Add linux-next specific files for 20110831
[linux-2.6/next.git] / drivers / spi / spi-ep93xx.c
blob1cf645479bfec6b1cc7a2d2dc76d4e0e295fb8bc
1 /*
2 * Driver for Cirrus Logic EP93xx SPI controller.
4 * Copyright (C) 2010-2011 Mika Westerberg
6 * Explicit FIFO handling code was inspired by amba-pl022 driver.
8 * Chip select support using other than built-in GPIOs by H. Hartley Sweeten.
10 * For more information about the SPI controller see documentation on Cirrus
11 * Logic web site:
12 * http://www.cirrus.com/en/pubs/manual/EP93xx_Users_Guide_UM1.pdf
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License version 2 as
16 * published by the Free Software Foundation.
19 #include <linux/io.h>
20 #include <linux/clk.h>
21 #include <linux/err.h>
22 #include <linux/delay.h>
23 #include <linux/device.h>
24 #include <linux/dmaengine.h>
25 #include <linux/bitops.h>
26 #include <linux/interrupt.h>
27 #include <linux/platform_device.h>
28 #include <linux/workqueue.h>
29 #include <linux/sched.h>
30 #include <linux/scatterlist.h>
31 #include <linux/spi/spi.h>
33 #include <mach/dma.h>
34 #include <mach/ep93xx_spi.h>
36 #define SSPCR0 0x0000
37 #define SSPCR0_MODE_SHIFT 6
38 #define SSPCR0_SCR_SHIFT 8
40 #define SSPCR1 0x0004
41 #define SSPCR1_RIE BIT(0)
42 #define SSPCR1_TIE BIT(1)
43 #define SSPCR1_RORIE BIT(2)
44 #define SSPCR1_LBM BIT(3)
45 #define SSPCR1_SSE BIT(4)
46 #define SSPCR1_MS BIT(5)
47 #define SSPCR1_SOD BIT(6)
49 #define SSPDR 0x0008
51 #define SSPSR 0x000c
52 #define SSPSR_TFE BIT(0)
53 #define SSPSR_TNF BIT(1)
54 #define SSPSR_RNE BIT(2)
55 #define SSPSR_RFF BIT(3)
56 #define SSPSR_BSY BIT(4)
57 #define SSPCPSR 0x0010
59 #define SSPIIR 0x0014
60 #define SSPIIR_RIS BIT(0)
61 #define SSPIIR_TIS BIT(1)
62 #define SSPIIR_RORIS BIT(2)
63 #define SSPICR SSPIIR
65 /* timeout in milliseconds */
66 #define SPI_TIMEOUT 5
67 /* maximum depth of RX/TX FIFO */
68 #define SPI_FIFO_SIZE 8
70 /**
71 * struct ep93xx_spi - EP93xx SPI controller structure
72 * @lock: spinlock that protects concurrent accesses to fields @running,
73 * @current_msg and @msg_queue
74 * @pdev: pointer to platform device
75 * @clk: clock for the controller
76 * @regs_base: pointer to ioremap()'d registers
77 * @sspdr_phys: physical address of the SSPDR register
78 * @irq: IRQ number used by the driver
79 * @min_rate: minimum clock rate (in Hz) supported by the controller
80 * @max_rate: maximum clock rate (in Hz) supported by the controller
81 * @running: is the queue running
82 * @wq: workqueue used by the driver
83 * @msg_work: work that is queued for the driver
84 * @wait: wait here until given transfer is completed
85 * @msg_queue: queue for the messages
86 * @current_msg: message that is currently processed (or %NULL if none)
87 * @tx: current byte in transfer to transmit
88 * @rx: current byte in transfer to receive
89 * @fifo_level: how full is FIFO (%0..%SPI_FIFO_SIZE - %1). Receiving one
90 * frame decreases this level and sending one frame increases it.
91 * @dma_rx: RX DMA channel
92 * @dma_tx: TX DMA channel
93 * @dma_rx_data: RX parameters passed to the DMA engine
94 * @dma_tx_data: TX parameters passed to the DMA engine
95 * @rx_sgt: sg table for RX transfers
96 * @tx_sgt: sg table for TX transfers
97 * @zeropage: dummy page used as RX buffer when only TX buffer is passed in by
98 * the client
100 * This structure holds EP93xx SPI controller specific information. When
101 * @running is %true, driver accepts transfer requests from protocol drivers.
102 * @current_msg is used to hold pointer to the message that is currently
103 * processed. If @current_msg is %NULL, it means that no processing is going
104 * on.
106 * Most of the fields are only written once and they can be accessed without
107 * taking the @lock. Fields that are accessed concurrently are: @current_msg,
108 * @running, and @msg_queue.
110 struct ep93xx_spi {
111 spinlock_t lock;
112 const struct platform_device *pdev;
113 struct clk *clk;
114 void __iomem *regs_base;
115 unsigned long sspdr_phys;
116 int irq;
117 unsigned long min_rate;
118 unsigned long max_rate;
119 bool running;
120 struct workqueue_struct *wq;
121 struct work_struct msg_work;
122 struct completion wait;
123 struct list_head msg_queue;
124 struct spi_message *current_msg;
125 size_t tx;
126 size_t rx;
127 size_t fifo_level;
128 struct dma_chan *dma_rx;
129 struct dma_chan *dma_tx;
130 struct ep93xx_dma_data dma_rx_data;
131 struct ep93xx_dma_data dma_tx_data;
132 struct sg_table rx_sgt;
133 struct sg_table tx_sgt;
134 void *zeropage;
138 * struct ep93xx_spi_chip - SPI device hardware settings
139 * @spi: back pointer to the SPI device
140 * @rate: max rate in hz this chip supports
141 * @div_cpsr: cpsr (pre-scaler) divider
142 * @div_scr: scr divider
143 * @dss: bits per word (4 - 16 bits)
144 * @ops: private chip operations
146 * This structure is used to store hardware register specific settings for each
147 * SPI device. Settings are written to hardware by function
148 * ep93xx_spi_chip_setup().
150 struct ep93xx_spi_chip {
151 const struct spi_device *spi;
152 unsigned long rate;
153 u8 div_cpsr;
154 u8 div_scr;
155 u8 dss;
156 struct ep93xx_spi_chip_ops *ops;
159 /* converts bits per word to CR0.DSS value */
160 #define bits_per_word_to_dss(bpw) ((bpw) - 1)
162 static inline void
163 ep93xx_spi_write_u8(const struct ep93xx_spi *espi, u16 reg, u8 value)
165 __raw_writeb(value, espi->regs_base + reg);
168 static inline u8
169 ep93xx_spi_read_u8(const struct ep93xx_spi *spi, u16 reg)
171 return __raw_readb(spi->regs_base + reg);
174 static inline void
175 ep93xx_spi_write_u16(const struct ep93xx_spi *espi, u16 reg, u16 value)
177 __raw_writew(value, espi->regs_base + reg);
180 static inline u16
181 ep93xx_spi_read_u16(const struct ep93xx_spi *spi, u16 reg)
183 return __raw_readw(spi->regs_base + reg);
186 static int ep93xx_spi_enable(const struct ep93xx_spi *espi)
188 u8 regval;
189 int err;
191 err = clk_enable(espi->clk);
192 if (err)
193 return err;
195 regval = ep93xx_spi_read_u8(espi, SSPCR1);
196 regval |= SSPCR1_SSE;
197 ep93xx_spi_write_u8(espi, SSPCR1, regval);
199 return 0;
202 static void ep93xx_spi_disable(const struct ep93xx_spi *espi)
204 u8 regval;
206 regval = ep93xx_spi_read_u8(espi, SSPCR1);
207 regval &= ~SSPCR1_SSE;
208 ep93xx_spi_write_u8(espi, SSPCR1, regval);
210 clk_disable(espi->clk);
213 static void ep93xx_spi_enable_interrupts(const struct ep93xx_spi *espi)
215 u8 regval;
217 regval = ep93xx_spi_read_u8(espi, SSPCR1);
218 regval |= (SSPCR1_RORIE | SSPCR1_TIE | SSPCR1_RIE);
219 ep93xx_spi_write_u8(espi, SSPCR1, regval);
222 static void ep93xx_spi_disable_interrupts(const struct ep93xx_spi *espi)
224 u8 regval;
226 regval = ep93xx_spi_read_u8(espi, SSPCR1);
227 regval &= ~(SSPCR1_RORIE | SSPCR1_TIE | SSPCR1_RIE);
228 ep93xx_spi_write_u8(espi, SSPCR1, regval);
232 * ep93xx_spi_calc_divisors() - calculates SPI clock divisors
233 * @espi: ep93xx SPI controller struct
234 * @chip: divisors are calculated for this chip
235 * @rate: desired SPI output clock rate
237 * Function calculates cpsr (clock pre-scaler) and scr divisors based on
238 * given @rate and places them to @chip->div_cpsr and @chip->div_scr. If,
239 * for some reason, divisors cannot be calculated nothing is stored and
240 * %-EINVAL is returned.
242 static int ep93xx_spi_calc_divisors(const struct ep93xx_spi *espi,
243 struct ep93xx_spi_chip *chip,
244 unsigned long rate)
246 unsigned long spi_clk_rate = clk_get_rate(espi->clk);
247 int cpsr, scr;
250 * Make sure that max value is between values supported by the
251 * controller. Note that minimum value is already checked in
252 * ep93xx_spi_transfer().
254 rate = clamp(rate, espi->min_rate, espi->max_rate);
257 * Calculate divisors so that we can get speed according the
258 * following formula:
259 * rate = spi_clock_rate / (cpsr * (1 + scr))
261 * cpsr must be even number and starts from 2, scr can be any number
262 * between 0 and 255.
264 for (cpsr = 2; cpsr <= 254; cpsr += 2) {
265 for (scr = 0; scr <= 255; scr++) {
266 if ((spi_clk_rate / (cpsr * (scr + 1))) <= rate) {
267 chip->div_scr = (u8)scr;
268 chip->div_cpsr = (u8)cpsr;
269 return 0;
274 return -EINVAL;
277 static void ep93xx_spi_cs_control(struct spi_device *spi, bool control)
279 struct ep93xx_spi_chip *chip = spi_get_ctldata(spi);
280 int value = (spi->mode & SPI_CS_HIGH) ? control : !control;
282 if (chip->ops && chip->ops->cs_control)
283 chip->ops->cs_control(spi, value);
287 * ep93xx_spi_setup() - setup an SPI device
288 * @spi: SPI device to setup
290 * This function sets up SPI device mode, speed etc. Can be called multiple
291 * times for a single device. Returns %0 in case of success, negative error in
292 * case of failure. When this function returns success, the device is
293 * deselected.
295 static int ep93xx_spi_setup(struct spi_device *spi)
297 struct ep93xx_spi *espi = spi_master_get_devdata(spi->master);
298 struct ep93xx_spi_chip *chip;
300 if (spi->bits_per_word < 4 || spi->bits_per_word > 16) {
301 dev_err(&espi->pdev->dev, "invalid bits per word %d\n",
302 spi->bits_per_word);
303 return -EINVAL;
306 chip = spi_get_ctldata(spi);
307 if (!chip) {
308 dev_dbg(&espi->pdev->dev, "initial setup for %s\n",
309 spi->modalias);
311 chip = kzalloc(sizeof(*chip), GFP_KERNEL);
312 if (!chip)
313 return -ENOMEM;
315 chip->spi = spi;
316 chip->ops = spi->controller_data;
318 if (chip->ops && chip->ops->setup) {
319 int ret = chip->ops->setup(spi);
320 if (ret) {
321 kfree(chip);
322 return ret;
326 spi_set_ctldata(spi, chip);
329 if (spi->max_speed_hz != chip->rate) {
330 int err;
332 err = ep93xx_spi_calc_divisors(espi, chip, spi->max_speed_hz);
333 if (err != 0) {
334 spi_set_ctldata(spi, NULL);
335 kfree(chip);
336 return err;
338 chip->rate = spi->max_speed_hz;
341 chip->dss = bits_per_word_to_dss(spi->bits_per_word);
343 ep93xx_spi_cs_control(spi, false);
344 return 0;
348 * ep93xx_spi_transfer() - queue message to be transferred
349 * @spi: target SPI device
350 * @msg: message to be transferred
352 * This function is called by SPI device drivers when they are going to transfer
353 * a new message. It simply puts the message in the queue and schedules
354 * workqueue to perform the actual transfer later on.
356 * Returns %0 on success and negative error in case of failure.
358 static int ep93xx_spi_transfer(struct spi_device *spi, struct spi_message *msg)
360 struct ep93xx_spi *espi = spi_master_get_devdata(spi->master);
361 struct spi_transfer *t;
362 unsigned long flags;
364 if (!msg || !msg->complete)
365 return -EINVAL;
367 /* first validate each transfer */
368 list_for_each_entry(t, &msg->transfers, transfer_list) {
369 if (t->bits_per_word) {
370 if (t->bits_per_word < 4 || t->bits_per_word > 16)
371 return -EINVAL;
373 if (t->speed_hz && t->speed_hz < espi->min_rate)
374 return -EINVAL;
378 * Now that we own the message, let's initialize it so that it is
379 * suitable for us. We use @msg->status to signal whether there was
380 * error in transfer and @msg->state is used to hold pointer to the
381 * current transfer (or %NULL if no active current transfer).
383 msg->state = NULL;
384 msg->status = 0;
385 msg->actual_length = 0;
387 spin_lock_irqsave(&espi->lock, flags);
388 if (!espi->running) {
389 spin_unlock_irqrestore(&espi->lock, flags);
390 return -ESHUTDOWN;
392 list_add_tail(&msg->queue, &espi->msg_queue);
393 queue_work(espi->wq, &espi->msg_work);
394 spin_unlock_irqrestore(&espi->lock, flags);
396 return 0;
400 * ep93xx_spi_cleanup() - cleans up master controller specific state
401 * @spi: SPI device to cleanup
403 * This function releases master controller specific state for given @spi
404 * device.
406 static void ep93xx_spi_cleanup(struct spi_device *spi)
408 struct ep93xx_spi_chip *chip;
410 chip = spi_get_ctldata(spi);
411 if (chip) {
412 if (chip->ops && chip->ops->cleanup)
413 chip->ops->cleanup(spi);
414 spi_set_ctldata(spi, NULL);
415 kfree(chip);
420 * ep93xx_spi_chip_setup() - configures hardware according to given @chip
421 * @espi: ep93xx SPI controller struct
422 * @chip: chip specific settings
424 * This function sets up the actual hardware registers with settings given in
425 * @chip. Note that no validation is done so make sure that callers validate
426 * settings before calling this.
428 static void ep93xx_spi_chip_setup(const struct ep93xx_spi *espi,
429 const struct ep93xx_spi_chip *chip)
431 u16 cr0;
433 cr0 = chip->div_scr << SSPCR0_SCR_SHIFT;
434 cr0 |= (chip->spi->mode & (SPI_CPHA|SPI_CPOL)) << SSPCR0_MODE_SHIFT;
435 cr0 |= chip->dss;
437 dev_dbg(&espi->pdev->dev, "setup: mode %d, cpsr %d, scr %d, dss %d\n",
438 chip->spi->mode, chip->div_cpsr, chip->div_scr, chip->dss);
439 dev_dbg(&espi->pdev->dev, "setup: cr0 %#x", cr0);
441 ep93xx_spi_write_u8(espi, SSPCPSR, chip->div_cpsr);
442 ep93xx_spi_write_u16(espi, SSPCR0, cr0);
445 static inline int bits_per_word(const struct ep93xx_spi *espi)
447 struct spi_message *msg = espi->current_msg;
448 struct spi_transfer *t = msg->state;
450 return t->bits_per_word ? t->bits_per_word : msg->spi->bits_per_word;
453 static void ep93xx_do_write(struct ep93xx_spi *espi, struct spi_transfer *t)
455 if (bits_per_word(espi) > 8) {
456 u16 tx_val = 0;
458 if (t->tx_buf)
459 tx_val = ((u16 *)t->tx_buf)[espi->tx];
460 ep93xx_spi_write_u16(espi, SSPDR, tx_val);
461 espi->tx += sizeof(tx_val);
462 } else {
463 u8 tx_val = 0;
465 if (t->tx_buf)
466 tx_val = ((u8 *)t->tx_buf)[espi->tx];
467 ep93xx_spi_write_u8(espi, SSPDR, tx_val);
468 espi->tx += sizeof(tx_val);
472 static void ep93xx_do_read(struct ep93xx_spi *espi, struct spi_transfer *t)
474 if (bits_per_word(espi) > 8) {
475 u16 rx_val;
477 rx_val = ep93xx_spi_read_u16(espi, SSPDR);
478 if (t->rx_buf)
479 ((u16 *)t->rx_buf)[espi->rx] = rx_val;
480 espi->rx += sizeof(rx_val);
481 } else {
482 u8 rx_val;
484 rx_val = ep93xx_spi_read_u8(espi, SSPDR);
485 if (t->rx_buf)
486 ((u8 *)t->rx_buf)[espi->rx] = rx_val;
487 espi->rx += sizeof(rx_val);
492 * ep93xx_spi_read_write() - perform next RX/TX transfer
493 * @espi: ep93xx SPI controller struct
495 * This function transfers next bytes (or half-words) to/from RX/TX FIFOs. If
496 * called several times, the whole transfer will be completed. Returns
497 * %-EINPROGRESS when current transfer was not yet completed otherwise %0.
499 * When this function is finished, RX FIFO should be empty and TX FIFO should be
500 * full.
502 static int ep93xx_spi_read_write(struct ep93xx_spi *espi)
504 struct spi_message *msg = espi->current_msg;
505 struct spi_transfer *t = msg->state;
507 /* read as long as RX FIFO has frames in it */
508 while ((ep93xx_spi_read_u8(espi, SSPSR) & SSPSR_RNE)) {
509 ep93xx_do_read(espi, t);
510 espi->fifo_level--;
513 /* write as long as TX FIFO has room */
514 while (espi->fifo_level < SPI_FIFO_SIZE && espi->tx < t->len) {
515 ep93xx_do_write(espi, t);
516 espi->fifo_level++;
519 if (espi->rx == t->len)
520 return 0;
522 return -EINPROGRESS;
525 static void ep93xx_spi_pio_transfer(struct ep93xx_spi *espi)
528 * Now everything is set up for the current transfer. We prime the TX
529 * FIFO, enable interrupts, and wait for the transfer to complete.
531 if (ep93xx_spi_read_write(espi)) {
532 ep93xx_spi_enable_interrupts(espi);
533 wait_for_completion(&espi->wait);
538 * ep93xx_spi_dma_prepare() - prepares a DMA transfer
539 * @espi: ep93xx SPI controller struct
540 * @dir: DMA transfer direction
542 * Function configures the DMA, maps the buffer and prepares the DMA
543 * descriptor. Returns a valid DMA descriptor in case of success and ERR_PTR
544 * in case of failure.
546 static struct dma_async_tx_descriptor *
547 ep93xx_spi_dma_prepare(struct ep93xx_spi *espi, enum dma_data_direction dir)
549 struct spi_transfer *t = espi->current_msg->state;
550 struct dma_async_tx_descriptor *txd;
551 enum dma_slave_buswidth buswidth;
552 struct dma_slave_config conf;
553 struct scatterlist *sg;
554 struct sg_table *sgt;
555 struct dma_chan *chan;
556 const void *buf, *pbuf;
557 size_t len = t->len;
558 int i, ret, nents;
560 if (bits_per_word(espi) > 8)
561 buswidth = DMA_SLAVE_BUSWIDTH_2_BYTES;
562 else
563 buswidth = DMA_SLAVE_BUSWIDTH_1_BYTE;
565 memset(&conf, 0, sizeof(conf));
566 conf.direction = dir;
568 if (dir == DMA_FROM_DEVICE) {
569 chan = espi->dma_rx;
570 buf = t->rx_buf;
571 sgt = &espi->rx_sgt;
573 conf.src_addr = espi->sspdr_phys;
574 conf.src_addr_width = buswidth;
575 } else {
576 chan = espi->dma_tx;
577 buf = t->tx_buf;
578 sgt = &espi->tx_sgt;
580 conf.dst_addr = espi->sspdr_phys;
581 conf.dst_addr_width = buswidth;
584 ret = dmaengine_slave_config(chan, &conf);
585 if (ret)
586 return ERR_PTR(ret);
589 * We need to split the transfer into PAGE_SIZE'd chunks. This is
590 * because we are using @espi->zeropage to provide a zero RX buffer
591 * for the TX transfers and we have only allocated one page for that.
593 * For performance reasons we allocate a new sg_table only when
594 * needed. Otherwise we will re-use the current one. Eventually the
595 * last sg_table is released in ep93xx_spi_release_dma().
598 nents = DIV_ROUND_UP(len, PAGE_SIZE);
599 if (nents != sgt->nents) {
600 sg_free_table(sgt);
602 ret = sg_alloc_table(sgt, nents, GFP_KERNEL);
603 if (ret)
604 return ERR_PTR(ret);
607 pbuf = buf;
608 for_each_sg(sgt->sgl, sg, sgt->nents, i) {
609 size_t bytes = min_t(size_t, len, PAGE_SIZE);
611 if (buf) {
612 sg_set_page(sg, virt_to_page(pbuf), bytes,
613 offset_in_page(pbuf));
614 } else {
615 sg_set_page(sg, virt_to_page(espi->zeropage),
616 bytes, 0);
619 pbuf += bytes;
620 len -= bytes;
623 if (WARN_ON(len)) {
624 dev_warn(&espi->pdev->dev, "len = %d expected 0!", len);
625 return ERR_PTR(-EINVAL);
628 nents = dma_map_sg(chan->device->dev, sgt->sgl, sgt->nents, dir);
629 if (!nents)
630 return ERR_PTR(-ENOMEM);
632 txd = chan->device->device_prep_slave_sg(chan, sgt->sgl, nents,
633 dir, DMA_CTRL_ACK);
634 if (!txd) {
635 dma_unmap_sg(chan->device->dev, sgt->sgl, sgt->nents, dir);
636 return ERR_PTR(-ENOMEM);
638 return txd;
642 * ep93xx_spi_dma_finish() - finishes with a DMA transfer
643 * @espi: ep93xx SPI controller struct
644 * @dir: DMA transfer direction
646 * Function finishes with the DMA transfer. After this, the DMA buffer is
647 * unmapped.
649 static void ep93xx_spi_dma_finish(struct ep93xx_spi *espi,
650 enum dma_data_direction dir)
652 struct dma_chan *chan;
653 struct sg_table *sgt;
655 if (dir == DMA_FROM_DEVICE) {
656 chan = espi->dma_rx;
657 sgt = &espi->rx_sgt;
658 } else {
659 chan = espi->dma_tx;
660 sgt = &espi->tx_sgt;
663 dma_unmap_sg(chan->device->dev, sgt->sgl, sgt->nents, dir);
666 static void ep93xx_spi_dma_callback(void *callback_param)
668 complete(callback_param);
671 static void ep93xx_spi_dma_transfer(struct ep93xx_spi *espi)
673 struct spi_message *msg = espi->current_msg;
674 struct dma_async_tx_descriptor *rxd, *txd;
676 rxd = ep93xx_spi_dma_prepare(espi, DMA_FROM_DEVICE);
677 if (IS_ERR(rxd)) {
678 dev_err(&espi->pdev->dev, "DMA RX failed: %ld\n", PTR_ERR(rxd));
679 msg->status = PTR_ERR(rxd);
680 return;
683 txd = ep93xx_spi_dma_prepare(espi, DMA_TO_DEVICE);
684 if (IS_ERR(txd)) {
685 ep93xx_spi_dma_finish(espi, DMA_FROM_DEVICE);
686 dev_err(&espi->pdev->dev, "DMA TX failed: %ld\n", PTR_ERR(rxd));
687 msg->status = PTR_ERR(txd);
688 return;
691 /* We are ready when RX is done */
692 rxd->callback = ep93xx_spi_dma_callback;
693 rxd->callback_param = &espi->wait;
695 /* Now submit both descriptors and wait while they finish */
696 dmaengine_submit(rxd);
697 dmaengine_submit(txd);
699 dma_async_issue_pending(espi->dma_rx);
700 dma_async_issue_pending(espi->dma_tx);
702 wait_for_completion(&espi->wait);
704 ep93xx_spi_dma_finish(espi, DMA_TO_DEVICE);
705 ep93xx_spi_dma_finish(espi, DMA_FROM_DEVICE);
709 * ep93xx_spi_process_transfer() - processes one SPI transfer
710 * @espi: ep93xx SPI controller struct
711 * @msg: current message
712 * @t: transfer to process
714 * This function processes one SPI transfer given in @t. Function waits until
715 * transfer is complete (may sleep) and updates @msg->status based on whether
716 * transfer was successfully processed or not.
718 static void ep93xx_spi_process_transfer(struct ep93xx_spi *espi,
719 struct spi_message *msg,
720 struct spi_transfer *t)
722 struct ep93xx_spi_chip *chip = spi_get_ctldata(msg->spi);
724 msg->state = t;
727 * Handle any transfer specific settings if needed. We use
728 * temporary chip settings here and restore original later when
729 * the transfer is finished.
731 if (t->speed_hz || t->bits_per_word) {
732 struct ep93xx_spi_chip tmp_chip = *chip;
734 if (t->speed_hz) {
735 int err;
737 err = ep93xx_spi_calc_divisors(espi, &tmp_chip,
738 t->speed_hz);
739 if (err) {
740 dev_err(&espi->pdev->dev,
741 "failed to adjust speed\n");
742 msg->status = err;
743 return;
747 if (t->bits_per_word)
748 tmp_chip.dss = bits_per_word_to_dss(t->bits_per_word);
751 * Set up temporary new hw settings for this transfer.
753 ep93xx_spi_chip_setup(espi, &tmp_chip);
756 espi->rx = 0;
757 espi->tx = 0;
760 * There is no point of setting up DMA for the transfers which will
761 * fit into the FIFO and can be transferred with a single interrupt.
762 * So in these cases we will be using PIO and don't bother for DMA.
764 if (espi->dma_rx && t->len > SPI_FIFO_SIZE)
765 ep93xx_spi_dma_transfer(espi);
766 else
767 ep93xx_spi_pio_transfer(espi);
770 * In case of error during transmit, we bail out from processing
771 * the message.
773 if (msg->status)
774 return;
776 msg->actual_length += t->len;
779 * After this transfer is finished, perform any possible
780 * post-transfer actions requested by the protocol driver.
782 if (t->delay_usecs) {
783 set_current_state(TASK_UNINTERRUPTIBLE);
784 schedule_timeout(usecs_to_jiffies(t->delay_usecs));
786 if (t->cs_change) {
787 if (!list_is_last(&t->transfer_list, &msg->transfers)) {
789 * In case protocol driver is asking us to drop the
790 * chipselect briefly, we let the scheduler to handle
791 * any "delay" here.
793 ep93xx_spi_cs_control(msg->spi, false);
794 cond_resched();
795 ep93xx_spi_cs_control(msg->spi, true);
799 if (t->speed_hz || t->bits_per_word)
800 ep93xx_spi_chip_setup(espi, chip);
804 * ep93xx_spi_process_message() - process one SPI message
805 * @espi: ep93xx SPI controller struct
806 * @msg: message to process
808 * This function processes a single SPI message. We go through all transfers in
809 * the message and pass them to ep93xx_spi_process_transfer(). Chipselect is
810 * asserted during the whole message (unless per transfer cs_change is set).
812 * @msg->status contains %0 in case of success or negative error code in case of
813 * failure.
815 static void ep93xx_spi_process_message(struct ep93xx_spi *espi,
816 struct spi_message *msg)
818 unsigned long timeout;
819 struct spi_transfer *t;
820 int err;
823 * Enable the SPI controller and its clock.
825 err = ep93xx_spi_enable(espi);
826 if (err) {
827 dev_err(&espi->pdev->dev, "failed to enable SPI controller\n");
828 msg->status = err;
829 return;
833 * Just to be sure: flush any data from RX FIFO.
835 timeout = jiffies + msecs_to_jiffies(SPI_TIMEOUT);
836 while (ep93xx_spi_read_u16(espi, SSPSR) & SSPSR_RNE) {
837 if (time_after(jiffies, timeout)) {
838 dev_warn(&espi->pdev->dev,
839 "timeout while flushing RX FIFO\n");
840 msg->status = -ETIMEDOUT;
841 return;
843 ep93xx_spi_read_u16(espi, SSPDR);
847 * We explicitly handle FIFO level. This way we don't have to check TX
848 * FIFO status using %SSPSR_TNF bit which may cause RX FIFO overruns.
850 espi->fifo_level = 0;
853 * Update SPI controller registers according to spi device and assert
854 * the chipselect.
856 ep93xx_spi_chip_setup(espi, spi_get_ctldata(msg->spi));
857 ep93xx_spi_cs_control(msg->spi, true);
859 list_for_each_entry(t, &msg->transfers, transfer_list) {
860 ep93xx_spi_process_transfer(espi, msg, t);
861 if (msg->status)
862 break;
866 * Now the whole message is transferred (or failed for some reason). We
867 * deselect the device and disable the SPI controller.
869 ep93xx_spi_cs_control(msg->spi, false);
870 ep93xx_spi_disable(espi);
873 #define work_to_espi(work) (container_of((work), struct ep93xx_spi, msg_work))
876 * ep93xx_spi_work() - EP93xx SPI workqueue worker function
877 * @work: work struct
879 * Workqueue worker function. This function is called when there are new
880 * SPI messages to be processed. Message is taken out from the queue and then
881 * passed to ep93xx_spi_process_message().
883 * After message is transferred, protocol driver is notified by calling
884 * @msg->complete(). In case of error, @msg->status is set to negative error
885 * number, otherwise it contains zero (and @msg->actual_length is updated).
887 static void ep93xx_spi_work(struct work_struct *work)
889 struct ep93xx_spi *espi = work_to_espi(work);
890 struct spi_message *msg;
892 spin_lock_irq(&espi->lock);
893 if (!espi->running || espi->current_msg ||
894 list_empty(&espi->msg_queue)) {
895 spin_unlock_irq(&espi->lock);
896 return;
898 msg = list_first_entry(&espi->msg_queue, struct spi_message, queue);
899 list_del_init(&msg->queue);
900 espi->current_msg = msg;
901 spin_unlock_irq(&espi->lock);
903 ep93xx_spi_process_message(espi, msg);
906 * Update the current message and re-schedule ourselves if there are
907 * more messages in the queue.
909 spin_lock_irq(&espi->lock);
910 espi->current_msg = NULL;
911 if (espi->running && !list_empty(&espi->msg_queue))
912 queue_work(espi->wq, &espi->msg_work);
913 spin_unlock_irq(&espi->lock);
915 /* notify the protocol driver that we are done with this message */
916 msg->complete(msg->context);
919 static irqreturn_t ep93xx_spi_interrupt(int irq, void *dev_id)
921 struct ep93xx_spi *espi = dev_id;
922 u8 irq_status = ep93xx_spi_read_u8(espi, SSPIIR);
925 * If we got ROR (receive overrun) interrupt we know that something is
926 * wrong. Just abort the message.
928 if (unlikely(irq_status & SSPIIR_RORIS)) {
929 /* clear the overrun interrupt */
930 ep93xx_spi_write_u8(espi, SSPICR, 0);
931 dev_warn(&espi->pdev->dev,
932 "receive overrun, aborting the message\n");
933 espi->current_msg->status = -EIO;
934 } else {
936 * Interrupt is either RX (RIS) or TX (TIS). For both cases we
937 * simply execute next data transfer.
939 if (ep93xx_spi_read_write(espi)) {
941 * In normal case, there still is some processing left
942 * for current transfer. Let's wait for the next
943 * interrupt then.
945 return IRQ_HANDLED;
950 * Current transfer is finished, either with error or with success. In
951 * any case we disable interrupts and notify the worker to handle
952 * any post-processing of the message.
954 ep93xx_spi_disable_interrupts(espi);
955 complete(&espi->wait);
956 return IRQ_HANDLED;
959 static bool ep93xx_spi_dma_filter(struct dma_chan *chan, void *filter_param)
961 if (ep93xx_dma_chan_is_m2p(chan))
962 return false;
964 chan->private = filter_param;
965 return true;
968 static int ep93xx_spi_setup_dma(struct ep93xx_spi *espi)
970 dma_cap_mask_t mask;
971 int ret;
973 espi->zeropage = (void *)get_zeroed_page(GFP_KERNEL);
974 if (!espi->zeropage)
975 return -ENOMEM;
977 dma_cap_zero(mask);
978 dma_cap_set(DMA_SLAVE, mask);
980 espi->dma_rx_data.port = EP93XX_DMA_SSP;
981 espi->dma_rx_data.direction = DMA_FROM_DEVICE;
982 espi->dma_rx_data.name = "ep93xx-spi-rx";
984 espi->dma_rx = dma_request_channel(mask, ep93xx_spi_dma_filter,
985 &espi->dma_rx_data);
986 if (!espi->dma_rx) {
987 ret = -ENODEV;
988 goto fail_free_page;
991 espi->dma_tx_data.port = EP93XX_DMA_SSP;
992 espi->dma_tx_data.direction = DMA_TO_DEVICE;
993 espi->dma_tx_data.name = "ep93xx-spi-tx";
995 espi->dma_tx = dma_request_channel(mask, ep93xx_spi_dma_filter,
996 &espi->dma_tx_data);
997 if (!espi->dma_tx) {
998 ret = -ENODEV;
999 goto fail_release_rx;
1002 return 0;
1004 fail_release_rx:
1005 dma_release_channel(espi->dma_rx);
1006 espi->dma_rx = NULL;
1007 fail_free_page:
1008 free_page((unsigned long)espi->zeropage);
1010 return ret;
1013 static void ep93xx_spi_release_dma(struct ep93xx_spi *espi)
1015 if (espi->dma_rx) {
1016 dma_release_channel(espi->dma_rx);
1017 sg_free_table(&espi->rx_sgt);
1019 if (espi->dma_tx) {
1020 dma_release_channel(espi->dma_tx);
1021 sg_free_table(&espi->tx_sgt);
1024 if (espi->zeropage)
1025 free_page((unsigned long)espi->zeropage);
1028 static int __init ep93xx_spi_probe(struct platform_device *pdev)
1030 struct spi_master *master;
1031 struct ep93xx_spi_info *info;
1032 struct ep93xx_spi *espi;
1033 struct resource *res;
1034 int error;
1036 info = pdev->dev.platform_data;
1038 master = spi_alloc_master(&pdev->dev, sizeof(*espi));
1039 if (!master) {
1040 dev_err(&pdev->dev, "failed to allocate spi master\n");
1041 return -ENOMEM;
1044 master->setup = ep93xx_spi_setup;
1045 master->transfer = ep93xx_spi_transfer;
1046 master->cleanup = ep93xx_spi_cleanup;
1047 master->bus_num = pdev->id;
1048 master->num_chipselect = info->num_chipselect;
1049 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1051 platform_set_drvdata(pdev, master);
1053 espi = spi_master_get_devdata(master);
1055 espi->clk = clk_get(&pdev->dev, NULL);
1056 if (IS_ERR(espi->clk)) {
1057 dev_err(&pdev->dev, "unable to get spi clock\n");
1058 error = PTR_ERR(espi->clk);
1059 goto fail_release_master;
1062 spin_lock_init(&espi->lock);
1063 init_completion(&espi->wait);
1066 * Calculate maximum and minimum supported clock rates
1067 * for the controller.
1069 espi->max_rate = clk_get_rate(espi->clk) / 2;
1070 espi->min_rate = clk_get_rate(espi->clk) / (254 * 256);
1071 espi->pdev = pdev;
1073 espi->irq = platform_get_irq(pdev, 0);
1074 if (espi->irq < 0) {
1075 error = -EBUSY;
1076 dev_err(&pdev->dev, "failed to get irq resources\n");
1077 goto fail_put_clock;
1080 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1081 if (!res) {
1082 dev_err(&pdev->dev, "unable to get iomem resource\n");
1083 error = -ENODEV;
1084 goto fail_put_clock;
1087 res = request_mem_region(res->start, resource_size(res), pdev->name);
1088 if (!res) {
1089 dev_err(&pdev->dev, "unable to request iomem resources\n");
1090 error = -EBUSY;
1091 goto fail_put_clock;
1094 espi->sspdr_phys = res->start + SSPDR;
1095 espi->regs_base = ioremap(res->start, resource_size(res));
1096 if (!espi->regs_base) {
1097 dev_err(&pdev->dev, "failed to map resources\n");
1098 error = -ENODEV;
1099 goto fail_free_mem;
1102 error = request_irq(espi->irq, ep93xx_spi_interrupt, 0,
1103 "ep93xx-spi", espi);
1104 if (error) {
1105 dev_err(&pdev->dev, "failed to request irq\n");
1106 goto fail_unmap_regs;
1109 if (info->use_dma && ep93xx_spi_setup_dma(espi))
1110 dev_warn(&pdev->dev, "DMA setup failed. Falling back to PIO\n");
1112 espi->wq = create_singlethread_workqueue("ep93xx_spid");
1113 if (!espi->wq) {
1114 dev_err(&pdev->dev, "unable to create workqueue\n");
1115 goto fail_free_dma;
1117 INIT_WORK(&espi->msg_work, ep93xx_spi_work);
1118 INIT_LIST_HEAD(&espi->msg_queue);
1119 espi->running = true;
1121 /* make sure that the hardware is disabled */
1122 ep93xx_spi_write_u8(espi, SSPCR1, 0);
1124 error = spi_register_master(master);
1125 if (error) {
1126 dev_err(&pdev->dev, "failed to register SPI master\n");
1127 goto fail_free_queue;
1130 dev_info(&pdev->dev, "EP93xx SPI Controller at 0x%08lx irq %d\n",
1131 (unsigned long)res->start, espi->irq);
1133 return 0;
1135 fail_free_queue:
1136 destroy_workqueue(espi->wq);
1137 fail_free_dma:
1138 ep93xx_spi_release_dma(espi);
1139 free_irq(espi->irq, espi);
1140 fail_unmap_regs:
1141 iounmap(espi->regs_base);
1142 fail_free_mem:
1143 release_mem_region(res->start, resource_size(res));
1144 fail_put_clock:
1145 clk_put(espi->clk);
1146 fail_release_master:
1147 spi_master_put(master);
1148 platform_set_drvdata(pdev, NULL);
1150 return error;
1153 static int __exit ep93xx_spi_remove(struct platform_device *pdev)
1155 struct spi_master *master = platform_get_drvdata(pdev);
1156 struct ep93xx_spi *espi = spi_master_get_devdata(master);
1157 struct resource *res;
1159 spin_lock_irq(&espi->lock);
1160 espi->running = false;
1161 spin_unlock_irq(&espi->lock);
1163 destroy_workqueue(espi->wq);
1166 * Complete remaining messages with %-ESHUTDOWN status.
1168 spin_lock_irq(&espi->lock);
1169 while (!list_empty(&espi->msg_queue)) {
1170 struct spi_message *msg;
1172 msg = list_first_entry(&espi->msg_queue,
1173 struct spi_message, queue);
1174 list_del_init(&msg->queue);
1175 msg->status = -ESHUTDOWN;
1176 spin_unlock_irq(&espi->lock);
1177 msg->complete(msg->context);
1178 spin_lock_irq(&espi->lock);
1180 spin_unlock_irq(&espi->lock);
1182 ep93xx_spi_release_dma(espi);
1183 free_irq(espi->irq, espi);
1184 iounmap(espi->regs_base);
1185 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1186 release_mem_region(res->start, resource_size(res));
1187 clk_put(espi->clk);
1188 platform_set_drvdata(pdev, NULL);
1190 spi_unregister_master(master);
1191 return 0;
1194 static struct platform_driver ep93xx_spi_driver = {
1195 .driver = {
1196 .name = "ep93xx-spi",
1197 .owner = THIS_MODULE,
1199 .remove = __exit_p(ep93xx_spi_remove),
1202 static int __init ep93xx_spi_init(void)
1204 return platform_driver_probe(&ep93xx_spi_driver, ep93xx_spi_probe);
1206 module_init(ep93xx_spi_init);
1208 static void __exit ep93xx_spi_exit(void)
1210 platform_driver_unregister(&ep93xx_spi_driver);
1212 module_exit(ep93xx_spi_exit);
1214 MODULE_DESCRIPTION("EP93xx SPI Controller driver");
1215 MODULE_AUTHOR("Mika Westerberg <mika.westerberg@iki.fi>");
1216 MODULE_LICENSE("GPL");
1217 MODULE_ALIAS("platform:ep93xx-spi");