2 * Tehuti Networks(R) Network Driver
3 * ethtool interface implementation
4 * Copyright (C) 2007 Tehuti Networks Ltd. All rights reserved
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
13 * RX HW/SW interaction overview
14 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
15 * There are 2 types of RX communication channels between driver and NIC.
16 * 1) RX Free Fifo - RXF - holds descriptors of empty buffers to accept incoming
17 * traffic. This Fifo is filled by SW and is readen by HW. Each descriptor holds
18 * info about buffer's location, size and ID. An ID field is used to identify a
19 * buffer when it's returned with data via RXD Fifo (see below)
20 * 2) RX Data Fifo - RXD - holds descriptors of full buffers. This Fifo is
21 * filled by HW and is readen by SW. Each descriptor holds status and ID.
22 * HW pops descriptor from RXF Fifo, stores ID, fills buffer with incoming data,
23 * via dma moves it into host memory, builds new RXD descriptor with same ID,
24 * pushes it into RXD Fifo and raises interrupt to indicate new RX data.
26 * Current NIC configuration (registers + firmware) makes NIC use 2 RXF Fifos.
27 * One holds 1.5K packets and another - 26K packets. Depending on incoming
28 * packet size, HW desides on a RXF Fifo to pop buffer from. When packet is
29 * filled with data, HW builds new RXD descriptor for it and push it into single
32 * RX SW Data Structures
33 * ~~~~~~~~~~~~~~~~~~~~~
34 * skb db - used to keep track of all skbs owned by SW and their dma addresses.
35 * For RX case, ownership lasts from allocating new empty skb for RXF until
36 * accepting full skb from RXD and passing it to OS. Each RXF Fifo has its own
37 * skb db. Implemented as array with bitmask.
38 * fifo - keeps info about fifo's size and location, relevant HW registers,
39 * usage and skb db. Each RXD and RXF Fifo has its own fifo structure.
40 * Implemented as simple struct.
42 * RX SW Execution Flow
43 * ~~~~~~~~~~~~~~~~~~~~
44 * Upon initialization (ifconfig up) driver creates RX fifos and initializes
45 * relevant registers. At the end of init phase, driver enables interrupts.
46 * NIC sees that there is no RXF buffers and raises
47 * RD_INTR interrupt, isr fills skbs and Rx begins.
48 * Driver has two receive operation modes:
49 * NAPI - interrupt-driven mixed with polling
50 * interrupt-driven only
52 * Interrupt-driven only flow is following. When buffer is ready, HW raises
53 * interrupt and isr is called. isr collects all available packets
54 * (bdx_rx_receive), refills skbs (bdx_rx_alloc_skbs) and exit.
56 * Rx buffer allocation note
57 * ~~~~~~~~~~~~~~~~~~~~~~~~~
58 * Driver cares to feed such amount of RxF descriptors that respective amount of
59 * RxD descriptors can not fill entire RxD fifo. The main reason is lack of
60 * overflow check in Bordeaux for RxD fifo free/used size.
61 * FIXME: this is NOT fully implemented, more work should be done
65 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
69 static DEFINE_PCI_DEVICE_TABLE(bdx_pci_tbl
) = {
70 {0x1FC9, 0x3009, PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0},
71 {0x1FC9, 0x3010, PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0},
72 {0x1FC9, 0x3014, PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0},
76 MODULE_DEVICE_TABLE(pci
, bdx_pci_tbl
);
78 /* Definitions needed by ISR or NAPI functions */
79 static void bdx_rx_alloc_skbs(struct bdx_priv
*priv
, struct rxf_fifo
*f
);
80 static void bdx_tx_cleanup(struct bdx_priv
*priv
);
81 static int bdx_rx_receive(struct bdx_priv
*priv
, struct rxd_fifo
*f
, int budget
);
83 /* Definitions needed by FW loading */
84 static void bdx_tx_push_desc_safe(struct bdx_priv
*priv
, void *data
, int size
);
86 /* Definitions needed by hw_start */
87 static int bdx_tx_init(struct bdx_priv
*priv
);
88 static int bdx_rx_init(struct bdx_priv
*priv
);
90 /* Definitions needed by bdx_close */
91 static void bdx_rx_free(struct bdx_priv
*priv
);
92 static void bdx_tx_free(struct bdx_priv
*priv
);
94 /* Definitions needed by bdx_probe */
95 static void bdx_set_ethtool_ops(struct net_device
*netdev
);
97 /*************************************************************************
99 *************************************************************************/
101 static void print_hw_id(struct pci_dev
*pdev
)
103 struct pci_nic
*nic
= pci_get_drvdata(pdev
);
104 u16 pci_link_status
= 0;
107 pci_read_config_word(pdev
, PCI_LINK_STATUS_REG
, &pci_link_status
);
108 pci_read_config_word(pdev
, PCI_DEV_CTRL_REG
, &pci_ctrl
);
110 pr_info("%s%s\n", BDX_NIC_NAME
,
111 nic
->port_num
== 1 ? "" : ", 2-Port");
112 pr_info("srom 0x%x fpga %d build %u lane# %d max_pl 0x%x mrrs 0x%x\n",
113 readl(nic
->regs
+ SROM_VER
), readl(nic
->regs
+ FPGA_VER
) & 0xFFF,
114 readl(nic
->regs
+ FPGA_SEED
),
115 GET_LINK_STATUS_LANES(pci_link_status
),
116 GET_DEV_CTRL_MAXPL(pci_ctrl
), GET_DEV_CTRL_MRRS(pci_ctrl
));
119 static void print_fw_id(struct pci_nic
*nic
)
121 pr_info("fw 0x%x\n", readl(nic
->regs
+ FW_VER
));
124 static void print_eth_id(struct net_device
*ndev
)
126 netdev_info(ndev
, "%s, Port %c\n",
127 BDX_NIC_NAME
, (ndev
->if_port
== 0) ? 'A' : 'B');
131 /*************************************************************************
133 *************************************************************************/
135 #define bdx_enable_interrupts(priv) \
136 do { WRITE_REG(priv, regIMR, IR_RUN); } while (0)
137 #define bdx_disable_interrupts(priv) \
138 do { WRITE_REG(priv, regIMR, 0); } while (0)
141 * create TX/RX descriptor fifo for host-NIC communication.
142 * 1K extra space is allocated at the end of the fifo to simplify
143 * processing of descriptors that wraps around fifo's end
144 * @priv - NIC private structure
145 * @f - fifo to initialize
146 * @fsz_type - fifo size type: 0-4KB, 1-8KB, 2-16KB, 3-32KB
147 * @reg_XXX - offsets of registers relative to base address
149 * Returns 0 on success, negative value on failure
153 bdx_fifo_init(struct bdx_priv
*priv
, struct fifo
*f
, int fsz_type
,
154 u16 reg_CFG0
, u16 reg_CFG1
, u16 reg_RPTR
, u16 reg_WPTR
)
156 u16 memsz
= FIFO_SIZE
* (1 << fsz_type
);
158 memset(f
, 0, sizeof(struct fifo
));
159 /* pci_alloc_consistent gives us 4k-aligned memory */
160 f
->va
= pci_alloc_consistent(priv
->pdev
,
161 memsz
+ FIFO_EXTRA_SPACE
, &f
->da
);
163 pr_err("pci_alloc_consistent failed\n");
166 f
->reg_CFG0
= reg_CFG0
;
167 f
->reg_CFG1
= reg_CFG1
;
168 f
->reg_RPTR
= reg_RPTR
;
169 f
->reg_WPTR
= reg_WPTR
;
173 f
->size_mask
= memsz
- 1;
174 WRITE_REG(priv
, reg_CFG0
, (u32
) ((f
->da
& TX_RX_CFG0_BASE
) | fsz_type
));
175 WRITE_REG(priv
, reg_CFG1
, H32_64(f
->da
));
180 /* bdx_fifo_free - free all resources used by fifo
181 * @priv - NIC private structure
182 * @f - fifo to release
184 static void bdx_fifo_free(struct bdx_priv
*priv
, struct fifo
*f
)
188 pci_free_consistent(priv
->pdev
,
189 f
->memsz
+ FIFO_EXTRA_SPACE
, f
->va
, f
->da
);
196 * bdx_link_changed - notifies OS about hw link state.
197 * @bdx_priv - hw adapter structure
199 static void bdx_link_changed(struct bdx_priv
*priv
)
201 u32 link
= READ_REG(priv
, regMAC_LNK_STAT
) & MAC_LINK_STAT
;
204 if (netif_carrier_ok(priv
->ndev
)) {
205 netif_stop_queue(priv
->ndev
);
206 netif_carrier_off(priv
->ndev
);
207 netdev_err(priv
->ndev
, "Link Down\n");
210 if (!netif_carrier_ok(priv
->ndev
)) {
211 netif_wake_queue(priv
->ndev
);
212 netif_carrier_on(priv
->ndev
);
213 netdev_err(priv
->ndev
, "Link Up\n");
218 static void bdx_isr_extra(struct bdx_priv
*priv
, u32 isr
)
220 if (isr
& IR_RX_FREE_0
) {
221 bdx_rx_alloc_skbs(priv
, &priv
->rxf_fifo0
);
225 if (isr
& IR_LNKCHG0
)
226 bdx_link_changed(priv
);
228 if (isr
& IR_PCIE_LINK
)
229 netdev_err(priv
->ndev
, "PCI-E Link Fault\n");
231 if (isr
& IR_PCIE_TOUT
)
232 netdev_err(priv
->ndev
, "PCI-E Time Out\n");
236 /* bdx_isr - Interrupt Service Routine for Bordeaux NIC
237 * @irq - interrupt number
238 * @ndev - network device
239 * @regs - CPU registers
241 * Return IRQ_NONE if it was not our interrupt, IRQ_HANDLED - otherwise
243 * It reads ISR register to know interrupt reasons, and proceed them one by one.
244 * Reasons of interest are:
245 * RX_DESC - new packet has arrived and RXD fifo holds its descriptor
246 * RX_FREE - number of free Rx buffers in RXF fifo gets low
247 * TX_FREE - packet was transmited and RXF fifo holds its descriptor
250 static irqreturn_t
bdx_isr_napi(int irq
, void *dev
)
252 struct net_device
*ndev
= dev
;
253 struct bdx_priv
*priv
= netdev_priv(ndev
);
257 isr
= (READ_REG(priv
, regISR
) & IR_RUN
);
258 if (unlikely(!isr
)) {
259 bdx_enable_interrupts(priv
);
260 return IRQ_NONE
; /* Not our interrupt */
264 bdx_isr_extra(priv
, isr
);
266 if (isr
& (IR_RX_DESC_0
| IR_TX_FREE_0
)) {
267 if (likely(napi_schedule_prep(&priv
->napi
))) {
268 __napi_schedule(&priv
->napi
);
271 /* NOTE: we get here if intr has slipped into window
272 * between these lines in bdx_poll:
273 * bdx_enable_interrupts(priv);
275 * currently intrs are disabled (since we read ISR),
276 * and we have failed to register next poll.
277 * so we read the regs to trigger chip
278 * and allow further interupts. */
279 READ_REG(priv
, regTXF_WPTR_0
);
280 READ_REG(priv
, regRXD_WPTR_0
);
284 bdx_enable_interrupts(priv
);
288 static int bdx_poll(struct napi_struct
*napi
, int budget
)
290 struct bdx_priv
*priv
= container_of(napi
, struct bdx_priv
, napi
);
294 bdx_tx_cleanup(priv
);
295 work_done
= bdx_rx_receive(priv
, &priv
->rxd_fifo0
, budget
);
296 if ((work_done
< budget
) ||
297 (priv
->napi_stop
++ >= 30)) {
298 DBG("rx poll is done. backing to isr-driven\n");
300 /* from time to time we exit to let NAPI layer release
301 * device lock and allow waiting tasks (eg rmmod) to advance) */
305 bdx_enable_interrupts(priv
);
310 /* bdx_fw_load - loads firmware to NIC
311 * @priv - NIC private structure
312 * Firmware is loaded via TXD fifo, so it must be initialized first.
313 * Firware must be loaded once per NIC not per PCI device provided by NIC (NIC
314 * can have few of them). So all drivers use semaphore register to choose one
315 * that will actually load FW to NIC.
318 static int bdx_fw_load(struct bdx_priv
*priv
)
320 const struct firmware
*fw
= NULL
;
325 master
= READ_REG(priv
, regINIT_SEMAPHORE
);
326 if (!READ_REG(priv
, regINIT_STATUS
) && master
) {
327 rc
= request_firmware(&fw
, "tehuti/bdx.bin", &priv
->pdev
->dev
);
330 bdx_tx_push_desc_safe(priv
, (char *)fw
->data
, fw
->size
);
333 for (i
= 0; i
< 200; i
++) {
334 if (READ_REG(priv
, regINIT_STATUS
)) {
343 WRITE_REG(priv
, regINIT_SEMAPHORE
, 1);
345 release_firmware(fw
);
348 netdev_err(priv
->ndev
, "firmware loading failed\n");
350 DBG("VPC = 0x%x VIC = 0x%x INIT_STATUS = 0x%x i=%d\n",
351 READ_REG(priv
, regVPC
),
352 READ_REG(priv
, regVIC
),
353 READ_REG(priv
, regINIT_STATUS
), i
);
356 DBG("%s: firmware loading success\n", priv
->ndev
->name
);
361 static void bdx_restore_mac(struct net_device
*ndev
, struct bdx_priv
*priv
)
366 DBG("mac0=%x mac1=%x mac2=%x\n",
367 READ_REG(priv
, regUNC_MAC0_A
),
368 READ_REG(priv
, regUNC_MAC1_A
), READ_REG(priv
, regUNC_MAC2_A
));
370 val
= (ndev
->dev_addr
[0] << 8) | (ndev
->dev_addr
[1]);
371 WRITE_REG(priv
, regUNC_MAC2_A
, val
);
372 val
= (ndev
->dev_addr
[2] << 8) | (ndev
->dev_addr
[3]);
373 WRITE_REG(priv
, regUNC_MAC1_A
, val
);
374 val
= (ndev
->dev_addr
[4] << 8) | (ndev
->dev_addr
[5]);
375 WRITE_REG(priv
, regUNC_MAC0_A
, val
);
377 DBG("mac0=%x mac1=%x mac2=%x\n",
378 READ_REG(priv
, regUNC_MAC0_A
),
379 READ_REG(priv
, regUNC_MAC1_A
), READ_REG(priv
, regUNC_MAC2_A
));
383 /* bdx_hw_start - inits registers and starts HW's Rx and Tx engines
384 * @priv - NIC private structure
386 static int bdx_hw_start(struct bdx_priv
*priv
)
389 struct net_device
*ndev
= priv
->ndev
;
392 bdx_link_changed(priv
);
394 /* 10G overall max length (vlan, eth&ip header, ip payload, crc) */
395 WRITE_REG(priv
, regFRM_LENGTH
, 0X3FE0);
396 WRITE_REG(priv
, regPAUSE_QUANT
, 0x96);
397 WRITE_REG(priv
, regRX_FIFO_SECTION
, 0x800010);
398 WRITE_REG(priv
, regTX_FIFO_SECTION
, 0xE00010);
399 WRITE_REG(priv
, regRX_FULLNESS
, 0);
400 WRITE_REG(priv
, regTX_FULLNESS
, 0);
401 WRITE_REG(priv
, regCTRLST
,
402 regCTRLST_BASE
| regCTRLST_RX_ENA
| regCTRLST_TX_ENA
);
404 WRITE_REG(priv
, regVGLB
, 0);
405 WRITE_REG(priv
, regMAX_FRAME_A
,
406 priv
->rxf_fifo0
.m
.pktsz
& MAX_FRAME_AB_VAL
);
408 DBG("RDINTCM=%08x\n", priv
->rdintcm
); /*NOTE: test script uses this */
409 WRITE_REG(priv
, regRDINTCM0
, priv
->rdintcm
);
410 WRITE_REG(priv
, regRDINTCM2
, 0); /*cpu_to_le32(rcm.val)); */
412 DBG("TDINTCM=%08x\n", priv
->tdintcm
); /*NOTE: test script uses this */
413 WRITE_REG(priv
, regTDINTCM0
, priv
->tdintcm
); /* old val = 0x300064 */
415 /* Enable timer interrupt once in 2 secs. */
416 /*WRITE_REG(priv, regGTMR0, ((GTMR_SEC * 2) & GTMR_DATA)); */
417 bdx_restore_mac(priv
->ndev
, priv
);
419 WRITE_REG(priv
, regGMAC_RXF_A
, GMAC_RX_FILTER_OSEN
|
420 GMAC_RX_FILTER_AM
| GMAC_RX_FILTER_AB
);
422 #define BDX_IRQ_TYPE ((priv->nic->irq_type == IRQ_MSI) ? 0 : IRQF_SHARED)
424 rc
= request_irq(priv
->pdev
->irq
, bdx_isr_napi
, BDX_IRQ_TYPE
,
428 bdx_enable_interrupts(priv
);
436 static void bdx_hw_stop(struct bdx_priv
*priv
)
439 bdx_disable_interrupts(priv
);
440 free_irq(priv
->pdev
->irq
, priv
->ndev
);
442 netif_carrier_off(priv
->ndev
);
443 netif_stop_queue(priv
->ndev
);
448 static int bdx_hw_reset_direct(void __iomem
*regs
)
453 /* reset sequences: read, write 1, read, write 0 */
454 val
= readl(regs
+ regCLKPLL
);
455 writel((val
| CLKPLL_SFTRST
) + 0x8, regs
+ regCLKPLL
);
457 val
= readl(regs
+ regCLKPLL
);
458 writel(val
& ~CLKPLL_SFTRST
, regs
+ regCLKPLL
);
460 /* check that the PLLs are locked and reset ended */
461 for (i
= 0; i
< 70; i
++, mdelay(10))
462 if ((readl(regs
+ regCLKPLL
) & CLKPLL_LKD
) == CLKPLL_LKD
) {
463 /* do any PCI-E read transaction */
464 readl(regs
+ regRXD_CFG0_0
);
467 pr_err("HW reset failed\n");
468 return 1; /* failure */
471 static int bdx_hw_reset(struct bdx_priv
*priv
)
476 if (priv
->port
== 0) {
477 /* reset sequences: read, write 1, read, write 0 */
478 val
= READ_REG(priv
, regCLKPLL
);
479 WRITE_REG(priv
, regCLKPLL
, (val
| CLKPLL_SFTRST
) + 0x8);
481 val
= READ_REG(priv
, regCLKPLL
);
482 WRITE_REG(priv
, regCLKPLL
, val
& ~CLKPLL_SFTRST
);
484 /* check that the PLLs are locked and reset ended */
485 for (i
= 0; i
< 70; i
++, mdelay(10))
486 if ((READ_REG(priv
, regCLKPLL
) & CLKPLL_LKD
) == CLKPLL_LKD
) {
487 /* do any PCI-E read transaction */
488 READ_REG(priv
, regRXD_CFG0_0
);
491 pr_err("HW reset failed\n");
492 return 1; /* failure */
495 static int bdx_sw_reset(struct bdx_priv
*priv
)
500 /* 1. load MAC (obsolete) */
501 /* 2. disable Rx (and Tx) */
502 WRITE_REG(priv
, regGMAC_RXF_A
, 0);
504 /* 3. disable port */
505 WRITE_REG(priv
, regDIS_PORT
, 1);
506 /* 4. disable queue */
507 WRITE_REG(priv
, regDIS_QU
, 1);
508 /* 5. wait until hw is disabled */
509 for (i
= 0; i
< 50; i
++) {
510 if (READ_REG(priv
, regRST_PORT
) & 1)
515 netdev_err(priv
->ndev
, "SW reset timeout. continuing anyway\n");
517 /* 6. disable intrs */
518 WRITE_REG(priv
, regRDINTCM0
, 0);
519 WRITE_REG(priv
, regTDINTCM0
, 0);
520 WRITE_REG(priv
, regIMR
, 0);
521 READ_REG(priv
, regISR
);
524 WRITE_REG(priv
, regRST_QU
, 1);
526 WRITE_REG(priv
, regRST_PORT
, 1);
527 /* 9. zero all read and write pointers */
528 for (i
= regTXD_WPTR_0
; i
<= regTXF_RPTR_3
; i
+= 0x10)
529 DBG("%x = %x\n", i
, READ_REG(priv
, i
) & TXF_WPTR_WR_PTR
);
530 for (i
= regTXD_WPTR_0
; i
<= regTXF_RPTR_3
; i
+= 0x10)
531 WRITE_REG(priv
, i
, 0);
532 /* 10. unseet port disable */
533 WRITE_REG(priv
, regDIS_PORT
, 0);
534 /* 11. unset queue disable */
535 WRITE_REG(priv
, regDIS_QU
, 0);
536 /* 12. unset queue reset */
537 WRITE_REG(priv
, regRST_QU
, 0);
538 /* 13. unset port reset */
539 WRITE_REG(priv
, regRST_PORT
, 0);
541 /* skiped. will be done later */
542 /* 15. save MAC (obsolete) */
543 for (i
= regTXD_WPTR_0
; i
<= regTXF_RPTR_3
; i
+= 0x10)
544 DBG("%x = %x\n", i
, READ_REG(priv
, i
) & TXF_WPTR_WR_PTR
);
549 /* bdx_reset - performs right type of reset depending on hw type */
550 static int bdx_reset(struct bdx_priv
*priv
)
553 RET((priv
->pdev
->device
== 0x3009)
555 : bdx_sw_reset(priv
));
559 * bdx_close - Disables a network interface
560 * @netdev: network interface device structure
562 * Returns 0, this is not allowed to fail
564 * The close entry point is called when an interface is de-activated
565 * by the OS. The hardware is still under the drivers control, but
566 * needs to be disabled. A global MAC reset is issued to stop the
567 * hardware, and all transmit and receive resources are freed.
569 static int bdx_close(struct net_device
*ndev
)
571 struct bdx_priv
*priv
= NULL
;
574 priv
= netdev_priv(ndev
);
576 napi_disable(&priv
->napi
);
586 * bdx_open - Called when a network interface is made active
587 * @netdev: network interface device structure
589 * Returns 0 on success, negative value on failure
591 * The open entry point is called when a network interface is made
592 * active by the system (IFF_UP). At this point all resources needed
593 * for transmit and receive operations are allocated, the interrupt
594 * handler is registered with the OS, the watchdog timer is started,
595 * and the stack is notified that the interface is ready.
597 static int bdx_open(struct net_device
*ndev
)
599 struct bdx_priv
*priv
;
603 priv
= netdev_priv(ndev
);
605 if (netif_running(ndev
))
606 netif_stop_queue(priv
->ndev
);
608 if ((rc
= bdx_tx_init(priv
)) ||
609 (rc
= bdx_rx_init(priv
)) ||
610 (rc
= bdx_fw_load(priv
)))
613 bdx_rx_alloc_skbs(priv
, &priv
->rxf_fifo0
);
615 rc
= bdx_hw_start(priv
);
619 napi_enable(&priv
->napi
);
621 print_fw_id(priv
->nic
);
630 static int bdx_range_check(struct bdx_priv
*priv
, u32 offset
)
632 return (offset
> (u32
) (BDX_REGS_SIZE
/ priv
->nic
->port_num
)) ?
636 static int bdx_ioctl_priv(struct net_device
*ndev
, struct ifreq
*ifr
, int cmd
)
638 struct bdx_priv
*priv
= netdev_priv(ndev
);
644 DBG("jiffies=%ld cmd=%d\n", jiffies
, cmd
);
645 if (cmd
!= SIOCDEVPRIVATE
) {
646 error
= copy_from_user(data
, ifr
->ifr_data
, sizeof(data
));
648 pr_err("can't copy from user\n");
651 DBG("%d 0x%x 0x%x\n", data
[0], data
[1], data
[2]);
654 if (!capable(CAP_SYS_RAWIO
))
660 error
= bdx_range_check(priv
, data
[1]);
663 data
[2] = READ_REG(priv
, data
[1]);
664 DBG("read_reg(0x%x)=0x%x (dec %d)\n", data
[1], data
[2],
666 error
= copy_to_user(ifr
->ifr_data
, data
, sizeof(data
));
672 error
= bdx_range_check(priv
, data
[1]);
675 WRITE_REG(priv
, data
[1], data
[2]);
676 DBG("write_reg(0x%x, 0x%x)\n", data
[1], data
[2]);
685 static int bdx_ioctl(struct net_device
*ndev
, struct ifreq
*ifr
, int cmd
)
688 if (cmd
>= SIOCDEVPRIVATE
&& cmd
<= (SIOCDEVPRIVATE
+ 15))
689 RET(bdx_ioctl_priv(ndev
, ifr
, cmd
));
695 * __bdx_vlan_rx_vid - private helper for adding/killing VLAN vid
696 * by passing VLAN filter table to hardware
697 * @ndev network device
699 * @op add or kill operation
701 static void __bdx_vlan_rx_vid(struct net_device
*ndev
, uint16_t vid
, int enable
)
703 struct bdx_priv
*priv
= netdev_priv(ndev
);
707 DBG2("vid=%d value=%d\n", (int)vid
, enable
);
708 if (unlikely(vid
>= 4096)) {
709 pr_err("invalid VID: %u (> 4096)\n", vid
);
712 reg
= regVLAN_0
+ (vid
/ 32) * 4;
714 val
= READ_REG(priv
, reg
);
715 DBG2("reg=%x, val=%x, bit=%d\n", reg
, val
, bit
);
720 DBG2("new val %x\n", val
);
721 WRITE_REG(priv
, reg
, val
);
726 * bdx_vlan_rx_add_vid - kernel hook for adding VLAN vid to hw filtering table
727 * @ndev network device
728 * @vid VLAN vid to add
730 static void bdx_vlan_rx_add_vid(struct net_device
*ndev
, uint16_t vid
)
732 __bdx_vlan_rx_vid(ndev
, vid
, 1);
736 * bdx_vlan_rx_kill_vid - kernel hook for killing VLAN vid in hw filtering table
737 * @ndev network device
738 * @vid VLAN vid to kill
740 static void bdx_vlan_rx_kill_vid(struct net_device
*ndev
, unsigned short vid
)
742 __bdx_vlan_rx_vid(ndev
, vid
, 0);
746 * bdx_change_mtu - Change the Maximum Transfer Unit
747 * @netdev: network interface device structure
748 * @new_mtu: new value for maximum frame size
750 * Returns 0 on success, negative on failure
752 static int bdx_change_mtu(struct net_device
*ndev
, int new_mtu
)
756 if (new_mtu
== ndev
->mtu
)
759 /* enforce minimum frame size */
760 if (new_mtu
< ETH_ZLEN
) {
761 netdev_err(ndev
, "mtu %d is less then minimal %d\n",
767 if (netif_running(ndev
)) {
774 static void bdx_setmulti(struct net_device
*ndev
)
776 struct bdx_priv
*priv
= netdev_priv(ndev
);
779 GMAC_RX_FILTER_AM
| GMAC_RX_FILTER_AB
| GMAC_RX_FILTER_OSEN
;
783 /* IMF - imperfect (hash) rx multicat filter */
784 /* PMF - perfect rx multicat filter */
786 /* FIXME: RXE(OFF) */
787 if (ndev
->flags
& IFF_PROMISC
) {
788 rxf_val
|= GMAC_RX_FILTER_PRM
;
789 } else if (ndev
->flags
& IFF_ALLMULTI
) {
790 /* set IMF to accept all multicast frmaes */
791 for (i
= 0; i
< MAC_MCST_HASH_NUM
; i
++)
792 WRITE_REG(priv
, regRX_MCST_HASH0
+ i
* 4, ~0);
793 } else if (!netdev_mc_empty(ndev
)) {
795 struct netdev_hw_addr
*ha
;
798 /* set IMF to deny all multicast frames */
799 for (i
= 0; i
< MAC_MCST_HASH_NUM
; i
++)
800 WRITE_REG(priv
, regRX_MCST_HASH0
+ i
* 4, 0);
801 /* set PMF to deny all multicast frames */
802 for (i
= 0; i
< MAC_MCST_NUM
; i
++) {
803 WRITE_REG(priv
, regRX_MAC_MCST0
+ i
* 8, 0);
804 WRITE_REG(priv
, regRX_MAC_MCST1
+ i
* 8, 0);
807 /* use PMF to accept first MAC_MCST_NUM (15) addresses */
808 /* TBD: sort addresses and write them in ascending order
809 * into RX_MAC_MCST regs. we skip this phase now and accept ALL
810 * multicast frames throu IMF */
811 /* accept the rest of addresses throu IMF */
812 netdev_for_each_mc_addr(ha
, ndev
) {
814 for (i
= 0; i
< ETH_ALEN
; i
++)
816 reg
= regRX_MCST_HASH0
+ ((hash
>> 5) << 2);
817 val
= READ_REG(priv
, reg
);
818 val
|= (1 << (hash
% 32));
819 WRITE_REG(priv
, reg
, val
);
823 DBG("only own mac %d\n", netdev_mc_count(ndev
));
824 rxf_val
|= GMAC_RX_FILTER_AB
;
826 WRITE_REG(priv
, regGMAC_RXF_A
, rxf_val
);
832 static int bdx_set_mac(struct net_device
*ndev
, void *p
)
834 struct bdx_priv
*priv
= netdev_priv(ndev
);
835 struct sockaddr
*addr
= p
;
839 if (netif_running(dev))
842 memcpy(ndev
->dev_addr
, addr
->sa_data
, ndev
->addr_len
);
843 bdx_restore_mac(ndev
, priv
);
847 static int bdx_read_mac(struct bdx_priv
*priv
)
849 u16 macAddress
[3], i
;
852 macAddress
[2] = READ_REG(priv
, regUNC_MAC0_A
);
853 macAddress
[2] = READ_REG(priv
, regUNC_MAC0_A
);
854 macAddress
[1] = READ_REG(priv
, regUNC_MAC1_A
);
855 macAddress
[1] = READ_REG(priv
, regUNC_MAC1_A
);
856 macAddress
[0] = READ_REG(priv
, regUNC_MAC2_A
);
857 macAddress
[0] = READ_REG(priv
, regUNC_MAC2_A
);
858 for (i
= 0; i
< 3; i
++) {
859 priv
->ndev
->dev_addr
[i
* 2 + 1] = macAddress
[i
];
860 priv
->ndev
->dev_addr
[i
* 2] = macAddress
[i
] >> 8;
865 static u64
bdx_read_l2stat(struct bdx_priv
*priv
, int reg
)
869 val
= READ_REG(priv
, reg
);
870 val
|= ((u64
) READ_REG(priv
, reg
+ 8)) << 32;
874 /*Do the statistics-update work*/
875 static void bdx_update_stats(struct bdx_priv
*priv
)
877 struct bdx_stats
*stats
= &priv
->hw_stats
;
878 u64
*stats_vector
= (u64
*) stats
;
882 /*Fill HW structure */
884 /*First 12 statistics - 0x7200 - 0x72B0 */
885 for (i
= 0; i
< 12; i
++) {
886 stats_vector
[i
] = bdx_read_l2stat(priv
, addr
);
889 BDX_ASSERT(addr
!= 0x72C0);
890 /* 0x72C0-0x72E0 RSRV */
892 for (; i
< 16; i
++) {
893 stats_vector
[i
] = bdx_read_l2stat(priv
, addr
);
896 BDX_ASSERT(addr
!= 0x7330);
897 /* 0x7330-0x7360 RSRV */
899 for (; i
< 19; i
++) {
900 stats_vector
[i
] = bdx_read_l2stat(priv
, addr
);
903 BDX_ASSERT(addr
!= 0x73A0);
904 /* 0x73A0-0x73B0 RSRV */
906 for (; i
< 23; i
++) {
907 stats_vector
[i
] = bdx_read_l2stat(priv
, addr
);
910 BDX_ASSERT(addr
!= 0x7400);
911 BDX_ASSERT((sizeof(struct bdx_stats
) / sizeof(u64
)) != i
);
914 static void print_rxdd(struct rxd_desc
*rxdd
, u32 rxd_val1
, u16 len
,
916 static void print_rxfd(struct rxf_desc
*rxfd
);
918 /*************************************************************************
920 *************************************************************************/
922 static void bdx_rxdb_destroy(struct rxdb
*db
)
927 static struct rxdb
*bdx_rxdb_create(int nelem
)
932 db
= vmalloc(sizeof(struct rxdb
)
933 + (nelem
* sizeof(int))
934 + (nelem
* sizeof(struct rx_map
)));
935 if (likely(db
!= NULL
)) {
936 db
->stack
= (int *)(db
+ 1);
937 db
->elems
= (void *)(db
->stack
+ nelem
);
940 for (i
= 0; i
< nelem
; i
++)
941 db
->stack
[i
] = nelem
- i
- 1; /* to make first allocs
948 static inline int bdx_rxdb_alloc_elem(struct rxdb
*db
)
950 BDX_ASSERT(db
->top
<= 0);
951 return db
->stack
[--(db
->top
)];
954 static inline void *bdx_rxdb_addr_elem(struct rxdb
*db
, int n
)
956 BDX_ASSERT((n
< 0) || (n
>= db
->nelem
));
957 return db
->elems
+ n
;
960 static inline int bdx_rxdb_available(struct rxdb
*db
)
965 static inline void bdx_rxdb_free_elem(struct rxdb
*db
, int n
)
967 BDX_ASSERT((n
>= db
->nelem
) || (n
< 0));
968 db
->stack
[(db
->top
)++] = n
;
971 /*************************************************************************
973 *************************************************************************/
975 /* bdx_rx_init - initialize RX all related HW and SW resources
976 * @priv - NIC private structure
978 * Returns 0 on success, negative value on failure
980 * It creates rxf and rxd fifos, update relevant HW registers, preallocate
981 * skb for rx. It assumes that Rx is desabled in HW
982 * funcs are grouped for better cache usage
984 * RxD fifo is smaller than RxF fifo by design. Upon high load, RxD will be
985 * filled and packets will be dropped by nic without getting into host or
986 * cousing interrupt. Anyway, in that condition, host has no chance to process
987 * all packets, but dropping in nic is cheaper, since it takes 0 cpu cycles
990 /* TBD: ensure proper packet size */
992 static int bdx_rx_init(struct bdx_priv
*priv
)
996 if (bdx_fifo_init(priv
, &priv
->rxd_fifo0
.m
, priv
->rxd_size
,
997 regRXD_CFG0_0
, regRXD_CFG1_0
,
998 regRXD_RPTR_0
, regRXD_WPTR_0
))
1000 if (bdx_fifo_init(priv
, &priv
->rxf_fifo0
.m
, priv
->rxf_size
,
1001 regRXF_CFG0_0
, regRXF_CFG1_0
,
1002 regRXF_RPTR_0
, regRXF_WPTR_0
))
1004 priv
->rxdb
= bdx_rxdb_create(priv
->rxf_fifo0
.m
.memsz
/
1005 sizeof(struct rxf_desc
));
1009 priv
->rxf_fifo0
.m
.pktsz
= priv
->ndev
->mtu
+ VLAN_ETH_HLEN
;
1013 netdev_err(priv
->ndev
, "Rx init failed\n");
1017 /* bdx_rx_free_skbs - frees and unmaps all skbs allocated for the fifo
1018 * @priv - NIC private structure
1021 static void bdx_rx_free_skbs(struct bdx_priv
*priv
, struct rxf_fifo
*f
)
1024 struct rxdb
*db
= priv
->rxdb
;
1028 DBG("total=%d free=%d busy=%d\n", db
->nelem
, bdx_rxdb_available(db
),
1029 db
->nelem
- bdx_rxdb_available(db
));
1030 while (bdx_rxdb_available(db
) > 0) {
1031 i
= bdx_rxdb_alloc_elem(db
);
1032 dm
= bdx_rxdb_addr_elem(db
, i
);
1035 for (i
= 0; i
< db
->nelem
; i
++) {
1036 dm
= bdx_rxdb_addr_elem(db
, i
);
1038 pci_unmap_single(priv
->pdev
,
1039 dm
->dma
, f
->m
.pktsz
,
1040 PCI_DMA_FROMDEVICE
);
1041 dev_kfree_skb(dm
->skb
);
1046 /* bdx_rx_free - release all Rx resources
1047 * @priv - NIC private structure
1048 * It assumes that Rx is desabled in HW
1050 static void bdx_rx_free(struct bdx_priv
*priv
)
1054 bdx_rx_free_skbs(priv
, &priv
->rxf_fifo0
);
1055 bdx_rxdb_destroy(priv
->rxdb
);
1058 bdx_fifo_free(priv
, &priv
->rxf_fifo0
.m
);
1059 bdx_fifo_free(priv
, &priv
->rxd_fifo0
.m
);
1064 /*************************************************************************
1066 *************************************************************************/
1068 /* bdx_rx_alloc_skbs - fill rxf fifo with new skbs
1069 * @priv - nic's private structure
1070 * @f - RXF fifo that needs skbs
1071 * It allocates skbs, build rxf descs and push it (rxf descr) into rxf fifo.
1072 * skb's virtual and physical addresses are stored in skb db.
1073 * To calculate free space, func uses cached values of RPTR and WPTR
1074 * When needed, it also updates RPTR and WPTR.
1077 /* TBD: do not update WPTR if no desc were written */
1079 static void bdx_rx_alloc_skbs(struct bdx_priv
*priv
, struct rxf_fifo
*f
)
1081 struct sk_buff
*skb
;
1082 struct rxf_desc
*rxfd
;
1084 int dno
, delta
, idx
;
1085 struct rxdb
*db
= priv
->rxdb
;
1088 dno
= bdx_rxdb_available(db
) - 1;
1090 skb
= dev_alloc_skb(f
->m
.pktsz
+ NET_IP_ALIGN
);
1092 pr_err("NO MEM: dev_alloc_skb failed\n");
1095 skb
->dev
= priv
->ndev
;
1096 skb_reserve(skb
, NET_IP_ALIGN
);
1098 idx
= bdx_rxdb_alloc_elem(db
);
1099 dm
= bdx_rxdb_addr_elem(db
, idx
);
1100 dm
->dma
= pci_map_single(priv
->pdev
,
1101 skb
->data
, f
->m
.pktsz
,
1102 PCI_DMA_FROMDEVICE
);
1104 rxfd
= (struct rxf_desc
*)(f
->m
.va
+ f
->m
.wptr
);
1105 rxfd
->info
= CPU_CHIP_SWAP32(0x10003); /* INFO=1 BC=3 */
1107 rxfd
->pa_lo
= CPU_CHIP_SWAP32(L32_64(dm
->dma
));
1108 rxfd
->pa_hi
= CPU_CHIP_SWAP32(H32_64(dm
->dma
));
1109 rxfd
->len
= CPU_CHIP_SWAP32(f
->m
.pktsz
);
1112 f
->m
.wptr
+= sizeof(struct rxf_desc
);
1113 delta
= f
->m
.wptr
- f
->m
.memsz
;
1114 if (unlikely(delta
>= 0)) {
1117 memcpy(f
->m
.va
, f
->m
.va
+ f
->m
.memsz
, delta
);
1118 DBG("wrapped descriptor\n");
1123 /*TBD: to do - delayed rxf wptr like in txd */
1124 WRITE_REG(priv
, f
->m
.reg_WPTR
, f
->m
.wptr
& TXF_WPTR_WR_PTR
);
1129 NETIF_RX_MUX(struct bdx_priv
*priv
, u32 rxd_val1
, u16 rxd_vlan
,
1130 struct sk_buff
*skb
)
1133 DBG("rxdd->flags.bits.vtag=%d\n", GET_RXD_VTAG(rxd_val1
));
1134 if (GET_RXD_VTAG(rxd_val1
)) {
1135 DBG("%s: vlan rcv vlan '%x' vtag '%x'\n",
1137 GET_RXD_VLAN_ID(rxd_vlan
),
1138 GET_RXD_VTAG(rxd_val1
));
1139 __vlan_hwaccel_put_tag(skb
, GET_RXD_VLAN_TCI(rxd_vlan
));
1141 netif_receive_skb(skb
);
1144 static void bdx_recycle_skb(struct bdx_priv
*priv
, struct rxd_desc
*rxdd
)
1146 struct rxf_desc
*rxfd
;
1150 struct sk_buff
*skb
;
1154 DBG("priv=%p rxdd=%p\n", priv
, rxdd
);
1155 f
= &priv
->rxf_fifo0
;
1157 DBG("db=%p f=%p\n", db
, f
);
1158 dm
= bdx_rxdb_addr_elem(db
, rxdd
->va_lo
);
1161 rxfd
= (struct rxf_desc
*)(f
->m
.va
+ f
->m
.wptr
);
1162 rxfd
->info
= CPU_CHIP_SWAP32(0x10003); /* INFO=1 BC=3 */
1163 rxfd
->va_lo
= rxdd
->va_lo
;
1164 rxfd
->pa_lo
= CPU_CHIP_SWAP32(L32_64(dm
->dma
));
1165 rxfd
->pa_hi
= CPU_CHIP_SWAP32(H32_64(dm
->dma
));
1166 rxfd
->len
= CPU_CHIP_SWAP32(f
->m
.pktsz
);
1169 f
->m
.wptr
+= sizeof(struct rxf_desc
);
1170 delta
= f
->m
.wptr
- f
->m
.memsz
;
1171 if (unlikely(delta
>= 0)) {
1174 memcpy(f
->m
.va
, f
->m
.va
+ f
->m
.memsz
, delta
);
1175 DBG("wrapped descriptor\n");
1181 /* bdx_rx_receive - receives full packets from RXD fifo and pass them to OS
1182 * NOTE: a special treatment is given to non-continuous descriptors
1183 * that start near the end, wraps around and continue at the beginning. a second
1184 * part is copied right after the first, and then descriptor is interpreted as
1185 * normal. fifo has an extra space to allow such operations
1186 * @priv - nic's private structure
1187 * @f - RXF fifo that needs skbs
1190 /* TBD: replace memcpy func call by explicite inline asm */
1192 static int bdx_rx_receive(struct bdx_priv
*priv
, struct rxd_fifo
*f
, int budget
)
1194 struct net_device
*ndev
= priv
->ndev
;
1195 struct sk_buff
*skb
, *skb2
;
1196 struct rxd_desc
*rxdd
;
1198 struct rxf_fifo
*rxf_fifo
;
1201 int max_done
= BDX_MAX_RX_DONE
;
1202 struct rxdb
*db
= NULL
;
1203 /* Unmarshalled descriptor - copy of descriptor in host order */
1211 f
->m
.wptr
= READ_REG(priv
, f
->m
.reg_WPTR
) & TXF_WPTR_WR_PTR
;
1213 size
= f
->m
.wptr
- f
->m
.rptr
;
1215 size
= f
->m
.memsz
+ size
; /* size is negative :-) */
1219 rxdd
= (struct rxd_desc
*)(f
->m
.va
+ f
->m
.rptr
);
1220 rxd_val1
= CPU_CHIP_SWAP32(rxdd
->rxd_val1
);
1222 len
= CPU_CHIP_SWAP16(rxdd
->len
);
1224 rxd_vlan
= CPU_CHIP_SWAP16(rxdd
->rxd_vlan
);
1226 print_rxdd(rxdd
, rxd_val1
, len
, rxd_vlan
);
1228 tmp_len
= GET_RXD_BC(rxd_val1
) << 3;
1229 BDX_ASSERT(tmp_len
<= 0);
1231 if (size
< 0) /* test for partially arrived descriptor */
1234 f
->m
.rptr
+= tmp_len
;
1236 tmp_len
= f
->m
.rptr
- f
->m
.memsz
;
1237 if (unlikely(tmp_len
>= 0)) {
1238 f
->m
.rptr
= tmp_len
;
1240 DBG("wrapped desc rptr=%d tmp_len=%d\n",
1241 f
->m
.rptr
, tmp_len
);
1242 memcpy(f
->m
.va
+ f
->m
.memsz
, f
->m
.va
, tmp_len
);
1246 if (unlikely(GET_RXD_ERR(rxd_val1
))) {
1247 DBG("rxd_err = 0x%x\n", GET_RXD_ERR(rxd_val1
));
1248 ndev
->stats
.rx_errors
++;
1249 bdx_recycle_skb(priv
, rxdd
);
1253 rxf_fifo
= &priv
->rxf_fifo0
;
1255 dm
= bdx_rxdb_addr_elem(db
, rxdd
->va_lo
);
1258 if (len
< BDX_COPYBREAK
&&
1259 (skb2
= dev_alloc_skb(len
+ NET_IP_ALIGN
))) {
1260 skb_reserve(skb2
, NET_IP_ALIGN
);
1261 /*skb_put(skb2, len); */
1262 pci_dma_sync_single_for_cpu(priv
->pdev
,
1263 dm
->dma
, rxf_fifo
->m
.pktsz
,
1264 PCI_DMA_FROMDEVICE
);
1265 memcpy(skb2
->data
, skb
->data
, len
);
1266 bdx_recycle_skb(priv
, rxdd
);
1269 pci_unmap_single(priv
->pdev
,
1270 dm
->dma
, rxf_fifo
->m
.pktsz
,
1271 PCI_DMA_FROMDEVICE
);
1272 bdx_rxdb_free_elem(db
, rxdd
->va_lo
);
1275 ndev
->stats
.rx_bytes
+= len
;
1278 skb
->protocol
= eth_type_trans(skb
, ndev
);
1280 /* Non-IP packets aren't checksum-offloaded */
1281 if (GET_RXD_PKT_ID(rxd_val1
) == 0)
1282 skb_checksum_none_assert(skb
);
1284 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
1286 NETIF_RX_MUX(priv
, rxd_val1
, rxd_vlan
, skb
);
1288 if (++done
>= max_done
)
1292 ndev
->stats
.rx_packets
+= done
;
1294 /* FIXME: do smth to minimize pci accesses */
1295 WRITE_REG(priv
, f
->m
.reg_RPTR
, f
->m
.rptr
& TXF_WPTR_WR_PTR
);
1297 bdx_rx_alloc_skbs(priv
, &priv
->rxf_fifo0
);
1302 /*************************************************************************
1303 * Debug / Temprorary Code *
1304 *************************************************************************/
1305 static void print_rxdd(struct rxd_desc
*rxdd
, u32 rxd_val1
, u16 len
,
1308 DBG("ERROR: rxdd bc %d rxfq %d to %d type %d err %d rxp %d pkt_id %d vtag %d len %d vlan_id %d cfi %d prio %d va_lo %d va_hi %d\n",
1309 GET_RXD_BC(rxd_val1
), GET_RXD_RXFQ(rxd_val1
), GET_RXD_TO(rxd_val1
),
1310 GET_RXD_TYPE(rxd_val1
), GET_RXD_ERR(rxd_val1
),
1311 GET_RXD_RXP(rxd_val1
), GET_RXD_PKT_ID(rxd_val1
),
1312 GET_RXD_VTAG(rxd_val1
), len
, GET_RXD_VLAN_ID(rxd_vlan
),
1313 GET_RXD_CFI(rxd_vlan
), GET_RXD_PRIO(rxd_vlan
), rxdd
->va_lo
,
1317 static void print_rxfd(struct rxf_desc
*rxfd
)
1319 DBG("=== RxF desc CHIP ORDER/ENDIANESS =============\n"
1320 "info 0x%x va_lo %u pa_lo 0x%x pa_hi 0x%x len 0x%x\n",
1321 rxfd
->info
, rxfd
->va_lo
, rxfd
->pa_lo
, rxfd
->pa_hi
, rxfd
->len
);
1325 * TX HW/SW interaction overview
1326 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1327 * There are 2 types of TX communication channels between driver and NIC.
1328 * 1) TX Free Fifo - TXF - holds ack descriptors for sent packets
1329 * 2) TX Data Fifo - TXD - holds descriptors of full buffers.
1331 * Currently NIC supports TSO, checksuming and gather DMA
1332 * UFO and IP fragmentation is on the way
1334 * RX SW Data Structures
1335 * ~~~~~~~~~~~~~~~~~~~~~
1336 * txdb - used to keep track of all skbs owned by SW and their dma addresses.
1337 * For TX case, ownership lasts from geting packet via hard_xmit and until HW
1338 * acknowledges sent by TXF descriptors.
1339 * Implemented as cyclic buffer.
1340 * fifo - keeps info about fifo's size and location, relevant HW registers,
1341 * usage and skb db. Each RXD and RXF Fifo has its own fifo structure.
1342 * Implemented as simple struct.
1344 * TX SW Execution Flow
1345 * ~~~~~~~~~~~~~~~~~~~~
1346 * OS calls driver's hard_xmit method with packet to sent.
1347 * Driver creates DMA mappings, builds TXD descriptors and kicks HW
1348 * by updating TXD WPTR.
1349 * When packet is sent, HW write us TXF descriptor and SW frees original skb.
1350 * To prevent TXD fifo overflow without reading HW registers every time,
1351 * SW deploys "tx level" technique.
1352 * Upon strart up, tx level is initialized to TXD fifo length.
1353 * For every sent packet, SW gets its TXD descriptor sizei
1354 * (from precalculated array) and substructs it from tx level.
1355 * The size is also stored in txdb. When TXF ack arrives, SW fetch size of
1356 * original TXD descriptor from txdb and adds it to tx level.
1357 * When Tx level drops under some predefined treshhold, the driver
1358 * stops the TX queue. When TX level rises above that level,
1359 * the tx queue is enabled again.
1361 * This technique avoids eccessive reading of RPTR and WPTR registers.
1362 * As our benchmarks shows, it adds 1.5 Gbit/sec to NIS's throuput.
1365 /*************************************************************************
1367 *************************************************************************/
1368 static inline int bdx_tx_db_size(struct txdb
*db
)
1370 int taken
= db
->wptr
- db
->rptr
;
1372 taken
= db
->size
+ 1 + taken
; /* (size + 1) equals memsz */
1374 return db
->size
- taken
;
1377 /* __bdx_tx_ptr_next - helper function, increment read/write pointer + wrap
1379 * @ptr - read or write pointer
1381 static inline void __bdx_tx_db_ptr_next(struct txdb
*db
, struct tx_map
**pptr
)
1383 BDX_ASSERT(db
== NULL
|| pptr
== NULL
); /* sanity */
1385 BDX_ASSERT(*pptr
!= db
->rptr
&& /* expect either read */
1386 *pptr
!= db
->wptr
); /* or write pointer */
1388 BDX_ASSERT(*pptr
< db
->start
|| /* pointer has to be */
1389 *pptr
>= db
->end
); /* in range */
1392 if (unlikely(*pptr
== db
->end
))
1396 /* bdx_tx_db_inc_rptr - increment read pointer
1399 static inline void bdx_tx_db_inc_rptr(struct txdb
*db
)
1401 BDX_ASSERT(db
->rptr
== db
->wptr
); /* can't read from empty db */
1402 __bdx_tx_db_ptr_next(db
, &db
->rptr
);
1405 /* bdx_tx_db_inc_rptr - increment write pointer
1408 static inline void bdx_tx_db_inc_wptr(struct txdb
*db
)
1410 __bdx_tx_db_ptr_next(db
, &db
->wptr
);
1411 BDX_ASSERT(db
->rptr
== db
->wptr
); /* we can not get empty db as
1412 a result of write */
1415 /* bdx_tx_db_init - creates and initializes tx db
1417 * @sz_type - size of tx fifo
1418 * Returns 0 on success, error code otherwise
1420 static int bdx_tx_db_init(struct txdb
*d
, int sz_type
)
1422 int memsz
= FIFO_SIZE
* (1 << (sz_type
+ 1));
1424 d
->start
= vmalloc(memsz
);
1429 * In order to differentiate between db is empty and db is full
1430 * states at least one element should always be empty in order to
1431 * avoid rptr == wptr which means db is empty
1433 d
->size
= memsz
/ sizeof(struct tx_map
) - 1;
1434 d
->end
= d
->start
+ d
->size
+ 1; /* just after last element */
1436 /* all dbs are created equally empty */
1443 /* bdx_tx_db_close - closes tx db and frees all memory
1446 static void bdx_tx_db_close(struct txdb
*d
)
1448 BDX_ASSERT(d
== NULL
);
1454 /*************************************************************************
1456 *************************************************************************/
1458 /* sizes of tx desc (including padding if needed) as function
1459 * of skb's frag number */
1462 u16 qwords
; /* qword = 64 bit */
1463 } txd_sizes
[MAX_SKB_FRAGS
+ 1];
1465 /* txdb_map_skb - creates and stores dma mappings for skb's data blocks
1466 * @priv - NIC private structure
1467 * @skb - socket buffer to map
1469 * It makes dma mappings for skb's data blocks and writes them to PBL of
1470 * new tx descriptor. It also stores them in the tx db, so they could be
1471 * unmaped after data was sent. It is reponsibility of a caller to make
1472 * sure that there is enough space in the tx db. Last element holds pointer
1473 * to skb itself and marked with zero length
1476 bdx_tx_map_skb(struct bdx_priv
*priv
, struct sk_buff
*skb
,
1477 struct txd_desc
*txdd
)
1479 struct txdb
*db
= &priv
->txdb
;
1480 struct pbl
*pbl
= &txdd
->pbl
[0];
1481 int nr_frags
= skb_shinfo(skb
)->nr_frags
;
1484 db
->wptr
->len
= skb_headlen(skb
);
1485 db
->wptr
->addr
.dma
= pci_map_single(priv
->pdev
, skb
->data
,
1486 db
->wptr
->len
, PCI_DMA_TODEVICE
);
1487 pbl
->len
= CPU_CHIP_SWAP32(db
->wptr
->len
);
1488 pbl
->pa_lo
= CPU_CHIP_SWAP32(L32_64(db
->wptr
->addr
.dma
));
1489 pbl
->pa_hi
= CPU_CHIP_SWAP32(H32_64(db
->wptr
->addr
.dma
));
1490 DBG("=== pbl len: 0x%x ================\n", pbl
->len
);
1491 DBG("=== pbl pa_lo: 0x%x ================\n", pbl
->pa_lo
);
1492 DBG("=== pbl pa_hi: 0x%x ================\n", pbl
->pa_hi
);
1493 bdx_tx_db_inc_wptr(db
);
1495 for (i
= 0; i
< nr_frags
; i
++) {
1496 struct skb_frag_struct
*frag
;
1498 frag
= &skb_shinfo(skb
)->frags
[i
];
1499 db
->wptr
->len
= frag
->size
;
1500 db
->wptr
->addr
.dma
=
1501 pci_map_page(priv
->pdev
, frag
->page
, frag
->page_offset
,
1502 frag
->size
, PCI_DMA_TODEVICE
);
1505 pbl
->len
= CPU_CHIP_SWAP32(db
->wptr
->len
);
1506 pbl
->pa_lo
= CPU_CHIP_SWAP32(L32_64(db
->wptr
->addr
.dma
));
1507 pbl
->pa_hi
= CPU_CHIP_SWAP32(H32_64(db
->wptr
->addr
.dma
));
1508 bdx_tx_db_inc_wptr(db
);
1511 /* add skb clean up info. */
1512 db
->wptr
->len
= -txd_sizes
[nr_frags
].bytes
;
1513 db
->wptr
->addr
.skb
= skb
;
1514 bdx_tx_db_inc_wptr(db
);
1517 /* init_txd_sizes - precalculate sizes of descriptors for skbs up to 16 frags
1518 * number of frags is used as index to fetch correct descriptors size,
1519 * instead of calculating it each time */
1520 static void __init
init_txd_sizes(void)
1524 /* 7 - is number of lwords in txd with one phys buffer
1525 * 3 - is number of lwords used for every additional phys buffer */
1526 for (i
= 0; i
< MAX_SKB_FRAGS
+ 1; i
++) {
1527 lwords
= 7 + (i
* 3);
1529 lwords
++; /* pad it with 1 lword */
1530 txd_sizes
[i
].qwords
= lwords
>> 1;
1531 txd_sizes
[i
].bytes
= lwords
<< 2;
1535 /* bdx_tx_init - initialize all Tx related stuff.
1536 * Namely, TXD and TXF fifos, database etc */
1537 static int bdx_tx_init(struct bdx_priv
*priv
)
1539 if (bdx_fifo_init(priv
, &priv
->txd_fifo0
.m
, priv
->txd_size
,
1541 regTXD_CFG1_0
, regTXD_RPTR_0
, regTXD_WPTR_0
))
1543 if (bdx_fifo_init(priv
, &priv
->txf_fifo0
.m
, priv
->txf_size
,
1545 regTXF_CFG1_0
, regTXF_RPTR_0
, regTXF_WPTR_0
))
1548 /* The TX db has to keep mappings for all packets sent (on TxD)
1549 * and not yet reclaimed (on TxF) */
1550 if (bdx_tx_db_init(&priv
->txdb
, max(priv
->txd_size
, priv
->txf_size
)))
1553 priv
->tx_level
= BDX_MAX_TX_LEVEL
;
1554 #ifdef BDX_DELAY_WPTR
1555 priv
->tx_update_mark
= priv
->tx_level
- 1024;
1560 netdev_err(priv
->ndev
, "Tx init failed\n");
1565 * bdx_tx_space - calculates available space in TX fifo
1566 * @priv - NIC private structure
1567 * Returns available space in TX fifo in bytes
1569 static inline int bdx_tx_space(struct bdx_priv
*priv
)
1571 struct txd_fifo
*f
= &priv
->txd_fifo0
;
1574 f
->m
.rptr
= READ_REG(priv
, f
->m
.reg_RPTR
) & TXF_WPTR_WR_PTR
;
1575 fsize
= f
->m
.rptr
- f
->m
.wptr
;
1577 fsize
= f
->m
.memsz
+ fsize
;
1581 /* bdx_tx_transmit - send packet to NIC
1582 * @skb - packet to send
1583 * ndev - network device assigned to NIC
1585 * o NETDEV_TX_OK everything ok.
1586 * o NETDEV_TX_BUSY Cannot transmit packet, try later
1587 * Usually a bug, means queue start/stop flow control is broken in
1588 * the driver. Note: the driver must NOT put the skb in its DMA ring.
1589 * o NETDEV_TX_LOCKED Locking failed, please retry quickly.
1591 static netdev_tx_t
bdx_tx_transmit(struct sk_buff
*skb
,
1592 struct net_device
*ndev
)
1594 struct bdx_priv
*priv
= netdev_priv(ndev
);
1595 struct txd_fifo
*f
= &priv
->txd_fifo0
;
1596 int txd_checksum
= 7; /* full checksum */
1598 int txd_vlan_id
= 0;
1602 int nr_frags
= skb_shinfo(skb
)->nr_frags
;
1603 struct txd_desc
*txdd
;
1605 unsigned long flags
;
1608 local_irq_save(flags
);
1609 if (!spin_trylock(&priv
->tx_lock
)) {
1610 local_irq_restore(flags
);
1611 DBG("%s[%s]: TX locked, returning NETDEV_TX_LOCKED\n",
1612 BDX_DRV_NAME
, ndev
->name
);
1613 return NETDEV_TX_LOCKED
;
1616 /* build tx descriptor */
1617 BDX_ASSERT(f
->m
.wptr
>= f
->m
.memsz
); /* started with valid wptr */
1618 txdd
= (struct txd_desc
*)(f
->m
.va
+ f
->m
.wptr
);
1619 if (unlikely(skb
->ip_summed
!= CHECKSUM_PARTIAL
))
1622 if (skb_shinfo(skb
)->gso_size
) {
1623 txd_mss
= skb_shinfo(skb
)->gso_size
;
1625 DBG("skb %p skb len %d gso size = %d\n", skb
, skb
->len
,
1629 if (vlan_tx_tag_present(skb
)) {
1630 /*Cut VLAN ID to 12 bits */
1631 txd_vlan_id
= vlan_tx_tag_get(skb
) & BITS_MASK(12);
1635 txdd
->length
= CPU_CHIP_SWAP16(skb
->len
);
1636 txdd
->mss
= CPU_CHIP_SWAP16(txd_mss
);
1638 CPU_CHIP_SWAP32(TXD_W1_VAL
1639 (txd_sizes
[nr_frags
].qwords
, txd_checksum
, txd_vtag
,
1640 txd_lgsnd
, txd_vlan_id
));
1641 DBG("=== TxD desc =====================\n");
1642 DBG("=== w1: 0x%x ================\n", txdd
->txd_val1
);
1643 DBG("=== w2: mss 0x%x len 0x%x\n", txdd
->mss
, txdd
->length
);
1645 bdx_tx_map_skb(priv
, skb
, txdd
);
1647 /* increment TXD write pointer. In case of
1648 fifo wrapping copy reminder of the descriptor
1650 f
->m
.wptr
+= txd_sizes
[nr_frags
].bytes
;
1651 len
= f
->m
.wptr
- f
->m
.memsz
;
1652 if (unlikely(len
>= 0)) {
1655 BDX_ASSERT(len
> f
->m
.memsz
);
1656 memcpy(f
->m
.va
, f
->m
.va
+ f
->m
.memsz
, len
);
1659 BDX_ASSERT(f
->m
.wptr
>= f
->m
.memsz
); /* finished with valid wptr */
1661 priv
->tx_level
-= txd_sizes
[nr_frags
].bytes
;
1662 BDX_ASSERT(priv
->tx_level
<= 0 || priv
->tx_level
> BDX_MAX_TX_LEVEL
);
1663 #ifdef BDX_DELAY_WPTR
1664 if (priv
->tx_level
> priv
->tx_update_mark
) {
1665 /* Force memory writes to complete before letting h/w
1666 know there are new descriptors to fetch.
1667 (might be needed on platforms like IA64)
1669 WRITE_REG(priv
, f
->m
.reg_WPTR
, f
->m
.wptr
& TXF_WPTR_WR_PTR
);
1671 if (priv
->tx_noupd
++ > BDX_NO_UPD_PACKETS
) {
1673 WRITE_REG(priv
, f
->m
.reg_WPTR
,
1674 f
->m
.wptr
& TXF_WPTR_WR_PTR
);
1678 /* Force memory writes to complete before letting h/w
1679 know there are new descriptors to fetch.
1680 (might be needed on platforms like IA64)
1682 WRITE_REG(priv
, f
->m
.reg_WPTR
, f
->m
.wptr
& TXF_WPTR_WR_PTR
);
1686 ndev
->trans_start
= jiffies
; /* NETIF_F_LLTX driver :( */
1688 ndev
->stats
.tx_packets
++;
1689 ndev
->stats
.tx_bytes
+= skb
->len
;
1691 if (priv
->tx_level
< BDX_MIN_TX_LEVEL
) {
1692 DBG("%s: %s: TX Q STOP level %d\n",
1693 BDX_DRV_NAME
, ndev
->name
, priv
->tx_level
);
1694 netif_stop_queue(ndev
);
1697 spin_unlock_irqrestore(&priv
->tx_lock
, flags
);
1698 return NETDEV_TX_OK
;
1701 /* bdx_tx_cleanup - clean TXF fifo, run in the context of IRQ.
1702 * @priv - bdx adapter
1703 * It scans TXF fifo for descriptors, frees DMA mappings and reports to OS
1704 * that those packets were sent
1706 static void bdx_tx_cleanup(struct bdx_priv
*priv
)
1708 struct txf_fifo
*f
= &priv
->txf_fifo0
;
1709 struct txdb
*db
= &priv
->txdb
;
1713 f
->m
.wptr
= READ_REG(priv
, f
->m
.reg_WPTR
) & TXF_WPTR_MASK
;
1714 BDX_ASSERT(f
->m
.rptr
>= f
->m
.memsz
); /* started with valid rptr */
1716 while (f
->m
.wptr
!= f
->m
.rptr
) {
1717 f
->m
.rptr
+= BDX_TXF_DESC_SZ
;
1718 f
->m
.rptr
&= f
->m
.size_mask
;
1720 /* unmap all the fragments */
1721 /* first has to come tx_maps containing dma */
1722 BDX_ASSERT(db
->rptr
->len
== 0);
1724 BDX_ASSERT(db
->rptr
->addr
.dma
== 0);
1725 pci_unmap_page(priv
->pdev
, db
->rptr
->addr
.dma
,
1726 db
->rptr
->len
, PCI_DMA_TODEVICE
);
1727 bdx_tx_db_inc_rptr(db
);
1728 } while (db
->rptr
->len
> 0);
1729 tx_level
-= db
->rptr
->len
; /* '-' koz len is negative */
1731 /* now should come skb pointer - free it */
1732 dev_kfree_skb_irq(db
->rptr
->addr
.skb
);
1733 bdx_tx_db_inc_rptr(db
);
1736 /* let h/w know which TXF descriptors were cleaned */
1737 BDX_ASSERT((f
->m
.wptr
& TXF_WPTR_WR_PTR
) >= f
->m
.memsz
);
1738 WRITE_REG(priv
, f
->m
.reg_RPTR
, f
->m
.rptr
& TXF_WPTR_WR_PTR
);
1740 /* We reclaimed resources, so in case the Q is stopped by xmit callback,
1741 * we resume the transmition and use tx_lock to synchronize with xmit.*/
1742 spin_lock(&priv
->tx_lock
);
1743 priv
->tx_level
+= tx_level
;
1744 BDX_ASSERT(priv
->tx_level
<= 0 || priv
->tx_level
> BDX_MAX_TX_LEVEL
);
1745 #ifdef BDX_DELAY_WPTR
1746 if (priv
->tx_noupd
) {
1748 WRITE_REG(priv
, priv
->txd_fifo0
.m
.reg_WPTR
,
1749 priv
->txd_fifo0
.m
.wptr
& TXF_WPTR_WR_PTR
);
1753 if (unlikely(netif_queue_stopped(priv
->ndev
) &&
1754 netif_carrier_ok(priv
->ndev
) &&
1755 (priv
->tx_level
>= BDX_MIN_TX_LEVEL
))) {
1756 DBG("%s: %s: TX Q WAKE level %d\n",
1757 BDX_DRV_NAME
, priv
->ndev
->name
, priv
->tx_level
);
1758 netif_wake_queue(priv
->ndev
);
1760 spin_unlock(&priv
->tx_lock
);
1763 /* bdx_tx_free_skbs - frees all skbs from TXD fifo.
1764 * It gets called when OS stops this dev, eg upon "ifconfig down" or rmmod
1766 static void bdx_tx_free_skbs(struct bdx_priv
*priv
)
1768 struct txdb
*db
= &priv
->txdb
;
1771 while (db
->rptr
!= db
->wptr
) {
1772 if (likely(db
->rptr
->len
))
1773 pci_unmap_page(priv
->pdev
, db
->rptr
->addr
.dma
,
1774 db
->rptr
->len
, PCI_DMA_TODEVICE
);
1776 dev_kfree_skb(db
->rptr
->addr
.skb
);
1777 bdx_tx_db_inc_rptr(db
);
1782 /* bdx_tx_free - frees all Tx resources */
1783 static void bdx_tx_free(struct bdx_priv
*priv
)
1786 bdx_tx_free_skbs(priv
);
1787 bdx_fifo_free(priv
, &priv
->txd_fifo0
.m
);
1788 bdx_fifo_free(priv
, &priv
->txf_fifo0
.m
);
1789 bdx_tx_db_close(&priv
->txdb
);
1792 /* bdx_tx_push_desc - push descriptor to TxD fifo
1793 * @priv - NIC private structure
1794 * @data - desc's data
1795 * @size - desc's size
1797 * Pushes desc to TxD fifo and overlaps it if needed.
1798 * NOTE: this func does not check for available space. this is responsibility
1799 * of the caller. Neither does it check that data size is smaller than
1802 static void bdx_tx_push_desc(struct bdx_priv
*priv
, void *data
, int size
)
1804 struct txd_fifo
*f
= &priv
->txd_fifo0
;
1805 int i
= f
->m
.memsz
- f
->m
.wptr
;
1811 memcpy(f
->m
.va
+ f
->m
.wptr
, data
, size
);
1814 memcpy(f
->m
.va
+ f
->m
.wptr
, data
, i
);
1815 f
->m
.wptr
= size
- i
;
1816 memcpy(f
->m
.va
, data
+ i
, f
->m
.wptr
);
1818 WRITE_REG(priv
, f
->m
.reg_WPTR
, f
->m
.wptr
& TXF_WPTR_WR_PTR
);
1821 /* bdx_tx_push_desc_safe - push descriptor to TxD fifo in a safe way
1822 * @priv - NIC private structure
1823 * @data - desc's data
1824 * @size - desc's size
1826 * NOTE: this func does check for available space and, if necessary, waits for
1827 * NIC to read existing data before writing new one.
1829 static void bdx_tx_push_desc_safe(struct bdx_priv
*priv
, void *data
, int size
)
1835 /* we substruct 8 because when fifo is full rptr == wptr
1836 which also means that fifo is empty, we can understand
1837 the difference, but could hw do the same ??? :) */
1838 int avail
= bdx_tx_space(priv
) - 8;
1840 if (timer
++ > 300) { /* prevent endless loop */
1841 DBG("timeout while writing desc to TxD fifo\n");
1844 udelay(50); /* give hw a chance to clean fifo */
1847 avail
= min(avail
, size
);
1848 DBG("about to push %d bytes starting %p size %d\n", avail
,
1850 bdx_tx_push_desc(priv
, data
, avail
);
1857 static const struct net_device_ops bdx_netdev_ops
= {
1858 .ndo_open
= bdx_open
,
1859 .ndo_stop
= bdx_close
,
1860 .ndo_start_xmit
= bdx_tx_transmit
,
1861 .ndo_validate_addr
= eth_validate_addr
,
1862 .ndo_do_ioctl
= bdx_ioctl
,
1863 .ndo_set_rx_mode
= bdx_setmulti
,
1864 .ndo_change_mtu
= bdx_change_mtu
,
1865 .ndo_set_mac_address
= bdx_set_mac
,
1866 .ndo_vlan_rx_add_vid
= bdx_vlan_rx_add_vid
,
1867 .ndo_vlan_rx_kill_vid
= bdx_vlan_rx_kill_vid
,
1871 * bdx_probe - Device Initialization Routine
1872 * @pdev: PCI device information struct
1873 * @ent: entry in bdx_pci_tbl
1875 * Returns 0 on success, negative on failure
1877 * bdx_probe initializes an adapter identified by a pci_dev structure.
1878 * The OS initialization, configuring of the adapter private structure,
1879 * and a hardware reset occur.
1881 * functions and their order used as explained in
1882 * /usr/src/linux/Documentation/DMA-{API,mapping}.txt
1886 /* TBD: netif_msg should be checked and implemented. I disable it for now */
1887 static int __devinit
1888 bdx_probe(struct pci_dev
*pdev
, const struct pci_device_id
*ent
)
1890 struct net_device
*ndev
;
1891 struct bdx_priv
*priv
;
1892 int err
, pci_using_dac
, port
;
1893 unsigned long pciaddr
;
1895 struct pci_nic
*nic
;
1899 nic
= vmalloc(sizeof(*nic
));
1903 /************** pci *****************/
1904 err
= pci_enable_device(pdev
);
1905 if (err
) /* it triggers interrupt, dunno why. */
1906 goto err_pci
; /* it's not a problem though */
1908 if (!(err
= pci_set_dma_mask(pdev
, DMA_BIT_MASK(64))) &&
1909 !(err
= pci_set_consistent_dma_mask(pdev
, DMA_BIT_MASK(64)))) {
1912 if ((err
= pci_set_dma_mask(pdev
, DMA_BIT_MASK(32))) ||
1913 (err
= pci_set_consistent_dma_mask(pdev
, DMA_BIT_MASK(32)))) {
1914 pr_err("No usable DMA configuration, aborting\n");
1920 err
= pci_request_regions(pdev
, BDX_DRV_NAME
);
1924 pci_set_master(pdev
);
1926 pciaddr
= pci_resource_start(pdev
, 0);
1929 pr_err("no MMIO resource\n");
1932 regionSize
= pci_resource_len(pdev
, 0);
1933 if (regionSize
< BDX_REGS_SIZE
) {
1935 pr_err("MMIO resource (%x) too small\n", regionSize
);
1939 nic
->regs
= ioremap(pciaddr
, regionSize
);
1942 pr_err("ioremap failed\n");
1946 if (pdev
->irq
< 2) {
1948 pr_err("invalid irq (%d)\n", pdev
->irq
);
1951 pci_set_drvdata(pdev
, nic
);
1953 if (pdev
->device
== 0x3014)
1960 bdx_hw_reset_direct(nic
->regs
);
1962 nic
->irq_type
= IRQ_INTX
;
1964 if ((readl(nic
->regs
+ FPGA_VER
) & 0xFFF) >= 378) {
1965 err
= pci_enable_msi(pdev
);
1967 pr_err("Can't eneble msi. error is %d\n", err
);
1969 nic
->irq_type
= IRQ_MSI
;
1971 DBG("HW does not support MSI\n");
1974 /************** netdev **************/
1975 for (port
= 0; port
< nic
->port_num
; port
++) {
1976 ndev
= alloc_etherdev(sizeof(struct bdx_priv
));
1979 pr_err("alloc_etherdev failed\n");
1983 ndev
->netdev_ops
= &bdx_netdev_ops
;
1984 ndev
->tx_queue_len
= BDX_NDEV_TXQ_LEN
;
1986 bdx_set_ethtool_ops(ndev
); /* ethtool interface */
1988 /* these fields are used for info purposes only
1989 * so we can have them same for all ports of the board */
1990 ndev
->if_port
= port
;
1991 ndev
->base_addr
= pciaddr
;
1992 ndev
->mem_start
= pciaddr
;
1993 ndev
->mem_end
= pciaddr
+ regionSize
;
1994 ndev
->irq
= pdev
->irq
;
1995 ndev
->features
= NETIF_F_IP_CSUM
| NETIF_F_SG
| NETIF_F_TSO
1996 | NETIF_F_HW_VLAN_TX
| NETIF_F_HW_VLAN_RX
|
1997 NETIF_F_HW_VLAN_FILTER
| NETIF_F_RXCSUM
1998 /*| NETIF_F_FRAGLIST */
2000 ndev
->hw_features
= NETIF_F_IP_CSUM
| NETIF_F_SG
|
2001 NETIF_F_TSO
| NETIF_F_HW_VLAN_TX
;
2004 ndev
->features
|= NETIF_F_HIGHDMA
;
2006 /************** priv ****************/
2007 priv
= nic
->priv
[port
] = netdev_priv(ndev
);
2009 priv
->pBdxRegs
= nic
->regs
+ port
* 0x8000;
2014 priv
->msg_enable
= BDX_DEF_MSG_ENABLE
;
2016 netif_napi_add(ndev
, &priv
->napi
, bdx_poll
, 64);
2018 if ((readl(nic
->regs
+ FPGA_VER
) & 0xFFF) == 308) {
2019 DBG("HW statistics not supported\n");
2020 priv
->stats_flag
= 0;
2022 priv
->stats_flag
= 1;
2025 /* Initialize fifo sizes. */
2031 /* Initialize the initial coalescing registers. */
2032 priv
->rdintcm
= INT_REG_VAL(0x20, 1, 4, 12);
2033 priv
->tdintcm
= INT_REG_VAL(0x20, 1, 0, 12);
2035 /* ndev->xmit_lock spinlock is not used.
2036 * Private priv->tx_lock is used for synchronization
2037 * between transmit and TX irq cleanup. In addition
2038 * set multicast list callback has to use priv->tx_lock.
2041 ndev
->features
|= NETIF_F_LLTX
;
2043 spin_lock_init(&priv
->tx_lock
);
2045 /*bdx_hw_reset(priv); */
2046 if (bdx_read_mac(priv
)) {
2047 pr_err("load MAC address failed\n");
2050 SET_NETDEV_DEV(ndev
, &pdev
->dev
);
2051 err
= register_netdev(ndev
);
2053 pr_err("register_netdev failed\n");
2056 netif_carrier_off(ndev
);
2057 netif_stop_queue(ndev
);
2068 pci_release_regions(pdev
);
2070 pci_disable_device(pdev
);
2077 /****************** Ethtool interface *********************/
2078 /* get strings for statistics counters */
2080 bdx_stat_names
[][ETH_GSTRING_LEN
] = {
2081 "InUCast", /* 0x7200 */
2082 "InMCast", /* 0x7210 */
2083 "InBCast", /* 0x7220 */
2084 "InPkts", /* 0x7230 */
2085 "InErrors", /* 0x7240 */
2086 "InDropped", /* 0x7250 */
2087 "FrameTooLong", /* 0x7260 */
2088 "FrameSequenceErrors", /* 0x7270 */
2089 "InVLAN", /* 0x7280 */
2090 "InDroppedDFE", /* 0x7290 */
2091 "InDroppedIntFull", /* 0x72A0 */
2092 "InFrameAlignErrors", /* 0x72B0 */
2094 /* 0x72C0-0x72E0 RSRV */
2096 "OutUCast", /* 0x72F0 */
2097 "OutMCast", /* 0x7300 */
2098 "OutBCast", /* 0x7310 */
2099 "OutPkts", /* 0x7320 */
2101 /* 0x7330-0x7360 RSRV */
2103 "OutVLAN", /* 0x7370 */
2104 "InUCastOctects", /* 0x7380 */
2105 "OutUCastOctects", /* 0x7390 */
2107 /* 0x73A0-0x73B0 RSRV */
2109 "InBCastOctects", /* 0x73C0 */
2110 "OutBCastOctects", /* 0x73D0 */
2111 "InOctects", /* 0x73E0 */
2112 "OutOctects", /* 0x73F0 */
2116 * bdx_get_settings - get device-specific settings
2120 static int bdx_get_settings(struct net_device
*netdev
, struct ethtool_cmd
*ecmd
)
2124 struct bdx_priv
*priv
= netdev_priv(netdev
);
2126 rdintcm
= priv
->rdintcm
;
2127 tdintcm
= priv
->tdintcm
;
2129 ecmd
->supported
= (SUPPORTED_10000baseT_Full
| SUPPORTED_FIBRE
);
2130 ecmd
->advertising
= (ADVERTISED_10000baseT_Full
| ADVERTISED_FIBRE
);
2131 ethtool_cmd_speed_set(ecmd
, SPEED_10000
);
2132 ecmd
->duplex
= DUPLEX_FULL
;
2133 ecmd
->port
= PORT_FIBRE
;
2134 ecmd
->transceiver
= XCVR_EXTERNAL
; /* what does it mean? */
2135 ecmd
->autoneg
= AUTONEG_DISABLE
;
2137 /* PCK_TH measures in multiples of FIFO bytes
2138 We translate to packets */
2140 ((GET_PCK_TH(tdintcm
) * PCK_TH_MULT
) / BDX_TXF_DESC_SZ
);
2142 ((GET_PCK_TH(rdintcm
) * PCK_TH_MULT
) / sizeof(struct rxf_desc
));
2148 * bdx_get_drvinfo - report driver information
2153 bdx_get_drvinfo(struct net_device
*netdev
, struct ethtool_drvinfo
*drvinfo
)
2155 struct bdx_priv
*priv
= netdev_priv(netdev
);
2157 strlcat(drvinfo
->driver
, BDX_DRV_NAME
, sizeof(drvinfo
->driver
));
2158 strlcat(drvinfo
->version
, BDX_DRV_VERSION
, sizeof(drvinfo
->version
));
2159 strlcat(drvinfo
->fw_version
, "N/A", sizeof(drvinfo
->fw_version
));
2160 strlcat(drvinfo
->bus_info
, pci_name(priv
->pdev
),
2161 sizeof(drvinfo
->bus_info
));
2163 drvinfo
->n_stats
= ((priv
->stats_flag
) ? ARRAY_SIZE(bdx_stat_names
) : 0);
2164 drvinfo
->testinfo_len
= 0;
2165 drvinfo
->regdump_len
= 0;
2166 drvinfo
->eedump_len
= 0;
2170 * bdx_get_coalesce - get interrupt coalescing parameters
2175 bdx_get_coalesce(struct net_device
*netdev
, struct ethtool_coalesce
*ecoal
)
2179 struct bdx_priv
*priv
= netdev_priv(netdev
);
2181 rdintcm
= priv
->rdintcm
;
2182 tdintcm
= priv
->tdintcm
;
2184 /* PCK_TH measures in multiples of FIFO bytes
2185 We translate to packets */
2186 ecoal
->rx_coalesce_usecs
= GET_INT_COAL(rdintcm
) * INT_COAL_MULT
;
2187 ecoal
->rx_max_coalesced_frames
=
2188 ((GET_PCK_TH(rdintcm
) * PCK_TH_MULT
) / sizeof(struct rxf_desc
));
2190 ecoal
->tx_coalesce_usecs
= GET_INT_COAL(tdintcm
) * INT_COAL_MULT
;
2191 ecoal
->tx_max_coalesced_frames
=
2192 ((GET_PCK_TH(tdintcm
) * PCK_TH_MULT
) / BDX_TXF_DESC_SZ
);
2194 /* adaptive parameters ignored */
2199 * bdx_set_coalesce - set interrupt coalescing parameters
2204 bdx_set_coalesce(struct net_device
*netdev
, struct ethtool_coalesce
*ecoal
)
2208 struct bdx_priv
*priv
= netdev_priv(netdev
);
2214 /* Check for valid input */
2215 rx_coal
= ecoal
->rx_coalesce_usecs
/ INT_COAL_MULT
;
2216 tx_coal
= ecoal
->tx_coalesce_usecs
/ INT_COAL_MULT
;
2217 rx_max_coal
= ecoal
->rx_max_coalesced_frames
;
2218 tx_max_coal
= ecoal
->tx_max_coalesced_frames
;
2220 /* Translate from packets to multiples of FIFO bytes */
2222 (((rx_max_coal
* sizeof(struct rxf_desc
)) + PCK_TH_MULT
- 1)
2225 (((tx_max_coal
* BDX_TXF_DESC_SZ
) + PCK_TH_MULT
- 1)
2228 if ((rx_coal
> 0x7FFF) || (tx_coal
> 0x7FFF) ||
2229 (rx_max_coal
> 0xF) || (tx_max_coal
> 0xF))
2232 rdintcm
= INT_REG_VAL(rx_coal
, GET_INT_COAL_RC(priv
->rdintcm
),
2233 GET_RXF_TH(priv
->rdintcm
), rx_max_coal
);
2234 tdintcm
= INT_REG_VAL(tx_coal
, GET_INT_COAL_RC(priv
->tdintcm
), 0,
2237 priv
->rdintcm
= rdintcm
;
2238 priv
->tdintcm
= tdintcm
;
2240 WRITE_REG(priv
, regRDINTCM0
, rdintcm
);
2241 WRITE_REG(priv
, regTDINTCM0
, tdintcm
);
2246 /* Convert RX fifo size to number of pending packets */
2247 static inline int bdx_rx_fifo_size_to_packets(int rx_size
)
2249 return (FIFO_SIZE
* (1 << rx_size
)) / sizeof(struct rxf_desc
);
2252 /* Convert TX fifo size to number of pending packets */
2253 static inline int bdx_tx_fifo_size_to_packets(int tx_size
)
2255 return (FIFO_SIZE
* (1 << tx_size
)) / BDX_TXF_DESC_SZ
;
2259 * bdx_get_ringparam - report ring sizes
2264 bdx_get_ringparam(struct net_device
*netdev
, struct ethtool_ringparam
*ring
)
2266 struct bdx_priv
*priv
= netdev_priv(netdev
);
2268 /*max_pending - the maximum-sized FIFO we allow */
2269 ring
->rx_max_pending
= bdx_rx_fifo_size_to_packets(3);
2270 ring
->tx_max_pending
= bdx_tx_fifo_size_to_packets(3);
2271 ring
->rx_pending
= bdx_rx_fifo_size_to_packets(priv
->rxf_size
);
2272 ring
->tx_pending
= bdx_tx_fifo_size_to_packets(priv
->txd_size
);
2276 * bdx_set_ringparam - set ring sizes
2281 bdx_set_ringparam(struct net_device
*netdev
, struct ethtool_ringparam
*ring
)
2283 struct bdx_priv
*priv
= netdev_priv(netdev
);
2287 for (; rx_size
< 4; rx_size
++) {
2288 if (bdx_rx_fifo_size_to_packets(rx_size
) >= ring
->rx_pending
)
2294 for (; tx_size
< 4; tx_size
++) {
2295 if (bdx_tx_fifo_size_to_packets(tx_size
) >= ring
->tx_pending
)
2301 /*Is there anything to do? */
2302 if ((rx_size
== priv
->rxf_size
) &&
2303 (tx_size
== priv
->txd_size
))
2306 priv
->rxf_size
= rx_size
;
2308 priv
->rxd_size
= rx_size
- 1;
2310 priv
->rxd_size
= rx_size
;
2312 priv
->txf_size
= priv
->txd_size
= tx_size
;
2314 if (netif_running(netdev
)) {
2322 * bdx_get_strings - return a set of strings that describe the requested objects
2326 static void bdx_get_strings(struct net_device
*netdev
, u32 stringset
, u8
*data
)
2328 switch (stringset
) {
2330 memcpy(data
, *bdx_stat_names
, sizeof(bdx_stat_names
));
2336 * bdx_get_sset_count - return number of statistics or tests
2339 static int bdx_get_sset_count(struct net_device
*netdev
, int stringset
)
2341 struct bdx_priv
*priv
= netdev_priv(netdev
);
2343 switch (stringset
) {
2345 BDX_ASSERT(ARRAY_SIZE(bdx_stat_names
)
2346 != sizeof(struct bdx_stats
) / sizeof(u64
));
2347 return (priv
->stats_flag
) ? ARRAY_SIZE(bdx_stat_names
) : 0;
2354 * bdx_get_ethtool_stats - return device's hardware L2 statistics
2359 static void bdx_get_ethtool_stats(struct net_device
*netdev
,
2360 struct ethtool_stats
*stats
, u64
*data
)
2362 struct bdx_priv
*priv
= netdev_priv(netdev
);
2364 if (priv
->stats_flag
) {
2366 /* Update stats from HW */
2367 bdx_update_stats(priv
);
2369 /* Copy data to user buffer */
2370 memcpy(data
, &priv
->hw_stats
, sizeof(priv
->hw_stats
));
2375 * bdx_set_ethtool_ops - ethtool interface implementation
2378 static void bdx_set_ethtool_ops(struct net_device
*netdev
)
2380 static const struct ethtool_ops bdx_ethtool_ops
= {
2381 .get_settings
= bdx_get_settings
,
2382 .get_drvinfo
= bdx_get_drvinfo
,
2383 .get_link
= ethtool_op_get_link
,
2384 .get_coalesce
= bdx_get_coalesce
,
2385 .set_coalesce
= bdx_set_coalesce
,
2386 .get_ringparam
= bdx_get_ringparam
,
2387 .set_ringparam
= bdx_set_ringparam
,
2388 .get_strings
= bdx_get_strings
,
2389 .get_sset_count
= bdx_get_sset_count
,
2390 .get_ethtool_stats
= bdx_get_ethtool_stats
,
2393 SET_ETHTOOL_OPS(netdev
, &bdx_ethtool_ops
);
2397 * bdx_remove - Device Removal Routine
2398 * @pdev: PCI device information struct
2400 * bdx_remove is called by the PCI subsystem to alert the driver
2401 * that it should release a PCI device. The could be caused by a
2402 * Hot-Plug event, or because the driver is going to be removed from
2405 static void __devexit
bdx_remove(struct pci_dev
*pdev
)
2407 struct pci_nic
*nic
= pci_get_drvdata(pdev
);
2408 struct net_device
*ndev
;
2411 for (port
= 0; port
< nic
->port_num
; port
++) {
2412 ndev
= nic
->priv
[port
]->ndev
;
2413 unregister_netdev(ndev
);
2417 /*bdx_hw_reset_direct(nic->regs); */
2419 if (nic
->irq_type
== IRQ_MSI
)
2420 pci_disable_msi(pdev
);
2424 pci_release_regions(pdev
);
2425 pci_disable_device(pdev
);
2426 pci_set_drvdata(pdev
, NULL
);
2432 static struct pci_driver bdx_pci_driver
= {
2433 .name
= BDX_DRV_NAME
,
2434 .id_table
= bdx_pci_tbl
,
2436 .remove
= __devexit_p(bdx_remove
),
2440 * print_driver_id - print parameters of the driver build
2442 static void __init
print_driver_id(void)
2444 pr_info("%s, %s\n", BDX_DRV_DESC
, BDX_DRV_VERSION
);
2445 pr_info("Options: hw_csum %s\n", BDX_MSI_STRING
);
2448 static int __init
bdx_module_init(void)
2453 RET(pci_register_driver(&bdx_pci_driver
));
2456 module_init(bdx_module_init
);
2458 static void __exit
bdx_module_exit(void)
2461 pci_unregister_driver(&bdx_pci_driver
);
2465 module_exit(bdx_module_exit
);
2467 MODULE_LICENSE("GPL");
2468 MODULE_AUTHOR(DRIVER_AUTHOR
);
2469 MODULE_DESCRIPTION(BDX_DRV_DESC
);
2470 MODULE_FIRMWARE("tehuti/bdx.bin");