command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT) |
333 (device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) |
334 (hw->phy.mdio.prtad << IXGBE_MSCA_PHY_ADDR_SHIFT) |
335 (IXGBE_MSCA_ADDR_CYCLE | IXGBE_MSCA_MDI_COMMAND));
337 IXGBE_WRITE_REG(hw, IXGBE_MSCA, command);
340 * Check every 10 usec to see if the address cycle completed.
341 * The MDI Command bit will clear when the operation is
342 * complete
344 for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) {
345 udelay(10);
347 command = IXGBE_READ_REG(hw, IXGBE_MSCA);
349 if ((command & IXGBE_MSCA_MDI_COMMAND) == 0)
350 break;
353 if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) {
354 hw_dbg(hw, "PHY address cmd didn't complete\n");
355 status = IXGBE_ERR_PHY;
358 if (status == 0) {
360 * Address cycle complete, setup and write the write
361 * command
363 command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT) |
364 (device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) |
365 (hw->phy.mdio.prtad <<
366 IXGBE_MSCA_PHY_ADDR_SHIFT) |
367 (IXGBE_MSCA_WRITE | IXGBE_MSCA_MDI_COMMAND));
369 IXGBE_WRITE_REG(hw, IXGBE_MSCA, command);
372 * Check every 10 usec to see if the address cycle
373 * completed. The MDI Command bit will clear when the
374 * operation is complete
376 for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) {
377 udelay(10);
379 command = IXGBE_READ_REG(hw, IXGBE_MSCA);
381 if ((command & IXGBE_MSCA_MDI_COMMAND) == 0)
382 break;
385 if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) {
386 hw_dbg(hw, "PHY address cmd didn't complete\n");
387 status = IXGBE_ERR_PHY;
391 hw->mac.ops.release_swfw_sync(hw, gssr);
394 return status;
398 * ixgbe_setup_phy_link_generic - Set and restart autoneg
399 * @hw: pointer to hardware structure
401 * Restart autonegotiation and PHY and waits for completion.
403 s32 ixgbe_setup_phy_link_generic(struct ixgbe_hw *hw)
405 s32 status = 0;
406 u32 time_out;
407 u32 max_time_out = 10;
408 u16 autoneg_reg = IXGBE_MII_AUTONEG_REG;
409 bool autoneg = false;
410 ixgbe_link_speed speed;
412 ixgbe_get_copper_link_capabilities_generic(hw, &speed, &autoneg);
414 if (speed & IXGBE_LINK_SPEED_10GB_FULL) {
415 /* Set or unset auto-negotiation 10G advertisement */
416 hw->phy.ops.read_reg(hw, MDIO_AN_10GBT_CTRL,
417 MDIO_MMD_AN,
418 &autoneg_reg);
420 autoneg_reg &= ~MDIO_AN_10GBT_CTRL_ADV10G;
421 if (hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_10GB_FULL)
422 autoneg_reg |= MDIO_AN_10GBT_CTRL_ADV10G;
424 hw->phy.ops.write_reg(hw, MDIO_AN_10GBT_CTRL,
425 MDIO_MMD_AN,
426 autoneg_reg);
429 if (speed & IXGBE_LINK_SPEED_1GB_FULL) {
430 /* Set or unset auto-negotiation 1G advertisement */
431 hw->phy.ops.read_reg(hw,
432 IXGBE_MII_AUTONEG_VENDOR_PROVISION_1_REG,
433 MDIO_MMD_AN,
434 &autoneg_reg);
436 autoneg_reg &= ~IXGBE_MII_1GBASE_T_ADVERTISE;
437 if (hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_1GB_FULL)
438 autoneg_reg |= IXGBE_MII_1GBASE_T_ADVERTISE;
440 hw->phy.ops.write_reg(hw,
441 IXGBE_MII_AUTONEG_VENDOR_PROVISION_1_REG,
442 MDIO_MMD_AN,
443 autoneg_reg);
446 if (speed & IXGBE_LINK_SPEED_100_FULL) {
447 /* Set or unset auto-negotiation 100M advertisement */
448 hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
449 MDIO_MMD_AN,
450 &autoneg_reg);
452 autoneg_reg &= ~(ADVERTISE_100FULL |
453 ADVERTISE_100HALF);
454 if (hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_100_FULL)
455 autoneg_reg |= ADVERTISE_100FULL;
457 hw->phy.ops.write_reg(hw, MDIO_AN_ADVERTISE,
458 MDIO_MMD_AN,
459 autoneg_reg);
462 /* Restart PHY autonegotiation and wait for completion */
463 hw->phy.ops.read_reg(hw, MDIO_CTRL1,
464 MDIO_MMD_AN, &autoneg_reg);
466 autoneg_reg |= MDIO_AN_CTRL1_RESTART;
468 hw->phy.ops.write_reg(hw, MDIO_CTRL1,
469 MDIO_MMD_AN, autoneg_reg);
471 /* Wait for autonegotiation to finish */
472 for (time_out = 0; time_out < max_time_out; time_out++) {
473 udelay(10);
474 /* Restart PHY autonegotiation and wait for completion */
475 status = hw->phy.ops.read_reg(hw, MDIO_STAT1,
476 MDIO_MMD_AN,
477 &autoneg_reg);
479 autoneg_reg &= MDIO_AN_STAT1_COMPLETE;
480 if (autoneg_reg == MDIO_AN_STAT1_COMPLETE) {
481 break;
485 if (time_out == max_time_out) {
486 status = IXGBE_ERR_LINK_SETUP;
487 hw_dbg(hw, "ixgbe_setup_phy_link_generic: time out");
490 return status;
494 * ixgbe_setup_phy_link_speed_generic - Sets the auto advertised capabilities
495 * @hw: pointer to hardware structure
496 * @speed: new link speed
497 * @autoneg: true if autonegotiation enabled
499 s32 ixgbe_setup_phy_link_speed_generic(struct ixgbe_hw *hw,
500 ixgbe_link_speed speed,
501 bool autoneg,
502 bool autoneg_wait_to_complete)
506 * Clear autoneg_advertised and set new values based on input link
507 * speed.
509 hw->phy.autoneg_advertised = 0;
511 if (speed & IXGBE_LINK_SPEED_10GB_FULL)
512 hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_10GB_FULL;
514 if (speed & IXGBE_LINK_SPEED_1GB_FULL)
515 hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_1GB_FULL;
517 if (speed & IXGBE_LINK_SPEED_100_FULL)
518 hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_100_FULL;
520 /* Setup link based on the new speed settings */
521 hw->phy.ops.setup_link(hw);
523 return 0;
527 * ixgbe_get_copper_link_capabilities_generic - Determines link capabilities
528 * @hw: pointer to hardware structure
529 * @speed: pointer to link speed
530 * @autoneg: boolean auto-negotiation value
532 * Determines the link capabilities by reading the AUTOC register.
534 s32 ixgbe_get_copper_link_capabilities_generic(struct ixgbe_hw *hw,
535 ixgbe_link_speed *speed,
536 bool *autoneg)
538 s32 status = IXGBE_ERR_LINK_SETUP;
539 u16 speed_ability;
541 *speed = 0;
542 *autoneg = true;
544 status = hw->phy.ops.read_reg(hw, MDIO_SPEED, MDIO_MMD_PMAPMD,
545 &speed_ability);
547 if (status == 0) {
548 if (speed_ability & MDIO_SPEED_10G)
549 *speed |= IXGBE_LINK_SPEED_10GB_FULL;
550 if (speed_ability & MDIO_PMA_SPEED_1000)
551 *speed |= IXGBE_LINK_SPEED_1GB_FULL;
552 if (speed_ability & MDIO_PMA_SPEED_100)
553 *speed |= IXGBE_LINK_SPEED_100_FULL;
556 return status;
560 * ixgbe_check_phy_link_tnx - Determine link and speed status
561 * @hw: pointer to hardware structure
563 * Reads the VS1 register to determine if link is up and the current speed for
564 * the PHY.
566 s32 ixgbe_check_phy_link_tnx(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
567 bool *link_up)
569 s32 status = 0;
570 u32 time_out;
571 u32 max_time_out = 10;
572 u16 phy_link = 0;
573 u16 phy_speed = 0;
574 u16 phy_data = 0;
576 /* Initialize speed and link to default case */
577 *link_up = false;
578 *speed = IXGBE_LINK_SPEED_10GB_FULL;
581 * Check current speed and link status of the PHY register.
582 * This is a vendor specific register and may have to
583 * be changed for other copper PHYs.
585 for (time_out = 0; time_out < max_time_out; time_out++) {
586 udelay(10);
587 status = hw->phy.ops.read_reg(hw,
588 MDIO_STAT1,
589 MDIO_MMD_VEND1,
590 &phy_data);
591 phy_link = phy_data &
592 IXGBE_MDIO_VENDOR_SPECIFIC_1_LINK_STATUS;
593 phy_speed = phy_data &
594 IXGBE_MDIO_VENDOR_SPECIFIC_1_SPEED_STATUS;
595 if (phy_link == IXGBE_MDIO_VENDOR_SPECIFIC_1_LINK_STATUS) {
596 *link_up = true;
597 if (phy_speed ==
598 IXGBE_MDIO_VENDOR_SPECIFIC_1_SPEED_STATUS)
599 *speed = IXGBE_LINK_SPEED_1GB_FULL;
600 break;
604 return status;
608 * ixgbe_setup_phy_link_tnx - Set and restart autoneg
609 * @hw: pointer to hardware structure
611 * Restart autonegotiation and PHY and waits for completion.
613 s32 ixgbe_setup_phy_link_tnx(struct ixgbe_hw *hw)
615 s32 status = 0;
616 u32 time_out;
617 u32 max_time_out = 10;
618 u16 autoneg_reg = IXGBE_MII_AUTONEG_REG;
619 bool autoneg = false;
620 ixgbe_link_speed speed;
622 ixgbe_get_copper_link_capabilities_generic(hw, &speed, &autoneg);
624 if (speed & IXGBE_LINK_SPEED_10GB_FULL) {
625 /* Set or unset auto-negotiation 10G advertisement */
626 hw->phy.ops.read_reg(hw, MDIO_AN_10GBT_CTRL,
627 MDIO_MMD_AN,
628 &autoneg_reg);
630 autoneg_reg &= ~MDIO_AN_10GBT_CTRL_ADV10G;
631 if (hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_10GB_FULL)
632 autoneg_reg |= MDIO_AN_10GBT_CTRL_ADV10G;
634 hw->phy.ops.write_reg(hw, MDIO_AN_10GBT_CTRL,
635 MDIO_MMD_AN,
636 autoneg_reg);
639 if (speed & IXGBE_LINK_SPEED_1GB_FULL) {
640 /* Set or unset auto-negotiation 1G advertisement */
641 hw->phy.ops.read_reg(hw, IXGBE_MII_AUTONEG_XNP_TX_REG,
642 MDIO_MMD_AN,
643 &autoneg_reg);
645 autoneg_reg &= ~IXGBE_MII_1GBASE_T_ADVERTISE_XNP_TX;
646 if (hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_1GB_FULL)
647 autoneg_reg |= IXGBE_MII_1GBASE_T_ADVERTISE_XNP_TX;
649 hw->phy.ops.write_reg(hw, IXGBE_MII_AUTONEG_XNP_TX_REG,
650 MDIO_MMD_AN,
651 autoneg_reg);
654 if (speed & IXGBE_LINK_SPEED_100_FULL) {
655 /* Set or unset auto-negotiation 100M advertisement */
656 hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
657 MDIO_MMD_AN,
658 &autoneg_reg);
660 autoneg_reg &= ~(ADVERTISE_100FULL |
661 ADVERTISE_100HALF);
662 if (hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_100_FULL)
663 autoneg_reg |= ADVERTISE_100FULL;
665 hw->phy.ops.write_reg(hw, MDIO_AN_ADVERTISE,
666 MDIO_MMD_AN,
667 autoneg_reg);
670 /* Restart PHY autonegotiation and wait for completion */
671 hw->phy.ops.read_reg(hw, MDIO_CTRL1,
672 MDIO_MMD_AN, &autoneg_reg);
674 autoneg_reg |= MDIO_AN_CTRL1_RESTART;
676 hw->phy.ops.write_reg(hw, MDIO_CTRL1,
677 MDIO_MMD_AN, autoneg_reg);
679 /* Wait for autonegotiation to finish */
680 for (time_out = 0; time_out < max_time_out; time_out++) {
681 udelay(10);
682 /* Restart PHY autonegotiation and wait for completion */
683 status = hw->phy.ops.read_reg(hw, MDIO_STAT1,
684 MDIO_MMD_AN,
685 &autoneg_reg);
687 autoneg_reg &= MDIO_AN_STAT1_COMPLETE;
688 if (autoneg_reg == MDIO_AN_STAT1_COMPLETE)
689 break;
692 if (time_out == max_time_out) {
693 status = IXGBE_ERR_LINK_SETUP;
694 hw_dbg(hw, "ixgbe_setup_phy_link_tnx: time out");
697 return status;
701 * ixgbe_get_phy_firmware_version_tnx - Gets the PHY Firmware Version
702 * @hw: pointer to hardware structure
703 * @firmware_version: pointer to the PHY Firmware Version
705 s32 ixgbe_get_phy_firmware_version_tnx(struct ixgbe_hw *hw,
706 u16 *firmware_version)
708 s32 status = 0;
710 status = hw->phy.ops.read_reg(hw, TNX_FW_REV,
711 MDIO_MMD_VEND1,
712 firmware_version);
714 return status;
718 * ixgbe_get_phy_firmware_version_generic - Gets the PHY Firmware Version
719 * @hw: pointer to hardware structure
720 * @firmware_version: pointer to the PHY Firmware Version
722 s32 ixgbe_get_phy_firmware_version_generic(struct ixgbe_hw *hw,
723 u16 *firmware_version)
725 s32 status = 0;
727 status = hw->phy.ops.read_reg(hw, AQ_FW_REV,
728 MDIO_MMD_VEND1,
729 firmware_version);
731 return status;
735 * ixgbe_reset_phy_nl - Performs a PHY reset
736 * @hw: pointer to hardware structure
738 s32 ixgbe_reset_phy_nl(struct ixgbe_hw *hw)
740 u16 phy_offset, control, eword, edata, block_crc;
741 bool end_data = false;
742 u16 list_offset, data_offset;
743 u16 phy_data = 0;
744 s32 ret_val = 0;
745 u32 i;
747 hw->phy.ops.read_reg(hw, MDIO_CTRL1, MDIO_MMD_PHYXS, &phy_data);
749 /* reset the PHY and poll for completion */
750 hw->phy.ops.write_reg(hw, MDIO_CTRL1, MDIO_MMD_PHYXS,
751 (phy_data | MDIO_CTRL1_RESET));
753 for (i = 0; i < 100; i++) {
754 hw->phy.ops.read_reg(hw, MDIO_CTRL1, MDIO_MMD_PHYXS,
755 &phy_data);
756 if ((phy_data & MDIO_CTRL1_RESET) == 0)
757 break;
758 usleep_range(10000, 20000);
761 if ((phy_data & MDIO_CTRL1_RESET) != 0) {
762 hw_dbg(hw, "PHY reset did not complete.\n");
763 ret_val = IXGBE_ERR_PHY;
764 goto out;
767 /* Get init offsets */
768 ret_val = ixgbe_get_sfp_init_sequence_offsets(hw, &list_offset,
769 &data_offset);
770 if (ret_val != 0)
771 goto out;
773 ret_val = hw->eeprom.ops.read(hw, data_offset, &block_crc);
774 data_offset++;
775 while (!end_data) {
777 * Read control word from PHY init contents offset
779 ret_val = hw->eeprom.ops.read(hw, data_offset, &eword);
780 control = (eword & IXGBE_CONTROL_MASK_NL) >>
781 IXGBE_CONTROL_SHIFT_NL;
782 edata = eword & IXGBE_DATA_MASK_NL;
783 switch (control) {
784 case IXGBE_DELAY_NL:
785 data_offset++;
786 hw_dbg(hw, "DELAY: %d MS\n", edata);
787 usleep_range(edata * 1000, edata * 2000);
788 break;
789 case IXGBE_DATA_NL:
790 hw_dbg(hw, "DATA:\n");
791 data_offset++;
792 hw->eeprom.ops.read(hw, data_offset++,
793 &phy_offset);
794 for (i = 0; i < edata; i++) {
795 hw->eeprom.ops.read(hw, data_offset, &eword);
796 hw->phy.ops.write_reg(hw, phy_offset,
797 MDIO_MMD_PMAPMD, eword);
798 hw_dbg(hw, "Wrote %4.4x to %4.4x\n", eword,
799 phy_offset);
800 data_offset++;
801 phy_offset++;
803 break;
804 case IXGBE_CONTROL_NL:
805 data_offset++;
806 hw_dbg(hw, "CONTROL:\n");
807 if (edata == IXGBE_CONTROL_EOL_NL) {
808 hw_dbg(hw, "EOL\n");
809 end_data = true;
810 } else if (edata == IXGBE_CONTROL_SOL_NL) {
811 hw_dbg(hw, "SOL\n");
812 } else {
813 hw_dbg(hw, "Bad control value\n");
814 ret_val = IXGBE_ERR_PHY;
815 goto out;
817 break;
818 default:
819 hw_dbg(hw, "Bad control type\n");
820 ret_val = IXGBE_ERR_PHY;
821 goto out;
825 out:
826 return ret_val;
830 * ixgbe_identify_sfp_module_generic - Identifies SFP modules
831 * @hw: pointer to hardware structure
833 * Searches for and identifies the SFP module and assigns appropriate PHY type.
835 s32 ixgbe_identify_sfp_module_generic(struct ixgbe_hw *hw)
837 s32 status = IXGBE_ERR_PHY_ADDR_INVALID;
838 u32 vendor_oui = 0;
839 enum ixgbe_sfp_type stored_sfp_type = hw->phy.sfp_type;
840 u8 identifier = 0;
841 u8 comp_codes_1g = 0;
842 u8 comp_codes_10g = 0;
843 u8 oui_bytes[3] = {0, 0, 0};
844 u8 cable_tech = 0;
845 u8 cable_spec = 0;
846 u16 enforce_sfp = 0;
848 if (hw->mac.ops.get_media_type(hw) != ixgbe_media_type_fiber) {
849 hw->phy.sfp_type = ixgbe_sfp_type_not_present;
850 status = IXGBE_ERR_SFP_NOT_PRESENT;
851 goto out;
854 status = hw->phy.ops.read_i2c_eeprom(hw,
855 IXGBE_SFF_IDENTIFIER,
856 &identifier);
858 if (status == IXGBE_ERR_SWFW_SYNC ||
859 status == IXGBE_ERR_I2C ||
860 status == IXGBE_ERR_SFP_NOT_PRESENT)
861 goto err_read_i2c_eeprom;
863 /* LAN ID is needed for sfp_type determination */
864 hw->mac.ops.set_lan_id(hw);
866 if (identifier != IXGBE_SFF_IDENTIFIER_SFP) {
867 hw->phy.type = ixgbe_phy_sfp_unsupported;
868 status = IXGBE_ERR_SFP_NOT_SUPPORTED;
869 } else {
870 status = hw->phy.ops.read_i2c_eeprom(hw,
871 IXGBE_SFF_1GBE_COMP_CODES,
872 &comp_codes_1g);
874 if (status == IXGBE_ERR_SWFW_SYNC ||
875 status == IXGBE_ERR_I2C ||
876 status == IXGBE_ERR_SFP_NOT_PRESENT)
877 goto err_read_i2c_eeprom;
879 status = hw->phy.ops.read_i2c_eeprom(hw,
880 IXGBE_SFF_10GBE_COMP_CODES,
881 &comp_codes_10g);
883 if (status == IXGBE_ERR_SWFW_SYNC ||
884 status == IXGBE_ERR_I2C ||
885 status == IXGBE_ERR_SFP_NOT_PRESENT)
886 goto err_read_i2c_eeprom;
887 status = hw->phy.ops.read_i2c_eeprom(hw,
888 IXGBE_SFF_CABLE_TECHNOLOGY,
889 &cable_tech);
891 if (status == IXGBE_ERR_SWFW_SYNC ||
892 status == IXGBE_ERR_I2C ||
893 status == IXGBE_ERR_SFP_NOT_PRESENT)
894 goto err_read_i2c_eeprom;
896 /* ID Module
897 * =========
898 * 0 SFP_DA_CU
899 * 1 SFP_SR
900 * 2 SFP_LR
901 * 3 SFP_DA_CORE0 - 82599-specific
902 * 4 SFP_DA_CORE1 - 82599-specific
903 * 5 SFP_SR/LR_CORE0 - 82599-specific
904 * 6 SFP_SR/LR_CORE1 - 82599-specific
905 * 7 SFP_act_lmt_DA_CORE0 - 82599-specific
906 * 8 SFP_act_lmt_DA_CORE1 - 82599-specific
907 * 9 SFP_1g_cu_CORE0 - 82599-specific
908 * 10 SFP_1g_cu_CORE1 - 82599-specific
910 if (hw->mac.type == ixgbe_mac_82598EB) {
911 if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE)
912 hw->phy.sfp_type = ixgbe_sfp_type_da_cu;
913 else if (comp_codes_10g & IXGBE_SFF_10GBASESR_CAPABLE)
914 hw->phy.sfp_type = ixgbe_sfp_type_sr;
915 else if (comp_codes_10g & IXGBE_SFF_10GBASELR_CAPABLE)
916 hw->phy.sfp_type = ixgbe_sfp_type_lr;
917 else
918 hw->phy.sfp_type = ixgbe_sfp_type_unknown;
919 } else if (hw->mac.type == ixgbe_mac_82599EB) {
920 if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE) {
921 if (hw->bus.lan_id == 0)
922 hw->phy.sfp_type =
923 ixgbe_sfp_type_da_cu_core0;
924 else
925 hw->phy.sfp_type =
926 ixgbe_sfp_type_da_cu_core1;
927 } else if (cable_tech & IXGBE_SFF_DA_ACTIVE_CABLE) {
928 hw->phy.ops.read_i2c_eeprom(
929 hw, IXGBE_SFF_CABLE_SPEC_COMP,
930 &cable_spec);
931 if (cable_spec &
932 IXGBE_SFF_DA_SPEC_ACTIVE_LIMITING) {
933 if (hw->bus.lan_id == 0)
934 hw->phy.sfp_type =
935 ixgbe_sfp_type_da_act_lmt_core0;
936 else
937 hw->phy.sfp_type =
938 ixgbe_sfp_type_da_act_lmt_core1;
939 } else {
940 hw->phy.sfp_type =
941 ixgbe_sfp_type_unknown;
943 } else if (comp_codes_10g &
944 (IXGBE_SFF_10GBASESR_CAPABLE |
945 IXGBE_SFF_10GBASELR_CAPABLE)) {
946 if (hw->bus.lan_id == 0)
947 hw->phy.sfp_type =
948 ixgbe_sfp_type_srlr_core0;
949 else
950 hw->phy.sfp_type =
951 ixgbe_sfp_type_srlr_core1;
952 } else if (comp_codes_1g & IXGBE_SFF_1GBASET_CAPABLE) {
953 if (hw->bus.lan_id == 0)
954 hw->phy.sfp_type =
955 ixgbe_sfp_type_1g_cu_core0;
956 else
957 hw->phy.sfp_type =
958 ixgbe_sfp_type_1g_cu_core1;
959 } else {
960 hw->phy.sfp_type = ixgbe_sfp_type_unknown;
964 if (hw->phy.sfp_type != stored_sfp_type)
965 hw->phy.sfp_setup_needed = true;
967 /* Determine if the SFP+ PHY is dual speed or not. */
968 hw->phy.multispeed_fiber = false;
969 if (((comp_codes_1g & IXGBE_SFF_1GBASESX_CAPABLE) &&
970 (comp_codes_10g & IXGBE_SFF_10GBASESR_CAPABLE)) ||
971 ((comp_codes_1g & IXGBE_SFF_1GBASELX_CAPABLE) &&
972 (comp_codes_10g & IXGBE_SFF_10GBASELR_CAPABLE)))
973 hw->phy.multispeed_fiber = true;
975 /* Determine PHY vendor */
976 if (hw->phy.type != ixgbe_phy_nl) {
977 hw->phy.id = identifier;
978 status = hw->phy.ops.read_i2c_eeprom(hw,
979 IXGBE_SFF_VENDOR_OUI_BYTE0,
980 &oui_bytes[0]);
982 if (status == IXGBE_ERR_SWFW_SYNC ||
983 status == IXGBE_ERR_I2C ||
984 status == IXGBE_ERR_SFP_NOT_PRESENT)
985 goto err_read_i2c_eeprom;
987 status = hw->phy.ops.read_i2c_eeprom(hw,
988 IXGBE_SFF_VENDOR_OUI_BYTE1,
989 &oui_bytes[1]);
991 if (status == IXGBE_ERR_SWFW_SYNC ||
992 status == IXGBE_ERR_I2C ||
993 status == IXGBE_ERR_SFP_NOT_PRESENT)
994 goto err_read_i2c_eeprom;
996 status = hw->phy.ops.read_i2c_eeprom(hw,
997 IXGBE_SFF_VENDOR_OUI_BYTE2,
998 &oui_bytes[2]);
1000 if (status == IXGBE_ERR_SWFW_SYNC ||
1001 status == IXGBE_ERR_I2C ||
1002 status == IXGBE_ERR_SFP_NOT_PRESENT)
1003 goto err_read_i2c_eeprom;
1005 vendor_oui =
1006 ((oui_bytes[0] << IXGBE_SFF_VENDOR_OUI_BYTE0_SHIFT) |
1007 (oui_bytes[1] << IXGBE_SFF_VENDOR_OUI_BYTE1_SHIFT) |
1008 (oui_bytes[2] << IXGBE_SFF_VENDOR_OUI_BYTE2_SHIFT));
1010 switch (vendor_oui) {
1011 case IXGBE_SFF_VENDOR_OUI_TYCO:
1012 if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE)
1013 hw->phy.type =
1014 ixgbe_phy_sfp_passive_tyco;
1015 break;
1016 case IXGBE_SFF_VENDOR_OUI_FTL:
1017 if (cable_tech & IXGBE_SFF_DA_ACTIVE_CABLE)
1018 hw->phy.type = ixgbe_phy_sfp_ftl_active;
1019 else
1020 hw->phy.type = ixgbe_phy_sfp_ftl;
1021 break;
1022 case IXGBE_SFF_VENDOR_OUI_AVAGO:
1023 hw->phy.type = ixgbe_phy_sfp_avago;
1024 break;
1025 case IXGBE_SFF_VENDOR_OUI_INTEL:
1026 hw->phy.type = ixgbe_phy_sfp_intel;
1027 break;
1028 default:
1029 if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE)
1030 hw->phy.type =
1031 ixgbe_phy_sfp_passive_unknown;
1032 else if (cable_tech & IXGBE_SFF_DA_ACTIVE_CABLE)
1033 hw->phy.type =
1034 ixgbe_phy_sfp_active_unknown;
1035 else
1036 hw->phy.type = ixgbe_phy_sfp_unknown;
1037 break;
1041 /* Allow any DA cable vendor */
1042 if (cable_tech & (IXGBE_SFF_DA_PASSIVE_CABLE |
1043 IXGBE_SFF_DA_ACTIVE_CABLE)) {
1044 status = 0;
1045 goto out;
1048 /* Verify supported 1G SFP modules */
1049 if (comp_codes_10g == 0 &&
1050 !(hw->phy.sfp_type == ixgbe_sfp_type_1g_cu_core1 ||
1051 hw->phy.sfp_type == ixgbe_sfp_type_1g_cu_core0)) {
1052 hw->phy.type = ixgbe_phy_sfp_unsupported;
1053 status = IXGBE_ERR_SFP_NOT_SUPPORTED;
1054 goto out;
1057 /* Anything else 82598-based is supported */
1058 if (hw->mac.type == ixgbe_mac_82598EB) {
1059 status = 0;
1060 goto out;
1063 hw->mac.ops.get_device_caps(hw, &enforce_sfp);
1064 if (!(enforce_sfp & IXGBE_DEVICE_CAPS_ALLOW_ANY_SFP) &&
1065 !((hw->phy.sfp_type == ixgbe_sfp_type_1g_cu_core0) ||
1066 (hw->phy.sfp_type == ixgbe_sfp_type_1g_cu_core1))) {
1067 /* Make sure we're a supported PHY type */
1068 if (hw->phy.type == ixgbe_phy_sfp_intel) {
1069 status = 0;
1070 } else {
1071 hw_dbg(hw, "SFP+ module not supported\n");
1072 hw->phy.type = ixgbe_phy_sfp_unsupported;
1073 status = IXGBE_ERR_SFP_NOT_SUPPORTED;
1075 } else {
1076 status = 0;
1080 out:
1081 return status;
1083 err_read_i2c_eeprom:
1084 hw->phy.sfp_type = ixgbe_sfp_type_not_present;
1085 if (hw->phy.type != ixgbe_phy_nl) {
1086 hw->phy.id = 0;
1087 hw->phy.type = ixgbe_phy_unknown;
1089 return IXGBE_ERR_SFP_NOT_PRESENT;
1093 * ixgbe_get_sfp_init_sequence_offsets - Provides offset of PHY init sequence
1094 * @hw: pointer to hardware structure
1095 * @list_offset: offset to the SFP ID list
1096 * @data_offset: offset to the SFP data block
1098 * Checks the MAC's EEPROM to see if it supports a given SFP+ module type, if
1099 * so it returns the offsets to the phy init sequence block.
1101 s32 ixgbe_get_sfp_init_sequence_offsets(struct ixgbe_hw *hw,
1102 u16 *list_offset,
1103 u16 *data_offset)
1105 u16 sfp_id;
1106 u16 sfp_type = hw->phy.sfp_type;
1108 if (hw->phy.sfp_type == ixgbe_sfp_type_unknown)
1109 return IXGBE_ERR_SFP_NOT_SUPPORTED;
1111 if (hw->phy.sfp_type == ixgbe_sfp_type_not_present)
1112 return IXGBE_ERR_SFP_NOT_PRESENT;
1114 if ((hw->device_id == IXGBE_DEV_ID_82598_SR_DUAL_PORT_EM) &&
1115 (hw->phy.sfp_type == ixgbe_sfp_type_da_cu))
1116 return IXGBE_ERR_SFP_NOT_SUPPORTED;
1119 * Limiting active cables and 1G Phys must be initialized as
1120 * SR modules
1122 if (sfp_type == ixgbe_sfp_type_da_act_lmt_core0 ||
1123 sfp_type == ixgbe_sfp_type_1g_cu_core0)
1124 sfp_type = ixgbe_sfp_type_srlr_core0;
1125 else if (sfp_type == ixgbe_sfp_type_da_act_lmt_core1 ||
1126 sfp_type == ixgbe_sfp_type_1g_cu_core1)
1127 sfp_type = ixgbe_sfp_type_srlr_core1;
1129 /* Read offset to PHY init contents */
1130 hw->eeprom.ops.read(hw, IXGBE_PHY_INIT_OFFSET_NL, list_offset);
1132 if ((!*list_offset) || (*list_offset == 0xFFFF))
1133 return IXGBE_ERR_SFP_NO_INIT_SEQ_PRESENT;
1135 /* Shift offset to first ID word */
1136 (*list_offset)++;
1139 * Find the matching SFP ID in the EEPROM
1140 * and program the init sequence
1142 hw->eeprom.ops.read(hw, *list_offset, &sfp_id);
1144 while (sfp_id != IXGBE_PHY_INIT_END_NL) {
1145 if (sfp_id == sfp_type) {
1146 (*list_offset)++;
1147 hw->eeprom.ops.read(hw, *list_offset, data_offset);
1148 if ((!*data_offset) || (*data_offset == 0xFFFF)) {
1149 hw_dbg(hw, "SFP+ module not supported\n");
1150 return IXGBE_ERR_SFP_NOT_SUPPORTED;
1151 } else {
1152 break;
1154 } else {
1155 (*list_offset) += 2;
1156 if (hw->eeprom.ops.read(hw, *list_offset, &sfp_id))
1157 return IXGBE_ERR_PHY;
1161 if (sfp_id == IXGBE_PHY_INIT_END_NL) {
1162 hw_dbg(hw, "No matching SFP+ module found\n");
1163 return IXGBE_ERR_SFP_NOT_SUPPORTED;
1166 return 0;
1170 * ixgbe_read_i2c_eeprom_generic - Reads 8 bit EEPROM word over I2C interface
1171 * @hw: pointer to hardware structure
1172 * @byte_offset: EEPROM byte offset to read
1173 * @eeprom_data: value read
1175 * Performs byte read operation to SFP module's EEPROM over I2C interface.
1177 s32 ixgbe_read_i2c_eeprom_generic(struct ixgbe_hw *hw, u8 byte_offset,
1178 u8 *eeprom_data)
1180 return hw->phy.ops.read_i2c_byte(hw, byte_offset,
1181 IXGBE_I2C_EEPROM_DEV_ADDR,
1182 eeprom_data);
1186 * ixgbe_write_i2c_eeprom_generic - Writes 8 bit EEPROM word over I2C interface
1187 * @hw: pointer to hardware structure
1188 * @byte_offset: EEPROM byte offset to write
1189 * @eeprom_data: value to write
1191 * Performs byte write operation to SFP module's EEPROM over I2C interface.
1193 s32 ixgbe_write_i2c_eeprom_generic(struct ixgbe_hw *hw, u8 byte_offset,
1194 u8 eeprom_data)
1196 return hw->phy.ops.write_i2c_byte(hw, byte_offset,
1197 IXGBE_I2C_EEPROM_DEV_ADDR,
1198 eeprom_data);
1202 * ixgbe_read_i2c_byte_generic - Reads 8 bit word over I2C
1203 * @hw: pointer to hardware structure
1204 * @byte_offset: byte offset to read
1205 * @data: value read
1207 * Performs byte read operation to SFP module's EEPROM over I2C interface at
1208 * a specified deivce address.
1210 s32 ixgbe_read_i2c_byte_generic(struct ixgbe_hw *hw, u8 byte_offset,
1211 u8 dev_addr, u8 *data)
1213 s32 status = 0;
1214 u32 max_retry = 10;
1215 u32 retry = 0;
1216 u16 swfw_mask = 0;
1217 bool nack = 1;
1219 if (IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1)
1220 swfw_mask = IXGBE_GSSR_PHY1_SM;
1221 else
1222 swfw_mask = IXGBE_GSSR_PHY0_SM;
1224 do {
1225 if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask) != 0) {
1226 status = IXGBE_ERR_SWFW_SYNC;
1227 goto read_byte_out;
1230 ixgbe_i2c_start(hw);
1232 /* Device Address and write indication */
1233 status = ixgbe_clock_out_i2c_byte(hw, dev_addr);
1234 if (status != 0)
1235 goto fail;
1237 status = ixgbe_get_i2c_ack(hw);
1238 if (status != 0)
1239 goto fail;
1241 status = ixgbe_clock_out_i2c_byte(hw, byte_offset);
1242 if (status != 0)
1243 goto fail;
1245 status = ixgbe_get_i2c_ack(hw);
1246 if (status != 0)
1247 goto fail;
1249 ixgbe_i2c_start(hw);
1251 /* Device Address and read indication */
1252 status = ixgbe_clock_out_i2c_byte(hw, (dev_addr | 0x1));
1253 if (status != 0)
1254 goto fail;
1256 status = ixgbe_get_i2c_ack(hw);
1257 if (status != 0)
1258 goto fail;
1260 status = ixgbe_clock_in_i2c_byte(hw, data);
1261 if (status != 0)
1262 goto fail;
1264 status = ixgbe_clock_out_i2c_bit(hw, nack);
1265 if (status != 0)
1266 goto fail;
1268 ixgbe_i2c_stop(hw);
1269 break;
1271 fail:
1272 hw->mac.ops.release_swfw_sync(hw, swfw_mask);
1273 msleep(100);
1274 ixgbe_i2c_bus_clear(hw);
1275 retry++;
1276 if (retry < max_retry)
1277 hw_dbg(hw, "I2C byte read error - Retrying.\n");
1278 else
1279 hw_dbg(hw, "I2C byte read error.\n");
1281 } while (retry < max_retry);
1283 hw->mac.ops.release_swfw_sync(hw, swfw_mask);
1285 read_byte_out:
1286 return status;
1290 * ixgbe_write_i2c_byte_generic - Writes 8 bit word over I2C
1291 * @hw: pointer to hardware structure
1292 * @byte_offset: byte offset to write
1293 * @data: value to write
1295 * Performs byte write operation to SFP module's EEPROM over I2C interface at
1296 * a specified device address.
1298 s32 ixgbe_write_i2c_byte_generic(struct ixgbe_hw *hw, u8 byte_offset,
1299 u8 dev_addr, u8 data)
1301 s32 status = 0;
1302 u32 max_retry = 1;
1303 u32 retry = 0;
1304 u16 swfw_mask = 0;
1306 if (IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1)
1307 swfw_mask = IXGBE_GSSR_PHY1_SM;
1308 else
1309 swfw_mask = IXGBE_GSSR_PHY0_SM;
1311 if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask) != 0) {
1312 status = IXGBE_ERR_SWFW_SYNC;
1313 goto write_byte_out;
1316 do {
1317 ixgbe_i2c_start(hw);
1319 status = ixgbe_clock_out_i2c_byte(hw, dev_addr);
1320 if (status != 0)
1321 goto fail;
1323 status = ixgbe_get_i2c_ack(hw);
1324 if (status != 0)
1325 goto fail;
1327 status = ixgbe_clock_out_i2c_byte(hw, byte_offset);
1328 if (status != 0)
1329 goto fail;
1331 status = ixgbe_get_i2c_ack(hw);
1332 if (status != 0)
1333 goto fail;
1335 status = ixgbe_clock_out_i2c_byte(hw, data);
1336 if (status != 0)
1337 goto fail;
1339 status = ixgbe_get_i2c_ack(hw);
1340 if (status != 0)
1341 goto fail;
1343 ixgbe_i2c_stop(hw);
1344 break;
1346 fail:
1347 ixgbe_i2c_bus_clear(hw);
1348 retry++;
1349 if (retry < max_retry)
1350 hw_dbg(hw, "I2C byte write error - Retrying.\n");
1351 else
1352 hw_dbg(hw, "I2C byte write error.\n");
1353 } while (retry < max_retry);
1355 hw->mac.ops.release_swfw_sync(hw, swfw_mask);
1357 write_byte_out:
1358 return status;
1362 * ixgbe_i2c_start - Sets I2C start condition
1363 * @hw: pointer to hardware structure
1365 * Sets I2C start condition (High -> Low on SDA while SCL is High)
1367 static void ixgbe_i2c_start(struct ixgbe_hw *hw)
1369 u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
1371 /* Start condition must begin with data and clock high */
1372 ixgbe_set_i2c_data(hw, &i2cctl, 1);
1373 ixgbe_raise_i2c_clk(hw, &i2cctl);
1375 /* Setup time for start condition (4.7us) */
1376 udelay(IXGBE_I2C_T_SU_STA);
1378 ixgbe_set_i2c_data(hw, &i2cctl, 0);
1380 /* Hold time for start condition (4us) */
1381 udelay(IXGBE_I2C_T_HD_STA);
1383 ixgbe_lower_i2c_clk(hw, &i2cctl);
1385 /* Minimum low period of clock is 4.7 us */
1386 udelay(IXGBE_I2C_T_LOW);
1391 * ixgbe_i2c_stop - Sets I2C stop condition
1392 * @hw: pointer to hardware structure
1394 * Sets I2C stop condition (Low -> High on SDA while SCL is High)
1396 static void ixgbe_i2c_stop(struct ixgbe_hw *hw)
1398 u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
1400 /* Stop condition must begin with data low and clock high */
1401 ixgbe_set_i2c_data(hw, &i2cctl, 0);
1402 ixgbe_raise_i2c_clk(hw, &i2cctl);
1404 /* Setup time for stop condition (4us) */
1405 udelay(IXGBE_I2C_T_SU_STO);
1407 ixgbe_set_i2c_data(hw, &i2cctl, 1);
1409 /* bus free time between stop and start (4.7us)*/
1410 udelay(IXGBE_I2C_T_BUF);
1414 * ixgbe_clock_in_i2c_byte - Clocks in one byte via I2C
1415 * @hw: pointer to hardware structure
1416 * @data: data byte to clock in
1418 * Clocks in one byte data via I2C data/clock
1420 static s32 ixgbe_clock_in_i2c_byte(struct ixgbe_hw *hw, u8 *data)
1422 s32 status = 0;
1423 s32 i;
1424 bool bit = 0;
1426 for (i = 7; i >= 0; i--) {
1427 status = ixgbe_clock_in_i2c_bit(hw, &bit);
1428 *data |= bit << i;
1430 if (status != 0)
1431 break;
1434 return status;
1438 * ixgbe_clock_out_i2c_byte - Clocks out one byte via I2C
1439 * @hw: pointer to hardware structure
1440 * @data: data byte clocked out
1442 * Clocks out one byte data via I2C data/clock
1444 static s32 ixgbe_clock_out_i2c_byte(struct ixgbe_hw *hw, u8 data)
1446 s32 status = 0;
1447 s32 i;
1448 u32 i2cctl;
1449 bool bit = 0;
1451 for (i = 7; i >= 0; i--) {
1452 bit = (data >> i) & 0x1;
1453 status = ixgbe_clock_out_i2c_bit(hw, bit);
1455 if (status != 0)
1456 break;
1459 /* Release SDA line (set high) */
1460 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
1461 i2cctl |= IXGBE_I2C_DATA_OUT;
1462 IXGBE_WRITE_REG(hw, IXGBE_I2CCTL, i2cctl);
1464 return status;
1468 * ixgbe_get_i2c_ack - Polls for I2C ACK
1469 * @hw: pointer to hardware structure
1471 * Clocks in/out one bit via I2C data/clock
1473 static s32 ixgbe_get_i2c_ack(struct ixgbe_hw *hw)
1475 s32 status;
1476 u32 i = 0;
1477 u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
1478 u32 timeout = 10;
1479 bool ack = 1;
1481 status = ixgbe_raise_i2c_clk(hw, &i2cctl);
1483 if (status != 0)
1484 goto out;
1486 /* Minimum high period of clock is 4us */
1487 udelay(IXGBE_I2C_T_HIGH);
1489 /* Poll for ACK. Note that ACK in I2C spec is
1490 * transition from 1 to 0 */
1491 for (i = 0; i < timeout; i++) {
1492 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
1493 ack = ixgbe_get_i2c_data(&i2cctl);
1495 udelay(1);
1496 if (ack == 0)
1497 break;
1500 if (ack == 1) {
1501 hw_dbg(hw, "I2C ack was not received.\n");
1502 status = IXGBE_ERR_I2C;
1505 ixgbe_lower_i2c_clk(hw, &i2cctl);
1507 /* Minimum low period of clock is 4.7 us */
1508 udelay(IXGBE_I2C_T_LOW);
1510 out:
1511 return status;
1515 * ixgbe_clock_in_i2c_bit - Clocks in one bit via I2C data/clock
1516 * @hw: pointer to hardware structure
1517 * @data: read data value
1519 * Clocks in one bit via I2C data/clock
1521 static s32 ixgbe_clock_in_i2c_bit(struct ixgbe_hw *hw, bool *data)
1523 s32 status;
1524 u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
1526 status = ixgbe_raise_i2c_clk(hw, &i2cctl);
1528 /* Minimum high period of clock is 4us */
1529 udelay(IXGBE_I2C_T_HIGH);
1531 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
1532 *data = ixgbe_get_i2c_data(&i2cctl);
1534 ixgbe_lower_i2c_clk(hw, &i2cctl);
1536 /* Minimum low period of clock is 4.7 us */
1537 udelay(IXGBE_I2C_T_LOW);
1539 return status;
1543 * ixgbe_clock_out_i2c_bit - Clocks in/out one bit via I2C data/clock
1544 * @hw: pointer to hardware structure
1545 * @data: data value to write
1547 * Clocks out one bit via I2C data/clock
1549 static s32 ixgbe_clock_out_i2c_bit(struct ixgbe_hw *hw, bool data)
1551 s32 status;
1552 u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
1554 status = ixgbe_set_i2c_data(hw, &i2cctl, data);
1555 if (status == 0) {
1556 status = ixgbe_raise_i2c_clk(hw, &i2cctl);
1558 /* Minimum high period of clock is 4us */
1559 udelay(IXGBE_I2C_T_HIGH);
1561 ixgbe_lower_i2c_clk(hw, &i2cctl);
1563 /* Minimum low period of clock is 4.7 us.
1564 * This also takes care of the data hold time.
1566 udelay(IXGBE_I2C_T_LOW);
1567 } else {
1568 status = IXGBE_ERR_I2C;
1569 hw_dbg(hw, "I2C data was not set to %X\n", data);
1572 return status;
1575 * ixgbe_raise_i2c_clk - Raises the I2C SCL clock
1576 * @hw: pointer to hardware structure
1577 * @i2cctl: Current value of I2CCTL register
1579 * Raises the I2C clock line '0'->'1'
1581 static s32 ixgbe_raise_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl)
1583 s32 status = 0;
1585 *i2cctl |= IXGBE_I2C_CLK_OUT;
1587 IXGBE_WRITE_REG(hw, IXGBE_I2CCTL, *i2cctl);
1588 IXGBE_WRITE_FLUSH(hw);
1590 /* SCL rise time (1000ns) */
1591 udelay(IXGBE_I2C_T_RISE);
1593 return status;
1597 * ixgbe_lower_i2c_clk - Lowers the I2C SCL clock
1598 * @hw: pointer to hardware structure
1599 * @i2cctl: Current value of I2CCTL register
1601 * Lowers the I2C clock line '1'->'0'
1603 static void ixgbe_lower_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl)
1606 *i2cctl &= ~IXGBE_I2C_CLK_OUT;
1608 IXGBE_WRITE_REG(hw, IXGBE_I2CCTL, *i2cctl);
1609 IXGBE_WRITE_FLUSH(hw);
1611 /* SCL fall time (300ns) */
1612 udelay(IXGBE_I2C_T_FALL);
1616 * ixgbe_set_i2c_data - Sets the I2C data bit
1617 * @hw: pointer to hardware structure
1618 * @i2cctl: Current value of I2CCTL register
1619 * @data: I2C data value (0 or 1) to set
1621 * Sets the I2C data bit
1623 static s32 ixgbe_set_i2c_data(struct ixgbe_hw *hw, u32 *i2cctl, bool data)
1625 s32 status = 0;
1627 if (data)
1628 *i2cctl |= IXGBE_I2C_DATA_OUT;
1629 else
1630 *i2cctl &= ~IXGBE_I2C_DATA_OUT;
1632 IXGBE_WRITE_REG(hw, IXGBE_I2CCTL, *i2cctl);
1633 IXGBE_WRITE_FLUSH(hw);
1635 /* Data rise/fall (1000ns/300ns) and set-up time (250ns) */
1636 udelay(IXGBE_I2C_T_RISE + IXGBE_I2C_T_FALL + IXGBE_I2C_T_SU_DATA);
1638 /* Verify data was set correctly */
1639 *i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
1640 if (data != ixgbe_get_i2c_data(i2cctl)) {
1641 status = IXGBE_ERR_I2C;
1642 hw_dbg(hw, "Error - I2C data was not set to %X.\n", data);
1645 return status;
1649 * ixgbe_get_i2c_data - Reads the I2C SDA data bit
1650 * @hw: pointer to hardware structure
1651 * @i2cctl: Current value of I2CCTL register
1653 * Returns the I2C data bit value
1655 static bool ixgbe_get_i2c_data(u32 *i2cctl)
1657 bool data;
1659 if (*i2cctl & IXGBE_I2C_DATA_IN)
1660 data = 1;
1661 else
1662 data = 0;
1664 return data;
1668 * ixgbe_i2c_bus_clear - Clears the I2C bus
1669 * @hw: pointer to hardware structure
1671 * Clears the I2C bus by sending nine clock pulses.
1672 * Used when data line is stuck low.
1674 static void ixgbe_i2c_bus_clear(struct ixgbe_hw *hw)
1676 u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
1677 u32 i;
1679 ixgbe_i2c_start(hw);
1681 ixgbe_set_i2c_data(hw, &i2cctl, 1);
1683 for (i = 0; i < 9; i++) {
1684 ixgbe_raise_i2c_clk(hw, &i2cctl);
1686 /* Min high period of clock is 4us */
1687 udelay(IXGBE_I2C_T_HIGH);
1689 ixgbe_lower_i2c_clk(hw, &i2cctl);
1691 /* Min low period of clock is 4.7us*/
1692 udelay(IXGBE_I2C_T_LOW);
1695 ixgbe_i2c_start(hw);
1697 /* Put the i2c bus back to default state */
1698 ixgbe_i2c_stop(hw);
1702 * ixgbe_tn_check_overtemp - Checks if an overtemp occurred.
1703 * @hw: pointer to hardware structure
1705 * Checks if the LASI temp alarm status was triggered due to overtemp
1707 s32 ixgbe_tn_check_overtemp(struct ixgbe_hw *hw)
1709 s32 status = 0;
1710 u16 phy_data = 0;
1712 if (hw->device_id != IXGBE_DEV_ID_82599_T3_LOM)
1713 goto out;
1715 /* Check that the LASI temp alarm status was triggered */
1716 hw->phy.ops.read_reg(hw, IXGBE_TN_LASI_STATUS_REG,
1717 MDIO_MMD_PMAPMD, &phy_data);
1719 if (!(phy_data & IXGBE_TN_LASI_STATUS_TEMP_ALARM))
1720 goto out;
1722 status = IXGBE_ERR_OVERTEMP;
1723 out:
1724 return status;