2 Copyright (C) 2010 Willow Garage <http://www.willowgarage.com>
3 Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
4 Copyright (C) 2004 - 2009 Gertjan van Wingerde <gwingerde@gmail.com>
5 <http://rt2x00.serialmonkey.com>
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the
19 Free Software Foundation, Inc.,
20 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
25 Abstract: rt2x00 queue specific routines.
28 #include <linux/slab.h>
29 #include <linux/kernel.h>
30 #include <linux/module.h>
31 #include <linux/dma-mapping.h>
34 #include "rt2x00lib.h"
36 struct sk_buff
*rt2x00queue_alloc_rxskb(struct queue_entry
*entry
)
38 struct rt2x00_dev
*rt2x00dev
= entry
->queue
->rt2x00dev
;
40 struct skb_frame_desc
*skbdesc
;
41 unsigned int frame_size
;
42 unsigned int head_size
= 0;
43 unsigned int tail_size
= 0;
46 * The frame size includes descriptor size, because the
47 * hardware directly receive the frame into the skbuffer.
49 frame_size
= entry
->queue
->data_size
+ entry
->queue
->desc_size
;
52 * The payload should be aligned to a 4-byte boundary,
53 * this means we need at least 3 bytes for moving the frame
54 * into the correct offset.
59 * For IV/EIV/ICV assembly we must make sure there is
60 * at least 8 bytes bytes available in headroom for IV/EIV
61 * and 8 bytes for ICV data as tailroon.
63 if (test_bit(CAPABILITY_HW_CRYPTO
, &rt2x00dev
->cap_flags
)) {
71 skb
= dev_alloc_skb(frame_size
+ head_size
+ tail_size
);
76 * Make sure we not have a frame with the requested bytes
77 * available in the head and tail.
79 skb_reserve(skb
, head_size
);
80 skb_put(skb
, frame_size
);
85 skbdesc
= get_skb_frame_desc(skb
);
86 memset(skbdesc
, 0, sizeof(*skbdesc
));
87 skbdesc
->entry
= entry
;
89 if (test_bit(REQUIRE_DMA
, &rt2x00dev
->cap_flags
)) {
90 skbdesc
->skb_dma
= dma_map_single(rt2x00dev
->dev
,
94 skbdesc
->flags
|= SKBDESC_DMA_MAPPED_RX
;
100 void rt2x00queue_map_txskb(struct queue_entry
*entry
)
102 struct device
*dev
= entry
->queue
->rt2x00dev
->dev
;
103 struct skb_frame_desc
*skbdesc
= get_skb_frame_desc(entry
->skb
);
106 dma_map_single(dev
, entry
->skb
->data
, entry
->skb
->len
, DMA_TO_DEVICE
);
107 skbdesc
->flags
|= SKBDESC_DMA_MAPPED_TX
;
109 EXPORT_SYMBOL_GPL(rt2x00queue_map_txskb
);
111 void rt2x00queue_unmap_skb(struct queue_entry
*entry
)
113 struct device
*dev
= entry
->queue
->rt2x00dev
->dev
;
114 struct skb_frame_desc
*skbdesc
= get_skb_frame_desc(entry
->skb
);
116 if (skbdesc
->flags
& SKBDESC_DMA_MAPPED_RX
) {
117 dma_unmap_single(dev
, skbdesc
->skb_dma
, entry
->skb
->len
,
119 skbdesc
->flags
&= ~SKBDESC_DMA_MAPPED_RX
;
120 } else if (skbdesc
->flags
& SKBDESC_DMA_MAPPED_TX
) {
121 dma_unmap_single(dev
, skbdesc
->skb_dma
, entry
->skb
->len
,
123 skbdesc
->flags
&= ~SKBDESC_DMA_MAPPED_TX
;
126 EXPORT_SYMBOL_GPL(rt2x00queue_unmap_skb
);
128 void rt2x00queue_free_skb(struct queue_entry
*entry
)
133 rt2x00queue_unmap_skb(entry
);
134 dev_kfree_skb_any(entry
->skb
);
138 void rt2x00queue_align_frame(struct sk_buff
*skb
)
140 unsigned int frame_length
= skb
->len
;
141 unsigned int align
= ALIGN_SIZE(skb
, 0);
146 skb_push(skb
, align
);
147 memmove(skb
->data
, skb
->data
+ align
, frame_length
);
148 skb_trim(skb
, frame_length
);
151 void rt2x00queue_insert_l2pad(struct sk_buff
*skb
, unsigned int header_length
)
153 unsigned int payload_length
= skb
->len
- header_length
;
154 unsigned int header_align
= ALIGN_SIZE(skb
, 0);
155 unsigned int payload_align
= ALIGN_SIZE(skb
, header_length
);
156 unsigned int l2pad
= payload_length
? L2PAD_SIZE(header_length
) : 0;
159 * Adjust the header alignment if the payload needs to be moved more
162 if (payload_align
> header_align
)
165 /* There is nothing to do if no alignment is needed */
169 /* Reserve the amount of space needed in front of the frame */
170 skb_push(skb
, header_align
);
175 memmove(skb
->data
, skb
->data
+ header_align
, header_length
);
177 /* Move the payload, if present and if required */
178 if (payload_length
&& payload_align
)
179 memmove(skb
->data
+ header_length
+ l2pad
,
180 skb
->data
+ header_length
+ l2pad
+ payload_align
,
183 /* Trim the skb to the correct size */
184 skb_trim(skb
, header_length
+ l2pad
+ payload_length
);
187 void rt2x00queue_remove_l2pad(struct sk_buff
*skb
, unsigned int header_length
)
190 * L2 padding is only present if the skb contains more than just the
191 * IEEE 802.11 header.
193 unsigned int l2pad
= (skb
->len
> header_length
) ?
194 L2PAD_SIZE(header_length
) : 0;
199 memmove(skb
->data
+ l2pad
, skb
->data
, header_length
);
200 skb_pull(skb
, l2pad
);
203 static void rt2x00queue_create_tx_descriptor_seq(struct rt2x00_dev
*rt2x00dev
,
205 struct txentry_desc
*txdesc
)
207 struct ieee80211_tx_info
*tx_info
= IEEE80211_SKB_CB(skb
);
208 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*)skb
->data
;
209 struct rt2x00_intf
*intf
= vif_to_intf(tx_info
->control
.vif
);
211 if (!(tx_info
->flags
& IEEE80211_TX_CTL_ASSIGN_SEQ
))
214 __set_bit(ENTRY_TXD_GENERATE_SEQ
, &txdesc
->flags
);
216 if (!test_bit(REQUIRE_SW_SEQNO
, &rt2x00dev
->cap_flags
))
220 * The hardware is not able to insert a sequence number. Assign a
221 * software generated one here.
223 * This is wrong because beacons are not getting sequence
224 * numbers assigned properly.
226 * A secondary problem exists for drivers that cannot toggle
227 * sequence counting per-frame, since those will override the
228 * sequence counter given by mac80211.
230 spin_lock(&intf
->seqlock
);
232 if (test_bit(ENTRY_TXD_FIRST_FRAGMENT
, &txdesc
->flags
))
234 hdr
->seq_ctrl
&= cpu_to_le16(IEEE80211_SCTL_FRAG
);
235 hdr
->seq_ctrl
|= cpu_to_le16(intf
->seqno
);
237 spin_unlock(&intf
->seqlock
);
241 static void rt2x00queue_create_tx_descriptor_plcp(struct rt2x00_dev
*rt2x00dev
,
243 struct txentry_desc
*txdesc
,
244 const struct rt2x00_rate
*hwrate
)
246 struct ieee80211_tx_info
*tx_info
= IEEE80211_SKB_CB(skb
);
247 struct ieee80211_tx_rate
*txrate
= &tx_info
->control
.rates
[0];
248 unsigned int data_length
;
249 unsigned int duration
;
250 unsigned int residual
;
253 * Determine with what IFS priority this frame should be send.
254 * Set ifs to IFS_SIFS when the this is not the first fragment,
255 * or this fragment came after RTS/CTS.
257 if (test_bit(ENTRY_TXD_FIRST_FRAGMENT
, &txdesc
->flags
))
258 txdesc
->u
.plcp
.ifs
= IFS_BACKOFF
;
260 txdesc
->u
.plcp
.ifs
= IFS_SIFS
;
262 /* Data length + CRC + Crypto overhead (IV/EIV/ICV/MIC) */
263 data_length
= skb
->len
+ 4;
264 data_length
+= rt2x00crypto_tx_overhead(rt2x00dev
, skb
);
268 * Length calculation depends on OFDM/CCK rate.
270 txdesc
->u
.plcp
.signal
= hwrate
->plcp
;
271 txdesc
->u
.plcp
.service
= 0x04;
273 if (hwrate
->flags
& DEV_RATE_OFDM
) {
274 txdesc
->u
.plcp
.length_high
= (data_length
>> 6) & 0x3f;
275 txdesc
->u
.plcp
.length_low
= data_length
& 0x3f;
278 * Convert length to microseconds.
280 residual
= GET_DURATION_RES(data_length
, hwrate
->bitrate
);
281 duration
= GET_DURATION(data_length
, hwrate
->bitrate
);
287 * Check if we need to set the Length Extension
289 if (hwrate
->bitrate
== 110 && residual
<= 30)
290 txdesc
->u
.plcp
.service
|= 0x80;
293 txdesc
->u
.plcp
.length_high
= (duration
>> 8) & 0xff;
294 txdesc
->u
.plcp
.length_low
= duration
& 0xff;
297 * When preamble is enabled we should set the
298 * preamble bit for the signal.
300 if (txrate
->flags
& IEEE80211_TX_RC_USE_SHORT_PREAMBLE
)
301 txdesc
->u
.plcp
.signal
|= 0x08;
305 static void rt2x00queue_create_tx_descriptor_ht(struct rt2x00_dev
*rt2x00dev
,
307 struct txentry_desc
*txdesc
,
308 const struct rt2x00_rate
*hwrate
)
310 struct ieee80211_tx_info
*tx_info
= IEEE80211_SKB_CB(skb
);
311 struct ieee80211_tx_rate
*txrate
= &tx_info
->control
.rates
[0];
312 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*)skb
->data
;
314 if (tx_info
->control
.sta
)
315 txdesc
->u
.ht
.mpdu_density
=
316 tx_info
->control
.sta
->ht_cap
.ampdu_density
;
318 txdesc
->u
.ht
.ba_size
= 7; /* FIXME: What value is needed? */
321 * Only one STBC stream is supported for now.
323 if (tx_info
->flags
& IEEE80211_TX_CTL_STBC
)
324 txdesc
->u
.ht
.stbc
= 1;
327 * If IEEE80211_TX_RC_MCS is set txrate->idx just contains the
328 * mcs rate to be used
330 if (txrate
->flags
& IEEE80211_TX_RC_MCS
) {
331 txdesc
->u
.ht
.mcs
= txrate
->idx
;
334 * MIMO PS should be set to 1 for STA's using dynamic SM PS
335 * when using more then one tx stream (>MCS7).
337 if (tx_info
->control
.sta
&& txdesc
->u
.ht
.mcs
> 7 &&
338 ((tx_info
->control
.sta
->ht_cap
.cap
&
339 IEEE80211_HT_CAP_SM_PS
) >>
340 IEEE80211_HT_CAP_SM_PS_SHIFT
) ==
341 WLAN_HT_CAP_SM_PS_DYNAMIC
)
342 __set_bit(ENTRY_TXD_HT_MIMO_PS
, &txdesc
->flags
);
344 txdesc
->u
.ht
.mcs
= rt2x00_get_rate_mcs(hwrate
->mcs
);
345 if (txrate
->flags
& IEEE80211_TX_RC_USE_SHORT_PREAMBLE
)
346 txdesc
->u
.ht
.mcs
|= 0x08;
350 * This frame is eligible for an AMPDU, however, don't aggregate
351 * frames that are intended to probe a specific tx rate.
353 if (tx_info
->flags
& IEEE80211_TX_CTL_AMPDU
&&
354 !(tx_info
->flags
& IEEE80211_TX_CTL_RATE_CTRL_PROBE
))
355 __set_bit(ENTRY_TXD_HT_AMPDU
, &txdesc
->flags
);
358 * Set 40Mhz mode if necessary (for legacy rates this will
359 * duplicate the frame to both channels).
361 if (txrate
->flags
& IEEE80211_TX_RC_40_MHZ_WIDTH
||
362 txrate
->flags
& IEEE80211_TX_RC_DUP_DATA
)
363 __set_bit(ENTRY_TXD_HT_BW_40
, &txdesc
->flags
);
364 if (txrate
->flags
& IEEE80211_TX_RC_SHORT_GI
)
365 __set_bit(ENTRY_TXD_HT_SHORT_GI
, &txdesc
->flags
);
368 * Determine IFS values
369 * - Use TXOP_BACKOFF for management frames except beacons
370 * - Use TXOP_SIFS for fragment bursts
371 * - Use TXOP_HTTXOP for everything else
373 * Note: rt2800 devices won't use CTS protection (if used)
374 * for frames not transmitted with TXOP_HTTXOP
376 if (ieee80211_is_mgmt(hdr
->frame_control
) &&
377 !ieee80211_is_beacon(hdr
->frame_control
))
378 txdesc
->u
.ht
.txop
= TXOP_BACKOFF
;
379 else if (!(tx_info
->flags
& IEEE80211_TX_CTL_FIRST_FRAGMENT
))
380 txdesc
->u
.ht
.txop
= TXOP_SIFS
;
382 txdesc
->u
.ht
.txop
= TXOP_HTTXOP
;
385 static void rt2x00queue_create_tx_descriptor(struct rt2x00_dev
*rt2x00dev
,
387 struct txentry_desc
*txdesc
)
389 struct ieee80211_tx_info
*tx_info
= IEEE80211_SKB_CB(skb
);
390 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*)skb
->data
;
391 struct ieee80211_tx_rate
*txrate
= &tx_info
->control
.rates
[0];
392 struct ieee80211_rate
*rate
;
393 const struct rt2x00_rate
*hwrate
= NULL
;
395 memset(txdesc
, 0, sizeof(*txdesc
));
398 * Header and frame information.
400 txdesc
->length
= skb
->len
;
401 txdesc
->header_length
= ieee80211_get_hdrlen_from_skb(skb
);
404 * Check whether this frame is to be acked.
406 if (!(tx_info
->flags
& IEEE80211_TX_CTL_NO_ACK
))
407 __set_bit(ENTRY_TXD_ACK
, &txdesc
->flags
);
410 * Check if this is a RTS/CTS frame
412 if (ieee80211_is_rts(hdr
->frame_control
) ||
413 ieee80211_is_cts(hdr
->frame_control
)) {
414 __set_bit(ENTRY_TXD_BURST
, &txdesc
->flags
);
415 if (ieee80211_is_rts(hdr
->frame_control
))
416 __set_bit(ENTRY_TXD_RTS_FRAME
, &txdesc
->flags
);
418 __set_bit(ENTRY_TXD_CTS_FRAME
, &txdesc
->flags
);
419 if (tx_info
->control
.rts_cts_rate_idx
>= 0)
421 ieee80211_get_rts_cts_rate(rt2x00dev
->hw
, tx_info
);
425 * Determine retry information.
427 txdesc
->retry_limit
= tx_info
->control
.rates
[0].count
- 1;
428 if (txdesc
->retry_limit
>= rt2x00dev
->long_retry
)
429 __set_bit(ENTRY_TXD_RETRY_MODE
, &txdesc
->flags
);
432 * Check if more fragments are pending
434 if (ieee80211_has_morefrags(hdr
->frame_control
)) {
435 __set_bit(ENTRY_TXD_BURST
, &txdesc
->flags
);
436 __set_bit(ENTRY_TXD_MORE_FRAG
, &txdesc
->flags
);
440 * Check if more frames (!= fragments) are pending
442 if (tx_info
->flags
& IEEE80211_TX_CTL_MORE_FRAMES
)
443 __set_bit(ENTRY_TXD_BURST
, &txdesc
->flags
);
446 * Beacons and probe responses require the tsf timestamp
447 * to be inserted into the frame.
449 if (ieee80211_is_beacon(hdr
->frame_control
) ||
450 ieee80211_is_probe_resp(hdr
->frame_control
))
451 __set_bit(ENTRY_TXD_REQ_TIMESTAMP
, &txdesc
->flags
);
453 if ((tx_info
->flags
& IEEE80211_TX_CTL_FIRST_FRAGMENT
) &&
454 !test_bit(ENTRY_TXD_RTS_FRAME
, &txdesc
->flags
))
455 __set_bit(ENTRY_TXD_FIRST_FRAGMENT
, &txdesc
->flags
);
458 * Determine rate modulation.
460 if (txrate
->flags
& IEEE80211_TX_RC_GREEN_FIELD
)
461 txdesc
->rate_mode
= RATE_MODE_HT_GREENFIELD
;
462 else if (txrate
->flags
& IEEE80211_TX_RC_MCS
)
463 txdesc
->rate_mode
= RATE_MODE_HT_MIX
;
465 rate
= ieee80211_get_tx_rate(rt2x00dev
->hw
, tx_info
);
466 hwrate
= rt2x00_get_rate(rate
->hw_value
);
467 if (hwrate
->flags
& DEV_RATE_OFDM
)
468 txdesc
->rate_mode
= RATE_MODE_OFDM
;
470 txdesc
->rate_mode
= RATE_MODE_CCK
;
474 * Apply TX descriptor handling by components
476 rt2x00crypto_create_tx_descriptor(rt2x00dev
, skb
, txdesc
);
477 rt2x00queue_create_tx_descriptor_seq(rt2x00dev
, skb
, txdesc
);
479 if (test_bit(REQUIRE_HT_TX_DESC
, &rt2x00dev
->cap_flags
))
480 rt2x00queue_create_tx_descriptor_ht(rt2x00dev
, skb
, txdesc
,
483 rt2x00queue_create_tx_descriptor_plcp(rt2x00dev
, skb
, txdesc
,
487 static int rt2x00queue_write_tx_data(struct queue_entry
*entry
,
488 struct txentry_desc
*txdesc
)
490 struct rt2x00_dev
*rt2x00dev
= entry
->queue
->rt2x00dev
;
493 * This should not happen, we already checked the entry
494 * was ours. When the hardware disagrees there has been
495 * a queue corruption!
497 if (unlikely(rt2x00dev
->ops
->lib
->get_entry_state
&&
498 rt2x00dev
->ops
->lib
->get_entry_state(entry
))) {
500 "Corrupt queue %d, accessing entry which is not ours.\n"
501 "Please file bug report to %s.\n",
502 entry
->queue
->qid
, DRV_PROJECT
);
507 * Add the requested extra tx headroom in front of the skb.
509 skb_push(entry
->skb
, rt2x00dev
->ops
->extra_tx_headroom
);
510 memset(entry
->skb
->data
, 0, rt2x00dev
->ops
->extra_tx_headroom
);
513 * Call the driver's write_tx_data function, if it exists.
515 if (rt2x00dev
->ops
->lib
->write_tx_data
)
516 rt2x00dev
->ops
->lib
->write_tx_data(entry
, txdesc
);
519 * Map the skb to DMA.
521 if (test_bit(REQUIRE_DMA
, &rt2x00dev
->cap_flags
))
522 rt2x00queue_map_txskb(entry
);
527 static void rt2x00queue_write_tx_descriptor(struct queue_entry
*entry
,
528 struct txentry_desc
*txdesc
)
530 struct data_queue
*queue
= entry
->queue
;
532 queue
->rt2x00dev
->ops
->lib
->write_tx_desc(entry
, txdesc
);
535 * All processing on the frame has been completed, this means
536 * it is now ready to be dumped to userspace through debugfs.
538 rt2x00debug_dump_frame(queue
->rt2x00dev
, DUMP_FRAME_TX
, entry
->skb
);
541 static void rt2x00queue_kick_tx_queue(struct data_queue
*queue
,
542 struct txentry_desc
*txdesc
)
545 * Check if we need to kick the queue, there are however a few rules
546 * 1) Don't kick unless this is the last in frame in a burst.
547 * When the burst flag is set, this frame is always followed
548 * by another frame which in some way are related to eachother.
549 * This is true for fragments, RTS or CTS-to-self frames.
550 * 2) Rule 1 can be broken when the available entries
551 * in the queue are less then a certain threshold.
553 if (rt2x00queue_threshold(queue
) ||
554 !test_bit(ENTRY_TXD_BURST
, &txdesc
->flags
))
555 queue
->rt2x00dev
->ops
->lib
->kick_queue(queue
);
558 int rt2x00queue_write_tx_frame(struct data_queue
*queue
, struct sk_buff
*skb
,
561 struct ieee80211_tx_info
*tx_info
;
562 struct queue_entry
*entry
;
563 struct txentry_desc txdesc
;
564 struct skb_frame_desc
*skbdesc
;
565 u8 rate_idx
, rate_flags
;
569 * Copy all TX descriptor information into txdesc,
570 * after that we are free to use the skb->cb array
571 * for our information.
573 rt2x00queue_create_tx_descriptor(queue
->rt2x00dev
, skb
, &txdesc
);
576 * All information is retrieved from the skb->cb array,
577 * now we should claim ownership of the driver part of that
578 * array, preserving the bitrate index and flags.
580 tx_info
= IEEE80211_SKB_CB(skb
);
581 rate_idx
= tx_info
->control
.rates
[0].idx
;
582 rate_flags
= tx_info
->control
.rates
[0].flags
;
583 skbdesc
= get_skb_frame_desc(skb
);
584 memset(skbdesc
, 0, sizeof(*skbdesc
));
585 skbdesc
->tx_rate_idx
= rate_idx
;
586 skbdesc
->tx_rate_flags
= rate_flags
;
589 skbdesc
->flags
|= SKBDESC_NOT_MAC80211
;
592 * When hardware encryption is supported, and this frame
593 * is to be encrypted, we should strip the IV/EIV data from
594 * the frame so we can provide it to the driver separately.
596 if (test_bit(ENTRY_TXD_ENCRYPT
, &txdesc
.flags
) &&
597 !test_bit(ENTRY_TXD_ENCRYPT_IV
, &txdesc
.flags
)) {
598 if (test_bit(REQUIRE_COPY_IV
, &queue
->rt2x00dev
->cap_flags
))
599 rt2x00crypto_tx_copy_iv(skb
, &txdesc
);
601 rt2x00crypto_tx_remove_iv(skb
, &txdesc
);
605 * When DMA allocation is required we should guarantee to the
606 * driver that the DMA is aligned to a 4-byte boundary.
607 * However some drivers require L2 padding to pad the payload
608 * rather then the header. This could be a requirement for
609 * PCI and USB devices, while header alignment only is valid
612 if (test_bit(REQUIRE_L2PAD
, &queue
->rt2x00dev
->cap_flags
))
613 rt2x00queue_insert_l2pad(skb
, txdesc
.header_length
);
614 else if (test_bit(REQUIRE_DMA
, &queue
->rt2x00dev
->cap_flags
))
615 rt2x00queue_align_frame(skb
);
617 spin_lock(&queue
->tx_lock
);
619 if (unlikely(rt2x00queue_full(queue
))) {
620 ERROR(queue
->rt2x00dev
,
621 "Dropping frame due to full tx queue %d.\n", queue
->qid
);
626 entry
= rt2x00queue_get_entry(queue
, Q_INDEX
);
628 if (unlikely(test_and_set_bit(ENTRY_OWNER_DEVICE_DATA
,
630 ERROR(queue
->rt2x00dev
,
631 "Arrived at non-free entry in the non-full queue %d.\n"
632 "Please file bug report to %s.\n",
633 queue
->qid
, DRV_PROJECT
);
638 skbdesc
->entry
= entry
;
642 * It could be possible that the queue was corrupted and this
643 * call failed. Since we always return NETDEV_TX_OK to mac80211,
644 * this frame will simply be dropped.
646 if (unlikely(rt2x00queue_write_tx_data(entry
, &txdesc
))) {
647 clear_bit(ENTRY_OWNER_DEVICE_DATA
, &entry
->flags
);
653 set_bit(ENTRY_DATA_PENDING
, &entry
->flags
);
655 rt2x00queue_index_inc(entry
, Q_INDEX
);
656 rt2x00queue_write_tx_descriptor(entry
, &txdesc
);
657 rt2x00queue_kick_tx_queue(queue
, &txdesc
);
660 spin_unlock(&queue
->tx_lock
);
664 int rt2x00queue_clear_beacon(struct rt2x00_dev
*rt2x00dev
,
665 struct ieee80211_vif
*vif
)
667 struct rt2x00_intf
*intf
= vif_to_intf(vif
);
669 if (unlikely(!intf
->beacon
))
672 mutex_lock(&intf
->beacon_skb_mutex
);
675 * Clean up the beacon skb.
677 rt2x00queue_free_skb(intf
->beacon
);
680 * Clear beacon (single bssid devices don't need to clear the beacon
681 * since the beacon queue will get stopped anyway).
683 if (rt2x00dev
->ops
->lib
->clear_beacon
)
684 rt2x00dev
->ops
->lib
->clear_beacon(intf
->beacon
);
686 mutex_unlock(&intf
->beacon_skb_mutex
);
691 int rt2x00queue_update_beacon_locked(struct rt2x00_dev
*rt2x00dev
,
692 struct ieee80211_vif
*vif
)
694 struct rt2x00_intf
*intf
= vif_to_intf(vif
);
695 struct skb_frame_desc
*skbdesc
;
696 struct txentry_desc txdesc
;
698 if (unlikely(!intf
->beacon
))
702 * Clean up the beacon skb.
704 rt2x00queue_free_skb(intf
->beacon
);
706 intf
->beacon
->skb
= ieee80211_beacon_get(rt2x00dev
->hw
, vif
);
707 if (!intf
->beacon
->skb
)
711 * Copy all TX descriptor information into txdesc,
712 * after that we are free to use the skb->cb array
713 * for our information.
715 rt2x00queue_create_tx_descriptor(rt2x00dev
, intf
->beacon
->skb
, &txdesc
);
718 * Fill in skb descriptor
720 skbdesc
= get_skb_frame_desc(intf
->beacon
->skb
);
721 memset(skbdesc
, 0, sizeof(*skbdesc
));
722 skbdesc
->entry
= intf
->beacon
;
725 * Send beacon to hardware.
727 rt2x00dev
->ops
->lib
->write_beacon(intf
->beacon
, &txdesc
);
733 int rt2x00queue_update_beacon(struct rt2x00_dev
*rt2x00dev
,
734 struct ieee80211_vif
*vif
)
736 struct rt2x00_intf
*intf
= vif_to_intf(vif
);
739 mutex_lock(&intf
->beacon_skb_mutex
);
740 ret
= rt2x00queue_update_beacon_locked(rt2x00dev
, vif
);
741 mutex_unlock(&intf
->beacon_skb_mutex
);
746 bool rt2x00queue_for_each_entry(struct data_queue
*queue
,
747 enum queue_index start
,
748 enum queue_index end
,
750 bool (*fn
)(struct queue_entry
*entry
,
753 unsigned long irqflags
;
754 unsigned int index_start
;
755 unsigned int index_end
;
758 if (unlikely(start
>= Q_INDEX_MAX
|| end
>= Q_INDEX_MAX
)) {
759 ERROR(queue
->rt2x00dev
,
760 "Entry requested from invalid index range (%d - %d)\n",
766 * Only protect the range we are going to loop over,
767 * if during our loop a extra entry is set to pending
768 * it should not be kicked during this run, since it
769 * is part of another TX operation.
771 spin_lock_irqsave(&queue
->index_lock
, irqflags
);
772 index_start
= queue
->index
[start
];
773 index_end
= queue
->index
[end
];
774 spin_unlock_irqrestore(&queue
->index_lock
, irqflags
);
777 * Start from the TX done pointer, this guarantees that we will
778 * send out all frames in the correct order.
780 if (index_start
< index_end
) {
781 for (i
= index_start
; i
< index_end
; i
++) {
782 if (fn(&queue
->entries
[i
], data
))
786 for (i
= index_start
; i
< queue
->limit
; i
++) {
787 if (fn(&queue
->entries
[i
], data
))
791 for (i
= 0; i
< index_end
; i
++) {
792 if (fn(&queue
->entries
[i
], data
))
799 EXPORT_SYMBOL_GPL(rt2x00queue_for_each_entry
);
801 struct queue_entry
*rt2x00queue_get_entry(struct data_queue
*queue
,
802 enum queue_index index
)
804 struct queue_entry
*entry
;
805 unsigned long irqflags
;
807 if (unlikely(index
>= Q_INDEX_MAX
)) {
808 ERROR(queue
->rt2x00dev
,
809 "Entry requested from invalid index type (%d)\n", index
);
813 spin_lock_irqsave(&queue
->index_lock
, irqflags
);
815 entry
= &queue
->entries
[queue
->index
[index
]];
817 spin_unlock_irqrestore(&queue
->index_lock
, irqflags
);
821 EXPORT_SYMBOL_GPL(rt2x00queue_get_entry
);
823 void rt2x00queue_index_inc(struct queue_entry
*entry
, enum queue_index index
)
825 struct data_queue
*queue
= entry
->queue
;
826 unsigned long irqflags
;
828 if (unlikely(index
>= Q_INDEX_MAX
)) {
829 ERROR(queue
->rt2x00dev
,
830 "Index change on invalid index type (%d)\n", index
);
834 spin_lock_irqsave(&queue
->index_lock
, irqflags
);
836 queue
->index
[index
]++;
837 if (queue
->index
[index
] >= queue
->limit
)
838 queue
->index
[index
] = 0;
840 entry
->last_action
= jiffies
;
842 if (index
== Q_INDEX
) {
844 } else if (index
== Q_INDEX_DONE
) {
849 spin_unlock_irqrestore(&queue
->index_lock
, irqflags
);
852 void rt2x00queue_pause_queue(struct data_queue
*queue
)
854 if (!test_bit(DEVICE_STATE_PRESENT
, &queue
->rt2x00dev
->flags
) ||
855 !test_bit(QUEUE_STARTED
, &queue
->flags
) ||
856 test_and_set_bit(QUEUE_PAUSED
, &queue
->flags
))
859 switch (queue
->qid
) {
865 * For TX queues, we have to disable the queue
868 ieee80211_stop_queue(queue
->rt2x00dev
->hw
, queue
->qid
);
874 EXPORT_SYMBOL_GPL(rt2x00queue_pause_queue
);
876 void rt2x00queue_unpause_queue(struct data_queue
*queue
)
878 if (!test_bit(DEVICE_STATE_PRESENT
, &queue
->rt2x00dev
->flags
) ||
879 !test_bit(QUEUE_STARTED
, &queue
->flags
) ||
880 !test_and_clear_bit(QUEUE_PAUSED
, &queue
->flags
))
883 switch (queue
->qid
) {
889 * For TX queues, we have to enable the queue
892 ieee80211_wake_queue(queue
->rt2x00dev
->hw
, queue
->qid
);
896 * For RX we need to kick the queue now in order to
899 queue
->rt2x00dev
->ops
->lib
->kick_queue(queue
);
904 EXPORT_SYMBOL_GPL(rt2x00queue_unpause_queue
);
906 void rt2x00queue_start_queue(struct data_queue
*queue
)
908 mutex_lock(&queue
->status_lock
);
910 if (!test_bit(DEVICE_STATE_PRESENT
, &queue
->rt2x00dev
->flags
) ||
911 test_and_set_bit(QUEUE_STARTED
, &queue
->flags
)) {
912 mutex_unlock(&queue
->status_lock
);
916 set_bit(QUEUE_PAUSED
, &queue
->flags
);
918 queue
->rt2x00dev
->ops
->lib
->start_queue(queue
);
920 rt2x00queue_unpause_queue(queue
);
922 mutex_unlock(&queue
->status_lock
);
924 EXPORT_SYMBOL_GPL(rt2x00queue_start_queue
);
926 void rt2x00queue_stop_queue(struct data_queue
*queue
)
928 mutex_lock(&queue
->status_lock
);
930 if (!test_and_clear_bit(QUEUE_STARTED
, &queue
->flags
)) {
931 mutex_unlock(&queue
->status_lock
);
935 rt2x00queue_pause_queue(queue
);
937 queue
->rt2x00dev
->ops
->lib
->stop_queue(queue
);
939 mutex_unlock(&queue
->status_lock
);
941 EXPORT_SYMBOL_GPL(rt2x00queue_stop_queue
);
943 void rt2x00queue_flush_queue(struct data_queue
*queue
, bool drop
)
947 (queue
->qid
== QID_AC_VO
) ||
948 (queue
->qid
== QID_AC_VI
) ||
949 (queue
->qid
== QID_AC_BE
) ||
950 (queue
->qid
== QID_AC_BK
);
952 mutex_lock(&queue
->status_lock
);
955 * If the queue has been started, we must stop it temporarily
956 * to prevent any new frames to be queued on the device. If
957 * we are not dropping the pending frames, the queue must
958 * only be stopped in the software and not the hardware,
959 * otherwise the queue will never become empty on its own.
961 started
= test_bit(QUEUE_STARTED
, &queue
->flags
);
966 rt2x00queue_pause_queue(queue
);
969 * If we are not supposed to drop any pending
970 * frames, this means we must force a start (=kick)
971 * to the queue to make sure the hardware will
972 * start transmitting.
974 if (!drop
&& tx_queue
)
975 queue
->rt2x00dev
->ops
->lib
->kick_queue(queue
);
979 * Check if driver supports flushing, if that is the case we can
980 * defer the flushing to the driver. Otherwise we must use the
981 * alternative which just waits for the queue to become empty.
983 if (likely(queue
->rt2x00dev
->ops
->lib
->flush_queue
))
984 queue
->rt2x00dev
->ops
->lib
->flush_queue(queue
, drop
);
987 * The queue flush has failed...
989 if (unlikely(!rt2x00queue_empty(queue
)))
990 WARNING(queue
->rt2x00dev
, "Queue %d failed to flush\n", queue
->qid
);
993 * Restore the queue to the previous status
996 rt2x00queue_unpause_queue(queue
);
998 mutex_unlock(&queue
->status_lock
);
1000 EXPORT_SYMBOL_GPL(rt2x00queue_flush_queue
);
1002 void rt2x00queue_start_queues(struct rt2x00_dev
*rt2x00dev
)
1004 struct data_queue
*queue
;
1007 * rt2x00queue_start_queue will call ieee80211_wake_queue
1008 * for each queue after is has been properly initialized.
1010 tx_queue_for_each(rt2x00dev
, queue
)
1011 rt2x00queue_start_queue(queue
);
1013 rt2x00queue_start_queue(rt2x00dev
->rx
);
1015 EXPORT_SYMBOL_GPL(rt2x00queue_start_queues
);
1017 void rt2x00queue_stop_queues(struct rt2x00_dev
*rt2x00dev
)
1019 struct data_queue
*queue
;
1022 * rt2x00queue_stop_queue will call ieee80211_stop_queue
1023 * as well, but we are completely shutting doing everything
1024 * now, so it is much safer to stop all TX queues at once,
1025 * and use rt2x00queue_stop_queue for cleaning up.
1027 ieee80211_stop_queues(rt2x00dev
->hw
);
1029 tx_queue_for_each(rt2x00dev
, queue
)
1030 rt2x00queue_stop_queue(queue
);
1032 rt2x00queue_stop_queue(rt2x00dev
->rx
);
1034 EXPORT_SYMBOL_GPL(rt2x00queue_stop_queues
);
1036 void rt2x00queue_flush_queues(struct rt2x00_dev
*rt2x00dev
, bool drop
)
1038 struct data_queue
*queue
;
1040 tx_queue_for_each(rt2x00dev
, queue
)
1041 rt2x00queue_flush_queue(queue
, drop
);
1043 rt2x00queue_flush_queue(rt2x00dev
->rx
, drop
);
1045 EXPORT_SYMBOL_GPL(rt2x00queue_flush_queues
);
1047 static void rt2x00queue_reset(struct data_queue
*queue
)
1049 unsigned long irqflags
;
1052 spin_lock_irqsave(&queue
->index_lock
, irqflags
);
1057 for (i
= 0; i
< Q_INDEX_MAX
; i
++)
1058 queue
->index
[i
] = 0;
1060 spin_unlock_irqrestore(&queue
->index_lock
, irqflags
);
1063 void rt2x00queue_init_queues(struct rt2x00_dev
*rt2x00dev
)
1065 struct data_queue
*queue
;
1068 queue_for_each(rt2x00dev
, queue
) {
1069 rt2x00queue_reset(queue
);
1071 for (i
= 0; i
< queue
->limit
; i
++)
1072 rt2x00dev
->ops
->lib
->clear_entry(&queue
->entries
[i
]);
1076 static int rt2x00queue_alloc_entries(struct data_queue
*queue
,
1077 const struct data_queue_desc
*qdesc
)
1079 struct queue_entry
*entries
;
1080 unsigned int entry_size
;
1083 rt2x00queue_reset(queue
);
1085 queue
->limit
= qdesc
->entry_num
;
1086 queue
->threshold
= DIV_ROUND_UP(qdesc
->entry_num
, 10);
1087 queue
->data_size
= qdesc
->data_size
;
1088 queue
->desc_size
= qdesc
->desc_size
;
1091 * Allocate all queue entries.
1093 entry_size
= sizeof(*entries
) + qdesc
->priv_size
;
1094 entries
= kcalloc(queue
->limit
, entry_size
, GFP_KERNEL
);
1098 #define QUEUE_ENTRY_PRIV_OFFSET(__base, __index, __limit, __esize, __psize) \
1099 (((char *)(__base)) + ((__limit) * (__esize)) + \
1100 ((__index) * (__psize)))
1102 for (i
= 0; i
< queue
->limit
; i
++) {
1103 entries
[i
].flags
= 0;
1104 entries
[i
].queue
= queue
;
1105 entries
[i
].skb
= NULL
;
1106 entries
[i
].entry_idx
= i
;
1107 entries
[i
].priv_data
=
1108 QUEUE_ENTRY_PRIV_OFFSET(entries
, i
, queue
->limit
,
1109 sizeof(*entries
), qdesc
->priv_size
);
1112 #undef QUEUE_ENTRY_PRIV_OFFSET
1114 queue
->entries
= entries
;
1119 static void rt2x00queue_free_skbs(struct data_queue
*queue
)
1123 if (!queue
->entries
)
1126 for (i
= 0; i
< queue
->limit
; i
++) {
1127 rt2x00queue_free_skb(&queue
->entries
[i
]);
1131 static int rt2x00queue_alloc_rxskbs(struct data_queue
*queue
)
1134 struct sk_buff
*skb
;
1136 for (i
= 0; i
< queue
->limit
; i
++) {
1137 skb
= rt2x00queue_alloc_rxskb(&queue
->entries
[i
]);
1140 queue
->entries
[i
].skb
= skb
;
1146 int rt2x00queue_initialize(struct rt2x00_dev
*rt2x00dev
)
1148 struct data_queue
*queue
;
1151 status
= rt2x00queue_alloc_entries(rt2x00dev
->rx
, rt2x00dev
->ops
->rx
);
1155 tx_queue_for_each(rt2x00dev
, queue
) {
1156 status
= rt2x00queue_alloc_entries(queue
, rt2x00dev
->ops
->tx
);
1161 status
= rt2x00queue_alloc_entries(rt2x00dev
->bcn
, rt2x00dev
->ops
->bcn
);
1165 if (test_bit(REQUIRE_ATIM_QUEUE
, &rt2x00dev
->cap_flags
)) {
1166 status
= rt2x00queue_alloc_entries(rt2x00dev
->atim
,
1167 rt2x00dev
->ops
->atim
);
1172 status
= rt2x00queue_alloc_rxskbs(rt2x00dev
->rx
);
1179 ERROR(rt2x00dev
, "Queue entries allocation failed.\n");
1181 rt2x00queue_uninitialize(rt2x00dev
);
1186 void rt2x00queue_uninitialize(struct rt2x00_dev
*rt2x00dev
)
1188 struct data_queue
*queue
;
1190 rt2x00queue_free_skbs(rt2x00dev
->rx
);
1192 queue_for_each(rt2x00dev
, queue
) {
1193 kfree(queue
->entries
);
1194 queue
->entries
= NULL
;
1198 static void rt2x00queue_init(struct rt2x00_dev
*rt2x00dev
,
1199 struct data_queue
*queue
, enum data_queue_qid qid
)
1201 mutex_init(&queue
->status_lock
);
1202 spin_lock_init(&queue
->tx_lock
);
1203 spin_lock_init(&queue
->index_lock
);
1205 queue
->rt2x00dev
= rt2x00dev
;
1213 int rt2x00queue_allocate(struct rt2x00_dev
*rt2x00dev
)
1215 struct data_queue
*queue
;
1216 enum data_queue_qid qid
;
1217 unsigned int req_atim
=
1218 !!test_bit(REQUIRE_ATIM_QUEUE
, &rt2x00dev
->cap_flags
);
1221 * We need the following queues:
1223 * TX: ops->tx_queues
1225 * Atim: 1 (if required)
1227 rt2x00dev
->data_queues
= 2 + rt2x00dev
->ops
->tx_queues
+ req_atim
;
1229 queue
= kcalloc(rt2x00dev
->data_queues
, sizeof(*queue
), GFP_KERNEL
);
1231 ERROR(rt2x00dev
, "Queue allocation failed.\n");
1236 * Initialize pointers
1238 rt2x00dev
->rx
= queue
;
1239 rt2x00dev
->tx
= &queue
[1];
1240 rt2x00dev
->bcn
= &queue
[1 + rt2x00dev
->ops
->tx_queues
];
1241 rt2x00dev
->atim
= req_atim
? &queue
[2 + rt2x00dev
->ops
->tx_queues
] : NULL
;
1244 * Initialize queue parameters.
1246 * TX: qid = QID_AC_VO + index
1247 * TX: cw_min: 2^5 = 32.
1248 * TX: cw_max: 2^10 = 1024.
1249 * BCN: qid = QID_BEACON
1250 * ATIM: qid = QID_ATIM
1252 rt2x00queue_init(rt2x00dev
, rt2x00dev
->rx
, QID_RX
);
1255 tx_queue_for_each(rt2x00dev
, queue
)
1256 rt2x00queue_init(rt2x00dev
, queue
, qid
++);
1258 rt2x00queue_init(rt2x00dev
, rt2x00dev
->bcn
, QID_BEACON
);
1260 rt2x00queue_init(rt2x00dev
, rt2x00dev
->atim
, QID_ATIM
);
1265 void rt2x00queue_free(struct rt2x00_dev
*rt2x00dev
)
1267 kfree(rt2x00dev
->rx
);
1268 rt2x00dev
->rx
= NULL
;
1269 rt2x00dev
->tx
= NULL
;
1270 rt2x00dev
->bcn
= NULL
;