Add linux-next specific files for 20110831
[linux-2.6/next.git] / drivers / tty / serial / ifx6x60.c
blob426434e5eb7c0d9ef57b8a6f3aeb047ad5f94f1d
1 /****************************************************************************
3 * Driver for the IFX 6x60 spi modem.
5 * Copyright (C) 2008 Option International
6 * Copyright (C) 2008 Filip Aben <f.aben@option.com>
7 * Denis Joseph Barrow <d.barow@option.com>
8 * Jan Dumon <j.dumon@option.com>
10 * Copyright (C) 2009, 2010 Intel Corp
11 * Russ Gorby <russ.gorby@intel.com>
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License version 2 as
15 * published by the Free Software Foundation.
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, write to the Free Software
24 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
25 * USA
27 * Driver modified by Intel from Option gtm501l_spi.c
29 * Notes
30 * o The driver currently assumes a single device only. If you need to
31 * change this then look for saved_ifx_dev and add a device lookup
32 * o The driver is intended to be big-endian safe but has never been
33 * tested that way (no suitable hardware). There are a couple of FIXME
34 * notes by areas that may need addressing
35 * o Some of the GPIO naming/setup assumptions may need revisiting if
36 * you need to use this driver for another platform.
38 *****************************************************************************/
39 #include <linux/dma-mapping.h>
40 #include <linux/module.h>
41 #include <linux/termios.h>
42 #include <linux/tty.h>
43 #include <linux/device.h>
44 #include <linux/spi/spi.h>
45 #include <linux/kfifo.h>
46 #include <linux/tty_flip.h>
47 #include <linux/timer.h>
48 #include <linux/serial.h>
49 #include <linux/interrupt.h>
50 #include <linux/irq.h>
51 #include <linux/rfkill.h>
52 #include <linux/fs.h>
53 #include <linux/ip.h>
54 #include <linux/dmapool.h>
55 #include <linux/gpio.h>
56 #include <linux/sched.h>
57 #include <linux/time.h>
58 #include <linux/wait.h>
59 #include <linux/pm.h>
60 #include <linux/pm_runtime.h>
61 #include <linux/spi/ifx_modem.h>
62 #include <linux/delay.h>
64 #include "ifx6x60.h"
66 #define IFX_SPI_MORE_MASK 0x10
67 #define IFX_SPI_MORE_BIT 12 /* bit position in u16 */
68 #define IFX_SPI_CTS_BIT 13 /* bit position in u16 */
69 #define IFX_SPI_MODE SPI_MODE_1
70 #define IFX_SPI_TTY_ID 0
71 #define IFX_SPI_TIMEOUT_SEC 2
72 #define IFX_SPI_HEADER_0 (-1)
73 #define IFX_SPI_HEADER_F (-2)
75 /* forward reference */
76 static void ifx_spi_handle_srdy(struct ifx_spi_device *ifx_dev);
78 /* local variables */
79 static int spi_bpw = 16; /* 8, 16 or 32 bit word length */
80 static struct tty_driver *tty_drv;
81 static struct ifx_spi_device *saved_ifx_dev;
82 static struct lock_class_key ifx_spi_key;
84 /* GPIO/GPE settings */
86 /**
87 * mrdy_set_high - set MRDY GPIO
88 * @ifx: device we are controlling
91 static inline void mrdy_set_high(struct ifx_spi_device *ifx)
93 gpio_set_value(ifx->gpio.mrdy, 1);
96 /**
97 * mrdy_set_low - clear MRDY GPIO
98 * @ifx: device we are controlling
101 static inline void mrdy_set_low(struct ifx_spi_device *ifx)
103 gpio_set_value(ifx->gpio.mrdy, 0);
107 * ifx_spi_power_state_set
108 * @ifx_dev: our SPI device
109 * @val: bits to set
111 * Set bit in power status and signal power system if status becomes non-0
113 static void
114 ifx_spi_power_state_set(struct ifx_spi_device *ifx_dev, unsigned char val)
116 unsigned long flags;
118 spin_lock_irqsave(&ifx_dev->power_lock, flags);
121 * if power status is already non-0, just update, else
122 * tell power system
124 if (!ifx_dev->power_status)
125 pm_runtime_get(&ifx_dev->spi_dev->dev);
126 ifx_dev->power_status |= val;
128 spin_unlock_irqrestore(&ifx_dev->power_lock, flags);
132 * ifx_spi_power_state_clear - clear power bit
133 * @ifx_dev: our SPI device
134 * @val: bits to clear
136 * clear bit in power status and signal power system if status becomes 0
138 static void
139 ifx_spi_power_state_clear(struct ifx_spi_device *ifx_dev, unsigned char val)
141 unsigned long flags;
143 spin_lock_irqsave(&ifx_dev->power_lock, flags);
145 if (ifx_dev->power_status) {
146 ifx_dev->power_status &= ~val;
147 if (!ifx_dev->power_status)
148 pm_runtime_put(&ifx_dev->spi_dev->dev);
151 spin_unlock_irqrestore(&ifx_dev->power_lock, flags);
155 * swap_buf
156 * @buf: our buffer
157 * @len : number of bytes (not words) in the buffer
158 * @end: end of buffer
160 * Swap the contents of a buffer into big endian format
162 static inline void swap_buf(u16 *buf, int len, void *end)
164 int n;
166 len = ((len + 1) >> 1);
167 if ((void *)&buf[len] > end) {
168 pr_err("swap_buf: swap exceeds boundary (%p > %p)!",
169 &buf[len], end);
170 return;
172 for (n = 0; n < len; n++) {
173 *buf = cpu_to_be16(*buf);
174 buf++;
179 * mrdy_assert - assert MRDY line
180 * @ifx_dev: our SPI device
182 * Assert mrdy and set timer to wait for SRDY interrupt, if SRDY is low
183 * now.
185 * FIXME: Can SRDY even go high as we are running this code ?
187 static void mrdy_assert(struct ifx_spi_device *ifx_dev)
189 int val = gpio_get_value(ifx_dev->gpio.srdy);
190 if (!val) {
191 if (!test_and_set_bit(IFX_SPI_STATE_TIMER_PENDING,
192 &ifx_dev->flags)) {
193 ifx_dev->spi_timer.expires =
194 jiffies + IFX_SPI_TIMEOUT_SEC*HZ;
195 add_timer(&ifx_dev->spi_timer);
199 ifx_spi_power_state_set(ifx_dev, IFX_SPI_POWER_DATA_PENDING);
200 mrdy_set_high(ifx_dev);
204 * ifx_spi_hangup - hang up an IFX device
205 * @ifx_dev: our SPI device
207 * Hang up the tty attached to the IFX device if one is currently
208 * open. If not take no action
210 static void ifx_spi_ttyhangup(struct ifx_spi_device *ifx_dev)
212 struct tty_port *pport = &ifx_dev->tty_port;
213 struct tty_struct *tty = tty_port_tty_get(pport);
214 if (tty) {
215 tty_hangup(tty);
216 tty_kref_put(tty);
221 * ifx_spi_timeout - SPI timeout
222 * @arg: our SPI device
224 * The SPI has timed out: hang up the tty. Users will then see a hangup
225 * and error events.
227 static void ifx_spi_timeout(unsigned long arg)
229 struct ifx_spi_device *ifx_dev = (struct ifx_spi_device *)arg;
231 dev_warn(&ifx_dev->spi_dev->dev, "*** SPI Timeout ***");
232 ifx_spi_ttyhangup(ifx_dev);
233 mrdy_set_low(ifx_dev);
234 clear_bit(IFX_SPI_STATE_TIMER_PENDING, &ifx_dev->flags);
237 /* char/tty operations */
240 * ifx_spi_tiocmget - get modem lines
241 * @tty: our tty device
242 * @filp: file handle issuing the request
244 * Map the signal state into Linux modem flags and report the value
245 * in Linux terms
247 static int ifx_spi_tiocmget(struct tty_struct *tty)
249 unsigned int value;
250 struct ifx_spi_device *ifx_dev = tty->driver_data;
252 value =
253 (test_bit(IFX_SPI_RTS, &ifx_dev->signal_state) ? TIOCM_RTS : 0) |
254 (test_bit(IFX_SPI_DTR, &ifx_dev->signal_state) ? TIOCM_DTR : 0) |
255 (test_bit(IFX_SPI_CTS, &ifx_dev->signal_state) ? TIOCM_CTS : 0) |
256 (test_bit(IFX_SPI_DSR, &ifx_dev->signal_state) ? TIOCM_DSR : 0) |
257 (test_bit(IFX_SPI_DCD, &ifx_dev->signal_state) ? TIOCM_CAR : 0) |
258 (test_bit(IFX_SPI_RI, &ifx_dev->signal_state) ? TIOCM_RNG : 0);
259 return value;
263 * ifx_spi_tiocmset - set modem bits
264 * @tty: the tty structure
265 * @set: bits to set
266 * @clear: bits to clear
268 * The IFX6x60 only supports DTR and RTS. Set them accordingly
269 * and flag that an update to the modem is needed.
271 * FIXME: do we need to kick the tranfers when we do this ?
273 static int ifx_spi_tiocmset(struct tty_struct *tty,
274 unsigned int set, unsigned int clear)
276 struct ifx_spi_device *ifx_dev = tty->driver_data;
278 if (set & TIOCM_RTS)
279 set_bit(IFX_SPI_RTS, &ifx_dev->signal_state);
280 if (set & TIOCM_DTR)
281 set_bit(IFX_SPI_DTR, &ifx_dev->signal_state);
282 if (clear & TIOCM_RTS)
283 clear_bit(IFX_SPI_RTS, &ifx_dev->signal_state);
284 if (clear & TIOCM_DTR)
285 clear_bit(IFX_SPI_DTR, &ifx_dev->signal_state);
287 set_bit(IFX_SPI_UPDATE, &ifx_dev->signal_state);
288 return 0;
292 * ifx_spi_open - called on tty open
293 * @tty: our tty device
294 * @filp: file handle being associated with the tty
296 * Open the tty interface. We let the tty_port layer do all the work
297 * for us.
299 * FIXME: Remove single device assumption and saved_ifx_dev
301 static int ifx_spi_open(struct tty_struct *tty, struct file *filp)
303 return tty_port_open(&saved_ifx_dev->tty_port, tty, filp);
307 * ifx_spi_close - called when our tty closes
308 * @tty: the tty being closed
309 * @filp: the file handle being closed
311 * Perform the close of the tty. We use the tty_port layer to do all
312 * our hard work.
314 static void ifx_spi_close(struct tty_struct *tty, struct file *filp)
316 struct ifx_spi_device *ifx_dev = tty->driver_data;
317 tty_port_close(&ifx_dev->tty_port, tty, filp);
318 /* FIXME: should we do an ifx_spi_reset here ? */
322 * ifx_decode_spi_header - decode received header
323 * @buffer: the received data
324 * @length: decoded length
325 * @more: decoded more flag
326 * @received_cts: status of cts we received
328 * Note how received_cts is handled -- if header is all F it is left
329 * the same as it was, if header is all 0 it is set to 0 otherwise it is
330 * taken from the incoming header.
332 * FIXME: endianness
334 static int ifx_spi_decode_spi_header(unsigned char *buffer, int *length,
335 unsigned char *more, unsigned char *received_cts)
337 u16 h1;
338 u16 h2;
339 u16 *in_buffer = (u16 *)buffer;
341 h1 = *in_buffer;
342 h2 = *(in_buffer+1);
344 if (h1 == 0 && h2 == 0) {
345 *received_cts = 0;
346 return IFX_SPI_HEADER_0;
347 } else if (h1 == 0xffff && h2 == 0xffff) {
348 /* spi_slave_cts remains as it was */
349 return IFX_SPI_HEADER_F;
352 *length = h1 & 0xfff; /* upper bits of byte are flags */
353 *more = (buffer[1] >> IFX_SPI_MORE_BIT) & 1;
354 *received_cts = (buffer[3] >> IFX_SPI_CTS_BIT) & 1;
355 return 0;
359 * ifx_setup_spi_header - set header fields
360 * @txbuffer: pointer to start of SPI buffer
361 * @tx_count: bytes
362 * @more: indicate if more to follow
364 * Format up an SPI header for a transfer
366 * FIXME: endianness?
368 static void ifx_spi_setup_spi_header(unsigned char *txbuffer, int tx_count,
369 unsigned char more)
371 *(u16 *)(txbuffer) = tx_count;
372 *(u16 *)(txbuffer+2) = IFX_SPI_PAYLOAD_SIZE;
373 txbuffer[1] |= (more << IFX_SPI_MORE_BIT) & IFX_SPI_MORE_MASK;
377 * ifx_spi_wakeup_serial - SPI space made
378 * @port_data: our SPI device
380 * We have emptied the FIFO enough that we want to get more data
381 * queued into it. Poke the line discipline via tty_wakeup so that
382 * it will feed us more bits
384 static void ifx_spi_wakeup_serial(struct ifx_spi_device *ifx_dev)
386 struct tty_struct *tty;
388 tty = tty_port_tty_get(&ifx_dev->tty_port);
389 if (!tty)
390 return;
391 tty_wakeup(tty);
392 tty_kref_put(tty);
396 * ifx_spi_prepare_tx_buffer - prepare transmit frame
397 * @ifx_dev: our SPI device
399 * The transmit buffr needs a header and various other bits of
400 * information followed by as much data as we can pull from the FIFO
401 * and transfer. This function formats up a suitable buffer in the
402 * ifx_dev->tx_buffer
404 * FIXME: performance - should we wake the tty when the queue is half
405 * empty ?
407 static int ifx_spi_prepare_tx_buffer(struct ifx_spi_device *ifx_dev)
409 int temp_count;
410 int queue_length;
411 int tx_count;
412 unsigned char *tx_buffer;
414 tx_buffer = ifx_dev->tx_buffer;
415 memset(tx_buffer, 0, IFX_SPI_TRANSFER_SIZE);
417 /* make room for required SPI header */
418 tx_buffer += IFX_SPI_HEADER_OVERHEAD;
419 tx_count = IFX_SPI_HEADER_OVERHEAD;
421 /* clear to signal no more data if this turns out to be the
422 * last buffer sent in a sequence */
423 ifx_dev->spi_more = 0;
425 /* if modem cts is set, just send empty buffer */
426 if (!ifx_dev->spi_slave_cts) {
427 /* see if there's tx data */
428 queue_length = kfifo_len(&ifx_dev->tx_fifo);
429 if (queue_length != 0) {
430 /* data to mux -- see if there's room for it */
431 temp_count = min(queue_length, IFX_SPI_PAYLOAD_SIZE);
432 temp_count = kfifo_out_locked(&ifx_dev->tx_fifo,
433 tx_buffer, temp_count,
434 &ifx_dev->fifo_lock);
436 /* update buffer pointer and data count in message */
437 tx_buffer += temp_count;
438 tx_count += temp_count;
439 if (temp_count == queue_length)
440 /* poke port to get more data */
441 ifx_spi_wakeup_serial(ifx_dev);
442 else /* more data in port, use next SPI message */
443 ifx_dev->spi_more = 1;
446 /* have data and info for header -- set up SPI header in buffer */
447 /* spi header needs payload size, not entire buffer size */
448 ifx_spi_setup_spi_header(ifx_dev->tx_buffer,
449 tx_count-IFX_SPI_HEADER_OVERHEAD,
450 ifx_dev->spi_more);
451 /* swap actual data in the buffer */
452 swap_buf((u16 *)(ifx_dev->tx_buffer), tx_count,
453 &ifx_dev->tx_buffer[IFX_SPI_TRANSFER_SIZE]);
454 return tx_count;
458 * ifx_spi_write - line discipline write
459 * @tty: our tty device
460 * @buf: pointer to buffer to write (kernel space)
461 * @count: size of buffer
463 * Write the characters we have been given into the FIFO. If the device
464 * is not active then activate it, when the SRDY line is asserted back
465 * this will commence I/O
467 static int ifx_spi_write(struct tty_struct *tty, const unsigned char *buf,
468 int count)
470 struct ifx_spi_device *ifx_dev = tty->driver_data;
471 unsigned char *tmp_buf = (unsigned char *)buf;
472 int tx_count = kfifo_in_locked(&ifx_dev->tx_fifo, tmp_buf, count,
473 &ifx_dev->fifo_lock);
474 mrdy_assert(ifx_dev);
475 return tx_count;
479 * ifx_spi_chars_in_buffer - line discipline helper
480 * @tty: our tty device
482 * Report how much data we can accept before we drop bytes. As we use
483 * a simple FIFO this is nice and easy.
485 static int ifx_spi_write_room(struct tty_struct *tty)
487 struct ifx_spi_device *ifx_dev = tty->driver_data;
488 return IFX_SPI_FIFO_SIZE - kfifo_len(&ifx_dev->tx_fifo);
492 * ifx_spi_chars_in_buffer - line discipline helper
493 * @tty: our tty device
495 * Report how many characters we have buffered. In our case this is the
496 * number of bytes sitting in our transmit FIFO.
498 static int ifx_spi_chars_in_buffer(struct tty_struct *tty)
500 struct ifx_spi_device *ifx_dev = tty->driver_data;
501 return kfifo_len(&ifx_dev->tx_fifo);
505 * ifx_port_hangup
506 * @port: our tty port
508 * tty port hang up. Called when tty_hangup processing is invoked either
509 * by loss of carrier, or by software (eg vhangup). Serialized against
510 * activate/shutdown by the tty layer.
512 static void ifx_spi_hangup(struct tty_struct *tty)
514 struct ifx_spi_device *ifx_dev = tty->driver_data;
515 tty_port_hangup(&ifx_dev->tty_port);
519 * ifx_port_activate
520 * @port: our tty port
522 * tty port activate method - called for first open. Serialized
523 * with hangup and shutdown by the tty layer.
525 static int ifx_port_activate(struct tty_port *port, struct tty_struct *tty)
527 struct ifx_spi_device *ifx_dev =
528 container_of(port, struct ifx_spi_device, tty_port);
530 /* clear any old data; can't do this in 'close' */
531 kfifo_reset(&ifx_dev->tx_fifo);
533 /* put port data into this tty */
534 tty->driver_data = ifx_dev;
536 /* allows flip string push from int context */
537 tty->low_latency = 1;
539 return 0;
543 * ifx_port_shutdown
544 * @port: our tty port
546 * tty port shutdown method - called for last port close. Serialized
547 * with hangup and activate by the tty layer.
549 static void ifx_port_shutdown(struct tty_port *port)
551 struct ifx_spi_device *ifx_dev =
552 container_of(port, struct ifx_spi_device, tty_port);
554 mrdy_set_low(ifx_dev);
555 clear_bit(IFX_SPI_STATE_TIMER_PENDING, &ifx_dev->flags);
556 tasklet_kill(&ifx_dev->io_work_tasklet);
559 static const struct tty_port_operations ifx_tty_port_ops = {
560 .activate = ifx_port_activate,
561 .shutdown = ifx_port_shutdown,
564 static const struct tty_operations ifx_spi_serial_ops = {
565 .open = ifx_spi_open,
566 .close = ifx_spi_close,
567 .write = ifx_spi_write,
568 .hangup = ifx_spi_hangup,
569 .write_room = ifx_spi_write_room,
570 .chars_in_buffer = ifx_spi_chars_in_buffer,
571 .tiocmget = ifx_spi_tiocmget,
572 .tiocmset = ifx_spi_tiocmset,
576 * ifx_spi_insert_fip_string - queue received data
577 * @ifx_ser: our SPI device
578 * @chars: buffer we have received
579 * @size: number of chars reeived
581 * Queue bytes to the tty assuming the tty side is currently open. If
582 * not the discard the data.
584 static void ifx_spi_insert_flip_string(struct ifx_spi_device *ifx_dev,
585 unsigned char *chars, size_t size)
587 struct tty_struct *tty = tty_port_tty_get(&ifx_dev->tty_port);
588 if (!tty)
589 return;
590 tty_insert_flip_string(tty, chars, size);
591 tty_flip_buffer_push(tty);
592 tty_kref_put(tty);
596 * ifx_spi_complete - SPI transfer completed
597 * @ctx: our SPI device
599 * An SPI transfer has completed. Process any received data and kick off
600 * any further transmits we can commence.
602 static void ifx_spi_complete(void *ctx)
604 struct ifx_spi_device *ifx_dev = ctx;
605 struct tty_struct *tty;
606 struct tty_ldisc *ldisc = NULL;
607 int length;
608 int actual_length;
609 unsigned char more;
610 unsigned char cts;
611 int local_write_pending = 0;
612 int queue_length;
613 int srdy;
614 int decode_result;
616 mrdy_set_low(ifx_dev);
618 if (!ifx_dev->spi_msg.status) {
619 /* check header validity, get comm flags */
620 swap_buf((u16 *)ifx_dev->rx_buffer, IFX_SPI_HEADER_OVERHEAD,
621 &ifx_dev->rx_buffer[IFX_SPI_HEADER_OVERHEAD]);
622 decode_result = ifx_spi_decode_spi_header(ifx_dev->rx_buffer,
623 &length, &more, &cts);
624 if (decode_result == IFX_SPI_HEADER_0) {
625 dev_dbg(&ifx_dev->spi_dev->dev,
626 "ignore input: invalid header 0");
627 ifx_dev->spi_slave_cts = 0;
628 goto complete_exit;
629 } else if (decode_result == IFX_SPI_HEADER_F) {
630 dev_dbg(&ifx_dev->spi_dev->dev,
631 "ignore input: invalid header F");
632 goto complete_exit;
635 ifx_dev->spi_slave_cts = cts;
637 actual_length = min((unsigned int)length,
638 ifx_dev->spi_msg.actual_length);
639 swap_buf((u16 *)(ifx_dev->rx_buffer + IFX_SPI_HEADER_OVERHEAD),
640 actual_length,
641 &ifx_dev->rx_buffer[IFX_SPI_TRANSFER_SIZE]);
642 ifx_spi_insert_flip_string(
643 ifx_dev,
644 ifx_dev->rx_buffer + IFX_SPI_HEADER_OVERHEAD,
645 (size_t)actual_length);
646 } else {
647 dev_dbg(&ifx_dev->spi_dev->dev, "SPI transfer error %d",
648 ifx_dev->spi_msg.status);
651 complete_exit:
652 if (ifx_dev->write_pending) {
653 ifx_dev->write_pending = 0;
654 local_write_pending = 1;
657 clear_bit(IFX_SPI_STATE_IO_IN_PROGRESS, &(ifx_dev->flags));
659 queue_length = kfifo_len(&ifx_dev->tx_fifo);
660 srdy = gpio_get_value(ifx_dev->gpio.srdy);
661 if (!srdy)
662 ifx_spi_power_state_clear(ifx_dev, IFX_SPI_POWER_SRDY);
664 /* schedule output if there is more to do */
665 if (test_and_clear_bit(IFX_SPI_STATE_IO_READY, &ifx_dev->flags))
666 tasklet_schedule(&ifx_dev->io_work_tasklet);
667 else {
668 if (more || ifx_dev->spi_more || queue_length > 0 ||
669 local_write_pending) {
670 if (ifx_dev->spi_slave_cts) {
671 if (more)
672 mrdy_assert(ifx_dev);
673 } else
674 mrdy_assert(ifx_dev);
675 } else {
677 * poke line discipline driver if any for more data
678 * may or may not get more data to write
679 * for now, say not busy
681 ifx_spi_power_state_clear(ifx_dev,
682 IFX_SPI_POWER_DATA_PENDING);
683 tty = tty_port_tty_get(&ifx_dev->tty_port);
684 if (tty) {
685 ldisc = tty_ldisc_ref(tty);
686 if (ldisc) {
687 ldisc->ops->write_wakeup(tty);
688 tty_ldisc_deref(ldisc);
690 tty_kref_put(tty);
697 * ifx_spio_io - I/O tasklet
698 * @data: our SPI device
700 * Queue data for transmission if possible and then kick off the
701 * transfer.
703 static void ifx_spi_io(unsigned long data)
705 int retval;
706 struct ifx_spi_device *ifx_dev = (struct ifx_spi_device *) data;
708 if (!test_and_set_bit(IFX_SPI_STATE_IO_IN_PROGRESS, &ifx_dev->flags)) {
709 if (ifx_dev->gpio.unack_srdy_int_nb > 0)
710 ifx_dev->gpio.unack_srdy_int_nb--;
712 ifx_spi_prepare_tx_buffer(ifx_dev);
714 spi_message_init(&ifx_dev->spi_msg);
715 INIT_LIST_HEAD(&ifx_dev->spi_msg.queue);
717 ifx_dev->spi_msg.context = ifx_dev;
718 ifx_dev->spi_msg.complete = ifx_spi_complete;
720 /* set up our spi transfer */
721 /* note len is BYTES, not transfers */
722 ifx_dev->spi_xfer.len = IFX_SPI_TRANSFER_SIZE;
723 ifx_dev->spi_xfer.cs_change = 0;
724 ifx_dev->spi_xfer.speed_hz = ifx_dev->spi_dev->max_speed_hz;
725 /* ifx_dev->spi_xfer.speed_hz = 390625; */
726 ifx_dev->spi_xfer.bits_per_word = spi_bpw;
728 ifx_dev->spi_xfer.tx_buf = ifx_dev->tx_buffer;
729 ifx_dev->spi_xfer.rx_buf = ifx_dev->rx_buffer;
732 * setup dma pointers
734 if (ifx_dev->use_dma) {
735 ifx_dev->spi_msg.is_dma_mapped = 1;
736 ifx_dev->tx_dma = ifx_dev->tx_bus;
737 ifx_dev->rx_dma = ifx_dev->rx_bus;
738 ifx_dev->spi_xfer.tx_dma = ifx_dev->tx_dma;
739 ifx_dev->spi_xfer.rx_dma = ifx_dev->rx_dma;
740 } else {
741 ifx_dev->spi_msg.is_dma_mapped = 0;
742 ifx_dev->tx_dma = (dma_addr_t)0;
743 ifx_dev->rx_dma = (dma_addr_t)0;
744 ifx_dev->spi_xfer.tx_dma = (dma_addr_t)0;
745 ifx_dev->spi_xfer.rx_dma = (dma_addr_t)0;
748 spi_message_add_tail(&ifx_dev->spi_xfer, &ifx_dev->spi_msg);
750 /* Assert MRDY. This may have already been done by the write
751 * routine.
753 mrdy_assert(ifx_dev);
755 retval = spi_async(ifx_dev->spi_dev, &ifx_dev->spi_msg);
756 if (retval) {
757 clear_bit(IFX_SPI_STATE_IO_IN_PROGRESS,
758 &ifx_dev->flags);
759 tasklet_schedule(&ifx_dev->io_work_tasklet);
760 return;
762 } else
763 ifx_dev->write_pending = 1;
767 * ifx_spi_free_port - free up the tty side
768 * @ifx_dev: IFX device going away
770 * Unregister and free up a port when the device goes away
772 static void ifx_spi_free_port(struct ifx_spi_device *ifx_dev)
774 if (ifx_dev->tty_dev)
775 tty_unregister_device(tty_drv, ifx_dev->minor);
776 kfifo_free(&ifx_dev->tx_fifo);
780 * ifx_spi_create_port - create a new port
781 * @ifx_dev: our spi device
783 * Allocate and initialise the tty port that goes with this interface
784 * and add it to the tty layer so that it can be opened.
786 static int ifx_spi_create_port(struct ifx_spi_device *ifx_dev)
788 int ret = 0;
789 struct tty_port *pport = &ifx_dev->tty_port;
791 spin_lock_init(&ifx_dev->fifo_lock);
792 lockdep_set_class_and_subclass(&ifx_dev->fifo_lock,
793 &ifx_spi_key, 0);
795 if (kfifo_alloc(&ifx_dev->tx_fifo, IFX_SPI_FIFO_SIZE, GFP_KERNEL)) {
796 ret = -ENOMEM;
797 goto error_ret;
800 tty_port_init(pport);
801 pport->ops = &ifx_tty_port_ops;
802 ifx_dev->minor = IFX_SPI_TTY_ID;
803 ifx_dev->tty_dev = tty_register_device(tty_drv, ifx_dev->minor,
804 &ifx_dev->spi_dev->dev);
805 if (IS_ERR(ifx_dev->tty_dev)) {
806 dev_dbg(&ifx_dev->spi_dev->dev,
807 "%s: registering tty device failed", __func__);
808 ret = PTR_ERR(ifx_dev->tty_dev);
809 goto error_ret;
811 return 0;
813 error_ret:
814 ifx_spi_free_port(ifx_dev);
815 return ret;
819 * ifx_spi_handle_srdy - handle SRDY
820 * @ifx_dev: device asserting SRDY
822 * Check our device state and see what we need to kick off when SRDY
823 * is asserted. This usually means killing the timer and firing off the
824 * I/O processing.
826 static void ifx_spi_handle_srdy(struct ifx_spi_device *ifx_dev)
828 if (test_bit(IFX_SPI_STATE_TIMER_PENDING, &ifx_dev->flags)) {
829 del_timer_sync(&ifx_dev->spi_timer);
830 clear_bit(IFX_SPI_STATE_TIMER_PENDING, &ifx_dev->flags);
833 ifx_spi_power_state_set(ifx_dev, IFX_SPI_POWER_SRDY);
835 if (!test_bit(IFX_SPI_STATE_IO_IN_PROGRESS, &ifx_dev->flags))
836 tasklet_schedule(&ifx_dev->io_work_tasklet);
837 else
838 set_bit(IFX_SPI_STATE_IO_READY, &ifx_dev->flags);
842 * ifx_spi_srdy_interrupt - SRDY asserted
843 * @irq: our IRQ number
844 * @dev: our ifx device
846 * The modem asserted SRDY. Handle the srdy event
848 static irqreturn_t ifx_spi_srdy_interrupt(int irq, void *dev)
850 struct ifx_spi_device *ifx_dev = dev;
851 ifx_dev->gpio.unack_srdy_int_nb++;
852 ifx_spi_handle_srdy(ifx_dev);
853 return IRQ_HANDLED;
857 * ifx_spi_reset_interrupt - Modem has changed reset state
858 * @irq: interrupt number
859 * @dev: our device pointer
861 * The modem has either entered or left reset state. Check the GPIO
862 * line to see which.
864 * FIXME: review locking on MR_INPROGRESS versus
865 * parallel unsolicited reset/solicited reset
867 static irqreturn_t ifx_spi_reset_interrupt(int irq, void *dev)
869 struct ifx_spi_device *ifx_dev = dev;
870 int val = gpio_get_value(ifx_dev->gpio.reset_out);
871 int solreset = test_bit(MR_START, &ifx_dev->mdm_reset_state);
873 if (val == 0) {
874 /* entered reset */
875 set_bit(MR_INPROGRESS, &ifx_dev->mdm_reset_state);
876 if (!solreset) {
877 /* unsolicited reset */
878 ifx_spi_ttyhangup(ifx_dev);
880 } else {
881 /* exited reset */
882 clear_bit(MR_INPROGRESS, &ifx_dev->mdm_reset_state);
883 if (solreset) {
884 set_bit(MR_COMPLETE, &ifx_dev->mdm_reset_state);
885 wake_up(&ifx_dev->mdm_reset_wait);
888 return IRQ_HANDLED;
892 * ifx_spi_free_device - free device
893 * @ifx_dev: device to free
895 * Free the IFX device
897 static void ifx_spi_free_device(struct ifx_spi_device *ifx_dev)
899 ifx_spi_free_port(ifx_dev);
900 dma_free_coherent(&ifx_dev->spi_dev->dev,
901 IFX_SPI_TRANSFER_SIZE,
902 ifx_dev->tx_buffer,
903 ifx_dev->tx_bus);
904 dma_free_coherent(&ifx_dev->spi_dev->dev,
905 IFX_SPI_TRANSFER_SIZE,
906 ifx_dev->rx_buffer,
907 ifx_dev->rx_bus);
911 * ifx_spi_reset - reset modem
912 * @ifx_dev: modem to reset
914 * Perform a reset on the modem
916 static int ifx_spi_reset(struct ifx_spi_device *ifx_dev)
918 int ret;
920 * set up modem power, reset
922 * delays are required on some platforms for the modem
923 * to reset properly
925 set_bit(MR_START, &ifx_dev->mdm_reset_state);
926 gpio_set_value(ifx_dev->gpio.po, 0);
927 gpio_set_value(ifx_dev->gpio.reset, 0);
928 msleep(25);
929 gpio_set_value(ifx_dev->gpio.reset, 1);
930 msleep(1);
931 gpio_set_value(ifx_dev->gpio.po, 1);
932 msleep(1);
933 gpio_set_value(ifx_dev->gpio.po, 0);
934 ret = wait_event_timeout(ifx_dev->mdm_reset_wait,
935 test_bit(MR_COMPLETE,
936 &ifx_dev->mdm_reset_state),
937 IFX_RESET_TIMEOUT);
938 if (!ret)
939 dev_warn(&ifx_dev->spi_dev->dev, "Modem reset timeout: (state:%lx)",
940 ifx_dev->mdm_reset_state);
942 ifx_dev->mdm_reset_state = 0;
943 return ret;
947 * ifx_spi_spi_probe - probe callback
948 * @spi: our possible matching SPI device
950 * Probe for a 6x60 modem on SPI bus. Perform any needed device and
951 * GPIO setup.
953 * FIXME:
954 * - Support for multiple devices
955 * - Split out MID specific GPIO handling eventually
958 static int ifx_spi_spi_probe(struct spi_device *spi)
960 int ret;
961 int srdy;
962 struct ifx_modem_platform_data *pl_data;
963 struct ifx_spi_device *ifx_dev;
965 if (saved_ifx_dev) {
966 dev_dbg(&spi->dev, "ignoring subsequent detection");
967 return -ENODEV;
970 pl_data = (struct ifx_modem_platform_data *)spi->dev.platform_data;
971 if (!pl_data) {
972 dev_err(&spi->dev, "missing platform data!");
973 return -ENODEV;
976 /* initialize structure to hold our device variables */
977 ifx_dev = kzalloc(sizeof(struct ifx_spi_device), GFP_KERNEL);
978 if (!ifx_dev) {
979 dev_err(&spi->dev, "spi device allocation failed");
980 return -ENOMEM;
982 saved_ifx_dev = ifx_dev;
983 ifx_dev->spi_dev = spi;
984 clear_bit(IFX_SPI_STATE_IO_IN_PROGRESS, &ifx_dev->flags);
985 spin_lock_init(&ifx_dev->write_lock);
986 spin_lock_init(&ifx_dev->power_lock);
987 ifx_dev->power_status = 0;
988 init_timer(&ifx_dev->spi_timer);
989 ifx_dev->spi_timer.function = ifx_spi_timeout;
990 ifx_dev->spi_timer.data = (unsigned long)ifx_dev;
991 ifx_dev->modem = pl_data->modem_type;
992 ifx_dev->use_dma = pl_data->use_dma;
993 ifx_dev->max_hz = pl_data->max_hz;
994 /* initialize spi mode, etc */
995 spi->max_speed_hz = ifx_dev->max_hz;
996 spi->mode = IFX_SPI_MODE | (SPI_LOOP & spi->mode);
997 spi->bits_per_word = spi_bpw;
998 ret = spi_setup(spi);
999 if (ret) {
1000 dev_err(&spi->dev, "SPI setup wasn't successful %d", ret);
1001 return -ENODEV;
1004 /* ensure SPI protocol flags are initialized to enable transfer */
1005 ifx_dev->spi_more = 0;
1006 ifx_dev->spi_slave_cts = 0;
1008 /*initialize transfer and dma buffers */
1009 ifx_dev->tx_buffer = dma_alloc_coherent(ifx_dev->spi_dev->dev.parent,
1010 IFX_SPI_TRANSFER_SIZE,
1011 &ifx_dev->tx_bus,
1012 GFP_KERNEL);
1013 if (!ifx_dev->tx_buffer) {
1014 dev_err(&spi->dev, "DMA-TX buffer allocation failed");
1015 ret = -ENOMEM;
1016 goto error_ret;
1018 ifx_dev->rx_buffer = dma_alloc_coherent(ifx_dev->spi_dev->dev.parent,
1019 IFX_SPI_TRANSFER_SIZE,
1020 &ifx_dev->rx_bus,
1021 GFP_KERNEL);
1022 if (!ifx_dev->rx_buffer) {
1023 dev_err(&spi->dev, "DMA-RX buffer allocation failed");
1024 ret = -ENOMEM;
1025 goto error_ret;
1028 /* initialize waitq for modem reset */
1029 init_waitqueue_head(&ifx_dev->mdm_reset_wait);
1031 spi_set_drvdata(spi, ifx_dev);
1032 tasklet_init(&ifx_dev->io_work_tasklet, ifx_spi_io,
1033 (unsigned long)ifx_dev);
1035 set_bit(IFX_SPI_STATE_PRESENT, &ifx_dev->flags);
1037 /* create our tty port */
1038 ret = ifx_spi_create_port(ifx_dev);
1039 if (ret != 0) {
1040 dev_err(&spi->dev, "create default tty port failed");
1041 goto error_ret;
1044 ifx_dev->gpio.reset = pl_data->rst_pmu;
1045 ifx_dev->gpio.po = pl_data->pwr_on;
1046 ifx_dev->gpio.mrdy = pl_data->mrdy;
1047 ifx_dev->gpio.srdy = pl_data->srdy;
1048 ifx_dev->gpio.reset_out = pl_data->rst_out;
1050 dev_info(&spi->dev, "gpios %d, %d, %d, %d, %d",
1051 ifx_dev->gpio.reset, ifx_dev->gpio.po, ifx_dev->gpio.mrdy,
1052 ifx_dev->gpio.srdy, ifx_dev->gpio.reset_out);
1054 /* Configure gpios */
1055 ret = gpio_request(ifx_dev->gpio.reset, "ifxModem");
1056 if (ret < 0) {
1057 dev_err(&spi->dev, "Unable to allocate GPIO%d (RESET)",
1058 ifx_dev->gpio.reset);
1059 goto error_ret;
1061 ret += gpio_direction_output(ifx_dev->gpio.reset, 0);
1062 ret += gpio_export(ifx_dev->gpio.reset, 1);
1063 if (ret) {
1064 dev_err(&spi->dev, "Unable to configure GPIO%d (RESET)",
1065 ifx_dev->gpio.reset);
1066 ret = -EBUSY;
1067 goto error_ret2;
1070 ret = gpio_request(ifx_dev->gpio.po, "ifxModem");
1071 ret += gpio_direction_output(ifx_dev->gpio.po, 0);
1072 ret += gpio_export(ifx_dev->gpio.po, 1);
1073 if (ret) {
1074 dev_err(&spi->dev, "Unable to configure GPIO%d (ON)",
1075 ifx_dev->gpio.po);
1076 ret = -EBUSY;
1077 goto error_ret3;
1080 ret = gpio_request(ifx_dev->gpio.mrdy, "ifxModem");
1081 if (ret < 0) {
1082 dev_err(&spi->dev, "Unable to allocate GPIO%d (MRDY)",
1083 ifx_dev->gpio.mrdy);
1084 goto error_ret3;
1086 ret += gpio_export(ifx_dev->gpio.mrdy, 1);
1087 ret += gpio_direction_output(ifx_dev->gpio.mrdy, 0);
1088 if (ret) {
1089 dev_err(&spi->dev, "Unable to configure GPIO%d (MRDY)",
1090 ifx_dev->gpio.mrdy);
1091 ret = -EBUSY;
1092 goto error_ret4;
1095 ret = gpio_request(ifx_dev->gpio.srdy, "ifxModem");
1096 if (ret < 0) {
1097 dev_err(&spi->dev, "Unable to allocate GPIO%d (SRDY)",
1098 ifx_dev->gpio.srdy);
1099 ret = -EBUSY;
1100 goto error_ret4;
1102 ret += gpio_export(ifx_dev->gpio.srdy, 1);
1103 ret += gpio_direction_input(ifx_dev->gpio.srdy);
1104 if (ret) {
1105 dev_err(&spi->dev, "Unable to configure GPIO%d (SRDY)",
1106 ifx_dev->gpio.srdy);
1107 ret = -EBUSY;
1108 goto error_ret5;
1111 ret = gpio_request(ifx_dev->gpio.reset_out, "ifxModem");
1112 if (ret < 0) {
1113 dev_err(&spi->dev, "Unable to allocate GPIO%d (RESET_OUT)",
1114 ifx_dev->gpio.reset_out);
1115 goto error_ret5;
1117 ret += gpio_export(ifx_dev->gpio.reset_out, 1);
1118 ret += gpio_direction_input(ifx_dev->gpio.reset_out);
1119 if (ret) {
1120 dev_err(&spi->dev, "Unable to configure GPIO%d (RESET_OUT)",
1121 ifx_dev->gpio.reset_out);
1122 ret = -EBUSY;
1123 goto error_ret6;
1126 ret = request_irq(gpio_to_irq(ifx_dev->gpio.reset_out),
1127 ifx_spi_reset_interrupt,
1128 IRQF_TRIGGER_RISING|IRQF_TRIGGER_FALLING, DRVNAME,
1129 (void *)ifx_dev);
1130 if (ret) {
1131 dev_err(&spi->dev, "Unable to get irq %x\n",
1132 gpio_to_irq(ifx_dev->gpio.reset_out));
1133 goto error_ret6;
1136 ret = ifx_spi_reset(ifx_dev);
1138 ret = request_irq(gpio_to_irq(ifx_dev->gpio.srdy),
1139 ifx_spi_srdy_interrupt,
1140 IRQF_TRIGGER_RISING, DRVNAME,
1141 (void *)ifx_dev);
1142 if (ret) {
1143 dev_err(&spi->dev, "Unable to get irq %x",
1144 gpio_to_irq(ifx_dev->gpio.srdy));
1145 goto error_ret7;
1148 /* set pm runtime power state and register with power system */
1149 pm_runtime_set_active(&spi->dev);
1150 pm_runtime_enable(&spi->dev);
1152 /* handle case that modem is already signaling SRDY */
1153 /* no outgoing tty open at this point, this just satisfies the
1154 * modem's read and should reset communication properly
1156 srdy = gpio_get_value(ifx_dev->gpio.srdy);
1158 if (srdy) {
1159 mrdy_assert(ifx_dev);
1160 ifx_spi_handle_srdy(ifx_dev);
1161 } else
1162 mrdy_set_low(ifx_dev);
1163 return 0;
1165 error_ret7:
1166 free_irq(gpio_to_irq(ifx_dev->gpio.reset_out), (void *)ifx_dev);
1167 error_ret6:
1168 gpio_free(ifx_dev->gpio.srdy);
1169 error_ret5:
1170 gpio_free(ifx_dev->gpio.mrdy);
1171 error_ret4:
1172 gpio_free(ifx_dev->gpio.reset);
1173 error_ret3:
1174 gpio_free(ifx_dev->gpio.po);
1175 error_ret2:
1176 gpio_free(ifx_dev->gpio.reset_out);
1177 error_ret:
1178 ifx_spi_free_device(ifx_dev);
1179 saved_ifx_dev = NULL;
1180 return ret;
1184 * ifx_spi_spi_remove - SPI device was removed
1185 * @spi: SPI device
1187 * FIXME: We should be shutting the device down here not in
1188 * the module unload path.
1191 static int ifx_spi_spi_remove(struct spi_device *spi)
1193 struct ifx_spi_device *ifx_dev = spi_get_drvdata(spi);
1194 /* stop activity */
1195 tasklet_kill(&ifx_dev->io_work_tasklet);
1196 /* free irq */
1197 free_irq(gpio_to_irq(ifx_dev->gpio.reset_out), (void *)ifx_dev);
1198 free_irq(gpio_to_irq(ifx_dev->gpio.srdy), (void *)ifx_dev);
1200 gpio_free(ifx_dev->gpio.srdy);
1201 gpio_free(ifx_dev->gpio.mrdy);
1202 gpio_free(ifx_dev->gpio.reset);
1203 gpio_free(ifx_dev->gpio.po);
1204 gpio_free(ifx_dev->gpio.reset_out);
1206 /* free allocations */
1207 ifx_spi_free_device(ifx_dev);
1209 saved_ifx_dev = NULL;
1210 return 0;
1214 * ifx_spi_spi_shutdown - called on SPI shutdown
1215 * @spi: SPI device
1217 * No action needs to be taken here
1220 static void ifx_spi_spi_shutdown(struct spi_device *spi)
1225 * various suspends and resumes have nothing to do
1226 * no hardware to save state for
1230 * ifx_spi_spi_suspend - suspend SPI on system suspend
1231 * @dev: device being suspended
1233 * Suspend the SPI side. No action needed on Intel MID platforms, may
1234 * need extending for other systems.
1236 static int ifx_spi_spi_suspend(struct spi_device *spi, pm_message_t msg)
1238 return 0;
1242 * ifx_spi_spi_resume - resume SPI side on system resume
1243 * @dev: device being suspended
1245 * Suspend the SPI side. No action needed on Intel MID platforms, may
1246 * need extending for other systems.
1248 static int ifx_spi_spi_resume(struct spi_device *spi)
1250 return 0;
1254 * ifx_spi_pm_suspend - suspend modem on system suspend
1255 * @dev: device being suspended
1257 * Suspend the modem. No action needed on Intel MID platforms, may
1258 * need extending for other systems.
1260 static int ifx_spi_pm_suspend(struct device *dev)
1262 return 0;
1266 * ifx_spi_pm_resume - resume modem on system resume
1267 * @dev: device being suspended
1269 * Allow the modem to resume. No action needed.
1271 * FIXME: do we need to reset anything here ?
1273 static int ifx_spi_pm_resume(struct device *dev)
1275 return 0;
1279 * ifx_spi_pm_runtime_resume - suspend modem
1280 * @dev: device being suspended
1282 * Allow the modem to resume. No action needed.
1284 static int ifx_spi_pm_runtime_resume(struct device *dev)
1286 return 0;
1290 * ifx_spi_pm_runtime_suspend - suspend modem
1291 * @dev: device being suspended
1293 * Allow the modem to suspend and thus suspend to continue up the
1294 * device tree.
1296 static int ifx_spi_pm_runtime_suspend(struct device *dev)
1298 return 0;
1302 * ifx_spi_pm_runtime_idle - check if modem idle
1303 * @dev: our device
1305 * Check conditions and queue runtime suspend if idle.
1307 static int ifx_spi_pm_runtime_idle(struct device *dev)
1309 struct spi_device *spi = to_spi_device(dev);
1310 struct ifx_spi_device *ifx_dev = spi_get_drvdata(spi);
1312 if (!ifx_dev->power_status)
1313 pm_runtime_suspend(dev);
1315 return 0;
1318 static const struct dev_pm_ops ifx_spi_pm = {
1319 .resume = ifx_spi_pm_resume,
1320 .suspend = ifx_spi_pm_suspend,
1321 .runtime_resume = ifx_spi_pm_runtime_resume,
1322 .runtime_suspend = ifx_spi_pm_runtime_suspend,
1323 .runtime_idle = ifx_spi_pm_runtime_idle
1326 static const struct spi_device_id ifx_id_table[] = {
1327 {"ifx6160", 0},
1328 {"ifx6260", 0},
1331 MODULE_DEVICE_TABLE(spi, ifx_id_table);
1333 /* spi operations */
1334 static const struct spi_driver ifx_spi_driver = {
1335 .driver = {
1336 .name = DRVNAME,
1337 .bus = &spi_bus_type,
1338 .pm = &ifx_spi_pm,
1339 .owner = THIS_MODULE},
1340 .probe = ifx_spi_spi_probe,
1341 .shutdown = ifx_spi_spi_shutdown,
1342 .remove = __devexit_p(ifx_spi_spi_remove),
1343 .suspend = ifx_spi_spi_suspend,
1344 .resume = ifx_spi_spi_resume,
1345 .id_table = ifx_id_table
1349 * ifx_spi_exit - module exit
1351 * Unload the module.
1354 static void __exit ifx_spi_exit(void)
1356 /* unregister */
1357 tty_unregister_driver(tty_drv);
1358 spi_unregister_driver((void *)&ifx_spi_driver);
1362 * ifx_spi_init - module entry point
1364 * Initialise the SPI and tty interfaces for the IFX SPI driver
1365 * We need to initialize upper-edge spi driver after the tty
1366 * driver because otherwise the spi probe will race
1369 static int __init ifx_spi_init(void)
1371 int result;
1373 tty_drv = alloc_tty_driver(1);
1374 if (!tty_drv) {
1375 pr_err("%s: alloc_tty_driver failed", DRVNAME);
1376 return -ENOMEM;
1379 tty_drv->magic = TTY_DRIVER_MAGIC;
1380 tty_drv->owner = THIS_MODULE;
1381 tty_drv->driver_name = DRVNAME;
1382 tty_drv->name = TTYNAME;
1383 tty_drv->minor_start = IFX_SPI_TTY_ID;
1384 tty_drv->num = 1;
1385 tty_drv->type = TTY_DRIVER_TYPE_SERIAL;
1386 tty_drv->subtype = SERIAL_TYPE_NORMAL;
1387 tty_drv->flags = TTY_DRIVER_REAL_RAW | TTY_DRIVER_DYNAMIC_DEV;
1388 tty_drv->init_termios = tty_std_termios;
1390 tty_set_operations(tty_drv, &ifx_spi_serial_ops);
1392 result = tty_register_driver(tty_drv);
1393 if (result) {
1394 pr_err("%s: tty_register_driver failed(%d)",
1395 DRVNAME, result);
1396 put_tty_driver(tty_drv);
1397 return result;
1400 result = spi_register_driver((void *)&ifx_spi_driver);
1401 if (result) {
1402 pr_err("%s: spi_register_driver failed(%d)",
1403 DRVNAME, result);
1404 tty_unregister_driver(tty_drv);
1406 return result;
1409 module_init(ifx_spi_init);
1410 module_exit(ifx_spi_exit);
1412 MODULE_AUTHOR("Intel");
1413 MODULE_DESCRIPTION("IFX6x60 spi driver");
1414 MODULE_LICENSE("GPL");
1415 MODULE_INFO(Version, "0.1-IFX6x60");