Add linux-next specific files for 20110831
[linux-2.6/next.git] / drivers / net / wireless / iwlwifi / iwl-fh.h
blob5bede9d7f9555ed04ea82a5ad76cb1d928381ba7
1 /******************************************************************************
3 * This file is provided under a dual BSD/GPLv2 license. When using or
4 * redistributing this file, you may do so under either license.
6 * GPL LICENSE SUMMARY
8 * Copyright(c) 2005 - 2011 Intel Corporation. All rights reserved.
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of version 2 of the GNU General Public License as
12 * published by the Free Software Foundation.
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
22 * USA
24 * The full GNU General Public License is included in this distribution
25 * in the file called LICENSE.GPL.
27 * Contact Information:
28 * Intel Linux Wireless <ilw@linux.intel.com>
29 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
31 * BSD LICENSE
33 * Copyright(c) 2005 - 2011 Intel Corporation. All rights reserved.
34 * All rights reserved.
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
40 * * Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * * Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in
44 * the documentation and/or other materials provided with the
45 * distribution.
46 * * Neither the name Intel Corporation nor the names of its
47 * contributors may be used to endorse or promote products derived
48 * from this software without specific prior written permission.
50 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
51 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
52 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
53 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
54 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
55 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
56 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
57 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
58 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
59 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
60 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
62 *****************************************************************************/
63 #ifndef __iwl_fh_h__
64 #define __iwl_fh_h__
66 #include <linux/types.h>
68 /****************************/
69 /* Flow Handler Definitions */
70 /****************************/
72 /**
73 * This I/O area is directly read/writable by driver (e.g. Linux uses writel())
74 * Addresses are offsets from device's PCI hardware base address.
76 #define FH_MEM_LOWER_BOUND (0x1000)
77 #define FH_MEM_UPPER_BOUND (0x2000)
79 /**
80 * Keep-Warm (KW) buffer base address.
82 * Driver must allocate a 4KByte buffer that is for keeping the
83 * host DRAM powered on (via dummy accesses to DRAM) to maintain low-latency
84 * DRAM access when doing Txing or Rxing. The dummy accesses prevent host
85 * from going into a power-savings mode that would cause higher DRAM latency,
86 * and possible data over/under-runs, before all Tx/Rx is complete.
88 * Driver loads FH_KW_MEM_ADDR_REG with the physical address (bits 35:4)
89 * of the buffer, which must be 4K aligned. Once this is set up, the device
90 * automatically invokes keep-warm accesses when normal accesses might not
91 * be sufficient to maintain fast DRAM response.
93 * Bit fields:
94 * 31-0: Keep-warm buffer physical base address [35:4], must be 4K aligned
96 #define FH_KW_MEM_ADDR_REG (FH_MEM_LOWER_BOUND + 0x97C)
99 /**
100 * TFD Circular Buffers Base (CBBC) addresses
102 * Device has 16 base pointer registers, one for each of 16 host-DRAM-resident
103 * circular buffers (CBs/queues) containing Transmit Frame Descriptors (TFDs)
104 * (see struct iwl_tfd_frame). These 16 pointer registers are offset by 0x04
105 * bytes from one another. Each TFD circular buffer in DRAM must be 256-byte
106 * aligned (address bits 0-7 must be 0).
108 * Bit fields in each pointer register:
109 * 27-0: TFD CB physical base address [35:8], must be 256-byte aligned
111 #define FH_MEM_CBBC_LOWER_BOUND (FH_MEM_LOWER_BOUND + 0x9D0)
112 #define FH_MEM_CBBC_UPPER_BOUND (FH_MEM_LOWER_BOUND + 0xA10)
114 /* Find TFD CB base pointer for given queue (range 0-15). */
115 #define FH_MEM_CBBC_QUEUE(x) (FH_MEM_CBBC_LOWER_BOUND + (x) * 0x4)
119 * Rx SRAM Control and Status Registers (RSCSR)
121 * These registers provide handshake between driver and device for the Rx queue
122 * (this queue handles *all* command responses, notifications, Rx data, etc.
123 * sent from uCode to host driver). Unlike Tx, there is only one Rx
124 * queue, and only one Rx DMA/FIFO channel. Also unlike Tx, which can
125 * concatenate up to 20 DRAM buffers to form a Tx frame, each Receive Buffer
126 * Descriptor (RBD) points to only one Rx Buffer (RB); there is a 1:1
127 * mapping between RBDs and RBs.
129 * Driver must allocate host DRAM memory for the following, and set the
130 * physical address of each into device registers:
132 * 1) Receive Buffer Descriptor (RBD) circular buffer (CB), typically with 256
133 * entries (although any power of 2, up to 4096, is selectable by driver).
134 * Each entry (1 dword) points to a receive buffer (RB) of consistent size
135 * (typically 4K, although 8K or 16K are also selectable by driver).
136 * Driver sets up RB size and number of RBDs in the CB via Rx config
137 * register FH_MEM_RCSR_CHNL0_CONFIG_REG.
139 * Bit fields within one RBD:
140 * 27-0: Receive Buffer physical address bits [35:8], 256-byte aligned
142 * Driver sets physical address [35:8] of base of RBD circular buffer
143 * into FH_RSCSR_CHNL0_RBDCB_BASE_REG [27:0].
145 * 2) Rx status buffer, 8 bytes, in which uCode indicates which Rx Buffers
146 * (RBs) have been filled, via a "write pointer", actually the index of
147 * the RB's corresponding RBD within the circular buffer. Driver sets
148 * physical address [35:4] into FH_RSCSR_CHNL0_STTS_WPTR_REG [31:0].
150 * Bit fields in lower dword of Rx status buffer (upper dword not used
151 * by driver:
152 * 31-12: Not used by driver
153 * 11- 0: Index of last filled Rx buffer descriptor
154 * (device writes, driver reads this value)
156 * As the driver prepares Receive Buffers (RBs) for device to fill, driver must
157 * enter pointers to these RBs into contiguous RBD circular buffer entries,
158 * and update the device's "write" index register,
159 * FH_RSCSR_CHNL0_RBDCB_WPTR_REG.
161 * This "write" index corresponds to the *next* RBD that the driver will make
162 * available, i.e. one RBD past the tail of the ready-to-fill RBDs within
163 * the circular buffer. This value should initially be 0 (before preparing any
164 * RBs), should be 8 after preparing the first 8 RBs (for example), and must
165 * wrap back to 0 at the end of the circular buffer (but don't wrap before
166 * "read" index has advanced past 1! See below).
167 * NOTE: DEVICE EXPECTS THE WRITE INDEX TO BE INCREMENTED IN MULTIPLES OF 8.
169 * As the device fills RBs (referenced from contiguous RBDs within the circular
170 * buffer), it updates the Rx status buffer in host DRAM, 2) described above,
171 * to tell the driver the index of the latest filled RBD. The driver must
172 * read this "read" index from DRAM after receiving an Rx interrupt from device
174 * The driver must also internally keep track of a third index, which is the
175 * next RBD to process. When receiving an Rx interrupt, driver should process
176 * all filled but unprocessed RBs up to, but not including, the RB
177 * corresponding to the "read" index. For example, if "read" index becomes "1",
178 * driver may process the RB pointed to by RBD 0. Depending on volume of
179 * traffic, there may be many RBs to process.
181 * If read index == write index, device thinks there is no room to put new data.
182 * Due to this, the maximum number of filled RBs is 255, instead of 256. To
183 * be safe, make sure that there is a gap of at least 2 RBDs between "write"
184 * and "read" indexes; that is, make sure that there are no more than 254
185 * buffers waiting to be filled.
187 #define FH_MEM_RSCSR_LOWER_BOUND (FH_MEM_LOWER_BOUND + 0xBC0)
188 #define FH_MEM_RSCSR_UPPER_BOUND (FH_MEM_LOWER_BOUND + 0xC00)
189 #define FH_MEM_RSCSR_CHNL0 (FH_MEM_RSCSR_LOWER_BOUND)
192 * Physical base address of 8-byte Rx Status buffer.
193 * Bit fields:
194 * 31-0: Rx status buffer physical base address [35:4], must 16-byte aligned.
196 #define FH_RSCSR_CHNL0_STTS_WPTR_REG (FH_MEM_RSCSR_CHNL0)
199 * Physical base address of Rx Buffer Descriptor Circular Buffer.
200 * Bit fields:
201 * 27-0: RBD CD physical base address [35:8], must be 256-byte aligned.
203 #define FH_RSCSR_CHNL0_RBDCB_BASE_REG (FH_MEM_RSCSR_CHNL0 + 0x004)
206 * Rx write pointer (index, really!).
207 * Bit fields:
208 * 11-0: Index of driver's most recent prepared-to-be-filled RBD, + 1.
209 * NOTE: For 256-entry circular buffer, use only bits [7:0].
211 #define FH_RSCSR_CHNL0_RBDCB_WPTR_REG (FH_MEM_RSCSR_CHNL0 + 0x008)
212 #define FH_RSCSR_CHNL0_WPTR (FH_RSCSR_CHNL0_RBDCB_WPTR_REG)
216 * Rx Config/Status Registers (RCSR)
217 * Rx Config Reg for channel 0 (only channel used)
219 * Driver must initialize FH_MEM_RCSR_CHNL0_CONFIG_REG as follows for
220 * normal operation (see bit fields).
222 * Clearing FH_MEM_RCSR_CHNL0_CONFIG_REG to 0 turns off Rx DMA.
223 * Driver should poll FH_MEM_RSSR_RX_STATUS_REG for
224 * FH_RSSR_CHNL0_RX_STATUS_CHNL_IDLE (bit 24) before continuing.
226 * Bit fields:
227 * 31-30: Rx DMA channel enable: '00' off/pause, '01' pause at end of frame,
228 * '10' operate normally
229 * 29-24: reserved
230 * 23-20: # RBDs in circular buffer = 2^value; use "8" for 256 RBDs (normal),
231 * min "5" for 32 RBDs, max "12" for 4096 RBDs.
232 * 19-18: reserved
233 * 17-16: size of each receive buffer; '00' 4K (normal), '01' 8K,
234 * '10' 12K, '11' 16K.
235 * 15-14: reserved
236 * 13-12: IRQ destination; '00' none, '01' host driver (normal operation)
237 * 11- 4: timeout for closing Rx buffer and interrupting host (units 32 usec)
238 * typical value 0x10 (about 1/2 msec)
239 * 3- 0: reserved
241 #define FH_MEM_RCSR_LOWER_BOUND (FH_MEM_LOWER_BOUND + 0xC00)
242 #define FH_MEM_RCSR_UPPER_BOUND (FH_MEM_LOWER_BOUND + 0xCC0)
243 #define FH_MEM_RCSR_CHNL0 (FH_MEM_RCSR_LOWER_BOUND)
245 #define FH_MEM_RCSR_CHNL0_CONFIG_REG (FH_MEM_RCSR_CHNL0)
247 #define FH_RCSR_CHNL0_RX_CONFIG_RB_TIMEOUT_MSK (0x00000FF0) /* bits 4-11 */
248 #define FH_RCSR_CHNL0_RX_CONFIG_IRQ_DEST_MSK (0x00001000) /* bits 12 */
249 #define FH_RCSR_CHNL0_RX_CONFIG_SINGLE_FRAME_MSK (0x00008000) /* bit 15 */
250 #define FH_RCSR_CHNL0_RX_CONFIG_RB_SIZE_MSK (0x00030000) /* bits 16-17 */
251 #define FH_RCSR_CHNL0_RX_CONFIG_RBDBC_SIZE_MSK (0x00F00000) /* bits 20-23 */
252 #define FH_RCSR_CHNL0_RX_CONFIG_DMA_CHNL_EN_MSK (0xC0000000) /* bits 30-31*/
254 #define FH_RCSR_RX_CONFIG_RBDCB_SIZE_POS (20)
255 #define FH_RCSR_RX_CONFIG_REG_IRQ_RBTH_POS (4)
256 #define RX_RB_TIMEOUT (0x10)
258 #define FH_RCSR_RX_CONFIG_CHNL_EN_PAUSE_VAL (0x00000000)
259 #define FH_RCSR_RX_CONFIG_CHNL_EN_PAUSE_EOF_VAL (0x40000000)
260 #define FH_RCSR_RX_CONFIG_CHNL_EN_ENABLE_VAL (0x80000000)
262 #define FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K (0x00000000)
263 #define FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_8K (0x00010000)
264 #define FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_12K (0x00020000)
265 #define FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_16K (0x00030000)
267 #define FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY (0x00000004)
268 #define FH_RCSR_CHNL0_RX_CONFIG_IRQ_DEST_NO_INT_VAL (0x00000000)
269 #define FH_RCSR_CHNL0_RX_CONFIG_IRQ_DEST_INT_HOST_VAL (0x00001000)
272 * Rx Shared Status Registers (RSSR)
274 * After stopping Rx DMA channel (writing 0 to
275 * FH_MEM_RCSR_CHNL0_CONFIG_REG), driver must poll
276 * FH_MEM_RSSR_RX_STATUS_REG until Rx channel is idle.
278 * Bit fields:
279 * 24: 1 = Channel 0 is idle
281 * FH_MEM_RSSR_SHARED_CTRL_REG and FH_MEM_RSSR_RX_ENABLE_ERR_IRQ2DRV
282 * contain default values that should not be altered by the driver.
284 #define FH_MEM_RSSR_LOWER_BOUND (FH_MEM_LOWER_BOUND + 0xC40)
285 #define FH_MEM_RSSR_UPPER_BOUND (FH_MEM_LOWER_BOUND + 0xD00)
287 #define FH_MEM_RSSR_SHARED_CTRL_REG (FH_MEM_RSSR_LOWER_BOUND)
288 #define FH_MEM_RSSR_RX_STATUS_REG (FH_MEM_RSSR_LOWER_BOUND + 0x004)
289 #define FH_MEM_RSSR_RX_ENABLE_ERR_IRQ2DRV\
290 (FH_MEM_RSSR_LOWER_BOUND + 0x008)
292 #define FH_RSSR_CHNL0_RX_STATUS_CHNL_IDLE (0x01000000)
294 #define FH_MEM_TFDIB_REG1_ADDR_BITSHIFT 28
296 /* TFDB Area - TFDs buffer table */
297 #define FH_MEM_TFDIB_DRAM_ADDR_LSB_MSK (0xFFFFFFFF)
298 #define FH_TFDIB_LOWER_BOUND (FH_MEM_LOWER_BOUND + 0x900)
299 #define FH_TFDIB_UPPER_BOUND (FH_MEM_LOWER_BOUND + 0x958)
300 #define FH_TFDIB_CTRL0_REG(_chnl) (FH_TFDIB_LOWER_BOUND + 0x8 * (_chnl))
301 #define FH_TFDIB_CTRL1_REG(_chnl) (FH_TFDIB_LOWER_BOUND + 0x8 * (_chnl) + 0x4)
304 * Transmit DMA Channel Control/Status Registers (TCSR)
306 * Device has one configuration register for each of 8 Tx DMA/FIFO channels
307 * supported in hardware (don't confuse these with the 16 Tx queues in DRAM,
308 * which feed the DMA/FIFO channels); config regs are separated by 0x20 bytes.
310 * To use a Tx DMA channel, driver must initialize its
311 * FH_TCSR_CHNL_TX_CONFIG_REG(chnl) with:
313 * FH_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_ENABLE |
314 * FH_TCSR_TX_CONFIG_REG_VAL_DMA_CREDIT_ENABLE_VAL
316 * All other bits should be 0.
318 * Bit fields:
319 * 31-30: Tx DMA channel enable: '00' off/pause, '01' pause at end of frame,
320 * '10' operate normally
321 * 29- 4: Reserved, set to "0"
322 * 3: Enable internal DMA requests (1, normal operation), disable (0)
323 * 2- 0: Reserved, set to "0"
325 #define FH_TCSR_LOWER_BOUND (FH_MEM_LOWER_BOUND + 0xD00)
326 #define FH_TCSR_UPPER_BOUND (FH_MEM_LOWER_BOUND + 0xE60)
328 /* Find Control/Status reg for given Tx DMA/FIFO channel */
329 #define FH_TCSR_CHNL_NUM (8)
331 /* TCSR: tx_config register values */
332 #define FH_TCSR_CHNL_TX_CONFIG_REG(_chnl) \
333 (FH_TCSR_LOWER_BOUND + 0x20 * (_chnl))
334 #define FH_TCSR_CHNL_TX_CREDIT_REG(_chnl) \
335 (FH_TCSR_LOWER_BOUND + 0x20 * (_chnl) + 0x4)
336 #define FH_TCSR_CHNL_TX_BUF_STS_REG(_chnl) \
337 (FH_TCSR_LOWER_BOUND + 0x20 * (_chnl) + 0x8)
339 #define FH_TCSR_TX_CONFIG_REG_VAL_MSG_MODE_TXF (0x00000000)
340 #define FH_TCSR_TX_CONFIG_REG_VAL_MSG_MODE_DRV (0x00000001)
342 #define FH_TCSR_TX_CONFIG_REG_VAL_DMA_CREDIT_DISABLE (0x00000000)
343 #define FH_TCSR_TX_CONFIG_REG_VAL_DMA_CREDIT_ENABLE (0x00000008)
345 #define FH_TCSR_TX_CONFIG_REG_VAL_CIRQ_HOST_NOINT (0x00000000)
346 #define FH_TCSR_TX_CONFIG_REG_VAL_CIRQ_HOST_ENDTFD (0x00100000)
347 #define FH_TCSR_TX_CONFIG_REG_VAL_CIRQ_HOST_IFTFD (0x00200000)
349 #define FH_TCSR_TX_CONFIG_REG_VAL_CIRQ_RTC_NOINT (0x00000000)
350 #define FH_TCSR_TX_CONFIG_REG_VAL_CIRQ_RTC_ENDTFD (0x00400000)
351 #define FH_TCSR_TX_CONFIG_REG_VAL_CIRQ_RTC_IFTFD (0x00800000)
353 #define FH_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_PAUSE (0x00000000)
354 #define FH_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_PAUSE_EOF (0x40000000)
355 #define FH_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_ENABLE (0x80000000)
357 #define FH_TCSR_CHNL_TX_BUF_STS_REG_VAL_TFDB_EMPTY (0x00000000)
358 #define FH_TCSR_CHNL_TX_BUF_STS_REG_VAL_TFDB_WAIT (0x00002000)
359 #define FH_TCSR_CHNL_TX_BUF_STS_REG_VAL_TFDB_VALID (0x00000003)
361 #define FH_TCSR_CHNL_TX_BUF_STS_REG_POS_TB_NUM (20)
362 #define FH_TCSR_CHNL_TX_BUF_STS_REG_POS_TB_IDX (12)
365 * Tx Shared Status Registers (TSSR)
367 * After stopping Tx DMA channel (writing 0 to
368 * FH_TCSR_CHNL_TX_CONFIG_REG(chnl)), driver must poll
369 * FH_TSSR_TX_STATUS_REG until selected Tx channel is idle
370 * (channel's buffers empty | no pending requests).
372 * Bit fields:
373 * 31-24: 1 = Channel buffers empty (channel 7:0)
374 * 23-16: 1 = No pending requests (channel 7:0)
376 #define FH_TSSR_LOWER_BOUND (FH_MEM_LOWER_BOUND + 0xEA0)
377 #define FH_TSSR_UPPER_BOUND (FH_MEM_LOWER_BOUND + 0xEC0)
379 #define FH_TSSR_TX_STATUS_REG (FH_TSSR_LOWER_BOUND + 0x010)
382 * Bit fields for TSSR(Tx Shared Status & Control) error status register:
383 * 31: Indicates an address error when accessed to internal memory
384 * uCode/driver must write "1" in order to clear this flag
385 * 30: Indicates that Host did not send the expected number of dwords to FH
386 * uCode/driver must write "1" in order to clear this flag
387 * 16-9:Each status bit is for one channel. Indicates that an (Error) ActDMA
388 * command was received from the scheduler while the TRB was already full
389 * with previous command
390 * uCode/driver must write "1" in order to clear this flag
391 * 7-0: Each status bit indicates a channel's TxCredit error. When an error
392 * bit is set, it indicates that the FH has received a full indication
393 * from the RTC TxFIFO and the current value of the TxCredit counter was
394 * not equal to zero. This mean that the credit mechanism was not
395 * synchronized to the TxFIFO status
396 * uCode/driver must write "1" in order to clear this flag
398 #define FH_TSSR_TX_ERROR_REG (FH_TSSR_LOWER_BOUND + 0x018)
400 #define FH_TSSR_TX_STATUS_REG_MSK_CHNL_IDLE(_chnl) ((1 << (_chnl)) << 16)
402 /* Tx service channels */
403 #define FH_SRVC_CHNL (9)
404 #define FH_SRVC_LOWER_BOUND (FH_MEM_LOWER_BOUND + 0x9C8)
405 #define FH_SRVC_UPPER_BOUND (FH_MEM_LOWER_BOUND + 0x9D0)
406 #define FH_SRVC_CHNL_SRAM_ADDR_REG(_chnl) \
407 (FH_SRVC_LOWER_BOUND + ((_chnl) - 9) * 0x4)
409 #define FH_TX_CHICKEN_BITS_REG (FH_MEM_LOWER_BOUND + 0xE98)
410 /* Instruct FH to increment the retry count of a packet when
411 * it is brought from the memory to TX-FIFO
413 #define FH_TX_CHICKEN_BITS_SCD_AUTO_RETRY_EN (0x00000002)
415 #define RX_QUEUE_SIZE 256
416 #define RX_QUEUE_MASK 255
417 #define RX_QUEUE_SIZE_LOG 8
420 * RX related structures and functions
422 #define RX_FREE_BUFFERS 64
423 #define RX_LOW_WATERMARK 8
426 * struct iwl_rb_status - reseve buffer status
427 * host memory mapped FH registers
428 * @closed_rb_num [0:11] - Indicates the index of the RB which was closed
429 * @closed_fr_num [0:11] - Indicates the index of the RX Frame which was closed
430 * @finished_rb_num [0:11] - Indicates the index of the current RB
431 * in which the last frame was written to
432 * @finished_fr_num [0:11] - Indicates the index of the RX Frame
433 * which was transferred
435 struct iwl_rb_status {
436 __le16 closed_rb_num;
437 __le16 closed_fr_num;
438 __le16 finished_rb_num;
439 __le16 finished_fr_nam;
440 __le32 __unused;
441 } __packed;
444 #define TFD_QUEUE_SIZE_MAX (256)
445 #define TFD_QUEUE_SIZE_BC_DUP (64)
446 #define TFD_QUEUE_BC_SIZE (TFD_QUEUE_SIZE_MAX + TFD_QUEUE_SIZE_BC_DUP)
447 #define IWL_TX_DMA_MASK DMA_BIT_MASK(36)
448 #define IWL_NUM_OF_TBS 20
450 static inline u8 iwl_get_dma_hi_addr(dma_addr_t addr)
452 return (sizeof(addr) > sizeof(u32) ? (addr >> 16) >> 16 : 0) & 0xF;
455 * struct iwl_tfd_tb transmit buffer descriptor within transmit frame descriptor
457 * This structure contains dma address and length of transmission address
459 * @lo: low [31:0] portion of the dma address of TX buffer
460 * every even is unaligned on 16 bit boundary
461 * @hi_n_len 0-3 [35:32] portion of dma
462 * 4-15 length of the tx buffer
464 struct iwl_tfd_tb {
465 __le32 lo;
466 __le16 hi_n_len;
467 } __packed;
470 * struct iwl_tfd
472 * Transmit Frame Descriptor (TFD)
474 * @ __reserved1[3] reserved
475 * @ num_tbs 0-4 number of active tbs
476 * 5 reserved
477 * 6-7 padding (not used)
478 * @ tbs[20] transmit frame buffer descriptors
479 * @ __pad padding
481 * Each Tx queue uses a circular buffer of 256 TFDs stored in host DRAM.
482 * Both driver and device share these circular buffers, each of which must be
483 * contiguous 256 TFDs x 128 bytes-per-TFD = 32 KBytes
485 * Driver must indicate the physical address of the base of each
486 * circular buffer via the FH_MEM_CBBC_QUEUE registers.
488 * Each TFD contains pointer/size information for up to 20 data buffers
489 * in host DRAM. These buffers collectively contain the (one) frame described
490 * by the TFD. Each buffer must be a single contiguous block of memory within
491 * itself, but buffers may be scattered in host DRAM. Each buffer has max size
492 * of (4K - 4). The concatenates all of a TFD's buffers into a single
493 * Tx frame, up to 8 KBytes in size.
495 * A maximum of 255 (not 256!) TFDs may be on a queue waiting for Tx.
497 struct iwl_tfd {
498 u8 __reserved1[3];
499 u8 num_tbs;
500 struct iwl_tfd_tb tbs[IWL_NUM_OF_TBS];
501 __le32 __pad;
502 } __packed;
504 /* Keep Warm Size */
505 #define IWL_KW_SIZE 0x1000 /* 4k */
507 /* Fixed (non-configurable) rx data from phy */
510 * struct iwlagn_schedq_bc_tbl scheduler byte count table
511 * base physical address provided by SCD_DRAM_BASE_ADDR
512 * @tfd_offset 0-12 - tx command byte count
513 * 12-16 - station index
515 struct iwlagn_scd_bc_tbl {
516 __le16 tfd_offset[TFD_QUEUE_BC_SIZE];
517 } __packed;
519 #endif /* !__iwl_fh_h__ */